-
Notifications
You must be signed in to change notification settings - Fork 6
/
videos_to_colmap.py
474 lines (428 loc) · 24.6 KB
/
videos_to_colmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
from colmap_util import read_model as rm, database as db
import anafi_metadata as am
from wrappers import FFMpeg, PDraw
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin_min
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from edit_exif import set_gps_location
from path import Path
import pandas as pd
import numpy as np
from pyproj import Proj
from tqdm import tqdm
import tempfile
parser = ArgumentParser(description='Take all the drone videos of a folder and put the frame '
'location in a COLMAP file for visualization',
formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--video_folder', metavar='DIR',
help='path to videos', type=Path)
parser.add_argument('--system', default='epsg:2154',
help='coordinates system used for GPS, should be the same as the LAS files used')
parser.add_argument('--centroid_path', default=None, help="path to centroid generated in las2ply.py")
parser.add_argument('--colmap_img_root', metavar='DIR', type=Path,
help="folder that will be used as \"image_path\" parameter when using COLMAP", required=True)
parser.add_argument('--output_format', metavar='EXT', default="bin", choices=["bin", "txt"],
help='format of the COLMAP file that will be outputed, used for visualization only')
parser.add_argument('--vid_ext', nargs='+', default=[".mp4", ".MP4"],
help="format of video files that will be scraped from input folder")
parser.add_argument('--pic_ext', nargs='+', default=[".jpg", ".JPG", ".png", ".PNG"],
help='format of images that will be scraped from already existing images in colmap image_path folder')
parser.add_argument('--nw', default='',
help="native-wrapper.sh file location (see Anafi SDK documentation)")
parser.add_argument('--fps', default=1, type=int,
help="framerate at which videos will be scanned WITH reconstruction")
parser.add_argument('--total_frames', default=200, type=int, help="number of frames used for thorough photogrammetry")
parser.add_argument('--max_sequence_length', default=1000, help='Number max of frames for a chunk. '
'This is for RAM purpose, as loading feature matches of thousands of frames can take up GBs of RAM')
parser.add_argument('--orientation_weight', default=1, type=float,
help="Weight applied to orientation during optimal sample. "
"Higher means two pictures with same location but different orientation will be considered farer apart")
parser.add_argument('--resolution_weight', default=1, type=float, help="same as orientation, but with image size")
parser.add_argument('--save_space', action="store_true",
help="if selected, will only extract from ffmpeg frames used for thorough photogrammetry")
parser.add_argument('--thorough_db', type=Path, help="output db file which will be used by COLMAP for photogrammetry")
parser.add_argument('--generic_model', default='OPENCV',
help='COLMAP model for generic videos. Same zoom level assumed throughout the whole video. '
'See https://colmap.github.io/cameras.html')
parser.add_argument('--include_lowfps_thorough', action='store_true',
help="if selected, will include videos frames at lowfps for thorough scan, even for generic or indoor videos")
parser.add_argument('-v', '--verbose', action="count", default=0)
def world_coord_from_frame(frame_qvec, frame_tvec):
'''
frame_qvec is written in the NED system (north east down)
frame_tvec is already is the world system (east norht up)
'''
world2NED = np.float32([[0, 1, 0],
[1, 0, 0],
[0, 0, -1]])
NED2cam = np.float32([[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])
world2cam = NED2cam @ rm.qvec2rotmat(frame_qvec).T @ world2NED
cam_tvec = - world2cam @ frame_tvec
cam_qvec = rm.rotmat2qvec(world2cam)
return cam_qvec, cam_tvec
def set_gps(frames_list, metadata, colmap_img_root):
for frame in frames_list:
relative = str(frame.relpath(colmap_img_root))
row = metadata[metadata["image_path"] == relative]
if len(row) > 0:
row = row.iloc[0]
if row["location_valid"] and not row['indoor']:
set_gps_location(frame,
lat=row["location_latitude"],
lng=row["location_longitude"],
altitude=row["location_altitude"])
def get_georef(metadata):
relevant_data = metadata[["location_valid", "image_path", "x", "y", "z"]]
path_list = []
