forked from mmalahe/unc-dissertation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclt_oral_presentation_v2.tex
769 lines (719 loc) · 22.3 KB
/
clt_oral_presentation_v2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% HEADER
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\documentclass[11pt]{unc_dissertation}
\documentclass[11pt]{beamer}
%Font packages
\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
\usepackage{import}
%Bilbiography styles
\bibliographystyle{ieeetr}
% List of acronyms
\usepackage{longtable}
\usepackage[acronym]{glossaries}
%% Math Packages %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{bbm}
\usepackage{amssymb}
\usepackage{geometry}
%% Reduce spacing between paragraph and section title %%%%%%%
%% @todo: Put this modification in the class file itself.
\usepackage{titlesec}
\titlespacing*{\section}
{0pt}{-5pt}{0pt}
\titlespacing*{\subsection}
{0pt}{-5pt}{0pt}
\usepackage{indentfirst} %Indents first paragraphs in every section.
%% Flush footnotes to the left
\usepackage[hang,flushmargin]{footmisc}
%% Places footnotes immediately below horizontal rule
\setlength{\footnotesep}{0pt}
%% Normal LaTeX or pdfLaTeX? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\RequirePackage{ifpdf}
%% Packages for Graphics & Figures %%%%%%%%%%%%%%%%%%%%%%%%%%
%\ifpdf %%Inclusion of graphics via \begin{frame}{graphics{file}
%\usepackage[pdftex]{graphicx} %%graphics in pdfLaTeX
%\else
%\usepackage[dvips]{graphicx} %%graphics and normal LaTeX
%\fi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% DOCUMENT SETTINGS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{Dissertation Title}
\author{Dissertation Author}
%\committee{Advisor}{Committee Member}{Committee Member}{Committee Member}{Committee Member}
\date{January 1, 1970}
%\input{abstract.tex}
%
%\dedication{To Wawa}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GLOSSARIES AND ABBREVIATIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% To update the printed glossary, you need to run:
% - pdflatex dissertation
% - makeglossaries dissertation
% - pdflatex dissertation
% On Windows, you might need to install Perl first.
\newacronym{unc}{UNC}{The University of North Carolina at Chapel Hill}
\makeglossaries
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% DOCUMENT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\linespread{1.0}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LSFEM Review Fluid Mechanics
% Navier-Stokes (Incompressible Newtonian Fluids)
% VVP
% VVG
% VVT
% (Variable Viscosity e.g. Carreau) Navier-Stokes (Incompressible Newtonian Fluids)
% VPS
% PINN: Linear Elasticity Plane Displacement
% Linear elasticity: Mixed Formulation
% (Spring 2022)
% PINN Application: Navier-Stokes Idealized Vessels
% Newtonian
% Carreau
% Singly and Doubly Stenotic
% FOSLS-PINN: Linear Elasticity Plane Stress
% Linear elasticity: Mixed Formulation
% Linear elasticity: VVG Formulation
% PINN and FOSLS-PINN: Channel Flow 2D
% VP
% VPS
% VVG
% VVT
% VVP
% Convergence w.r.t. Number of Sampled Points
% PINN and FOSLS-PINN: Bercovier-Engelman 2D
% VP
% VPS
% VVG
% VVT
% VVP
% Convergence w.r.t. Number of Neurons (Depth)
% Convergence w.r.t. Number of Neurons (Width)
% Convergence w.r.t. Number of Neurons (Size)
% PINN and FOSLS-PINN: Steady Cylinder 2D
% VP
% VPS
% VVG
% VVT
% VVP
% Convergence w.r.t. Number of Neurons (Depth)
% Convergence w.r.t. Number of Neurons (Width)
% Convergence w.r.t. Number of Neurons (Size)
% PINN and FOSLS-PINN: Block Stenosis 2D
% VP
% VPS
% VVG
% VVT
% VVP
% Convergence w.r.t. Number of Neurons (Depth)
% Convergence w.r.t. Number of Neurons (Width)
