-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5. RegionalAssociationPlots.Rmd
1058 lines (750 loc) · 39.9 KB
/
5. RegionalAssociationPlots.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Regional association plotting of 11 loci associated with CAC."
author: "[Sander W. van der Laan, PhD](https://vanderlaan.science) | s.w.vanderlaan@gmail.com"
date: "`r Sys.Date()`"
output:
html_notebook:
cache: yes
code_folding: hide
collapse: yes
df_print: paged
fig.align: center
fig_caption: yes
fig_height: 6
fig_retina: 2
fig_width: 7
highlight: tango
theme: lumen
toc: yes
toc_float:
collapsed: no
smooth_scroll: yes
mainfont: Arial
subtitle: "A 'druggable-MI-targets' project"
editor_options:
chunk_output_type: inline
---
# Setup
We will clean the environment, setup the locations, define colors, and create a datestamp.
_Clean the environment._
```{r echo = FALSE}
# rm(list = ls())
```
_Set locations and working directories..._
```{r LocalSystem, echo = FALSE}
source("scripts/local.system.R")
```
_... a package-installation function ..._
```{r}
source("scripts/functions.R")
```
_... and load those packages._
```{r loading_packages, message=FALSE, warning=FALSE}
source("scripts/packages05.R")
```
_We will create a datestamp and define the Utrecht Science Park Colour Scheme_.
```{r Setting: Colors}
Today = format(as.Date(as.POSIXlt(Sys.time())), "%Y%m%d")
Today.Report = format(as.Date(as.POSIXlt(Sys.time())), "%A, %B %d, %Y")
source("scripts/colors.R")
```
```{r global_options, include = FALSE}
# further define some knitr-options.
knitr::opts_chunk$set(fig.width = 12, fig.height = 8, fig.path = 'Figures/',
wwarning = TRUE, # show warnings during codebook generation
message = TRUE, # show messages during codebook generation
error = TRUE, # do not interrupt codebook generation in case of errors,
# usually better for debugging
echo = TRUE, # show R code
eval = TRUE)
ggplot2::theme_set(ggplot2::theme_minimal())
pander::panderOptions("table.split.table", Inf)
```
# Introduction
We will parse the data to create regional association plots for each of the 11 loci.
# Setting the NPG colors
Here just making a heatmap of the colors.
```{r}
library("scales")
pal_npg("nrc")(10)
show_col(pal_npg("nrc")(10))
# show_col(pal_npg("nrc", alpha = 0.6)(10))
```
# Regional association plotting: EU-AA-ancestry
## Top 11 loci
We are interested in 11 top loci. We will plot these using the EU-AA-ancestry data.
```{r}
library(openxlsx)
variant_list <- read.xlsx(paste0(TARGET_loc, "/Variants.xlsx"), sheet = "TopLoci")
head(variant_list)
```
### All loci
Let's do some plotting.
```{r}
variants_of_interest <- c(variant_list$rsID)
variants_of_interest
length(variants_of_interest)
```
## Load data European and African-American
We need to load the meta-analysis summary statistics from the European - African-American ancestry analysis first.
```{r}
gwas_sumstats_racer_EA_AA <- readRDS(file = paste0(OUT_loc, "/gwas_sumstats_complete_racer.EA_AA.rds"))
```
```{r}
library(RACER)
# Make directory for plots
ifelse(!dir.exists(file.path(PROJECT_loc, "/RACER")),
dir.create(file.path(PROJECT_loc, "/RACER")),
FALSE)
RACER_loc = paste0(PROJECT_loc,"/RACER")
variants_of_interest_fewgenes <- c("rs10899970") # "rs9349379", "rs3844006", "rs2854746", "rs4977575", "rs10899970", "rs9633535", "rs10762577", "rs11063120", "rs9515203", "rs7182103", "rs7412"
for(VARIANT in variants_of_interest){
cat(paste0("Getting data for ", VARIANT,".\n"))
tempCHR <- subset(variant_list, rsID == VARIANT)[,5]
tempSTART <- subset(variant_list, rsID == VARIANT)[,18]
tempEND <- subset(variant_list, rsID == VARIANT)[,19]
tempVARIANTnr <- subset(variant_list, rsID == VARIANT)[,1]
cat("\nSubset required data.\n")
temp <- subset(gwas_sumstats_racer_EA_AA, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
cat("\nFormatting association data.\n")
temp_f = RACER::formatRACER(assoc_data = temp, chr_col = 3, pos_col = 4, p_col = 5)
cat("\nGetting LD data.\n")
temp_f_ld =
data.table::setorder( # this fixes an issue where the SNPs with LD = NA are plotted last and it appears many SNPs are not present in 1000G.
RACER::ldRACER(assoc_data = temp_f, rs_col = 2, pops = "EUR", lead_snp = VARIANT),
LD)
cat(paste0("\nPlotting region surrounding ", VARIANT," on ",tempCHR,":",tempSTART,"-",tempEND,".\n"))
p1 <- singlePlotRACER2(assoc_data = temp_f_ld,
chr = tempCHR, build = "hg19",
plotby = "coord", snp_plot = VARIANT,
start_plot = tempSTART, end_plot = tempEND,
label_lead = TRUE, gene_track_h = 2, gene_name_s = 1.75)
print(p1)
cat(paste0("Saving image for ", VARIANT,".\n"))
ggsave(filename = paste0(RACER_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.png"), plot = last_plot())
ggsave(filename = paste0(RACER_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.pdf"), plot = last_plot())
ggsave(filename = paste0(RACER_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.eps"), plot = last_plot())
rm(temp, p1,
temp_f, temp_f_ld,
tempCHR, tempSTART, tempEND,
VARIANT, tempVARIANTnr)
}
```
### Loci with many genes
These are genetic loci with many genes.
