|
3 | 3 |
|
4 | 4 | Python implementation of PRobabilistically-Informed Motion Primitives, a learning-from-demonstration method on Lie group. This work is published in _IEEE Transactions on Robotics (T-RO)_.
|
5 | 5 |
|
6 |
| -- Publication: [T-RO](), [ArXiv](https://arxiv.org/abs/2305.15761) |
| 6 | +- Publication: [T-RO](https://ieeexplore.ieee.org/document/10502164) |
7 | 7 | - Project page: [https://chirikjianlab.github.io/primp-page/](https://chirikjianlab.github.io/primp-page/)
|
8 | 8 | - MATLAB version (includes more demos): [https://github.com/ChirikjianLab/primp-matlab](https://github.com/ChirikjianLab/primp-matlab).
|
9 | 9 |
|
@@ -64,4 +64,23 @@ python benchmark_lfd_promp.py
|
64 | 64 | After running, 3 files will be generated (stored in `/result/${method}_${planning_group}/`):
|
65 | 65 | 1. `reference_density_${object}_${demo_type}.json`: Full information of the learned workspace trajectory distribution
|
66 | 66 | 2. `reference_density_${object}_${demo_type}_mean.csv`: Stores only the mean, for seeding the STOMP planner
|
67 |
| -3. `samples_${object}_${demo_type}.json`: Random samples from the learned trajectory distribution |
| 67 | +3. `samples_${object}_${demo_type}.json`: Random samples from the learned trajectory distribution |
| 68 | + |
| 69 | +## Citation |
| 70 | +``` |
| 71 | +S. Ruan, W. Liu, X. Wang, X. Meng and G. S. Chirikjian, "PRIMP: PRobabilistically-Informed Motion Primitives for Efficient Affordance Learning from Demonstration," in IEEE Transactions on Robotics, doi: 10.1109/TRO.2024.3390052. |
| 72 | +``` |
| 73 | + |
| 74 | +BibTex |
| 75 | +``` |
| 76 | +@ARTICLE{10502164, |
| 77 | + author={Ruan, Sipu and Liu, Weixiao and Wang, Xiaoli and Meng, Xin and Chirikjian, Gregory S.}, |
| 78 | + journal={IEEE Transactions on Robotics}, |
| 79 | + title={PRIMP: PRobabilistically-Informed Motion Primitives for Efficient Affordance Learning from Demonstration}, |
| 80 | + year={2024}, |
| 81 | + volume={}, |
| 82 | + number={}, |
| 83 | + pages={1-20}, |
| 84 | + keywords={Trajectory;Robots;Probabilistic logic;Planning;Affordances;Task analysis;Manifolds;Learning from Demonstration;Probability and Statistical Methods;Motion and Path Planning;Service Robots}, |
| 85 | + doi={10.1109/TRO.2024.3390052}} |
| 86 | +``` |
0 commit comments