% Convergence w.r.t. Number of Neurons (Size)
% PINN and FOSLS-PINN: Lid Driven Cavity 2D
% Importance Sampling
% Signed Distance Function Weighting (Corner Singularities)
% VP
% VPS
% VVG
% VVT
% VVP
% Convergence w.r.t. Number of Neurons (Depth)
% Convergence w.r.t. Number of Neurons (Width)
% Convergence w.r.t. Number of Neurons (Size)
% PINN and FOSLS-PINN: Annular Ring 2D
% Regular
% Hard BCs
% Residual Gradient
% VP
% VPS
% VVG
% VVT
% VVP
% Convergence w.r.t. Number of Neurons (Depth)
% Convergence w.r.t. Number of Neurons (Width)
% Convergence w.r.t. Number of Neurons (Size)
% Variational PINN (VPINN)
% Poisson, Laplace, or Linear Elasticity
% VPINN
% FOSLS VPINN
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter 0
% % Everything, disorganized
%% \begin{frame}{Chapter 0}
%% \end{frame}
% \begin{frame}{
%% \include{}
% }
% \end{frame}
%\include{slide-UseCasePINNs.tex}
\begin{frame}{Universal Approximation Theorem}
\end{frame}
\begin{frame}{Physics-Informed Neural Networks}
\end{frame}
\begin{frame}{PINN Applications, Use Cases}
% \include{slide-UseCasePINNs.tex}
%\section{Use Cases of PINNs vs Classical Numerical Methods}
Current AI methods will be slower than the traditional solvers for training of a single case/geometry.
\begin{enumerate}
\item Multiple (parameterized) cases where there are several different configurations in the analysis space
\item Parametric Models
%different model configurations (subject to physical constraints) based on a multitude of parameters.
%Compare autlod: Appearance-Driven Automatic 3D Model Simplification
\item Surrogate Models
\item Design Optimization
\item Inverse Problems
\item Reduced-Order Models
% (data is given but determine coefficients of PDEs)
\item Data Assimilation (Sparse/Incomplete Field Measurements, Digital Twins, Medical Imaging, Full Waveform Inversion)
%Cases where measured data is available but the Physics is too complicated or not fully understood
%\item Data assimilation cases where there is measured or simulated data for some variables but not the entire field (e.g. digital twins, medical imaging, full waveform inversion etc.)
\item Surrogate for compute intensive model components (constitutive models, turbulence models)
%part of the solver and call that from the solver during the analysis to improve the speed (constitutive models, turbulence models or radiation viewfactors etc.)
\item Transfer Learning
% \item Runge Kutta simulations (extreme order)
%\item Point clouds can sometimes present higher quality solutions than mesh based simulations (since without convergence studies, mesh based solutions can yield questionable results).
\end{enumerate}
\end{frame}
\begin{frame}{PINN Error Estimates and Solutions}
Elliptic PDE
\begin{enumerate}
\item Error Estimates and Convergence of PINNs in Primitive Variables ()
\item Error Estimates and Convergence of PINNs using LS and FOSLS functionals for 1D Elliptic Problems ()
\end{enumerate}
Stokes Equations
\begin{enumerate}
\item VPVNet: PINN using VPV formulation, convergence, and numerical examples
\end{enumerate}
Navier-Stokes Equations (Primitive Variables)
\begin{enumerate}
\item Rigorous bounds on the errors resulting from the approximation of the incompressible Navier-Stokes equations with physics informed neural networks (De Ryck et al)
\item Underlying PDE residual can be made arbitrarily small for $\tanh$ neural networks with 2 hidden layers. (De Ryck et al)
\item Total error can be estimated in terms of the training error, network size and number of quadrature points. (De Ryck et al)
\item The theory is illustrated with numerical experiments.