```{r}
variants_of_interest_manygenes <- c("rs7412", "rs10762577")
for(VARIANT in variants_of_interest_manygenes){
cat(paste0("Getting data for ", VARIANT,".\n"))
tempCHR <- subset(variant_list, rsID == VARIANT)[,5]
tempSTART <- subset(variant_list, rsID == VARIANT)[,18]
tempEND <- subset(variant_list, rsID == VARIANT)[,19]
tempVARIANTnr <- subset(variant_list, rsID == VARIANT)[,1]
cat("\nSubset required data.\n")
temp <- subset(gwas_sumstats_racer_EA_AA, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
cat("\nFormatting association data.\n")
temp_f = RACER::formatRACER(assoc_data = temp, chr_col = 3, pos_col = 4, p_col = 5)
cat("\nGetting LD data.\n")
temp_f_ld =
data.table::setorder( # this fixes an issue where the SNPs with LD = NA are plotted last and it appears many SNPs are not present in 1000G.
RACER::ldRACER(assoc_data = temp_f, rs_col = 2, pops = "EUR", lead_snp = VARIANT),
LD)
cat(paste0("\nPlotting region surrounding ", VARIANT," on ",tempCHR,":",tempSTART,"-",tempEND,".\n"))
p1 <- singlePlotRACER2(assoc_data = temp_f_ld,
chr = tempCHR, build = "hg19",
plotby = "snp", snp_plot = VARIANT,
label_lead = TRUE, gene_track_h = 0.75, gene_name_s = 1.75)
print(p1)
cat(paste0("Saving image for ", VARIANT,".\n"))
ggsave(filename = paste0(RACER_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.png"), plot = last_plot())
ggsave(filename = paste0(RACER_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.pdf"), plot = last_plot())
ggsave(filename = paste0(RACER_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.eps"), plot = last_plot())
rm(temp, p1,
temp_f, temp_f_ld,
tempCHR, tempSTART, tempEND,
VARIANT, tempVARIANTnr)
}
```
### CXCL12
The _CXCL12_ genetic locus.
```{r}
variants_of_interest_cxcl12 <- c("rs10899970")
for(VARIANT in variants_of_interest_cxcl12){
cat(paste0("Getting data for ", VARIANT,".\n"))
tempCHR <- subset(variant_list, rsID == VARIANT)[,5]
tempSTART <- subset(variant_list, rsID == VARIANT)[,18]
tempEND <- subset(variant_list, rsID == VARIANT)[,19]
tempVARIANTnr <- subset(variant_list, rsID == VARIANT)[,1]
cat("\nSubset required data.\n")
temp <- subset(gwas_sumstats_racer_EA_AA, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
cat("\nFormatting association data.\n")
temp_f = RACER::formatRACER(assoc_data = temp, chr_col = 3, pos_col = 4, p_col = 5)
cat("\nGetting LD data.\n")
temp_f_ld =
data.table::setorder( # this fixes an issue where the SNPs with LD = NA are plotted last and it appears many SNPs are not present in 1000G.
RACER::ldRACER(assoc_data = temp_f, rs_col = 2, pops = "EUR", lead_snp = VARIANT),
LD)
cat(paste0("\nPlotting region surrounding ", VARIANT," on ",tempCHR,":",tempSTART,"-",tempEND,".\n"))
p1 <- singlePlotRACER2(assoc_data = temp_f_ld,
chr = tempCHR, build = "hg19", set = "all",
plotby = "snp", snp_plot = VARIANT,
label_lead = TRUE, gene_track_h = 0.75, gene_name_s = 1.75)
print(p1)
cat(paste0("Saving image for ", VARIANT,".\n"))
ggsave(filename = paste0(RACER_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.png"), plot = last_plot())
ggsave(filename = paste0(RACER_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.pdf"), plot = last_plot())
ggsave(filename = paste0(RACER_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.eps"), plot = last_plot())
rm(temp, p1,
temp_f, temp_f_ld,
tempCHR, tempSTART, tempEND,
VARIANT, tempVARIANTnr)
}
```
## Additional regional plots
### Listing regions of interest
We want to create some regional association plots to combine with teh UCSC browser tracks, thus we need the exact same regions.
```{r}
library(openxlsx)
add_list <- read.xlsx(paste0(TARGET_loc, "/Variants.xlsx"), sheet = "AdditionalPlots")
DT::datatable(add_list)
```
### Credible Sets
We want to color the credible sets, which we load here.
```{r}
credset <- as_tibble(fread(paste0(PROJECT_loc, "/CredibleSets/CAC_EUR_AFR_cred_set_all_loci_50kb.txt")))
credset
```
### Combining GWAS with Credible Set
We want to add the posterior probabilities and make a variable to color by.