georef_list = []
for _, (loc_valid, path, x, y, alt) in relevant_data.iterrows():
path_list.append(path)
if loc_valid:
georef_list.append("{} {} {} {}\n".format(path, x, y, alt))
return georef_list, path_list
def optimal_sample(metadata, num_frames, orientation_weight, resolution_weight):
# already sampled frames are discarded as we want to sample frames in addition to them
valid_metadata = metadata[~metadata["sampled"]].dropna()
if len(valid_metadata) == 0:
return metadata
XYZ = valid_metadata[["x", "y", "z"]].values
axis_angle = valid_metadata[["frame_quat_x", "frame_quat_y", "frame_quat_z"]].values
if "indoor" in valid_metadata.keys() and (True in valid_metadata["indoor"].unique()):
# We have indoor videos, without absolute positions. We assume each video is very far
# from the other ones. As such we will have an optimal subsampling of each video
# It won't leverage video proximity from each other but it's better than nothing
diameter = (XYZ.max(axis=0) - XYZ.min(axis=0))
indoor_videos = valid_metadata.loc[valid_metadata["indoor"]]["video"].unique()
new_centroids = 2 * diameter * np.linspace(0, 10, len(indoor_videos)).reshape(-1, 1)
for centroid, v in zip(new_centroids, indoor_videos):
video_index = (valid_metadata["video"] == v).values
XYZ[video_index] += centroid
weighted_point_cloud = np.concatenate([XYZ, orientation_weight * axis_angle], axis=1)
if resolution_weight == 0:
weights = None
else:
frame_size = valid_metadata["video_quality"].values
weights = frame_size ** resolution_weight
km = KMeans(n_clusters=num_frames).fit(weighted_point_cloud, sample_weight=weights)
closest, _ = pairwise_distances_argmin_min(km.cluster_centers_, weighted_point_cloud)
metadata.at[valid_metadata.index[closest], "sampled"] = True
return metadata
def register_new_cameras(metadata, device, fields, database, camera_dict):
camera_ids = []
cameras_dataframe = metadata[metadata["device"] == device][["device"] + fields].drop_duplicates()
for _, row in cameras_dataframe.iterrows():
camera_model, w, h, params = row.reindex(["camera_model", "width", "height", "camera_params"])
model_id = rm.CAMERA_MODEL_NAMES[camera_model].model_id
num_params = rm.CAMERA_MODEL_NAMES[camera_model].num_params
assert num_params >= len(params), "Got {} params for camera {}".format(len(params), camera_model)
# Single focal models are SIMPLE_PINHOLE, SIMPLE_RADIAL, SIMPLE_RADIAL_FISHEYE, RADIAL and RADIAL_FISHEYE
single_focal = ('SIMPLE' in camera_model) or ('RADIAL' in camera_model)
num_focals = 1 if single_focal else 2
params = np.array(list(params) + [0] * (num_params - len(params)))
# prior_focal_length is whether or not COLMAP should rely on it.
prior_focal_length = all(params[:num_focals] != 0)
# For unknown focal_length, put a generic placeholder
params[:num_focals][params[:num_focals] == 0] = w / 2
# If cx is not set, give the default value w/2
if params[num_focals] == 0:
params[num_focals] = w/2
# same for cy
if params[num_focals + 1] == 0:
params[num_focals + 1] = h/2
# We can get less params than actual params if they are unknown. We then pad it with zeros
db_id = database.add_camera(model_id, int(w), int(h), params, prior_focal_length=prior_focal_length)
camera_ids.append(db_id)
camera_dict[db_id] = rm.Camera(id=db_id,
model=camera_model,
width=int(w),
height=int(h),
params=params)
metadata.loc[(metadata[["device"] + fields] == row).all(axis=1), "camera_id"] = db_id
ids_series = pd.Series(camera_ids)
return cameras_dataframe.set_index(ids_series)
def get_video_metadata(v, output_video_folder, system, generic_model='OPENCV', ** env):
width, height, framerate, num_frames = env["ffmpeg"].get_size_and_framerate(v)
video_output_folder = output_video_folder / "{}x{}".format(width, height) / v.stem
def string_to_tuple(tuple_string):
assert(tuple_string[0] == '(' and tuple_string[-1] == ')')
return tuple([float(f) for f in tuple_string[1:-1].split(', ')])
def generic_metadata():
metadata = pd.DataFrame({"video": [v] * num_frames})
metadata["height"] = height
metadata["width"] = width
metadata["framerate"] = framerate
metadata["video_quality"] = height * width / framerate
metadata['frame'] = metadata.index + 1
# timestemp is in microseconds
metadata['time'] = 1e6 * metadata.index / framerate
metadata['indoor'] = True
metadata['location_valid'] = False
metadata["device"] = "generic"