\end{enumerate}
\end{frame}
\include{slide-NeuralNetworks.tex}
\include{slide-NeuralNetworksFEM.tex}
\include{slide-LSFEM.tex}
\include{slide-WeightedLSFEM.tex}
%
%\begin{frame}{Weighted LSFEM for Singular PDEs}
% FEM effectiveness limited by locally non-smooth solutions
% %lack smoothness on a relatively small subset of the domain.
% Standard $L^2$ LSFEM: for problems with singular solutions, suboptimal rate of convergence (fail)
% Weighted LSFEM: enhance norm used in the LS functional with weight functions, recover near-optimal convergence
%
% PDE with singular behavior at isolated locations the domain.
% Problems with smooth data may fail to provide smooth solutions (b.c. domain or operator).
% Example
% \begin{align*}
% \left\{\begin{aligned}
% \mathcal{K}(u) & =f & \text { in } \Omega \\
% u & =g & \text { on } \partial \Omega,
% \end{aligned}\right.
% \end{align*}
% where $\mathcal{K}$ is a second-order differential operator. If $f \in L^2(\Omega)$ and $g \in H^{3 / 2}(\Omega)$ is sufficient to guarantee that $u \in H^2(\Omega)$, then we consider the problem to have full regularity. We consider problems without this property to have a low regularity, or (potentially) nonsmooth solutions. For example, Poisson's equation is known to have full regularity when $\Omega$ is convex, but can have nonsmooth solutions when $\partial \Omega$ has corners (or edges) with interior angle greater than $\pi$ [19]. This lack of smoothness is localized, however. In any subdomain excluding a neighborhood of each corner point the solution remains smooth. Other elliptic problems have similar behavior as a consequence of the domain, see e.g., $[24,25]$.
%
% The operator $\mathcal{K}$ can also induce a loss of smoothness when coefficients are either singular (i.e., $\rightarrow \infty$ ) or degenerate (i.e., $\rightarrow 0$ ) at distinct points in $\Omega[5]$.
%
% Invariably, numerical methods tend to suffer as a consequence of a loss of regularity. Finite element convergence rates can be reduced or, in some cases, the method can fail to converge to the solution of the problem.
% Often: localized non-smooth solution behavior yield Sub-optimal global convergence rates: \textbf{pollution effect}
%\end{frame}
\include{slide-SteadyNSFormulations.tex}
%\begin{frame}{Overview: PINN and Use Cases}
%\end{frame}
%
%\begin{frame}{PINNs Intro}
%\end{frame}
%
%\begin{frame}{PINNs Review of Applications}
%\end{frame}
%
%\begin{frame}{NN and FEM Review}
%\end{frame}
%
%\begin{frame}{PINN: Convergence Review}
%\end{frame}
\include{slide--PINNConvergence}
% \begin{frame}{FOSLS-PINN Motivation}
% \end{frame}
% \begin{frame}{LSFEM Review Elasticity}
% \end{frame}
%\begin{frame}{Stokes/Linear Elasticity}
%\end{frame}
%
%\begin{frame}{Pure Traction}
%\end{frame}
%
%\begin{frame}{Pure Displacement}
%\end{frame}
%
%\begin{frame}{Mixed Formulations for Linear Elasticity}
%\end{frame}
%
%\begin{frame}{Mixed Formulations for Hyperelasticity}
%
%\end{frame}
\include{slide-LinearElasticity}
\include{slide-SteadyChannel2D.tex}
\include{slide-BercovierEngelman2D-Intro.tex}
\include{slide-BercovierEngelman2D.tex}
\include{slide-BercovierEngelman2D-SILU.tex}
\include{slide-BercovierEngelman2D-NTK-SILU.tex}
\include{slide-BercovierEngelman2D-NTK-RELU.tex}
\include{slide-PlaneDisplacement-Intro}
\include{slide-PlaneDisplacement}
\include{slide-Chip2D-Intro.tex}
\include{slide-Chip2D}
\include{slide-Cylinder2D-Intro.tex}