```{r}
gwas_sumstats_racer_credset <- merge(gwas_sumstats_racer_EA_AA,
credset %>% select(RSID, Posterior_Prob),
sort = FALSE,
by.x = "rsID", by.y = "RSID", all.x = TRUE) %>%
# mutate(., Posterior_Prob = ifelse(is.na(Posterior_Prob), 0, Posterior_Prob)) %>%
mutate(CredSet = case_when(Posterior_Prob > 0 ~ '95% credible set',
TRUE ~ 'not in credible set'))
head(gwas_sumstats_racer_credset)
table(gwas_sumstats_racer_credset$CredSet)
summary(gwas_sumstats_racer_credset$Posterior_Prob)
```
### Plotting
```{r}
library(RACER)
# library(plotly)
# Make directory for plots
ifelse(!dir.exists(file.path(PROJECT_loc, "/RACER")),
dir.create(file.path(PROJECT_loc, "/RACER")),
FALSE)
RACER_loc = paste0(PROJECT_loc,"/RACER")
variants_of_interest <- c(add_list$rsID)
for(VARIANT in variants_of_interest){
cat(paste0("Getting data for ", VARIANT,".\n"))
tempCHR <- subset(add_list, rsID == VARIANT)[,4]
tempSTART <- subset(add_list, rsID == VARIANT)[,5]
tempEND <- subset(add_list, rsID == VARIANT)[,6]
tempNAME <- subset(add_list, rsID == VARIANT)[,3]
cat("\nSubset required data.\n")
temp <- subset(gwas_sumstats_racer_credset, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
cat("\nFormatting association data.\n")
temp_f = RACER::formatRACER(assoc_data = temp, chr_col = 3, pos_col = 4, p_col = 5)
cat("\nGetting LD data.\n")
# temp_f_ld = RACER::ldRACER(assoc_data = temp_f, rs_col = 2, pops = "EUR", lead_snp = VARIANT)
cat(paste0("\nPlotting region surrounding ", VARIANT," on ",tempCHR,":",tempSTART,"-",tempEND,".\n"))
p1 <- singlePlotRACER2(assoc_data = temp_f,
chr = tempCHR, build = "hg19",
plotby = "coord", snp_plot = VARIANT,
start_plot = tempSTART, end_plot = tempEND,
label_lead = FALSE,
grey_colors = FALSE,
cred_set = TRUE,
gene_track_h = 3, gene_name_s = 1.75)
print(p1)
cat(paste0("Saving image for ", VARIANT,".\n"))
ggsave(filename = paste0(RACER_loc, "/", tempNAME, ".", Today, ".",VARIANT,".",tempSTART,".",tempEND,".regional_assoc.credset.png"), plot = p1)
ggsave(filename = paste0(RACER_loc, "/", tempNAME, ".", Today, ".",VARIANT,".",tempSTART,".",tempEND,".regional_assoc.credset.pdf"), plot = p1)
ggsave(filename = paste0(RACER_loc, "/", tempNAME, ".", Today, ".",VARIANT,".",tempSTART,".",tempEND,".regional_assoc.credset.eps"), plot = p1)
# print(ggplotly(p1))
rm(temp, p1,
temp_f,
tempCHR, tempSTART, tempEND,
VARIANT, tempNAME)
}
```
# Regional association plots in African-American
Note here that we plot the region, and not based on the lead variant of the EA-AA analyses.
## Load data African-American-only
We need to load the meta-analysis summary statistics from the African-American-only ancestry analysis.
```{r}
# gwas_sumstats_unfiltered_AA <- fread(paste0(GWAS_loc,"/CAC1000G_AA_FINAL_FUMA.unfiltered.txt.gz"),
# showProgress = TRUE)
# saveRDS(gwas_sumstats_unfiltered_AA, file = paste0(OUT_loc, "/gwas_sumstats_unfiltered.AA.rds"))
# gwas_sumstats_racer_unfiltered_AA <- subset(gwas_sumstats_unfiltered_AA,
# select = c("MarkerName", "rsID", "Chr", "Position", "Pvalue"))
#
# saveRDS(gwas_sumstats_racer_unfiltered_AA, file = paste0(OUT_loc, "/gwas_sumstats_unfiltered_racer.AA.rds"))
#
# gwas_sumstats_racer_unfiltered_AA <- readRDS(file = paste0(OUT_loc, "/gwas_sumstats_unfiltered_racer.AA.rds"))
#
# gwas_sumstats_AA <- fread(paste0(GWAS_loc,"/CAC1000G_AA_FINAL_FUMA.filtered.txt.gz"),
# showProgress = TRUE)
# saveRDS(gwas_sumstats_AA, file = paste0(OUT_loc, "/gwas_sumstats.AA.rds"))
#
# gwas_sumstats_racer_AA <- subset(gwas_sumstats_AA,
# select = c("MarkerName", "rsID", "Chr", "Position", "Pvalue"))
#
# saveRDS(gwas_sumstats_racer_AA, file = paste0(OUT_loc, "/gwas_sumstats_racer.AA.rds"))
# rm(gwas_sumstats_AA)
gwas_sumstats_racer_AA <- readRDS(file = paste0(OUT_loc, "/gwas_sumstats_racer.AA.rds"))
```
## Plotting
```{r}
library(RACER)
# Make directory for plots
ifelse(!dir.exists(file.path(PROJECT_loc, "/RACER_AA")),
dir.create(file.path(PROJECT_loc, "/RACER_AA")),
FALSE)
RACER_AA_loc = paste0(PROJECT_loc,"/RACER_AA")
# Plotting is handled a bit differently
# "rs3844006", # throws an error which I don't understand immediately - could be that the variant is not present in AA 1000G data
# "rs9633535", # this one throws an LD error
#
variants_of_interest_fewgenes_aa <- c("rs9349379", "rs3844006", "rs2854746", "rs10899970", "rs9633535", "rs10762577", "rs11063120", "rs9515203", "rs7182103", "rs7412")
for(VARIANT in variants_of_interest_fewgenes_aa){
cat(paste0("Getting data for ", VARIANT,".\n"))
tempCHR <- subset(variant_list, rsID == VARIANT)[,5]
tempSTART <- subset(variant_list, rsID == VARIANT)[,18]
tempEND <- subset(variant_list, rsID == VARIANT)[,19]
tempVARIANTnr <- subset(variant_list, rsID == VARIANT)[,1]
cat("\nSubset required data.\n")
temp <- subset(gwas_sumstats_racer_AA, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
cat("\nFormatting association data.\n")
temp_f = RACER::formatRACER(assoc_data = temp, chr_col = 3, pos_col = 4, p_col = 5)
# cat("\nGetting LD data.\n")
temp_f_ld =
data.table::setorder( # this fixes an issue where the SNPs with LD = NA are plotted last and it appears many SNPs are not present in 1000G.
