From 1756ead72c55aa723dbdffedefacbb6c1b0da94c Mon Sep 17 00:00:00 2001 From: ComboProblem <102884863+ComboProblem@users.noreply.github.com> Date: Wed, 20 Sep 2023 09:42:15 -0700 Subject: [PATCH] option semialgebraic complex complent to retrive inequalities in a reasonable mannner (issue #81) and a tutorial for basic useage of parametric families (issue #78) --- Parametric Families Demo.ipynb | 848 ++++ .../igp/parametric.sage | 9 + demo.ipynb | 3508 +++++++++++++---- 3 files changed, 3657 insertions(+), 708 deletions(-) create mode 100644 Parametric Families Demo.ipynb diff --git a/Parametric Families Demo.ipynb b/Parametric Families Demo.ipynb new file mode 100644 index 000000000..edfe3d5a3 --- /dev/null +++ b/Parametric Families Demo.ipynb @@ -0,0 +1,848 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d678e222", + "metadata": {}, + "source": [ + "# Introduction\n", + "There are two ways to define parametric families for the one-row Gomory-Johnson model: either locally (about a point) or as a parametric family. This tutorial will address how to construct both in the ` cutgeneratingfunctionology` package. This serves as an extension to the standard tutorial. \n", + "\n", + "## Local Families\n", + "\n", + "To define a function locally, we use an instance of `ParametricRealField` to define local variables along with default methods for constructing functions within the one-row Gomory-Johnson model. When creating an instance of the `ParametricRealField`, variable names and a test point must be provided." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "6e363c7e", + "metadata": {}, + "outputs": [], + "source": [ + "import cutgeneratingfunctionology.igp as igp; from cutgeneratingfunctionology.igp import *\n", + "# %display latex #uncomment for nice latex\n", + "K. = ParametricRealField([4/5])" + ] + }, + { + "cell_type": "markdown", + "id": "40296083", + "metadata": {}, + "source": [ + "The software records comparisons of variables within the `ParametricRealField` object. " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "d0130fea", + "metadata": {}, + "outputs": [], + "source": [ + "local_gmic = piecewise_function_from_breakpoints_and_values([0,f,1],[0,1,0])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "f08b076e-0a58-4dd7-bb80-3a378065dfce", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "minimality_test(local_gmic)" + ] + }, + { + "cell_type": "markdown", + "id": "b099080e", + "metadata": {}, + "source": [ + "Access information recorded in the `ParametricRealField` by defining a proof cell. " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "79bba1a9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[f - 1 < 0, -2*f + 1 < 0]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "local_gmic_proof_cell = K.make_proof_cell()\n", + "local_gmic_proof_cell.get_ineqs()" + ] + }, + { + "cell_type": "markdown", + "id": "509355b7", + "metadata": {}, + "source": [ + "We can see that our test point can be used for a proof cell defined by $\\frac{1}{2}2/3 # additional comparisons are recorded in K" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "509e8d6d-595e-4b61-a4cf-b630e71438fe", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[f - 1 < 0, -3*f + 2 < 0]" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "K_is_mutable = K.make_proof_cell()\n", + "K_is_mutable.get_ineqs()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "9076254e-bf4c-41ff-9aaa-b6042fe54623", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[f - 1 < 0, -2*f + 1 < 0]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "local_gmic_proof_cell.get_ineqs()" + ] + }, + { + "cell_type": "markdown", + "id": "b4f6ee5e-0090-4050-99bc-5267e1b20ce3", + "metadata": {}, + "source": [ + "Each proof cell knows what basic semialgebraic set it has been constructed with. " + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "f975f294-2dcc-41ca-af49-a8dbf996d288", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "BasicSemialgebraicSet_veronese(BasicSemialgebraicSet_polyhedral_ppl_NNC_Polyhedron(Constraint_System {-x0+1>0, 2*x0-1>0}, names=[x0]), polynomial_map=[f])" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "local_gmic_proof_cell.bsa" + ] + }, + { + "cell_type": "markdown", + "id": "5f123e1e-49f3-4113-b5f0-de32a1cb74cf", + "metadata": {}, + "source": [ + "Local definitions cannot define more than a single proof cell. To define and compute a proof complex, one needs write code that is compatible as with a given parametrization of functions in the Gomory Johnson one row model. " + ] + }, + { + "cell_type": "markdown", + "id": "26587b11", + "metadata": {}, + "source": [ + "## Parametric Families\n", + "\n", + "The class `ParametricFamily` can, through introspection, deduce properties of an example function to define a general class of functions with similar properties. We can utilize this class to define a parametric family of functions, which is how functions are defined in the Electronic Compendium. The parametric framework is employed to capture families of functions with a fixed set of parameters for their description. Assumptions about the parametric family should be written into the `_construct_function` method. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "8c11ad66", + "metadata": {}, + "outputs": [], + "source": [ + "class gmic_example_family(ParametricFamily):\n", + " \"\"\"Example use example of ParametricFamily\"\"\"\n", + " def _construct_function(self, f=4/5, field=None):\n", + " if not bool(0 < f < 1):\n", + " raise ValueError(\"Bad parameters. Unable to construct the function.\")\n", + " gmi_bkpt = [0,f,1]\n", + " gmi_values = [0,1,0]\n", + " h = piecewise_function_from_breakpoints_and_values(gmi_bkpt, gmi_values, field=field)\n", + " return h" + ] + }, + { + "cell_type": "markdown", + "id": "344f3c0e", + "metadata": {}, + "source": [ + "The only method that needs to be defined for a class that inherits from the `ParametricFamily` is the `_construct_function` method. Once this method is defined, the class can be used to define an abstract function, similar to the example function provided, using the same parameters. It's important to assign a global name to the class within the environment's namespace." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "465eea4e", + "metadata": {}, + "outputs": [], + "source": [ + "parametric_gmic = gmic_example_family()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "5c0535a2", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 08:58:03,893 Rational case.\n", + "INFO: 2023-09-20 08:58:03,895 pi(0) = 0\n", + "INFO: 2023-09-20 08:58:03,896 pi is subadditive.\n", + "INFO: 2023-09-20 08:58:03,897 pi is symmetric.\n", + "INFO: 2023-09-20 08:58:03,897 Thus pi is minimal.\n", + "INFO: 2023-09-20 08:58:03,897 Gomory-Johnson's 2-slope theorem applies. The function is extreme. Continuing anyway because full_certificates=True.\n", + "INFO: 2023-09-20 08:58:03,898 Computing maximal additive faces...\n", + "INFO: 2023-09-20 08:58:03,899 Computing maximal additive faces... done\n", + "INFO: 2023-09-20 08:58:03,902 Completing 0 functional directed moves and 2 covered components...\n", + "INFO: 2023-09-20 08:58:03,902 Completion finished. Found 0 directed moves and 2 covered components.\n", + "INFO: 2023-09-20 08:58:03,903 All intervals are covered (or connected-to-covered). 2 components.\n", + "INFO: 2023-09-20 08:58:03,928 Finite dimensional test: Solution space has dimension 0.\n", + "INFO: 2023-09-20 08:58:03,929 Thus the function is extreme.\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "h = parametric_gmic(1/3)\n", + "extremality_test(h, False)" + ] + }, + { + "cell_type": "markdown", + "id": "38807087", + "metadata": {}, + "source": [ + "Combining a parametric family with `SemialegbraicComplex` allows for computation of proof complexes. To compute a proof complex, one can use either the `bfs_completation` or `shooting_points` methods corresponding to a breath first search or testing random points within the defined parameter space." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "7472366d", + "metadata": {}, + "outputs": [], + "source": [ + "example_clx = SemialgebraicComplex(parametric_gmic, var_name=['f'])\n", + "logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + "logging.disable(logging.WARNING) # Suppress warnings in automatic tests. \n", + "example_clx.bfs_completion(goto_lower_dim=True) " + ] + }, + { + "cell_type": "markdown", + "id": "e3d2b34a", + "metadata": {}, + "source": [ + "The proof complex knows about the proof cells which defines it and the point used to define it. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "0a17a408", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[SemialgebraicComplexComponent(var_value=(127424493/552078001,), region_type=is_extreme, polyhedral, 0 eqs, 2 strict-ins, 0 nonstrict-ins),\n", + " SemialgebraicComplexComponent(var_value=(101/200,), region_type=is_extreme, polyhedral, 0 eqs, 2 strict-ins, 0 nonstrict-ins),\n", + " SemialgebraicComplexComponent(var_value=(-1/100,), region_type=not_constructible, polyhedral, 0 eqs, 1 strict-ins, 0 nonstrict-ins),\n", + " SemialgebraicComplexComponent(var_value=(101/100,), region_type=not_constructible, polyhedral, 0 eqs, 1 strict-ins, 0 nonstrict-ins),\n", + " SemialgebraicComplexComponent(var_value=(1/2,), region_type=is_extreme, polyhedral, 1 eqs, 0 strict-ins, 0 nonstrict-ins),\n", + " SemialgebraicComplexComponent(var_value=(0,), region_type=not_constructible, polyhedral, 1 eqs, 0 strict-ins, 0 nonstrict-ins),\n", + " SemialgebraicComplexComponent(var_value=(1,), region_type=not_constructible, polyhedral, 1 eqs, 0 strict-ins, 0 nonstrict-ins)]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_clx.components" + ] + }, + { + "cell_type": "markdown", + "id": "40877d43", + "metadata": {}, + "source": [ + "Each `SemialgebraicComplexComponent` is a proof cell and data can be accessed similarly to the local case. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "9f10e067", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[2*f - 1 < 0, -f < 0]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "first_found_cell = example_clx.components[0]\n", + "first_found_cell.get_ineqs()" + ] + }, + { + "cell_type": "markdown", + "id": "efcc9d0b", + "metadata": {}, + "source": [ + "We can collect cells of different region types into an single complex. The extreme cells cover $(0,1)$ as expected for the GMIC function. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "b2860d72", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[2*f - 1 < 0, -f < 0]\n", + "[f - 1 < 0, -2*f + 1 < 0]\n", + "[2*f - 1 == 0]\n" + ] + } + ], + "source": [ + "extreme_cells = example_clx.subcomplex_of_cells_with_given_region_types(given_region_types={'is_extreme'})\n", + "for cell in extreme_cells.components:\n", + " print(cell.get_ineqs()) " + ] + }, + { + "cell_type": "markdown", + "id": "12ebeec3-27bf-421b-98bd-a7b1162fa8c5", + "metadata": {}, + "source": [ + "The option `goto_lower_dim` is used to find lower dimensional faces within the proof complex. With this option set to `False` only full dimensional faces of the complex are found. " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "b0f49c99-99ff-4057-8f14-f9c355e93ce9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "no_lower_dim_faces_complex = SemialgebraicComplex(parametric_gmic, var_name=['f'])\n", + "no_lower_dim_faces_complex.bfs_completion(goto_lower_dim=False)\n", + "len(no_lower_dim_faces_complex.components)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "48576feb-e0c8-4566-a91c-cd2414486f2a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(example_clx.components)" + ] + }, + { + "cell_type": "markdown", + "id": "1c0daf3d-f164-4ce8-8e7f-68bd7839fe10", + "metadata": {}, + "source": [ + "We also can organize by region type into it's own subcomplex." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "ccc1d174-a787-409c-a019-336928e0c516", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'not_constructible': SemialgebraicComplex with 4 components,\n", + " 'is_extreme': SemialgebraicComplex with 3 components}" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_clx.subcomplexes_of_cells_with_given_region_types()" + ] + }, + { + "cell_type": "markdown", + "id": "fef143d8", + "metadata": {}, + "source": [ + "2d plotting of a complex is possible with color coding based on region types. An example from Toward Computer Assisted... page 10 using the parametric family `gj_forward_3_slope`. The color coding is as follows:\n", + "- white: not constructible functions\n", + "- yellow: constructible but not minimal\n", + "- green: minimal but not extreme\n", + "- blue: extreme " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "3d08d09e", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acadia/sage/src/sage/plot/contour_plot.py:206: UserWarning: No contour levels were found within the data range.\n", + " CS = subplot.contour(self.xy_data_array, contours, cmap=cmap,\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd0AAAHWCAYAAAAy+lOtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB81UlEQVR4nO29eXRc1Znu/dSg2RpsS55kY3kCBxqMB1ndSQw0BJvM3HQCAVa8Lv7yhXDDdJNFLgQudEKc5PaXENrpwEfSS8Lptvno27k495LBQCe4lcTgCTwkaZvgxIOwJduSrHk4w/fHqX3qVOlU1Rn22Wd6f1ksKXJVna2yrPfs/bzP8yZUVVVBEARBEITnJP1eAEEQBEHEBSq6BEEQBCEIKroEQRAEIQgqugRBEAQhCCq6BEEQBCEIKroEQRAEIQgqugRBEAQhCCq6BEEQBCGIWBRdVVUxMDAAygEhCIIg/CQWRXdwcBD19fUYHBz0eykEQRBEjIlF0SUIgiCIIEBFlyAIgiAEQUWXIAiCIARBRZcQztj530GZGPF7GQTj2A+B86/bf974EP+12KXvCCBJpR93/nXgxL+6u1ah77f/D8CFt9y9tlX6/wBIY/aeM94P9B4Bjj4NHPzvniyLsE6a1wt1d3fzeinusAaqnp4ejI6O+rwaYtZ/PAx0v4bJy/4byhKTfi8nfMjjwNvfAxquAuasd/dakgSc/T/A8Alg6X8BUuXWn3fs/wHStcCS/wKkPLx/VyTg2FNA1Txg4e25f9a7F+jpBJZ+DkhPK/waYz3AO88CZ/4zUL3A2nVlCXj7KaCsHljyfwPHO4DJAWDZF4Ck4Vfn5ABwbAuw4JNA3XKb35xNBt8GTu8AFm8CKmZae44qA7/7uvZ5Ig3IE0C6yrMl2kVRFPxH+acBAI01EtTK2T6vyJzZs/msi3a6hFAUSQLOv46ENAglXef3csKJqgLSsFZ83ZKYBPoPab+Y1ZT15yWTgDIBTFwARDjxpGFAMrlhHvwjIA0CybIiz5WAMz8HVEUroJZJZK47rL3GWDcw2Q+oeb82h09o71+6xsZrO2TkJCCPAEmLN0eA9vfEUCXg6JPm76WPKIoCRVH8XoYQqOgSQpk2ugeJ8XNQU1VIy31+LyfeSBJwZqf2+SW3AGkbRZd53tO1QNqnXyOSBAy9k/k/RYpuQgKG/wyUTwcS1c6vp2RucpKG4iBJQO8+7fPKWc5f2yoDR7WPqUrrz5EyUs7cDwLz/1NgC29coKJLCKVqcL/2ycy1SCEed7aBJTEJ9B/UjmXL59l7Lis8FU3812V5DdB2mGX1QLFdEiuKzR8D0g4VtVQi87FKO6JlJBLa7jORBhI2blqcoEjA+Lnsda0iXdQ+Vs4Cpl2eV3ipt0I0kS667e3tWLduHTZs2OD3UogMqYFDAACl4Wp/FxJ3JAk48wvtc7u7XEDTOwGgYgbfddlByTQU1V1WuJiqMtD9S+3zKotarunrsJuMvN2sMqx9nLEqtxh7QmYNNYvsXWssU6jL6rX3Kafwfpd2vIKJdNHdtGkTOjs7sXPnTr+XQiCr5wKAVLXE59XEHKblOtnlAoCa0QnLfSy6k/3ax5qWwo8ZOQVABWZfDyRd7ERVdpOR17w0fEL7WP8Xzl/bKlKmwNcutfe80Xe1j8lM89SUwuv3jtfGrj0CRLroEsGC9NyA4HaXCwByZndUbqcxiTOjZ7SPhbRUSQK6/rf2+YxWd9dSMl325dNzX1+knjt+XvtY1WzvecMntY/GZjPTHS8dNYuAii4hDNJzA4LbXS6Q3XUVs+l4zeAfi69BHQEm+rSdsOry6Fe/yWjIfk2kngto1wLsnS5IcvZEQM3bUdJRsy9Q0SWEQXpuAHDTsWxkMjM8JOWiG9gNpTqXJSmr5c77kPMGKv31MrtAY4HX9dzVAvRcGDqXbXhs2V9vRaO5l9r0qJkKr5dQ0SWEQHpuQHDTsWyE7Z7sWFd4UqpzOaFq32eqEkhx0J2lzE2G0Yur67lXuH/9UsiyoXPZxvOYR7f6ksKPocIrFCq6hBBIzw0APLRcxniv9jFRxB/rJaU6lwd/r32c9xF33ydjMmO7SWZuMhRFrJ6bkLWPdjuX2Q69am7xx1HhFQYVXUIIpOcGAB5aLoM19YjQMs0o1rksK8C7P9U+r72Mz/Um8m4yVFWsnuu0c5l5dCsaSz+WCq8QqOgSQiA912d47nIlQ0iDX3YP1rmc75sFgMlurdt4RmtuRrIbxi9oH1mBFerPhfPOZd2jazFylQqv51DRJTyH9NwAwHOXm0xmfauKT0WXdS6X5XUuSxJw+v9on8+6hs+1FEUbmABA70zS9dwr+VyjFE46lwGDR9dGwxsVXk+hokt4Dum5PsOrY5nhd+5ysc7lxDgwdgaonO0uZ9lI5azc3OUcf66gGEwnmcuAuUfXCnrhvVkrvP2HAYnDgA2Cii7hPaTn+gyvjmWG37nLxTqXe36tfWz+GL9xg9WZI12Wuyzan5vTuWwnc7mIR9cK6TQw7Qpg3seBc7uA//gWBWhwgIou4Tmk5/oITy2XoecuW5znyptCncuKBFx4XSuGFRxnsrLvk+nHov25eudyi73rsb/q8pnOb0DSaW1GsJwptpRc5RoquoSnkJ7rMzy1XIaeuzy9+OO8olDn8mDmCHbeh9zlLOfDAjFY8RXpzwUMncvL7D2PeXRrFrq7/kRP9nNKrnINFV3CU0jP9REvdrmA/7nLZpnLsgJ0ZRqoeA8fYAPjy6fn6rlmndNe4LRz2apHtxT9h7WPl/1X75ur7ByfhxQquoSnkJ7rI17scgFD7nItv9e0g1nm8uQ5rdlp+tUedFRnGsfKG3L1XJ676WI47Vy249Et+BoS0Pem9nmqmrqaOUBFl/AU0nN9gnfHshE9d9lGBjAvzDqXJQXoekn7fPb17nOW82Gdy+lp4v25gLPMZSB3jq5TErLWtFbTonmeyU7kGiq6hGeQnusjvDuWjfiZu2zauTwKjJ7OdFN7cCOg7+xrxM7PBZxnLgNT5+g6Ybxb+zhjdfZrVHhdEemi297ejnXr1mHDhg1+LyWWkJ7rE15puQw/c5fNOpfP/0b7OP9j/He5ADCROaZFudi8ZQCAw8xlwODRdfGeMD03vxmLCq9jIl10N23ahM7OTuzcudPvpcQS0nN9wistl+Fn7jIbPMA6lxUJOL87YxNy2TBU8JqZG8ZUSqw/FwBkp5nLRo+uw1/zRj3XbLdMhdcRkS66hL+QnusDXu9y/c5dZkembKc5+B/ax3kf9q6xieUuMwuOSD3XaedyqTm6VsjXc82gwmsbKrqEJ5Ce6xNe73L9zl02di4rqsEm5KFnluUuj3RlriVIzwWyGrLdzmUrc3RLoeu5a4o/jgqvLajoEp5Aeq4PeNmxzPA1dzmV27k8flYrLjPW2M8WtkqFIXdZuJ4LYPCY9tFu5zIPj66u51oo3FR4LUNFl/AE0nN9wMuOZYafuct1S7Ody5IEdP1v7euzrvXumqyBaMYa8XquIjnvXHbr0S2l55rhuPCqztYYUqjoEp5Aeq5gvNZyGX7mLrPBA3WXAckJYOwsUDUPgIfWpcpMhnND5khZpJ7LblbtZi4D7j26up67yF73M+14S0JFl+AO6bk+4LWWy/Azd5ltiKouAbp/qX3e/FFvbEKM8szwd2YbEqnnOs1cBtx7dHU9d5X95+aPBaTCmwMVXYI7pOcKRtQuF/A3d3k809BU0aQdfaYqgTKP9dVEJne5NyOXiMpbBpx3LgPO5+gymJ5b7XBYAhsLaHfHG4OTZiq6BHdIzxWMqF0u4G/u8tBx7eNopqOX58zcYsxoFZ+3DLjIXHY5Rzcnb7nG/vMZdNRsChVdgjuk5wpE5C4X8C93OVWjdS5PX539fqc5OHa1izIBNGTsSKLm5zKcZi67naObo+e6LBGWCm/0JwsZoaJLcIX0XAEYx5+J3OUC/uUuN7ZphaDuMkBVgFnXuYs3tIo84o+e6yZz2e0cXbO8ZTfQjjcHKroEV0jPFYgii93lAobcZYE7PgConq/pqe9mpgnNbBNz3bE+g54r0CaVcJG57Naja8efa5WizVVGITf6u17hRXf37t34zGc+gxUrVmDOnDn4+c9/XvI5v/3tb7F+/XosXLgQa9euxdatWwWslHAC6bkCmX6l2F0uYMhdFlx0VQDNHwYmB4DaSwG1QtyF/dBzJYeZy4A7j26OP9eFnmuGaXPVCHILLRVd7oyMjOCKK67AN77xDUuPP3HiBO644w60tbXhlVdewf33349HH30UL730kscrJZxAeq5A+rX3Wtgu18/c5ZFzQPdr2ufzPgikBV2/drH2UbSe66Zz2Y1Hl6eea8aUwvtdQBnJ/nky+kVX8O0qcMMNN+CGG26w/Pgf/ehHmD9/Pp544gkAwKWXXoqDBw/imWeewUc+8hGvlkk4IF/PTckXfF5RhFl4B3Bim9hdbn7usshb9qqZQM+ftE7eRJ2YayqGLuD6y8Vck+G0cxlw59F148+1SjqVKbwqcHoHEkefwqL3NOFP6Q8hDoqn8KJrl/379+Paa3Nj3q677jps374dk5OTKCvzYaYnYUp5v6bnAsDA+WHIKufjqRiQsHCj31h5AakL2s2NWjkb3coYMOHxwgBMV2WwQ92z8qg+6tUWNjcyCTWBmeoE0oOZTt75N4vLfFZV4MIb2ucVs8Vck6F3LjtoWHMzR9etP9cqeuEFEqd3oOb3/w2zL5uAjNsif8Ac+KLb09ODpqbcBoampiZIkoTe3l7Mnj31H8P4+DgmJrK/hQYHBz1fJwFM9BzXP2/qetjHlUSbi0v/K+ozwf+JoXcw59i3hVz3Tws+i0WZz+e8LeaaAID5nwZ690JNliFRJrD4JRLA6BntWFkVeHOfk7lsswS5maOb488VYAnLHDWrFb9BYvwcGv/0FP7Q8HHMLJ/m/bV9JPBFFwASeT94ambSSf7XGVu2bMF3vvMdz9dF5PL/7liP//7xjyM1eT4O/RC+8fOBMdw69yYkzvwCauN7hV3338bKsbH5P6Fs7AyQEHcM+G75HDQDWgZxWbmw6+odxBUzBU9UYpnLDjqX3czRtTI/lzOnZAXzJzSXg9T4PgzIw/Ah1VsogS+6s2bNQk9PT87Xzp8/j3Q6jenTzfNf77vvPnz+85/X///g4CBWrfJQoyAgSQqeef4v8LUtO7BlyzguXBDVXRovxsaAk00/wG1Dz2DVnFX46LwbhV374thFVLz2ItYvWY+/mv9Xwq579dCftaIrjwm7JoDsSD9FEntdN53LbuboWp2fy4lT4xOYf/y7SKgS5Nk3Yt5vXsFLt3xFyLX9JPCq9erVq7Fr166cr7322mtYsWJFQT23oqICtbW1Of8R3rJnzzScO5dAVZWKvr7A38uFEkkCXn3Vv+uPZnyV9RVic5cHxoeEXk+HNY2Jtr656Vx249HV9VyO/twC6AVXHoMy50bM3/tbnI9JYIbwojs8PIwjR47gyJEjAICTJ0/iyJEjOH36NABg8+bNuOeee/THb9y4EadPn8bjjz+OY8eOYfv27Xj++edx9913i146UYT9+zUNaO1aQFEE+hljxOQksH+/f9cfntB2YLXlYm9iBzPXhSowDV+WAWVS3PWMsM7lCgedy049urzyli2QX3CX7N+Ps+PDnl4zSAjfkrz11lv4m7/5G/3/P/744wCAW265BVu2bEF3dze6urr0P1+4cCG2bduGxx9/HB0dHZg9eza+/vWvk10oYBw6pBXaq69WkBWWCF7IMvDKK9rnVVUAfNj8DU5oDYnVZdXCrqkoPgWsKCPZ42XRsM5lJ5Yfpx7dHD3Xu73YyfFxLDj+lF5w/4eyGn8eecWz6wUR4UX3fe97H86ePVvwz7ds2TLla+9973vxyivx+osJE5Kk4HXNwYIlSyRcuEBFlzeTk8CbbwI1NcDMmQDOlXwKd/rH+gEAFSlxer2iKlD9mPc2/GcgkZGvRO6wczqXHTyfeXTtdh8L0HNPjU/kFNxvYy1OjJ337HpBJfCaLhF8SM/1FuMu91Of8nQjUpTeUS13OZ0S93c8Jrp5CtCOWnv3AbIfR54uOpeBrEfX7nM91nPzj5S/jbUYSabxH+f/w5PrBRkquoRrSM/1lokJ4MABoLoamD/fv3WcG9F2YGlBdhIgu7sWSiKh6arSSOnH8sZV5rJDj67H/txCBVeWZOzp2sP9ekGHii7hmoMHjXouwRNZBl5+Wfv81luBlE/3NIqk4PyIdhSYEGjCfnfwXWHX0lEyhU/xYZftpnPZqUc3J2+Z7w1VoYILAEpCwag0isZqB4MZQgwVXcIVkqTgjUxS3pIlgv2MMWBiAnjrLU3L9XOXCwBSxq+qKuI0znf63hF2LZ3hE+KvyXCTuezUo+tR3vLJ8fGCBRcALoxq2extzYLGNAYEKrqEK0jP9Q6jlnvLLf5puQCgJrVCW1tei3RazN+zJEn4Y+8fhVzLcFFNz62YJfa6DDeZy049uvr8XH55y2ZNUyN5u2im5y6evpjbdcMAFV3CFaTnesfEhNaxPG0aME/QIKFCKKomHTTViBzknr2uuGtm9NyaRaUfyxu9czlhP3MZcObR9WB+bqkdLqDJFUzPFR224jdUdAlXHD5Meq4XGLXcT31Ky4b3E3a0PLNKXDIu61xOJQTezDE9t1LgzUX24tqHmhZnnctOPLqc/bn5PlyzggsAckLGqDSKpuomJJR4BbVT0SUcI0kKdu/WPic9ly9B0nIBYELW9MLpVeZ5517AOpdFXlPXcyvniLsmw03nMuBsji5Hf67Vggvk6bkxq0Ix+3YJnpCe6w35Hct+arkMP3KXzwyeAQDUVQgaWs/0XAAQGACi46ZzGTDM0bUxhpCTP9dOwQXiq+cCVHQJFzA9t62N9FyeGHe5zQ5///LGj9zlP/ZpTVQ1omInmZ6bSGtHrqJx07mc49G1eFzLKW/ZStNU7mUlXc+tLYvfMBoquoRjWN7yihWk5/IiiLtcIJu7XFUmYLg5tF/M7/RqdqGypKBdJ9NzZ6wCZB+CMfTOZQfvMbvnLZ9p3aOb48919oNmpWkqHzWh6npuHAnIP2kibOTnLRN8YLvcadOCs8sFsvpqpRMrixMSgKzKqK+od9TI6wim59b/BTA5KOiiGXI6l508P+PRtWP7cenPtXukzGB67trmtcLsZ0Ei0t9xe3s7Ojo6IMs+HBVFHKOeOzhIR8s8kGVg507tc799ufmIzl1mncuXNV4GZ1XIJkY9t3KWNvBAKJnAEaedy048urqea9+fa/dI2QjTc5dMX2L7ulEgQP+s+bNp0yZ0dnZiJ/tNRnDjwIGsP3diItL3bsKYmAAOHtS0XL99ufmwCEhRuctsZ91S3yLkejl6biIFTPSKuS5DysxqdNq5bNej60LPLRbtWAqjP1f0XOagEOmiS3gH5S3zxbjL9TNj2QxJkvRhB6Jyl1nm8qwaQclQRj03kQZEj5xz27ls16Pr0J97csK+hmvE6M/1Y2JjEKCiS9iG9Fz+sF1uENKn8kkiKTx3mWUuTyufJuR6OXquZJhpKwo3ncuAfY+urueutnyJkxPjWPCOsyNlRtz1XICKLuGAvXtryJ/LkXwtN0i7XECbBgOIy102di6nRbSd5Ou5SADKuPfXNeImcxkweHQtvl829dxT4xOuCy5Aei5ARZdwwL59mm+S8pb5YNzlBqljmaFmzgGFWTwMncuqiDPIfD1X9I+0YthZO8pctjlH16ae68QWZEaOnhtDfy6Dii5hG+bPJT3XPUHuWGboucvVYnKXWefy8sblYo4g8/Vc0UMW9MzlRc46l+3O0bXhz3VqCzIjR8+NMQH8J04EGdJz+RJkLZchOneZdS4vrOc3aq4oRj0XANTMz7WoUA63mcv6HN0F1h5v0Z/Ls+ACpOcyqOgStqC8ZX4EXctlsNzlhooGIdcT2rk8Rc8FoExqH9N8Rt2VxG3nsu7RtXjXZkHPdePDLQTpuRpUdAlb0PxcfoRhlwtkc5dFdRIL7VzO13MBQNZuMpAWlPnstnPZjkc3R88173R248MtBOm5WajoErYgPZcPkhSOXS4gNnc5J3MZNqblOCVfzwWyucspQUXXTeYyYM+jm+PPnVpIvSi4AOm5RqjoEpYhPZcfk5PBTZ/KR2jusqFzWYGAG7t8PRfI5i4nBXy/bjOXgaxH10rRLuLP5dWlbAbpuVmo6BKWIT2XD8ZdbtDSp8wQmbtszFz2/JezmZ4LAJOZ49pkubfXB5DtXG5x1rkMZD26Vp7P9Ny8wQheaLhGSM/NQkWXsAzNz+UD2+UGXctliMxdFpq5bKbnAtncZRE50247l+14dI16riG5yqsjZYYsyaTnGqCiS1iG5ue6J0xaLiA+d1lo57KZngtkc5eTAjRlt53Ldubomui5Xh4pM5SEQnquASq6hCVIz+VD2Ha5xtxlEUVXaOeymZ6bk7ss4Nej285lO3N08/Rcr4+UGaTn5kJFl7AE6bnukWXgF7/QPg/DLhcA1KQWw1hbXoukx3FZQjOXC+m5gCF3WcCvR7edy3bm6Br0XK+PlI2QnpsLFV3CEuTPdc/EBHDoUHh2uQCgKJqUIORoUGTmslHPVQ3HyKnMbj5VBeftxBbh0bls1aNr0HNHFAgruJIkkZ6bR6S3LO3t7ejo6IAsy34vJfTk+nOp6NolbB3LDEkVl7sstHPZqOcatVCWu1whYo4v61xe6LxzWffo1hV/HNNzAVS987SQggsAakIlPTePSO90N23ahM7OTuxkv+0IR5Ce6x6jljvXwklgUBCZuyy0c9lMzwWyucsVxpsMj3bdeufyMuevoc/RLRHkwfRcQFjBBUjPNSPSRZfgA+m57pCk8Gm5DJa7XF9hIe3IJcI6lxWliJ6byV122thkB7edy4Bhjm7xTmv11I/1z0UVXID0XDOo6BIlIT3XHZOT4dNyGSJzl4V1LququT8XyOYul3t/k+E+c9no0S0sCr8zNo5EJtJSnb5KWMGlvGVzaNtClIT0XOeEeZcLZHOXq8u8zSHOyVxOeOyPLeTPBbK5y2kBliW3ncsW5uieHB/H4j89Bcz/JJR0Ff7H0GyMJ8X8EFLesjm00yWKQnquO8K8ywUE5i4bM5e9HiJfSM8FsrnLXo/1k2X3ncsl5uga5+HKY2ex8Ff/H4ZE5FlnID3XHCq6RFFIz3VO2NKnzBCVu8w6l5c3Lvf2F3Qxfy5gyF32+iYj46hwk7lcZI5uzgD62R/A/L27cXp8EGPSmLNrOYD0XHOo6BJFIT3XOWFLnzKDRUB6nbvMdtQL6y0kK7mhUN4yY/xC5nEeH3G7zVwGCnp0cwrunBtxyd43cHZcu97Q5JDz69mA9NzCUNElinL4MM3PdUJYfblGJEnShx14HQEprnO5iJ4LGIqux39hPDqXTebo5hfcb8hXo2t8UP9zdnLhNaTnFoaKLlEQSVKwe7f2Oem59girL9eIyNxlYZ3LxfTcnNxlj4uu285lYMoc3fyC+22sxfHMTVMqcxPRM9Tj/Ho2YHpuW3Mb6bl5UNElCkJ6rjOioOUC4nKXczqX4fGxbjE9F4ls7nLS45Mdt53LQM4cXbOCO5JM43C3lrf8ycs/CQA4PXDazaotw/TcxdMXC7lemKCiSxSE5uc6IwpaLgC9i9jzI0Jj57KX3bWyXFzPZV9KVTlvbrKCYthRO85cznp0uycnTQuuJEl486yWt7y0QdOOTw6chCR5e2pFem5xqOgSBaH5ufYJuy/XCDta9jp3WVjncik9V1juMstcXuS8uBt+rmYd32Ia7SipEmRVxqKGRQC0ZjhJkZBIeisVkJ5bHCq6hCnkz3VG2H25RkTlLgvrXC6m5wLaDhTIy132AB6dy8yji8JZyt0jWt7y6nmrkU6ncUndJQAAWfF2AAzpucWhokuYQnqufaK0ywWyucsNFQ2eXufM4BkAHncul/LnAoAqKHeZQ+fywOSo/nmhLOUj3UcAQC+28+vmAwAmDAXbC0jPLQ4VXcIU8ufaJ0q7XEBc7vIf+/7o/XVK+XMBcbnLLjuXf9Q/jqOTSajJMshzP2RacI16bk0mXWv2tNkAstGeXkDzc0tDWxjCFMpbtodxlxtWX24+7JdzVZmLDtsSCOtcLqXnAuJyl110Lv+ofxyf7/x7XLvwWvypuw4b6pdietXU78eo5yYzucxMJugb7cPcad742Gh+bmlop0tMgfRc+xh3uWH15eaj5y6nPYxEFNW5XErPBcTkLuuZy7Ddubw1U3BHpVG8O/Qujg5dQFXavHD3jGh+3NXzVutfqy3Xdp7dQ92mz+EB5S2XJtLvSnt7Ozo6OiDL3jYORA3Sc+0RNS2XwdKLykrManWDkM7lYvNzjYjIXdYzl+11LmsF9ymMSWNYv/hG7Hl3LwAgXeA1mD+X6bkAUJ4qB+CtV5fylksT6Z3upk2b0NnZiZ0sqYCwBOm59oialstgEZApD0fBCelcLjY/18hEJiLRy9xlB53LW/vHcXfn3+sF95rmNv19MwstMdNzgWwqlVdeXVmSSc+1QKSLLuGMXD2XKEZUd7micpeFdC5b0XMBYCzTVexl7rLNzmW2wx2VRrF+8Y24oXktxrSgMDRWN5oXXUzVcwFAVVSUJcs88+oqCYX0XAtQ0SVyID3XHlHd5SaRxKSiWWi8LLpCOpet6LmicpdtdC7nHynf0Kx1KTPLj/Ho2EjP8FQ9FwDS6TQW1Gmzd73w6pKeaw0qukQORj334kX6h1OMqGQsmyEid1lI57IVfy6D5S4nVG/WAljuXC5UcAFgZFLrsp5ba96xZ6bnMphXd1wed7T8YpCeaw0qukQORj1XkiJURTwgKhnLZui5yzUeHhWK6Fy24s8FgFRmN5+qArzSsC1mLhcruABwcVxr+Gqsbpzy3EJ6LoN5dXnP1c3Rc8tJzy0GFV0iB9JzrRHlXS5gyF2u8i4SkXUuX9Z4mYedyxb1XCG5y5kddJHOZWPB3bBkasEFgHMjWuGur5ga4iFDNtVzGcyry3uubo6e6+FBQRSgokvokJ5rnSjvcgExucsXx7QdW0t9i2fXsKTnAmJyl6XM7rJA53J+wb1+3tSCCwDvDmpzdM08umeHzwKYqucy2C6U91xd0nOtQ0WX0CF/rjWivssFsrnLZrspXrDi4Vnnsh09V0TucpHO5ef6JiwVXAA4eVFrxjLz6ObnLefjlVeX9FzrUNEldMifa42o73IBMbnLnncuW9VzATG5y6xzuSK3sG/tH8fdv/6upYIry7Lu0U0kcoXhUnou4I1Xl/y59qCiS+iQnluaOOxygWzucnVZtSevL6Rz2aqeC4jJXWady8nssbCdHa6RxupGpPJ++ErpuYDm1eU9V5f8ufagoksAID3XKnHY5QICcpdFdC5b1XMB73OXZWVK5/JzfROWd7iMYh5dpueumbem4PNz5uqqfLy6pOfag4ouAYD0XCtENX3KDNbdmraw63KC55nLdvRcwPvc5UTmRjbTueyk4ALFPbpMz2UBGIXQ5+rKfObqkp5rD1+KbkdHB1pbW7Fw4UKsX78er7MtVgF+/OMf4/rrr8eiRYtw1VVX4f7770dvL9+W97hDem5popo+ZQaLgPSq6HqeuWxHzwW8z102ZC47LbhAYY+uFT2Xoc/VHXc/V5f0XPsIL7o7duzAY489hgceeACvvPIK2tracPvtt+P0afNuujfeeAP33nsvbr/9drz22mv44Q9/iLfeegtf+tKXBK882pCeW5wozssthCRJuhfUqwhIzzOX7ei5gPe5y5nO5eekSxwXXKCwR9eKnsvQvbpj7jcupOfaR3jRffbZZ3HbbbfhjjvuwKWXXoonnngCzc3N2Lp1q+nj9+/fjwULFuCzn/0sFi5ciLa2NnzmM5/BwYMHBa88upCeW5oozsstRBJJPRzDKzzvXLaj54rIXR45iY6GW3D33m2OCy5Q2KPbPazNyC3kzzXCc64u03PbmttIz7WI0KI7MTGBQ4cO4brrrsv5+rXXXou9e/eaPqe1tRVnzpzBq6++ClVVce7cObz00kv4wAc+IGDF8YD03OLEScsFsrnLdRV1noz187xz2a6ei0Q2dznpzUnPk5NL8PkDOzAmjeGmJesdFVygsEe3WN5yPjy9ukzPXTx9sevXigtCf8P29vZClmU0NeUeRTQ1NeHcuXOmz2ltbcX3v/993HXXXRgfH4ckSdiwYQM2b95c8Drj4+OYmMg2CQwOutcuogzpucWJk5YLZHOXG6umZvtyIa9zOcn73t+unssekqqyNVjeKu29Y3ho/3ZMKpP44JINuGZeK0Yc3MwoimI6R9eOngtkvbqnBk5BkiTHO1TSc53hSyNVvqlbVdUpX2McPXoUjz76KL74xS/i5ZdfxvPPP4+TJ0/iy1/+csHX37JlC5YtW6b/t2rVKq7rjxqHD5OeW4i47XIBQ+5ytTeRiJ5nLtvVcz3MXd7aP46f97yjj0l837y1GHN4eqCq2glE/hxdO3oukDtXN5lwXgJIz3WG0KI7Y8YMpFIp9PTk5n6eP38ejY3md9Xf+9730Nraii984Qu4/PLL8dd//df41re+heeffx7d3eaaxH333Ye3335b/+/AgQPcv5eoIEkKdu/WPic9dypx2+UC3ucus92aZ5nLdvRcwLPcZZalXFuh7QLXL1mPSRdjEgt5dEvlLedjnKsrqc7/zZM/1xlCi255eTmuuuoq7Nq1K+fru3btQmtrq+lzRkdHp8zzZEks7M4vn4qKCtTW1ub8R5hDem5h4pI+lY/Xucuedi7b1nPhSe6ycXgB89Y2107NXLZDIY9uqbxlM3jM1SV/rjOEHy/fdddd2L59O7Zv345jx47hscceQ1dXFzZu3AgA2Lx5M+655x798TfeeCN+9rOf4bnnnsOJEyewZ88ePPLII1i5ciXmzJkjevmRg/TcwsQlfSoflrvs1VxUTzuX7eq5APfc5fx5uKxhaXqlu5MDM4+uXT2X4XauLs3PdY7wrc3NN9+Mvr4+PPnkk+jp6cHy5cuxbds2LFigHXd0d3ejq6tLf/ynP/1pDA0Nob29HV/96ldRV1eH97///Xj00UdFLz2S5Ppzqegy4rrLBbK5y1VlU0fHucXzzmW7ei7ANXfZbDzft/f/AID5KD47mHl07eq5DCYd9I32Ye40+x44mp/rHF/OE++8807ceeedpn+2ZcuWKV/77Gc/i89+9rNeLyt25PtzL1yIUWUpQVx3uYDHuctedy7b1XMBbrnLZgV3QNGKZQIJ18XJzKNrV89lGL26lzddbnstpOc6h7KXYwzpuebEeZcLeJu77GnmshM9F+CSu1xoAD0b5tDS0OL6+zXz6DrRc4GsV/fUwClHayE91zlUdGMM6bnmxHmXC3ibu3xxTCtwnmQuO9FzAWD8Qub5zo67CxVcABie1I67l85Y6ui1GcY5uqyx1KmeC2S9uqcHTtueq6tICvlzXUBFN8YwPXfFCvLnMuK+y/U6d5kdkXrSuexEzwWyRdeBf7ZYwQWyNzDNde46lxlGj65TPRfIztWdVCZte3XlhEz+XBdQ0Y0pRj136VLy5zLivsv1OnfZ085lJ3quMXdZtVd0SxVcADhxUVvTjEp3diQzj65TPRfInatr16tLeq47qOjGlL17a0jPzSOO6VP5sNzl2vJa7rnLnnYuO9VzgWzucsJ6p5OVggsAxy4cA+C+c9nMo+tUz2U49eqSnusOKroxZd++agCk5xqJY/pUPix32ZOjw7zOZb6v7VDPTWWO0FPVlo+XrRZcdlTPo3M536PrRs9l6F7dCeteXdJz3UNFN6bQ/NxcaJerwY6WZ1TzS2dieJq57FTP1XOXzW4yplZKqwUXANfO5XyPrhs9l+Fkri7pue6hohtDaH7uVGiXq8Fyl2dU8S+6rPt2UcMi7q/tSM8FbOUu2ym4AL/OZWCqR9eNnstwMleX5ue6h4puDCF/bi60y83CcpcbKhq4vzbLXOa+S3Kj5+q5y8UjGu0WXCDbucy0Uzfke3Td6rmAs7m6ND/XPVR0Ywj5c3OhXW4WtjvzorvYs85lo56r2ryJ1HOXGwo+ZGvNjbYLLpDtXHabuZzv0eWh5wJT5+qWXAfNz+UCFd0YQnpuFtrl5jI47k3usqedy0Y91+5fYInc5efqP4XPv/mS7YIL8OtcZjCPLg89F8idq5tIlvZk0/xcPlDRjRmk5+ZCu9xcPMtd9rJz2ameCxTNXd4xKOELB3/qqOAaQ0bcdi7ne3R56LlA7lxdWZVLPp78uXyI9DvX3t6Ojo4OyHLpH6i4QHpulrinT5mh5y7b6QC2gGedy270XKBg7vLW/nH84x9/g5HJEZQly2wVXCDbubyoYZHr7zffo8tDz2XMr5uP4/3HMS6N6xpvIcify4dI73Q3bdqEzs5O7GS/WQnScw3EPX3KDK9yl9kOuqW+hevrOvbnMiYydhlD7vJzfRP4fOdTume5przGVsEF+HYuGz26vPRchtW5uuTP5Uekiy4xFdJzNWiXO5Wc3OUE39xlzzKXnfpzGWPaTQYr2M/1TeDuX38XY9JYzrB4u/DMXDZ6dHnpuQzjXN1ikD+XH1R0YwTpuVlolzsVY+4y72EH7/RpTVTcO5fd6LnG3GWkcgruhiU34upZVwIAVNW+KHtyQLP4uM1cBnI9urz0XAbz6p4dOlv0caTn8oOKboww6rkXL8b3Hw7tcs1REtrpR215rT7JhgeedS671XOR0HOXnxuYzCm4189bC8XFbv/o+aMA+HQuGz26PPVcwLpXl/RcflDRjRFGPVeS4ltpaJdrjppps+V+hOhV57JbPTfzlOfqP4W7f23fh1sIWZa5dS4bPboAuOq5gDWvLum5fKGiGyNIz6VdbjHY0fLM6tKRiHbwrHPZrZ6rKvi7hv+M/2v/jzEmjeGmJetdF1xAy0UGtKYxXt/vzKqZkCBx1XOBXK9uobm6pOfyhYpuTDDquYsXx1fPpV1uYVjuMmuu4YVnnctu9FwA/zqo4OF9P4KiKvjgkg3463mtrgsuAAxPaDcDy2Yuc/1azKO7sH4huoe1jOQ189a4fl2G0atbaK4u6bl8oaIbE4x67sBAPP/hUPpUcVjuMptkwwuWucy1c9mlnvuj/nH8sv+8bgu6bt4aLgUX4Nu5bPToMj2XFUlelJqrS3ouX6joxoQDB0jPpfSp4rAdGu8OY08yl13ouT/qH8fnO/8eo7K2s/vk5Z/kVnABvp3LzKM7o2oGdz2XMWfaHADmc3VJz+UPFd2YEHc9l3a5pRmc0CIRq8uqub2msXM5zTMAz6Geu7V/HHd1PoVRaVQ/Tp9Wxvcmg2fnMmvIqi2v5a7nMhqqGgCYz9UlPZc/VHRjgCQp2L1b+zyu/lza5ZbGk9xlQ+ey6raV14gDPdc4nm/94hv143TeNxm8OpeBrEeX3RDx1HMZbAdrNleX9Fz+UNGNAXv31sTan0u7XGvoucscj1o96Vx2oOfmF9wbmtfi4ph2dMvzJoN5nXlkLgNZj+7vz/0eAH89FwDK04W9uqTn8oeKbgzYt0+7k4+rnku7XGt4kbvsSeeyzfm5W/vHcXfn3+cU3JFkWt/FlSX5BXYwXZxH5jLz6M6qmYW3zr4FgL+eCxT26pKe6w1UdGPA4cPx1XNpl2uNnNxljhGQnnQu25ify3a4o9JoTsEFskenKY4/FDw7lxnXL7reMz0X0Ly66WR6ylxd0nO9gYpuxIm7nku7XGsYc5d54knnskU91+xImRVcSZJwbjhzk6Hyu8ng2bnMPLpsJ+qFngtoXl0WKykr2TGopOd6AxXdiBPn+bmUPmUdNal1/dSW1yKV5PNGeZK5bFHPLVZwAW03r/tSOfZ38excZh5dpqteUs8nb9mMBfWaVmz06pKe6w1UdCOO0Z8bt/m5lD5lHUXRpIemGo5HiV5kLlvw5xoL7oYlUwsuAP03X3VZNbddHO/O5YvjFzGnZo7uz+VRyAsxuyYzVzfj1SU91zsiXXTb29uxbt06bNiwwe+l+MbBg/HUc2mXaw8WATizil/usiedyyX8ufkFt1CWMkui4qlXshsLXp3L50bO4bpF10FRFSxuWMztBMIMFv3JvLqk53pHpIvupk2b0NnZiZ3st2/MiPP8XNrl2sOL3GVPOpeL6LlWCy6QHe7gZlD9lKVN8utcBjSPbjpzY7Fq3iour1kIprkzry7pud5B72aEMfpz46TnUseyfbzIXebeuazIBfVcOwUXACaVSQDA9Ep+Nxm8O5dPXjypF92F9Qu5vGYhKpIVALJeXdJzvSPSO924Y/TnxknPpY5l+zB/aW05P/2Od+dyoqbZ1J9rt+ACwOhk5iajkt9NxomL2i6cR+eyLMuoLqvGW91vAfBWzwWAZFIrBacGTkGWZNJzPYSKboRhecsrV8ZHz6VdrjN45y7ndC4nOHUuN2SOlA3+XCcFF8h2BvO0Mh27cAwAvwJ57cJrNT13urd6LpA7V1eCRHquh1DRjShxnZ9Lu1xnMP21IlXB5wWNncsqp5u+CS22kem5+bYgOwPo2U1GTRmfhCfencsTyoQ+VH7NXG/8uUaMc3VZHCjpud5ARTeixNGfS7tc57BftGUpPrtS1rm8vHE5v1/cvfu1j5WzSvpwS8E7d5l35vLI5IiuqzIPrdewubpHL2heY9JzvYGKbkTZvz9+/lza5TqHNQHxOsZkRY1bA9CMNbqeu/UiXBVcANxzl3lmLgOaR1f35ya91XMZc6bNQVWqivRcj6GiG1HiNj/XuMu99Vba5drBi9zlrsEuABw7l9mRcv3N+Pyv3RVcgH/uMvfMZVXzEl8681Kk0mJ+mBuqGrB+6XqMSqNorG5EksqDJ9C7GkHi6M817nLnzvV7NeEimeCfu/xOn9ZExa1RafIitjZ8Ep9/86XiSVMWMOYupwqkWtmFZ+cyoOnhALByzkour2eF2vJa3ULV1tyGZJrKgxfQuxpB4qbnkpbrDjZcnlfuMu/M5UQC2DqUyim4dpqm8kkiqWcMKzKfkyDenct/OP8HAMDcaeLuICuSFfjzxT8DABZPXyzsunEj+r+RY0jc9FzSct3B4gu5WUTyMpfdHlOWyxLuPbiTS8EFssMdeOUus+P5BBJcOpfHx8Zx9ZyrsXj6YlSn+Vi4rJBMJDGrehZuaLmB9FwPoZ1uBImTnku7XPewo+UZ1XyORnlnLv9kWLP4VKYrce28NlcFF+Cfu8xuWloaWrh8v5OJSfzs7Z/h4thFrrONSyErMv7l9/+Cf/vzvyGREHfduEFFN2LETc+lXa57WO7yjCo+RZd35vIfB08B0HKSx3kcfyt8hzvwzlx+49030D3cjVf/9KpQn2zfeJ/+ucpz3iGRAxXdiBEnPZc6lvnAcpcbKhq4vB7vzOULIxe4vA6D5S7zusng3bn865O/5vI6dmH+XCB3ri7BFyq6ESNO83OpY5kPzGPKq9OYZ+YytzQrA7xzl3l2LrO5xgDwkUs/4vr1LF9XUvBG1xv6/2eJXQR/qOhGjLjouaTl8mNgYgAAUFXmvvOWd+cyuyHgCctd5jXcgWfn8oQyoX++pEFcIpQMWX9fgGy4CcEfKroRQpIU7N6tfR51PZe0XH5wjUTM61x2C9tF8oTncAfemcs9wz365zxugqxyYSz3CP/s0Flh144bkS667e3tWLduHTZs2OD3UoQQFz2Xdrl8YbnLbHarG3h2LkuShL3v7nW9pnx43mSwzOWWej6dy0d6juif8wrusALLef7opR8FAJy6eErYteNGpIvupk2b0NnZiZ07d/q9FCHExZ9Lu1y+sEagdMp90eDZuZxIJHDy4knXr5NP71hmuAOH3GV2/L1s5jLXr5V/k5FQxdh2FEnR85avaLoCgDZXV5KifVrmF5EuunHj8OHo67m0y+UL79zldwffBcCnc3lE0jRGNuKOF/pwBw4/POdH+XUuy5D1zxurG4VlLsuQ9bzlFFJIJ9OYVCaRSJJX1wuo6EaEuOi5tMvlizF3mUfR5Zm5zCIJeUYh8s5dZjtxHp3L3cPd+ufcpjNZgOm5bc1tOXN1jZ3UBD+o6EaEOOi5tMvlj5rI5i4nk+5+HfDsXFYUBfvf1ebnshB+HiSQ4Jq7fPS85m3l0bl8uOew/vmcaXNcv55VmJ7L8pbZXF3y6noDFd2IEAc9l3a5/GG7GS6RiB50LqeTaVSkK9yvjZH5jccjd5ln57Isy3jzzJv6/2+sbnT3glavK8m6nltXVgcgW/AHJ8mr6wVUdCNC1P25kgSwfjhKn+KHpPLLXebZucyiFVfNXcU1B5hn7jLrXF7UsMh9AVclfZwfANRX8AnuKIWSUDAqjea8H+xkoX+0X8ga4gYV3QgQh7zlyUng4EFKn+INz9xlZsXh0bnM9Ny/aPoL169lhOnXPHaSrHOZR+ayUc8F+I0ILMWFUU3PXdu8Vr9xqK3QQkPODJ0Rsoa4QUU3AuzdWxNpPde4yyUtly88c5d5dS5LkoR97+7j8lr5sNxlHjoxz8xlo54L8PFMW4HpuUumZ9OvypPlAICugS4ha4gbVHQjwP79WrJOVPVc4y6XtFy+8Mxd5pW5zPy56WQaKfD9eeaZu3xygE/ncr6eKwqjP9c4P5cVfPLqegMV3Qhw8GB09VzqWPYWFonoNnKQZ+fysJTVc3mPtmP5wjxuMnh1LufruY3VjUJG+skJeYqeC2i6d1myDJPKJHePNEFFN/QY9dzFi6N3V0ody97CEqRcRyJy7Fxmecu89Vwge5NRU1bj6nV4di4zPZcdeV9Sd4m7F7SImZ4LAOl0WrcNSYje7xS/oaIbcoz+3IGBaOm5tMv1Hj13OenuZ4d1Li9vXO5ql+alngvwy13m2bnM9NxL6rViO7dWTKdgvj/XCCu6rNGO4IcvRbejowOtra1YuHAh1q9fj9fZVq0A4+Pj+OY3v4nVq1fjkksuQVtbG7Zv3y5otcHGOD9XkqJVlWiX6z167rLLost2zG6TlLzUc4Hs7o41CzmFV+eyJEm6njuvVvshF+HRlSRpij/XiO7Vpbm63BG+NdqxYwcee+wxfOtb30Jrayv+6Z/+Cbfffjv+/d//HfPnzzd9zuc+9zmcO3cO3/3ud9HS0oLz589DlmXTx8aNXH9udIou7XK9h2fu8plBzV7idnfqpZ4LZItuMuVuv8Grc1mGDFmV0VLfAjVzTi3Co6tCNdVzGeyou2+0j2sMJ+FD0X322Wdx22234Y477gAAPPHEE3jttdewdetWPPLII1Me/8tf/hK7d+/GG2+8genTM5rHJWI0j6CTn7d84UJ0KhPtcr0niWzuslt4dS57qedKkqTPq3Wbu8yrc5npuavnrcbbvW8DEOPRZXnL+Xoug3l1zw6dxeVNl3u+njgh9Hh5YmIChw4dwnXXXZfz9WuvvRZ795rPzdy5cydWrFiB73//+7j66qvx3ve+F3/7t3+L0dFRASsONkY99+LF6Oi5tMsVg5rM5i6nks7fZF6dy17ruUkkdY3Sbe4yr85lpucurF+IE/3aDYcIj66ZP9dIeYq8ul4h9Dd1b28vZFlGU1PukUZTUxPOnTtn+pyTJ09iz549qKioQHt7O3p7e/HQQw+hv78fTz31lOlzxsfHMTGRbQAYHIymLhFVPZd2uWLQc5drXEYi5nUuJx3eyxv1XC8KD7vJcJu7zKtz2ajnVqYrcXH8ovMXs4Exb9nozzWSzpSGkwMnIUmSEAtTXPDlnczPUlVVtWC+qqIoSCQSePrpp1FXpwn+X/3qV/HZz34W3/zmN1FVNfVOc8uWLfjOd77Df+EBI4p6Lu1yxcFyl2dWzXT1Orw6l416Lo9Zt/nwyl1mlii3nctGPZdp6iI8ugqm5i1PeYyqIJ1MQ1Ik8upyRui7OWPGDKRSKfT09OR8/fz582hsNO/YmzVrFubMmaMXXABYtmwZVFXFmTPm2aD33Xcf3n77bf2/AwcO8PsmAkJU5+fSLlcc45I2um16lbtIRGbDcdu57KWeC2Rzl93eZLBhDG47l416LounFOHRLaXnAsiZq0teXb4ILbrl5eW46qqrsGvXrpyv79q1C62trabPWbt2Lbq7uzE8PKx/7fjx40gmk5hbIPm+oqICtbW1Of9FjSjOz6WMZbGwHarbblkemcte67lANnfZ7XAHXp3LRj2XJWWJ8OiW0nMZrOiSV5cvws8N7rrrLmzfvh3bt2/HsWPH8Nhjj6GrqwsbN24EAGzevBn33HOP/vhPfOITmD59Ou6//34cPXoUu3fvxte+9jXcdtttpkfLccGo50Ylb5kylsXCvKa15e5uSnl0LnvtzwX45S7z6Fw26rlV6Sr0j/cD8N6jWyhv2YzZ02YDIK8ub4RvkW6++Wb09fXhySefRE9PD5YvX45t27ZhwQLtrqq7uxtdXdmOuZqaGrzwwgt45JFHcNNNN2H69On46Ec/ioceekj00gNF1PRcmpcrHh65y7w6l7325wLZ3GW3Nxk8OpeNem46lcb5YW337LVHt1Deshnk1fUGX84l77zzTtx5552mf7Zly5YpX1u2bBn+5V/+xetlhYYo+nNpXq54uOQuc+pc9lrPBbI3GdVl1Y5fg1fnslHPBYB3h7Qjeq89uoXyls1gXt3uoW7y6nKE2tJCSNT8uaTl+gOP3GUencsi9FyAT+6ymtAqrdvOZaOeCwAnL2pH1l57dK3quUA2KvP0wGlP1xQ3qOiGkP37o+XPJS3XH3jkLvPoXPban8tgu7yypPNj8KGJIQDuOpfz9VxZlvVTh0LWSR5Y8ecaYYEpzKtL8IGKbgg5fDg683PJl+sPkiTpRddN7jKPzmWv/bkMVnTdXINH53K+nssylxurGz39/pVEaX+uEVVRda9uIundzUDcoKIbMqLmzyVfrj8kk0ndQuOm6PLoXBah50qShHPDmhbrJneZrdVN5zLTc9c0rwEAYR5dO3oukOvVlVUaMMMLKrohI0r+XNJy/YPtrmrLa5FMOvs1wKNzWZSem0QS47IWBuImd/nYhWMA3DU86fNzM0VWlEfXjp7LYEWXBakQ7qGiGzKYntvaGn5/Lmm5/sElEjGvc9nRSwjSc1nuclW6ylXD17mRc9rJgMPO5Xw9F4CeueylR9eunstgXt2hySFP1hVHqOiGDKbnrlwZbj2XtFx/YZGIM6qdH5OyzuXLGi9zXMiYnrt67mpv9czMTYab3TS7sWhpaHH8/TI9d1HDIqRT2mswC5KXHl27ei6DRYT2jfZ5saxYQkU3RERJzyUt119YtJ+bSETWcdtS3+L4NZhGekXTFY5fwwo8cpd5ZC7n+3OB7Pg8Lz26dvVcBgsSOTt01pN1xREquiEiKnou7XL9Z1TKRCK62F2dGdQGjjjdPYrScwE+ucs8Opfz9Vwg69EtSzm3MpXCiZ4LZL26NFeXH1R0Q4TRnxtmPZd2uf7Ddm1uIhHddi6LyFtm8Mhddtu5bKbnKoqia7qq4iLiqgg5eq7Nv2/y6vKHim6IiII/l3a5wWBw3F3uMo/OZRF5ywzWIezG2uS2cznfnwtos8QBb+fo5ui5Nus6eXX5Q0U3JERFz6VdbjBwnbvMoXNZhD+XwXKXa8pqHD2fR+dyvj8XACYUTVv30qPrVM8FNK8uWxt5dfkQ6aLb3t6OdevWYcOGDX4vxTV799aEXs8lX25w0HOXHdp03HYui9RzAfe5yzw6l830XBEeXad6LmN+3XwA5NXlRaSL7qZNm9DZ2Ymd7Dd9iNm3T5uMEmY9l3y5wUHPXU45KyBuO5dF6rlAdrfHGoPs4rZz2ajn1qSzu22v5+hKkuTIn2uEvLp8iXTRjRK583PDB83LDQ48cpfdZi6L1HOBbNFNppz9ynPbuWzUc41rYK/rlUdXherIn2uEvLp8oaIbAiRJweuva5+HVc+lebnBIQn3ucvv9GlNVE4bk0TquTxyl912Lpv5c4HszYtXHt0LY871XAbreO4e6ua2rjhDRTcEGPXcMM7PpY7lYMEiEZ3mLrvtXBat5yaQcJ27fPTCUQDOi2P+/FyG13N03eq5AFCeorm6PKGiGwL278/quWGcn0sdy8HCde6yy85l0Xou+y1XXVbtaLfXWN2I8yPnHXcuF9JzFUXRtXEv4KHnAtnTAfLq8oGKbgg4eDC8ei7tcoOHHolY7SwS0W3nsmg91+1NxtVzrgbgvHNZUiU9b9mo57J1zaya6cn7oCbc67mA5tUtS5aRV5cTVHQDTtj1XNrlBg+Wu8waZOzitnNZpJ4LuM9drquoA+C8c7lnpAeAdpNhhOnq+UfOvHDjzzVCc3X5QkU34ITZn0u+3GDiNnfZTeayaD0XyBY3pzcZzEvrtHO5kJ7rtUeXh57LIK8uP6joBhyjnhs2fy75coPJ8IR2vOu089hN5rKo+blGWO5yQ2WDo+ezBiInncuF9FzA2zm6vPRcBnl1+UFFN+CEVc8lLTe4sEjE6rJq289127ls1HO9nJ9rxGnusprpmnKTuWycn5vvEfZyji4vPZdBXl1+UNENMGHWc0nLDS6ucpdddi6L1nMBd7nLS6YvcZW5XMifC3jr0eWl5zLIq8sPKroBxjg/N0z+XNrlBhs9dzlp/2fKTeeyH3ou4C532W3nslneMsNLjy5PPRcgry5PqOgGmAMHsvNzw+TPpV1usNFzlx0UXTedy8L9uRnYrq8safM4XHXXuWw2P5dh9Og6CSgpRs78XA56LkBeXZ5Q0Q0wYcxbpl1usGEj6gBnEZBuOpdF+3MZrOg60ZCZHsy6d+1gNj+XYZyjy7vo5szP5YTRq5tMUNlwA717ASWs83NplxtskkjqvlUnRddN5zLTc6+cdaXt5zrFbe4yOwKeUWW/c9lsfi7Dyzm67CajrbmN282N0asrITy/j4IIFd2AYtRzw+LPpV1u8HGTu+ymc9mo5/LcgZXCmLusyvY6oRRFwR/O/wEAUJmyrwcX03O99OgyPXfx9MVcX5ft9lm4CuEMKroBZf/+rJ4bFn8u7XKDj6K4iER00bnsl55rzF1OpW1eV81q2HaPVIvpuYB3c3S90HMZzKvLusEJZ4RjC+WQ9vZ2dHR0QJbDF112+LBRzw1+0TXucmlebnCRVOe5y246l/3Sc93kLrNj1Nk1s22fChTTcwHv5uh6oecymFe3d7QXc6fRfE6nRHqnu2nTJnR2dmInyyIMCWHUc427XJqXG1zc5C4z642TzmU//LmAu9xl/VjagUG3mD8X8M6j64WeyyCvLh8iXXTDStjm55KWGx7c5C53DXYBsN+57Jc/F8jmLjtphOof7QcAyIr9k7JCecsMrzy6Xum5QNar2zXQxf214wQV3QCyb1+45ueSlhseWO4y27XY4Z0+rYnKbueyb3ousrnL9ZX2bzLOj2pHwHZ3usXylgFAlmVdK04k+I3KUyTFMz0XIK8uL6joBpAw+XNplxsuWBNMVZm9Y003nct+6bmA89xlABgYHwCQ9dRaxajn5uctG2msbuSaPy0nZM/0XEDz6qaTaZqr6xIqugEjbHnLtMsNF45zl110Lvul5wLOc5fdNF+W0nO98uh6qecCmleXrdnJkTuhQUU3YIRJzzXOy6WO5XDgNHfZaeeyn3ou4Dx3WYbzolJKz/XKo+ulnsvQvboKeXWdQkU3YBjn5wZdzzXOy6WO5XDgNHfZaeayn3ou4Dx3mWnfgD1Nt5SeC3jj0eU9P7cQ5NV1DxXdgBGW+bnkyw0fbnKXnWYu+6nnAs5zl9nNiV2Kzc/VX3uYv0eX9/zcQtBcXfdQ0Q0QYdJzyZcbPtzkLjvNXPZTz3WTu3xy4KSjazI9d9XcVQUfw6xXPD26Xuu5DPLquoeKboAIS94y7XLDidPcZaedy37rucbcZUW2d3J09PxRPc3KDqX0XAA4NXAKAF+Prgg9F6C5ujygohsgwpK3TLvccOI4EtFh57Lfeq4xd9nO7k+WZf0Y3g6l8paB3Dm6vDy6XuYt50NeXfdQ0Q0QLG955crg6rnGjmXy5YYLdrQ8o9peOhPrXF7euNxW8fJbz3V6k2HXEsUw6rlmectA7hxdXh5dBd7lLedDXl33UNENCMa85cWLg3sHaexYJl9uuGC5y3ZziNnOrNiRqRl+6rmA89zloYkh7Xk2h0KU8ucC3nh0L4xpeu7a5rWe39yQV9c9VHQDgtGfG1Q9l9Knwo3T3GUWzm9Hl/VbzwWc5y6z+MfGKnuWnmLzcxleeHSZnrtk+hJur1kM5tVlejlhDyq6AcGYtxxUPZfSp8IN857a7UB2krls1HN5h/pbxWnuMhtGUFthXR+1oucCwMVxLayDl0c3x5/rIE/bCcyrOzQ5JOR6UYOKbkAIet4y7XLDj5PcZaedy0Y9l2e+sB1GJG1XabcYHT1/FABQna62/BxJlUrquQD0Bi1eHt0cf679CYSOIK+uO6joBoAw+HNplxt+HOUuO+xcZnrulbOutLNErgyOazcZ1WU2iqchQCSVtH6z0DPSA6C4ngtkx+Lx8ugyf64IPZdBXl13BFM85ER7ezs6OjpchZeLIOh6Lu1yo4GT3GUnmctGPVdER20hnOQuqwltu7ioYZEtS48VPRfgP0dXtJ4LZL26zG9M2CPSO91Nmzahs7MTO5nHJaAY85aDqOfSLjcaOMldZoXLTuay7/7cDE5yl1nn8tIZSy0/x6qeK8uyruny8Ojm+HMF6blA1qt7auAUeXUdEOmiGxaCnLdMu9xoIEmSXnTtREA66Vxmeu7quat98ecynOQus87l5rpmy89hem5LfUtRPZfBy6Ob488VpOcCmle3LFlGXl2HUNH1maDrubTLjQZJJHULjZ2i6yRzmem5VzRdYWOFfHGau8yOf2dUWrcZMT13TfOaoo/j7dEV6c81kk6nsaBuAQBN7yfsQUXXZ4Kct0zpU9HBSe6ysXM5bbH9Iwj+XEC7yWA+UlW2vg1knct2Gp2s6rm8Pbp+6LkMfa6uTHN17UJF12eCnLdM6VPRQVEcRCIaOpetzpQNgj8XyN5kVJdVI5W29u/K2Lls9bjWyvxcBk+Prl96LkOfqztOc3XtQkXXZ1jectD0XNJyo4WkZiIRbUQbOslcDoI/F3CWu8wsUS31LZa/X5a33FLfUnB+LoOnR1dJ+KPnMphXt3esV/zFQw4VXR8x5i0HTc8lLTdasGNA9svSCqxz2U7mst95ywwnucvDk9oNw7KZyyw/x0reMoM1pfHw6PrhzzXCdtc9Qz3Crx12qOj6SFD1XNrlRg8nuct2O5eDoucCznKXnXQuW5mfy+Dp0fVTzwXIq+sGKro+cuCAdsfb2hosPZd2udHDSe6y3c7loPhzAWe5yyf6tV16fucyG8eXjx09V5ZlbnN0/dZzAfLquoGKro8wf26Q5udSx3I0YbnLViMRnWQu+z0/1wjrFLZzk3HswjEA1o9/jfNzS+m5DB4eXb/1XIDm6rqBiq5PBNWfSx3L0cR27rKDzOWg6LlA9iajpqz4DpShKIrtzmWm566au6rkY3l6dP3WcwGaq+sGKro+EcS8ZaOWe+uttMuNEnZzl+1mLgdJzwXs5y6zkIdFDYssFzI7ei5Pj67fei5D9+oq5NW1AxVdnwji/FyjljuX34xtIgDYzV1mO2OrmctB0nOBrJWlPFlu6fF2M5ft6LkAP4+uH/NzC0FeXWf4UnQ7OjrQ2tqKhQsXYv369XidnbOWYM+ePWhubsYNN9zg8Qq9h83PXbEiGHoudSxHF2Pog9UIyDODZwBY37UGSc8FsjcZVtO32OOtdi4b5+da0XN5eXT9mJ9bCPLqOkN40d2xYwcee+wxPPDAA3jllVfQ1taG22+/HadPny76vIGBAdx7771Yt26doJV6h1HPXbo0GHoudSxHlySSum/VatG127kcJD03J3fZ4kzckwP2Mpetzs9l8PLoBkHPZZBX1xnCi+6zzz6L2267DXfccQcuvfRSPPHEE2hubsbWrVuLPu/BBx/EJz7xCaxebe2HPMgY9dyLF/3fFVDHcrSxm7tst3M5aHquMXdZka2dJLHMZasasNW8ZQYvj25Q9FyAvLpOEVp0JyYmcOjQIVx33XU5X7/22muxd+/egs97/vnn8ec//xlf+tKXLF1nfHwcg4ODOf8FCeP8XEnyv8JRx3K0sZ27bLNzOSh5ywxj7rKV3aAsy9njd7X0SYDV+bnG12cauRuCpOcC5NV1itB/Ib29vZBlGU1Nuf/4m5qacO7cOdPnHD9+HJs3b8ZPfvITy8cpW7ZswXe+8x3X6/WK3Pm5/hZd2uVGH7u5y3Y7l4OSt8ywm7ssQ+tctpq5bNRzrczPZTRWN7o6Eg6Sngtk5+pOKpNIJqgn1yq+vFP5iSyqqpqmtMiyjLvvvhsPPvggliyxfpxy33334e2339b/O3DggOs188Ko5y5e7P/dIe1yo4/d3GW7nctB0nOBbO6y1U5hltZlNXPZrp7Ly6PL9Ny25jbf9Vwgd64uu7EjSiP0b27GjBlIpVLo6ckV3s+fP4/Gxqn/QIaGhnDw4EEcOXIEX/nKVwBoR2WqqqK5uRkvvPAC3v/+9095XkVFBSoqKrz5Jlxi1HMHBvz9h0Mdy/HAbu6ync7loOm5QDZ3eXqltZsMu53LdvVcXh5dpucunr7Y1evwZH7dfBzvP44JZQLlsGbPijtCf+uXl5fjqquuwq5du/ChD31I//quXbtw0003TXl8bW0tfvWrX+V87bnnnsNvfvMb/PCHP8Qll7hPdxFNkPRc6liOB3Zzl+10LjM9tyxZFgh/LmA/d5nt1K10LtvVcwE+Ht0cPbfMfz2XoXt1JwZtRW7GGeFbrbvuugv33nsvVqxYgTVr1uCf//mf0dXVhY0bNwIANm/ejDNnzuAf/uEfkEwm8Z73vCfn+Y2NjaioqJjy9bDA/Ll+67m0y40PdnKX7XYuMz135dyVgTjyBIARyV7usp3MZeP8XKt6Lg+Pbo6eGyCYZNE32oe50yhRxwrC/5XcfPPN6Ovrw5NPPomenh4sX74c27Ztw4IFmjbQ3d2Nrq4u0csSQv783AsX/Kt0tMuND7Zyl/M6l5Ml2j7YLvHKWVe6XSY3WEKSldxlY+eyleaks8NnAQBrmtdYXg8Pj26Q/LlGWBf12aGzuLzpcp9XEw58+du78847ceedd5r+2ZYtW4o+98EHH8SDDz7oxbI8Jyjzc2mXGy9Y7nJZsvTO1U7nslHPDdIOzE7ust3O5SM9RwDYa4ri4dENkj/XCPPqnh4oHm5EZKE+b4Gw+bl+5y3TLjdesEYhK+lMdjqXg+bPZbBdoZWbDDudy3bzloFcj67VSMopr2GcnxsgPRcgr64TqOgKJNef6w+0y40XkiTpRddKBKSdzuWg+XMZrOhaWZOdzmW7ectGGqsbHRfdnPm5AYN5dWmurnWo6AoiKP5c2uXGiySSuoXGStG107kcNH8ukJe7nChddItlLqt5Ii/z51qZn8vg4dENqp4L5Hp12XhEojhUdAURBH8u7XLjh53cZTudy0H05wL2c5dZ5rKVJqfD3dbn5zJ4eHSDqucy9Lm6Ms3VtQIVXUEEwZ9Lu9z4YSt32UbmclD1XHaTUZWustQIZrVzWZIkvHnWnp4LuPfo5ui5AchbNoPm6tqDiq4g/NZzaZcbT1g834zq0sEPdjqXg6rnstxlK7tvdmOxqGFR6QLtUM9169FVoAQqb9kM3as71ufzSsIBFV0BGPXcJUv80XNplxtP2JHfjKrSRZdZbax0LgdRzwWyucszq0oPdxie1G4cls5YWvKx3SPdAKznLTPcenQvjAUrb9kMtgPvHur2eSXhgIquAPyen0uThOKLndxlViBK7RKDqucC2dxlKzcZ50etdy4f6bbvzwXce3SDmLecD83VtQcVXQH4refSJKH4wnZzVvRAq53LRj03KHnLDDu5y6wglspcrkxXOtJzjR5dsylqJZ8fYH+uEfLq2oOKrgBy85bFYtzl3nor7XLjBmtuqSorfrxpp3PZqOcG7ciTdQtbsTxZ7Vy+ruU6x/5cQGuicqJ7B9mfa4S8uvagousx+XnLojHucudSHnnssJy7bKNzOah6LpAd7lAqd9lO5zJLtrKr57r16AbZn2uEvLr2iHTRbW9vx7p167Bhwwbf1uBn3rKxY5l2ufGE5S6nk8V/9ljn8vLG5UV/wQdZzwWs5y7b6Vxmuqrd4unWoxt0f64R8upaJ9JFd9OmTejs7MROdr7qA37mLRs7lmmXG09YzGGpost2xKWCH4Ks5wJA75i14Q5WO5dn1cxypOcC7jy6QZ2fWwjy6lon0kU3CPil55IvlzAeoZaKgLSauRxkPRcwDHco8QNvJXM5gQSuX3S9Yz3XjUdXRTDn5xaCvLrWoaLrIX7queTLJZJI6r7VUkXXaudykPVcO7nLxTKXddSs1ceungu48+gyf27Q9VyGca4uURwquh7C9NzKSrH+XNrlEoD13OWczuUix7JB13Pt5C6zzuWi2q8K/OH8HwA4a4Zy49ENk54LZL26XQNdPq8k+FDR9ZD9+7N6rkh/Lu1yCSAbiVjyiNLYuawULlZBzVtmsJuM6rLqks1g+rG7WvwE4MCZAwDs67lu5uiGTc8FsicLJwdOkle3BFR0PeTwYe0HceVKcXou7XIJhh6JWF08EtFq5nJQ85YZVm8ylIT2uJb6lqLf77gyDhUq6irqHPlzAWdzdNVEuPRcQPPqppNp8upagIquR/il59Iul2Aw+wZrcikE25GVylwOsp4LWM9dHp7Qbh6WzVxW9HEsJtLKXN583Hh0w+LPNZJOp/Xvlby6xaGi6xHGvGVR/lzKWCaMWM1dttK5HHQ9F8jmLpe6ybDSuQwApy5qWcL5w+yt4MajGzY9l8G8uuPSuM8rCTZUdD1i3z4tb7m1VZw/lzKWCSNsR1eqI/mdvndKPi7o/lwgm7vcUNlQ9HFWOpclSdILpxOcenRz9NyAzs8tBPPqDk0O+bySYENF1yNE+3MpfYrIh0UiVpdVF3yMJEn4Y69mFyqWuRx0fy4AjEjWcpetdC7LcHdE6tSjm6PnBnR+biF0r+4oeXWLQUXXA4zzc5cuFaPnUvoUkY+eu5wqYouxmLkcdD0XyKYhFctdlmXZUudy97C72bBOPbph1HMZ5NW1BhVdDxA9P5e0XMIMPXc5Vfhn0Ernchj0XMBa7jJr8imVuXy457CrtTj16IZVzwXIq2sVKroeIHp+Lmm5hBlWcpetdC4H3Z/LYLvEYgEfVjKXJUnCm2fedLwOo0fX1vNCMj+3EOTVtQYVXQ8QqeeSL5cww2ruspXO5aD7cxms6KaShdfIbEDFOpdlyFxsL43VjbaOiMMyP7cQNFfXGlR0OWP05y5e7P3dHvlyCTOMucuqUrgjx0rmchj03Jzc5SJF90S/9r0U61xmei6bEauq9jqanHp0w6znAnlzdRXy6haCii5nmJ5bWaliYMDbfzi0yyUKoSayucvFtFo9c7lA53JY9NwEEnrusioXLpLHLhwDUFz3Pdyt6blzps1xtBanHt0w67kM3asrk1e3EFR0OcP03LY27/Vc2uUShdAjEWuKHFVa6FwOgz8XgP6brCpdhVTafJ1WMpclSdLn5xazWhXDiUc37HouQ/fqTpBXtxDhO8OwQXt7Ozo6OiDL4o46cvVc735J0S6XKIakakfLM6oKH6Na6VwOgz8XyN5kFNuNs91/sc5lpue21LcUPaYuhhOPbtj1XIZxrq6TNK44EOmd7qZNm9DZ2YmdzE/jMSLzlmmXSxSD5S4XK7rMYlOsczkMei5gLXeZ7b6KdS6fHdY8pmua1zheixOPbtj1XAZ5dUsT6aIrGjY/1+u8ZaMvl9KnCDOs5C6z4lBodxgWPRfI5i4Xu8mwkrl8pOcIAGeDChhOPLpR0HOBrFf39MBpn1cSXKjocuTAAe3O1uu8ZaMvl9KnCDNY7nKx/N5Sncuh0XORzV2uryx8k1Eqc9noz7WbJMUwenQTCWu2mTDOzy0E8+qeGjhFXt0CUNHlCNNzvZyfS1ouYQWWu1xVZl48rHQuh0XPBazlLpfKXJZUSddzi6V4WaGxutGypzmM83MLQXN1S0NFlxPGvGUv9VzScgkr6LnLhawxmc7luoq6gp3LYdFzgdK5y1Y6l3tGegAAq+etdrwOJx7dqOi5AM3VtQIVXU7s2TMNPT3e6rm0yyWsoucuF9AVWefy8sblpr/ow6TnAqVzl1nnckt9S8HCxvKWF9YvdLwOJx7dqOi5DJqrWxwqupzYv187xlu71js9l3a5hFX03OUCx6SlMpfDpOcCQO+YdpNRKHeZdS4vm7nM9M+Nem5NuvCUolLY9ehGSc9lkFe3OFR0OcH03BUrvNFzZZl2uYQ1rOQul8pcDpOeC2RvMgrpqKU6l5meu6hhEZIp578WWRSlVY9ulPRchtGrS0yFii4HRMzPnZigXS5hjWQim7tcqOiW6lwOk56bk7ucMC+6pTqXmZ67au4qV2t5d8ieRzdKei6DvLrFoaLLAa/9uaTlEnYw5i4nk1P/iRs7l80037DpuUkk9axfRTY/aWKdy4WKIQ89F7Dv0Y2angvQXN1SUNHlAPPneqXnkpZL2EFRMrnLhY4sDZnLZhN0wjI/l8FuMqrSVQWbwthxO0xmIfDw5wLa+25njm4U9VyA5uqWgoouB7ycn0u7XMIueu5ytflRaqnM5bDMz2Uwy1OhXXmpzGWjnuvGn8tuYKzO0Y2ingvkztVNJqjE5EPviEu89ufSLpewS6nc5VKZy2HSc4Fs7nKhjuFSmcs8/LmAfY9uFPVcIHeurgTa6eZDRdclRn/uxYt8/+EYM5Zpl0tYpVTucrHM5bDpuUA2d7mhssH0z0t1LjM9103eMmDfoxtFPZdBXt3CUNF1idGfy3t+rjFjmXa5hFVK5S4X61wOmz8XyOYuFyq6xTqXeflzAXse3ajquQzdqztJXt18qOi65PBhb/y5sky7XMIZxXKXczKXTYIkwubPBbI7zEL2p2Kdy2x+rlt/LmBvjm5U9VyG7tUdJa9uPlR0XWCcn8vbnzsxQbtcwhlFc5eNmcvK1BvFsOm5QPYmwyx3uVTncvdwNwD3ei5gb45uVPVcBjtl6R7q9nklwSN6f9sG2tvb0dHRAVn2Jnh7794aT/y5pOUSbtBzl5NTfyaLZS6HUc8FiucuKwntxqJQ5/Lhbj56LgCc6NduWKzYrKKs5wI0V7cYkd7pbtq0CZ2dndjJKhhn9u2rBsB/fi5puYQb9Nxlk6JbrHM5jHoukN01mh6XZ/Rts85lSZLw5lk+eq4sy7qmaxZIkvNYSY60nguQV7cYkS66XsP0XJ7zc8mXS7hBkiS96JpFQBbrXA6jngtki24qOfUfS7HOZabnttS3uNZzGY3VjSWLrpJQIq3nArleXZqrmwsVXYcY9dzFi/ndyZEvl3BDEkndQmNWdIt1LodRz83JXTYpusU6l5meu6Z5jet12PHoRl3PBXK9ujRXNxcqug4x6rkDA3z+4VDHMuEWNVk4dzmncxllU/4sjHpuAomiucvFOpd5+XMBex7dqOu5DObVZWEthAYVXYfs36/puTz9udSxTLilaO6yIXOZRSfqfxRSPZf9BjPLXS7Wucwrb5lh1aMbdX+uEebVHRwf9HklwYKKrkN45y3TLpfgQbHc5WKdy2HVcxW1cO4y61xuqW+ZWpAzecst9S2u8pYZVj26UffnGqG5uuZQ0XWAF3ou7XIJHhTLXWb+XbPxdWHUc4Fs7vLMqplT/ox1Li+buWzKn7G8ZR56LmDdoxsHPZdBc3XNoaLrAN56LnUsE7wolrt8ZvAMgKm7wrDquUA2d9nsJqNY5zJPPRewPkc3LnouQHN1C0FF1wG89VzqWCZ4wXZ3Zt3JhTqXQ6vnIpu7XF859SajUOcyz7xlQPPoslOEYnahOOm5AHl1C0FF1wE89VxKnyJ4wiIRq8uqc75erHM5rHouAIxIWtew2XAH1rmcn1TlhT8XKO3RVREfPRfQvLrpZJrm6uZB74RNjHouj/m5lD5F8KRg7nKRzuWw6rlAtjPW7CaDNTcl1Fy/8tlhTWPkkbcMWPfoXhiLj54LaF5d9p7QXN0sVHRtwvTcykr383NlmbRcgi8sdzk/EpF1Ll/WeFnOL/ww67lA4dxldmNhlrl8pOcIAPOGMidY9ejGSc9l0FzdqVDRtQnTc9va3Ou5ExOk5RJ8Yc1D+elMhTKXjXqulaD+oNE7Zn6TMTxpnrnMW88FrHl046bnMmiu7lR8KbodHR1obW3FwoULsX79erz++usFH/vTn/4Ut9xyCy6//HIsXboUH/7wh/GrX/1K4GpzYXqu2/m5Rl/urbfSLpdwT86Ral4EZKHMZaOemwrhD6F+k5G39vOj5p3LPOfnMqx4dOPkzzXCvLrsBIbwoeju2LEDjz32GB544AG88soraGtrw+23347Tp81HQL3++uu45pprsG3bNrz88st43/veh40bN+Lw4cOCV85XzzX6cueWTo4jiJIkkdR9q/lFt1Dncpj13Jzc5URu0WUWnvzOZZ7zcxlWPLpx8ucaobm6UxFedJ999lncdtttuOOOO3DppZfiiSeeQHNzM7Zu3Wr6+CeeeAL33HMPVq5cicWLF+MrX/kKFi1ahJdfflnwynP1XDf+XOpYJrxATZjnLhfqXA67nptEsmDucqHMZZ7zcxlWPLpx1HMB8uqaIbToTkxM4NChQ7juuutyvn7ttddi7969ll5DURQMDw+joaGh4GPGx8cxODiY8x8PePlzqWOZ8ALWPDTlCLNA53LY9Vw23CE/d7lQ5rJxfi6PvGUg16ObSJiPsIurnguQV9cMof/Sent7Icsymppyfyk0NTXh3Llzll7jmWeewcjICD72sY8VfMyWLVvwne98x9VazWB6rjY/11nRpYxlwiv0SMTq3EjEQpnLYddzC+Uusx1/fueyUc/lkbdspLG6seB7GFc9F8j16tJcXQ1fGqny7whVVS14l2jkxRdfxLe//W08++yzUwq3kfvuuw9vv/22/t+BAwdcr1mSFLB+Lzd5y5SxTHhFodzlQpnLYdZzgexNRn7X8NCE1imb37nshZ5rxaMbVz0XyPXqygrN1QUE73RnzJiBVCqFnp6enK+fP38ejY3FR2Lt2LEDX/ziF/GDH/wA11xzTdHHVlRUoKKiwvV6jezdW4OeHnd6LmUsE17CcpfrKupyvm6WuRx2PRfI5i43VDbkfL1Q5rIXeq4Vj25c9VzG/Lr5ON5/HOPyOMrT5X4vx3eE7nTLy8tx1VVXYdeuXTlf37VrF1pbWws+78UXX8QDDzyAp59+GjfeeKPXyzSFh55LGcuElzBvan6HslnncpjzlhnsJiO/6JplLhv1XF7+XKC0RzfOei6DvLq5CD/ruOuuu3DvvfdixYoVWLNmDf75n/8ZXV1d2LhxIwBg8+bNOHPmDP7hH/4BgFZw7733XjzxxBNYvXq1vkuurKxEXV1dwevwxq2eS+lThNeYRSLmdC4bAiTCnLfMGJnQdpn5Nxlmmcte+HOB0h7dOOu5DH2u7mgf5k4jf6Twf20333wz+vr68OSTT6KnpwfLly/Htm3bsGDBAgBAd3c3urqy7eU/+tGPIEkSHn74YTz88MP612+55RZs2bJFyJqNeu6SJRIuXLBfMSl9ivAa09xlY+eyouhWorDruUB2uENNWXbnWihz2Qs9Fyjt0Y2znsswenUvb7rc59X4jy8/BXfeeSfuvPNO0z/LL6QvvviiiCUVhem5VVXO8papY5kQAUv9Mdp/xhXNx2rMXI6CnguY5y4rCfPMZd7zcxmlPLpx13OBrFf39IB5AFLcoOxlCzA9t7XVmZ5LHcuECFgDUTqZLQD9o/0AcjOXo6DnAua5y2yesLFz2Yu8ZaC0R5f0XA3y6uZCRdcCbubnUvoUIQJJkvSiaywAZpnLUdBzAfPhDmady5IqeTI/l1HIo0t6roaqqChLlpFXNwMV3RLk67l2ofQpQgTJRFK30Bhzl9/p05qojM1GUdBzc3KXDUXXrHO5Z0RrvlzTvIbrGkp5dEnP1Uin01hQp/XskFeXim5J3PhzyZdLiELF1NxlSZLwx17NLpRGtPTcBBKmuctmmcte6bmlPLqk52Zhc3XZjUqcoaJbAjf+XPLlEqIwzV02dC6zohwVPZf95jLmLsuyPCVz2Ss9Fyju0SU9Nxfm1WUd53GGim4JnOq5tMslRMIiEWdUZ49VzTqXo6LnmuUuy9COLo2dyxIkT/y5QHGPLum5udBc3SxUdIvgRs+lXS4hErPc5b7RPgC5nctR0HMBw3CHquxwB7PO5Z5hTc9dNXcV9zUU8+iSnpsL8+r2DPWUeGT0oaJbBKM/146eS7tcQjRmucv5mctR0XOBbO4y20EB5p3LTM/NH/bAg2IeXdJzc2Fe3VMDp3xeif9Q0S2CU38u7XIJ0bBdHttRAFMzlyOj5wIYnZyau5zfueylnlvMo0t67lSYV/fUwKnYe3Wp6BbBiZ5Lu1zCD9g4O5a7bMxcZp3LUdFzAWBEmpq7nJ+57FXeshEzjy7puVMxztVNJuJdduL93RfBqZ5Lu1zCD/rGNP22MpWJRDTpXI6Kngtkhzuw3GWzzGWv8paB4h5d0nOnYpyrK4F2upGlvb0d69atw4YNG2w/14k/l9KnCL/Qc5czEZBj8hiAbOdylPRcYGruMstcbqlv0QudF/NzGcU8uqTnmqN7deV4e3UjXXQ3bdqEzs5O7GSV0AZMz21rs67nUvoU4Rf5ucusKLHOZaOeWyicP0zk5y4zTXvZzGUAcufnFpoA5IZCHl1ZkknPLYDu1R2Pt1c30kXXDUzPXbHCmp5r1HJvvZV2uYQ4zHKXzwzldi4b9VyznOCwoecuZ76X/M5lo56bTvG/ySjk0VUSCum5BdC9umPx9upS0TXBiZ5r1HLn0pxmQiDG3GUGi39kjUZR0nNzcpcNE2yAbOeyl3ouUNijS3puYYxzdeMMFV0T9u2zp+dSxzLhJ0zPrC2vRSqZgizJ2czlZPT0XLPc5fzOZa/ylhmFPLqk5xaGeXW7Brp8Xom/UNE1Yd8+e3nL1LFM+ImqaN3J+pFmUutcrquog6qokdNz83OXjZnLCTWR48/1Qs81enTZcAmA9NxS0FxdDSq6JjA9d+XK0nou7XIJv5HUTCRitRaJyDqXlzcuRzqdjpyem5+7zIY9sMxlpue21Ld4oucyGqsbc4quAtJzi2Gcqxtnr258v/MCGPXcxYtL343RLpfwG2bBYI0q/aP9ALKdy1HSc4GpucssGIRlLnut5xby6F4YIz23GMa5unH26lLRzcOOP5d8uUQQYLnLrJOWNfnMqpkFRVEipecCU3OXz49mOpdrtc5lL/OWgcIeXdJzS8O8uuPSuM8r8Q8qunnYmZ9LvlwiCAxPasfHrFPZmLmsqmpk8pYZ+bnLrKlpRtUMT/OWGWYeXdJzrcG8uux0Io5Q0c3Dat4yablEUGBhA9Vl1TmZy2Uoi1TeMoPtNNlNhrFzmc3Pbalv8Sxv2cyjS3quNcirS0U3B0lSsHu39vnSpcU1B9JyiaDAOmkr05U5mcsKlMjpuQAwOJHNXc7vXGbzc9c0r/Hs+mYeXdJzrUFeXSq6OezbV4Nz5zQ99+LFwv9wZDmr5VL6FOE3eu5yIp2TuQwgcnoukJu7zDqXWeay1/5cwNyjS3quNZhX9/TAaZ9X4h9UdA0wf26pvOWJiayWS+lThN8Yc5eNmcuR8+dmMOYuM21w2cxlQvRcM48uzc+1Ds3VpaKbg5W8ZVkmLZcIDvm5y8bM5aj5cxl67nIylZO5LKmS5/NzGUaPrgqan2sV8upS0dWxmrc8MUFaLhEcjLnLCSTwdu/bALQmoyjquTm5y8lUTuZyz4im566au8qz65t5dEnPtQ55dano6ljJWzZqubTLJYKAmtAiIJk9iHUup5CKpJ6bn7vMOper0lWe+3MBc48u6bn2iLtXl4puBqbntrYW1nONWi7tcokgoCiaFNJU3aR3LtdV1AFA5Py5AHJyl4GsfQcKPNdzgakeXfLn2ifuXt1In4W0t7ejo6MDsiyXfGxu3vLUX1K0yyWCiDF3eUzKdC7PvAwjsrYji5I/F8jmLjfVNOm7/EUNi3R/rtd6br5Hl/y59jF6dfNTveJApHe6mzZtQmdnJ3ayalkASVLwxhva54X0XNrlEkFEz12unK531S5qWBRJPRfI5i43VjXmZC4zPdervGVGvkeX9Fz7xN2rG+mia5W9e2vQ3V1Yz6WOZSKosNzlhsoGvXN5ZtXMSOq5QG7usp65XNcsxJ8LTPXokp5rn7h7danoonTeMnUsE0HFmLvMBtdXl1dHU89Fbu4yK4D1FfWezs9lGD26iUSC9FyHxN2rS0UXxfOWScslggzLXa5KVelFlx3BRk3PBYARSdOqa8tr9c7ldCKt67lezs9lNFY3IpVKQUmQnuuEuHt14/cd51HKn2vUcpubBS+OIErAdl5lqTI9c/nUwCkA0dNzgexNRmWqUm9qYglVXuu5+R7dC6Ok5zoh7l7d2BfdYv7c/F1uMvbvFhE0WO6yCq2Td9mMZZHVc4Fs7nJZqgyAFncpSs/N9+iSnuucOHt1Y19GmD/XTM+ljmUi6LDdFpu8s2TGkkjmLTPYrpZZpS6deakQPRfI9eiSnuuOOHt1Y190C+m5pOUSQUdWZD0SkdkvmH80annLDJa1zI7VF9QtEKbnGj26pOe6I85zdWNddI3+3MWLc7UF0nKJoFOZrtItNO/0afGPrDBEUc+V5exNxqmLmm7Nvn8v85YZRo8u6bnuiLNXN9ZFd9++rD93dDS7KyAtlwgDVWWVAIDadK3eubz/zH4A0dRzq8qq9Nzloxe0zuXfn/89AG/zlhlGjy7pue6Is1c31uWE+XNbW4GxsezdKu1yiTBQX6kdJa+ZvwayKmPNvDVZPTeCCa8zq2cC0ArduZFzmFUzS0jeMpDn0UWC9FyXGL26qqr6vBqxxLroHjxozFvWoF0uERbYER2zX/zFLO1IedXcVUilo6fnzq7Rmm9WzF4BALh+0fWQVRkt9S2ez89lNFY3Ut4yB4xeXST8Xo1YYltSJEnBHu1mNcefy3a5NTXUsUwEG2abSSS031rMThNFPReAPj2J7fBZd7bX/lwg16NLecvuMXp1ZbX0QJooEduiu39/Dc6eTaCiQkV/v/YPR5aBl1/W/vzWW6ljmQg27FiONU9FWc8FgPK0pgMyv+x/XNB0VRF6rtGjS3ouH+Lq1Y1t0TX6cxVFq64TE8Bbb5GWS4QD1lR0vO945PVcI10DXUL1XMDg0a1sJD2XE3OmzQEQP69ubIvu4cNaoV2xQtstGHe5pOUSYWBkckTPXI66ngtkxxgevXBU13O9np/LYFalppom0nM50VDVACB+Xt1YlhZj3vLSpZrPj+1ya2pol0uEg/6xfvzlgr+EpEiR13MBYGRiBIsbFuPcyDldzxXhzwWAd4c0jy5L/iI91z2sEbBnqMfnlYgl0kW3vb0d69atw4YNG3K+vn9/ta7nXryYzulYvvVW2uUS4aBvrE9vRom6ngtoR7xXz7kagFg9F8h6dNl1Sc91D/PqsgEdcSHS5WXTpk3o7OzETlZRM+zfr2lAra2anku+XCKMnB85DySQo+dGbX6ukb6xPtRX1vui5/aP9aMqVUV6LkeMXl32eRyIdNEtBMtbXrlSIS2XCC3nhs/h3PC5HD03ykeeF0YuYGRyBH/d8tdC9VzGxy77GOm5HDF6da+cdaXfyxFG7EpMbt6yTB3LRCiZUzMHk8okjvcdj4WeCwA9wz14d/BdlCU1f7IIf66RaRXTAABtzW2RvrkRhdGru2j6Ip9XI47Y/eTs31+NM2cSKC9XcfFiina5ROhIqAksmr4IF8cu4tiFYxiVRgFEW8+dVTMLPcM9OHrhKEYnte/X6/m5+bB868XTFwu9bpSZXzcfx/uP69Ox4kDsiu6bb2b9uSMjKepYJkJJU3UT2ua3YWhyCPve3Rd5f+7C+oWYVjYNQ5NDePOsOD2XUVNWk9Vzy0nP5QWbq6siPvnLsdvbHTqk/WK64go1J32KdrlEmKitqMWC+gWx8OcCWu7yijkrfNNzb1x8Y1bPjU998Bw2V5dZseJAdG+NTTD6cysrE7qWSxnLRNgoT5VDUZXY6Ll1FXWoSFdgUhY3P9dIQ2UDAPLn8oZ1gbPwkTgQq5+e3/2uCu++m0AioeLf/1372qc+RRnLRPhQVRUXRi7gUM8hANHWcwEtd3lkcgTv9L0DQJw/l3G87zgA8ufyhuVpdw10+bwSccTqUJXNz73ttgTefDNBWi4RWiaUCZwfOZ/NW05E//75zOAZ3Z9bla4Sdt2ashrsfXcvAPLn8ob5c08OnIyNVzdWRfd3v9N+Mf3+99r/v+UW2uUS4aRvtA/Lm5YDyOi5Ef9BnpAnMLd2rj4/N50Sd5PxgcUfIH+uR6iKinQyHSuvbqyK7sGDwO23ZzOW58/3e0UE4Zy46LkAMDo+qvtz1zSvEXrt6ZVasw/pufxJp9O69SsuXt1YFd0TJxL4wx+0z8mXS4SZxqpGHDhzAED09VwASKVSeu6xKH8us7GQnustC+q1gIy4eHVjVXY++UngzTe1Xe6CBX6vhiCck0qmcOLiiXjouarWPUx6bjRhN41x8erGqugeO6Z9vOUWIJHwdy0E4RQ1oQCZn9+Vc1ZGXs8FAEmVfNFzc/y5hCcwr25chtnHougqigIAOHQIqKqijmUi3EhlvRgc18IEWDhGpEkAkiwBIH9uFJlWpmVa9wzHY65uTIpu9vNbb1WpY5kINXL6oq7nzq6Z7fNqvEeV1ayeWy8ubzmBBP7U/ycAwNIZS4VdN25UpCsAAKcHTvu8EjFYunVTVRWDg8Vjukr9uUjGx8cxMTGh//8//UnreuzsPIRp00iXIcLNd/9wBn86qxWD//XW/0JtRS0SiQQSyGomxs9LkQi41lKGMhzoOgCowP9883+iuTZ7VOXl2ptrm3Ho5CFgDPj7XX+P1fNW69dj76+d95kR9PebJ6paWKdVM/87M3gGGAO6znXhzJkzqBypFLhCa5SXl6OqylovQW1tbdG/44Ra7F3JMDAwgPr6eHSWEQRBEIRTLl68iLq6uoJ/bqnoWtnp9vTknsdv2LABO3futLjMwjh5HeNOV5ZlDA4O4vrrr8dvf7sHqdRMFPqOjTcnhR4zNjaGyko+d2K8XovH66iqitHRUVRVVbm+Ew/S98XrdYL2/vROnsWBvl1IVSSgqmrRzs9SXaFheH8UVQFUrWvbapcrj+9rdGIUUIDaqlooqlLy2oX+PGg/P36+Tv7pQAIJJBIJXFp9Ka5ouiKw78+cOXMsPa/UTtfS8XIikShauQFgdHQ05/+nUinU1ro/ynXyOsbHK4qCEydOAADKyhJYsMDdOLB1625CZ2enq9fg/Vo8XmdwcBDLll2Jt99+G7W103xfT9BeJ2jvTwuW4P51/5nT+7OO0/uzLPP+uPt3z2M9QXsden+Kw/P9+chHPsLl+8p/nVI10CqeNVLdeeedgXgd40aeh7WC1/fF87V4rokHQfu+6P0R8zq8CNr3Re+PmNfhRdC/L0vHy1bo7u7m8TLcGR0dxdmzZ/FXf/VXOHDgAObRHD9TeN5pRhF6f4pD709x6P0pThjen9mz+TgFIm0ZkiQp59i7vLzcx9UEm/LycnzpS1+i96gA9P4Uh96f4tD7U5w4vT+R3ukqioILFy5geHgYf/mXfxnouyiCIAgiuNBO1wLsfoJXtzFBEARBuCHSRZfZhioqKnxeCUEQBEFEuOga9dwkzfAjCIIgAkBkq1EymYQsy0gkEvrAA4IgCILwk8gWXabnVlVV0XQQAB0dHWhtbcXChQuxfv16vP766wUf+9Of/hS33HILLr/8cixduhQf/vCH8atf/Urgav3BzntkZM+ePWhubsYNN9zg8Qr9xe77Mz4+jm9+85tYvXo1LrnkErS1tWH79u2CViseu+/Pj3/8Y1x//fVYtGgRrrrqKtx///3o7e0VtFqx7N69G5/5zGewYsUKzJkzBz//+c9LPue3v/0t1q9fj4ULF2Lt2rXYunWrgJV6T2SLLum5WXbs2IHHHnsMDzzwAF555RW0tbXh9ttvx+nT5lM9Xn/9dVxzzTXYtm0bXn75Zbzvfe/Dxo0bcfjwYcErF4fd94gxMDCAe++9F+vWrRO0Un9w8v587nOfQ2dnJ7773e/i17/+NZ555hksW7ZM4KrFYff9eeONN3Dvvffi9ttvx2uvvYYf/vCHeOutt/ClL31J8MrFMDIygiuuuALf+MY3LD3+xIkTuOOOO9DW1oZXXnkF999/Px599FG89NJLHq/UeyJpGZIkCQMDA5BlGTNnzsTw8HDgjdde8sEPfhBXXnkl/u7v/k7/2rp163DTTTfhkUcesfQa11xzDT7+8Y9H9peC0/forrvuwuLFi5FMJvGLX/wC//Zv/yZiucKx+/788pe/xOc//3m88cYbmD59usil+oLd9+fpp5/G1q1b8cYbb+hf+8d//Ec8/fTTOHDggJA1+8WcOXPQ0dGBD37wgwUf88QTT+Dll1/OiWH88pe/jN/97nf46U9/KmKZUyDLUBFIz80yMTGBQ4cO4brrrsv5+rXXXou9e/daeg1FUTA8PIyGhgb+CwwATt+j559/Hn/+858jeyPCcPL+7Ny5EytWrMD3v/99XH311Xjve9+Lv/3bv52S0R4FnLw/ra2tOHPmDF599VWoqopz587hpZdewgc+8AEBKw4++/fvx7XXXpvzteuuuw4HDx7E5OSkT6viQyTFTtJzs/T29kKWZTQ1NeV8vampCefOnbP0Gs888wxGRkbwsY99zIsl+o6T9+j48ePYvHkzfvKTn0T+Z8zJ+3Py5Ens2bMHFRUVaG9vR29vLx566CH09/fjqaeeErBqcTh5f1pbW/H9738fd911F8bHxyFJEjZs2IDNmzeLWHLg6enpMX0/JUlCb28vt12nH0Ryp0t67lTyR02pqmpphNaLL76Ib3/723j22Wen/COIGlbfI1mWcffdd+PBBx/EkiVLRC3Pd+z8DCmKgkQigaeffhqrVq3CBz7wAXz1q1/FCy+8EMndLmDv/Tl69CgeffRRfPGLX8TLL7+M559/HidPnsSXv/xlEUsNBWbvp9nXw0bkbtHJn5vLjBkzkEqlpsw7Pn/+PBobG4s+d8eOHfjiF7+IH/zgB7jmmmu8XKav2H2PhoaGcPDgQRw5cgRf+cpXAGhFRlVVNDc344UXXsD73/9+IWsXgZOfoVmzZmHOnDk549CWLVsGVVVx5swZLF682NM1i8TJ+/O9730Pra2t+MIXvgAAuPzyy1FdXY2Pf/zjeOihh0K9k+PBrFmzTN/PdDod+h6ByFUlo577r//6r1i3bh02bNjg97J8o7y8HFdddRV27dqV8/Vdu3ahtbW14PNefPFFPPDAA3j66adx4403er1MX7H7HtXW1uJXv/oVXn31Vf2/jRs3YunSpXj11VexcuVKUUsXgpOfobVr16K7uxvDw8P6144fP45kMom5c+d6ul7ROHl/RkdHp2wK2OhRTr2toWb16tVT3s/XXnsNK1asQFlZmU+r4kPkiq5Rz73lllvQ2dmJnTt3+rwqf7nrrruwfft2bN++HceOHcNjjz2Grq4ubNy4EQCwefNm3HPPPfrjX3zxRdx77714/PHHsXr1avT09KCnpwcDAwN+fQueY+c9SiaTeM973pPzX2NjIyoqKvCe97wHNTU1fn4rnmD3Z+gTn/gEpk+fjvvvvx9Hjx7F7t278bWvfQ233XYbqqqq/Po2PMPu+3PjjTfiZz/7GZ577jmcOHECe/bswSOPPIKVK1dizpw5fn0bnjE8PIwjR47gyJEjADTN/8iRI7qlKv/92bhxI06fPo3HH38cx44dw/bt2/H888/j7rvv9mX9PInc8TLpuVO5+eab0dfXhyeffBI9PT1Yvnw5tm3bhgULFgDQ7F5dXV3643/0ox9BkiQ8/PDDePjhh/Wv33LLLdiyZYvw9YvA7nsUN+y+PzU1NXjhhRfwyCOP4KabbsL06dPx0Y9+FA899JBf34Kn2H1/Pv3pT2NoaAjt7e346le/irq6Orz//e/Ho48+6te34ClvvfUW/uZv/kb//48//jiA7O+U/Pdn4cKF2LZtGx5//HF0dHRg9uzZ+PrXv46PfOQjwtfOm0j5dPP9uez4JgwDkgmCIIjgQj5dE8ifSxAEQQSZSBVd8ucSBEEQQSZSRZf0XIIgCCLIRKbokj+XIAiCCDqRqU6k5xIEQRBBJzJFl/RcgiAIIuhEpuiSnksQBEEEnUgUXdJzCYIgiDAQiQpFei5BEAQRBiJRdEnPJQiCIMJAJIou6bkEQRBEGAh90SU9lyAIgggLoa9SpOcSBEEQYSH0RZf0XIIgCCIshL5KFdNz29vb0dHRAVmWRS+LIAiCIKYQ6nm6hebn5kPzdAmCIAg30DxdkJ5LEARBhIvQHy8nk0lUVlaSnksQBEEEHm7Hy34hSRJGRkZQV1dX8DEDAwOor6/HxYsXiz6OIAiCILwk1MfLAJBOp6mQEgRBEKEg9EWXIAiCIMICFV2CIAiCEAQVXYIgCIIQBBVdgiAIghBE6LuXraCqKgYHB1FbW4tEIuH3cgiCIIiYEouiSxAEQRBBgI6XCYIgCEIQVHQJgiAIQhBUdAmCIAhCEFR0CYIgCEIQVHQJgiAIQhBUdAmCIAhCEFR0CYIgCEIQ/z+S6F21IwbQAAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "Graphics object consisting of 80 graphics primitives" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plotting_complex = SemialgebraicComplex(gj_forward_3_slope)\n", + "plotting_complex.bfs_completion(goto_lower_dim=False) #long time\n", + "plotting_complex.plot(slice_value=[4/5, None, None], goto_lower_dim=False)" + ] + }, + { + "cell_type": "markdown", + "id": "e9f6edff-9232-470f-84f6-5ca172cd7700", + "metadata": {}, + "source": [ + "2d plotting is not fully supported or tested in the software. Plots can be animated by setting `animated=True`. This creates an animated plot of the slice plotting the highest dimensional cells first, then lower dimensional cell last. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "f41674e8-0d70-43f9-b238-afc5c93b2659", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acadia/sage/src/sage/plot/contour_plot.py:206: UserWarning: No contour levels were found within the data range.\n", + " CS = subplot.contour(self.xy_data_array, contours, cmap=cmap,\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "Animation with 41 frames" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plotting_complex.plot(slice_value=[4/5, None, None], goto_lower_dim=False, animated=True) # long time" + ] + }, + { + "cell_type": "markdown", + "id": "7541fc28-bf1b-4801-a4b4-5b2c8720db0c", + "metadata": {}, + "source": [ + "Functions within the Electronic Compendium know about claimed properties within the literature. The option `conditioncheck` is used to enforce these conditions. The docstring has a record of relevant information with respect to a given function. " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "88f77465-8749-4c53-bef2-cefa66f6a185", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mgj_forward_3_slope\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_gj_forward_3_slope\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_gj_forward_3_slope(default_values=(('f', 4/5), ('lambda_1', 4/9), ('lambda_2', 2/3), ('field', None), ('conditioncheck', True)), names=('f', 'lambda_1', 'lambda_2'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Gomory--Johnson' Forward 3-Slope;\n", + "\n", + " * Infinite (or Finite); Dim = 1; Slopes = 3; Continuous;\n", + " Analysis of subadditive polytope method;\n", + "\n", + " * Discovered [61] p.359, Construction.3, Fig.8;\n", + "\n", + " * Proven extreme [61] p.359, thm.8.\n", + "\n", + " * gj_forward_3_slope is a facet.\n", + "\n", + " Parameters:\n", + " * f (real) \\in (0,1);\n", + "\n", + " * lambda_1, lambda_2 (real) \\in (0,1).\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " * 0 <= lambda_1 <= 1/2;\n", + "\n", + " * 0 <= lambda_2 <= 1 (in literature).\n", + "\n", + " Note:\n", + " Since the domain and range are in [0,1], I think the conditions\n", + " for a three-slope extreme function should be:\n", + "\n", + " (0 <= lambda_1 <= 1/2) & (0 <= lambda_2 <= 1) & (0 < lambda_1\n", + " * f + lambda_2 * (f - 1) < lambda_1 * f).\n", + "\n", + " Examples:\n", + " [61] p.360, Fig.8\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: h = gj_forward_3_slope(f=4/5, lambda_1=4/9, lambda_2=1/3)\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = gj_forward_3_slope(f=4/5, lambda_1=4/9, lambda_2=2/3)\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = gj_forward_3_slope(f=4/5, lambda_1=4/9, lambda_2=1)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Try irrational case\n", + "\n", + " sage: h = gj_forward_3_slope(f=sqrt(17)/5, lambda_1=2*sqrt(5)/9, lambda_2=2/sqrt(10))\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Reference:\n", + " [61]: R.E. Gomory and E.L. Johnson, T-space and cutting planes,\n", + " Mathematical Programming 96 (2003) 341-375.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "gj_forward_3_slope?" + ] + }, + { + "cell_type": "markdown", + "id": "1a5e2f9a-28b8-4f97-b71c-ad8bbc5647c3", + "metadata": {}, + "source": [ + "`SemialgebraicComplex` by default find extreme functions in the Gomory Johnson one row model and classifies functions as one of the following: extreme, minimal but not extreme, constructible but not minimal, and not constructible. To modify the behavior can adjust the behavior of the `find_region_type` parameter that is passed into the `SemialgebraicComplex` object upon construction. \n", + "\n", + "To classify functions as minimal, constructible but not minimal, and not constructible set `find_region_type` to `functools.partial(find_region_type_igp, region_level='minimal')`\n", + "\n", + "To classify functions as constructible and not constructible set `find_region_type` to `functools.partial(find_region_type_igp, region_level='constructible')`" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "eca9a337-74af-48ae-8044-ef7277bee686", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SemialgebraicComplex with 179 components" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import functools\n", + "minimality_test_only_complex = SemialgebraicComplex(gj_forward_3_slope, find_region_type=functools.partial(find_region_type_igp, region_level='minimal'))\n", + "minimality_test_only_complex.bfs_completion(goto_lower_dim=True) #long time\n", + "minimal_only_cells=minimality_test_only_complex.subcomplex_of_cells_with_given_region_types('is_minimal')\n", + "minimal_only_cells" + ] + }, + { + "cell_type": "markdown", + "id": "1cd398ae-29b2-4a56-818c-f1e468f5efef", + "metadata": {}, + "source": [ + "Given a proof cell for minimal functions, one may wish to test if there are extreme functions within given cell. By passing in a basic semialgebraic set to `SemialgebraicComplex` once can restrict the boundaries of a `SemialgebraicComplex`. Proof cells know what basic semialgebraic set is associated with it. " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "1a2d8ea1-56cf-47a2-b21e-063a48245dae", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2 3\n" + ] + } + ], + "source": [ + "minimal_cell= minimal_only_cells.components[1] \n", + "testing_for_extremality_in_cell = SemialgebraicComplex(gj_forward_3_slope, bddbsa=minimal_cell.bsa) #complex with boundaries defined by the minimal proof cell\n", + "testing_for_extremality_in_cell.bfs_completion(goto_lower_dim=True)\n", + "extreme_subcomplex = testing_for_extremality_in_cell.subcomplex_of_cells_with_given_region_types()\n", + "print(len(extreme_subcomplex.components), len(testing_for_extremality_in_cell.components))" + ] + }, + { + "cell_type": "markdown", + "id": "86542edc-3fb1-46b4-995f-b790dfd79bcb", + "metadata": {}, + "source": [ + "In the above example we see that the minimal cell has a subset that is extreme and a subset that is just minimal. " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "c080b88b-febc-44ec-ac4b-00c1fc90db4e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[-f*lambda_1 - f*lambda_2 + 4*f + lambda_2 - 2 < 0,\n", + " f*lambda_1 + 2*f*lambda_2 - 2*lambda_2 < 0,\n", + " -lambda_1 + lambda_2 < 0,\n", + " 3*lambda_1 - 2 < 0,\n", + " -2*f + 1 < 0,\n", + " -lambda_2 < 0,\n", + " 3*f*lambda_1 + f*lambda_2 - 2*f - lambda_2 < 0]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "minimal_cell.get_ineqs()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "5fdbafd7-e2f5-47b1-9e81-ee433923a630", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[-f*lambda_1 - f*lambda_2 + 4*f + lambda_2 - 2 < 0,\n", + " f*lambda_1 + 2*f*lambda_2 - 2*lambda_2 < 0,\n", + " -lambda_1 + lambda_2 < 0,\n", + " 2*lambda_1 - 1 < 0,\n", + " -lambda_2 < 0,\n", + " 3*f*lambda_1 + f*lambda_2 - 2*f - lambda_2 < 0,\n", + " -2*f + 1 < 0]" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "extreme_subcomplex.components[0].get_ineqs()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "df3e483b-fbae-44de-baee-06f3ac45bbae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[-2*f*lambda_2 + 7*f + 2*lambda_2 - 4 < 0,\n", + " 4*f*lambda_2 + f - 4*lambda_2 < 0,\n", + " 2*lambda_2 - 1 < 0,\n", + " -lambda_2 < 0,\n", + " -2*f + 1 < 0,\n", + " 2*lambda_1 - 1 == 0]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "extreme_subcomplex.components[1].get_ineqs()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SageMath 10.1.beta4", + "language": "sage", + "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/cutgeneratingfunctionology/igp/parametric.sage b/cutgeneratingfunctionology/igp/parametric.sage index 06b7b71df..81501e974 100644 --- a/cutgeneratingfunctionology/igp/parametric.sage +++ b/cutgeneratingfunctionology/igp/parametric.sage @@ -1263,6 +1263,8 @@ class SemialgebraicComplexComponent(SageObject): # FIXME: Rename this to be m sage: component = SemialgebraicComplexComponent(K, region_type) sage: list(component.bsa.lt_poly()) [x + y - 2, y^2 - x] + sage: component.get_ineqs() + ([x + y - 2 < 0, y^2 - x < 0], [], [x + y - 2 == 0, y^2 - x == 0]) sage: component.plot(xmin=0, xmax=4, ymin=-3, ymax=3) # not tested sage: new_points = component.find_neighbour_candidates(1/4, 'heuristic', goto_lower_dim=False, pos_poly=None) sage: new_pts = sorted(new_points[0].keys()) @@ -1623,6 +1625,13 @@ class SemialgebraicComplexComponent(SageObject): # FIXME: Rename this to be m ieqs = [ [-l.constant_coefficient()]+[-l.monomial_coefficient(m) for m in l.args()] for l in list(self.bsa.lt_poly()) + list(self.bsa.le_poly()) ] eqns = [ [-l.constant_coefficient()]+[-l.monomial_coefficient(m) for m in l.args()] for l in list(self.bsa.eq_poly())] return Polyhedron(ieqs=ieqs, eqns=eqns) + + def get_ineqs(self): + r""" + Returns a list of symbolic expressions used to define the underlying BSA. + """ + return [SR(poly) < SR(0) for poly in self.bsa.lt_poly()]+[SR(poly) <= SR(0) for poly in self.bsa.le_poly()]+[SR(poly) == SR(0) for poly in self.bsa.eq_poly()] + def _max_x_y(x, y): # A global, for testing pickling return max(x, y) diff --git a/demo.ipynb b/demo.ipynb index 470cba46e..9ed0c0131 100644 --- a/demo.ipynb +++ b/demo.ipynb @@ -1,998 +1,3090 @@ { - "nbformat_minor": 2, - "nbformat": 4, "cells": [ { - "source": [ - "$$\n", - "\\def\\CC{\\bf C}\n", - "\\def\\QQ{\\bf Q}\n", - "\\def\\RR{\\bf R}\n", - "\\def\\ZZ{\\bf Z}\n", - "\\def\\NN{\\bf N}\n", - "$$\n", - "# Demonstration of cutgeneratingfunctionology\n", - "\n", - "We interact with Sage using commands that basically follow standard\n", - "Python syntax.