-
Notifications
You must be signed in to change notification settings - Fork 0
/
TransformerTrainingStrategy.py
514 lines (392 loc) · 17.6 KB
/
TransformerTrainingStrategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import time
from torchvision.utils import save_image
from enum import Enum
import metrics
import utils.utils as utils
# from ForwardStrategy import *
import TrainingConfig
from torch import optim
import PoolingStrategy
import loss_functions
import torch.nn as nn
import confidence_calc
from utils.utils import *
class ExitPositionTransformer(Enum):
FIRST_EXIT = 0
BACKBONE = 1
class TransformerStrategy:
def is_trained(self):
raise NotImplementedError()
def __init__(self):
self.first_exit_position = ExitPositionTransformer.FIRST_EXIT.value
self.final_exit_position = ExitPositionTransformer.BACKBONE.value
def exit_first(self, network, inputs):
raise NotImplementedError()
def exit_final(self, network, inputs):
raise NotImplementedError()
def enter_first(self):
raise NotImplementedError()
def enter_final(self):
raise NotImplementedError()
def get_loss_func(self):
raise NotImplementedError()
def exit_split(self):
return False
def initialize_optimizer(self, network, optimizer_type, learning_rate, momentum):
pass
def calculate_loss(self, predictions, labels, loss_func, separate=False):
loss = loss_func(predictions, labels)
return loss
def write_hyperparameters_to_file(self, hyperparameters, file):
lr = hyperparameters.get("lr")
bs = hyperparameters.get("bs")
optimizer_type = hyperparameters.get("optimizer")
momentum = hyperparameters.get("momentum")
weight_decay = hyperparameters.get("weight_decay")
file.write(f"Hyperparameters: start lr={lr}, batch size={str(bs)}, optimizer={optimizer_type}")
if momentum is not None:
file.write(f', momentum: {momentum}, weight_decay: {weight_decay}')
def make_prediction(self, image, mask, model, idx, color_map, prediction_folder):
raise TypeError("Can't make predictions with training strategy")
def check_batch_acc_miou_loss(self, network, loader, num_classes, loss_func):
return metrics.check_batch_acc_miou_loss(network, loader, num_classes, loss_func)
class TransformerTrainingExitOnly(TransformerStrategy):
def is_trained(self):
return True
# def set_split_points(self, network):
# network.split_points = []
# network.exit_split_points = [True, True]
def exit_first(self, network, inputs):
return inputs["ee1"]
def exit_final(self, network, inputs):
return None
def enter_first(self):
return True
def enter_final(self):
return False
def get_loss_func(self):
return nn.CrossEntropyLoss()
def initialize_optimizer(self, network, optimizer_type, learning_rate, momentum):
layers_to_train = (list(network.stage1.parameters())
+ list(network.stage2.parameters())
+ list(network.decoder1.parameters())
+ list(network.decoder2.parameters())
+ list(network.split1.parameters())
+ list(network.split2.parameters())
+ list(network.exit_split1.parameters()))
if optimizer_type == 'Adam':
return optim.Adam(layers_to_train, lr=learning_rate)
elif optimizer_type == 'SGD':
return optim.SGD(layers_to_train, lr=learning_rate, momentum=momentum, weight_decay=0.0001)
def calculate_loss(self, predictions, labels, loss_func, separate=False):
loss = loss_func(predictions, labels)
return loss
class TransformerExitInferenceStrategy(TransformerStrategy):
def is_trained(self):
return False
def exit_first(self, network, inputs):
return inputs["ee1"]
def enter_first(self):
return True
def enter_final(self):
return False
def make_prediction(self, image, mask, model, idx, color_map, prediction_folder):
if not os.path.exists(prediction_folder):
# if the directory is not present, create it
os.makedirs(prediction_folder)