RACER::ldRACER(assoc_data = temp_f, rs_col = 2, pops = "AFR",
lead_snp = "rs4576508",
auto_snp = FALSE),
LD)
cat(paste0("\nPlotting region surrounding ", VARIANT," on ",tempCHR,":",tempSTART,"-",tempEND,".\n"))
p1 <- singlePlotRACER2(assoc_data = temp_f_ld,
chr = tempCHR, build = "hg19",
plotby = "coord",
snp_plot = VARIANT,
start_plot = tempSTART, end_plot = tempEND,
label_lead = TRUE, gene_track_h = 2, gene_name_s = 1.75)
print(p1)
cat(paste0("Saving image for ", VARIANT,".\n"))
ggsave(filename = paste0(RACER_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.AA.png"), plot = last_plot())
ggsave(filename = paste0(RACER_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.AA.pdf"), plot = last_plot())
ggsave(filename = paste0(RACER_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.AA.eps"), plot = last_plot())
rm(temp, p1,
temp_f, temp_f_ld,
tempCHR, tempSTART, tempEND,
VARIANT, tempVARIANTnr)
}
# chr9-rs4977575: rs7470682 is the most significant but not present in LDlink; alternative rs4576508 is present and plotted
variants_of_interest_fewgenes_aa_9p21 <- c("rs4977575")
for(VARIANT in variants_of_interest_fewgenes_aa_9p21){
cat(paste0("Getting data for ", VARIANT,".\n"))
tempCHR <- subset(variant_list, rsID == VARIANT)[,5]
tempSTART <- subset(variant_list, rsID == VARIANT)[,18]
tempEND <- subset(variant_list, rsID == VARIANT)[,19]
tempVARIANTnr <- subset(variant_list, rsID == VARIANT)[,1]
cat("\nSubset required data.\n")
temp <- subset(gwas_sumstats_racer_AA, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
cat("\nFormatting association data.\n")
temp_f = RACER::formatRACER(assoc_data = temp, chr_col = 3, pos_col = 4, p_col = 5)
# cat("\nGetting LD data.\n")
temp_f_ld =
data.table::setorder( # this fixes an issue where the SNPs with LD = NA are plotted last and it appears many SNPs are not present in 1000G.
RACER::ldRACER(assoc_data = temp_f, rs_col = 2, pops = "AFR",
lead_snp = "rs4576508",
auto_snp = FALSE),
LD)
cat(paste0("\nPlotting region surrounding ", VARIANT," on ",tempCHR,":",tempSTART,"-",tempEND,".\n"))
p1 <- singlePlotRACER2(assoc_data = temp_f_ld,
chr = tempCHR, build = "hg19",
plotby = "coord",
snp_plot = VARIANT,
start_plot = tempSTART, end_plot = tempEND,
label_lead = TRUE, gene_track_h = 2, gene_name_s = 1.75)
print(p1)
cat(paste0("Saving image for ", VARIANT,".\n"))
ggsave(filename = paste0(RACER_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.AA.png"), plot = last_plot())
ggsave(filename = paste0(RACER_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.AA.pdf"), plot = last_plot())
ggsave(filename = paste0(RACER_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_assoc.AA.eps"), plot = last_plot())
rm(temp, p1,
temp_f, temp_f_ld,
tempCHR, tempSTART, tempEND,
VARIANT, tempVARIANTnr)
}
```
# Approximate Bayes Factor colocalisation analyses
The idea behind the *Approximate Bayes Factor (ABF)* analysis is that the association of each trait with SNPs in a region may be summarized by a vector of 0s and at most a single 1, with the 1 indicating the causal SNP (so, assuming a single causal SNP for each trait).