\n", - "\n", - "See for information on how to\n", - "use Sage.\n", - "\n", - "Copy these commands into your Sage terminal session or Jupyter notebook.\n", - "\n", - "## Basic operations\n", - "\n", + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\n", + "\\def\\CC{\\bf C}\n", + "\\def\\QQ{\\bf Q}\n", + "\\def\\RR{\\bf R}\n", + "\\def\\ZZ{\\bf Z}\n", + "\\def\\NN{\\bf N}\n", + "$$\n", + "# Demonstration of cutgeneratingfunctionology\n", + "\n", + "We interact with Sage using commands that basically follow standard\n", + "Python syntax.\n", + "\n", + "See for information on how to\n", + "use Sage.\n", + "\n", + "Copy these commands into your Sage terminal session or Jupyter notebook.\n", + "\n", + "## Basic operations\n", + "\n", "First load the code:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], "source": [ "import cutgeneratingfunctionology.igp as igp; from cutgeneratingfunctionology.igp import *" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "First we load a function and store it in variable `h`.\n", - "\n", + "First we load a function and store it in variable `h`.\n", + "\n", "We start with the easiest function, the GMIC:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:52,955 Rational case.\n" + ] + } + ], "source": [ "h = gmic()" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Plot the function:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHUCAYAAABRQa7FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABT1klEQVR4nO3deZyO9f7H8dcwjJ1sUUnqqKgoxbGvyT2pFCnayNJ2VEd1fqUURYnEkWwluxARkX1nxhGyJFKyVdbRbIxZr98f1+GYMsxyf+/vvbyfj8c8amau+7reZz4d8/G97uvzDXMcx0FEREREAlI+2wFEREREJPfUzImIiIgEMDVzIiIiIgFMzZyIiIhIAFMzJyIiIhLA1MyJiIiIBDA1cyIiIiIBzKfNnOM4xMfHo9F2IiIiIt7h02YuISGBkiVLkpCQ4MvLioiIBLRvv/3WdgTxEhO11G1WERERP3fy5EnbEcRLTNRSzZyIiIifO3XqlO0I4iUmaqlmTkRExM/deOONtiOIl5iopZo5ERERP7ds2TLbEcRLTNQyzPHho6Xx8fGULFmSuLg4SpQo4avLioiIBLT4+Hj93gwSJmoZnpsXJSYm0qlTJ4YOHcrVV1/t1UAiIiKS2UcffUTv3r19ft2UlBTS0tJ8ft1gNmHCBLp165bpa+Hh4RQsWDDX58zxyty4ceM4cOAA77zzDvv27eOaa67J8tjk5GSSk5PPfR4fH0+lSpW0MiciIpINCRkZTFy5kvtr1+YqH//eTElJYefOnWRkZPj0uqEoX7583HTTTblv6JxcApx9+/Y5n3/+ufPzzz87AwcOdM6cOeP069fPcRzH6devn/PSSy85wF8+Bg4c6MTFxWU6NiYmxvn444+dbdu2OXPnznXmz5/vbN682Rk9erRz7NixTMeeOnXKGTx4sLN7925nxowZzrJly5z169c748ePdw4ePJjp2LS0NOe9995z9u/f70yaNMlZu3ats3LlSmfatGnOnj17nEGDBjlJSUmZXnP48GHnk08+cTZu3OgsXLjQmT17trNjxw7no48+cmJjYzMd+8cffzjDhw93tm/f7syZM8dZsGCBs2nTJmfMmDHOkSNHMh17+vRpZ/Dgwc6ePXuc6dOnO8uXL3fWrVvnTJw40Tlw4IDTv39/Jz093enXr5+Tnp7u9O/f3zlw4IAzceJEZ926dc7y5cud6dOnO3v27HEGDx7snD59OtP5jxw54owZM8bZtGmTs2DBAmfOnDnO9u3bneHDhzt//PFHpmNjY2Odjz76yNmxY4cze/ZsZ+HChc7GjRudTz75xDl8+HCmY5OSkpxBgwY5e/bscaZNm+asXLnSWbt2rTNp0iRn//79znvvveekpaVles3Bgwed8ePHO+vXr3eWLVvmzJgxw9m9e7czePBg59SpU5mOPXbsmDN69Ghn8+bNzvz58525c+c627Ztcz7++GMnJiYm07FxcXHOsGHDnJ07dzpffvmls2jRImfjxo3O2LFjnd9++y3TsWfOnHEGDhzo/Pzzz87nn3/urFy50lmzZo0zefJkZ9++fc6AAQOc1NTUTK85dOiQM27cOCc6OtpZsmSJ88UXXzi7du1yhgwZ4iQkJGQ69vjx486oUaOc7777zvn666+defPmOd99950zcuRI58SJE5mOjY+Pd4YOHers3LnTmTVrlrN48WJnw4YNzmefffaX3CkpKc7777/v7N2715kyZYqzevVqZ/Xq1c6UKVOcvXv3Ou+//76TkpKS6TW//fab89lnnzkbNmxwFi9e7MyaNcvZuXOnM3ToUCc+Pj7TsSdOnHBGjhzpfPfdd868efOcr7/+2vnuu++cUaNGOcePH890bEJCgjNkyBBn165dzhdffOEsWbLEiY6OdsaNG+ccOnQo07GpqanOgAEDnH379jmTJ0921qxZ46xcufKif0b89ttvztixY52NGzc6ixYtcr788ktn586dzrBhw/RnhP6M0J8Rq1c7H9ev7+Tfv9+54e9/9/mfEVu2bHE2bdrknDhxwjl16pQ+DH2cOHHC2bRpk7N169YL/hmRHbl+z1xYWJhW5kREREw4eRLuvx++/ZamBw9SKH9+FpUu7dMIp0+fZteuXVSrVo0iRYr49Nqh5OzP+YorriAiIoKIiAiKFi2ao3Pk6j1z2XU2lIiIiGTTgQMQGQlHj8Ly5USWK8dbI0aQ/I9/oN+owWv+/PmcOnWKEiVK8PDDD+eoodNoEhEREX+xdSvUqwdnzkBUFNSvjwdIadSIdbaziVFFixalYMGCxMfHZ7qrmR1q5kRERPzB0qXQqBFccQVER8MNNwBQA7hs/34W2U0nhuXlbqaaOREREdsmTYK773abuVWr4PLLz30rDLg9f34WWgsn/i7Hzdy0adN49tlnAXjttdcYOXKk10OJiIiEBMeBd9+FTp3cj3nzoFixvxzWomJFdgKHfJ9QAkCOH4Do2LEjHTt2ZNSoUSbyiIiIhIa0NOjRA8aMgbffhjffhLCwCx5a8NtvyVerFouBbhc8QkKZbrOKiIj42qlT8MADMHYsjBsHb72VZSMH8HjbttSFoL3VGhYWxldffWU7RsBSMyciIuJLx45Bs2awciUsWABPPnnJl4wZMwYPsAxINR7Qu44dO8bTTz/N1VdfTUREBBUqVKBVq1ZER0fbjvYXnTt3JiwsLNNH3bp1L3hslSpVWLQo82MpP//8M8WLF6dUqVI+SPs/RufMiYiIyHl++smdIZeYCGvWQK1a2XpZ79692QS8BWwAGpnM6GXt2rUjNTWViRMncu2113L06FGWL1/OyZMnbUe7II/Hw/jx4899fqEttrZv305MTAzNmjU797XU1FQ6duxIo0aNiIqK8knWs7QyJyIi4gv/+Q/Urw/h4bBhQ7YbOYD+/ftTCyhLYN1qjY2NZd26dQwcOJBmzZpRuXJl6tSpQ69evWjdunWWr9uxYwfNmzencOHClClThqeeeorExMRz3+/cuTP3338/b7/9NuXLl6dEiRI8/fTTpKSknDvGcRwGDRrEtddeS+HChalZsyazZs26ZOazq4dnP0pfYOeNuXPn0qpVq0yjRHr37s2NN97IQw89lN0fj9doZU5ERMS0efOgQwe3gZs7F8qUydHLX3rpJfIBrYBFwHsmMmbH6dOwe/elj7vxRihShGLFilGsWDG++uor6tatm605aqdPn8bj8VC3bl2+/fZbjh07Rrdu3ejRowcTJkw4d9zy5cspVKgQK1euZP/+/Tz55JOULVuWd999F3Cbq9mzZzNq1CiqVq3KmjVreOyxxyhXrhxNmjTJ8vqrVq2ifPnylCpViiZNmvDuu+9Svnz5TMfMmzePF1988dznK1asYObMmWzdupXZs2df+ufjbdnawdVL4uLiHMCJi4vz5WVFRETsGTnScfLlc5y2bR3n9OlcnWLw4MGO4zjOFMdxcBznsPfSZenUqVPOpk2bnFOnTv3vi5s3O447UOXiH5s3n3vJrFmznMsuu8wpVKiQU79+fadXr17Otm3bMl0LcObMmeM4juN88sknzmWXXeYkJiae+/6CBQucfPnyndt4vlOnTk7p0qUzZRs1apRTrFgxJz093UlMTHQKFSrkREVFZbpO165dnY4dO2b5v3n69OnO/PnznR07djjz5s1zatas6dx0003OmTNnzh3z66+/OgUKFHBiYmIcx3GcEydOOJUqVXJWr17tOI7jjB8/3ilZsmQ2fsKusz/nWbNmOWPHjnWGDh167tzZpZU5ERERExwH3ngDBgyAF16AIUMgf/5cneqee+4B4C7cIcKLgU5eC5oDN94Imzdn77j/ateuHa1bt2bt2rVER0ezaNEiBg0axNixY+ncufNfXrpr1y5q1qyZaW/SBg0akJGRwY8//sjl/x2oXLNmTYoUKXLumHr16pGYmMihQ4c4duwYZ86coWXLlpnOnZKSwm233ZZl7Icffvjcv998883ccccdVK5cmQULFtC2bVvAXZVr0KDBuduv3bt355FHHqFx48aX/rkYomZORETE21JSoGtXmDIFPvwQeva86OiRS9m2bRs33HAD5YA7cG+1WmnmihTJ0Xv9zipUqBAtW7akZcuWvPXWW3Tr1o0+ffpcsJlzHIewLH5WWX39z8dkZGQAsGDBAq688spM38/JllkVK1akcuXK/PTTT+e+Nm/ePNq0aXPu8xUrVjBv3jwGDx58Ln9GRgbh4eF88skndOnSJdvXyy01cyIiIt4UFwft2sHatTB9Opy32pNbZc57j50HGAGkA7lb57OvevXqWc6Vq169OhMnTuTUqVPnVufWr19Pvnz5uP76688dt23bNpKSkihcuDAAGzZsoFixYlx11VVcdtllREREcPDgwYu+P+5SYmJiOHToEBUrVgQgMTGRlStXMmLEiHPHREdHk56efu7zuXPnMnDgQKKiov7SSJqiZk5ERMRbfvvN3WP14EFYsgTy0Eic72zDAm4z1w/4FrjwBDT/ERMTQ/v27enSpQs1atSgePHibNq0iUGDBmVa3Trfo48+Sp8+fejUqRN9+/bl+PHjPP/88zz++OPnbrGCe8u0a9eu9O7dmwMHDtCnTx969OhBvnz5KF68OK+88go9e/YkIyODhg0bEh8fT1RUFMWKFaNTp7+uayYmJtK3b1/atWtHxYoV2b9/P6+//jply5blgQceAGDRokVUrVqVa6+99tzrqlWrluk8mzZtIl++fNx8883e+BFmi5o5ERERb9i5Ezwe93bqunVw001eO/WePXuoX78+AHWAy3BHlPh7M1esWDH+/ve/M3ToUPbu3UtqaiqVKlWie/fuvP766xd8TZEiRVi8eDEvvvgitWvXpkiRIrRr144hQ4ZkOq5FixZUrVqVxo0bk5ycTIcOHejbt++57/fr14/y5cszYMAAfvnlF0qVKkWtWrWyvG7+/PnZsWMHkyZNIjY2looVK9KsWTNmzJhB8eLFAXfVLasm1KYwx3EcX10sPj6ekiVLEhcXR4kSJXx1WREREbNWrYL774fKleGbb8DLt9cOHTpEpUqVzn3+MLAf+I9Xr5LZ6dOn2bVrF9WqVcv0oIE/6Ny5M7GxsT7dAiw9PZ3y5cuzcOFC6tSp47Xznv0579+/n9jYWBISEnjiiScuON8uKxoaLCIikhfTp0OrVnDHHe775Ay8T2rixImZPo/Evc16wutXkqzExMTQs2dPateubTvKX6iZExERyQ3HcZ9U7dgRHnrIXZEzdNepd+/emT5vBTjAEiNXkwspX748vXv3ztYTtb6mZk5ERCSn0tPhn/+EV16B11+HSZPgAnt4ekv//v0zfV4RqIk7oiQUTZgwwae3WP2dmjkREZGcSEpyx418/DGMGgXvvpunGXLZ0atXr798LRK3mcswemXfCAsLU3OWB2rmREREsismBlq2dG+pzpkDzzzjk8sOGjToL1/zAMeB73ySIPeOHTvG008/zdVXX31uE/tWrVoRHR1tO1q2NG3alLCwsEwfHTp0sB0rE40mERERyY59+yAy0m3oVq6Ev//dZ5d+5JFH/vK1+kBx3NW5232WJOfatWtHamoqEydO5Nprr+Xo0aMsX76ckydP2o6Wbd27d+edd9459/n5c//8gVbmRERELmXzZqhXD9LSICrKp40cwJo1a/7ytQLAnbjz5vxVbGws69atY+DAgTRr1ozKlStTp04devXqRevWrbN83Y4dO2jevDmFCxemTJkyPPXUUyQmJp77fufOnbn//vt5++23KV++PCVKlODpp58mJSXl3DGO4zBo0CCuvfZaChcuTM2aNZk1a1au/ncUKVKEChUqnPsoWbJkrs5jipo5ERGRi1m0yN3J4eqr3UaualWfR6hSpcoFv+4BooE/fJTjNLAlGx+n/3t8sWLFKFasGF999RXJycnZu8bp03g8Hi677DK+/fZbZs6cybJly+jRo0em45YvX86uXbtYuXIl06ZNY86cObz99tvnvt+7d2/Gjx/PqFGj2LlzJz179uSxxx5j9erVOf7fPXXqVMqWLctNN93EK6+8QkJCQo7PYZJus4qIiGRl3Dh46in39ur06fDfvUJ9LS0t7YJf9+A+ALEMaO+DHLvJ3i3dzUAtIDw8nAkTJtC9e3dGjx5NrVq1aNKkCR06dKBGjRoXfO3UqVNJSkpi0qRJ5/Zm/fjjj7n33nsZOHDguS29ChYsyLhx4yhSpAg33XQT77zzDv/617/o168fSUlJDBkyhBUrVlCvXj0Arr32WtatW8eYMWNytF/ro48+SpUqVahQoQLff/89vXr1Ytu2bSxdujTb5zBNzZyIiMifOQ688w707QtPP+0+uRpu71fmkSNHLvj1q4HquO+b80UzdyNuo5ad485q164drVu3Zu3atURHR7No0SIGDRrE2LFj6dy5819eu2vXLmrWrHmukQNo0KABGRkZ/Pjjj+eauZo1a2bamaJevXokJiZy6NAhjh07xpkzZ2jZsmWmc6ekpHDbbbddMPN7773He++9d+7zH374gauvvpru3buf+9rNN99M1apVueOOO9iyZQu1atXKxk/DPDVzIiIi50tNhWefhc8+c8eO9OplfPTIpdx+e9brYR5gOu4QYdMpi+CuuOVUoUKFaNmyJS1btuStt96iW7du9OnT54LNnOM4WQ7mzc7A3rCwMDIy3IEtCxYs4Mo/7cgRERFxwdc988wzPPTQQ+c+v+KKKy54XK1atShQoAA//fST3zRzes+ciIjIWYmJ0KYNTJzofrz+uvVGDrjoDLZI4Hdgh6/CeEH16tU5depUlt/bunVrpu+vX7+efPnycf3115/72rZt20hKSjr3+YYNGyhWrBhXXXUV1atXJyIigoMHD/K3v/0t08f5e9yer3Tp0pmOC89iJXbnzp2kpqZSsWLF3PxPN0IrcyIiIgBHj0Lr1rBnjztH7k+36Gx6/vnns/xeI9wVs0XAhd+FZk9MTAzt27enS5cu1KhRg+LFi7Np0yYGDRpEmzZtLviaRx99lD59+tCpUyf69u3L8ePHef7553n88cfP3WIF95Zp165d6d27NwcOHKBPnz706NGDfPnyUbx4cV555RV69uxJRkYGDRs2JD4+nqioKIoVK0anTp2ylX/v3r1MnTqVu+++m7Jly/LDDz/w8ssvc9ttt9GgQQOv/Iy8Qc2ciIjIjz+6DzmcOQNr1sCtt9pOlMngwYP/sj/rWRFAc9xm7v98GSobihUrxt///neGDh3K3r17SU1NpVKlSnTv3p3XX3/9gq8pUqQIixcv5sUXX6R27doUKVKEdu3aMWTIkEzHtWjRgqpVq9K4cWOSk5Pp0KEDffv2Pff9fv36Ub58eQYMGMAvv/xCqVKlqFWrVpbXvZCCBQuyfPlyhg0bRmJiIpUqVaJ169b06dOH/Pnz5+pnYkKY4ziOry4WHx9PyZIliYuLo4ShzYhFRERyJCoK7r0XLr/cHUNy9dW2E+XYCKAnEIM7SNgbTp8+za5du6hWrVqmBw38QefOnYmNjQ2KLcDO/pz3799PbGwsCQkJPPHEE5QuXTrb59B75kREJHTNmQMtWsDNN8P69X7byPXv3/+i3/cAqcAKn6QRf6NmTkREQtPHH0O7dnDffbB4MVx2me1EWerWrdtFv38dUBX/3g1CzFEzJyIioSUjA159FZ5/Hnr2hGnToFAh26ku6uuvv77kMR7c98357L1TFk2YMCEobrF6i5o5EREJHcnJ8Nhj8MEHMHQofPgh5PP/X4W3ZuOBjEjgAPCj6TDid/Q0q4iIhIbYWGjb1n3g4Ysv4MEHbSfKtpiYmEse0wT3ydaFZN6BQYKf//91REREJK8OHYJGjWDrVli6NKAaOSDTcNysFMFt6BYZTyP+Rs2ciIgEtx07oF49SEhwn1ht1Mh2ohyrWrVqto6LBFYDp42mEX+jZk5ERILXihXQsCGULw/R0VCtmu1EubJy5cpsHecBkoFVJsOI39F75kREJDh9/jl07gzNmsGsWVDcW+N0fe+JJ57I1nE3ANfg3mq920vXzs4tXsk9b/x81cyJiEhwcRwYNAhee81t5j75BAoUsJ0qT4YPH57ldl7nC8NdnfPGvLnw8HDy5cvH/v37vXA2uRjHcUhPT8/169XMiYhI8EhPhxdegJEj4a23oG9fCAuznSrPstPIneUBRgM/A3/LwzULFizITTfdRFpaGnFxccyfP5+iRYsSERGRh7PKhaSnp5OWlpbr16uZExGR4HD6NDzyCMyf767Gde9uO5HX9O/fP9sNXXOgAO6t1h55vG7BggUpWLAgZ86c4dSpU6SmpqqZy6MNGzZQt27dC34vOTk5V+dUMyciIoHvxAm4917Yvh3mzoXWrW0n8qoePbLflhUHGuKdZu6siIgISpQoQXx8PCkpKV46a2iqWrUqCQkJWX6/RIkSOW6Y1cyJiEhg27sXIiPdocCrVkHt2rYTed2UKVNy1NB5gLeBM4A3NiorWrQoDz/8cK5XjuR/xo8ff9EHWiIiIihatGiOzqlmTkREAte338I990DJku7okeuus53IiCZNmuTo+EjgVWAt0NJLGYoWLZrjJkP+6q677qJ06dJePafmzImISGBasACaNoVrr3W36ArSRg5g7969OTr+ZuBKtBuEP8ppLbNDzZyIiASeTz+FNm2gZUtYvhzKlrWdyKiCBQvm6PizI0rUzPmfnNYyO9TMiYhI4HAcd+TIU0/B00/Dl19CkSK2Uxl3+eWX5/g1HuAH4KDX00he5KaWl6JmTkREAkNqKnTpAv36wfvvw8cfQ/78tlP5xObNm3P8mjuB/Gh1zt/kppaXEuY4juP1s2YhPj6ekiVLEhcXR4kSJXx1WRERCXQJCfDgg7ByJYwfD48+ajuRTx09ejRXKzqNgLLAHK8nktzKbS0vRitzIiLi3w4fhsaNYcMGWLQo5Bo5gE8//TRXr/MAywFNhvMfua3lxWhlTkRE/NeuXe4MubQ0+OYbqFHDdqKAsgW4HVgF5Gy4iQQSrcyJiIh/WrcOGjSAYsXcGXIh3Mj1798/V6+7FSgPLPRmGMmT3NbyYrQyJyIi/mfWLHjsMahXD+bMgVKlbCeyKikpicKFC+fqtU8A24Gt3gwkuZaXWmZFK3MiIuJf/v1veOgheOAB9z1yId7IAYwcOTLXr40EtgG/ey2N5EVeapkVNXMiIuIfMjLg5ZehZ0/4179g6lTI4Ybjweq+++7L9Wtb4g4RXuy1NJIXeallVtTMiYiIfWfOQMeOMHQoDB8OAwdCPv2KOmvLli25fm1ZoA6aN+cv8lLLrIR7/YwiIiI58ccfcP/9sHGju6PDAw/YTuR3ypUrl6fXe4BhQBr6xW9bXmt5Ifprj4iI2HPggPvE6vffu3usqpG7oIg83m72ALHARm+EkTzJay0vRM2ciIjYsXWr+7TqmTMQFQX169tO5Lf27t2bp9fXBkqjESX+IK+1vBA1cyIi4ntLl7q7OlxxhdvI3XCD7UR+rWnTpnl6fX7gLvS+OX+Q11peiJo5ERHxrUmT4O67oWFDWLUKKlSwncjvTZ48Oc/n8ACbgGN5PpPkhTdq+WcaGiwiIr7hODBgALzxBnTtCqNGQYECtlMFhIyMDPLl8eneI0BFYDLwmDdCSa54o5Z/ppU5ERExLy0Nnn3WbeTefhs+/VSNXA689957eT5HBeA2dKvVNm/U8s+0MiciImadOuXOkPvmG7eJe/JJ24kCjrdWc94APgGOotUcW7QyJyIigeXYMWjeHFasgPnz1cjl0oABA7xyHg9wAtjslbNJbnirlufT7EARETHj55/B44HERFizBmrVsp0oYD3++ONeOU9doATurdbaXjmj5JS3ank+rcyJiIj3/ec/7gy58HCIjlYjl0erVq3yynkK4O7Vqnlz9nirludTMyciIt41bx40awbXXw/r10OVKrYTBbzrrrvOa+fyAP8BTnrtjJIT3qzlWWrmRETEe0aPdrfkioyEZcugTBnbiYJCcnKy187lATKAZV47o+SEN2t5lpo5ERHJO8eB1193x4/06AFffAGFC9tOFTSOHz/utXNdBdyMbrXa4s1anqUHIEREJG9SUqBbN5g8GQYPhpdegrAw26mCSi0vv+fQA0wBHECV8i1v1xK0MiciInkRHw+tW8OMGTBtGrz8sho5A+bNm+fV80Xi7gixzatnlezwdi1BQ4NFRCS3fvvN3WP1wAH46iswsIG4uJKSkijsxdvWyUAZoDfwmtfOKtnh7VqCVuZERCQ3du50R4/88Yf7xKoaOaM+/PBDr54vAmiBtvaywdu1BK3MiYhITq1eDW3aQOXK7hZdV15pO5HkwijgBSAGd5CwBC6tzImISPbNmAF33QV33OHu6qBGzif69+/v9XN6gDRgudfPLBdjopZq5kRE5NIcBz78EDp0gIceclfkSpa0nSpkdO/e3evnrALcgEaU+JqJWqqZExGRi0tPh5494ZVXoFcvmDQJCha0nSqkzJ0718h5Pbjvm/PZ+63ESC3VzImISNaSkuDhh2H4cBg5Et57T6NHLLj99tuNnDcSOATsMnJ2uRATtdTQYBERubCYGPdBhy1bYM4cuO8+24lC1tGjR42ctzFQCPdWa3UjV5A/M1FLrcyJiMhf7dsHDRrAjz/CihVq5CxLSUkxct7CQFM0osSXTNRSzZyIiGS2ZYs7Qy4tDaKioG5d24lC3nXXXWfs3JHAGiDR2BXkfCZqqWZORET+Z9EiaNwYrr7abeSqVrWdSIDVq1cbO7cHSAFWGbuCnM9ELTU0WEREXOPHQ/fuEBkJ06dD0aK2E8l/xcbGUqpUKSPndoDrgLuBj41cQc5nopZamRMRCXWOA++8A126QNeu7sMOauT8yscfm2uzwnBvtS5EI0p8wUQttTInIhLK0tLg2Wdh7Fh49113jpxGj4Scr4H7gD2AbqwHHq3MiYiEqsREd/TIhAkwcSK8/roaOT9lYguo8zUDCqKnWn3BRC21MiciEoqOHoXWrWHPHvjyS2jZ0nYiuYi4uDhKGt4+7U7chu4bo1cRE7XUypyISKjZs8cdPfL777BmjRq5ADBp0iTj1/DgPtGaZPxKoc1ELdXMiYiEkqgoqF8fChWC6Gi49VbbiSQbmjVrZvwakbiN3BrjVwptJmqpZk5EJFTMmQMtWkD16rB+PVSubDuRZNNPP/1k/BrVgavQ++ZMM1FLNXMiIqFgxAho1w7uvReWLIHLLrOdSHKgcOHCxq9xdkSJmjmzTNRSzZyISDDLyIBXX4UePaBnT3cYcKFCtlNJDpUpU8Yn1/EAu4H9PrlaaDJRSzVzIiLBKjkZHn8cPvgAhg6FDz+EfPpjPxBt3brVJ9dpAYSj1TmTTNRSo0lERIJRbCy0bes+8DB5MrRvbzuR5MGRI0eoUKGCT67VBCgFzPXJ1UKPiVrqr2giIsHm0CFo1Ai2boWlS9XIBYGxY8f67FoeYDmQ4rMrhhYTtdTKnIhIMNmxAyIjITwcFi6EatVsJ5IAsxW4DViBuzOE+D+tzImIBIsVK6BhQyhXzp0hp0YuaJjezut8NYEKwEKfXTG0aDsvERG5sM8/h86doVkzmDULihe3nUi86MyZMxTy4VPInYEtwHafXTF0mKilVuZERAKZ48DAgfDoo+7H/Plq5ILQ8OHDfXq9SGAH8KtPrxoaTNRSzZyISKBKT4fnn4fXXoM334Rx46BAAdupxID777/fp9e7E7dBWOzTq4YGE7VUMyciEoiSkuDBB2H0aPjkE3jnHQgLs51KDNm8ebNPr1cGqIPmzZlgopbhXj+jiIiYdeIE3HcfbNsGc+dC69a2E4lhvpoxd75IYAiQhpoFbzJRS63MiYgEkl9+gfr14eefYdUqNXIhIjzc9+2UB4gDNvj8ysHNRC3VzImIBIpvv4V69dx/j46G2rXt5hGf2bdvn8+veQdQFt1q9TYTtVQzJyISCL75Bpo2hWuvhfXr4brrbCcSH2rcuLHPr5kPuAvNm/M2E7VUMyci4u/GjnXfI9eyJSxf7g4FlpDy+eefW7muB3fe3FErVw9OJmqpocEiIv7KcaBvX/dJ1eeeg48+gvz5bacSC9LT08lvofbHgMuBicATPr96cDJRS63MiYj4o9RU6NLFbeTefx8+/liNXAgbMGCAleuWB25H75vzJhO11MqciIi/SUiA9u3dvVbHj3d3dhCx5E1gFO6tVv11wj9pZU5ExJ8cPgxNmrhPqy5cqEZOADObs2eXB4gBNllLEFxM1FLNnIiIv9i1yx09cuwYrF0LLVrYTiR+olOnTtau/XegFLrV6i0maqlmTkTEH6xbBw0aQLFi7qpcjRq2E4kfWb58ubVrhwMt0YgSbzFRSzVzIiK2ffkl3Hkn1KzpNnWVKtlOJH7m+uuvt3p9D7AR93ar5I2JWqqZExGxadgw92GHBx6ARYugVCnbicQPJSUlWb2+B3CApVZTBAcTtVQzJyJiQ0YGvPwy/POf8K9/wdSpEBFhO5X4qZgYu2tiVwA10K1WbzBRS9/v3CsiEurOnIFOnWDmTBg+HHr0sJ1I/FzNmjVtR8CDOzw4A60E5YWJWqoeIiK+9Mcf0KoVzJvnvldOjZxkw/z5821HIBJ31txWyzkCnYlaamiwiIivHDwIkZFw5Ah8/TXUr287kQSI06dPU6RIEasZUoAyQC/gdatJApuJWmplTkTEF7Zuhbp14fRpiIpSIyc5MmTIENsRKAi0QPPm8spELbUyJyJi2tKl0K4dXH89zJ8PFSrYTiSSK2OAfwAncAcJi3/QypyIiEmTJ8Pdd7sDgVetUiMnuWJzO6/zeYB0wN4I48BnopZamRMRMcFxYMAAeOMN6NoVRo2CAgVsp5IAdfz4ccqVK2c7BgDVgQbAp7aDBCgTtdTKnIiIt6WlwXPPuY1c377w6adq5CRPZs+ebTvCOR7ceXM+WwkKMiZqqWZORMSbTp2Ctm3dBu6zz6BPHwgLs51KAlzt2rVtRzjHA/wG7LQdJECZqKWGBouIeMuxY3DvvbBzp/ugg8djO5EEicOHD9uOcE5joDDu6tzNlrMEIhO11MqciIg3/PyzO27kwAFYvVqNnHhVenq67QjnFAKaoREluWWilmrmRETy6j//gXr1IDwcoqPh9tttJ5Igc80119iOkEkksBZItB0kAJmopZo5EZG8mDcPmjVzZ8itXw9VqthOJEFo7dq1tiNk4gFSgRW2gwQgE7VUMyciklujR8MDD7hbdC1bBmXK2E4kQapjx462I2TyN+A6dKs1N0zUUs2ciEhOOY47duTZZ6FHD/jiCyhc2HYqCWIjR460HeEvItGIktwwUUsNDRYRyYmUFOjWzd3ZYfBgeOkljR6RkLQAuAfYDdxgOUuo08qciEh2xcdD69YwYwZMmwYvv6xGTnzCX7bzOl9TIALdas0pbeclImLL77+77407cAC++gqaNrWdSEJIfHy8X/7evAt3VUgNXfaZqKVW5kRELmXnTqhbF06edJ9YVSMnPjZhwgTbES7IA6wGkmwHCSAmaqlmTkTkYlavhoYN4bLLYMMGuOkm24kkBN155522I1xQJHAGWGU5RyAxUUs1cyIiWZkxA+66yx0CvGYNXHml7UQSonbv3m07wgXdCFyNbrPmhIlaqpkTEfkzx4EhQ6BDB3joIfjmGyhZ0nYqCWFFixa1HeGCwnBX59TMZZ+JWqqZExE5X3o69OzpPqnaqxdMmgQFC9pOJSGudOnStiNkyQPsAX6xHSRAmKilmjkRkbOSkuDhh2H4cBg5Et57T6NHxC9s377ddoQsNQfC0epcdpmopUaTiIiA+6TqfffBli3uDLk2bWwnEjnn999/54orrrAdI0vNgOLAPNtBAoCJWmplTkRk/35o0AB+/BFWrFAjJ35n3LhxtiNclAdYASTbDhIATNRSK3MiEtq2bHF3dShaFBYuhKpVbScSCTjbgFuBZUALu1FCklbmRCR0LV4MTZpApUoQFaVGTvyWP27ndb4aQEVgoe0gAUDbeYmIeMv48dC9u7tF1/Tp7sqciJ9KTk4mIiLCdoyL6gJsBL63HcTPmailVuZEJLQ4DrzzDnTpAl27wpw5auTE7w0bNsx2hEuKBHYCh2wH8XMmaqlmTkRCR1oaPPUU9OkD/fvD6NEQHm47lcgltWvXznaES7oTt6nQiJKLM1FLNXMiEhoSE92nVCdMcD/eeEMz5CRgbNy40XaES7oMqIuauUsxUUv9lVREgt/Ro3DPPbB7NyxY4O63KhJAKlasaDtCtkQCHwCpQAHLWfyViVpqZU5EgtuePVCvHvz2G6xdq0ZOAlL+/PltR8gWDxAPRNsO4sdM1FLNnIgEr+hoqF8fChVy//3WW20nEsmVAwcO2I6QLbWAcuhW68WYqKWaOREJTl99Bc2bQ/XqsG4dVK5sO5FIrjVs2NB2hGzJB7RC8+YuxkQt1cyJSPAZMQLatoV774UlS6B0aduJRPJk+vTptiNkmwfYChy2nMNfmailhgaLSPDIyIDXX4eBA6FnTxg8GPLp76wS+NLS0ggPkDE6x4HLgXFAZ7tR/JKJWupPOREJDsnJ8PjjMGgQDBnifqiRkyDx/vvv246QbeWAO9D75rJiopZamRORwBcb695WjYqCyZOhfXvbiURCWh9gOO4qXWA8hxvY9NdWEQlsv/4KjRrB1q2wdKkaOQlKJjZnN8kD/IG7V6tkZqKWauZEJHDt2AF160J8PKxf7zZ1IkGoc+fOtiPkSB3cHSF0q/WvTNRSzZyIBKYVK6BhQyhXzp0hV62a7UQixixdutR2hBzJD9yFRpRciIlaqpkTkcDz+efg8bircmvWwBVX2E4kYlS1APzLigfYhPu+OfkfE7VUMycigcNx3KdVH30UHnkE5s+H4sVtpxIxLiEhwXaEHGsFOEBgrSmaZ6KWauZEJDCkp8Pzz8Orr8Kbb8L48VBAW3lLaIiNjbUdIccqAreiW61/ZqKWgTGBUERCW1KSuxI3bx6MGQNPPWU7kYhP3XLLLbYj5IoH+AzIQKtHZ5mopX62IuLfTpyAFi3cbbnmzlUjJyFp4cLAXN+KxH3P3He2g/gRE7XU0GAR8V+//AKRkfDHH7BgAdSubTuRiBWJiYkUK1bMdowcSwXKAP8H9LacxV+YqKVW5kTEP23aBPXqufutRkerkZOQ9u9//9t2hFwpANyJ5s2dz0QttTInIv7nm2/goYfgllvc98mVK2c7kYjk0qfAM8AJ3EHC4n1amRMR/zJ2LNx3H9x5JyxfrkZOhMDbzut8HtwHIJbZDuInTNRSK3Mi4h8cB/r2hXfegWefheHDIb+26BYBOHHiBGXLlrUdI9duBv6O+2RrqDNRS63MiYh9qanQtavbyL3/PowYoUZO5DyzZs2yHSFPPLjvm/PZ6pEfM1FLNXMiYldCAtx7L0yZApMnu0OBw8JspxLxK3Xr1rUdIU88wO/ADttB/ICJWqqZExF7Dh+GJk3cp1UXLoTHHrOdSMQv/frrr7Yj5EkjoAjaDQLM1FLNnIjYsXu3O3rk2DFYu9YdDCwiF+TDt7cbEQE0RyNKwEwt1cyJiO+tWwf160OxYu6qXI0athOJ+LVKlSrZjpBnkcA6wPvbzAcWE7VUMycivvXll+7YkZo13aYuCH5JiZgWHR1tO0KeeYA0YLntIJaZqKWaORHxnWHDoH17eOABWLQISpWynUgkIDz00EO2I+TZtUBVdKvVRC3VzImIeRkZ8Mor8M9/uv+cOhUiImynEgkYo0aNsh3BKyJxH4II7HcA5o2JWmposIiYlZwMnTrBF1+4K3PPP287kYhYshC4G/gBqGY5SzDRypyImPPHH9CqFcydC7NmqZETyaVA3s7rfE1wn2wN5Vut2s5LRALHwYMQGQlHjsC8edCgge1EIgErISGB4sWL247hFWf3al1iO4glJmqplTkR8b5t29wZcqdPQ1SUGjmRPPrss+DZ1dQDrAZO2Q5iiYlaqpkTEe9atgwaNYIKFdwZcjfcYDuRSMC76667bEfwmkggBbehC0UmaqlmTkS8Z/Jk99ZqgwawerXb0IlInu3atct2BK+5HriG0N3ay0Qt1cyJSN45DgwYAE884X7Mm+fu7iAiXhEs75cDCMO91RqqD0GYqKWaORHJm7Q0eO45eP116NsXxo6FAgVspxIJKiVLlrQdwasigZ//+xFqTNRSzZyI5N6pU9C2LXz6KXz2GfTpA2FhtlOJBJ2dO3fajuBVzYAChObqnIlaqpkTkdw5fhyaN4cVK+Drr6FLF9uJRIKWx+OxHcGrigONCM1mzkQt1cyJSM79/DPUrw8HDrgPOkRG2k4kEtTGjRtnO4LXeYAVwBnbQXzMRC01NFhEcmbjRrjnHihdGhYuhCpVbCcSkQC0A6iBOzy4peUsgU4rcyKSfV9/DU2bQtWqsH69GjkRHwmW7bzOdzNwJaE3okTbeYmIPWPGuE+ttmkDU6dC4cK2E4mEjNTUVAoE4VPi3YAo4AfbQXzIRC21MiciF+c48MYb8Mwz8I9/wMyZauREfGzIkCG2IxgRCewCDtgO4kMmaqlmTkSylpICnTvDe+/BBx/AsGGQP7/tVCIhp3379rYjGNECyE9oPdVqopZq5kTkwuLjoXVrmD4dpk2DV17RDDkRS6Kjo21HMKIUUI/QauZM1DLc62cUkcD3++9w992wfz8sXuw+9CAi1lSqVMl2BGMigQFAClDQchZfMFFLrcyJSGY//AB160JMDKxbp0ZORIzyAIm4D0JI7qiZE5H/WbMGGjSAyy6DDRvg5pttJxIR4NChQ7YjGHMrcDmhc6vVRC3VzImI64svoGVLuP12t6m78krbiUTkv+rVq2c7gjH5gFaEzrw5E7VUMyciMGQIPPwwtG8P33wDJUvaTiQi55k5c6btCEZ5gO3A77aD+ICJWmposEgoS0+Hl192R4689po7gkRPrIr4nWAdGnxWDFAO+Ax40nIW0zQ0WES858wZdzVu+HAYMQIGDFAjJ+KnBg4caDuCUWWAOoTGrVYTtdTKnEgoOnnS3ZZr82Z3hlybNrYTiUiI6wsMA46juWk5pZU5kVCzf7/7xOru3bBihRo5kQBgYnN2fxMJxAL/sZzDNBO1VDMnEkq++w7q1XO36YqKcufJiYjf69Kli+0Ixt2Be7s12EeUmKilmjmRULF4MTRuDJUqQXQ0VK1qO5GIZNOiRcHe4rh7tN5F8DdzJmqpZk4kFEyYAPfc4+7msHIllC9vO5GI5MBNN91kO4JPeIBNwDHbQQwyUUs1cyLBzHGgXz948kno0gXmzIGiRW2nEpEciouLsx3BJ1r9959LrKYwy0Qt1cyJBKu0NHj6aXjrLejfH0aPhnA9IyYSiBISEmxH8InLgVoE94gSE7XUn+wiwSgx0Z0ht2SJe4u1UyfbiUQkD6pVq2Y7gs94gDFAOu776IKNiVpqZU4k2Bw9Cs2aufurLligRk4kCCxZEsw3HjOLxN0RYovtIIaYqKWGBosEkz17IDISTp+GhQvh1lttJxIRL0hISKB48eK2Y/hEGlAWeAl4y3IWE0zUUitzIsEiOhrq14eICNiwQY2cSBAZNmyY7Qg+Ew7cSfCOKDFRS63MiQSDuXOhQweoXRu++gpKl7adSEQk1z4DnsLd2kt/ml2aVuZEAt2IEdC2Ldx7r/vAgxo5kaATCtt5na8VkAEstR3EABO11MqcSKDKyIDXX4eBA6FnTxg8GPLp72ciwSgmJoYyZcrYjuFTNYDbgfG2g3iZiVrqT36RQJScDI8/DoMGwZAh7ocaOZGg9cUXX9iO4HMe