Skip to content

Latest commit

 

History

History
86 lines (44 loc) · 2 KB

README.md

File metadata and controls

86 lines (44 loc) · 2 KB

Dog_Breed_Classifier

forks license stars

Abstract:

The neural network is the most advanced method at the moment to train the system to do a task. Among them CNN (convolution neural network ) and its derivatives are the most used for training the system to identify and classify images and in computer vision.


Network Used:

Convolution Neural Network (CNN)


Layers in the network :

  • cnn.add(Conv2D(filters=128,kernel_size=5,activation='relu',input_shape=[64,64,3]))

  • cnn.add(MaxPool2D(pool_size=3,strides=1))

  • cnn.add(Dropout(0.2))

  • cnn.add(BatchNormalization())

  • cnn.add(Conv2D(filters=64,kernel_size=3,activation='relu'))

  • cnn.add(MaxPool2D(pool_size=3,strides=1))

  • cnn.add(Dropout(0.2))

  • cnn.add(BatchNormalization())

  • cnn.add(Conv2D(filters=32,kernel_size=3,activation='relu'))

  • cnn.add(MaxPool2D(pool_size=3,strides=1))

  • cnn.add(Dropout(0.2))

  • cnn.add(BatchNormalization())

  • cnn.add(Conv2D(filters=32,kernel_size=3,activation='relu'))

  • cnn.add(MaxPool2D(pool_size=3,strides=1))

  • cnn.add(Dropout(0.2))

  • cnn.add(BatchNormalization())

  • cnn.add(Conv2D(filters=32,kernel_size=3,activation='relu'))

  • cnn.add(MaxPool2D(pool_size=3,strides=1))

  • cnn.add(Dropout(0.2))

  • cnn.add(BatchNormalization())

  • cnn.add(GlobalAveragePooling2D(data_format='channels_last'))

  • cnn.add(Dense(units=10,activation='softmax'))


Accurracy Score:

32%. Due to lack of computation power number of epochs had to be set to less, so the accuracy is low.



Dataset : Data set is taken from kaagle


Contributors :

Sanjay urs K P , Jyothi B R, Karthik B S, Nayana , Mohan Kumar K

Licensed To : MIT

Images :