The posterior probability of each possible configuration can be calculated and so, crucially, can the posterior probabilities that the traits share their configurations. This allows us to estimate the support for the following cases, i.e. hypotheses:
- 𝐻0: neither trait has a genetic association in the region
- 𝐻1: only trait 1 has a genetic association in the region
- 𝐻2: only trait 2 has a genetic association in the region
- 𝐻3: both traits are associated, but with different causal variants
- 𝐻4: both traits are associated and share a single causal variant
To what extent do the loci between European and African-American ancestries overlap? We are working on the assumption that the 11 loci are _the_ loci and will test whether these overlap, _i.e._ colocalize.
## Preparation
Let's make sure we have `remotes` and `coloc` installed.
```{r}
if(!require("remotes"))
install.packages("remotes") # if necessary
library(remotes)
install_github("chr1swallace/coloc@main",
build_vignettes = TRUE)
library(coloc)
```
## Load data European-only
We need to load the meta-analysis summary statistics from the European-only ancestry analysis.
```{r}
# gwas_sumstats_EA <- fread(paste0(GWAS_loc,"/CAC1000G_EA_FINAL_FUMA.txt.gz"),
# showProgress = TRUE)
# names(gwas_sumstats_EA)[names(gwas_sumstats_EA) == "Pos"] <- "Position"
# saveRDS(gwas_sumstats_EA, file = paste0(OUT_loc, "/gwas_sumstats.EA.rds"))
#
# gwas_sumstats_racer_EA <- subset(gwas_sumstats_EA,
# select = c("MarkerName", "rsID", "Chr", "Position", "Pvalue"))
#
# saveRDS(gwas_sumstats_racer_EA, file = paste0(OUT_loc, "/gwas_sumstats_racer.EA.rds"))
# rm(gwas_sumstats_EA)
gwas_sumstats_racer_EA <- readRDS(file = paste0(OUT_loc, "/gwas_sumstats_racer.EA.rds"))
```
## Visualization
We can create mirror and scatter plot for each region.
```{r}
library(RACER)
# Make directory for plots
ifelse(!dir.exists(file.path(PROJECT_loc, "/RACER_EA_vs_AA")),
dir.create(file.path(PROJECT_loc, "/RACER_EA_vs_AA")),
FALSE)
RACER_EA_vs_AA_loc = paste0(PROJECT_loc,"/RACER_EA_vs_AA")
variants_of_interest <- c(variant_list$rsID)
# variants_of_interest_fewgenes <- c("rs9349379",
# "rs3844006", # throws an error which I don't understand immediately - could be that the variant is not present in AA 1000G data
# "rs2854746", "rs4977575",
# "rs10899970",
# "rs9633535",
# "rs10762577",
# "rs11063120", "rs9515203", "rs7182103",
# "rs7412")
# "rs9349379", "rs3844006", "rs2854746",
variants_of_interest_fewgenes_aa <- c("rs10899970", "rs9633535", "rs10762577", "rs11063120", "rs9515203", "rs7182103", "rs7412")
for(VARIANT in variants_of_interest_fewgenes_aa){
cat(paste0("Getting data for ", VARIANT,".\n"))
tempCHR <- subset(variant_list, rsID == VARIANT)[,5]
tempSTART <- subset(variant_list, rsID == VARIANT)[,18]
tempEND <- subset(variant_list, rsID == VARIANT)[,19]
tempVARIANTnr <- subset(variant_list, rsID == VARIANT)[,1]
cat("\nSubset required data.\n")
temp1 <- subset(gwas_sumstats_racer_EA, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
temp2 <- subset(gwas_sumstats_racer_AA, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
cat("\nFormatting association data.\n")
temp_f1 = RACER::formatRACER(assoc_data = temp1, chr_col = 3, pos_col = 4, p_col = 5)
temp_f2 = RACER::formatRACER(assoc_data = temp2, chr_col = 3, pos_col = 4, p_col = 5)
# cat("\nGetting LD data.\n")
temp_f_ld1 =
data.table::setorder( # this fixes an issue where the SNPs with LD = NA are plotted last and it appears many SNPs are not present in 1000G.
RACER::ldRACER(assoc_data = temp_f1, rs_col = 2, pops = "EUR",
# lead_snp = VARIANT,
auto_snp = TRUE),
LD)
temp_f_ld2 =
data.table::setorder( # this fixes an issue where the SNPs with LD = NA are plotted last and it appears many SNPs are not present in 1000G.
RACER::ldRACER(assoc_data = temp_f2, rs_col = 2, pops = "AFR",
# lead_snp = VARIANT,
auto_snp = TRUE),
LD)
cat(paste0("\nPlotting region surrounding ", VARIANT," on ",tempCHR,":",tempSTART,"-",tempEND,".\n"))
p1 <- mirrorPlotRACER(assoc_data1 = temp_f_ld1,
assoc_data2 = temp_f_ld2,
chr = tempCHR,
name1 = "European ancestry",
name2 = "African-American ancestry",
plotby = "coord",
start_plot = tempSTART, end_plot = tempEND,
label_lead = TRUE)
print(p1)
p2 <- scatterPlotRACER(assoc_data1 = temp_f_ld1,
assoc_data2 = temp_f_ld2,
chr = tempCHR,
name1 = "European ancestry",
name2 = "African-American ancestry",
region_start = tempSTART,
region_end = tempEND,
ld_df = 1,
label = TRUE)
print(p2)
cat(paste0("Saving image for ", VARIANT,".\n"))
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_mirror.EA_vs_AA.png"), plot = p1)
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_mirror.EA_vs_AA.pdf"), plot = p1)
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_mirror.EA_vs_AA.eps"), plot = p1)
cat(paste0("Saving image for ", VARIANT,".\n"))
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_scatter.EA_vs_AA.png"), plot = p2)
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_scatter.EA_vs_AA.pdf"), plot = p2)
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_scatter.EA_vs_AA.eps"), plot = p2)
rm(temp1, temp2,
p1,p2,
temp_f1, temp_f_ld1,
temp_f2, temp_f_ld2,
tempCHR, tempSTART, tempEND,
VARIANT, tempVARIANTnr)
}
```
### 9p21
```{r}
# chr9-rs4977575: rs7470682 is the most significant but not present in LDlink; alternative rs4576508 is present and plotted for AA ONLY!!!