metadata["camera_model"] = generic_model
metadata["frame_quat_w"] = np.NaN
metadata["frame_quat_x"] = np.NaN
metadata["frame_quat_y"] = np.NaN
metadata["frame_quat_z"] = np.NaN
metadata["x"] = np.NaN
metadata["y"] = np.NaN
metadata["z"] = np.NaN
metadata["camera_params"] = [tuple()] * len(metadata)
return metadata
# First, try to open the CSV file {video name}_metadata.csv which should contain the metadata
# If it fails, try to get metadata from MP4 by using PDraw
# At last resort, simply assume generic parameters
metadata_file_path = v.parent / "{}_metadata.csv".format(v.stem)
if metadata_file_path.isfile():
metadata = pd.read_csv(metadata_file_path)
# check that the pandas dataframe is well formed
keys_to_check = ["camera_model", "camera_params", "x", "y", "z",
"frame_quat_w", "frame_quat_x", "frame_quat_y", "frame_quat_z",
"location_valid", "time"]
for k in keys_to_check:
assert k in metadata.keys(), "Metadata file does not contain required field {}".format(k)
metadata["camera_params"] = metadata["camera_params"].apply(string_to_tuple)
if "frame" not in metadata.keys():
metadata["frame"] = range(1, len(metadata) + 1)
metadata['video'] = v
if 'indoor' not in metadata.keys():
metadata['indoor'] = len(metadata[metadata["location_valid"]]) > 0
if 'video_quality' not in metadata.keys():
metadata["video_quality"] = height * width / framerate
device = "other"
else:
try:
proj = Proj(system)
metadata = am.extract_metadata(v.parent, v, env["pdraw"], proj,
width, height, framerate)
metadata["camera_model"] = "PINHOLE"
device = "anafi"
except Exception:
# No metadata found, construct a simpler dataframe without location
metadata = generic_metadata()
device = "generic"
metadata["num_frames"] = num_frames
metadata["device"] = device
return metadata, device, video_output_folder
def process_video_folder(videos_list, individual_pictures, output_video_folder, colmap_img_root, centroid,
thorough_db, fps=1, total_frames=500, orientation_weight=1, resolution_weight=1,
output_colmap_format="bin", save_space=False, include_lowfps_thorough=False,
max_sequence_length=1000, num_neighbours=10,
existing_georef=False, existing_metadata=None, **env):
metadata_list = []
video_output_folders = {}
images = {}
colmap_cameras = {}
tempfile_database = Path(tempfile.NamedTemporaryFile().name)
if thorough_db.isfile():
thorough_db.copy(thorough_db.stripext() + "_backup.db")
if existing_metadata is not None:
already_treated_videos = existing_metadata["video"].unique()
videos_to_treat = [v for v in videos_list if v not in already_treated_videos]
if len(videos_to_treat) == 0:
print("All videos already treated. "
"Remove the file {} if you want to reprocess everything".format(env["full_metadata"]))
return None, {}, existing_metadata
print("Skipping {} already treated videos".format(len(already_treated_videos)))
else:
videos_to_treat = videos_list
path_lists_output = {}
database = db.COLMAPDatabase.connect(thorough_db)
database.create_tables()
print("extracting metadata for {} videos...".format(len(videos_list)))
videos_summary = {"anafi": {"indoor": 0, "outdoor": 0},
"other": {"indoor": 0, "outdoor": 0},
"generic": 0}
for v in tqdm(videos_to_treat):
metadata, device, output_folder = get_video_metadata(v, output_video_folder, **env)
video_output_folders[v] = output_folder
output_folder.makedirs_p()
if include_lowfps_thorough:
by_time = metadata.set_index(pd.to_datetime(metadata["time"], unit="us"))
by_time_lowfps = by_time.resample("{:.3f}S".format(1/fps)).first()
metadata["sampled"] = by_time["time"].isin(by_time_lowfps["time"]).values
else:
metadata["sampled"] = False
if device == "generic":
videos_summary["generic"] += 1
else:
raw_positions = metadata[["x", "y", "z"]]
if metadata["indoor"].iloc[0]:
videos_summary[device]["indoor"] += 1
else:
videos_summary[device]["outdoor"] += 1
if sum(metadata["location_valid"]) > 0:
if centroid is None:
'''No centroid (possibly because there was no georeferenced lidar pointcloud in the first place)
set it as the first valid GPS position of the first outdoor video'''
centroid = raw_positions[metadata["location_valid"]].iloc[0].values
zero_centered_positions = raw_positions.values - centroid
radius = np.max(np.abs(zero_centered_positions))
if radius > 1000:
print("Warning, your positions coordinates are most likely too high, have you configured the right GPS system ?")