save_image(image, f"{prediction_folder}/original{idx}.png")
mask = torch.argmax(mask, dim=3)
mask = seg_map_to_image(mask, color_map)
save_numpy_as_image(mask, f"{prediction_folder}/ground{idx}.png")
prediction_for_accuracy = []
start = time.time()
output = model(image)
end = time.time()
prediction = output
prediction = torch.squeeze(prediction)
prediction_for_accuracy.append(prediction)
# print('prediction size pre argmax after model:', prediction.shape)
prediction = torch.argmax(prediction, dim=0)
# print('prediction size:', prediction.shape)
new_image = seg_map_to_image(prediction, color_map)
# print('new image size:', new_image.shape)
save_numpy_as_image(new_image, f"{prediction_folder}/pred{idx}.png")
time_elapsed = end - start
return prediction_for_accuracy, time_elapsed
class TransformerInferenceStrategy(TransformerStrategy):
def is_trained(self):
return False
def exit_final(self, network, inputs):
return inputs["backbone"]
def enter_first(self):
return False
def enter_final(self):
return True
def make_prediction(self, image, mask, model, idx, color_map, prediction_folder):
if not os.path.exists(prediction_folder):
# if the directory is not present, create it
os.makedirs(prediction_folder)
save_image(image, f"{prediction_folder}/original{idx}.png")
mask = torch.argmax(mask, dim=3)
mask = seg_map_to_image(mask, color_map)
save_numpy_as_image(mask, f"{prediction_folder}/ground{idx}.png")
prediction_for_accuracy = []
start = time.time()
output = model(image)
end = time.time()
prediction = output
prediction = torch.squeeze(prediction)
prediction_for_accuracy.append(prediction)
# print('prediction size pre argmax after model:', prediction.shape)
prediction = torch.argmax(prediction, dim=0)
# print('prediction size:', prediction.shape)
new_image = seg_map_to_image(prediction, color_map)
# print('new image size:', new_image.shape)
save_numpy_as_image(new_image, f"{prediction_folder}/pred{idx}.png")
time_elapsed = end - start
return prediction_for_accuracy, time_elapsed
class TrainingBackbone(TransformerStrategy):
def is_trained(self):
return True
# def set_split_points(self, network):
# network.split_points = []
# network.exit_split_points = [True, True]
def exit_first(self, network, inputs):
raise Exception("Got into first exit while training backbone")
def exit_final(self, network, inputs):
return inputs["backbone"]
def enter_first(self):
return False
def enter_final(self):
return True
def get_loss_func(self):
return nn.CrossEntropyLoss()
def check_batch_acc_miou_no_loader(self, model, x, y, num_classes):
num_correct = 0
num_pixels = 0
accuracy = 0
miou = 0
model.eval()
with torch.no_grad():
predictions = x
miou_batch = 0
predictions = torch.argmax(predictions, dim=1)
y = torch.argmax(y, dim=3)
num_correct += (predictions == y).sum()
num_pixels += torch.numel(predictions)
accuracy = accuracy + num_correct / num_pixels * 100
bs = predictions.shape[0]
for i in range(0, bs):
miou_batch += metrics.calculate_mIoU(predictions[i], y[i], num_classes)
miou_batch = miou_batch / bs
miou += miou_batch
predictions = predictions.to("cpu")
y = y.to("cpu")
model.train()
# print("Average loss across all batches: " + str(round(avg_loss, 3)))
return accuracy, miou
def initialize_optimizer(self, network, learning_rate, optimizer_type, momentum):
if optimizer_type == TrainingConfig.OptimizerType.ADAM:
return optim.Adam(network.parameters(), lr=learning_rate)
elif optimizer_type == TrainingConfig.OptimizerType.ADAMW:
return optim.AdamW(network.parameters(), lr=learning_rate)
elif optimizer_type == TrainingConfig.OptimizerType.SGD:
return optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum, weight_decay=0.0001)
else:
raise ValueError(f"Unexpected optimizer type {optimizer_type}!")
