forked from ultralytics/yolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export.py
191 lines (161 loc) Β· 7.81 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# YOLOv5 π by Ultralytics, GPL-3.0 license
"""
Export a PyTorch model to TorchScript, ONNX, CoreML formats
Usage:
$ python path/to/export.py --weights yolov5s.pt --img 640 --batch 1
"""
import argparse
import sys
import time
from pathlib import Path
import torch
import torch.nn as nn
from torch.utils.mobile_optimizer import optimize_for_mobile
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
from models.common import Conv
from models.yolo import Detect
from models.experimental import attempt_load
from utils.activations import Hardswish, SiLU
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
from utils.torch_utils import select_device
def export_torchscript(model, img, file, optimize):
# TorchScript model export
prefix = colorstr('TorchScript:')
try:
print(f'\n{prefix} starting export with torch {torch.__version__}...')
f = file.with_suffix('.torchscript.pt')
ts = torch.jit.trace(model, img, strict=False)
(optimize_for_mobile(ts) if optimize else ts).save(f)
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
return ts
except Exception as e:
print(f'{prefix} export failure: {e}')
def export_onnx(model, img, file, opset, train, dynamic, simplify):
# ONNX model export
prefix = colorstr('ONNX:')
try:
check_requirements(('onnx', 'onnx-simplifier'))
import onnx
print(f'\n{prefix} starting export with onnx {onnx.__version__}...')
f = file.with_suffix('.onnx')
torch.onnx.export(model, img, f, verbose=False, opset_version=opset,
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
do_constant_folding=not train,
input_names=['images'],
output_names=['output'],
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
} if dynamic else None)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
# Simplify
if simplify:
try:
import onnxsim
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
model_onnx, check = onnxsim.simplify(
model_onnx,
dynamic_input_shape=dynamic,
input_shapes={'images': list(img.shape)} if dynamic else None)
assert check, 'assert check failed'
onnx.save(model_onnx, f)
except Exception as e:
print(f'{prefix} simplifier failure: {e}')
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
print(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
except Exception as e:
print(f'{prefix} export failure: {e}')
def export_coreml(model, img, file):
# CoreML model export
prefix = colorstr('CoreML:')
try:
import coremltools as ct
print(f'\n{prefix} starting export with coremltools {ct.__version__}...')
f = file.with_suffix('.mlmodel')
model.train() # CoreML exports should be placed in model.train() mode
ts = torch.jit.trace(model, img, strict=False) # TorchScript model
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
model.save(f)
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
print(f'\n{prefix} export failure: {e}')
def run(weights='./yolov5s.pt', # weights path
img_size=(640, 640), # image (height, width)
batch_size=1, # batch size
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
include=('torchscript', 'onnx', 'coreml'), # include formats
half=False, # FP16 half-precision export
inplace=False, # set YOLOv5 Detect() inplace=True
train=False, # model.train() mode
optimize=False, # TorchScript: optimize for mobile
dynamic=False, # ONNX: dynamic axes
simplify=False, # ONNX: simplify model
opset=12, # ONNX: opset version
):
t = time.time()
include = [x.lower() for x in include]
img_size *= 2 if len(img_size) == 1 else 1 # expand
file = Path(weights)
# Load PyTorch model
device = select_device(device)
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
model = attempt_load(weights, map_location=device) # load FP32 model
names = model.names
# Input
gs = int(max(model.stride)) # grid size (max stride)
img_size = [check_img_size(x, gs) for x in img_size] # verify img_size are gs-multiples
img = torch.zeros(batch_size, 3, *img_size).to(device) # image size(1,3,320,192) iDetection
# Update model
if half:
img, model = img.half(), model.half() # to FP16
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
for k, m in model.named_modules():
if isinstance(m, Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, Detect):
m.inplace = inplace
m.onnx_dynamic = dynamic
# m.forward = m.forward_export # assign forward (optional)
for _ in range(2):
y = model(img) # dry runs
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")
# Exports
if 'torchscript' in include:
export_torchscript(model, img, file, optimize)
if 'onnx' in include:
export_onnx(model, img, file, opset, train, dynamic, simplify)
if 'coreml' in include:
export_coreml(model, img, file)
# Finish
print(f'\nExport complete ({time.time() - t:.2f}s)'
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
f'\nVisualize with https://netron.app')
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image (height, width)')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
parser.add_argument('--train', action='store_true', help='model.train() mode')
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
parser.add_argument('--dynamic', action='store_true', help='ONNX: dynamic axes')
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
opt = parser.parse_args()
return opt
def main(opt):
set_logging()
print(colorstr('export: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)