3PfNZdgO4mUmaqk//UUCTVyc+8Tql1/CjBnuqpyIBLV69erZjuBzHuAIsN12EC8zUUs1cyKB5NdfoVEj+O47WLoU2re3nUhEfODQoUO2I/hcQ6AowbcbhIlaqpkTCRTffw/16rkrc+vXu02diISEsLAw2xF8riDQguAbUWKilmrmRALBypXQsCGULevOk6te3XYiEfGhq666ynYEKzxAFOD9rentMVFLNXMi/m7aNGjVCurUgdWr4YorbCcSER/bsGGD7QhWeHB3hFhuO4gXmailmjkRf+U48MEH8Mgj7seCBaCRPiIh6cEHH7QdwYoqwA0E161WE7VUMyfij9LT4YUX4P/+D3r3hvHjoUAB26lExJLRo0fbjmBNJG4z57OhuIaZqKWGBov4m6QkePRRd4uuUaPgqadsJxIRsWYx7u3W74GbLGfxV1qZE/EnJ05AixaweLHbzKmRExFCbzuv8zUGChE8t1q1nZdIMPvlF3cY8B9/wPz57gMPIiJAYmIixYoVsx3DmruBFGCZ7SBeYKKWWpkT8QebNrkz5DIy3NEjauRE5Dyffvqp7QhWeYC1QKLtIF5gopZq5kRsW7gQmjaFKlUgKgquu852IhHxM5GRkbYjWBWJuzK3ynIObzBRSzVzIjZ99hnce6/7PrkVK6BcOduJRMQP7dixw3YEq/4GXEtwbO1lopZq5kRscBzo0we6dXMfcpg9G4oUsZ1KRPxUqVKlbEewKgz3VutCAn9EiYlaqpkT8bXUVOjaFd55BwYMgBEjIH9+26lExI8VL17cdgTrIoF9wE+2g+SRiVqqmRPxpYQE97bqlCkweTK89hqE4AbaIpIzu3btsh3BumZAQQJ/RImJWqqZE/GVI0fcBx2io92HHh57zHYiEQkQLVu2tB3BuqK4M+cCvZkzUUs1cyK+sHu3O3rkyBFYu9Z94EFEJJsmTJhgO4Jf8AArgSTbQfLARC01NFjEtPXr4b77oGJFd0WuUiXbiUREAtJO4Gbc1blWlrP4E63MiZj05ZfuKlyNGrBunRo5EcmVUN7O63zVgUoE9ogSbeclEkg++gj++U94+GGYMAEiImwnEpEAlZaWRnh4uO0YfuEpYA2w23aQXDJRS63MiXhbRga88gq8+KL7z6lT1ciJSJ4MHjzYdgS/4QF+xB1TEohM1FLNnIg3JSfDI4/AkCHuytygQZBP/zcTkbzp0KGD7Qh+owUQTuA+1WqilvotI+Itf/wBrVrB3LkwaxY8/7ztRCISJNatW2c7gt8oCdQncJs5E7VUMyfiDQcPQqNGsGMHLFsGbdvaTiQiQaRy5cq2I/iVSGA5kGI7SC6YqKWaOZG82rbNnSF36pQ7hqRBA9uJRCTIpKen247gVzzAKSAQ1ytN1FLNnEheLF/urshVqODu7HDjjbYTiUgQOnz4sO0IfqUmUIHAvNVqopZq5kRya8oU8HjclbjVq92GTkTEgDp16tiO4FfCcFfnAnHenIlaqpkTySnHgQED4PHH4YknYN48KFbMdioRCWJffvml7Qh+xwN8D/xqO0gOmailhgaL5ERamvuU6ujR0LcvvPUWhIXZTiUiQS45OZkIzavM5CRQDvgE6Go5S06YqKVW5kSy6/Rp9ynVTz+FsWOhTx81ciLiEx988IHtCH6nNPB3Au9Wq4laamVOJDuOH4d774Xvv4eZMyEy0nYiEZGQ9w7wIXACKGA5i01amRO5lL17oX592L/ffdBBjZyI+JiJzdmDQSQQD2ywHSQHTNRSzZzIxWzc6M6Qy5/fHT1y++22E4lICOrSpYvtCH7pdqAsgTWixEQt1cyJZGX+fGjaFKpWdYcBV6liO5GIhKiFCwPtnWG+kQ9oRWA1cyZqqWZO5ELGjIE2bdw5csuWQZkythOJSAirUaOG7Qh+ywNsAY7YDpJNJmqpZk7kfI4DvXvDM8/AP/7hPuxQuLDtVCIS4k6ePGk7gt+667//XGI1RfaZqKWaOZGzUlKgc2d491344AMYNsx9r5yIiGWnTp2yHcFvlQfuIHBGlJioZbjXzygSiOLj4cEHYdUq+Pxz6NjRdiIRkXNu1L7PF+UBRgLpgL//FdxELbUyJ/L779C4sfvk6uLFauRExO8sW7bMdgS/Fom7I8Qm20GywUQtNTRYQtsPP7hz4zIyYOFCuPlm24lERP4iPj5evzcvIg13a68Xgb52o1ySiVpqZU5C15o10KABlCzpzpBTIycifuqjjz6yHcGvhQMtCYwRJSZqqZU5CU0zZ8Jjj0HDhjB7ttvQiYhIwBoPdAWOA6E2TEorcxJ6hg6Fhx6C9u3dW6tq5ETEz2k7r0trBTj4/4gSE7XUypyEjowMePll+Pe/4bXX3BEk+fT3GRHxfydPnqR06dK2Y/i9msCtwETLOS7GRC31m0xCw5kz8PDD8NFHMGIEDBigRk5EAsa0adNsRwgIkbjvm8uwHeQiTNRSv80k+J08CS1bwoIF7vvjnnvOdiIRkRxp1KiR7QgBwQMcA7ZaznExJmqpZk6C2/797hOru3bBihXufqsiIgFm//79tiMEhPpAcfz7qVYTtVQzJ8Hru++gXj13m66oKKhb13YiEZFcya+tBbOlINAC/97ay0Qt1cxJcFqyxN3VoVIld4bc9dfbTiQikmsVK1a0HSFgeIBoINZyjqyYqKWaOQk+EyZA69bQpAmsXAnly9tOJCKSJ99++63tCAHDg7tHq79ugGailmrmJHg4DvTvD08+6X589RUULWo7lYhInrVt29Z2hIBRGaiG/75vzkQt1cxJcEhLg6efhjffhH79YMwYCA+3nUpExCvGjBljO0JAOTuixGeDdHPARC01NFgC36lT7gy5xYvh00+hc2fbiURExKKlwF3AduAWy1l8QStzEtiOHoWmTWH1aneOnBo5EQlC2s4rZxoBRfDPW63azkvkfHv2QGQknD4N33wDt91mO5GIiBGnT5+mSJEitmMElHuA08AK20H+xEQttTIngWnDBqhfHyIi3H9XIyciQWzUqFG2IwQcD7AOSLAd5E9M1FLNnASeuXOhWTOoXh3WrYPKlW0nEhEx6p577rEdIeBEAqnASttB/sRELdXMSWAZORLatoV77nEHA5cubTuRiIhx27Ztsx0h4FwH/A3/2w3CRC3VzElgyMiA116Df/wDXngBZsyAQoVspxIR8YkyZcrYjhCQPPjfiBITtVQzJ/4vJQWeeAIGDYIhQ2DoUMin/3RFJHQULlzYdoSAFAnsB360nON8Jmqp34ji3+Li3CdWZ850V+N69rSdSETE5/bs2WM7QkBqAkTgXyNKTNRSzZz4r19/hUaNYMsWWLoU2re3nUhExIoWLVrYjhCQigKN8a9mzkQt1cyJf/r+e6hXz12ZW78eGje2nUhExJqJEyfajhCwIoFVuDPn/IGJWmposPiflSvhgQfgmmvcYcBXXGE7kYiIBKhdQHXgG9zGLhhpZU78y7Rp4PFAnTqwZo0aORERtJ1XXtwIVMZ/brVqOy8JXo4DgwfD//2f++Tq2LFQoIDtVCIifiE9PZ38+fPbjhGwnsHd1ssfHiMxUUutzIl96enw4otuI9e7N0yYoEZOROQ8gwYNsh0hoHmAn4C9toNgppZq5sSupCT3KdURI2D0aOjXD8LCbKcSEfErjzzyiO0IAa0FEI5/3Go1UUs1c2JPTAy0aAGLF7v7rT79tO1EIiJ+ac2aNbYjBLTiQEP8o5kzUUs1c2LHvn1Qvz78/LP79Ko2kRYRyVKVKlVsRwh4kbjvm0u2nMNELdXMie9t3gx167r7rUZFuU+uiohIltLS0mxHCHge3Flzay3nMFFLNXPiWwsXQpMmUKWK28j97W+2E4mI+L0jR47YjhDwbgGuwP6tVhO1VDMnvvPZZ3Dvve775FasgHLlbCcSEQkIt99+u+0IAS8Md3VuoeUcJmqpZk7Mcxzo2xe6dYOnnoIvv4QiRWynEhEJGF999ZXtCEHBA/wAHLSYwUQtNTRYzEpNdZ9SHT8eBgyAV1/V6BERkRw6c+YMhQoVsh0j4MUCZYFRQHdLGUzUUitzYk5iItx3H0yZApMnw2uvqZETEcmFwYMH244QFEoBdbF7q9VELbUyJ2YcOQKtW8NPP8GcOe775ERERCzrDwwCYoBg2WtIK3PifT/+CPXquQ3d2rVq5ERE8sjE5uyhKhJIAKIsXd9ELdXMiXetX+8OAy5aFDZsgJo1bScSEQl43bp1sx0haNwGlMPeiBITtVQzJ94ze7a7CnfLLbBuHVSqZDuRiEhQ+Prrr21HCBr5gFbYa+ZM1FLNnHjH8OHw4IPwwAPuXqulStlOJCISNG699VbbEYJKJLAVOGzh2iZqqWZO8iYjA/71L3jhBXj5ZZg6FSIibKcSEQkqMTExtiMElbtwhwgvtnBtE7VUMye5l5wMjz4KH34Iw4bBBx9APv0nJSLibUlJSbYjBJWyQG3s3Go1Uctwr59RQkNsLNx/v/uQw8yZ0K6d7UQiIkGratWqtiMEHQ8wHEjDt82QiVpqGUVy7tAhaNgQduyA5cvVyImIGLZy5UrbEYKOB/gD+NbH1zVRSw0NlpzZvh0iI6FgQVi4EG680XYiEZGgFxcXR8mSJW3HCCrpuCNKegDv+PC6JmqplTnJvuXL3RW5ChUgOlqNnIiIjwwfPtx2hKCTH/dBCF+/b85ELbUyJ9kzZQp06eLOkfviCyhe3HYiERGRPJkIPAkcxV2lC1RamZOLcxx4/314/HF47DGYN0+NnIiIj2k7LzPuAhxgiQ+vaaKWWpmTrKWnw/PPw6hR0KeP+xEWZjuViEjIiY2NpZSGsRtxG3AzMNlH1zNRS63MyYWdPg1t28Inn8DYsdC3rxo5ERFLpkyZYjtC0IrEHR6c4aPrmailmjn5q+PHoXlz94GHr7+Grl1tJxIRCWlNmjSxHSFoeYDjwBYfXc9ELdXMSWZ790L9+rB/P6xe7Y4hERERq/bu3Ws7QtCqB5TAd0+1mqilmjn5n40boV49d0uu6Gi4/XbbiUREBChYsKDtCEGrAHAnsNBH1zNRSzVz4po/H5o1g6pVISoKqlSxnUhERP7r8ssvtx0hqHmADbg7QphmopZq5sR9yKFNG2jVCpYtgzJlbCcSEZHzbN682XaEoObBfQBiqQ+uZaKWauZCmePAm2/C00/Dc8/BzJlQuLDtVCIi8idt2rSxHSGoVQJuwjfvmzNRSzVzoSo1FZ58Evr3h0GD4KOPIH9+26lEROQCPv30U9sRgl4kbjNneviuiVpqaHAoio+HBx+EVatg4kTo2NF2IhEREauW4z4IsRWoaTdKjmllLtT8/js0aeI+ubp4sRo5EZEAoO28zGsIFMX8rVZt5yV588MP7ty4jAz45hu45RbbiUREJBuSkpIorPc0G3cfkACsNHgNE7XUylyoWLsWGjSAkiXdGXJq5EREAsbIkSNtRwgJHmAdEG/wGiZqqWYuFMycCXfeCbVquU3dVVfZTiQiIjlw33332Y4QEjxAGrDC4DVM1FLNXLAbOhQefhjat4eFC92VORERCShbtvhq59DQdi1wPWZ3gzBRSzVzwSojA3r2hJdegldfhUmTQNvBiIgEpHLlytmOEDI8mB1RYqKWauaC0Zkz0KGDOztuxAgYMMDdb1VERAJSRESE7QghIxI4COw2dH4TtdRv+GBz8iS0bAlffw2zZ7s7O4iISEDbu3ev7QghowlQCHO3Wk3UUs1cMDlwABo2hF27YMUKd79VEREJeE2bNrUdIWQUxm3oTM2bM1FLNXPB4rvvoG5dSE6GqCioV892IhER8ZLJkyfbjhBSIoHVwCkD5zZRSw0NDgZLlkC7dnDjjTB/Plx+ue1EIiLiRRkZGeTTe5995kfgRmA+0NrL5zZRS/2XEegmToTWrd0tulatUiMnIhKE3nvvPdsRQsr1QBXM3Go1UUutzAUqx4F334U334Tu3WHkSAgPt51KREQM0Mqc7z0HLAF+9vJ5tTInrrQ0eOYZt5Hr1w/GjFEjJyISxAYMGGA7QsjxAHvxfjNnopZq5gLNqVNw//0wbhyMHw+9e0NYmO1UIiJi0OOPP247QshpDhTA+yNKTNRSzVwgOXYMmjaF1avdBx06d7adSEREfGDVqlW2I4ScYkAjvP++ORO1VDMXKH76yR038uuvsGYNtGplO5GIiPjIddddZztCSIoEVgJnvHhOE7VUMxcINmxwG7mCBd1/v+0224lERMSHkpOTbUcISR4gCVjjxXOaqKWaOX83dy40bw7VqsH69VC5su1EIiLiY8ePH7cdISTdBFyJd2+1mqilmjl/NmoUtG3rzpFbuhRKl7adSERELKhVq5btCCEpDPdWqzcfgjBRSzVz/igjA3r1gueegxdegBkzoFAh26lERMSSefPm2Y4QsjzAbmC/l85nopYaGuxvUlKgSxeYOhWGDIGePW0nEhERy5KSkihcuLDtGCEpFigLjACe9sL5TNRSK3P+JC4O7r4bZs50V+PUyImICPDhhx/ajhCySgH18d6tVhO11Mqcv/j1V7eRO3TIfeihcWPbiURERAR4DxgAxAAFLWe5EK3M+YPvv3dHj8TFuU+sqpETEZHz9O/f33aEkBYJJAJRXjiXiVqqmbNt1Spo2BDKlIHoaKhe3XYiERHxM927d7cdIaTVBC7HO7daTdRSzZxN06e7OznUqePu6nDFFbYTiYiIH5o7d67tCCEtH9AK78ybM1FLNXM2OA4MHgwdO0KHDu4+q3oPoYiIZOH222+3HSHkRQLbgd/yeB4TtVQz52vp6fDii/Cvf8Ebb8CECe42XSIiIlk4evSo7QghryVu07Q4j+cxUUs1c76UlAQPPQQjRsDo0dC/P4SF2U4lIiJ+LiUlxXaEkFcGqEPeb7WaqGW4188oFxYTA/fdB999B199BffeazuRiIgEiOuuu852BMHdDeLfQBq5b6BM1FIrc76wbx/Urw8//eQ+vapGTkREcmD16tW2IwhuMxcL/CcP5zBRSw0NNm3zZmjdGooXh4UL4W9/s51IREQCTGxsLKVKlbIdI+Sl444oeQbI7bQ4E7XUypxJCxdCkyZwzTUQFaVGTkREcuXjjz+2HUGA/MBd5O19cyZqqZU5Uz77DJ5+2t2ia/p0KFLEdiIRERHJo8nAE8BRoLzlLGdpZc7bHAf69oVu3aB7d5g9W42ciIjkibbz8h93/fefuR1RYqKWWpnzptRUeOYZGDcOBgyAV1/V6BEREcmzuLg4SpYsaTuG/NftwI3A1Fy81kQttTLnLYmJ7uiRSZPcj9deUyMnIiJeMWnSJNsR5DyRuCtz6bl4rYlaqpnzhiNH3Acd1q93H3p4/HHbiUREJIg0a9bMdgQ5jweIATbn4rUmaqlmLq9+/BHq1XMburVr4c47bScSEZEg89NPP9mOIOepC5Qkd0+1mqilmrm8WL/eHQZcpAhER0PNmrYTiYhIECpcuLDtCHKecNy9Whfm4rUmaqlmLrdmz3ZX4W65Bdatg6uvtp1IRESCVJkyZWxHkD/xABtxb7fmhIlaqpnLjeHD4cEHoU0bWLwYLrvMdiIREQliW7dutR1B/sQDZADLcvg6E7VUM5cTGRnwf/8HL7wAL78Mn38OERG2U4mISJC7V3t6+50rgVvI+a1WE7VUM5ddycnw6KMweDAMGwYffAD59OMTERHzxo4dazuCXIAH9yGIjBy8xkQtNTQ4O2Jj4YEH3Iccpk6Fdu1sJxIRERHLVgLNgS3AbRZzaGnpUg4dgoYNYft2WL5cjZyIiPictvPyTw2AYuRsRIm28/K17dshMhIKFnSHAd94o+1EIiISgs6cOUOhQoVsx5ALuB/4A1idzeNN1FIrc1lZvhwaNYIKFdzbq2rkRETEkuHDh9uOIFnwAOuBuGweb6KWauYuZOpUd0WuXj1Ytcpt6ERERCy5//77bUeQLHhw92hdns3jTdRSzdz5HAfefx8ee8z9+PprKF7cdioREQlxmzfnZhdQ8YVrgBvJ/ogSE7VUM3dWejr84x/Qqxf06QOffQYFCthOJSIiQgXdIfJrZ0eUZOchBBO1VDMHcPq0+5TqJ5/A2LHQty+EhdlOJSIiAkB4eLjtCHIRkcCvwA/ZONZELdXMnTgBLVrAsmXubdWuXW0nEhERyWTfvn22I8hFNAYKk71brSZqGdrN3N69UL8+/PKL+6BDZKTtRCIiIn/RuHFj2xHkIgoBTcnevDkTtQzdZu7bb92nVcPC3NEjd9xhO5GIiMgFff7557YjyCVEAmuBxEscZ6KWoTk0eP58ePhhqFkT5s2DsmXtZREREbmE9PR08ufPbzuGXMRPwPXAPODeixxnopahtzL3ySfQpg20auUOBlYjJyIifm7AgAG2I8glVAWu49K3Wk3UMnRW5hwH3noL+veHHj3g3/8G/S1HREREvKQH8A2wF/DlTIzQWJlLTYUnn3QbuUGD4KOP1MiJiEjAMLE5u3ifB9iHe8s1KyZqGfyDaxIS3Blyq1a523Q98ojtRCIiIjnSqVMn2xEkG5oBBXFvtV6fxTEmahncK3OHD0PjxvCf/8DixWrkREQkIC1fnt2dP8Wmorgz5y42b85ELYO3mdu1C+rWdYcCr1sHzZrZTiQiIpIr11+f1TqP+BsPsApIyuL7JmoZnM3c2rXuMOCSJd0ZcrfcYjuRiIhIriUlZdUaiL+JBM4Aq7P4volaBl8zN3MmtGwJt93mNnVXXWU7kYiISJ7ExMTYjiDZVA2oRNYjSkzUMriauX//2x0G3K4dLFrkrsyJiIgEuJo1a9qOINkUhrs6l1UzZ6KWwdHMZWTASy9Bz57w6qsweTIULGg7lYiIiFfMnz/fdgTJAQ/wI+6Ykj8zUcvAHxp85gw88QTMmgXDh8M//uGd84qIiPiJ06dPU6RIEdsxJJvigTLAR8Czf/qeiVoG9srcyZNw113w9dcwe7YaORERCUpDhgyxHUFyoATQgAuPKDFRy8BdmTtwACIj4dgxt5mrV887IUVERETy6H2gPxADRBi+VmCuzG3d6s6QO3MGoqLUyImISFDTdl6BJxI4Baz/09dN1DLwVuaWLHGfVr3xRpg/Hy6/3LshRURE/Mzx48cpV66c7RiSAw5wBfAY8MF5XzdRy8BamZs4EVq3drfoWrVKjZyIiISE2bNn244gORSG+1Trn0eUmKhlYDRzjgPvvgudO8OTT8LcuVC0qO1UIiIiPlG7dm3bESQXIoHvgUPnfc1ELf2/mUtLg2eegd694Z13YMwYCA+3nUpERMRnDh8+bDuC5MKduI3W4vO+ZqKW/t3MnToFDzwA48bB+PHw5psQFmY7lYiIiE+lp6fbjiC5UBqoS+ZbrSZq6b9LXMeOwT33wK5d7oMOrVrZTiQiImLFNddcYzuC5JIHGAykAgUwU0v/XJn76SeoXx8OHYI1a9TIiYhISFu7dq3tCJJLHtwdITb893MTtfS/Zm7DBreRK1AAoqPhtttsJxIREbGqY8eOtiNILt0OlOV/u0GYqKV/NXPz5kHz5u4MufXrQcvKIiIijBw50nYEyaV8QCv+9745E7X0n6HBo0ZBjx7uAw9TpkChQr6KJSIiImLMFOBx4DBQwcD57a/MOQ706gXPPQfPPw9ffKFGTkRE5DzaziuwtcIdIryYYNzOKyUFunZ1V+KGDIGePX0VRUREJGDEx8fnfhtM8Qu1gb8BYwzU0t7KXFwc3H23uxI3Y4YaORERkSxMmDDBdgTJo0hgCTDOQC3tNHO//+7ur7p5MyxdCg89ZCWGiIhIILjzzjttR5A88gAngcsN1NJOM9eiBcTGuk+sNm5sJYKIiEig2L17t+0Ikkd1gFLAVwZq6dsdIM4OyitdGhYvhiuu8OnlRUREAlHRokVtR5A8CgfuArYaqGWemjnHcUhISMjy+8nJySQnJ7uf7NlDQps2AMR/8QUUKwbx8Xm5vIiISEgoWLAg8fqdGfCaAF8ULMi++HjK5OB1xYsXJ+wie9Pn6WnWs0+nioiIiIgZF5zPe548NXM5WpkDDh8+TJ06dfjhhx+48sorc3tZERGRkBEfH0+lSpU4dOiQxpMEuNzW8lIrc3m6zRoWFpar/7CKFy+u/yBFRERyoESJEvrdGSS8XUv7O0CIiIiISK6pmRMREREJYD5t5iIiIjL9U0RERC4uIiKCN954Q787g4CpWqqZExER8WMRERGUKFFCvzuDgKla6jariIiIn2vXrp3tCOIlJmqZp9EkOXV2Lt2l5qWIiIiISPb4tJk7O5fuUvNSRERERCR7fNrMiYiIiIh36T1zIiIiIgFMzZyIiIgf+/XXX3n55ZdtxxAvSExMpF27dhw8eNCr51UzJyIi4qccx2Hu3LnExMTYjiJ5NG7cOD744ANmz55NRkaGV8+tZk5ERMRPLV26lObNm9uOIV7QpUsX3n77bSPnVjMnIiLih/bu3cvll19O4cKFbUcRPxduO4CIiIj81datW8mfPz/Hjh3j4MGDbN++nRo1atiOJX5IK3MiIiJ+qF27drRu3ZqkpCSSk5PRJDHJiubMiYiIiPhIWFgY+/bt45prrvHaObUyJyIiIhLA1MyJiIj4obCwsAt+SGCaNm0azz77LACvvfYaI0eO9Nq5dZtVREREJIBpZU5ERMRPxcfHA5CQkGA5ifgzNXMiIiJ+6rbbbqNNmzbMnDnTdhTxY7rNKiIi4qemTJnCY489ZjuG+DmtzImIiPipbdu2sWLFCj744APNmZMsaWVORETETzmOQ1hYGO+++y7169enWbNmtiOJH9LKnIiIiB+aNGkSM2bMACAuLk4rc5IlrcyJiIj4ocOHD7Nx40Ycx+HXX3+lR48etiOJn1IzJyIiIhLAdJtVREREJICpmRMREREJYGrmRERERAKYmjkRERGRAKZmTkRERCSAqZkTERERCWBq5kREREQCmJo5ERERkQCmZk5EREQkgKmZExEREQlgauZEREREAtj/A4s7P0Kq1geLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "Graphics object consisting of 2 graphics primitives" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "plot_with_colored_slopes(h)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Test its extremality; this will create informative output and plots:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:53,487 pi(0) = 0\n", + "INFO: 2023-09-20 09:43:53,489 pi is subadditive.\n", + "INFO: 2023-09-20 09:43:53,490 pi is symmetric.\n", + "INFO: 2023-09-20 09:43:53,491 Thus pi is minimal.\n", + "INFO: 2023-09-20 09:43:53,492 Plotting 2d diagram...\n", + "INFO: 2023-09-20 09:43:53,493 Computing maximal additive faces...\n", + "INFO: 2023-09-20 09:43:53,495 Computing maximal additive faces... done\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAALfCAYAAABb1rW9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABl9ElEQVR4nO3deXhU5f3//9ewJISEfbcCYV9EFqkUsWURFLUiVi2LyKrVuhUXRK0gqKAoxV34KsqiKFAFUfJTWkA2RYuGAiJhMSSAfkDZ1xBIcn5/pBkZMkkmycw59znzfFxXrjbJzOSG4/Lk9p738VmWZQkAAABAWJRxegEAAACAlxDYAAAAQBgR2AAAAEAYEdgAAABAGBHYAAAAQBgR2AAAAEAYEdgAAABAGBHYcD3LsnTs2DEx0h0AAJiAwIbrHT9+XFWqVNHx48edXgoAIArMmzfP6SWgAKZcGx93coTbHTt2TFWqVNHRo0dVuXJlp5cDAACiHDvYAAAAxTBhwgSnl4ACmHJt2MGG67GDDQCwU1ZWlsqVK+f0MhCEKdeGHWwAAIBi+Mc//uH0ElAAU64NgQ0AAFAMAwYMcHoJKIAp1yYse+hnzpxRVlZWOF4KKLbTp0+rRYsWOn36tBH/WchE5cqVU0xMjNPLAABP+OKLL5SYmOj0MhCEKdem1DVy5swZff/998rJyQnHeoASee+997Rnzx6nl2GsMmXK6KKLLiKyASAMGjZs6PQSUABTrk2pAzsrK0s5OTlKTExUXFxcONYEIIwyMjKUnp6urKwsAhsAwiA7O9vpJaAAplybsP339Li4OFWsWDFcLwcgzI4eParTp08rNjZW8fHxTi8HAFxr7969Ti8BBTDl2nBgFYgSSUlJOnnypCpXrqz+/fsT2QBQQp06dXJ6CSiAKdeGKSJAlIiPj1dMTIyOHTumzMxMp5cDAK61YMECp5eAAphybQhsIErExsYqNjbW6WUAgOuNHDnS6SWgAKZcGwIbAAAgBDt3StdeK7VsOdnppaAAkyebcW0IbAAAgAIcPy7NnCl16yY1aSItXy7t2jVG//mP0ytDMGPGjHF6CZIIbAAAgAA5OdKKFdLQoVLdutJtt0kxMdKcOdL+/VK9ehM0fLh0+rTTK8X5JkyY4PQSJHkgsMePH6/27dsX+phhw4bphhtu8H/evXt33X///YU+Z9asWapatWqp11eURYsWqWnTpipbtmyRawIAAJGzc6c0bpzUuLF0xRXS2rXS3/8upadLS5dKgwZJlStL7747Qqmp0vjxTq8Y5xsxYoTTS5BkU2D7zk4P+bFr165V2bJldfXVV0dsPQsXLtTTTz/t/zwxMVEvvfRSwGP69++v7du3R2wNee68807dfPPN2rNnT8CaAABA5J1/BOTFF6Urr5S++ELavl16/HGpQYPA56SlfaZx46TJk8VREcN89tlnTi9BkoFzsGfMmKH77rtPb731lnbv3q0G5/9VHQbVq1cv8jFxcXERvzPliRMn9Msvv6h379664IILIvqzAABArpwcadUqadYs6cMPpYwMqWfP3CMgf/qTVNR989q2basOHaSFC6Xhw6X166UKFWxZOorQtm1bp5cgybAjIidPntQ///lP3XXXXbruuus0a9asfI+ZNGmS6tSpo0qVKum2227T6fMOQGVnZ+vBBx9U1apVVaNGDY0ePVqWZQU85twjIt27d9euXbv0wAMPyOfzyefzSQo8IrJt2zb5fD5t3bo14HVeeOEFJSYm+l9/y5Ytuvbaa5WQkKA6depo8ODBOnDgQNBf68qVK1WpUiVJ0hVXXCGfz6eVK1fq4MGDGjhwoC688EJVrFhRF198sebOnRvw3JycHD333HNq2rSpYmNj1aBBA02cONH//Z9++kn9+/dXtWrVVKNGDfXt21fp6ekF/8YDABAFQjkCEspNqQ8dOqRy5XIDnaMiZjl06JDTS5BkWGDPnz9fLVq0UIsWLXTrrbdq5syZAXH8z3/+U+PGjdPEiRP17bffql69epo6dWrAa0yZMkUzZszQ22+/rS+++EKHDh3SRx99VODPXLhwoS688EI99dRT2rt3b9BbbLZo0UIdO3bUe++9F/D1999/X7fccot8Pp/27t2rbt26qX379vr222+1ZMkS/fzzz+rXr1/Qn9ulSxdt27ZNUu5Q9L1796pLly46ffq0OnbsqKSkJG3evFl33HGHBg8erP+c89+gHnvsMT333HMaO3astmzZovfff1916tSRJJ06dUo9evRQQkKCVq9erS+++EIJCQm6+uqrdebMmSKuAAAA3lKSIyBFOXnypCSpTRtxVMQwedfGcVYpnTx50vr222+tkydPFvgYnXkzpNfq0qWL9dJLL1mWZVlnz561atasaS1dutT//csuu8z661//GvCc3/3ud1a7du38n9erV8+aNGmS//OzZ89aF154odW3b1//17p162aNHDnS/3nDhg2tF198MeB1Z86caVWpUsX/+QsvvGA1btzY//m2bdssSdb3339vWZZljR071rrqqqsCXmPPnj2WJGvbtm1Bf72HDx+2JFkrVqwI+v081157rfXQQw9ZlmVZx44ds2JjY63p06cHfezbb79ttWjRwsrJyfF/LTMz04qLi7P+9a9/Ffpz4E15f49++OGH1ltvvWW9+OKL1sGDB51eFgBETHa2ZX3+uWUNGWJZFStals9nWb16WdacOZZVSK6ELO/f/ZZlWWfPWlbHjpbVqpVlZWSU/rVROudeGycZs4O9bds2rVu3TgMGDJAklStXTv3799eMGTP8j0lJSdFll10W8LxzPz969Kj27t0b8LVy5crpt7/9banXN2DAAO3atUtff/21JOm9995T+/bt1bp1a0lScnKyVqxYoYSEBP9Hy5YtJUmpqakh/5zs7GxNnDhRbdu2VY0aNZSQkKB///vf2r17t6Tc34PMzEz17Nkz6POTk5P1ww8/qFKlSv51VK9eXadPny7WOgAAcJtwHQEpyrJly/z/n6MiZjn32jjJmDc5vv3228rKytJvfvMb/9csy1L58uV1+PBhVatWzcHVSfXq1VOPHj30/vvvq3Pnzpo7d67uvPNO//dzcnLUp08fPffcc0GfG6opU6boxRdf1EsvvaSLL75Y8fHxuv/++/3HO4p642VOTk7Q4yySVKtWrZDXAQCAGxw/nvtGxVmzpNWrpUqVpP79pWHDpC5dpP+9tSqshg0bFvB53lGRsWNz3yT5u9+F/2ciNOdfG6cYsYOdlZWld955R1OmTNGGDRv8Hxs3blTDhg39sdiqVSv/DnKecz+vUqWK6tWrF/C1rKwsJScnF/rzY2JilJ2dXeQ6Bw0apPnz5+urr75Samqqf7ddki655BJ9//33SkxMVNOmTQM+4uPjQ/p9kKQ1a9aob9++uvXWW9WuXTs1btxYO3bs8H+/WbNmiouL0/Lly4M+/5JLLtGOHTtUu3btfOuoUqVKyOsAAMBUhd0IZt8+afp06fLLIxPXkvTKK6/k+9ro0VKHDuIGNA4Ldm2cYERgJyUl6fDhw7rtttvUpk2bgI+bb75Zb7/9tiRp5MiRmjFjhmbMmKHt27dr3Lhx+v777wNea+TIkZo0aZI++ugjbd26VXfffbeOHDlS6M9PTEzU6tWr9dNPPxU49UOSbrzxRh07dkx33XWXevToEbDbfs899+jQoUMaOHCg1q1bp507d+rf//63RowYEVK852natKmWLl2qtWvXKiUlRXfeeaf27dvn/36FChX0yCOPaPTo0XrnnXeUmpqqr7/+2v97NGjQINWsWVN9+/bVmjVrlJaWplWrVmnkyJH68ccfQ14HAACmsesISFGC3Y6boyJm4Fbp53j77bfVq1evoDusN910kzZs2KD169erf//+euKJJ/TII4+oY8eO2rVrl+66666Axz/00EMaMmSIhg0bpssuu0yVKlXSn/70p0J//lNPPaX09HQ1adKk0GMUlStXVp8+fbRx40YNGjQo4HsXXHCBvvzyS2VnZ6t3795q06aNRo4cqSpVqqhMmdB/m8eOHatLLrlEvXv3Vvfu3VW3bt2Au1DmPeahhx7SE088oVatWql///765ZdfJEkVK1bU6tWr1aBBA914441q1aqVRowYoYyMDFWuXDnkdQAAYIJITAEprYJux81UEeeZcqt0n2WdNyS6mE6dOqWUlBS1atVKFe34YyOAYsn7ezQ9PV1HjhzR8ePHNWTIkJBuuAQATijoRjDDhoV2I5hIO3ToUIH/DM3Kkjp3lk6d4gY0Tijs2tjJiB1sAAAAU46AFOX8G8Cdi6Mizirs2tjJmCkiAAAg+jgxBaS0/vCHPxT6faaKOKeoa2MXdrABAICtnJ4CUlrp6elFPoapIs4I5drYgcAOUXp6unw+nzZs2OD0UkLitvUCALzPLUdAilK2bNkiH8NREWeEcm3sYFRg79u3T/fdd58aN26s2NhY1a9fX3369Clw5rPXrFy5Uj6fTz6fT2XKlFGVKlXUoUMHjR49Wnv37g3Laxc1sjAUw4YN86+zfPnyaty4sUaNGqWTJ0+W+rUBAN5i4hSQ0gr1BnJMFbFfcW7uF0nGBHZ6ero6duyozz//XM8//7y+++47LVmyRD169NA999zj9PJstW3bNv3f//2fvvnmGz3yyCNatmyZ2rRpo++++87ppfldffXV2rt3r3bu3KkJEyZo6tSpGjVqlNPLAgAYwO1HQIryzTffhPxYjorYqzjXJpKMCey7775bPp9P69at080336zmzZvroosu0oMPPhhwZ8bdu3erb9++SkhIUOXKldWvXz/9/PPP/u+PHz9e7du314wZM9SgQQMlJCTorrvuUnZ2tp5//nnVrVtXtWvX1sSJEwN+vs/n07Rp03TNNdcoLi5OjRo10gcffFDomrds2aJrr71WCQkJqlOnjgYPHuy/Uc3KlSsVExOjNWvW+B8/ZcoU1axZs8jd6Nq1a6tu3bpq3ry5BgwYoC+//FK1atXKN/N75syZatWqlSpUqKCWLVtq6tSpQV8vPT1dPXr0kCRVq1ZNPp/PfyvRJUuW6Pe//72qVq2qGjVq6LrrrlNqamqh65Ok2NhY1a1bV/Xr19ctt9yiQYMGadGiRUU+DwDgXV45AlKUG2+8MeTHclTEXsW5NpEUkcA+e/as9u7dW+jH2bNn/Y8/dOiQlixZonvuuSfobcWrVq0qSbIsSzfccIMOHTqkVatWaenSpUpNTVX//v0DHp+amqrPPvtMS5Ys0dy5czVjxgz98Y9/1I8//qhVq1bpueee05gxY/Lddn3s2LG66aabtHHjRt16660aOHCgUlJSgv4a9+7dq27duql9+/b69ttvtWTJEv3888/q16+fJKl79+66//77NXjwYB09elQbN27U448/runTpxf7P1/ExcXpr3/9q7788kv/DWWmT5+uxx9/XBMnTlRKSoqeeeYZjR07VrNnz873/Pr162vBggWScnfH9+7dq5dfflmSdPLkST344IP65ptvtHz5cpUpU0Z/+tOflJOTU+w1nntNAQDRwYtHQIryxhtvFOvxHBWxT3GvTaREZEzfgQMH9Oabbxb6mDvuuMMfmj/88IMsy1LLli0Lfc6yZcu0adMmpaWlqX79+pKkd999VxdddJG++eYbXXrppZKknJwczZgxQ5UqVVLr1q3Vo0cPbdu2TZ9++qnKlCmjFi1a6LnnntPKlSvVuXNn/+v/+c9/1u233y5Jevrpp7V06VK9+uqrQXeGp02bpksuuUTPPPOM/2szZsxQ/fr1tX37djVv3lwTJkzQsmXLdMcdd+j777/X4MGDi7yrZEHyfm/S09NVu3ZtPf3005oyZYr/T2qNGjXSli1b9MYbb2jo0KEBzy1btqx/6Hrt2rX9f2CRcu+Uea63335btWvX1pYtW9SmTZuQ1rZu3Tq9//776tmzZ4l+bQAAdynoRjBz5phxI5hIK8ntuEePlhYuzD0qwg1oIseUW6VHJLBr1qypO+64o8jH5Mm7maSviMNYKSkpql+/vj+uJal169aqWrWqUlJS/IGdmJioSpUq+R9Tp04dlS1bNuCW5XXq1PHvBue57LLL8n1e0BSO5ORkrVixQgkJCfm+l5qaqubNmysmJkZz5sxR27Zt1bBhQ7300kuF/voKc+7v0f79+7Vnzx7ddttt+stf/uJ/TFZWVtDbzRcmNTVVY8eO1ddff60DBw74d653795daGAnJSUpISFBWVlZOnv2rPr27atXX321BL8yAIBb7NwpzZ6d+7Frl9S0ae4RkMGDvbdLXZgJEyYUO+Tyjop07Jh7VGTSpIgsLeqV5NpEQkQCu3z58sU6BtGsWTP5fD6lpKTohhtuKPBxlmUFjfDzv16+fPmA7+dNuzj/a6Ecgygo+nNyctSnTx8999xz+b537q997dq1knKPwRw6dCjoEZhQ5B1VSUxM9K97+vTp+t150+uLO56mT58+ql+/vqZPn64LLrhAOTk5atOmjc6cOVPo83r06KFp06apfPnyuuCCC/L9/gIAvMGNN4KJtAcffLBEz+MGNJFX0msTbka8ybF69erq3bu3Xn/99aCj3vJGy7Vu3Vq7d+/Wnj17/N/bsmWLjh49qlatWpV6Heefyf76668LPLZyySWX6Pvvv1diYqKaNm0a8JEX0ampqXrggQc0ffp0de7cWUOGDCn22WZJysjI0JtvvqmuXbuqVq1aqlOnjn7zm99o586d+X52o0aNgr5GTEyMJCk7O9v/tYMHDyolJUVjxoxRz5491apVKx0+fDikNcXHx6tp06Zq2LAhcQ0AHuP1KSClNW3atBI/l6kikVWaaxNORgS2JE2dOlXZ2dnq1KmTFixYoB07diglJUWvvPKK/+hGr1691LZtWw0aNEjr16/XunXrNGTIEHXr1k2//e1vS72GDz74QDNmzND27ds1btw4rVu3Tvfee2/Qx95zzz06dOiQBg4cqHXr1mnnzp3697//rREjRig7O1vZ2dkaPHiwrrrqKg0fPlwzZ87U5s2bNWXKlCLX8csvv2jfvn3asWOH5s2bp8svv1wHDhwI+Itm/PjxevbZZ/Xyyy9r+/bt+u677zRz5ky98MILQV+zYcOG8vl8SkpK0v79+3XixAlVq1ZNNWrU0JtvvqkffvhBn3/+uTF/8gMA2C9apoCU1nXXXVfi5zJVJLJKc23CyZjAbtSokdavX68ePXrooYceUps2bXTllVdq+fLl/rD0+XxatGiRqlWrpq5du6pXr15q3Lix5s+fH5Y1PPnkk5o3b57atm2r2bNn67333lPr1q2DPvaCCy7Ql19+qezsbPXu3Vtt2rTRyJEjVaVKFZUpU0YTJ05Uenq6/82edevW1VtvvaUxY8YUeXfFFi1a6IILLlDHjh01adIk9erVS5s3bw5Yy+2336633npLs2bN0sUXX6xu3bpp1qxZBe5g/+Y3v9GTTz6pRx99VHXq1NG9996rMmXKaN68eUpOTlabNm30wAMPaPLkySX7zQMAuFI0TgEprY0bN5bq+UwViZzSXptw8Vl5754roVOnTiklJUWtWrVSRRf/sdbn8+mjjz4q9Aw44EZ5f4+mp6fryJEjOn78uIYMGeKfLAMg+hQ0BWTYsOiYAlJay5cvL/XkrKwsqXNn6dQppoqEUziuTTgYs4MNAAAiiyMg4REXF1fq1+CoSGSE49qEA4ENAICHcQQk/LZv3x6W1+GoSPiF69qUVlQEdt5dFQuTd5fIklq5cqV8Pp9/4onbbdu2TXXr1tXx48dDenxSUpI6dOhQoikp4dS1a1e9//77IT02MzNTDRo0UHJycoRXVbi3335bV111VciPHzVqlP72t79FcEUA3I4pIJEVziMITBUJLxOOh0g2BfZ3331nx48p0MKFC/X000+H7fWCBXuXLl20d+/eYt/oxW6rV69Wnz59dMEFF/jfNBrM448/rnvuucd/w568P0Cc/5E3zP26666Tz+cLOW6LY+XKlerbt6/q1aun+Ph4tW/fXu+9916+xyUlJWnfvn0aMGCA/2uJiYn51nzhhRdKkmJjYzVq1Cg98sgjYV+zJN15551q0qSJ4uLiVKtWLfXt21dbt24NeExmZqaeeOIJjR071v+18ePHB/29XrZsmSRp9OjRmjlzptLS0iKybgDuxREQe8yePTtsr8VRkfAK57UpDVfvYBd1M5Q81atXD7izYyTExMSobt26Rd6N0mknT55Uu3bt9NprrxX4mB9//FGffPKJhg8fnu9727Zt0969e/0fjz76qP97w4cPj8jdHNeuXau2bdtqwYIF2rRpk0aMGKEhQ4Zo8eLFAY975ZVXNHz48IA7dkrSU089FbDm//73v/7vDRo0SGvWrPHfyCecOnbsqJkzZyolJUX/+te/ZFmWrrrqqoBZ5AsWLFBCQoL+8Ic/BDz3oosuCljz3r171bVrV0m5t7u/6qqr9P/+3/8L+5oBuA9HQOwX7jsFclQkfEy4i6MkySqlkydPWt9++6118uTJAh+zadOmIl+nW7du1j333GPdc889VpUqVazq1atbjz/+uJWTk+N/TMOGDa2nn37aGjp0qFW5cmVryJAhlmVZ1ocffmi1bt3aiomJsRo2bGj94x//yPfaI0eO9H+emZlpPfzww9YFF1xgVaxY0erUqZO1YsWKgOd88cUXVteuXa24uDiratWq1lVXXWUdOnTIGjp0qCUp4CMtLc1asWKFJck6fPiw/zWKWlfDhg2tiRMnWsOHD7cSEhKs+vXrW2+88UbAOu+55x6rbt26VmxsrNWwYUPrmWeeKfD3cOjQoVbfvn2t8ePHW7Vq1bIqVapk3XHHHVZmZmbQx0uyPvroo3xfnzJlivXb3/424GvBfn3nS09PtyRZqampBT7mfHmvm5SUZLVt29aKjY21OnXqVORfM9dee601fPhw/+f79++3fD6ftXnz5oDHNWzY0HrxxRcLfa3u3btbY8eODXnNea/71FNPWQMHDrTi4+OtevXqWa+88kqhz9m4caMlyfrhhx/8X+vTp481atSogMeNGzfOateuXaGvNWvWLKt+/fohrTXv79EPP/zQeuutt6wXX3zROnjwYEjPBWCm7GzL+vxzyxoyxLIqVrQsn8+yevWyrDlzLKuQfx0jTJ5++umwv+bZs5bVsaNltWplWRkZYX/5qBGJa1MSRu1gz549W+XKldN//vMfvfLKK3rxxRf11ltvBTxm8uTJatOmjZKTkzV27FglJyerX79+GjBggL777juNHz9eY8eO1axZswr8OcOHD9eXX36pefPmadOmTfrzn/+sq6++Wjt27JAkbdiwQT179tRFF12kr776Sl988YX69Omj7Oxsvfzyy7rsssv0l7/8xb+zWL9+/Xw/I9R1TZkyRb/97W/13//+V3fffbfuuusu/zGCV155RZ988on++c9/atu2bZozZ44SExML/T1cvny5UlJStGLFCs2dO1cfffSRnnzyyaJ/88+xevXqEt24p2HDhqpdu7bWrFlT7Oc+/PDD+sc//qFvvvlGtWvX1vXXX6+zZ88W+PijR48GjJn74osvVLFixRLd0bNTp04