Skip to content

Latest commit

 

History

History
886 lines (585 loc) · 22.7 KB

README.md

File metadata and controls

886 lines (585 loc) · 22.7 KB

FractalQT

FractalQT is a high-performance fractal rendering application built using Qt and optimized with multithreading, advanced algorithms, and customizable color palettes. This project allows the generation and exploration of fractal patterns such as the Mandelbrot and Julia sets with user-configurable rendering settings.


Screen Shot

Mandelbrot

Mandelbort and Julia

Mandelbort and Julia


Features

  1. High-Performance Fractal Rendering:

    • Multithreaded rendering using QThreadPool and OpenMP.
    • Adaptive computation for better performance on zoomed-in regions.
  2. Fractal Types Supported:

    • Mandelbrot Set.
    • Julia Set with adjustable parameters.
  3. Dynamic Color Palettes:

    • Predefined palettes: Grayscale, Spectral, HeatMap, YlGnBu, HeightMap.
    • Support for custom palettes loaded from .map files.
    • Real-time palette switching and preview.
  4. Interactive Exploration:

    • Zoom and pan controls for fractal exploration.
    • Real-time updates on mouse movements.
  5. Customizable Rendering:

    • Adjustable maximum iterations for higher precision.
    • Smooth coloring for gradient-based visuals.
  6. Cross-Platform Support:

    • Works on Windows, macOS, and Linux.

Getting Started

Prerequisites

  1. Qt Framework: Install Qt 5.14.2 or later.
  2. Compiler:
    • MinGW (for Windows) or GCC/Clang (for macOS/Linux).
    • Ensure support for OpenMP for multithreading.
  3. C++ Compiler: Support for C++11 or higher.

Building the Project

Using qmake

  1. Clone the repository:

    git clone https://github.com/CoderAstrid/FractalQT.git
    cd FractalQT
  2. Run qmake:

    qmake FractalQT.pro
  3. Build the project:

    make
  4. Run the application:

    ./FractalQT

Using CMake

  1. Configure and generate build files:

    cmake -S . -B build
  2. Build the application:

    cmake --build build
  3. Run the application:

    ./build/FractalQT

Usage

Exploring Fractals

  1. Zoom and Pan:

    • Use the mouse wheel to zoom in/out.
    • Drag with the right mouse button to pan across the fractal.
  2. Switch Fractal Types:

    • Select between Mandelbrot and Julia sets using the UI controls.
  3. Adjust Julia Parameters:

    • Move the mouse pointer in the Mandelbrot view to update the Julia set dynamically.

Customizing Palettes

  1. Predefined Palettes:
    • Select from a dropdown menu to switch between palettes.
  2. Load Custom Palettes:
    • Place .map files in the colormap directory to load them automatically.

Performance Settings

  1. Adjust Iteration Count:
    • Use the slider to set the maximum iteration count.
  2. Smooth Coloring:
    • Enable gradient-based smooth coloring for smoother visuals.

Code Overview

Key Classes

  1. MainWindow:

    • Manages the application’s main UI and interactions.
    • Handles palette selection and event-based updates.
  2. MandelBrotView:

    • Handles rendering and user interaction for Mandelbrot and Julia views.
    • Supports mouse-based zoom, pan, and Julia parameter adjustments.
  3. FractalRenderer:

    • Core class for fractal computation.
    • Implements multithreaded rendering and dynamic palette updates.
  4. FractalWorker:

    • Worker class for parallelized fractal computation.
    • Optimized with OpenMP for multi-core performance.
  5. ColorLut:

    • Manages color lookup tables for palette generation and application.

Rendering Pipeline

  1. Fractal Computation:

    • Uses escape-time algorithms for Mandelbrot and Julia sets.
    • Supports smooth coloring for visual gradients.
  2. Multithreading:

    • QThreadPool dynamically distributes rendering tasks.
    • Tile-based rendering improves load balancing.
  3. Image Updates:

    • Uses QImage to update and display fractal data efficiently.

Customization

Adding Custom Palettes

  1. Create a .map file with RGB color definitions.
  2. Place the file in the colormap directory.
  3. Restart the application to load the new palette.

Modifying Fractal Parameters

  1. Update INIT_LEFT, INIT_TOP, INIT_RIGHT, and INIT_BOTTOM in FractalRenderer for default zoom levels.
  2. Modify MAX_ITERATION to increase rendering precision.

Enabling GPU Acceleration

  • CUDA or OpenCL support can be added for GPU-based fractal computation (not included by default).