variants_of_interest_fewgenes_aa_9p21 <- c("rs4977575")
for(VARIANT in variants_of_interest_fewgenes_aa_9p21){
cat(paste0("Getting data for ", VARIANT,".\n"))
tempCHR <- subset(variant_list, rsID == VARIANT)[,5]
tempSTART <- subset(variant_list, rsID == VARIANT)[,18]
tempEND <- subset(variant_list, rsID == VARIANT)[,19]
tempVARIANTnr <- subset(variant_list, rsID == VARIANT)[,1]
cat("\nSubset required data.\n")
temp1 <- subset(gwas_sumstats_racer_EA, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
temp2 <- subset(gwas_sumstats_racer_AA, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
cat("\nFormatting association data.\n")
temp_f1 = RACER::formatRACER(assoc_data = temp1, chr_col = 3, pos_col = 4, p_col = 5)
temp_f2 = RACER::formatRACER(assoc_data = temp2, chr_col = 3, pos_col = 4, p_col = 5)
# cat("\nGetting LD data.\n")
temp_f_ld1 =
data.table::setorder( # this fixes an issue where the SNPs with LD = NA are plotted last and it appears many SNPs are not present in 1000G.
RACER::ldRACER(assoc_data = temp_f1, rs_col = 2, pops = "EUR",
# lead_snp = VARIANT,
auto_snp = TRUE),
LD)
temp_f_ld2 =
data.table::setorder( # this fixes an issue where the SNPs with LD = NA are plotted last and it appears many SNPs are not present in 1000G.
RACER::ldRACER(assoc_data = temp_f2, rs_col = 2, pops = "AFR",
lead_snp = "rs4576508",
auto_snp = FALSE),
LD)
cat(paste0("\nPlotting region surrounding ", VARIANT," on ",tempCHR,":",tempSTART,"-",tempEND,".\n"))
p1 <- mirrorPlotRACER(assoc_data1 = temp_f_ld1,
assoc_data2 = temp_f_ld2,
chr = tempCHR,
name1 = "European ancestry",
name2 = "African-American ancestry",
plotby = "coord",
start_plot = tempSTART, end_plot = tempEND,
label_lead = TRUE)
print(p1)
p2 <- scatterPlotRACER(assoc_data1 = temp_f_ld1,
assoc_data2 = temp_f_ld2,
chr = tempCHR,
name1 = "European ancestry",
name2 = "African-American ancestry",
region_start = tempSTART,
region_end = tempEND,
ld_df = 1,
label = TRUE)
print(p2)
cat(paste0("Saving image for ", VARIANT,".\n"))
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_mirror.EA_vs_AA.png"), plot = p1)
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_mirror.EA_vs_AA.pdf"), plot = p1)
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_mirror.EA_vs_AA.eps"), plot = p1)
cat(paste0("Saving image for ", VARIANT,".\n"))
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_scatter.EA_vs_AA.png"), plot = p2)
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_scatter.EA_vs_AA.pdf"), plot = p2)
ggsave(filename = paste0(RACER_EA_vs_AA_loc, "/", tempVARIANTnr, ".", Today, ".",VARIANT,".regional_scatter.EA_vs_AA.eps"), plot = p2)
rm(temp1, temp2,
p1,p2,
temp_f1, temp_f_ld1,
temp_f2, temp_f_ld2,
tempCHR, tempSTART, tempEND,
VARIANT, tempVARIANTnr)
}
```
## Quantify colocalization
We want to quantify the overlap.
Setting up an output directory for `coloc`.
```{r}
ifelse(!dir.exists(file.path(PROJECT_loc, "/COLOC_EA_vs_AA")),
dir.create(file.path(PROJECT_loc, "/COLOC_EA_vs_AA")),
FALSE)
COLOC_EA_vs_AA_loc = paste0(PROJECT_loc,"/COLOC_EA_vs_AA")
```
### Data colleaction
Preparing data for `coloc`: we require beta and standard errors for `coloc`.
First the European ancestry data, next the African-American ancestry data.
