Skip to content

Commit 86c91fd

Browse files
authored
Added TRO link to readme
1 parent d9a4e33 commit 86c91fd

File tree

1 file changed

+21
-2
lines changed

1 file changed

+21
-2
lines changed

README.md

Lines changed: 21 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33

44
Python implementation of PRobabilistically-Informed Motion Primitives, a learning-from-demonstration method on Lie group. This work is published in _IEEE Transactions on Robotics (T-RO)_.
55

6-
- Publication: [T-RO](), [ArXiv](https://arxiv.org/abs/2305.15761)
6+
- Publication: [T-RO](https://ieeexplore.ieee.org/document/10502164)
77
- Project page: [https://chirikjianlab.github.io/primp-page/](https://chirikjianlab.github.io/primp-page/)
88
- MATLAB version (includes more demos): [https://github.com/ChirikjianLab/primp-matlab](https://github.com/ChirikjianLab/primp-matlab).
99

@@ -64,4 +64,23 @@ python benchmark_lfd_promp.py
6464
After running, 3 files will be generated (stored in `/result/${method}_${planning_group}/`):
6565
1. `reference_density_${object}_${demo_type}.json`: Full information of the learned workspace trajectory distribution
6666
2. `reference_density_${object}_${demo_type}_mean.csv`: Stores only the mean, for seeding the STOMP planner
67-
3. `samples_${object}_${demo_type}.json`: Random samples from the learned trajectory distribution
67+
3. `samples_${object}_${demo_type}.json`: Random samples from the learned trajectory distribution
68+
69+
## Citation
70+
```
71+
S. Ruan, W. Liu, X. Wang, X. Meng and G. S. Chirikjian, "PRIMP: PRobabilistically-Informed Motion Primitives for Efficient Affordance Learning from Demonstration," in IEEE Transactions on Robotics, doi: 10.1109/TRO.2024.3390052.
72+
```
73+
74+
BibTex
75+
```
76+
@ARTICLE{10502164,
77+
author={Ruan, Sipu and Liu, Weixiao and Wang, Xiaoli and Meng, Xin and Chirikjian, Gregory S.},
78+
journal={IEEE Transactions on Robotics},
79+
title={PRIMP: PRobabilistically-Informed Motion Primitives for Efficient Affordance Learning from Demonstration},
80+
year={2024},
81+
volume={},
82+
number={},
83+
pages={1-20},
84+
keywords={Trajectory;Robots;Probabilistic logic;Planning;Affordances;Task analysis;Manifolds;Learning from Demonstration;Probability and Statistical Methods;Motion and Path Planning;Service Robots},
85+
doi={10.1109/TRO.2024.3390052}}
86+
```

0 commit comments

Comments
 (0)