%\include{slide-Cylinder2D}
\include{slide-Cylinder2D-SILU}
\include{slide-Cylinder2D-RELU}
\include{slide-LDC2D}
\include{slide-LDC2D-SILU}
\include{slide-LDC2D-RELU}
%\include{slide-LDC2D-TANH}
\include{slide-AnnularRing}
\include{appendix-misc.tex}
% \begin{frame}{
% \include{slide-PINNs.tex}
% TODO: \usepackage{graphicx} required
% }
% \end{frame}
% \begin{frame}{
% \include{slide-Methods.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{slide-LSFEM.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/slide-DeepFOSLS1D-Formulations.tex}
% \end{frame}
% %\begin{frame}{
% \include{./notes/FOSLS/sec-EllipticFOSLS-Results.tex}
% %\begin{frame}{
% \include{./notes/FOSLS/slide-DeepFOSLS2D-Formulations.tex}
% %\begin{frame}{
% \include{./notes/FOSLS/slide-LinearElasticityFOSLS-Formulations.tex}
% %\begin{frame}{
% \include{./notes/FOSLS/slide-LinearElasticityFOSLS-Results.tex}
% %\begin{frame}{
% \include{./notes/FOSLS/slide-HyperElasticityFOSLS-Formulations.tex}
% %\begin{frame}{
% \include{./notes/FOSLS/slide-HyperElasticityFOSLS-Results.tex}
% %\begin{frame}{
% \include{./notes/FOSLS/slide-StokesFOSLS-VVP-Formulations.tex}
% %\begin{frame}{
% \include{./notes/FOSLS/slide-StokesFOSLS-VVG-Formulations.tex}
% %\begin{frame}{
% \include{./notes/FOSLS/slide-StokesFOSLS-VVT-Formulations.tex}
% %\begin{frame}{
% \include{./notes/FOSLS/slide-StokesFOSLS-Formulations.tex}
% %\begin{frame}{
% \include{./notes/FOSLS/slide-StokesFOSLS-Results.tex}
% \begin{frame}{
% \include{./notes/FOSLS/slide-LinearElasticityStokesFOSLS-Formulations.tex}
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-LinearElasticityStokesFOSLS-Formulations-PureDisplacement.tex}
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-LinearElasticityStokesFOSLS-Formulations-PureTraction.tex}
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-LinearElasticityStokesFOSLS-Formulations-Mixed.tex}
% \end{frame}
%
% \begin{frame}{
% \include{./notes/FOSLS/slide-HyperElasticityFOSLS-Formulations.tex}
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-HyperElasticityFOSLS-Formulations-Mixed.tex}
% \end{frame}
%
% \begin{frame}{
% \include{./notes/FOSLS/slide-NavierStokesFOSLS-Formulations.tex}
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/slide-NavierStokesFOSLS-Results.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/slide-SteadyNavierStokes2D-FOSLS-Results.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-HagenPoiseuilleChannel2D.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-CouetteChannel2D.tex}
% }
% \end{frame}
%
% \begin{frame}{
% \include{./notes/FOSLS/sec-KovasznayRectangle2D.tex}
% }
% \end{frame}
%
%% \begin{frame}{
% \include{./notes/FOSLS/sec-BercovierSquare2D.tex}
%% }
% \end{frame}
%
% \begin{frame}{
% \include{./notes/FOSLS/sec-RuasDisk2D.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-TaylorGreen2D.tex}
% }
% \end{frame}
%
%% \begin{frame}{
% \include{./notes/FOSLS/sec-CylinderChannel2D.tex}
%% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-BlockStenosisChannel2D.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-AnnularRing2D.tex}
% }
% \end{frame}
%
% \begin{frame}{
% \include{./notes/FOSLS/slide-SteadyNavierStokes3D-FOSLS-Results.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-TaylorGreen3D.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-ABCFlow3D.tex}
% }
% \end{frame}
%
% \begin{frame}{
