diff --git a/src/EnsembleTransformKalmanInversion.jl b/src/EnsembleTransformKalmanInversion.jl index 65a820243..d7e454ff1 100644 --- a/src/EnsembleTransformKalmanInversion.jl +++ b/src/EnsembleTransformKalmanInversion.jl @@ -73,7 +73,7 @@ function etki_update( AV2 <: AbstractVector, AV3 <: AbstractVector, } - + inv_noise_scaling = get_Δt(ekp)[end] m = size(u, 2) X = FT.((u .- mean(u, dims = 2)) / sqrt(m - 1)) Y = FT.((g .- mean(g, dims = 2)) / sqrt(m - 1)) @@ -100,9 +100,9 @@ function etki_update( γ_inv = obs_noise_cov_inv[block_idx] # This is cumbersome, but will retain e.g. diagonal type for matrix manipulations, else indexing converts back to matrix if isa(γ_inv, Diagonal) # - tmp[1][1:ys2, global_idx] = (γ_inv.diag[local_idx] .* Y[global_idx, :])' # multiple each row of Y by γ_inv element + tmp[1][1:ys2, global_idx] = inv_noise_scaling * (γ_inv.diag[local_idx] .* Y[global_idx, :])' # multiple each row of Y by γ_inv element else #much slower - tmp[1][1:ys2, global_idx] = (γ_inv[local_idx, local_idx] * Y[global_idx, :])' # NB: col(Y') * γ_inv = (γ_inv * row(Y))' row-mult is faster + tmp[1][1:ys2, global_idx] = inv_noise_scaling * (γ_inv[local_idx, local_idx] * Y[global_idx, :])' # NB: col(Y') * γ_inv = (γ_inv * row(Y))' row-mult is faster end end @@ -172,7 +172,6 @@ function update_ensemble!( fh = get_failure_handler(ekp) - # Scale noise using Δt y = get_obs(ekp) if isnothing(failed_ens)