print("It should be the same as the one used for the Lidar point cloud")
metadata["x"], metadata["y"], metadata["z"] = zero_centered_positions.transpose()
metadata_list.append(metadata)
final_metadata = pd.concat(metadata_list, ignore_index=True)
print("{} outdoor anafi videos".format(videos_summary["anafi"]["outdoor"]))
print("{} indoor anafi videos".format(videos_summary["anafi"]["indoor"]))
print("{} indoor other videos".format(videos_summary["other"]["outdoor"]))
print("{} indoor other videos".format(videos_summary["other"]["indoor"]))
print("{} generic videos".format(videos_summary["generic"]))
if((not existing_georef) and (sum(final_metadata["location_valid"]) == 0) and (videos_summary["anafi"]["indoor"] > 0)):
# We have no GPS data but we have navdata, which will help rescale the colmap model
# Take the longest video and do as if the GPS was valid
indoor_video_diameters = {}
for md in metadata_list:
if (metadata["device"].iloc[0] != "anafi") or (not metadata["indoor"].iloc[0]):
continue
positions = md[["x", "y", "z"]].values
video_displacement_diameter = np.linalg.norm(positions.max(axis=0) - positions.min(axis=0))
if not np.isnan(video_displacement_diameter):
indoor_video_diameters[video_displacement_diameter] = v
if len(indoor_video_diameters) > 0:
longest_video = indoor_video_diameters[max(indoor_video_diameters)]
print("Only indoor videos used, will use {} for COLMAP rescaling".format(longest_video))
video_index = final_metadata["video"] == longest_video
final_metadata.loc[video_index, "location_valid"] = True
print("{} frames in total".format(len(final_metadata)))
final_metadata["camera_id"] = 0
# Set up Anafi cameras, zoom included
cam_fields = ["camera_model", "width", "height", "camera_params"]
cam_dfs = []
if any(final_metadata["device"] == "other"):
cam_dfs.append(register_new_cameras(final_metadata, "other", cam_fields, database, colmap_cameras))
if any(final_metadata["device"] == "anafi"):
# For anafi we don't treat cameras the same if the framerate is different
# because potentially different rectification algorithms are applied
anafi_cam_fields = cam_fields + ["framerate"]
cam_dfs.append(register_new_cameras(final_metadata, "anafi", anafi_cam_fields, database, colmap_cameras))
if any(final_metadata["device"] == "generic"):
print("Undefined remaining devices, assigning generic models to them")
# Fix a single camera per video. This doesn't support different levels of zoom, but
# COLMAP is not robust to too many different independant camera models
generic_cam_fields = cam_fields + ["video"]
cam_dfs.append(register_new_cameras(final_metadata, "generic", generic_cam_fields, database, colmap_cameras))
print("Cameras : ")
print(pd.concat(cam_dfs))
already_sampled = sum(final_metadata["sampled"]) + (existing_metadata["sampled"] if existing_metadata is not None else 0)
to_extract = total_frames - len(individual_pictures) - already_sampled
if to_extract <= 0:
pass
elif to_extract < len(final_metadata):
print("subsampling based on K-Means, to get {}"
" frames from videos, for a total of {} frames".format(to_extract, total_frames))
final_metadata = optimal_sample(final_metadata, to_extract,
orientation_weight,
resolution_weight)
print("Done.")
else:
final_metadata["sampled"] = True
print("Constructing COLMAP model with {:,} frames".format(sum(final_metadata["sampled"])))
database.commit()
thorough_db.copy(tempfile_database)
temp_database = db.COLMAPDatabase.connect(tempfile_database)
final_metadata["image_path"] = ""
final_metadata["db_id"] = -1
for current_id, row in tqdm(final_metadata.iterrows(), total=len(final_metadata)):
video = row["video"]
frame = row["frame"]
camera_id = row["camera_id"]
current_image_path = video_output_folders[video].relpath(colmap_img_root) / video.stem + "_{:05d}.jpg".format(frame)
final_metadata.at[current_id, "image_path"] = current_image_path
db_image_id = temp_database.add_image(current_image_path, int(camera_id))
final_metadata.at[current_id, "db_id"] = db_image_id
if row["sampled"]:
frame_qvec = row[["frame_quat_w",
"frame_quat_x",
"frame_quat_y",
"frame_quat_z"]].values
if True in pd.isnull(frame_qvec):
frame_qvec = np.array([1, 0, 0, 0])