Contributing

  1. Fork the repository.
  2. Create a feature branch:
    git checkout -b feature/my-new-feature
  3. Commit your changes:
    git commit -m 'Add some feature'
  4. Push to the branch:
    git push origin feature/my-new-feature
  5. Open a pull request.

License

This project is licensed under the MIT License. See the LICENSE file for details.


Acknowledgments

  • Special thanks to contributors and the Qt community for their support.
  • Inspired by the beauty and complexity of fractal geometry.

Future Work

Optimizing(Speed up)

  1. Use Adaptive Sampling
  • Problem:

    Currently, your renderer calculates every pixel independently, even for regions that are inside the Mandelbrot or Julia set and will have the same color.

  • Solution:

    Use adaptive sampling to skip redundant calculations:

  • Divide the image into blocks.

    Check if all pixels in a block converge to the same value (e.g., by evaluating the corners of the block). If yes, assign the same value to the entire block. Otherwise, subdivide the block further.

  • Implementation:

    void adaptiveSampling(int x0, int y0, int x1, int y1, int depth) {
       // Evaluate the corners of the block
       int value1 = calcPoint(convertToComplex(x0, y0));
       int value2 = calcPoint(convertToComplex(x1, y0));
       int value3 = calcPoint(convertToComplex(x0, y1));
       int value4 = calcPoint(convertToComplex(x1, y1));
    
       // If all corners have the same value, fill the block
       if (value1 == value2 && value2 == value3 && value3 == value4) {
          fillBlock(x0, y0, x1, y1, value1);
       } else if (depth < MAX_DEPTH) {
          // Subdivide the block
          int midX = (x0 + x1) / 2;
          int midY = (y0 + y1) / 2;
          adaptiveSampling(x0, y0, midX, midY, depth + 1);
          adaptiveSampling(midX, y0, x1, midY, depth + 1);
          adaptiveSampling(x0, midY, midX, y1, depth + 1);
          adaptiveSampling(midX, midY, x1, y1, depth + 1);
       } else {
          // At maximum depth, calculate each pixel
          for (int y = y0; y < y1; ++y) {
                for (int x = x0; x < x1; ++x) {
                   image[y * width + x] = calcPoint(convertToComplex(x, y));
                }
          }
       }
    }
    
  • Benefits:

    Reduces redundant calculations in uniform areas. Provides substantial speedups, especially for smooth or repetitive regions.

  1. Escape-Time Optimization
  • Problem:

    You're calculating the number of iterations (calcPoint) for each pixel independently, which is inefficient for regions with known patterns.

  • Solution:

    Periodic Detection:

    Many points in fractals eventually repeat values in a periodic loop. Detect this and stop early.

    if (std::norm(z) < threshold && z == prevZ) {
       return i;
    }
    

    Bailout Distance:

    Instead of checking if |z| > 1000, use a lower bailout distance (e.g., 4.0) since larger values won't change the outcome.

    Smooth Coloring:

    Instead of discrete color steps, calculate smooth gradients:

    double norm = std::sqrt(zr2 + zi2);
    double smoothColor = i + 1 - std::log2(std::log2(norm));
    
  • Benefits:

    Reduces unnecessary iterations. Improves visual quality by avoiding banding.

  1. Use Iteration Limits Dynamically
  • Problem:

    Setting a fixed MAX_ITERATION for all regions wastes computation on areas where fewer iterations suffice (e.g., outside the main set).

  • Solution:

    Assign lower iteration counts for points far from the set boundary. Increase the iteration count adaptively for zoomed-in regions.

  • Implementation:

    int calcPointDynamicIterations(Complex c) {
       int maxIter = estimateIterations(c);
       for (int i = 0; i < maxIter; ++i) {
          z = z * z + c;
          if (std::norm(z) > 4.0) return i;
       }
       return maxIter;
    }
    
  1. Parallelize by Tiles
  • Problem:

    Even with multithreading, distributing work by rows may result in load imbalance if certain rows are more computationally expensive.

  • Solution:

    Use a tile-based parallelism approach:

    Divide the image into smaller tiles (e.g., 32×32 or 64×64). Dynamically assign tiles to threads.

  • Implementation:

    #pragma omp parallel for schedule(dynamic, 1)
    for (int ty = 0; ty < height; ty += TILE_SIZE) {
       for (int tx = 0; tx < width; tx += TILE_SIZE) {
          renderTile(tx, ty, TILE_SIZE, TILE_SIZE);
       }
    }
    
  • Benefits:

    Balances the workload dynamically. Reduces synchronization overhead.