def calculate_loss(self, predictions, labels, loss_func, separate=False):
loss = loss_func(predictions, labels)
return loss
class TrainingBackbonePretrained(TrainingBackbone):
def initialize_optimizer(self, network, learning_rate, optimizer_type, momentum):
params_to_train = []
for name, param in network.named_parameters():
if 'blocks' not in name and 'downsample' not in name and "patch_embed" not in name:
# if 'layers.' in name and 'blocks' in name or 'patch_embed' in name:
print("Training:", name)
params_to_train.append(param)
if not params_to_train:
raise ValueError("No parameters to train found.")
if optimizer_type == TrainingConfig.OptimizerType.ADAM:
return optim.Adam(params_to_train, lr=learning_rate)
elif optimizer_type == TrainingConfig.OptimizerType.ADAMW:
return optim.AdamW(params_to_train, lr=learning_rate)
elif optimizer_type == TrainingConfig.OptimizerType.SGD:
return optim.SGD(params_to_train, lr=learning_rate, momentum=momentum, weight_decay=0.0001)
else:
raise ValueError(f"Unexpected optimizer type {optimizer_type}!")
class TrainingWholeNetworkWithSplit(TrainingBackbone):
def initialize_optimizer(self, network, learning_rate, optimizer_type, momentum):
params_to_train = []
for name, param in network.named_parameters():
if 'split' in name:
print("Training:", name)
params_to_train.append(param)
if not params_to_train:
raise ValueError("No parameters with 'split' in their names found.")
if optimizer_type == TrainingConfig.OptimizerType.ADAM:
return optim.Adam(params_to_train, lr=learning_rate)
elif optimizer_type == TrainingConfig.OptimizerType.SGD:
return optim.SGD(params_to_train, lr=learning_rate, momentum=momentum, weight_decay=0.0001)
else:
raise ValueError(f"Unexpected optimizer type {optimizer_type}!")
class TrainingSplitsOneByOne(TrainingBackbone):
def exit_final(self, network, inputs):
return [inputs["backbone"], inputs["after_split_output"], inputs["before_split_label"]]
def exit_split(self):
return False
def get_loss_func(self):
return nn.MSELoss()
def calculate_loss(self, predictions, labels, loss_func, separate=False):
loss = loss_func(predictions[1], predictions[2])
return loss
def check_batch_acc_miou_loss(self, model, loader, num_classes, loss_func):
num_correct = 0
num_pixels = 0
accuracy = 0
counter = 0
total_loss = 0
miou = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=utils.get_device())
y = y.to(device=utils.get_device())
predictions = model(x)
loss = model.calculate_loss(predictions, None, loss_func)
predictions = predictions[0]
miou_batch = 0
total_loss = total_loss + loss
predictions = torch.argmax(predictions, dim=1)
y = torch.argmax(y, dim=3)
num_correct += (predictions == y).sum()
num_pixels += torch.numel(predictions)
accuracy = accuracy + num_correct / num_pixels * 100
bs = predictions.shape[0]
for i in range(0, bs):
miou_batch += metrics.calculate_mIoU(predictions[i], y[i], num_classes)
miou_batch = miou_batch / bs
miou += miou_batch
counter += 1
x = x.to("cpu")
y = y.to("cpu")
model.train()
avg_batch_acc = (accuracy / counter).item()
# print("Average accuracy across all batches: " + str(round(avg_batch_acc, 2)) + "%")
avg_batch_miou = (miou / counter).item() * 100
# print("Average mIoU across all batches: " + str(round(avg_batch_miou, 2)) + "%")
avg_loss = (total_loss / counter).item()
# print("Average loss across all batches: " + str(round(avg_loss, 3)))
return [avg_batch_acc], [avg_batch_miou], [avg_loss]
def check_batch_acc_miou_no_loader(self, model, x, y, num_classes):
num_correct = 0
num_pixels = 0
accuracy = 0
miou = 0
model.eval()
with torch.no_grad():
predictions = x
predictions = predictions[0]
miou_batch = 0
predictions = torch.argmax(predictions, dim=1)
y = torch.argmax(y, dim=3)
num_correct += (predictions == y).sum()
num_pixels += torch.numel(predictions)
accuracy = accuracy + num_correct / num_pixels * 100
bs = predictions.shape[0]
for i in range(0, bs):
miou_batch += metrics.calculate_mIoU(predictions[i], y[i], num_classes)
miou_batch = miou_batch / bs
miou += miou_batch
predictions = predictions.to("cpu")
y = y.to("cpu")
model.train()
# print("Average loss across all batches: " + str(round(avg_loss, 3)))
return accuracy, miou
def initialize_optimizer(self, network, learning_rate, optimizer_type, momentum):
params_to_train = []
for name, param in network.named_parameters():
# print(name)
if 'spatial' in name or 'channel' in name:
print("Training:", name)
params_to_train.append(param)
# exit('Finished network iteration when initializing optimizer')
if not params_to_train:
raise ValueError("No split parameters to train found.")