```{r}
# EA
# gwas_sumstats_EA <- fread(paste0(GWAS_loc,"/EA/CAC1000G_EA_FINAL_FUMA.txt.gz"),
# showProgress = TRUE)
# names(gwas_sumstats_EA)[names(gwas_sumstats_EA) == "Pos"] <- "Position"
# saveRDS(gwas_sumstats_EA, file = paste0(OUT_loc, "/gwas_sumstats.EA.rds"))
# gwas_sumstats_EA <- readRDS(file = paste0(OUT_loc, "/gwas_sumstats.EA.rds"))
# gwas_sumstats_coloc_EA <- subset(gwas_sumstats_EA,
# select = c("MarkerName", "rsID", "Chr", "Position",
# "Effect", "StdErr",
# "Pvalue",
# "N"))
# rm(gwas_sumstats_EA)
# saveRDS(gwas_sumstats_coloc_EA, file = paste0(OUT_loc, "/gwas_sumstats_coloc.EA.rds"))
gwas_sumstats_coloc_EA <- readRDS(file = paste0(OUT_loc, "/gwas_sumstats_coloc.EA.rds"))
# AA
# gwas_sumstats_AA <- fread(paste0(GWAS_loc,"/AA/CAC1000G_AA_FINAL_FUMA.txt.gz"),
# showProgress = TRUE)
# names(gwas_sumstats_AA)[names(gwas_sumstats_EA) == "Pos"] <- "Position"
# saveRDS(gwas_sumstats_AA, file = paste0(OUT_loc, "/gwas_sumstats.AA.rds"))
# gwas_sumstats_AA <- readRDS(file = paste0(OUT_loc, "/gwas_sumstats.AA.rds"))
# names(gwas_sumstats_AA)[names(gwas_sumstats_AA) == "SE"] <- "StdErr"
# gwas_sumstats_coloc_AA <- subset(gwas_sumstats_AA,
# select = c("MarkerName", "rsID", "Chr", "Position",
# "Effect", "StdErr",
# "Pvalue",
# "N"))
# rm(gwas_sumstats_AA)
# saveRDS(gwas_sumstats_coloc_AA, file = paste0(OUT_loc, "/gwas_sumstats_coloc.AA.rds"))
gwas_sumstats_coloc_AA <- readRDS(file = paste0(OUT_loc, "/gwas_sumstats_coloc.AA.rds"))
```
### Colocalization
Now we are reading to formally test the colocalization per trait. Note that `trait 1` = European ancestry; `trait 2` = African-American ancestry.
```{r}
for(VARIANT in variants_of_interest){
cat(paste0("Getting data for ", VARIANT,".\n"))
tempCHR <- subset(variant_list, rsID == VARIANT)[,5]
tempSTART <- subset(variant_list, rsID == VARIANT)[,18]
tempEND <- subset(variant_list, rsID == VARIANT)[,19]
tempVARIANTnr <- subset(variant_list, rsID == VARIANT)[,1]
cat("\nSubset required data.\n")
temp1 <- subset(gwas_sumstats_coloc_EA, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
temp2 <- subset(gwas_sumstats_coloc_AA, Chr == tempCHR & (Position >= tempSTART & Position <= tempEND))
cat("\nCheck temp1 data.\n")
temp1 <- rename_with(temp1, tolower)
# correcting column names
temp1 <- rename(temp1, beta = effect)
temp1 <- rename(temp1, se = stderr)
temp1 <- rename(temp1, snp = rsid)
# calculating things
temp1$varbeta <- temp1$se^2
temp1 <- as.list(temp1) # critical, as coloc expects a list of variables
temp1$type <- "quant"
temp1$sdY <- 1
coloc::check_dataset(temp1, warn.minp = 1e-10)
cat("\nCheck temp2 data.\n")
temp2 <- rename_with(temp2, tolower)
# correcting column names
temp2 <- rename(temp2, beta = effect)
temp2 <- rename(temp2, se = stderr)
temp2 <- rename(temp2, snp = rsid)
# calculating things
temp2$varbeta <- temp2$se^2
temp2 <- as.list(temp2) # critical, as coloc expects a list of variables
temp2$type <- "quant"
temp2$sdY <- 1
coloc::check_dataset(temp2, warn.minp = 1e-10)
cat("\nPlot required data.\n")
plot_dataset(temp1)
plot_dataset(temp2)
res_temp1_vs_temp2_single <- coloc.abf(dataset1 = temp1,
dataset2 = temp2)
cat("\nColocalization.\n")
print(res_temp1_vs_temp2_single)
write_lines(res_temp1_vs_temp2_single, file = paste0(COLOC_EA_vs_AA_loc, "/res_EA_vs_AA_single.",
tempVARIANTnr,".",tempCHR,"_",tempSTART,"_",tempEND,".txt"))
coloc::sensitivity(res_temp1_vs_temp2_single, "H4 > 0.9")
# Step 1: Call the pdf command to start the plot
pdf(file = paste0(COLOC_EA_vs_AA_loc, "/res_EA_vs_AA_single.",
tempVARIANTnr,".",tempCHR,"_",tempSTART,"_",tempEND,".pdf")) # The directory you want to save the file in
# Step 2: Create the plot with R code
coloc::sensitivity(res_temp1_vs_temp2_single, "H4 > 0.9")