% \include{./notes/FOSLS/slide-NavierStokes2D-FOSLS-Results.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-TaylorGreen2DT.tex}
% }
% \end{frame}
%
% \begin{frame}{
% \include{./notes/FOSLS/slide-NavierStokes3D-FOSLS-Results.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-Beltrami3DT.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-TaylorGreen3DT.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/sec-Cylinder2DT.tex}
% }
% \end{frame}
%
%
%
% \begin{frame}{
% \include{./notes/FOSLS/slide-DeepFOSLS-Results-LDC2D.tex}
% }
% \end{frame}
%
% \begin{frame}{
% \include{./notes/FOSLS/slide-DeepFOSLS-Results-Cylinder2D.tex}
% }
% \end{frame}
%
% \begin{frame}{
% \include{./notes/FOSLS/slide-DeepFOSLS-Results-Block2D.tex}
% }
% \end{frame}
%
% \begin{frame}{
% \include{./notes/FOSLS/slide-DeepFOSLS-Results-AnnularRing.tex}
% }
% \end{frame}
% \begin{frame}{
% \include{./notes/FOSLS/slide-DeepFOSLS-Results-AnnularRing1.tex}
% }
% \end{frame}
%
%
% \begin{frame}{
% \include{./notes/FOSLS/slide-DeepFOSLS-Results-Cylinder2D_inverse.tex}
% }
% \end{frame}
%
% \begin{frame}{
% \include{./notes/FOSLS/slide-DeepFOSLS-Results-Block2D_inverse.tex}
% }
% \end{frame}
%
%% \input{./slide-Chapter0.tex}
% %\input{./notes/FOSLS/SECTION_ANNULUARRING_PRESSUREMONITORS_STEADY_2D}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter 1
% % Overview of Neural Networks and Supervised (Learning) NN Approximation
% \begin{frame}{Chapter 1}
% }
% \end{frame}
%
% %\input{chapter1.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter 2
% % Brief Introduction to equation-informed (unsupervised) NN approximations to PDEs PINNs, overview of results (forward, backward, identification, SDEs), FFR Application? ROM and surrogate models,
% \begin{frame}{Chapter 2}
% }
% \end{frame}
%
% %\input{chapter2.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter 3
% % Brief Introduction to equation-informed (unsupervised) NN approximations to PDEs PINNs, overview of results (forward, backward, identification, SDEs), FFR Application?
% \begin{frame}{Chapter 3}
% }
% \end{frame}
%
% %\input{chapter2.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % 1D Deep LS, Deep FOSLS, Deep Energy Method comparison
% \begin{frame}{Chapter 2}
% }
% \end{frame}
%
% %\input{chapter2.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % 2D (Unconstrained?) PDEs
% % Deep FOSLS vs PINNs comparison.
% % Poisson-like Equations
% % Poisson
% % Diffusion
% % Helmholtz
% %
% \begin{frame}{Chapter 2}
% }
% \end{frame}
%
% %laplace
% %\input{poisson2d.tex}
% %\input{surfacepoisson2d.tex}
% %%\input{diffusion2d.tex}
% %%\input{diffusionreaction2d.tex}
% %singularlyperturbed
% %\input{advectiondiffusionreaction2d.tex}
% %\input{helmholtz2d.tex}
% %\input{chapter2.tex}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % Introduction: FEM and LSFEM methods
% % Linear and Hyperelastic Elasticity
% % PINNs vs Deep FOSLS (Deep Energy Method?)comparison
% % thesisLeast-squares mixed finite elements for geometricallySteegerDiss.pdf
% \begin{frame}{Finite Element Methods and Least-Squares FEM in Solid and Fluid Mechanics}
% }
% \end{frame}
%
% %%\input{Galerkin and mixed Galerkin finite elements.tex}
% %\input{GalerkinandMixedGalerkinFiniteElements.tex}
% %%\input{Least-squares mixed finite elements.tex}
% %\input{LeastSquaresMixedFiniteElements.tex}
% %%\input{Outline}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % 2D Static Solid Mechanics