if optimizer_type == TrainingConfig.OptimizerType.ADAM:
return optim.Adam(params_to_train, lr=learning_rate)
elif optimizer_type == TrainingConfig.OptimizerType.SGD:
return optim.SGD(params_to_train, lr=learning_rate, momentum=momentum, weight_decay=0.0001)
elif optimizer_type == TrainingConfig.OptimizerType.ADAMW:
return optim.AdamW(params_to_train, lr=learning_rate)
else:
raise ValueError(f"Unexpected optimizer type {optimizer_type}!")
class CreateSplitDataset(TransformerStrategy):
def is_trained(self):
return False
def exit_final(self, network, inputs):
raise ValueError("Should not reach final exit")
def enter_final(self):
return True
def exit_split(self):
return True
class TrainSplitOnly(TrainingSplitsOneByOne):
def is_trained(self):
return True
def calculate_loss(self, predictions, labels, loss_func, separate=False):
loss = loss_func(predictions, labels)
return loss
def get_loss_func(self):
return nn.MSELoss()
def initialize_optimizer(self, network, learning_rate, optimizer_type, momentum):
if optimizer_type == TrainingConfig.OptimizerType.ADAM:
return optim.Adam(network.parameters(), lr=learning_rate)
elif optimizer_type == TrainingConfig.OptimizerType.SGD:
return optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum, weight_decay=0.0001)
elif optimizer_type == TrainingConfig.OptimizerType.ADAMW:
return optim.AdamW(network.parameters(), lr=learning_rate)
else:
raise ValueError(f"Unexpected optimizer type {optimizer_type}!")
def check_batch_loss(self, model, loader, loss_func):
counter = 0
total_loss = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=utils.get_device())
y = y.to(device=utils.get_device())
predictions = model(x)
loss = model.calculate_loss(predictions, y, loss_func)
total_loss = total_loss + loss
counter += 1
x = x.to("cpu")
y = y.to("cpu")
model.train()
avg_loss = (total_loss / counter).item()
# print("Average loss across all batches: " + str(round(avg_loss, 3)))
return [avg_loss]
def check_batch_acc_miou_no_loader(self, model, x, y, num_classes):
num_correct = 0
num_pixels = 0
accuracy = 0
miou = 0
model.eval()
with torch.no_grad():
predictions = x
predictions = predictions[0]
miou_batch = 0
predictions = torch.argmax(predictions, dim=1)
y = torch.argmax(y, dim=3)
num_correct += (predictions == y).sum()
num_pixels += torch.numel(predictions)
accuracy = accuracy + num_correct / num_pixels * 100
bs = predictions.shape[0]
for i in range(0, bs):
miou_batch += metrics.calculate_mIoU(predictions[i], y[i], num_classes)
miou_batch = miou_batch / bs
miou += miou_batch
predictions = predictions.to("cpu")
y = y.to("cpu")
model.train()
# print("Average loss across all batches: " + str(round(avg_loss, 3)))
return accuracy, miou