  1. Use Histogram Equalization for Colors
  • Problem:

    Mapping iterations directly to colors can cause uneven color distribution, especially for high iteration counts.

  • Solution:

    Build a histogram of iteration counts. Adjust the color mapping to distribute colors evenly across the range.

  • Implementation:

    std::vector<int> histogram(MAX_ITERATION, 0);
    for (int i = 0; i < width * height; ++i) {
       ++histogram[iterationCounts[i]];
    }
    
    // Normalize colors
    int totalPixels = width * height;
    std::vector<int> colorMap(MAX_ITERATION);
    int cumulative = 0;
    for (int i = 0; i < MAX_ITERATION; ++i) {
       cumulative += histogram[i];
       colorMap[i] = (255 * cumulative) / totalPixels;
    }
    
  1. Precompute Parameters
  • Problem:

    Each pixel recalculates the same scaling and translation values repeatedly.

  • Solution:

    Precompute values like:

    xCoords = left + x * xInterval for all columns.

    yCoords = top + y * yInterval for all rows.

  • Implementation:

    std::vector<double> xCoords(width);
    std::vector<double> yCoords(height);
    for (int x = 0; x < width; ++x) {
       xCoords[x] = left + x * xInterval;
    }
    for (int y = 0; y < height; ++y) {
       yCoords[y] = top + y * yInterval;
    }
    Use these arrays in the main loop:
    
    for (int y = 0; y < height; ++y) {
       for (int x = 0; x < width; ++x) {
          Complex point(xCoords[x], yCoords[y]);
          // Calculate fractal value
       }
    }
    
  • Benefits:

    Removes repetitive calculations. Improves cache locality.

  1. Optimize Rendering Pipeline
  • Problem:

    Rendering may be limited by memory or I/O bandwidth.

  • Solution:

    Render smaller regions into buffers and combine them. Use QImage::bits() efficiently to update only the changed regions.

  1. Apply Quadtree Data Structures
  • Problem:

    Uniform grids waste time calculating pixels in uniform regions.

  • Solution:

    Use a quadtree:

    Divide the image into quadrants.

    Stop subdividing if the region has a uniform color or reaches a size limit.

    Final Optimized Loop Example

    Combining these techniques:

    #pragma omp parallel for schedule(dynamic, 1)
    for (int y = 0; y < height; y++) {
       for (int x = 0; x < width; x++) {
          Complex c = convertToComplex(x, y);
          int iterations = calcPointDynamicIterations(c);
    
          // Use adaptive sampling
          if (isUniformBlock(x, y)) {
                fillBlock(x, y, iterations);
          } else {
                image[y * width + x] = iterations;
          }
       }
    }
    

Expected Speedups

Adaptive Sampling: Reduces work by skipping redundant calculations. Escape-Time Optimization: Shortens unnecessary iteration loops. Dynamic Iterations: Tailors precision to computational needs. Tile-Based Parallelism: Ensures even distribution of workload across threads. Histogram Equalization: Enhances visual quality without adding computational cost.

How to use CUDA or OpenCL

To use CUDA or OpenCL for accelerating your fractal generation, you’ll need to offload computation-heavy tasks, such as iterating through the Mandelbrot or Julia set formulas, to the GPU. Below is a step-by-step guide for implementing GPU acceleration with both CUDA and OpenCL.

CUDA Implementation

CUDA is a parallel computing platform from NVIDIA for running computations on NVIDIA GPUs. Here’s how to implement CUDA in your fractal generator.


Step 1: Install CUDA Toolkit

Install the NVIDIA CUDA Toolkit from NVIDIA's website. Ensure you have an NVIDIA GPU and appropriate drivers installed. Configure your development environment (e.g., Visual Studio or GCC).


Step 2: Write the CUDA Kernel

The CUDA kernel runs on the GPU, and each thread computes a pixel of the fractal.