x, y, z = row[["x", "y", "z"]]
frame_tvec = np.array([x, y, z])
if row["location_valid"] and not row['indoor']:
frame_gps = row[["location_longitude", "location_latitude", "location_altitude"]]
else:
frame_gps = np.full(3, np.NaN)
world_qvec, world_tvec = world_coord_from_frame(frame_qvec, frame_tvec)
database.add_image(current_image_path, int(camera_id), prior_t=frame_gps, image_id=db_image_id)
images[db_image_id] = rm.Image(id=db_image_id, qvec=world_qvec, tvec=world_tvec,
camera_id=camera_id, name=current_image_path,
xys=[], point3D_ids=[])
database.commit()
database.close()
temp_database.commit()
temp_database.close()
rm.write_model(colmap_cameras, images, {}, output_video_folder, "." + output_colmap_format)
print("COLMAP model created")
thorough_georef, thorough_paths = get_georef(final_metadata[final_metadata["sampled"]])
path_lists_output["thorough"] = {}
path_lists_output["thorough"]["frames"] = thorough_paths
path_lists_output["thorough"]["georef"] = thorough_georef
print("Extracting frames from videos")
for v in tqdm(videos_to_treat):
video_metadata = final_metadata[final_metadata["video"] == v]
by_time = video_metadata.set_index(pd.to_datetime(video_metadata["time"], unit="us"))
video_folder = video_output_folders[v]
video_metadata.to_csv(video_folder/"metadata.csv")
path_lists_output[v] = {}
video_metadata_1fps = by_time.resample("{:.3f}S".format(1/fps)).first()
georef, frame_paths = get_georef(video_metadata_1fps)
path_lists_output[v]["frames_lowfps"] = frame_paths
path_lists_output[v]["georef_lowfps"] = georef
num_chunks = len(video_metadata) // max_sequence_length + 1
chunks = [list(frames) for frames in np.array_split(video_metadata["image_path"],
num_chunks)]
# Add some overlap between chunks, in order to ease the model merging afterwards
for chunk, next_chunk in zip(chunks, chunks[1:]):
chunk.extend(next_chunk[:num_neighbours])
path_lists_output[v]["frames_full"] = chunks
if save_space:
frame_ids = set(video_metadata[video_metadata["sampled"]]["frame"].values) | \
set(video_metadata_1fps["frame"].values)
frame_ids = sorted(list(frame_ids))
if len(frame_ids) > 0:
extracted_frames = env["ffmpeg"].extract_specific_frames(v, video_folder, frame_ids)
else:
extracted_frames = env["ffmpeg"].extract_images(v, video_folder)
set_gps(extracted_frames, video_metadata, colmap_img_root)
if existing_metadata is not None:
final_metadata = pd.concat([existing_metadata, final_metadata], ignore_index=True)
return path_lists_output, video_output_folders, final_metadata
if __name__ == '__main__':
args = parser.parse_args()
env = vars(args)
env["videos_list"] = sum((list(args.video_folder.walkfiles('*{}'.format(ext))) for ext in args.vid_ext), [])
output_video_folder = args.colmap_img_root / "Videos"
output_video_folder.makedirs_p()
env["output_video_folder"] = output_video_folder
env["individual_pictures"] = sum((list(args.colmap_img_root.walkfiles('*{}'.format(ext))) for ext in args.pic_ext), [])
env["pdraw"] = PDraw(args.nw, verbose=args.verbose)
env["ffmpeg"] = FFMpeg(verbose=args.verbose)
env["output_colmap_format"] = args.output_format
if args.centroid_path is not None:
centroid = np.loadtxt(args.centroid_path)
else:
centroid = np.zeros(3)
env["centroid"] = centroid
lists, extracted_video_folders, full_metadata = process_video_folder(**env)
if lists is not None:
full_metadata.to_csv(args.colmap_img_root/"full_video_metadata.csv")
with open(args.colmap_img_root/"video_frames_for_thorough_scan.txt", "w") as f:
f.write("\n".join(lists["thorough"]["frames"]) + "\n")
with open(args.colmap_img_root/"georef.txt", "w") as f:
f.write("\n".join(lists["thorough"]["georef"]))
for v in env["videos_list"]:
if v not in extracted_video_folders.keys():
continue
video_folder = extracted_video_folders[v]
with open(video_folder / "lowfps.txt", "w") as f:
f.write("\n".join(lists[v]["frames_lowfps"]) + "\n")
with open(video_folder / "georef.txt", "w") as f:
f.write("\n".join(lists["thorough"]["georef"]) + "\n")
f.write("\n".join(lists[v]["georef_lowfps"]) + "\n")
for j, l in enumerate(lists[v]["frames_full"]):
with open(video_folder / "full_chunk_{}.txt".format(j), "w") as f:
f.write("\n".join(l) + "\n")