% % Linear and Hyperelastic Elasticity
% % PINNs vs Deep FOSLS (Deep Energy Method?)comparison
% % thesisLeast-squares mixed finite elements for geometricallySteegerDiss.pdf
% \begin{frame}{Continuum mechanical background}
% }
% \end{frame}
% %\input{KinematicsAndDeformationMeasures.tex}
% %\input{StressQuantities.tex}
% %\input{Hyperelasticmaterials.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % Background: LSFFEM for Steady Newtonian Fluid Mechanics
% \begin{frame}{First-Order Systems Least-Squares Formulations of Navier-Stokes Equations for Steady Newtonian Fluid Mechanics}
% }
% \end{frame}
% %\input{LinearElasticityPureTractionFormulation.tex}
% %\input{LinearElasticityPureDisplacementFormulation.tex}
% %\input{LinearElasticityTractionDisplacementFormulation.tex}
% %\input{hyperelasticfosls.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % Background: LSFFEM for Steady Newtonian Fluid Mechanics
% \begin{frame}{First-Order Systems Least-Squares Formulations of Navier-Stokes Equations for Steady Newtonian Fluid Mechanics}
% }
% \end{frame}
% %\input{VPFormulation.tex}
% %\input{VVFormulation.tex}
% %\input{VVPFormulation.tex}
% %\input{VPSFormulation.tex}
% %\input{VVGFormulation.tex}
% %\input{VVTFormulation.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % PINN Approximations to Navier-Stokes:
% % 2D Steady Newtonian Fluid Mechanics
% \begin{frame}{PINN Approximations to Navier-Stokes: Steady Newtonian Fluid Mechanics}
% }
% \end{frame}
% %\input{chapter2.tex}
% \subimport{notes/}{windkessel_overview.tex}
% %%\input{./notes/windkessel_overview.tex}
% %%\input{../notes/FOSLS/BLOCKSTENOSISSTEADY2D.tex}
% %%\input{/notes/FOSLS/BLOCKSTENOSISSTEADY2D.tex}
% %%\input{../notes/FOSLS/BLOCKSTENOSIS_STEADY_2D.tex}
% %%\input{../notes/FOSLS/SECTION_ANNULARRING_STEADY_2D.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % 2D Steady Non-Newtonian Fluid Mechanics, Special Methods, Applications
%% \begin{frame}{Chapter 2}
%% }
%% \end{frame}
%
% %\input{chapter2.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % Time-Dependent FOSLS Method, 1D/2D Advection-Diffusion-Reaction, Burger's, KdV, NL Schrodinger
%% \begin{frame}{Chapter 2}
%% }
%% \end{frame}
%
% %\input{chapter2.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % PIGAN FOSLS vs Primitive FOSLS: Pressure Reconstruction, Darcy, and Elasticity
%% \begin{frame}{Chapter 2}
%% }
%% \end{frame}
% %\input{chapter2.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % Bayesian PINNs vs Bayesian FOSLS PINNs for UQ, noise distributions
%% \begin{frame}{Chapter 2}
%% }
%% \end{frame}
% %\input{chapter2.tex}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Chapter
% % Operator Learning (DeepONet, MIONet, and Fourcastnet) 1D Deep LS, Deep FOSLS, Deep Energy Method comparison
%% \begin{frame}{Chapter 2}
%% }
%% \end{frame}
% %\input{chapter2.tex}
% {\tiny }
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% BIBLIOGRAPHY AND OTHER LISTS
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%% \backmatter
%
% % Bibliography
% \bibliography{dissertation}
% \addtocontents{toc}{\protect\vspace*{\baselineskip}}
%
% % Add bibliography to contents page
% %\addcontentsline{toc}{chapter}{Bibliography} %'Bibliography' into toc
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% APPENDICES
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \appendix
% \begin{frame}{}
% \section{}
% }
% \end{frame}
\end{document}