# Step 3: Run dev.off() to create the file!
dev.off()
rm(temp1, temp2,
# p1,p2,
# temp_f1, temp_f_ld1,
# temp_f2, temp_f_ld2,
tempCHR, tempSTART, tempEND,
VARIANT, tempVARIANTnr)
}
```
### Summary colocalization
_ENPP1_/_ENPP3_ locus
File: res_EA_vs_AA_single.1.6_131595002_132595002.txt
c(nsnps = 891, PP.H0.abf = 0.212726180436945, PP.H1.abf = 0.0690743673677815, PP.H2.abf = 0.0214723764600455, PP.H3.abf = 0.00628185511784578, PP.H4.abf = 0.690445220617383)
**Conclusion: 69.0% probability that the locus is shared between both ancestries and includes the same causal variant.**
_IGFBP3_ locus
File: res_EA_vs_AA_single.2.7_45460645_46460645.txt
c(nsnps = 1147, PP.H0.abf = 0.598769555553722, PP.H1.abf = 0.108030020950978, PP.H2.abf = 0.0685581712636257, PP.H3.abf = 0.0121567818199419, PP.H4.abf = 0.212485470411732)
**Conclusion: 59.9% probability that the locus is not associated in either ancestry, but 10.8 that it is European-specific, and 21.2% that it is shared between both ancestries and includes the same causal variant.**
_CXCL12_ locus
File: res_EA_vs_AA_single.3.10_44015716_45334720.txt
c(nsnps = 1641, PP.H0.abf = 0.00131956785769608, PP.H1.abf = 0.847689205708678, PP.H2.abf = 0.000166925872986017, PP.H3.abf = 0.107189395862512, PP.H4.abf = 0.0436349046981281)
**Conclusion: 84.8% probability that the locus is European-specific, but 4.3-10.7% probability that the locus is shared between both ancestries.**
_ARID5B_ locus
File: res_EA_vs_AA_single.4.10_63336088_64336088.txt
c(nsnps = 830, PP.H0.abf = 0.153686217856268, PP.H1.abf = 0.52399742579072, PP.H2.abf = 0.0155386299541433, PP.H3.abf = 0.0527253377600635, PP.H4.abf = 0.254052388638805)
**Conclusion: 52.4% probability that the locus is European-specific, but 25.4% probability that the locus is shared between both ancestries and includes different causal variants.**
_ADK_ locus
File: res_EA_vs_AA_single.5.10_75417431_76417431.txt
c(nsnps = 263, PP.H0.abf = 0.0607706367611815, PP.H1.abf = 0.85213066483438, PP.H2.abf = 0.00166979761323014, PP.H3.abf = 0.0233519569734565, PP.H4.abf = 0.0620769438177522)
**Conclusion: 85.2% probability that the locus is European-specific, but 2.3-6.2% probability that the locus is shared between both ancestries.**
_FGF23_ locus
File: res_EA_vs_AA_single.6.12_3986618_4986618.txt
c(nsnps = 916, PP.H0.abf = 0.00446472426354749, PP.H1.abf = 0.706936091086602, PP.H2.abf = 0.00104796032447378, PP.H3.abf = 0.165810337258493, PP.H4.abf = 0.121740887066883)
**Conclusion: 70.7% probability that the locus is European-specific, but 12.2-16.6% probability that the locus is shared between both ancestries.**
_COL4A1_/_COL4A2_ locus
File: res_EA_vs_AA_single.7.13_110549623_111549623.txt
c(nsnps = 1401, PP.H0.abf = 0.10787176608552, PP.H1.abf = 0.739004164794562, PP.H2.abf = 0.0141999398787617, PP.H3.abf = 0.0972387717170162, PP.H4.abf = 0.0416853575241402)
**Conclusion: 73.9% probability that the locus is European-specific, but 4.1-9.7% probability that the locus is shared between both ancestries.**
_MORF4L_ locus
File: res_EA_vs_AA_single.8.15_78623946_79623946.txt
c(nsnps = 984, PP.H0.abf = 9.92862156724414e-05, PP.H1.abf = 0.811395804353311, PP.H2.abf = 1.82061468585998e-05, PP.H3.abf = 0.148746181818894, PP.H4.abf = 0.0397405214652622)
**Conclusion: 81.1% probability that the locus is European-specific, but 14.9% probability that the locus is shared between both ancestries and includes different causal variants.**
_PHACTR1_ locus
File: res_EA_vs_AA_single.9.6_12403957_13403957.txt
c(nsnps = 1082, PP.H0.abf = 2.64349916808974e-21, PP.H1.abf = 0.440110764390371, PP.H2.abf = 1.85706249346447e-22, PP.H3.abf = 0.0303883523691947, PP.H4.abf = 0.529500883240437)
**Conclusion: 44.0% probability that the locus is European-specific, but 52.9% probability that the locus is shared between both ancestries and includes the same causal variant.**
_CDKN2A_/_CDKN2B_ locus
File: res_EA_vs_AA_single.10.9_21624744_22624744.txt
c(nsnps = 1175, PP.H0.abf = 3.8194848005248e-38, PP.H1.abf = 0.40370772152903, PP.H2.abf = 3.70349960775562e-39, PP.H3.abf = 0.0385871394254695, PP.H4.abf = 0.557705139045494)
**Conclusion: 40.4% probability that the locus is European-specific, but 55.8% probability that the locus is shared between both ancestries and includes the same causal variant.**
_APOE_ locus
File: res_EA_vs_AA_single.11.19_44912079_45912079.txt
c(nsnps = 958, PP.H0.abf = 0.0109451663563229, PP.H1.abf = 0.649124092491782, PP.H2.abf = 0.00401834569685491, PP.H3.abf = 0.238218007619045, PP.H4.abf = 0.0976943878359947)
**Conclusion: 64.9% probability that the locus is European-specific, but 23.8% probability that the locus is shared between both ancestries and includes different causal variants.**