Skip to content

Commit ebbffce

Browse files
committed
Merge branch 'main' of github.com:Ciela-Institute/tarp
2 parents 427fc2a + 9c77661 commit ebbffce

File tree

1 file changed

+70
-0
lines changed

1 file changed

+70
-0
lines changed

scripts/correlated_gaussian.py

Lines changed: 70 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,70 @@
1+
"""
2+
Code to replicate the results in section 4.1: "Gaussian Toy Model" of the paper
3+
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
4+
"""
5+
6+
import numpy as np
7+
import matplotlib.pyplot as plt
8+
from tarp import get_drp_coverage
9+
10+
# Set random seed
11+
np.random.seed(0)
12+
13+
# latex rendering:
14+
plt.rc('font', **{'size': 10, 'family': 'serif', 'serif': ['Computer Modern']})
15+
plt.rc('text', usetex=True)
16+
17+
18+
def generate_psd_matrix(n):
19+
# generate random array of appropriate size
20+
arr_size = int(n * (n - 1) / 2)
21+
arr = np.random.rand(arr_size)
22+
23+
# convert array to symmetric matrix
24+
mat = np.zeros((n, n))
25+
triu_indices = np.triu_indices(n, k=1)
26+
mat[triu_indices] = arr
27+
mat += mat.T
28+
29+
# check if matrix is positive semidefinite
30+
eigenvals = np.linalg.eigvalsh(mat)
31+
if np.all(eigenvals >= 0):
32+
return mat
33+
else:
34+
# if not, add identity matrix to make it PSD
35+
mat = mat + np.eye(n) * abs(eigenvals.min()) * 2
36+
return mat
37+
38+
39+
def generate_correlated_samples(num_samples, num_sims, num_dims):
40+
""" Generate samples and true parameter values """
41+
theta = np.random.uniform(low=-5, high=5, size=(num_sims, num_dims))
42+
cov = [generate_psd_matrix(num_dims) for _ in range(num_sims)]
43+
cov = np.concatenate(cov).reshape(num_sims, num_dims, num_dims)
44+
samples = [np.random.multivariate_normal(mean=theta[i], cov=cov[i], size=num_samples) for i in range(num_sims)]
45+
samples = np.stack(samples)
46+
samples = samples.transpose(1, 0, 2)
47+
theta = [np.random.multivariate_normal(mean=theta[i], cov=cov[i], size=1) for i in range(num_sims)]
48+
theta = np.stack(theta)[:,0]
49+
return samples, theta
50+
51+
52+
def main():
53+
""" Main function """
54+
samples, theta = generate_correlated_samples(num_samples=1000, num_sims=100, num_dims=10)
55+
alpha, ecp = get_drp_coverage(samples, theta, references='random', metric='euclidean')
56+
57+
fig, ax = plt.subplots(1, 1, figsize=(4, 4))
58+
ax.plot([0, 1], [0, 1], ls='--', color='k')
59+
ax.plot(alpha, ecp, label='DRP')
60+
ax.legend()
61+
ax.set_ylabel("Expected Coverage")
62+
ax.set_xlabel("Credibility Level")
63+
plt.show()
64+
65+
66+
if __name__ == '__main__':
67+
main()
68+
69+
70+

0 commit comments

Comments
 (0)