Example CUDA Kernel:

__global__ void renderFractalKernel(int width, int height, double left, double top, double xInterval, double yInterval, int maxIterations, int* output, bool isJulia, double cr, double ci) {
    int x = blockIdx.x * blockDim.x + threadIdx.x; // Compute pixel X coordinate
    int y = blockIdx.y * blockDim.y + threadIdx.y; // Compute pixel Y coordinate

    if (x >= width || y >= height) return;

    double zr = left + x * xInterval;
    double zi = top + y * yInterval;

    double cr_local = cr, ci_local = ci;
    if (!isJulia) {
        cr_local = zr;
        ci_local = zi;
        zr = 0;
        zi = 0;
    }

    int iteration = 0;
    while (zr * zr + zi * zi <= 4.0 && iteration < maxIterations) {
        double zr2 = zr * zr - zi * zi + cr_local;
        zi = 2.0 * zr * zi + ci_local;
        zr = zr2;
        iteration++;
    }

    output[y * width + x] = (255 * iteration) / maxIterations;
}

Step 3: Launch the CUDA Kernel

The host code initializes GPU memory and launches the kernel.

Host Code Example:

#include <cuda_runtime.h>
#include <iostream>

void renderFractalCUDA(int width, int height, double left, double top, double xInterval, double yInterval, int maxIterations, int* output, bool isJulia, double cr, double ci) {
    int* d_output;
    size_t imageSize = width * height * sizeof(int);

    // Allocate GPU memory
    cudaMalloc(&d_output, imageSize);

    // Define grid and block sizes
    dim3 blockSize(16, 16); // Threads per block
    dim3 gridSize((width + blockSize.x - 1) / blockSize.x,
                  (height + blockSize.y - 1) / blockSize.y);

    // Launch kernel
    renderFractalKernel<<<gridSize, blockSize>>>(width, height, left, top, xInterval, yInterval,
                                                 maxIterations, d_output, isJulia, cr, ci);

    // Copy results back to host
    cudaMemcpy(output, d_output, imageSize, cudaMemcpyDeviceToHost);

    // Free GPU memory
    cudaFree(d_output);
}

Step 4: Integrate CUDA with Your Application

Call renderFractalCUDA from your main application. Use the output array to update your image buffer.

Main Function Example:

int* output = new int[width * height];
renderFractalCUDA(width, height, left, top, xInterval, yInterval, maxIterations, output, isJulia, cr, ci);
// Use `output` to update your image
delete[] output;


Advantages of CUDA

High Performance: Optimized for NVIDIA GPUs. Easy Integration: Straightforward kernel launching and memory management. Rich Ecosystem: Tools like Nsight for debugging and profiling.

OpenCL Implementation

OpenCL is a cross-platform parallel computing framework that works with GPUs from NVIDIA, AMD, Intel, and others.


Step 1: Setup OpenCL

Install the OpenCL SDK (e.g., Intel OpenCL SDK or NVIDIA OpenCL Toolkit). Configure your build environment to include OpenCL headers and libraries.


Step 2: Write the OpenCL Kernel

The OpenCL kernel is similar to the CUDA kernel but uses a slightly different syntax.

Example OpenCL Kernel:

__kernel void renderFractal(int width, int height, double left, double top, double xInterval, double yInterval, int maxIterations, __global int* output, int isJulia, double cr, double ci) {
    int x = get_global_id(0); // Pixel X coordinate
    int y = get_global_id(1); // Pixel Y coordinate

    if (x >= width || y >= height) return;

    double zr = left + x * xInterval;
    double zi = top + y * yInterval;

    double cr_local = cr, ci_local = ci;
    if (!isJulia) {
        cr_local = zr;
        ci_local = zi;
        zr = 0;
        zi = 0;
    }

    int iteration = 0;
    while (zr * zr + zi * zi <= 4.0 && iteration < maxIterations) {
        double zr2 = zr * zr - zi * zi + cr_local;
        zi = 2.0 * zr * zi + ci_local;
        zr = zr2;
        iteration++;
    }

    output[y * width + x] = (255 * iteration) / maxIterations;
}

Step 3: Launch the OpenCL Kernel

Compile the kernel at runtime or pre-build it. Use OpenCL commands to set up memory and launch the kernel.

Host Code Example:

cl::Context context = ...;   // Create an OpenCL context
cl::Program program = ...;   // Build the OpenCL program
cl::CommandQueue queue(context, device);

cl::Buffer outputBuffer(context, CL_MEM_WRITE_ONLY, sizeof(int) * width * height);

// Set kernel arguments
cl::Kernel kernel(program, "renderFractal");
kernel.setArg(0, width);
kernel.setArg(1, height);
kernel.setArg(2, left);
kernel.setArg(3, top);
kernel.setArg(4, xInterval);
kernel.setArg(5, yInterval);
kernel.setArg(6, maxIterations);
kernel.setArg(7, outputBuffer);
kernel.setArg(8, isJulia);
kernel.setArg(9, cr);
kernel.setArg(10, ci);

// Define global and local work sizes
cl::NDRange globalSize(width, height);
cl::NDRange localSize(16, 16);

// Launch the kernel
queue.enqueueNDRangeKernel(kernel, cl::NullRange, globalSize, localSize);
queue.finish();

// Read back the results
queue.enqueueReadBuffer(outputBuffer, CL_TRUE, 0, sizeof(int) * width * height, output);

Advantages of OpenCL

Cross-Platform: Works on NVIDIA, AMD, and Intel GPUs, as well as CPUs and FPGAs. Fine-Grained Control: Explicit memory management and task synchronization. Portability: Write once, run anywhere.

