diff --git a/examples/SurfaceFluxExample/kappa_calibration.jl b/examples/SurfaceFluxExample/kappa_calibration.jl index 388a411d9..fef12076f 100644 --- a/examples/SurfaceFluxExample/kappa_calibration.jl +++ b/examples/SurfaceFluxExample/kappa_calibration.jl @@ -253,7 +253,7 @@ ylabel!("U^*") png("our_plot") # ![see plot: ](../assets/kappa_calibration_plot1.png) -# We also plot the unconstrained κ values across all ensembles before and after the EKI process in a histogram. +# We also plot the constrained κ values across all ensembles before and after the EKI process in a histogram. histogram(initial_ensemble[1, :], label = "initial") histogram!(final_ensemble[1, :], label = "final") xlabel!("κ") @@ -261,8 +261,5 @@ ylabel!("# of Ensembles") png("final_and_initial_ensemble") # ![see plot: ](../assets/kappa_calibration_plot2.png) -#= -- discuss pipeline -- perfect model experiment ok -- functional learning extension? -=# +# Evidently, EKI was highly successful at recovering the von karman constant κ = 0.4. This process will be extended to recover +# stability function parameters such as a_m, a_h, b_m, b_h, and Pr_0.