CUDA vs. OpenCL

Feature #CUDA #OpenCL
Hardware NVIDIA GPUs only Cross-vendor support
Ease of Use Easier (NVIDIA-specific APIs) Steeper learning curve
Performance Highly optimized for NVIDIA Dependent on hardware vendor
Portability Limited to NVIDIA GPUs Runs on multiple platforms

Coloring

  1. Smooth Iteration Coloring

    Method:

    Traditional coloring uses the raw iteration count n. Smooth iteration coloring interpolates fractional values for smoother gradients.

    Formula:

    $ColorValue=n+1−log⁡2(log⁡2(∣Z∣))$

    Result:

    Produces continuous gradients without abrupt color bands. Gives the fractal a more natural and aesthetically pleasing look.

    Implementation:

    QColor smoothColor(int iterations, double magnitude, int maxIterations) {
       if (iterations == maxIterations) return QColor(Qt::black); // Inside the set
       double mu = iterations + 1 - log(log(magnitude)) / log(2.0);
       double t = mu / maxIterations; // Normalize to [0, 1]
       return QColor::fromHsvF(t, 1.0, 1.0); // Smooth gradient
    }
    
  2. Escape-Time Coloring

    Method:

    Map iteration counts to discrete color bands. Use modulo operation to cycle through a color palette. Colors repeat periodically.

    Result:

    Classic “banded” fractal images with distinct layers.

    Implementation:

    QColor escapeTimeColor(int iterations, int maxIterations, const std::vector<QColor>& palette) {
       if (iterations == maxIterations) return QColor(Qt::black); // Inside the set
       return palette[iterations % palette.size()];
    }
    
  3. Orbit Trap Coloring

    Method:

    Tracks the orbit (path of a point under iteration) and colors based on proximity to predefined shapes (e.g., a circle or line). Assign colors when the orbit comes close to the shape.

    Result:

    Creates unique and varied visual patterns.

    Implementation:

    QColor orbitTrapColor(const Complex& z, int iterations, int maxIterations) {
       double distance = std::abs(z - Complex(0.5, 0.5)); // Distance to the trap
       double normalized = std::min(distance, 1.0); // Clamp to [0, 1]
       return QColor::fromRgbF(1.0 - normalized, normalized, 0.5);
    }
    
  4. Distance Estimation Coloring

    Method:

    Colors based on the estimated distance of each point from the fractal boundary. The closer a point is to the boundary, the darker it is.

    Result:

    Smooth and detailed boundaries with a gradient effect.

    Implementation:

    QColor distanceEstimationColor(const Complex& z, int iterations, int maxIterations) {
       double distance = std::abs(z); // Calculate distance
       double normalized = iterations / double(maxIterations);
       return QColor::fromRgbF(normalized, 0.5, 1.0 - normalized);
    }
    
  5. Custom Gradient Palettes

    Method:

    Use pre-designed gradient palettes for unique looks. Map iteration counts to colors in the gradient.

    Result:

    Enables custom, artistic visuals.

    Implementation:

    QColor gradientColor(double value, const std::vector<QColor>& gradient) {
       int index = value * (gradient.size() - 1); // Map to gradient index
       return gradient[index];
    }
    

Sample Coloring Results

  1. Smooth Iteration:

    Continuous gradients with no visible bands.

  2. Escape-Time:

    Vibrant, periodic bands highlighting iteration regions.

  3. Orbit Traps:

    Patterns determined by proximity to a specific shape.

  4. Distance Estimation:

    Smoothly darkens points as they approach the set boundary.

  5. Custom Gradient Palettes:

    Tailored color designs based on artistic choices.

References

Mandelbrot set

Drawing fractals in Qt using threads

Lode's Computer Graphics Tutorial

The Julia set using python

The Mandelbrot set and Julia sets

Understanding Julia and Mandelbrot Sets, Karl Sims

Zoomable Julia Set