lWvPkyZPVtm1brV+/Xo899pgeeOABLV26NOhjT548qZkzZ6pRo0YBf72sWbOmRL/XnTp10p49e7Rr165iPxeAe3EExAyPPfZY2F+ToyLhEYlrUyKlLfRw7mC3atUqYMf6kUcesVq1auX/vGHDhtYNN9wQ8LxbbrnFuvLKKwO+9vDDD1utW7cOeO28HewffvjB8vl81k8//RTwnJ49e1qPPfaYZVmWNXDgQOvyyy8vdK3n7ohbVv4d3lDW1bBhQ+vWW2/1f56Tk2PVrl3bmjZtmmVZlnXfffdZV1xxRcDvSWGGDh1qVa9ePeBaTJs2zUpISLCys7PzPV4F7GC3a9fOeuqpp4L++uLj4wM+Dhw4EPC4Dh06WOPHjw9pvee+7rx58/xfO3jwoBUXF2fNnz8/6HM++OADKyYmJmC3+sUXX7QaN26c77ENGza0YmJiAtb88ssvBzzm5ZdfthITE0Nec97rXn311QFf69+/v3XNNdcEfO3111+34uPjLUlWy5YtA3avDx8+bEmyVq9eHfCccePGWWXKlAlY86WXXhrwmKNHj1qSrJUrVxa5VnawAXc7dsyyZsywrK5dLUuyrEqVLOv22y3riy8sK8R/PSDMCvuvyaU1caJllSljWV9/HbEf4WmRvDbFYdQOdufOnQPOMF922WXasWNHwJnV83f7UlJSdPnllwd87fLLL8/3vDzr16+XZVlq3ry5EhIS/B+rVq1SamqqpF93sEsj1HW1bdvW//99Pp/q1q2rX375RZI0bNgwbdiwQS1atNDf/vY3/fvf/y7y57Zr1y7ghj+XXXaZTpw4oT179oS89oyMDFUoYOL9mjVrtGHDBv9HtWrVAr4fFxenU6dOhfyzzl1nnurVq6tFixZBz0WvXLlSw4YN0/Tp03XRRReFtOaHH344YM1DhgwJ+5rzPj9/zYMGDdJ///tfrVq1Ss2aNVO/fv10+n9vE8/IyJCkoOtu0aJFwJoXLFiQb82SSrRuAOZjCojZbrnlloi9NlNFSieS16Y4yjm9gOKKj48P+NyyrHxvLLQKuTllTk6OypYtq+TkZJUtWzbgewkJCZLCM6Q81HWVL18+4HOfz+cfdXfJJZcoLS1Nn332mZYtW6Z+/fqpV69e+vDDD4u9nuK8+bJmzZo6fPhw0O81atRIVatWLfC5hw4dUq1atYq7vKDOX/OqVavUp08fvfDCC/kiubA116xZU02bNi3w50RyzVWqVFGVKlXUrFkzde7cWdWqVdNHH32kgQMHqkaNGvL5fEHXHRMTU+SaJYVt3QDMsHOnNHt27seuXVLTprlHQAYP5o2KJlm9erUGDx4ckdfOOyrSsWPuUZFJkyLyYzwrktemOIzawf7666/zfd6sWbN8IXyu1q1b64svvgj42tq1a9W8efOgz+vQoYOys7P1yy+/qGnTpgEfdevWlZS7q7x8+fICf2ZMTEzQ3fHSrKsglStXVv/+/TV9+nTNnz9fCxYs8MdVMBs3bvTvjEq5v4cJCQn+0XSh6NChg7Zs2RLy4/OcPn1aqamp6tChQ7Gfe+61P3z4sLZv366WLVv6v7Zy5Ur98Y9/1KRJk3THHXcEXfO+ffsKjOzCbN68udRrzvv83DUHY1mWMjMzJeX+ddS6desS/V5v3rxZ5cuXD9jFB+BOTAFxn0aNGkX09ZkqUnKRvjahMiqw9+zZowcffFDbtm3T3Llz9eqrr2rkyJGFPuehhx7S8uXL9fTTT2v79u2aPXu2XnvtNY0aNSro45s3b65BgwZpyJAhWrhwodLS0vTNN9/oueee06effiop94D8N998o7vvvlubNm3S1q1bNW3aNB04cEBS7mzl//znP0pPT9eBAweC3lyluOsK5sUXX9S8efO0detWbd++XR988IHq1q1b6A7ymTNndNttt2nLli367LPPNG7cON17773+0XUnTpzwHzuQpLS0NG3YsEG7d+/2v0bv3r311VdfFfmHiPN9/fXXio2NzXd0IhRPPfWUli9frs2bN2vYsGGqWbOm/8Y/eXH9t7/9TTfddJP27dunffv2BfxBo0OHDqpVq5a+/PLLYv/sNWvWFOtGL3m+/PJLPf/889q+fbtef/11ffDBB/6/Xnfu3Klnn31WycnJ2r17t7766iv169dPcXFxuvbaa/2v0bt373x/EAt1zX/4wx+MuSUsgOLhCIi7ZWVlRfxncFSkZOy4NiEp7SHuUN7kGIpu3bpZd999t/XXv/7Vqly5slWtWjXr0UcfzTemL9jItbxxeOXLl7caNGhgTZ48Od9rn/umxDNnzlhPPPGElZiYaJUvX96qW7eu9ac//SngzZgrV660unTpYsXGxlpVq1a1evfu7X8D47Zt26zOnTtbcXFxIY3pK2hdwX497dq1s8aNG2dZlmW9+eabVvv27a34+HircuXKVs+ePa3169cX+HuYN6bviSeesGrUqGElJCRYt99+u3X69Gn/Y/LWef7H0KFD/Y/JysqyfvOb31hLlizJ97zCxvTdcccd1p133plvTd26dSvwOXmvu3jxYuuiiy6yYmJirEsvvdTasGFDwGsEW/P5r/voo49aAwYMCPhaUWP61q5da1WtWtU6depUvjWlpaUV+LyGDRtaTz75pNWvXz+rYsWKVp06dayXXnrJ//2ffvrJuuaaa6zatWtb5cuXty688ELrlltusbZu3RrwOikpKVZcXJx15MgR/9dCGdPXvHlza+7cuYU+Jg9vcgTMkZpqWU88YVkNG+a+YbFpU8uaMMGydu1yemUojlD/+Vta331nWTExlvXII7b8OE+w69oUxajAPn8yR7h07tzZevzxxyPy2ibJC+xweP31162rrroq5Mf/8ssvVvXq1a2dO3cGfL1bt27+PzAEE0q4h2rfvn1WjRo1rPT09JCfc/PNN1sTJ04M+NrMmTOtpk2bWmfOnCnweaHM1w7Vn//852K96zkpKclq1aqVdfbs2ZAeT2ADzmIKiPds377dtp/FVJHisfPaFMaoIyLhlpmZqW+//Vbff/89Z1WL6Y477lDXrl11/PjxkB6flpamqVOnBpx9On78uFJTU4t1LKY06tSpo7fffjvguEthMjMz1a5dOz3wwAMBX1+yZImeeeaZfG9AjZTJkyf732AbiryZ2uXKue49ykDU4AiIty1atMi2n8VRkeKx89oUxtP/hv7ss880ZMgQ9enTRzfffLPTy3GVcuXK6fHHHw/58Z06dVKnTp0CvlapUqVijQcMh759+4b82NjY2KC3VJ03b144l1Skhg0b6r777gv58f369YvgagCUBlNAokNx/pldWkwVKR47r01hfJZVyEy7EJw6dUopKSlq1apVwPxlr0hMTNT999+v+++/39F1jB8/XosWLfK/OREIVd7fo+np6Tpy5IiOHz+uIUOGBNwJE0DJHT8uffhhbgStXi1VqiT17y8NGyZ16cIutRdNmDAh6AZNJD3zjDR2bO7dO3/3O1t/tKs4cW2CMSawhw0bptmzZ+f7+o4dOwqdBxwus2bN0v33368jR44EfH3//v2Kj493/A8PJ06cUGZmpmrUqOHoOuA+BDYQfjk50qpVuVH94YdSRobUs2duVP/pT9yuHOGXlSV17iydOiWtXy8VcG81GMKoM9hXX3219u7dG/Dh9DzDWrVqOR7XUu5NcIhrAHDWzp2584kbN5auuCJ3N/Hvf5fS06WlS6VBg4jraDBhwgTbf2beUZHU1NyjIgjOiWsTjFGBHRsbq7p16wZ8lC1bVsOGDfPPRM5z//33q3v37v7Pu3fvrr/97W8aPXq0qlevrrp162r8eX8FHjlyRHfccYfq1KmjChUqqE2bNkpKStLKlSs1fPhwHT16VD6fTz6fz//cxMREvfTSS/7X2L17t/r27auEhARVrlxZ/fr1088//+z//vjx49W+fXu9++67SkxMVJUqVTRgwIBC3yw4a9YsVa1aVYsWLVLz5s1VoUIFXXnllQHnl/NeFwBgL24Eg/PdfvvtjvxcbkBTNKeuzfmMCuzSmj17tuLj4/Wf//xHzz//vJ566iktXbpUUu4t0q+55hqtXbtWc+bM0ZYtWzRp0iSVLVtWXbp00UsvvaTKlSv7d86DTb6wLEs33HCDDh06pFWrVmnp0qVKTU1V//79Ax6XmpqqRYsWKSkpSUlJSVq1apUmFfGuhFOnTmnixImaPXu2vvzySx07dkwDBgwI328OACBkTAFBYRYvXuzYz2aqSOGcvDbnisgUkVOnpK1bC39My5b5/zNaUlJSwLiya665Rh988EHIP7dt27YaN26cJKlZs2Z67bXXtHz5cl155ZVatmyZ1q1bp5SUFDVv3lyS1LhxY/9zq1SpIp/P579dejDLli3Tpk2blJaWpvr160uS3n33XV100UX65ptvdOmll0rKjflZs2apUqVKkqTBgwdr+fLlmjhxYoGvffbsWb322mv63f/euTB79my1atVK69atyzedAwAQGUwBQSic/C/KTBUpnCn/tT8igb11a+6FL0xysnTJJYFf69Gjh6ZNm+b/PD4+vlg/t23btgGf16tXT7/88oskacOGDbrwwgv9cV0SKSkpql+/vj+uJal169aqWrWqUlJS/IGdmJjoj+vz11GQcuXK6be//a3/85YtW/pfl8AGgMhhCgiK6+DBg47+/LyjImPH5r6plqkiv3L62uSJSGC3bJkb0EU95nzx8fFBJ4aUKVNG5w87OXv2bL7HnX9jEJ/Pp5ycHElSXFxcEasummVZ8gX5J+35Xy9sHYUJ9trBvgYAKJ2CpoDMmcMUEBQtIyPD6SVo9Ghp4cLcoyJMFfmVCddGilBgV6yYf3e6NGrVqqXNmzcHfG3Dhg3FutNe27Zt9eOPP2r79u1Bd7FjYmKUnZ1d6Gu0bt1au3fv1p49e/y72Fu2bNHRo0fVqlWrkNcSTFZWlr799lv/bvW2bdt05MgRtQz2JxEAQIlwBATh0KxZM6eXwFGRAphwbSSXvMnxiiuu0Lfffqt33nlHO3bs0Lhx4/IFd1G6deumrl276qabbtLSpUuVlpamzz77TEuWLJGUe6zjxIkTWr58uQ4cOKBTp07le41evXqpbdu2GjRokNavX69169ZpyJAh6tatW8DxjpIoX7687rvvPv3nP//R+vXrNXz4cHXu3JnjIQBQSkwBQbitWLHC6SVIYqpIMKZcG1cEdu/evTV27FiNHj1al156qf9GGcW1YMECXXrppRo4cKBat26t0aNH+3etu3Tpor/+9a/q37+/atWqpeeffz7f830+nxYtWqRq1aqpa9eu6tWrlxo3bqz58+eX+tdYsWJFPfLII7rlllt02WWXKS4uzvZbdgOAVzAFBJFUkgaJFKaKBDLl2hhzJ8doVtBdJIFw4E6OiCbBjoAMG8YREISXKbfjzrN5c+5RkQce4KiIKdcmImewAQCwC1NAYDcTAu5cTBX5lSnXxhVHRAAAOBdHQOAkU27HfS6OiuQy5doQ2AYYNmwYx0MAIAQ7d+bu1DVuLF1xhbR2be4UkPR0aelSadAgRuwh8u69916nl5BP3lSR1NTcqSLRypRrQ2ADAIzGFBCYZs6cOU4vISimiphzbQhsAIBxOAICk3Xr1s3pJRQo2o+KmHJtCGwAgDE4AgI3SE1NdXoJBYr2oyKmXBumiAAAHMUUELhNTEyM00soVDRPFTHl2rCDDQCwHUdA4GZ16tRxeglFitajIqZcGwIbAGAbjoDAC5KTk51eQpGi9aiIKdcmbEdEMjIywvVSAMKIvzfhNI6AwGv69u3r9BJCEo1HRUy5NqUO7HLlyqlMmTJKT08Pw3IARIJlWcrOznZ6GYgiOTnSqlW5Uf3hh1JGhtSzZ+4RkD/9iV1quNv06dONuWNgUUaPlhYuzD0qsn69VKGC0yuKLFOujc+yLKu0L3LmzBllZWXp6NGjSkpKUnx8vGJjY8OxPqBIZ8+e1cyZMzV8+HCVL1/e6eUYKTs7W1lZWcrIyNDx48c1ZMgQVa9e3ellwYN27pRmz8792LVLato0d6d68GBmVQNO2bxZ6thReuABadIkp1cTHcJyRCQmJkYxMTE6ffq0Tp48qbNnzxLYsM2ZM2e0Z88eHT582Jh3D5sqMzPT6SXAgzgCgmgzYcIEI3ZJQxVNR0VMuTZh2cHOc/LkSc2fP1/Hjh0L10sCRTpz5ozmzp2rgQMHEtghqFy5svr376/4+HinlwIXK+gIyLBhHAGB92VkZCguLs7pZRRLVpbUubN06pS3j4qYcm3CGthSbmSzSwY7HT9+XC1atNC2bdtUqVIlp5djvNjYWOIaJcYREECaMmWKHnroIaeXUWzRcFTElGsT9sAG7Hbs2DFVqVJFR48eVeXKlZ1eDuA5HAEBAu3YsUPNmjVzehkl8swzuUdF1q715lERU64Nc7ABAPlwIxigYOvXr3d6CSXm9RvQmHJtCGwAgB83ggGKVqtWLaeXUGJevwGNKdcmbDeaAQC4E0dAgOJx+6Q0L08VMeXasIMNAFGIIyBAyaWmpjq9hFLz6lERU64NgQ0AUYQjIEDpde/e3ekllJpXj4qYcm0IbADwuOPHpZkzpW7dpCZNpBdflK68UvriC2n7dunxxxmxBxTHu+++6/QSwiLvqMjkydK6dU6vJjxMuTaM6YPrMaYPyI8bwQCRk5OTozJlvLFH6bUb0JhybZxfAQAgbDgCAkTeM8884/QSwsZrR0VMuTbsYMP12MFGtGMKCGAvU3ZJwynvBjRffSV16uT0akrOlGvj/AoAAMXGFBDAOc8++6zTSwi7vKkiw4a5e6qIKdeGHWy4HjvYiCY7d0qzZ+d+7NolNW2a+y/EwYN5oyJgl927d6uBB/+G27xZ6thReuABadIkp1dTMqZcG3awAcBwTAEBzLJy5UqnlxARXpgqYsq1IbABwEAcAQHM1aRJE6eXEDFuPypiyrUhsAHAIEwBAcyXmZnp9BIixu1TRUy5NuWcXgAARDumgADusn//fqeXEFF5R0XGjpVuvNFdU0VMuTa8yRGux5sc4UbcCAZwrx07dqhZs2ZOLyOi3HoDGlOuDUdEAMBGHAEB3O+TTz5xegkR59ajIqZcG3aw4XrsYMN0HAEBvCUjI0NxcXFOL8MWbrsBjSnXhh1sAIgApoAA3jVlyhSnl2Abt00VMeXasIMN12MHGybhRjAAvMYLN6CxGzvYAFBK3AgGiC4TJkxwegm2ctMNaEy5Nuxgw/XYwYYTmAICRK+ff/5ZderUcXoZtnLLVBFTrg072ABQDEwBAfDxxx87vQTbuWWqiCnXhhvNAEARmAIC4FwdO3Z0egmOcMMNaEy5NuxgA0AQTAEBUJCff/7Z6SU4xvSpIqZcGwIbAM7BERAARTlz5ozTS3CM6UdFTLk2HBEBEPU4AgKgOJo0aeL0Ehxl8lERU64NO9gAohJHQACU1KpVq5xeguNMPSpiyrVhTB9cjzF9KA5uBAOgtI4cOaKqVas6vQzHmXgDGlOuDTvYADyPG8EACKfXXnvN6SUYwcQb0JhybdjBhuuxg41guBEMAESeW25AYzd2sAF4ClNAAESaKbfjNoFpU0VMuTbsYMP12MEGU0AA2Ono0aOqUqWK08swyjPP5E4V+eorZ6eKmHJt2MEG4EpMAQHglHfeecfpJRjHlKkiplwbAhuAq3AEBIDTevTo4fQSjGPKURFTrg2BDcB4TAEBYJIdO3Y4vQQjmTBVxJRrQ2ADMBJHQACYKi4uzuklGMvpoyKmXBsCG4BROAICwHQ1atRwegnGcvqoiCnXhsAG4DiOgABwkw0bNji9BKM5eVTElGvDmD64HmP63IkbwQBwq3379qlu3bpOL8NoTt2AxpRrww42AFtxBASA27311ltOL8F4Th0VMeXasIMN12MH23zcCAYAopMpN6CxGzvYACKCKSAAvMqU23G7gd1TRUy5Nuxgw/XYwTbLzp3S7Nm5H7t2SU2b5v6DdfBg3qgIwBtOnz6tCnYdKvaAzZuljh2lBx6QJk2K7M8y5dqwgw2g1JgCAiCavPrqq04vwVXsnCpiyrVhBxuuxw62M5gCAiBa7dixQ82aNXN6Ga5i11QRU64NO9gAioUpIACiXXJystNLcB27poqYcm3KOb0AAOZjCggA/MqEOctulHdUZOxY6cYbIzNVxJRrww42gKCYAgIAwZUrx/5kSUV6qogp14bABhCAIyAAULi0tDSnl+BakT4qYsq1MSPzATiKIyAAELquXbs6vQRXi+RREVOuDTvYQJTiCAgAlMz777/v9BJcL1JHRUy5Nozpg+sxpq94uBEMAJROdna2ypYt6/QyXC8SN6Ax5dqwgw1EAW4EAwDh8+yzzzq9BE+IxA1oTLk27GDD9djBDo4bwQAATGfXDWjsxg424DFMAQGAyJowYYLTS/CMcE8VMeXasIMN12MHmykgAGCnPXv2qH79+k4vw1OeeSZ3qshXX5Vuqogp14YdbMClmAICAM5Yvny500vwnHBNFTHl2hDYgMtwBAQAnNW8eXOnl+A54ToqYsq14UYzgAtwBAQAzJGRkeH0EjwpHDegMeXasIMNGIojIABgpoMHDzq9BM8q7VERU64NgQ0YhiMgAGC2du3aOb0EzyrtURFTrg2BDRiAG8EAgHskJSU5vQRPK80NaEy5Nozpg+u5dUwfN4IBAHc6deqUKvIP6Ygq6Q1oTLk27GADNuMICAC42wsvvOD0EjyvpEdFTLk27GDD9dywg80UEAAAii9cN6CxGzvYQIQwBQQAvMmU23FHg+JOFTHl2rCDDdczbQd7505p9uzcj127pKZNc//BMHgwb1QEAC/Yv3+/atWq5fQyosbmzVLHjtIDD0iTJhX+WFOuDTvYQBgwBQQAosfChQudXkJUKc5UEVOuDYENlBBHQAAgOl166aVOLyHqhHpUxJRrQ2ADxcQUEACIbnv37nV6CVEn1Kkiplybck4vAAiX77//XgkJCRF57ZMny2jp0ir6+OOqSk5OUHx8tnr3Pqqnnjqs9u1PyeeTjh6VvvsuIj8eAGCQ1NRUfcc/8B1x5521NHlyHbVtm6qLL87I9/3s7GwHVpUfb3KE6+W9yXHt2rVhDeycHOnbb+P18cfVtHRpFWVm+vS7351Q375HdMUVRxUXx986ABCNtm/frubNmzu9jKiUlSXdemsTnT5dRvPn/6DY2MB/F1uWpbZt2zq0ul+xgw2c58cfy+vjj6tp8eJq+r//i1GDBpm6/fZf1KfPEdWrd9bp5QEAHLZ+/XoC2yHlyklPP/2jBgxoqmnTauv++38O+P6aNWsIbMAUBR0B6dv31yMgAABI0jXXXOP0EqJas2aZ+utff9Hrr9dRz57HAo6KDBw40MGV/Yo3OSJq5eRI69bF6/HHL1SPHq00btxvVL68pWef3aPPP0/R+PE/qUMH4hoAEGj+/PlOLyHqDR++Xy1bZmjs2AuVmfnrv6inTp3q4Kp+xRlsuF5xz2AHOwJy/fWHOQICAICL7NgRqwEDmmrw4AP+oyIXX3yxw6vKxQ42osLJk2W0aFE1DR/eSNde21Jz5tRU584nNHt2qhYv3q477thPXAMAQvLmm286vQTo16Mis2bV0nffxUniVulA2BS0g80UEABAJJw4cSJiY2FRPOdPFWnevIEqV67s9LLYwYZZTpw4oZtuukm7d+8u8Wv8+GN5vf56bV17bQvdfntjbdxYUbff/ouWLNmmN99M1x//eIS4BgCU2Mcff+z0EvA/eVNF9uyJ0bRptTVr1iynlySJKSIwyIwZM7Rr1y4tXLhQU6ZMKfbzk5Kq6l//qs8UEABAxFiWpU6dOjm9DJzj3Kki773Xy+nlSOKICAzk8/mUlpamxMTEoN/PzMxUZmampNz/NHTVyllKvmmkWr37quq/e7W6dTuuSy89kW/4PAAApZWSkqIf9+9Tg26XqGxMjNPLwf/kZEvT36ym2D0btOiDW1W9ekVH1xNyYM+dO1edOnXSggULNHLkSE2ePFljxozRhAkTNGLECH322Wdq27atDh06pJMnT6ply5ZatmyZhg0bpldeecX/2Lvvvltz587VH/7wB6Wnp6ts2bKqV6+evvnmG91444164403/I998MEHNW3aNF133XXauHGjatSoobi4OG3fvl09e/bU7Nmz/Y997LHH9Pzzz+uWW27R6tWr1ahRI2VlZWnfvn3q2LGjFi1apPvuu0//+Mc//M+5/fbbtXjxYrVv314HDx5URkaGmjVrphUrVmjIkCF69dVX/Y+99957NWfOHHXr1k2pqamKiYlRnTp1lJycrL59+2r69On+xz700EOaOnWqrr/+eq1fv161atVSbGysUlNT1b17d7377rt67LHH9Mwzz+jvf/+7nn32WQ0ePFgrV65UkyZNlJmZqf379+uSSy7RJ598orvvvltTpkzxv/5f/vIXffzxx+rYsaN+/vlnnTlzRk2aNNGqVat066236rXXXvM/9r777tM777yjHj16aMeOHYqLi1ONGjW0YcMG9enTR2+99Zb/saNGjdKrr76qG264QcnJyapbt67KlSuntLQ0de3aVe+//75Gjx6tZ5991v+coUOHavny5WrevLkyMjJ08OBBtWvXTklJSbrrrrv0wgsv+B975513auHChbr00ku1d+9eZWdnKzExUWvWrNHAgQM1depUjRkzRj6fT5s2bdKKFSvUoEEDpaWlKS4uTlWqVNH27duVmpqqd9991//XZvsPx2jDzRP06KOPqkKFChH7mwUAAJjPsqQHH3xAs2bNUq9evbR161bFx8erevXq2rRpk6655hrNmDHD3ycPP/ywXn75Zd10001at26d6tWrp7Jly2rXrl36/e9/r3nz5mnUqFGaNGmSxowZE9Ia2MGGcc7dwf7uu+/yff/UqTOaNauy3nqrln7zmzMqP+99/XDZA7p3wuO6sFwl9enTR9WqVXNg5QAArztw4IAWLlwolfFpT73y+lfPysrmwK0Rah7I0k2fHFGvXr3UqVMnlS9f3rG18JcEXCU1NVZjxzbRli1xGjr0gO6++xcNKpv7Xt01V9XWnd+W16effqqhQ4eqVq1aDq8WAOBV1159jZb8+1/q8cUJzb25mrLK8WYfU2RnZystLU2NGjVyLLKZIgJXyMqS3n67lvr1a6qTJ8to9uxUPfDAvoBz1pmxZTVkyBDFx8dr9uzZ2r9/v4MrBgB42YUXXqhBA29Rs91nNfDDwyqXxYEAk2RmZiotLU1nzzpzjwsCG8ZLTY3VkCFN9OqrdXTrrQf1z3/+oHbtMoI+Nj4+nsgGANiicePGRLbBnIxsAhvGmDt3ru666y5J0qOPPqpXX51a5K51MEQ2AMAuRLbZnIpsAhvGGDhwoKZNmybLsvTEE/P07rt3h7RrHQyRDQCwC5FtNicim8CGUbKypEmTpA4dpOPHFfKudTBENgDALkS22eyObAIbxtiyRerSRXr8cen++6X//lfF2rUOhsgGANiFyDabnZFNYMNx5+9af/ml9NxzUrjuGUNkAwDsQmSbza7IJrDhqGC71p07h//nENkAALsQ2WbLzMzUwYMHI/ozCGw4ItK71sEQ2QAAuxDZ0Y3Ahu3s2rUOhsgGANiFyI5eBDZs48SudTBENgDALkR2dCKwYQsnd62DIbIBAHYhsqMPgY2IMmXXOhgiGwBgFyI7uhDYiBjTdq2DIbIBAHYhsqMHgY2wM3nXOhgiGwBgFyI7OhDYCCs37FoHQ2QDAOxCZHsfgY2wcNuudTBENgDALkS2txHYKDW37loHQ2QDAOxCZHsXgY0S88KudTBENgDALkS2NxHYKBEv7VoHQ2QDAOxCZHsPgY1i8equdTBENgDALkS2txDYCJnXd62DIbIBAHYhsr2DwEaRomnXOhgiGwBgFyLbGwhsFCoad62DIbIBAHYhst2PwEZQ0b5rHQyRDQCwC5HtbgQ28mHXumBENgDALkS2exHY8GPXOjRENgDALkS2OxHYkMSudXER2QAAuxDZ7kNgRzl2rUuOyAYA2IXIdhcCO4qxa116RDYAwC5EtnsQ2FGIXevwIrIBAHYhst2BwI4y7FpHBpENALALkW0+AjtKsGsdeUQ2AMAuRLbZCOwowK61fYhsAIBdiGxzEdgexq61M4hsAIBdiGwzEdgexa61s4hsAIBdiGzzENgew661OYhsAIBdiGyzENgewq61eYhsAIBdiGxzENgewK612YhsAIBdiGwzENgux661OxDZAAC7ENnOI7Bdil1r9yGyAQB2IbKdRWC7ELvW7kVkAwDsQmQ7h8B2EXatvYHIBgDYhch2BoHtEuxaewuRDQCwC5FtPwLbcOxaexeRDQCwC5FtLwLbYOxaex+RDQCwC5FtHwLbQOxaRxciGwBgFyLbHgS2Ydi1jk5ENgDALkR25BHYhmDXGkQ2AMAuRHZkEdgGYNcaeYhsAIBdiOzIIbAdxK41giGyAQB2IbIjg8B2CLvWKAyRDQCwC5EdfgS2zdi1RqiIbACAXYjs8CKwbcSuNYqLyAYA2IXIDh8C2wbsWqM0iGwAgF2I7PAgsCOMXWuEA5ENALALkV16BHaEsGuNcCOyAQB2IbJLh8COAHatESlENgDALkR2yRHYYcSuNexAZAMA7EJklwyBHSbsWsNORDYAwC5EdvER2KXErjWcQmQDAOxCZBcPgV0K7FrDaUQ2AMAuRHboCOwSYNcaJiGyAQB2IbJDQ2AXE7vWMBGRDQCwC5FdNAI7ROxaw3RENgDALkR24QjsELBrDbcgsgEAdiGyC0ZgF4Jda7gRkQ0AsAuRHRyBXQB2reFmRDYAwC5Edn4E9nnYtYZXENkAALsQ2YEI7HOwaw2vIbIBAHYhsn9FYItda3gbkQ0AsAuRnSvqA5tda0QDIhsAYBciO4oDm11rRBsiGwBgl2iP7KgMbHatEa2IbACAXaI5sqMqsNm1BohsAIB9ojWyoyaw2bUGfkVkAwDsEo2R7fnAZtcaCI7IBgDYJdoi29OBza41UDgiGwBgl2iKbE8GNrvWQOiIbACAXaIlsj0X2OxaA8VHZAMA7BINke2ZwGbXGigdIhsAYBevR7YnAptdayA8iGwAgF28HNmuDmx2rYHwI7IBAHbxamS7NrDZtQYih8gGANjFi5HtusBm1xqwB5ENALCL1yLbVYHNrjVgLyIbAGAXL0W2KwKbXWvAOUQ2AMAuXols4wObXWvAeUQ2AMAuXohsYwObXWvALEQ2AMAubo9sIwObXWvATEQ2AMAubo5sowKbXWvAfEQ2AMAubo1sYwKbXWvAPYhsAIBd3BjZjgc2u9aAOxHZAAC7uC2yHQ1sdq0BdyOyAQB2cVNkOxLY7FoD3kFkAwDs4pbItj2w2bVGUX788Uc99NBDTi8DxUBkAwDs4obIti2w2bVGKCzL0scff6yDBw86vRQUE5ENALCL6ZFtS2Cza41QLV26VFdccYXTy0AJEdkAALucH9lls5xe0a8iGtjsWqM4UlNTVadOHcXFxTm9FJQCkQ0AsMu5kd17+TGnl+NXLlIvnJws9eghnTwpjRolPfkkYY3CbdiwQWXLltUvv/yi3bt3a9OmTfL5fPked+bMGZ05c8b/efVjmZKkWj+f1t69e21bLwrXu3dvJSUlacaMGerTp4+qVavm9JIAoNQOHDgQ8L9wXlxcnK6+qrc+XfKZJOns2bMOr6gYgT137lx16tRJCxYs0MiRIzV58mSNGTNGEyZM0IgRI/TZZ5+pbdu2OnTokE6ePKkGDVrq1KlluuGGYapU6RVVqJD72Lvvvltz587VH/7wB6Wnp6ts2bKqV6+evvnmG91444164403/K/74IMPatq0abruuuu0ceNG1ahRQ3Fxcdq+fbt69uyp2bNn+x/72GOP6fnnn9ctt9yi1atXq1GjRsrKytK+ffvUsWNHLVq0SPfdd5/+8Y9/+J9z++23a/HixWrfvr0OHjyojIwMNWvWTCtWrNCQIUP06quv+h977733as6cOerWrZtSU1MVExOjOnXqKDk5WX379tX06dP9j33ooYc0depUXX/99Vq/fr1q1aql2NhYpaamqnv37nr33Xf12GOP6ZlnntHf//53Pfvssxo8eLBWrlypJk2aKDMzU/v379cll1yiTz75RHfffbemTJnif/2//OUv+vjjj9WxY0f9/PPPOnPmjJo0aaJVq1bp1ltv1WuvveZ/7H333ad33nlHPXr00I4dOxQXF6caNWpow4YN6tOnj9566y3/Y0eNGqVXX31VN9xwg5KTk1W3bl2VK1dOaWlp6tq1q95//32NHj1azz77rP85Q4cO1fLly9W8eXNlZGTo4MGDateunZKSknTXXXfphRde8D/2zjvv1MKFC3XppZdq7969ys7OVmJiotasWaOBAwcqJSVFjzzyiG644QadOnVK7733ni677DKlpaUpLi5OVapU0fbt25Wamqp3333X/9dmp7ljJEmXf35Ab659M/x/l6DUPvjgA6eXAABhtXDhQqeXgAJ8+umnuvnmm/Xxxx+rc+fO+Tri97//vebMmaPnnntOEyZM0MMPP6yXX35ZN910k9atW6d69eqpbNmy2rVrl37/+99r3rx5GjVqlCZNmqQxY8aEtAafZVkROxU+apQ0e7b0009STEykfgq87Lvvvsv3tfN3sO+zkpV8+X164IlHVb9GXd3Q53pV4D+XGCMjI0NJSUnKyMhgJxuA6x04cEALFy7UjTfeqJo1azq9HJwj79oMGDBAZ8+eVWGJW6tWLdWtWzdia4nYERFJGjpUmjJF+uwzqW/fSP4kRJOYmBjFnPMntvs3ttVgSf9f76q68cvjSlrymW4bOkwVK1Z0bpEIcNttt+mdd97Rp59+qqFDh6pWrVpOLwkASqVmzZqqV6+e08tAEJUrV1alSpWUnp5eaGRHUkTf5HjxxVLHjtKsWZH8KfAKn8+X76Nt27YhP/9o1bJ6e1B1/d+JQ3p79iydOnUqgqtFcfDGRwCAnRISEpSYmBj0vVx2iPiYvmHDpKQkiX+foiiWZeX72LRpU7FeY3+t8kS2oYhsAICdnIzsiAf2wIGSzye9/36kfxK84Nix3BE7x48fL/FrENnmIrIBAHZyKrIjHtg1akjXX88xEYSmQ4cO6tu3b6mnThDZ5iKyAQB2ciKybbmT47Bh0oYNuR9AYZ588kl9/PHHGjFiRKlfi8g2F5ENALCT3ZFtS2D37i3VqZM7sg8ozMaNG/X5559r8uTJYXnnL5FtLiIbAGAnOyPblsAuX1669VZpzhzpnPHFQD7PP/+8rrjiCp05c0YrV64My2sS2eYisgEAdrIrsm0JbCl3JvaBA7kzsYFg3nnnHc2fP1+SdPTo0bDOriSyzUVkAwDslJCQEPH7MdgW2MzERlGuvPJKxcXFadGiRWrQoIGuuOKKsL4+kW0uIhsAYKcyZSKbwLYFtsRMbBSuXr166tu3r2644Qbde++9EfkZRLa5iGwAgFfYGtjMxIYJiGxzEdkAAC+wNbCZiQ1TENnmIrIBAG5na2BLzMSGOYhscxHZAAA3sz2wmYkNkxDZ5iKyAQBuZXtgMxMbpiGyzUVkAwDcyPbAlpiJDfMQ2eYisgEAbuNIYDMTGyYiss1FZAMA3MSRwJaYiQ0zEdnmIrIBAG7hWGAzExumIrLNRWQDANzAscBmJjZMRmSbi8gGAJjOscCWmIkNsxHZ5iKyAQAmczSwmYkN0xHZ5iKyAQCmcjSwmYkNNyCyzUVkAwBM5GhgS8zEhjsQ2eYisgEApnE8sJmJDbcgss1FZAMATOJ4YEvMxIZ7ENnmIrIBAKYwIrCZiQ03IbLNRWQDAExgRGAzExtuQ2Sbi8gGADjNiMCWmIkN9yGyzUVkAwCcZExgMxMbbkRkm4vIBgA4xZjAZiY23IrINheRDQBwgjGBLTETG+5FZJuLyAYA2M2owGYmNtyMyDYXkQ0AsJNRgS0xExvuRmSbi8gGANjFuMBmJjbcjsg2F5ENALCDcYHNTGx4AZFtLiIbABBpxgW2xExseAORbS4iGwAQSUYGNjOx4RVEtrmIbABApBgZ2MzEhpcQ2eYisgEAkWBkYEvMxIa3ENnmIrIBAOFmbGAzExteQ2Sbi8gGAISTsYEtMRMb3kNkm4vIBgCEi9GBzUxseBGRbS4iGwAQDkYHNjOx4VVEtrmIbABAaRkd2BIzseFdRLa5iGwAQGkYH9jMxIaXEdnmIrIBACVlfGAzExteR2Sbi8gGAJSE8YEtMRMb3kdkm4vIBgAUlysCm5nYiAZEtrmIbABAcbgisCVmYiM6ENnmIrIBAKFyTWAzExvRgsg2F5ENAAiFawKbmdiIJkS2uYhsAEBRXBPYEjOxEV2IbHMR2QCAwrgqsJmJjWhDZJuLyAYAFMRVgc1MbEQjIttcRDYAIBhXBbbETGxEJyLbXEQ2AOB8rgtsZmIjWhHZ5iKyAQDncl1gS8zERvQiss1FZAMA8rgysJmJjWhGZJuLyAYASC4NbGZiI9oR2eYisgEArgxsiZnYAJFtLiIbAKKbawObmdgAkW0yIhsAopdrA5uZ2EAuIttcRDYARCfXBrbETGwgD5FtLiIbAKKPqwObmdjAr4hscxHZABBdXB3YEjOxgXMR2eYisgEgerg+sJmJDQQiss1FZANAdHB9YDMTG8iPyDYXkQ0A3uf6wJaYiQ0EQ2Sbi8gGAG/zRGAzExsIjsg2F5ENAN7licBmJjZQMCLbXEQ2AHiTJwJbYiY2UBgi21xENgB4j2cCm5nYQOGIbHMR2QDgLZ4JbImZ2EBRiGxzEdkA4B2eCmxmYgNFI7LNRWQDgDd4KrCZiQ2Ehsg2F5ENAO7nqcCWmIkNhIrINheRDQDu5rnAZiY2EDoi21xENgC4l+cCm5nYQPEQ2eYisgHAnTwX2BIzsYHiIrLNRWQDgPt4MrCZiQ0UH5FtLiIbANzFk4EtMRMbKAki21xENgC4h2cDm5nYQMkQ2eYisgHAHTwb2MzEBkqOyDYXkQ0A5vNsYEvMxAZKg8g2F5ENAGbzdGAzExsoHSLbXEQ2AJjL04HNTGyg9IhscxHZAGAmTwe2xExsIByIbHMR2QBgHs8HNjOxgfAgss1FZAOAWTwf2BIzsYFwIbLNRWQDgDmiIrCZiQ2ED5FtLiIbAMwQFYHNTGwgvIhscxHZAOC8qAhsiZnYQLgR2eYisgHAWVET2MzEBsKPyDYXkQ0AzomawGYmNhAZRLa5iGwAcEbUBLbETGwgUohscxHZAGC/qApsZmIDkUNkm4vIBgB7RVVgS8zEBiKJyDYXkQ0A9om6wGYmNhBZRLa5iGwAsEfUBTYzsYHII7LNRWQDQORFXWBLzMQG7EBkm4vIBoDIisrAZiY2YA8i21xENgBETlQGNjOxAfsQ2eYisgEgMqIysCVmYgN2IrLNRWQDQPhFbWAzExuwF5FtLiIbAMIragNbYiY2YDci21xENgCET1QHNjOxAfsR2eYisgEgPKI6sJmJDTiDyDYXkQ0ApRfVgS0xExtwCpFtLiIbAEon6gObmdiAc4hscxHZAFByUR/YzMQGnEVkm4vIBoCSifrAlpiJDTiNyDYXkQ0AxUdgi5nYgAmIbHMR2QBQPAT2/zATG3AekW0uIhsAQkdg/w8zsQEzENnmIrIBIDQE9v8wExswB5FtLiIbAIpGYJ+DmdiAOYhscxHZAFA4AvsczMQGzEJkm4vIBoCCEdjnYCY2YB4i21xENgAER2Cfh5nYgHmIbHMR2QCQH4F9HmZiA2Yiss1FZANAIAI7CGZiA2Yiss1FZAPArwjsIJiJDZiLyDYXkQ0AuQjsIJiJDZiNyDYXkQ0ABHaBmIkNmI3INheRDSDaEdgFYCY2YD4i21xENoBoRmAXgJnYgDsQ2eYisgFEKwK7EMzEBtyByDYXkQ0gGhHYhWAmNuAeRLa5iGwA0YbALgIzsQH3ILLNRWQDiCYEdhGYiQ24C5FtLiIbQLQgsIvATGzAfYhscxHZAKIBgR0CZmID7kNkm4vIBuB1BHYImIkNuBORbS4iG4CXEdghYCY24F5EtrmIbABeRWCHiJnYgHsR2eYisgF4EYEdImZiA+5GZJuLyAbgNQR2MTATG3A3IttcRDYALyGwi4GZ2ID7EdnmIrIBeAWBXQzMxAa8gcg2F5ENwAsI7GJiJjbgDUS2uYhsAG5HYBcTM7EB7yCyzUVkA3AzAruYmIkNeAuRbS4iG4BbEdglwExswFuIbHMR2QDciMAuAWZiA95DZJuLyAbgNgR2CTETG/AeIttcRDYANyGwS4iZ2IA3EdnmIrIBuAWBXULMxAa8i8g2F5ENwA0I7FJgJjbgXUS2uYhsAKYjsEuBmdiAtxHZ5iKyAZiMwC4FZmID3kdkm4vIBmAqAruUmIkNeB+RbS4iG4CJCOxSYiY2EB2IbHMR2QBMQ2CHATOxgehAZJuLyAZgEgI7DJiJDUQPIttcRDYAUxDYYcBMbCC6ENnmIrIBmIDADhNmYgPRhcg2F5ENwGkEdpgwExuIPkS2uYhsAE4isMOEmdhAdCKyzUVkA3AKgR1GzMQGohORbS4iG4ATCOwwYiY2EL2IbHMR2QDsRmCHGTOxgehFZJuLyAZgJwI7zJiJDUQ3IttcRDYAuxDYYcZMbABEtrmIbAB2ILAjgJnYAIhscxHZACKNwI4AZmIDkIhskxHZACKJwI4AZmIDyENkm4vIBhApBHaEMBMbQB4i21xENoBIILAjhJnYAM5FZJuLyAYQbgR2BDETG8C5iGxzEdkAwonAjiBmYgM4H5FtLiIbQLgQ2BHETGwAwRDZ5iKyAYQDgR1hzMQGEAyRbS4iG0BpEdgRxkxsAAUhss1FZAMoDQI7wpiJDaAwRLa5iGwAJUVg24CZ2AAKQ2Sbi8gGUBIEtg2YiQ2gKES2uYhsAMVFYNuEmdgAikJkm4vIBlAcBLZNmIkNIBREtrmIbAChIrBtwkxsAKEiss1FZAMIBYFtI2ZiAwgVkW0uIhtAUQhsGzETG0BxENnmIrIBFIbAthEzsQEUF5FtLiIbQEEIbJsxExtAcRHZ5iKyAQRDYNuMmdgASoLINheRDeB8BLYDmIkNoCSIbHMR2QDORWA7gJnYAEqKyDYXkQ0gD4HtAGZiAygNIttcRDYAicB2DDOxAZQGkW0uIhsAge0QZmIDKC0i21xENhDdCGyHMBMbQDgQ2eYisoHoRWA7iJnYAMKByDYXkQ1EJwLbQczEBhAuRLa5iGwg+hDYDmMmNoBwIbLNRWQD0YXAdhgzsQGEE5FtLiIbiB4EtsOYiQ0g3IhscxHZQHQgsA3ATGwA4UZkm4vIBryPwDYAM7EBRAKRbS4iG/A2AtsAzMQGEClEtrmIbMC7CGxDMBMbQKQQ2eYisgFvIrANwUxsAJFEZJuLyAa8h8A2CDOxAUQSkW0uIhvwFgLbIMzEBhBpRLa5iGzAOwhsgzATG4AdiGxzEdmANxDYhmEmNgA7ENnmIrIB9yOwDcNMbAB2IbLNRWQD7kZgG4aZ2ADsRGSbi8gG3IvANhAzsQHYicg2F5ENuBOBbSBmYgOwG5FtLiIbcB8C21DMxAZgNyLbXEQ24C4EtqGYiQ3ACUS2uYhswD0IbEMxExuAU4hscxHZgDsQ2AZjJjYApxDZ5iKyAfMR2AZjJjYAJxHZ5iKyAbMR2AZjJjYApxHZ5iKyAXMR2IZjJjYApxHZ5iKyATMR2IZjJjYAExDZ5iKyAfMQ2C7ATGwAJiCyzUVkA2YhsF2AmdgATEFkm4vIBsxBYLsAM7EBmITINheRDZiBwHYJZmIDMAmRbS4iG3Aege0SzMQGYBoi21xENuAsAtslmIkNwEREtrmIbMA5BLaLMBMbgImIbHMR2YAzCGwXYSY2AFMR2eYisgH7Edguw0xsAKYiss1FZAP2IrBdhpnYAExGZJuLyAbsQ2C7DDOxAZiOyDYXkQ3Yg8B2IWZiAzAdkW0uIhuIPALbhZiJDcANiGxzEdlAZBHYLsRMbABuQWSbi8gGIofAdilmYgNwCyLbXEQ2EBkEtksxExuAmxDZ5iKygfAjsF2MmdgA3ITINheRDYQXge1izMQG4DZEtrmIbCB8CGwXYyY2ADciss1FZAPhQWC7HDOxAbgRkW0uIhsoPQLb5ZiJDcCtiGxzEdlA6RDYLsdMbABuRmSbi8gGSo7A9gBmYgNwMyLbXEQ2UDIEtgcwExuA2xHZ5iKygeIjsD2CmdgA3I7INheRDRQPge0RzMQG4AVEtrmIbCB0BLZHMBMbgFcQ2eYisoHQENgewkxsAF5BZJuLyAaKRmB7CDOxAXgJkW0uIhsoHIHtIczEBuA1RLa5iGygYAS2xzATG4DXENnmIrKB4Ahsj2EmNgAvIrLNRWQD+RHYHsRMbABeRGSbi8gGAhHYHsRMbABeRWSbi8gGfkVgexAzsQF4GZFtLiIbyEVgexQzsQF4GZFtLiIbILA9i5nYALyOyDYXkY1oR2B7FDOxAUQDIttcRDaiGYHtYczEBhANiGxzEdmIVgS2hzETG0C0ILLNRWQjGhHYHsdMbADRgsg2F5GNaENgexwzsQFEEyLbXEQ2ogmB7XHMxAYQbYhscxHZiBYEdhRgJjaAaENkm4vIRjQgsKMAM7EBRCMi21xENryOwI4CzMQGEK2IbHMR2fAyAjtKMBMbQLQiss1FZMOrCOwowUxsANGMyDYXkQ0vIrCjCDOxAUQzIttcRDa8hsCOIszEBhDtiGxzEdnwEgI7ijATGwCIbJMR2fAKAjvKMBMbAIhskxHZ8AICO8owExsAchHZ5iKy4XYEdpRhJjYA/IrINheRDTcjsKMQM7EB4FdEtrmIbLgVgR2FmIkNAIGIbHMR2XAjAjtKMRMbAAIR2eYisuE2BHaUYiY2AORHZJuLyIabENhRipnYABAckW0uIhtuQWBHMWZiA0BwRLa5iGy4AYEdxZiJDQAFI7LNRWTDdAR2FGMmNgAUjsg2F5ENkxHYUY6Z2ABQOCLbXEQ2TEVgRzlmYgNA0YhscxHZMBGBDWZiA0AIiGxzEdkwDYENZmIDQIiIbHMR2TAJgQ1mYgNAMRDZ5iKyYQoCG5KYiQ0AxUFkm4vIhgkIbEhiJjYAFBeRbS4iG04jsCGJmdgAUBJEtrmIbDiJwIYfM7EBoPiIbHMR2XAKgQ0/ZmIDQMkQ2eYisuEEAhsBmIkNACVDZJuLyIbdCGwEYCY2AJQckW0uIht2IrARgJnYAFA6RLa5iGzYhcBGPszEBoDSIbLNRWTDDgQ28mEmNgCUHpFtLiIbkUZgIx9mYgNAeBDZ5iKyEUkENoJiJjYAhAeRbS4iG5FCYCMoZmIDQPgQ2eYishEJBDYKxExsAAgfIttcRDbCjcBGgZiJDQDhRWSbi8hGOBHYKBAzsQEg/IhscxHZCBcCG4ViJjYAhB+RbS4iG+FAYKNQzMQGgMggss1FZKO0CGwUipnYABA5RLa5iGyUBoGNIjETGwAih8g2F5GNkiKwUSRmYgNAZBHZ5jo/sg8fPuz0kuACBDZCwkxsAIgsIttc50b24sWLnV4OXIDARkiYiQ0AkUdkmysvsuPi4iSJnWwUisBGSJiJDQD2ILLNFR8fr+uuu06StHjxYs5ko0AENkLGTGwAsAeRba68Hey4uDje+IgCEdgIGTOxAcA+RLbZrrvuOqaLoEAENkLGTGwAsBeRba64uDhG+KFABDaKhZnYAGAvIttczMlGQQhsFAszsQHAfkS2uYhsBENgo9iYiQ0A9iOyzUVk43wENoqNmdgA4Awi21xENs5FYKPYmIkNAM4hss1FZCMPgY0SYSY2ADiHyDYXkQ2JwEYJMRMbAJxFZJuLyAaBjRJhJjYAOI/INheRHd0IbJQYM7EBwHlEtrmI7OhFYKPEmIkNAGYgss1FZEcnAhulwkxsADADkW0uIjv6ENgoFWZiA4A5iGxzEdnRhcBGqTATGwDMQmSbi8iOHgQ2So2Z2ABgFiLbXER2dCCwUWrMxAYA8xDZ5iKyvY/ARqkxExsAzERkm4vI9jYCG2HBTGwAMBORbS4i27sIbIQFM7EBwFxEtrmIbG8isBE2zMQGAHMR2eYisr2HwEbYMBMbAMxGZJuLyPYWAhthw0xsADAfkW0uIts7CGyEFTOxAcB8RLa5iGxvILARVszEBgB3ILLNRWS7H4GNsGImNgC4B5FtLiLb3QhshB0zsQHAPYhscxHZ7kVgI+yYiQ0A7kJkm4vIdicCGxHBTGwAcBci21xEtvsQ2IgIZmIDgPsQ2eYist2FwEZEMBMbANyJyDYXke0eBDYihpnYAOBORLa5iGx3ILARMczEBgD3IrLNRWSbj8BGxDATGwDcjcg2F5FtNgIbEcVMbABwNyLbXES2uQhsRBQzsQHA/YhscxHZZiKwEXHMxAYA9yOyzUVkm4fARsQxExsAvIHINheRbRYCGxHHTGwA8A4i21xEtjkIbNiCmdgA4B1EtrmIbDMQ2LAFM7EBwFuIbHMR2c4jsGELZmIDgPcQ2eYisp1FYMM2zMQGAO8hss1FZDuHwIZtmIkNAN5EZJuLyHYGgQ1bMRMbALyJyDYXkW0/Ahu2YiY2AHgXkW0uItteBDZsxUxsAPA2IttcRLZ9CGzYjpnYAOBtRLa5iGx7ENiwHTOxAcD7iGxzEdmRR2DDdszEBoDoQGSbi8iOLAIbjmAmNgBEByLbXER25BDYcAQzsQEgehDZ5iKyI4PAhmOYiQ0A0YPINheRHX4ENhzDTGwAiC5EtrmI7PAisOEYZmIDQPQhss1FZIcPgQ1HMRMbAKIPkW0uIjs8CGw4ipnYABCdiGxzEdmlR2DDUczEBoDoRWSbi8guHQIbjmMmNgBELyLbXER2yRHYcBwzsQEguhHZ5iKyS4bAhhGYiQ0A0Y3INheRXXwENozATGwAAJFtLiK7eAhsGIGZ2AAAicg2GZEdOgIbxmAmNgBAIrJNRmSHhsCGMZiJDQDIQ2Sbi8guGoENYzATGwBwLiLbXER24QhsGIWZ2ACAcxHZ5iKyC0ZgwyjMxAYAnI/INheRHRyBDeMwExsAcD4i21xEdn4ENozDTGwAQDBEtrmI7EAENozDTGwAQEGIbHMR2b8isGGkvJnYW7dWcHopAADDENnmIrJzEdgwUt5M7E8+qeb0UgAABiKyzUVkE9gwVN5M7P/v/6uqs2d9Ti8HAGAgIttc0R7ZBDaMNXSodPhwOX3xRYLTSwEAGIrINlc0RzaBDWNdfLHUuvUpffwxx0QAAAUjss0VrZFNYMNoffse0erVlXXoUFmnlwIAMBiRba5ojGwCG0a75pojkix9+mlVh1cCADAdkW2uaItsAhtGq1o1W927H2eaCAAgJES2uaIpsglsGK9v38PaujWOmdgAgJAQ2eaKlsgmsGG8Ll2Oq0aNs+xiAwBCRmSbKxoim8CG8cqXl/74xyPMxAYAFAuRbS6vRzaBDVe4/vrDzMQGABQbkW0uL0c2gQ1XaN48k5nYAIASIbLN5dXIJrDhGszEBgCUFJFtLi9GNoEN12AmNgCgNIhsc3ktsglsuAYzsQEApUVkm8tLkU1gw1WYiQ0AKC0i21xeiWwCG67CTGwAQDgQ2ebyQmQT2HAVZmIDAMKFyDaX2yObwIbrMBMbABAuRLa53BzZBDZch5nYAIBwIrLN5dbIJrDhSszEBgCEE5FtLjdGNoENV2ImNgAg3Ihsc7ktsglsuBIzsQEAkUBkm8tNkU1gw7XyZmL/3/+Vd3opAAAPIbLN5ZbIJrDhWnkzsb/9lpvOAADCi8g2lxsim8CGa+XNxE5OJrABAOFHZJvL9MgmsOFq119/WCdPMkkEABAZ50f26dOnnV4S/uf8yD58+LDTS/IjsOFqzZtn6sILzzi9DACAh50b2YsWf+L0cnCOcyN78eLFTi/Hr1woD7IsS8ePH4/0WoB8Tpw4ke9rZ86c0dmzZ/2fX3RRhpKTpU7fxyg+K87O5QEAokacfupcXpnL0hR7xtLNO+bq6OFYpxeF/4n9Xba6fHZcCaezdeu+T/RR/MCI/axKlSrJ5/MV+hifZVlWUS907NgxValSJWwLAwAAANzo6NGjqly5cqGPCSmw2cGGSTIzM5WZmen/fOvWNF15ZVd9+ulyxcWVUUZGhoOrAwB42ZM1tuv4voNS/WryxZaXVPhOJuxT5my2sncdUFy7RH1e7eaI/Zyw7WADJvvxxx9Vv3597dmzRxdccIF27doV9GgJAACldeLECXXp0kVr165VzZo11ahRI5UrF9KJW0RY3omLUHaYI403OcJTypQpo4YNGyohIcHppQAAPO706dNKS0tTVlaW00uBYQhseA6RDQCwC5GNYAhsuF5sbGzA/0pENgAgMmJiYvT73/9eMTEx/q8R2WaIjY3VNddcE9ADTuEMNlyvsDNXOTk5nMkGAITV0aNHg05Xq1ChAmeyHXbo0CFVr17d6WWwgw1vYycbABBu8+fPD/p1drKdN3XqVKeXIIkdbHhAKO8aZicbAGAXdrJBYMP1Qh3Lk5OTo927d+vkyZM2rg4A4DVvvPGG7rzzzkIfU6FCBSUmJqps2bI2rQqSNGHCBI0ZM8bpZRDYcD+T5l4CALzv2LFj/PvGUKZcG85gAwAAFMOsWbOcXgIKYMq1IbABAACKoU2bNnrooYecXgbOc+LECS1evFi7d+92eini9D0AAECILMvS3LlzdfbsWaeXgnPMmDFDu3bt0rJly5STk+P0ctjBBgAACNXSpUvVqVMnp5eB84wYMUJPPvmk08vwYwcbAAAgBKmpqapTp44yMjKcXgoMxw42AABACDZs2KC0tDQtWLBAu3fv1qZNm5xeEgzFDjYAAEAIbrrpJp09e1abNm1SamqqmHSMghDYAAAAISpfvrzKlCmjL7/80umlwGAcEQEAACgGE+4UCLMR2AAAACHw+XxBP+C8uXPn6q677pIkPfroo5o6daqj6+FW6XA9bpUOALBTZmamYmNjnV4GgjDl2rCDDQAAEKJjx47p5Zdf1vHjx51eCoJ4+eWXnV6CJN7kCAAAELIOHTqoUaNGqlmzpkaMGOH0cnCem266yeklSOKICDyAIyIAALvMmTNHt956q9PLgOE4IgLXq1Spko4ePapKlSo5vRQAgMdt3LhRn3/+uSZPnswcbBSIHWwAAIAQWZYln8+niRMnqkuXLurRo4fTS4KB2MEGAAAIwTvvvKP58+dLko4ePcoONgrEDjYAAEAI9u7dq3Xr1smyLP3444+69957nV4SDEVgAwAAAGHEEREAAAAgjAhsAAAAIIwIbAAAACCMCGwAAAAgjAhsAAAAIIwIbAAAACCMCGwAAAAgjAhsAAAAIIwIbAAAACCMCGwAAAAgjAhsAAAAIIz+fxfTeSTZVCHrAAAAAElFTkSuQmCC\n", + "text/plain": [ + "Graphics object consisting of 25 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:53,861 Plotting 2d diagram... done\n", + "INFO: 2023-09-20 09:43:53,862 Gomory-Johnson's 2-slope theorem applies. The function is extreme. Continuing anyway because full_certificates=True.\n", + "INFO: 2023-09-20 09:43:53,865 Plotting...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAALhCAYAAACg1EnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsbElEQVR4nO3deXyU5b3///eECCTEAAGBAEIEZAkYAmHfAhartioe9YgKUqrt8bjVhWpLhaoVl0JR6/qzehRURGv1qEXlq1IIqyyJASRhC8ZI2QyYBQJEyP37A5hDIDfZ5prrnpnX8/HIo01yzz3vzAfww8U1n8vnOI4jAAAAANWKsh0AAAAACBU0zwAAAEAN0TwDAAAANUTzDAAAANQQzTMAAABQQzTPAAAAQA3RPAMAAAA1RPOMsOA4jkpKSsTYcgAAYBLNM8JCaWmpmjZtqtLSUttRAAARYu7cubYjwIXJ2tA8AwAA1MGAAQNsR4ALk7WheQYAAKiD9957z3YEuDBZG5/DJlGEgZKSEjVt2lTFxcWKj4+3HQcAEAEOHz6sRo0a2Y6BKpisDSvPAAAAdTBjxgzbEeDCZG1YeUZYYOUZAAAEQ3QgblJeXq4jR44E4lZAnRw6dEjdunXToUOHFB1dt1/W0dHRatiwYYCTAQDC1bRp0zRlyhTbMVAFk7Wp98pzeXm5NmzYoIqKikBlAqyIiopSz549aaABADWyY8cOtW3b1nYMVMFkbeq98nzkyBFVVFQoKSlJMTExgcgEBN3BgweVn5+vI0eO0DwDAGrk008/1c0332w7BqpgsjYB2bYhSTExMYqNjQ3U7QAriouLdejQITVq1EhNmjSxHQcA4GEpKSm2I8CFydoErHkGwsG8efN04MABxcfHa+zYsTTQAABX+/btsx0BLkzWhlF1wEmaNGmihg0bqqSkRIcPH7YdBwDgYQcOHLAdAS5M1obmGThJo0aNGHgPAKhW6aFD6typk+0YcNG9e3dj96Z5BgAAqKHd2dn6eMwY9du8WTdPnWo7Dlx88cUXxu5N8wwAAHAGh4qKtPyee7S6VSu17NNHF370kZIyM/XV//f/aen27bbjoQoTJ040dm+aZwAAgFM4FRXKmT1bi3v10qGEBA15+mk1PnhQy8aNU3l+vv7n6qvlPP20rtizRxUc1uw5zzzzjLF70zzXks/n0wcffHDGayZOnKgrr7yyxvfMz8+Xz+dTdnZ2vbIBAID62Z2drUU//7nyYmOVPHGizs/NVfagQdr2ySe6oLRUI958U007dlT7+Hg9dt11+qFvX41fssR2bJzC5MmPEd0817bJlaSdO3fq0ksvleTe9P71r3/VrFmzAhMSAAAYdeq2jIGffKLdbdoo87HH1OrgQY1cvlydjv+3/2RHPv1U3Rcv1tw+fdi+4THTpk0zdm/mPNdSmzZtqr2madOmQUgCAADqyqmoUO4bb6hwxgyl5ORoiONofVyclo0bp96PPqqhHTtWe4/bbrtNE6OjlVRcrCv27FFhu3aK8vmCkB7Vue2224zdO6JXnk81cuRI/eY3v9H999+vhIQEtWnTRg899FCla07etnHeeedJkvr06SOfz6eRI0dKOn1Fe/78+Ro2bJiaNWumFi1a6LLLLlNeXl6tsiUlJWnatGmaMGGC4uLi1LFjR3344Yf6/vvvNWbMGMXFxemCCy7QmjVrKj3uvffeU8+ePdWoUSMlJSVp5syZ/u9NnjxZgwYNOu25UlJS9OCDD/o/f+2119SjRw81btxY3bt31wsvvOD/Xnl5ue644w4lJiaqcePGSkpK0uOPP16rnw0AgGCp6baMmpg7d67ax8dr2u7dbN/wmLlz5xq7N83zKWbPnq0mTZpo5cqVmj59uv70pz/p888/r/LaVatWSTo2DmXnzp16//33q7zuwIEDuvfee7V69WotWLBAUVFR+o//+A9VVFTUKttTTz2loUOH6quvvtLPf/5z3XjjjZowYYLGjx+vrKwsdenSRRMmTJBz/I0LmZmZuvbaa3Xddddp/fr1euihhzR16lT/lpJx48Zp5cqVlRr5DRs2aP369Ro3bpwk6eWXX9YDDzygRx99VLm5uXrsscc0depUzZ49W9KxDfkfffSR/v73v2vTpk168803lZSUVKufCwAAk+q6LaM6w4cPlyT9Pi2N7Rsec6I2JrBt4xQnr7qef/75eu6557RgwQJddNFFp117zjnnSJJatGhxxu0cV199daXP/+d//ketWrVSTk6OevXqVeNsP/vZz3TLLbdIkv74xz/qxRdfVP/+/fWf//mfkqTf/e53Gjx4sHbv3q02bdroySef1E9+8hNNPT6HsmvXrsrJydGMGTM0ceJE9erVSykpKXrrrbf818yZM0f9+/dX165dJUmPPPKIZs6cqauuukrSsdX2nJwcvfTSS/rFL36hgoICnX/++Ro2bJh8Pp861vBv6wAAmBSIbRnVyc/PV0pKiiTp89RUtm94yMm1CTRWnk9x6gudmJioPXv21OueeXl5uuGGG9SpUyfFx8f7t3sUFBTUOVvr1q0lSRdccMFpXzuRNzc3V0OHDq10j6FDh2rLli06evSopGOrz3PmzJEkOY6juXPn+ledv//+e3333Xe6+eabFRcX5/+YNm2af7V64sSJys7OVrdu3fSb3/xGn332Wa1+JgAAAimQ2zKq06BBA///Z/uGt5xcm0Bj5fkUZ511VqXPfT5frbdXnOryyy/Xueeeq5dffllt27ZVRUWFevXqpfLy8jpn8x3/G21VXzuR13Ec/9dOcE6ZRXnDDTfo97//vbKysnTw4EF99913uu666yrd5+WXX9bAgQMrPe7EL8q+ffvqm2++0aeffqovvvhC1157rUaPHq1//OMftfrZAACoq0NFRcp6+GGdNWeO+n7/vQZKyurYUcW33KLUSZOU2LChkedNTEys9Pnv09I0+/j2jdu2b9ew9u2NPC+qd2ptAonmuR4aHv/NeGIVtyp79+5Vbm6uXnrpJf/+m6VLlwYlX3Jy8mnPtXz5cnXt2tXf/LZv314jRozQnDlzdPDgQY0ePdq/gt26dWu1a9dO27Zt869GVyU+Pl5jx47V2LFjdc011+iSSy7Rvn37lJCQYO6HAwBEtGBsy6jO6tWr1bdv30pfY/uGN1RVm0Chea6HVq1aKSYmRvPnz1f79u3VuHHj08bUNW/eXC1atNDf/vY3JSYmqqCgQL///e+Dkm/SpEnq37+/HnnkEY0dO1YrVqzQc889V2lahnRs68ZDDz2k8vJyPfXUU5W+99BDD+k3v/mN4uPjdemll+rw4cNas2aNfvjhB91777166qmnlJiYqNTUVEVFRendd99VmzZt1KxZs6D8jACAyLI7O1u5Dzyg9gsWKPnwYe2MilL2oEHqMHWqLqjDm/7q48T7gU7WPj5e07Zs0eS0NI1fvFhvjRgR1Ew4pqraBAp7nushOjpazzzzjF566SW1bdtWY8aMOe2aqKgovf3228rMzFSvXr10zz33aMaMGUHJ17dvX/3973/X22+/rV69eumPf/yj/vSnP5123vt//ud/au/evSorKzvt0Jhf/epXeuWVVzRr1ixdcMEFSk9P16xZs/z7tuPi4vTnP/9Z/fr1U//+/ZWfn69PPvlEUVH80gIABIapaRn19dJLL1X5daZv2OdWm0DwOadugq2lsrIy5ebmqkePHoqNjQ1ULiCoTvw6zs/PV1FRkUpLSzVhwgS2ngCAJaduy2h2fFvGD2PGqPejjwbsTX+mbC8pUVJJieL37FFhnz5s3wgjLA8CAADPCOa0jPo60xHQTN+wy+Tx3Kw8A2LlGQBsOnVaRrmOTctofHxaRgND0zLqq6ysrNrep8fixdrYp4+WFBczfSOIalKbugrOynNx8bEPAAAAHduWkTN7thb36qVDCQka8vTTanzwoJaNG6fy/HwNzc9X2uTJnm2cJenFF1+s9prPU1PV4Pj0jYr6rVeiFmpSm7oy3zwXF0uPPHLsIwIb6JEjR+ruu++2HQMAAE8IpW0Z1bnsssuqvYbtG3bUpDZ1Zb55LiuTCguPfZSVnfHSXbt26c4771SnTp3UqFEjnXvuubr88su1YMEC4zHhXQ899JBSU1OrvW7Dhg26+uqrlZSUJJ/Pp6efftp4NgBA9bw6LaO+1q5dW6PrmL4RfDWtTV145g2D+fn5SktL07/+9S9Nnz5d69ev1/z58zVq1CjdfvvtVrPV9iRA2FFWVqZOnTrpiSeeUJs2bWzHAYCIFg7bMqrTokWLGl/L9o3gqk1tasszzfNtt90mn8+nVatW6ZprrlHXrl3Vs2dP3Xvvvfryyy/91xUUFGjMmDGKi4tTfHy8rr32Wu3evVuStGnTJvl8Pm3cuLHSvZ988kklJSX5j6bOycnRz372M8XFxal169a68cYbVVhY6L9+5MiRuuOOO3TvvfeqZcuWuuiii2r0uAMHDmjChAmKi4tTYmKiZs6cWaOf/aOPPlK/fv3UuHFjtWzZstJg7x9++EETJkxQ8+bNFRsbq0svvVRbtmzxf3/WrFlq1qyZ5s2bp27duik2NlbXXHONDhw4oNmzZyspKUnNmzfXnXfeWekkxKSkJD3yyCO64YYbFBcXp7Zt2+rZZ5+tlOtMr7X0fyvCb7zxhpKSktS0aVNdd911Ki0t9V/jOI6mT5+uTp06KSYmRr179650dPeiRYvk8/m0YMEC9evXT7GxsRoyZIg2bdrk//kefvhhrV27Vj6fTz6fT7Nmzarydezfv79mzJih6667To0aNarRaw8ACKxw2pZRnZiYmBpfy/aN4KpNbWrLE83zvn37NH/+fN1+++1q0qTJad8/cVqd4zi68sortW/fPmVkZOjzzz9XXl6exo4dK0nq1q2b0tLSNGfOnEqPf+utt3TDDTfI5/Np586dSk9PV2pqqtasWaP58+dr9+7duvbaays9Zvbs2YqOjtayZcv00ksv1ehx9913nxYuXKj//d//1WeffaZFixYpMzPzjD/7xx9/rKuuuko///nP9dVXX/mbyBMmTpyoNWvW6KOPPtKKFSvkOI5+9rOf6ccff/RfU1ZWpmeeeUZvv/225s+fr0WLFumqq67SJ598ok8++URvvPGG/va3v1VqWiVpxowZSklJUVZWliZPnqx77rlHn3/+eY1e6xPy8vL0wQcfaN68eZo3b54yMjL0xBNP+L8/ZcoUvfbaa3rxxRe1YcMG3XPPPRo/frwyMjIq3eeBBx7QzJkztWbNGkVHR+umm26SJI0dO1aTJk1Sz549tXPnTu3cufO0DAAAu8J1W0Z1Nm/eXKvr2b4RPLWtTa049XTgwAFnzZo1zoEDB6q+YMcOx/nFL4597NhR5SUrV650JDnvv//+GZ/rs88+cxo0aOAUFBT4v7ZhwwZHkrNq1SrHcRznySefdDp16uT//qZNmxxJzoYNGxzHcZypU6c6P/3pTyvd97vvvnMkOZs2bXIcx3HS09Od1NTUStdU97jS0lKnYcOGzttvv+3//t69e52YmBjnrrvucv2ZBg8e7IwbN67K723evNmR5Cxbtsz/tcLCQicmJsb5+9//7jiO47z22muOJGfr1q3+a2655RYnNjbWKS0t9X/t4osvdm655Rb/5x07dnQuueSSSs83duxY59JLL3Ucp2av9YMPPujExsY6JSUl/mvuu+8+Z+DAgY7jOM7+/fudxo0bO8uXL6/0PDfffLNz/fXXO47jOAsXLnQkOV988YX/+x9//LEjyTl48KD/eXr37l3la+SmY8eOzlNPPVXj60/8Ov7HP/7hvPLKK85TTz3l7N27t1bPCQCRpOLoUWfDrFlORs+ezg8+n+NIzrq4OCdj3DinKD/fdrygOPm/kTX1XXGx0+C775zmmZnO0YoKA6ngOHWrTU15YuXZOb6dwlfN6Tu5ubk699xzde655/q/lpycrGbNmik3N1eSdN111+nbb7/1b/WYM2eOUlNTlZycLEnKzMzUwoULFRcX5//o3r27pGOrqCecvPpbk8fl5eWpvLxcgwcP9j8mISFB3bp1O+PPlJ2drZ/85CeuP290dLQGDhzo/1qLFi3UrVs3/88rSbGxsercubP/89atWyspKUlxcXGVvrZnz55K9z8564nPT9y3Jq+1dGz7x9lnn+3/PDEx0f88OTk5OnTokC666KJKr9vrr79e6bWWpJSUlEr3kHRaXgCAfZG0LaM6s2fPrvVj2L4RHHWpTU1FG7tzLZx//vny+XzKzc3VlVde6Xqd4zhVNtgnfz0xMVGjRo3SW2+9pUGDBmnu3Lm65ZZb/NdWVFTo8ssv15///OfT7nOiaZN02vaR6h538j7k2jjTnhzH5Q0Fp74OZ511VqXv+3y+Kr9WUVFRbZ4T963Ja+323Cee58T/fvzxx2rXrl2l607dk3zyfU7cvyZ5AQDmnXqIyUAdO8Sk+PghJokh/Ka/+pgyZUqdHvf7tDTNPr5947bt2zk8xYC61qYmPLHynJCQoIsvvljPP/+8Dhw4cNr3i4qKJB1b+SwoKNB3333n/15OTo6Ki4vVo0cP/9fGjRund955RytWrFBeXp6uu+46//f69u2rDRs2KCkpSV26dKn0UdV+65o+rkuXLjrrrLMqvbnxhx9+qHbPTUpKiusovuTkZB05ckQrV670f23v3r3avHlzpZ+3rk7OeuLzE6vpNX2tzyQ5OVmNGjVSQUHBaa/ZySva1WnYsGGlNzsCAMyLhGkZ9VWfI6CZvmGWyeO5PdE8S9ILL7ygo0ePasCAAXrvvfe0ZcsW5ebm6plnnvFvLxg9erRSUlI0btw4ZWVladWqVZowYYLS09MrbbO46qqrVFJSoltvvVWjRo2qtOp5++23a9++fbr++uu1atUqbdu2TZ999pluuummMzZo1T0uLi5ON998s+677z4tWLBAX3/9tSZOnKioqDO/xA8++KDmzp2rBx98ULm5uVq/fr2mT58u6diK/JgxY/TrX/9aS5cu1dq1azV+/Hi1a9dOY8aMqc/LLUlatmyZpk+frs2bN+v555/Xu+++q7vuuktSzV/rMzn77LP129/+Vvfcc49mz56tvLw8ffXVV3r++edr9c8pSUlJ+uabb5Sdna3CwkIdPny4yuvKy8uVnZ2t7OxslZeX69///reys7O1devWGj8XAEQ6tmXU3OTJk+v8WLZvmFWf2lTHfPMcGyu1bHns4wxnjJ933nnKysrSqFGjNGnSJPXq1UsXXXSRFixY4D9i0efz6YMPPlDz5s01YsQIjR49Wp06ddI777xT6V7x8fG6/PLLtXbtWo0bN67S99q2batly5bp6NGjuvjii9WrVy/dddddatq06Rkb3Zo8bsaMGRoxYoSuuOIKjR49WsOGDVNaWtoZX56RI0fq3Xff1UcffaTU1FRdeOGFlVaaX3vtNaWlpemyyy7T4MGD5TiOPvnkk9O2S9TFpEmTlJmZqT59+uiRRx7RzJkzdfHFF0uq+WtdnUceeUR//OMf9fjjj6tHjx66+OKL9c9//lPnnXdeje9x9dVX65JLLtGoUaN0zjnnaO7cuVVet2PHDvXp00d9+vTRzp079Ze//EV9+vTRr371q1plBoBIE6nTMurrxGJXXTF9w5z61uZMfI7bxtoaKisrU25urnr06KFYt+b4xLHcTZvW56kQQElJSbr77rs5Ovy4E7+O8/PzVVRUpNLSUk2YMEEJCQm2owGAEU5FhXLfeEOFM2YoJSdHzRxH6+Pi9MOYMer96KOsLtfAt99+q471fJ22l5QoqaRE8Xv2qLBPH0VVMzwBNROI2rgJzraNpk1pnAEA8AC2ZQTO4sWL630Ptm+YEYjauAlK81x8/AMAAAQf2zLMqM0WxDNh+0bgBao2VTE+qq5Y0iPH//9USZG2/jxy5Eilpqbq6aefth2lkvz8fNsRAAAGnbotY8jxbRnLxo1T70cf1VBWl+vtyJEjAbvX56mpSjo+faOwXTu2b9RTIGtzKuMrz2WSCo9/lFVz7a5du3TnnXeqU6dOatSokc4991xdfvnlrqPcEBkeeughpaamVnvdyy+/rOHDh6t58+Zq3ry5Ro8erVWrVpkPCAAewraM4Nm1a1fA7sX2jcAKZG1O5ZlRdfn5+UpLS9O//vUvTZ8+XevXr9f8+fM1atQo3X777VazlZeXW31+1MyiRYt0/fXXa+HChVqxYoU6dOign/70p/r3v/9tOxoAGMW2DDuqm6hVW2zfCJxA1+Zknmmeb7vtNvl8Pq1atUrXXHONunbtqp49e+ree++tdJhHQUGBxowZo7i4OMXHx+vaa6/V7t27JUmbNm2Sz+fTxo0bK937ySefVFJSkv/EvpycHP3sZz9TXFycWrdurRtvvFGFhYX+60eOHKk77rhD9957r1q2bKmLLrqoRo87cOCAJkyYoLi4OCUmJmrmzJk1+tk/+ugj9evXT40bN1bLli111VVX+b/3ww8/aMKECWrevLliY2N16aWXVjrNcNasWWrWrJnmzZunbt26KTY2Vtdcc40OHDig2bNnKykpSc2bN9edd95ZaY51UlKSHnnkEd1www2Ki4tT27Zt9eyzz1bKdabXWvq/FeE33nhDSUlJatq0qa677jqVlpb6r3EcR9OnT1enTp0UExOj3r176x//+If/+4sWLZLP59OCBQvUr18/xcbGasiQIdq0aZP/53v44Ye1du1a+Xw++Xw+zZo1q8rXcc6cObrtttuUmpqq7t276+WXX1ZFRQX/cgEgLHGIiX0ffPBBwO/J4SmBYaI2J3iied63b5/mz5+v22+/vcpT/po1aybpWCN25ZVXat++fcrIyNDnn3+uvLw8jR07VpLUrVs3paWlac6cOZUe/9Zbb+mGG26Qz+fTzp07lZ6ertTUVK1Zs0bz58/X7t27de2111Z6zOzZsxUdHa1ly5bppZdeqtHj7rvvPi1cuFD/+7//q88++0yLFi1SZmbmGX/2jz/+WFdddZV+/vOf66uvvvI3kSdMnDhRa9as0UcffaQVK1bIcRz97Gc/048//ui/pqysTM8884zefvttzZ8/X4sWLdJVV12lTz75RJ988oneeOMN/e1vf6vUtErH5lKnpKQoKytLkydP1j333KPPP/+8Rq/1CXl5efrggw80b948zZs3TxkZGXriiSf8358yZYpee+01vfjii9qwYYPuuecejR8/XhkZGZXu88ADD2jmzJlas2aNoqOjddNNN0mSxo4dq0mTJqlnz57auXOndu7ceVoGN2VlZfrxxx8ZNwcgrLAtwzvuvPPOgN+T7RuBYaI2fk49HThwwFmzZo1z4MCBKr+/w3GcXxz/2OFyj5UrVzqSnPfff/+Mz/XZZ585DRo0cAoKCvxf27BhgyPJWbVqleM4jvPkk086nTp18n9/06ZNjiRnw4YNjuM4ztSpU52f/vSnle773XffOZKcTZs2OY7jOOnp6U5qamqla6p7XGlpqdOwYUPn7bff9n9/7969TkxMjHPXXXe5/kyDBw92xo0bV+X3Nm/e7Ehyli1b5v9aYWGhExMT4/z97393HMdxXnvtNUeSs3XrVv81t9xyixMbG+uUlpb6v3bxxRc7t9xyi//zjh07Opdcckml5xs7dqxz6aWXOo5Ts9f6wQcfdGJjY52SkhL/Nffdd58zcOBAx3EcZ//+/U7jxo2d5cuXV3qem2++2bn++usdx3GchQsXOpKcL774wv/9jz/+2JHkHDx40P88vXv3rvI1OpPbbrvN6dy5s/8+Z3Li1/E//vEP55VXXnGeeuopZ+/evbV+TgAw4eAPPzjL7r7bWXXOOc4RySmTnKUdOzprHnvMOXL4sO14EeuRRx4xdu/uGRmOSkqcJd99Z+w5wpnJ2nhi5dk5/s8SvmreWZqbm6tzzz1X5557rv9rycnJatasmXJzcyVJ1113nb799lv/Vo85c+YoNTVVycnJkqTMzEwtXLhQcXFx/o/u3btLOraKesKpR1BX97i8vDyVl5f7jxKXpISEBHXr1u2MP1N2drZ+8pOfuP680dHRGjhwoP9rLVq0ULdu3fw/ryTFxsaqc+fO/s9bt26tpKQkxcXFVfranj17Kt3/5KwnPj9x35q81tKx7R9nn322//PExET/8+Tk5OjQoUO66KKLKr1ur7/+eqXXWpJSUlIq3UPSaXlrY/r06Zo7d67ef/99NW7cuM73AQBb2JbhfVOmTDF2b7Zv1I/J2hgfVVcT559/vnw+n3Jzc3XllVe6Xuc4TpUN9slfT0xM1KhRo/TWW29p0KBBmjt3rm655Rb/tRUVFbr88sv15z//+bT7nGjaJJ22faS6x528D7k2YmJiXL/nuPxmOfV1OPWobp/PV+XXKioqqs1z4r41ea3dnvvE85z4348//ljt2rWrdF2jRo0qfX7yfU7cvyZ5q/KXv/xFjz32mL744otKTTkAhILd2dnKfeABtV+wQMmHD2tnVJSyBw1Sh6lTdQFv+vOUadOmGWvS2sfHa9qWLZqclqbxixfrrREjjDxPuDJZG0+sPCckJOjiiy/W888/rwMHDpz2/aKiIknHVj4LCgr03Xff+b+Xk5Oj4uJi9ejRw/+1cePG6Z133tGKFSuUl5en6667zv+9vn37asOGDUpKSlKXLl0qfVS137qmj+vSpYvOOuusSm9u/OGHH7R58+Yz/uwpKSmub2hLTk7WkSNHtHLlSv/X9u7dq82bN1f6eevq5KwnPj+xml7T1/pMkpOT1ahRIxUUFJz2mp28ol2dhg0bVnqz45nMmDFDjzzyiObPn3/avx4AgFcxLSM0/epXvzJ6f6Zv1J3J2niieZakF154QUePHtWAAQP03nvvacuWLcrNzdUzzzzj314wevRopaSkaNy4ccrKytKqVas0YcIEpaenV2qUrrrqKpWUlOjWW2/VqFGjKq163n777dq3b5+uv/56rVq1Stu2bdNnn32mm2666YwNWnWPi4uL080336z77rtPCxYs0Ndff62JEycqKurML/GDDz6ouXPn6sEHH1Rubq7Wr1+v6dOnSzq2Ij9mzBj9+te/1tKlS7V27VqNHz9e7dq105gxY+rzckuSli1bpunTp2vz5s16/vnn9e677+quu+6SVPPX+kzOPvts/fa3v9U999yj2bNnKy8vT1999ZWef/55zZ49u8Y5k5KS9M033yg7O1uFhYU6fPhwlddNnz5dU6ZM0auvvqqkpCTt2rVLu3bt0v79+2v8XAAQLGzLCH3//Oc/jT8H2zfqxmRtjDfPsZJaHv+IPcN15513nrKysjRq1ChNmjRJvXr10kUXXaQFCxboxRdflHTsn/M/+OADNW/eXCNGjNDo0aPVqVMnvfPOO5XuFR8fr8svv1xr167VuHHjKn2vbdu2WrZsmY4ePaqLL75YvXr10l133aWmTZuesdGtyeNmzJihESNG6IorrtDo0aM1bNiwaucMjhw5Uu+++64++ugjpaam6sILL6y00vzaa68pLS1Nl112mQYPHizHcfTJJ5+ctl2iLiZNmqTMzEz16dNHjzzyiGbOnKmLL75YUs1f6+o88sgj+uMf/6jHH39cPXr00MUXX6x//vOftTo28+qrr9Yll1yiUaNG6ZxzztHcuXOrvO6FF15QeXm5rrnmGiUmJvo//vKXv9QqMwCYxLSM8FGTA7zqi+kbdWOyNj7HbWNtDZWVlSk3N1c9evRQbGzV7XHx8f+NtKO5vSwpKUl333237r77bttRPOHEr+P8/HwVFRWptLRUEyZMYMwdgIA4VFSkrIcf1llz5qjv99+rXFJWx45qfMstSp00idXlEDV//nxdcsklQXmuHosXa2OfPlpSXKxh7dsH5TlDmcnaBGXbRlPROAMAIgvbMsLfwYMHg/ZcbN+oHZO18cyeZwAAwgHbMiLH+eefH7TnYvtG7ZisDc1zNZKSkvT000/bjuE/CjtQ8vPz2bIBAAHCtIzItHDhwqA+H9M3as5kbTzTPE+cOFE+n++0j61btwbl+WfNmuU/Bvxkq1ev1n/9138FJcOZ/Pa3v3UdaQcACD62ZWDChAlBf062b9SMydp4pnmWpEsuuUQ7d+6s9FGbqQwmnHPOOa5vhAymuLg4tWjRwnYMAIh4bMvACc8++2zQn5PtGzVjsjaeap4bNWqkNm3aVPpo0KCBJk6ceNrJg3fffbdGjhzp/3zkyJH6zW9+o/vvv18JCQlq06aNHnrooUqPKSoq0n/913+pdevWaty4sXr16qV58+Zp0aJF+uUvf6ni4mL/iveJx566baOgoEBjxoxRXFyc4uPjde2112r37t3+75/YXvHGG28oKSlJTZs21XXXXafS0lLXn/vEqvcHH3ygrl27qnHjxrrooosqHVAS6G0bAICaY1sGqmLyCOgzYftG9UzWxlPNc33Nnj1bTZo00cqVKzV9+nT96U9/0ueffy7p2FHPl156qZYvX64333xTOTk5euKJJ9SgQQMNGTJETz/9tOLj4/0r3r/97W9Pu7/jOLryyiu1b98+ZWRk6PPPP1deXp7Gjh1b6bq8vDx98MEHmjdvnubNm6eMjAw98cQTZ8xeVlamRx99VLNnz9ayZctUUlJS6WREAEBwsS0D1Zk2bZq152b7xpmZrE20iZuWlZVp48aNZ7yme/fup22HmDdvnuLi4vyfX3rppXr33Xdr/LwpKSl68MEHJR17l+Vzzz2nBQsW6KKLLtIXX3yhVatWKTc3V127dpUkderUyf/Ypk2byufzqU2bNq73/+KLL7Ru3Tp98803/uOl33jjDfXs2VOrV69W//79JR1r1GfNmqWzzz5bknTjjTdqwYIFevTRR13v/eOPP+q5557TwIEDJR37i0CPHj20atUqDRgwoMavAQCgfnZnZyv3gQfUfsECJR8+rJ1RUcoeNEgdpk7VBawu4yR33HGHteduHx+vaVu2aHJamsYvXqy3RoywlsWLTNbGSPO8cePGak/Wy8zMVN++fSt9bdSoUf7TBCWpSZMmtXrelJSUSp8nJiZqz549kqTs7Gy1b9/e3zjXRW5urs4991x/4yxJycnJatasmXJzc/3Nc1JSkr9xPjWHm+jo6ErHXnfv3t1/X5pnADDr1ENMBurYISbFxw8xSWR1GVV48803rTbQv09L0+zj2zdu276dw1NOYrI2Rprn7t27KzMzs9prTtWkSRN16dLltK9HRUXp1IMQf/zxx9OuO/XIap/Pp4qKCklSTExMtbmr4ziOfD5ftV8/U44zqereVX0NAFB/J7Zl7J05Uyk5ORriOFofF6dl48ap96OPaihv+kM10tPTbUfQ56mpSjq+faOwXTtF0TdIMlsbI81zbGzsaavK9XHOOefo66+/rvS17Ozs05rUM0lJSdH27du1efPmKlefGzZsqKNHj57xHsnJySooKNB3333nX33OyclRcXGxevToUeMsVTly5IjWrFnjX2XetGmTioqKqvxLBgCg7nZlZWnjlCk6d8EC9SwvZ1sG6iwvL08XXHCB1Qxs36iaydqExBsGL7zwQq1Zs0avv/66tmzZogcffPC0Zro66enpGjFihK6++mp9/vnn+uabb/Tpp59q/vz5ko5ttdi/f78WLFigwsJClZWVnXaP0aNHKyUlRePGjVNWVpZWrVqlCRMmKD09vdKWi7o466yzdOedd2rlypXKysrSL3/5Sw0aNIgtGwAQACdPyzgnLU0DP/1UuxITmZaBemnoke08TN84ncnahETzfPHFF2vq1Km6//771b9/f5WWltZp+PV7772n/v376/rrr1dycrLuv/9+/2rzkCFD9N///d8aO3aszjnnHE2fPv20x/t8Pn3wwQdq3ry5RowYodGjR6tTp05655136v0zxsbG6ne/+51uuOEGDR48WDExMXr77bfrfV8AiFRORYU2vPYa0zJgTOvWrW1H8GP6RmUma+NzTt1MXEtlZWXKzc1Vjx49PHGYSCiaNWuW7r77bhUVFdmOErFO/DrOz89XUVGR/y9oCQkJtqMBqKWTt2V0Pr4tY9PAgeowdSqrywiov/3tb544hfiEJzIzNTktTdezfcNobYzseQYAIJhOnZbRVMemZRQxLQMGjRkzxnaESpi+8X9M1iYktm0AAHAqtmXAtpdfftl2hNOwfeMYk7Vh2wYgtm0AoYRtGcCZsX3DLFaeAQCex7QMeJHN47nPhOkbZmtD8wwA8CS2ZcDrJk2aZDuCq0jfvmGyNjTPAABP2ZWVpUU/+5m2xcSo50036fzcXGUPGqRtn3yiC0pLNeLNN9WU0//gAS+88ILtCK7ax8dr2u7d+qFvX41fssR2nKAzWRumbQAArGNaBkLRFVdcYTvCGUXy9A2TtWHlGQBgBdsyEOqysrJsR6hWpG7fMFkbmmcAQFCxLQPh4pxzzrEdoVqRun3DZG0Ctm3j4MGDgboVEHT8+gXMYlsGwlGjRo1sR6iRSNy+YbI29W6eo6OjFRUVpfz8/ADEAexxHEdHjx61HQMIG05FhXJmz9bemTOVkpOjIY6j9XFxWjZunHo/+qiGsrqMEJeXl6ehQ4fajlEjn6emKun49o3Cdu0U5fPZjmSUydrUu3lu2LChevbsqSNHjqi4uFjz5s1TkyZNQuZvYwgPP/74o1577TX98pe/1FlnnVWnexw9elRHjhwJcDIg8px8iEnP44eYZA8apA5Tp+oCZjEjjIwcOdJ2hBprHx+vaVu2aHJamsZHwOEpJmsTkG0bDRs2VMOGDXXo0CEdOHBAP/74I80zgqq8vFzfffedfvjhBzWs5z//Hj58OECpgMjBtgxEojfeeEMPPPCA7Rg1FknbN0zWpt7Hc5/swIEDeuedd1RSUhKoWwI1Ul5errlz5+r666+vd/MsSfHx8Ro7dqyaNGkSgHRAeDp1W0az49syfhgzRr0ffZQ3/SHsVVRUKCoqtGYvbC8pUVJJieL37FFhnz5hu33DZG0C2jxLxxpoVu4QbKWlperWrZs2bdqks88+u973a9SoEY0z4OLkbRmdj2/L2DRwoDpMncoR2Ygo06ZN05QpU2zHqLUnMjM1OS1N14fx9g2TtQl48wzYUFJSoqZNm6q4uFjx8fG24wBh59RtGeU6ti2j8fFtGcxiRiQKxZXnE3osXqyNffpoSXFxWG7fMFmb0Kw4AMA4DjEBzuzxxx+3HaHOwv3wFJO1oXkGAFTCISZAzdx44422I9RZuB+eYrI2NM8AAB0qKtLye+7R6latdE5amgZ++ql2JSYq87HH1OrgQY1cvpz9zMApFi1aZDtCvfw+LU3dj0/fWLp9u+04AWWyNjTPABCh2JYB1E/nzp1tR6i3cN2+YbI2NM8AEGHYlgEERjhMFzt5+8aNYbR9w2RtAnJICgDA2zjEBAi877//3naEgDhxeMpbffro1jA5PMVkbVh5BoAwxbYMwKy+ffvajhAwn6emqkFJSdhs3zBZG5pnAAgzbMsAguOjjz6yHSFg2sfH65Fdu8Jm+4bJ2nBICsICh6Qg0nGICRB8Bw8eVExMjO0YARUuh6eYrA0rzwAQotiWAdg1c+ZM2xECLly2b5isDSvPCAusPCOS7MrK0sYpU3TuggXqXF6unVFR2jRwoDpMncosZgD19nhmpv6QlqYbFi/WnBEjbMfxHFaeASAEcIgJ4D3Tpk2zHcGIyccPT3krhA9PMVkbVp4RFlh5RjhyKiqUM3u29s6cqZScHDVzHK2Pi9MPY8ao96OP8qY/wLLdu3erdevWtmMYsb2kREmlpYrfvVuFffooyuezHalWTNaGlWcA8BimZQCh4cMPP7QdwZhQn75hsjYckgIAHsAhJkDoSUtLsx3BqMlpaXo9RA9PMVkbVp4BwBKmZQChbffu3bYjGBeq0zdM1obmGQCCjG0ZQHgoLy+3HcG4UN2+YbI2bNsAgCBgWwYQfjp37mw7QlCE4vYNk7Vh5RkADGFbBhDeMjIybEcImlDbvmGyNoyqQ1hgVB28hENMgMhQVFSkZs2a2Y4RNKF0eIrJ2rDyDAABwCEmQOR57rnnbEcIqlA6PMVkbVh5Rlhg5Rk2cIgJgEgT6oenBAIrzwBQS0zLACCF7/HcZxIq0zc4nhuoBivPMO3UaRnlOjYto/HxaRm86Q+IPMXFxWratKntGFb0WLxYG/v00ZLiYk9O3zBZG1aeAcAF0zIAnMnrr79uO4I1Xp++YbI2NM8AcAq2ZQCoiVGjRtmOYI3Xt2+YrA3NMwCIaRkAam/Lli22I1jl5ekbJmtD8wwgYrEtA0B9xMTE2I5gnVe3b5isDc0zgIjDtgwAgdCiRQvbEazz6vYNk7WheQYQEdiWASDQsrOzbUfwBC9u3zBZG0bVISwwqg5V4RATACbt2rVLbdq0sR3DE7x2eIrJ2rDyDCDssC0DQDC88sortiN4hte2b5isDSvPCAusPINDTADAPq8fnhIIrDwDCFlMywBgUyQez10dr0zf4HhuoBqsPEeWXVlZ2jhlis5dsECdy8u1MypKmwYOVIepU3nTH4CgOXTokBo3bmw7huc8npmpP6Sl6YbFizVnxAgrGUzWhpVnACGBaRkAvObZZ5+1HcGTvDB9w2RtWHlGWGDlOTwxLQOAl23ZskXnn3++7RieZHv6hsnasPIMwHOYlgEgFGRmZtqO4Fm2p2+YrE20sTsDQC2cOi2jqY5Nyyg6Pi0jkTf9AfAYZjyf2eS0NL1+fPvGrdu3B3X6hsnasPIMwBqmZQAIZdHRrEFWx9b0DZO1oXkGEHRsywAQDr755hvbETzP1vYNk7XhDYMIC7xh0Ps4xARAuPn222/Vkb/o10iwD08xWRtWngEYw7YMAOHsrbfesh0hZAR7+4bJ2rDyjLDAyrO3cIgJgEhw9OhRNWjQwHaMkBHMw1NM1oaVZwABwSEmACLN448/bjtCSAnm4Skma8PKM8ICK892cIgJAKA2bB+eEgisPAOoNaZlAIA0bdo02xFCTrCmb5isDSvPCAusPJvHtAwAqOy7777TueeeaztGSDI9fcNkbVh5BuCKaRkA4G7BggW2I4Qs09M3TNaG5hnAadiWAQDV69q1q+0IIcv09g2TteFcSQCSTt+W0VTHtmUUHd+WkcjqMgBUcvDgQdsRQtrktDS9fnz6xq3btwd0+4bJ2rDyDEQwtmUAQN3t3bvXdoSQZ2r7hsna0DwDEYhtGQBQf71797YdIeSZ2r5hsjY0z0CE4BATAAisefPm2Y4QFkwcnmKyNoyqQ1hgVF3VOMQEAMwpKytTbGys7RhhIdCHp5isDSvPQBhiWwYAmPfkk0/ajhA2Ar19w2RtWHlGWGDlmUNMAAChz/ThKYHAyjMQwpiWAQD2cDx34AVq+gbHcwPViLSV511ZWdo4ZYrOXbBAncvLtTMqSpsGDlSHqVN50x8ABMn333+vc845x3aMsPN4Zqb+kJamGxYv1pwRI+p0D5O1YeUZCBFMywAAb3n//fdtRwhLgZi+YbI2NM+Ah7EtAwC8q3///rYjhK36bt8wWRuaZ8CDmJYBAN63c+dO2xHCVn2nb5isTbSxOwOolVOnZTTVsWkZRcenZSSyugwAnnL06FHbEcLa5LQ0vX58+8at27fXavqGydqw8gxYxLYMAAhdSUlJtiOEvbpu3zBZG5pnwAK2ZQBA6FsSgMM8cGZ13b5hsjaMqkNYCIVRdRxiAgDhZd++fUpISLAdIyLU9vAUk7Vh5RkwiG0ZABC+XnjhBdsRIkZtt2+YrA0rzwgLXlt55hATAAACKxCHpwQCK89AgHCICQBEFo7nDq7aHJ7C8dxANWytPDsVFcqZPVt7Z85USk6OmjmO1sfF6YcxY9T70Ud50x8AhLGSkhJP/GtnJNleUqKk0lLF796twj59FOXzVXmdydqw8gzUAdMyAACzZs2yHSHi1HT6hsnasPKMsBCMlWemZQAATpaTk6Pk5GTbMSJSddM3TNaGlWfgDJiWAQBws3HjRtsRIlZ10zdM1obmGagC2zIAANVp0qSJ7QgRq7rtGyZrE23szkCIOXVbRlMd25ZRdHxbRiKrywCAk3BAil2T09L0+vHpG7du315p+4bJ2rDyjIjGtgwAQF2tW7fOdoSI57Z9w2RtaJ4RkdiWAQCor0uZ3W+d2/YNk7WheUbE4BATAEAgvfrqq7YjQFUfnmKyNoyqQ1hwG1XHISYAAIS/mh6eEgisPMNT9u/fr6uvvloFBQX1ug/bMgAApnE8t3ecun2D47kREV599VV9++23+tOf/qRvvvlGSUlJNX7siZXnz269Vc3+8Q8OMQEAGHf48GE1atTIdgyc5MThKQv27NGFnTsbeQ6aZ3iOz+ertnk+fPiwDh8+LEna8s03uuNf/9KX996rTa1ba1eTJiodOVJdb79dcYmJQUoNAIg0Tzz1lK6+8UbbMXCSooMHNeXQIe16803teuklI9s3atw8z507VwMGDNB7772nu+66SzNmzNCUKVM0bdo03XTTTfr000+VkpKiffv26cCBA+revbu++OILTZw4Uc8884z/2ttuu01z587V8OHDlZ+frwYNGigxMVGrV6/WVVddpZdeesl/7b333qsXX3xRl112mdauXasWLVooJiZGmzdv1k9+8hPNnj3bf+3kyZM1ffp03XDDDVq8eLHOO+88HTlyRLt27VJaWpo++OAD3XnnnfrLX/7if8yvfvUr/fOf/1Rqaqr27t2rgwcP6vzzz9fChQs1YcIEPfvss/5r77jjDr355ptKT09XXl6eGjZsqNatWyszM1NjxozRyy+/7L920qRJeuGFF3TFFVcoKytL55xzjho1aqS8vDyNHDlSb7zxhiZPnqzHHntMf/jDH/T444/rxhtv1KJFi9S5c2cdPnxY33//vfr27auPPvpIt912m2bOnOm//69//Wt9+OGHSktL0+7du1VeXq7OnTsrIyND48eP13PPPee/9s4779Trr7+uUaNGacuWLYqJiVGLFi2UnZ2tyy+/XK+88or/2t/+9rd69tlndeWVVyozM1Nt2rRRdHS0vvnmG40YMUJvvfWW7r//fj3++OP+x/ziF7/QggUL1LVrVx08eFB79+5V7969NW/ePN1666168skn/dfecsstev/999W/f3/t3LlTR48eVVJSkpYsWaLrr79eL7zwgqZMmSKfz6d169Zp4cKFGj16tDZu3KgmTZooISFB69at06WXXqrx48dr4cKFp/06veKKK9S8eXNFRUWpqKhIHTp00Ndff60hQ4Zo6dKlSk9PV0ZGhlJTU7Vt2za1bNlS5eXlOnTokFq1aqWtW7eqb9+++vLLL/3X9uvXTzk5OWrfvr1KSkokSfHx8dq+fbt69uyp1atX+68dNGiQsrKy1LlzZxUWFqphw4Zq3Lix9uzZoy5duuirr77yXzts2DCtWLFCycnJ2r59u3+vdklJidq3b6+cnBwNHjy4Uu4+ffpo69atatWqlQ4dOqTy8nK1bNlSeXl5p+Xu37+/NmzYUGXu5ORkrVmz5rTcXbp00Z49e9S4cWM1bNhQhYWF6tSpk7KzsyvlXr58uXr16qWCggI1a9ZMFRUV2r9/v9q1a6ecnBwNGjRIy5YtOy1369atdfDgQX/ubdu2KTU1VStXrqyU++uvv1aHDh1UVFSkqKgoxcXFaceOHerRo0el3IMHD9aaNWvUtWtX7dq1S7GxsYqOjtbevXtPyz18+HAtW7ZMF1xwgb799ttKudu2bauNGzdqwIABWr58uf8xffv21ebNm9WmTRuVlZXpyJEjSkhIUH5+vnr37l0p94ABA7Ru3TolJSVp3759atCggT939+7dlZmZ6b92yJAhWr16tbp166adO3f6c+/bt09JSUlat26dhg0bpiVLlmj48OFaunSpUlJSlJ+fr4SEBB05ckRlZWVKTEzUpk2b1L9//0q509LStHHjRrVt21b79+/X0aNH/blTUlK0atUq/7UDBw7U2rVr/bmjo6MVGxurXbt2qWvXrsrKyqqUe9WqVerevbt27NihuLg4/++1jh07av369Ro6dKiWLFly2u+1Fi1a+HO3adNGmzdvVr9+/bRixYpKv9dyc3P9uSsqKtSsWTMVFBSoV69elX6vDRw4UNnZ2erUqZP/91pMTIx279592u+1oUOH6ssvv1RycrL+/e9/V8rNnxH8GVGfPyM6deqkPXv28GeEB/+M6Nq1q6ITEnTb+PFV9hGvvvqqvz+577779Ne//lVXX321OtdgtZqVZ3hOTVaet+zZo0uysrRtyBA1/+or/eHbb3XfL36hf/zjHxoyZEjwwgIAItKWwkI98/DDSvrNb9SgeXPbcXASp6BA2157Tb958EGNuOCCgN+fEwYRcqatWaOH2rbV0SFDdGN2tmaNGKEFX3wh6diqSSJbNQAAhhVKiouLk+/88xXDf3c85aCO1cYUmmeEjILiYo1et05bhg9XQmam5rVpo8EjRtiOBQCIUFFRDC3zKpO1oeoICdPWrFGnAwe0pXdv3bh4sb7v21eD27WzHQsAEMGKiopsR4ALk7Vh5RmeMXfuXC1evFiS9Pvf/14jRozQZePGsdoMAPCkDh062I4AFyZrw8ozPOP666/Xiy++KMdx9Pbbb2vfgAGsNgMAPOvrr7+2HQEuTNaGlWd4DnubAQChYMiQITpoOwSqZHLyFivP8BT2NgMAQsXSpUttR4ALk7Vh5RmewGozACDUpKena7/tEKhSenq6sXuz8gzrWG0GAISijIwM2xHgwmRtWHmGNaw2AwBCWWpqqu0IcGGyNqw8wwpWmwEAoW7btm22I8CFydqw8oygYrUZABAuWrZsaTsCXJisDSvPCBpWmwEA4aS8vNx2BLgwWRtWnmEcq80AgHB06NAh2xHgwmRtWHmGUaw2AwDCVatWrWxHgAuTtaF5hhEFxcXqumSJpvbrp6Y7d2p5aaleHzFCUT6f7WgAAATE1q1bbUeAC5O1oXlGwLHaDACIBH379rUdAS5M1obmGQHDajMAIJJ8+eWXtiPAhcna0DwjIFhtBgBEGpNHQKN+OJ4bnsVqMwAgUnE8t3eZrA3NM+qM1WYAQCTr16+f7QhwYbI2NM+oNVabAQCQcnJybEeAC5O1oXlGrbDaDADAMe3bt7cdAS5M1oYTBlEjnBIIAEBlJSUlOtt2CFSppKTE2L1ZeUa1WG0GAAA4hpVnuGK1GQAAd/Hx8bYjwIXJ2rDyjCqx2gwAwJlt377ddgS4MFkbVp5RCavNAADUTM+ePVVhOwSq1LNnT2P3ZuUZfqw2AwBQc6tXr7YdAS5M1oaVZ7DaDABAHaSnp2u/7RCoEsdzwxhWmwEAqBuO5/Yuk7Vh5TlCsdoMAED9DBo0SD/aDoEqDRo0yNi9WXmOQKw2AwBQf1lZWbYjwIXJ2rDyHEFYbQYAIHA6d+5sOwJcmKwNK88RgtVmAAACq7Cw0HYEuDBZG1aewxyrzQAAmNGwYUPbEeDCZG1YeQ5jrDYDAGBO48aNbUeAC5O1oXkOQwXFxeq6ZImm9uunpjt3anlpqV4fMUJRPp/taAAAhI09e/bYjgAXJmtD8xxmWG0GACA4unTpYjsCXJisDc1zmGC1GQCA4Prqq69sR4ALk7WheQ4DrDYDABB8Jo+ARv1wPDeqxGozAAD2cDy3d5msDc1ziGK1GQAAu4YNG2Y7AlyYrA3Nc4hhtRkAAG9YsWKF7QhwYbI2NM8hhNVmAAC8Izk52XYEuDBZG5rnEMBqMwAA3rN9+3bbEeDCZG1onj2O1WYAALwpPj7edgS4MFmbaGN3Rr0UFBdr9Lp12jJ8uBIyMzWvTRsNHjHCdiwAAICIxsqzB7HaDACA95WUlNiOABcma8PKs4d8W1ysi1htBgAgJLRv3952BLgwWRtWnj3iT6tXq1NZGavNAACEiJycHNsR4MJkbVh5tozVZgAAQtPgwYN10HYIVGnw4MHG7s3Ks0WsNgMAELqWLl1qOwJcmKwNK88WsNoMAEDoS09P137bIVCl9PR0Y/dm5TnIWG0GACA8ZGRk2I4AFyZrw8pzkLDaDABAeOnTp4/tCHBhsjasPAcBq80AAISfrVu32o4AFyZrw8qzQaw2AwAQvlq1amU7AlyYrA0rz4aw2gwAQHg7dOiQ7QhwYbI2rDwHGKvNAABEhvLyctsR4MJkbVh5DiBWmwEAiBwtW7a0HQEuTNaG5jkAvi0uVtclS/Rg//5qtmOHlpeW6vURIxTl89mOBgAADMnLy7MdAS5M1obmuZ5YbQYAIDL17dvXdgS4MFkbmuc6YrUZAIDI9uWXX9qOABcma0PzXAesNgMAAJNHQKN+OJ7bI1htBgAAJ3A8t3eZrA3Ncw2x2gwAAE7Wv39/2xHgwmRtaJ6rwWozAACoyoYNG2xHgAuTtaF5PgNWmwEAgJv27dvbjgAXJmvDCYNV4JRAAABQnZKSEp1tOwSqVFJSYuzerDyfgtVmAAAAuGHl+ThWmwEAQG3Ex8fbjgAXJmvDyrNYbQYAALW3fft22xHgwmRtInrlmdVmAABQV8nJyXJsh0CVkpOTjd07YleeWW0GAAD1sWbNGtsR4MJkbSJu5ZnVZgAAEAjp6enabzsEqsTx3AHCajMAAAgUjuf2LpO1iYiVZ1abAQBAoA0aNEg/2g6BKg0aNMjYvcN+5ZnVZgAAYEJWVpbtCHBhsjZhu/LMajMAADCpS5cutiPAhcnahOXKM6vNAADAtD179tiOABcmaxNWK8+sNgMAgGBp3Lix7QhwYbI2YbPyzGozAAAIpoYNG9qOABcmaxPyK8+sNgMAABsKCwvV3HYIVKmwsNDYvUN65ZnVZgAAYEunTp1sR4ALk7UJyeb52+JidV2yRA/2769mO3ZoeWmpXh8xQlE+n+1oAAAgQmRnZ9uOABcmaxNyzTOrzQAAwAtMHgGN+uF4brHaDAAAvIXjub3LZG1ConlmtRkAAHjNsGHDbEeAC5O18XTzzGozAADwquXLl9uOABcma+PZ5pnVZgAA4GW9evWyHQEuTNbGc80zq80AACAUFBQU2I4AFyZr46nmmdVmAAAQKpo1a2Y7AlyYrI0nThjklEAAABBqKioqbEeAC5O1sb7yzGozAAAIRfv377cdAS5M1sbayjOrzQAAIJS1Y7HPs0zWxsrKM6vNAAAg1OXk5NiOABcmaxPU5plJGqiJ7du3a9KkSbZjAABwRoMGDbIdAS5M1iZozTOrzagJx3H04Ycfau/evbajAABwRsuWLbMdAS5M1sZ488xqM2rj888/14UXXmg7BgAA1UpPT7cdAS5M1sZo8zz57bdZbUaN5eXlqXXr1oqJibEdBQCAamVkZNiOABcma2Ns2sYfZs7UE5Mmqc2KFXq/QwcmaaBa2dnZatCggfbs2aOCggKtW7dOKSkpVV57+PBhHT582P/5gQMHJEn7//1v7Vy/Pih5AQCRa29pqfr06aMj33+vA7bDoBLnhx/Up08fY/evcfM8d+5cDRgwQO+9957uuusuzZgxQ1OmTNG0adN000036dNPP1VKSor27dunAwcO6Kphw1TQu7eui47Wgv/4Dw0+fu1tt92muXPnavjw4crPz1eDBg2UmJio1atX66qrrtJLL73kv++9996rF198UZdddpnWrl2rFi1aKCYmRps3b9ZPfvITzZ4923/t5MmTNX36dN1www1avHixzjvvPB05ckS7du1SWlqaPvjgA9155536y1/+4n/Mr371K/3zn/9Uamqq9u7dq4MHD+r888/XwoULNWHCBD377LP+a++44w69+eabSk9PV15enho2bKjWrVsrMzNTY8aM0csvv+y/dtKkSXrhhRd0xRVXKCsrS+ecc44aNWqkvLw8jRw5Um+88YYmT56sxx57TH/4wx/0+OOP68Ybb9SiRYvUuXNnHT58WN9//7369u2rjz76SLfddptmzpzpv/+vf/1rffjhh0pLS9Pu3btVXl6uzp07KyMjQ+PHj9dzzz3nv/bOO+/U66+/rlGjRmnLli2KiYlRixYtlJ2drcsvv1yvvPKK/9rf/va3evbZZ3XllVcqMzNTbdq0UXR0tL755huNGDFCb731lu6//349/vjj/sf84he/0IIFC9S1a1cdPHhQe/fuVe/evTVv3jzdeuutevLJJ/3X3nLLLXr//ffVv39/7dy5U0ePHlVSUpKWLFmi66+/Xrm5ufrd736nK6+8UmVlZZozZ46io6O1ceNGNWnSRAkJCVq3bp0uvfRSjR8/XgsXLjzt1+ms//1ffbhokaKiolRUVKQOHTro66+/1pAhQ7R06VKlp6crIyNDqamp2rZtm1q2bKny8nIdOnRIrVq10tatW9W3b199+eWX/mv79eunnJwctW/fXiUlJZKk+Ph4bd++XT179tTq1av91w4aNEhZWVnq3LmzCgsL1bBhQzVu3Fh79uxRly5d9NVXX/mvHTZsmFasWKHk5GRt375d8fHxkqSSkhK1b99eOTk5Gjx4cKXcffr00datW9WqVSsdOnRI5eXlatmypfLy8k7L3b9/f23YsKHK3MnJyVqzZs1pubt06aI9e/aocePGatiwoQoLC9WpUydlZ2dXyr18+XL16tVLBQUFatasmSoqKrR//361a9dOOTk5GjRokJYtW3Za7tatW+vgwYP+3Nu2bVNqaqpWrlxZKffXX3+tDh06qKioSFFRUYqLi9OOHTvUo0ePSrkHDx6sNWvWqGvXrtq1a5diY2MVHR2tvXv3npZ7+PDhWrZsmS644AJ9++23lXK3bdtWGzdu1IABA7R8+XL/Y/r27avNmzerTZs2Kisr05EjR5SQkKD8/Hz17t27Uu4BAwZo3bp1SkpK0r59+9SgQQN/7u7duyszM9N/7ZAhQ7R69Wp169ZNO3fu9Ofet2+fkpKStG7dOg0bNkxLlizR8OHDtXTpUqWkpCg/P18JCQk6cuSIysrKlJiYqE2bNql///6VcqelpWnjxo1q27at9u/fr6NHj/pzp6SkaNWqVf5rBw4cqLVr1/pzR0dHKzY2Vrt27VLXrl2VlZVVKfeqVavUvXt37dixQ3Fxcf7fax07dtT69es1dOhQLVmy5LTfay1atPDnbtOmjTZv3qx+/fppxYoVlX6v5ebm+nNXVFSoWbNmKigoUK9evSr9Xhs4cKCys7PVqVMn/++1mJgY7d69+7Tfa0OHDtWXX36p5ORk/fvf/66Umz8j+DOirn9GLFi6VI0aNFDMlCn8GeHBPyMaN26sBn//u1o2aFBlH/Hqq6/6+5P77rtPf/3rX3X11Verc+fO1fbEPsdxnJo20LWV0bu3un/9tVocOKDoxo1NPQ0i0Kkrz/+cM0fjb7tN7918swY3b24xGQAgEnx/5IieLC/XxHHj1OK882zHwUl+KCzUm88+q4cffliJiYkBv7/RQ1Ja3X+/Wo8fr9V//rP6P/igyadChGnUqJEaNWrk/zz2+D7ps30+JTZpYisWACBSHDigo4WF6nb22UYaNNTdTkkHDx40dn+jbxjsfv312ty4sY688orJp0GY8Pl8VX4AAOBF5eXltiPAhcnaGG2efVFR2vHTn6rv9u36IS/P5FMhDDiOU+UHAABe1LJlS9sR4MJkbYzPee756KNqIGndAw+YfiqEgRNvWiktLbWcBACAM9u2bZvtCHBhsjbGm+dzevVSZuvWajlvnumnQhjo06ePxowZo3fffdd2FAAAzig1NdV2BLgwWZugHM/tTJigngcOaOuHHwbj6RDCHn74YX344Ye66aabbEcBAOCMVq5caTsCXJisTVCa575//KP2+nza/uijwXg6hLC1a9fqX//6l2bMmMF+ZwCAp3E8t3eF7PHcJzSMi9PXF1ygHpmZOnLoUDCeEiFq+vTpuvDCC1VeXq5FixbZjgMAgCuO5/Yuk7UJSvMsHZ/5XFGhr/7852A9JULM66+/rnfeeUeSVFxczMozAMDT+vfvbzsCXJisTdCaZ2Y+ozoXXXSRYmJi9MEHH6hDhw668MILbUcCAMDV119/bTsCXJisjdETBk92Yubz4I8+0g95eWpeg7PDEVkSExM1ZswY2zEAAKiRDh062I4AFyZrE7SVZ4mZzwAAIHwUFRXZjgAXJmsT1OaZmc8AACBcREUFtY1CLZisTdCrzsxnAAAQDuLi4mxHgAuTtQl688zMZwAAEA527NhhOwJcmKxN0JtnZj4DAIBw0KNHD9sR4MJkbaxs1mHmMwAACHVr1qyxHQEuTNbGSvPMzGcAABDqOJ7bu0L+eO5TnZj53Hf7dv2Ql2cjAgAAQL1wPLd3hcXx3Kdi5jMAAAhlgwcPth0BLkzWxlrzzMxnAAAQytjz7F1ht+f5BGY+AwCAUNW1a1fbEeDCZG2sNs/MfAYAAKFq165dtiPAhcnaWG2emfkMAABCVWxsrO0IcGGyNtYPZWfmMwAACEXR0dG2I8CFydpYb56Z+QwAAELR3r17bUeAC5O1sd48M/MZAACEok6dOtmOABcma2O9eZaY+QwAAEJPdna27QhwYbI2nmiemfkMAABCDcdze1fYHc9dFWY+AwCAUMLx3N4Vlsdzn4qZzwAAIJQMHz7cdgS4MFkbzzTPzHwGAAChZNmyZbYjwIXJ2nimeZaY+QwAAELHBRdcYDsCXJisjaeaZ2Y+AwCAUPHtt9/ajgAXJmvjqeaZmc8AACBUNGvWzHYEuDBZG081zxIznwEAQGioqKiwHQEuTNbGc80zM58BAEAo2L9/v+0IcGGyNp5rniVmPgMAAO9r27at7QhwYbI2nmyemfkMAAC8buPGjbYjwIXJ2niyeWbmMwAA8LoBAwbYjgAXJmvjyeZZYuYzAADwtuXLl9uOABcma+PZ5pmZzwAAwMvS09NtR4ALk7XxbPPMzGcAAOBlGRkZtiPAhcnaeLZ5lpj5DAAAvKtv3762I8CFydp4unlm5jMAAPCqzZs3244AFyZr4+nmWWLmMwAA8KY2bdrYjgAXJmvj+eaZmc8AAMCLysrKbEeAC5O18XzzzMxnAADgRUeOHLEdAS5M1sbzzbPEzGcAAOA9CQkJtiPAhcnahETzzMxnAADgNfn5+bYjwIXJ2oRE88zMZwAA4DW9e/e2HQEuTNYmJJpniZnPAADAW1auXGk7AlyYrE3INM/MfAYAAF7C8dzeFZHHc1eFmc8AAMArOJ7buyL2eO5TMfMZAAB4xYABA2xHgAuTtQmp5pmZzwAAwCvWrVtnOwJcmKxNSDXPEjOfAQCANyQlJdmOABcmaxNyzTMznwEAgBfs27fPdgS4MFmbkGuemfkMAAC8oEGDBrYjwIXJ2oRc8ywx8xkAANgXFxdnOwJcmKxNSDbPzHwGAAC27dixw3YEuDBZm5BsniVmPgMAALu6d+9uOwJcmKxNyDbPzHwGAAA2ZWZm2o4AFyZrE7LNMzOfAQCATRzP7V0cz+2Cmc8AAMAWjuf2Lo7ndsHMZwAAYMuQIUNsR4ALk7UJ6eaZmc8AAMCW1atX244AFyZrE9LNs8TMZwAAYEe3bt1sR4ALk7UJ+eaZmc8AAMCGnTt32o4AFyZrE/LNs8TMZwAAEHyxsbG2I8CFydqERfPMzGcAABBs0dHRtiPAhcnahEXzzMxnAAAQbPv27bMdAS5M1iYsmmeJmc8AACC4kpKSbEeAC5O1CZvmmZnPAAAgmNatW2c7AlyYrE3YNM/MfAYAAME0bNgw2xHgwmRtwqZ5lpj5DAAAgmfJkiW2I8CFydqEVfPMzGcAABAsw4cPtx0BLkzWJqyaZ4mZzwAAIDiWLl1qOwJcmKxN2DXPzHwGAADBkJKSYjsCXJisTdg1z8x8BgAAwZCfn287AlyYrE3YNc8SM58BAIB5CQkJtiPAhcnahGXzzMxnAABg2pEjR2xHgAuTtQnL5pmZzwAAwLSysjLbEeDCZG3CsnmWmPkMAADMSkxMtB0BLkzWJmybZ2Y+AwAAkzZt2mQ7AlyYrE3YNs8SM58BAIA5/fv3tx0BLkzWJqybZ2Y+AwAAU5YvX247AlyYrE1YN8/MfAYAAKakp6fbjgAXJmsT1s2zxMxnAABgRkZGhu0IcGGyNmHfPDPzGQAAmJCWlmY7AlyYrE3YN8/MfAYAACZs3LjRdgS4MFmbsG+eJWY+AwCAwGvbtq3tCHBhsjYR0Twz8xkAAATa/v37bUeAC5O1iYjmWWLmMwAACKyjR4/ajgAXJmsTMc0zM58BAEAgJSQk2I4AFyZrEzHNMzOfAQBAIOXn59uOABcmaxMxzbPEzGcAABA4KSkptiPAhcnaRFTzzMxnAAAQKKtWrbIdAS5M1iaimmdmPgMAgEDheG7v4njuAGLmMwAACASO5/YujucOIGY+AwCAQBg4cKDtCHBhsjYR1zxLzHwGAAD1t3btWtsR4MJkbSKyeWbmMwAAqK+kpCTbEeDCZG0isnlm5jMAAKivffv22Y4AFyZrE5HNs8TMZwAAUD/R0dG2I8CFydpEbPPMzGcAAFAfsbGxtiPAhcnaRGzzzMxnAABQH7t27bIdAS5M1iZim2eJmc8AAKDuunbtajsCXJisTUQ3z8x8BgAAdZWVlWU7AlyYrE1EN88SM58BAEDdcDy3d3E8t0HMfAYAAHXB8dzexfHcBjHzGQAA1MWQIUNsR4ALk7WJ+OZZYuYzAACovVWrVtmOABcma0PzLGY+AwCA2uvevbvtCHBhsjY0z2LmMwAAqL0dO3bYjgAXJmtD83wcM58BAEBtxMXF2Y4AFyZrQ/N8HDOfAQBAbURF0UZ5lcnaUPWTMPMZAADUVFFRke0IcGGyNjTPJ2HmMwAAqKmOHTvajgAXJmtD83wSZj4DAICaWr9+ve0IcGGyNjTPp2DmMwAAqImhQ4fajgAXJmtD83wKZj4DAICaWLJkie0IcGGyNjTPp2DmMwAAqIn09HTbEeDCZG1onqvAzGcAAFCdjIwM2xHgwmRtaJ6rwMxnAABQndTUVNsR4MJkbWieXTDzGQAAnMm2bdtsR4ALk7WheXbBzGcAAHAmLVq0sB0BLkzWhubZBTOfAQDAmRw5csR2BLgwWRua5zNg5jMAAHBTVlZmOwJcmKwNzfMZMPMZAAC4adOmje0IcGGyNjTPZ8DMZwAA4Gbz5s22I8CFydrQPFeDmc8AAKAq/fr1sx0BLkzWhua5Gsx8BgAAVVmxYoXtCHBhsjY0zzXAzGcAAHAqjuf2Lo7ntoyZzwAA4FQcz+1dHM9tGTOfAQDAqdjz7F3sefYAZj4DAICT5ebm2o4AFyZrQ/NcQ8x8BgAAJ2vbtq3tCHBhsjY0zzXEzGcAAHCy/fv3244AFyZrQ/NcC8x8BgAAJ1RUVNiOABcma0PzXAvMfAYAACc0a9bMdgS4MFkbmudaYuYzAACQpIKCAtsR4MJkbWiea4mZzwAAQJJ69eplOwJcmKwNzXMtMfMZAABI0urVq21HgAuTtaF5rgNmPgMAAI7n9i6O5/YYZj4DAACO5/Yujuf2GGY+AwCAgQMH2o4AFyZrQ/NcR8x8BgAgsmVnZ9uOABcma0PzXEfMfAYAILJ16tTJdgS4MFkbmud6YOYzAACRq7Cw0HYEuDBZG5rnemDmMwAAkathw4a2I8CFydrQPNcDM58BAIhcMTExtiPAhcna0DzXEzOfAQCITLt377YdAS5M1obmuZ6Y+QwAQGTq0qWL7QhwYbI2NM/1xMxnAAAi01dffWU7AlyYrA3NcwAw8xkAgMjD8dzexfHcHsfMZwAAIg/Hc3sXx3OHAGY+AwAQWYYOHWo7AlyYrA3Nc4Aw8xkAgMjy5Zdf2o4AFyZrQ/McIMx8BgAgsiQnJ9uOABcma0PzHEDMfAYAIHL8+9//th0BLkzWhuY5gJj5DABA5IiLi7MdAS5M1obmOYCY+QwAQOSIiqKN8iqTtaHqAcbMZwAAIkNRUZHtCHBhsjY0zwHGzGcAACJDhw4dbEeAC5O1oXk2gJnPAACEv6+//tp2BLgwWRuaZwOY+QwAQPgbMmSI7QhwYbI2NM8GMPMZAIDwt3TpUtsR4MJkbWieDWHmMwAA4S09Pd12BLgwWRuaZ0OY+QwAQHjLyMiwHQEuTNaG5tkQZj4DABDeUlNTbUeAC5O1oXk2iJnPAACEr23bttmOABcma0PzbBAznwEACF8tW7a0HQEuTNaG5tkwZj4DABCeysvLbUeAC5O1oXk2jJnPAACEp0OMo/Usk7WheTaMmc8AAISnVq1a2Y4AFyZrQ/McBMx8BgAg/GzdutV2BLgwWRua5yBg5jMAAOGnb9++tiPAhcna0DwHATOfAQAIP19++aXtCHBhsjY0z0HCzGcAAMILx3N7F8dzhwFmPgMAEF44ntu7OJ47TDDzGQCA8NGvXz/bEeDCZG1onoOImc8AAISPnJwc2xHgwmRtaJ6DiJnPAACEj/bt29uOABcma0PzHGTMfAYAIDyUlJTYjgAXJmtD8xxkzHwGAAAIXTTPQcbMZwAAwkN8fLztCHBhsjY0zxYw8xkAgNC3fft22xHgwmRtaJ4tYOYzAAChr2fPnrYjwIXJ2tA8W8LMZwAAQtvq1attR4ALk7WhebaEmc8AAIQ2juf2Lo7nDkPMfAYAILRxPLd3cTx3mGLmMwAAoWvQoEG2I8CFydrQPFvEzGcAAEJXVlaW7QhwYbI2NM8WMfMZAIDQ1blzZ9sR4MJkbWieLWPmMwAAoamwsNB2BLgwWRuaZ8uY+QwAQGhq2LCh7QhwYbI2NM8ewMxnAABCT+PGjW1HgAuTtaF59gBmPgMAEHr27NljOwJcmKwNzbMHMPMZAIDQ06VLF9sR4MJkbWiePYKZzwAAhJavvvrKdgS4MFkbmmePYOYzAAChheO5vYvjuSMAM58BAAgtHM/tXRzPHSGY+QwAQOgYNmyY7QhwYbI2NM8ewsxnAABCx4oVK2xHgAuTtaF59hhmPgMAEBqSk5NtR4ALk7WhefYYZj4DABAatm/fbjsCXJisDc2zxzDzGQCA0BAfH287AlyYrA3Nswcx8xkAAMCbaJ49iJnPAAB4X0lJie0IcGGyNjTPHsTMZwAAvK99+/a2I8CFydrQPHsUM58BAPC2nJwc2xHgwmRtaJ49ipnPAAB42+DBg21HgAuTtaF59jBmPgMA4F1Lly61HQEuTNaG5tnDmPkMAIB3paen244AFyZrQ/PsYcx8BgDAuzIyMmxHgAuTtaF59jhmPgMA4E19+vSxHQEuTNaG5tnjmPkMAIA3bd261XYEuDBZG5pnj2PmMwAA3tSqVSvbEeDCZG1onkMAM58BAPCeQ7wfybNM1obmOQQw8xkAAO8pLy+3HQEuTNaG5jlEMPMZAABvadmype0IcGGyNjTPIYKZzwAAeEse70XyLJO1oXkOEcx8BgDAW/r27Ws7AlyYrA3Ncwhh5jMAAN7x5Zdf2o4AFyZrQ/McQpj5DACAd3A8t3dxPDckMfMZAAAv4Xhu7+J4bvgx8xkAAG/o37+/7QhwYbI2NM8hhpnPAAB4w4YNG2xHgAuTtaF5DkHMfAYAwL727dvbjgAXJmtD8xyCmPkMAIB9JSUltiPAhcna0DyHIGY+AwAA2EHzHKKY+QwAgF3x8fG2I8CFydrQPIcoZj4DAGDX9u3bbUeAC5O1oXkOUcx8BgDAruTkZNsR4MJkbWieQxgznwEAsGfNmjW2I8CFydrQPIcwZj4DAGAPx3N7F8dzwxUznwEAsIPjub2L47nhipnPAADYMWjQINsR4MJkbWieQxwznwEAsCMrK8t2BLgwWRua5zDAzGcAAIKvS5cutiPAhcna0DyHAWY+AwAQfHv27LEdAS5M1obmOQww8xkAgOBr3Lix7QhwYbI2NM9hgpnPAAAEV8OGDW1HgAuTtaF5DhPMfAYAILgKCwttR4ALk7WheQ4jzHwGACB4OnXqZDsCXJisDc1zGGHmMwAAwZOdnW07AlyYrA3Ncxhh5jMAAMHD8dzexfHcqDFmPgMAEBwcz+1dHM+NGmPmMwAAwTFs2DDbEeDCZG1onsMMM58BAAiO5cuX244AFyZrQ/Mchpj5DACAeb169bIdAS5M1obmOQwx8xkAAPMKCgpsR4ALk7WheQ5TzHwGAMCsZs2a2Y4AFyZrQ/Mcppj5DACAWRUVFbYjwIXJ2tA8hylmPgMAYNb+/fttR4ALk7WheQ5jzHwGAMCcdu3a2Y4AFyZrQ/Mcxpj5DACAOTk5ObYjwIXJ2tA8hzFmPgMAYM6gQYNsR4ALk7WheQ5zzHwGAMCMZcuW2Y4AFyZrQ/Mc5pj5DACAGenp6bYjwIXJ2tA8RwBmPgMAEHgZGRm2I8CFydrQPEcAZj4DABB4ffr0sR0BLkzWhuY5AjDzGQCAwNu6davtCHBhsjY0zxGCmc8AAARW69atbUeAC5O1oXmOEMx8BgAgsA4ePGg7AlyYrA3Nc4Rg5jMAAIFVXl5uOwJcmKwNzXMEYeYzAACB07JlS9sR4MJkbWieIwgznwEACJxt27bZjgAXJmtD8xxhmPkMAEBgpKam2o4AFyZrQ/McYZj5DABAYKxcudJ2BLgwWRua5wjDzGcAAAKD47m9i+O5EVDMfAYAoP44ntu7OJ4bAcXMZwAA6q9///62I8CFydrQPEcgZj4DAFB/X3/9te0IcGGyNjTPEYqZzwAA1E+HDh1sR4ALk7WheY5QzHwGAKB+ioqKbEeAC5O1oXmOYMx8BgCg7qKiaKO8ymRtqHoEY+YzAAB1FxcXZzsCXJisDc1zBGPmMwAAdbdjxw7bEeDCZG1oniMcM58BAKibHj162I4AFyZrQ/Mc4Zj5DABA3axZs8Z2BLgwWRua5wjHzGcAAOqG47m9i+O5YRQznwEAqD2O5/YujueGUcx8BgCg9gYPHmw7AlyYrA3NMyQx8xkAgNpiz7N3secZxjHzGQCA2unatavtCHBhsjY0z5DEzGcAAGpr165dtiPAhcna0DzDj5nPAADUXGxsrO0IcGGyNjTP8GPmMwAANRcdHW07AlyYrA3NM/yY+QwAQM3t3bvXdgS4MFkbmmdUwsxnAABqplOnTrYjwIXJ2tA8oxJmPgMAUDPZ2dm2I8CFydrQPOM0zHwGAKB6HM/tXRzPjaBi5jMAANXjeG7v4nhuBBUznwEAqN7w4cNtR4ALk7WheUaVmPkMAMCZLVu2zHYEuDBZG5pnVImZzwAAnNkFF1xgOwJcmKwNzTOqxMxnAADO7Ntvv7UdAS5M1obmGa6Y+QwAgLtmzZrZjgAXJmtD8wxXzHwGAMBdRUWF7QhwYbI2NM84I2Y+AwBQtf3799uOABcma0PzjDNi5jMAAFVr27at7QhwYbI2NM84I2Y+AwBQtY0bN9qOABcma0PzjGox8xkAgNMNGDDAdgS4MFkbmmdUi5nPAACcbvny5bYjwIXJ2tA8o1rMfAYA4HTp6em2I8CFydrQPKNGmPkMAEBlGRkZtiPAhcna0DyjRpj5DABAZX379rUdAS5M1obmGTXGzGcAAP7P5s2bbUeAC5O1oXlGjTHzGQCA/9OmTRvbEeDCZG1onlFjzHwGAOD/lJWV2Y4AFyZrQ/OMWmHmMwAAxxw5csR2BLgwWRuaZ9QKM58BADgmISHBdgS4MFkbmmfUCjOfAQA4Jj8/33YEuDBZG5pn1BoznwEAkHr37m07AlyYrA3NM2qNmc8AAEgrV660HQEuTNaG5hl1wsxnAECk43hu7+J4bngOM58BAJGO47m9i+O54TnMfAYARLoBAwbYjgAXJmtD84w6Y+YzACCSrVu3znYEuDBZG5pn1BkznwEAkSwpKcl2BLgwWRuaZ9QZM58BAJFs3759tiPAhcna0DyjXpj5DACIVA0aNLAdAS5M1obmGfXCzGcAQKSKi4uzHQEuTNaG5hn1xsxnAEAk2rFjh+0IcGGyNjTPqDdmPgMAIlH37t1tR4ALk7WheUa9MfMZABCJMjMzbUeAC5O1oXlGQDDzGQAQaTie27s4nhuex8xnAECk4Xhu7+J4bngeM58BAJFmyJAhtiPAhcna0DwjYJj5DACIJKtXr7YdAS5M1obmGQHDzGcAQCTp1q2b7QhwYbI2NM8IKGY+AwAixc6dO21HgAuTtaF5RkAx8xkAECliY2NtR4ALk7WheUZAMfMZABApoqOjbUeAC5O1oXlGwDHzGQAQCfbt22c7AlyYrA3NMwKOmc8AgEiQlJRkOwJcmKwNzTMCjpnPAIBIsG7dOtsR4MJkbWieYQQznwEA4W7YsGG2I8CFydrQPMMIZj4DAMLdkiVLbEeAC5O1oXmGMcx8BgCEs+HDh9uOABcma0PzDGOY+QwACGdLly61HQEuTNaG5hnGMPMZABDOUlJSbEeAC5O1oXmGUcx8BgCEq/z8fNsR4MJkbWieYRQznwEA4SohIcF2BLgwWRuaZxjFzGcAQLg6cuSI7QhwYbI2NM8wjpnPAIBwVFZWZjsCXJisDc0zjGPmMwAgHCUmJtqOABcma0PzjKBg5jMAINxs2rTJdgS4MFkbmmcEBTOfAQDhpn///rYjwIXJ2tA8IyiY+QwACDfLly+3HQEuTNaG5hlBw8xnAEA4SU9Ptx0BLkzWhuYZQcPMZwBAOMnIyLAdAS5M1obmGUHDzGcAQDhJS0uzHQEuTNaG5hlBxcxnAEC42Lhxo+0IcGGyNjTPCCpmPgMAwkXbtm1tR4ALk7WheUbQMfMZABAO9u/fbzsCXJisDc0zgo6ZzwCAcHD06FHbEeDCZG1onhF0zHwGAISDhIQE2xHgwmRtaJ5hBTOfAQChLj8/33YEuDBZG5pnWMHMZwBAqEtJSbEdAS5M1obmGVYw8xkAEOpWrVplOwJcmKwNzTOsYeYzACCUcTy3d3E8N8ISM58BAKGM47m9i+O5EbaY+QwACFUDBw60HQEuTNaG5hlWMfMZABCq1q5dazsCXJisDc0zrGLmMwAgVCUlJdmOABcma0PzDOuY+QwACEX79u2zHQEuTNaG5hnWMfMZABCKoqOjbUeAC5O1oXmGdcx8BgCEotjYWNsR4MJkbWie4QnMfAYAhJpdu3bZjgAXJmtD8wxPYOYzACDUdO3a1XYEuDBZG5pneAYznwEAoSQrK8t2BLgwWRuaZ3gGM58BAKGE47m9i+O5ERGY+QwACCUcz+1dHM+NiMHMZwBAqBgyZIjtCHBhsjY0z/AUZj4DAELFqlWrbEeAC5O1oXmGpzDzGQAQKrp37247AlyYrA3NMzyHmc8AgFCwY8cO2xHgwmRtaJ7hOcx8BgCEgri4ONsR4MJkbWie4UnMfAYAeF1UFG2UV5msDVWHJzHzGQDgdUVFRbYjwIXJ2tA8w5OY+QwA8LqOHTvajgAXJmtD8wzPYuYzAMDL1q9fbzsCXJisDc0zPIuZzwAALxs6dKjtCHBhsjY0z/AsZj4DALxsyZIltiPAhcna0DzD05j5DADwqvT0dNsR4MJkbWie4WnMfAYAeFVGRobtCHBhsjY0z/A8Zj4DALwoNTXVdgS4MFkbmmd4HjOfAQBetG3bNtsR4MJkbWie4XnMfAYAeFGLFi1sR4ALk7WheUZIYOYzAMBrjhw5YjsCXJisDc0zQgIznwEAXlNWVmY7AlyYrA3NM0ICM58BAF7Tpk0b2xHgwmRtaJ4RMpj5DADwks2bN9uOABcma0PzjJDBzGcAgJf069fPdgS4MFkbmmeEFGY+AwC8YsWKFbYjwIXJ2tA8I6Qw8xkA4BUcz+1dHM8NHMfMZwCAV3A8t3dxPDdwEmY+AwC8gD3P3sWeZ+AkzHwGAHhBbm6u7QhwYbI2NM8IOcx8BgB4Qdu2bW1HgAuTtaF5Rkhi5jMAwLb9+/fbjgAXJmtD84yQxMxnAIBtFRUVtiPAhcna0DwjZDHzGQBgU7NmzWxHgAuTtaF5Rshi5jMAwKaCggLbEeDCZG1onhGyTp75XPHjj7bjAAAiTK9evWxHgAuTtaF5Rkg7MfO5aPVq21EAABFmNf/t8SyTtaF5Rkg7MfO50dq1tqMAACIMx3N7F8dzAy5OzHzuwLggAECQcTy3d5msTXRNLnIcR6WlpcZCALV1+PBhHT58WJLU/De/0db//m9JUv7Ro1pRVGQxGQAgEhQdParU1FTlb9+u0kaNbMfBSQoLC5WamqrS0lI1adKk1o8/++yz5fP5XL/vcxzHqe4mJSUlatq0aa2fHAAAAAglxcXFio+Pd/1+jZpnVp7hNSevPEvSN998oxEjRujvL7+s9u3aWUwGAIgEB8rKdNE11ygzM1NxcXG24+Ak+/fvV1pamr777rszNsFuqlt5rtG2DZ/PV6cnB4Jt8CWXqH379rZjAADCXElJiSSpS5cu9Egec6I28fHxRmrDGwYBAACAGqJ5BgAAAGqI5hlhodHxdzo34h3PAIAgaNSokS6//HL+u+NBpmtTozcMAl53YiJMde+QBQAgUHbs2KG2bdvajoEqmKwNK88AAAB18Oqrr9qOABcma8PKM8ICK88AACAYWHkGAACog2nTptmOABcma8PKM8ICK88AgGA7fPgwbxj0KJO1YeUZAACgDv7617/ajgAXJmtD8wwAAFBL27dv16ZNm2zHQBX279+vf/3rXyooKDBy/xodzw0AAIBjHMfRhx9+qKNHj9qOglO8+uqr+vbbb/X//t//U0VFhZHnYOUZYeHss89WcXGxzj77bNtRAABh7vPPP9eFF15oOwaqcNNNN+nhhx82+hysPCMs+Hw+3igIADAuLy9PrVu3VkxMjO0osITmGQAAoIays7PVoEED7dmzRwUFBVq3bp1SUlJsx0IQsW0DAACghq6++mr9/Oc/18GDB3X48GEx8TfyMOcZAAAAYcXn8+mbb75RUlJSwO/NyjMAAABQQzTPAAAANeTz+ar8gDfMnTtXt956qyTp97//vV544YWAPwfbNgAAAIAaYuUZAACgFkpKSiRJpaWllpPABppnAACAWujTp4/GjBmjd99913YUWMC2DQAAgFp48803NX78eNsxYAkrzwAAALWwdu1a/etf/9KMGTOY8xyBWHkGAACoBcdx5PP59Oijj2rIkCEaNWqU7UgIIlaeAQAAauj111/XO++8I0kqLi5m5TkCsfIMAABQQzt37tSqVavkOI62b9+uO+64w3YkBBnNMwAAAFBDbNsAAAAAaojmGQAAAKghmmcAAACghmieAQAAgBqieQYAAABqiOYZAAAAqCGaZwAAAKCGaJ4BAACAGqJ5BgAAAGqI5hkAAACoIZpnAAAAoIb+f9tg+grv0gdMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "Graphics object consisting of 15 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:53,995 Plotting... done\n", + "INFO: 2023-09-20 09:43:53,996 Plotting...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAALhCAYAAACg1EnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1a0lEQVR4nO3deXiV1bn+8XtDBBJCmOcpAjIEDIEwCwQUi0MVf+gRFUSKWitqHVCPtFjqUatFUatVj0ePgqhoHYoUlaoIkUkgiQElYQqEiEwGTEIIEEPe3x/APgTyZiBZWe/e+/u5rlxt9vDuO/sx+LBc+1k+x3EcAQAAAChXLdsBAAAAgEBB8wwAAABUEM0zAAAAUEE0zwAAAEAF0TwDAAAAFUTzDAAAAFQQzTMAAABQQTTPCAqO4ygvL0+MLQcAACbRPCMoHDx4UA0bNtTBgwdtRwEAhIh58+bZjgAXJmtD8wwAAHAWBgwYYDsCXJisDc0zAADAWfjwww9tR4ALk7XxOWwSRRDIy8tTw4YNlZubq6ioKNtxAAAh4OjRo6pbt67tGCiFydqw8gwAAHAWnnrqKdsR4MJkbVh5RlBg5RkAANSEsOq4SGFhoYqKiqrjUsBZOXLkiLp166YjR44oLKxa/rEOemFhYapTp47tGAAQsB577DFNnz7ddgyUwmRtqrzyXFhYqA0bNqi4uLi6MgGoAbVq1VLPnj1poAHgLO3atUtt2rSxHQOlMFmbKi/RFRUVqbi4WNHR0QoPD6+OTAAMO3z4sDIzM1VUVETzDABn6bPPPtPNN99sOwZKYbI21fbft8PDwxUREVFdlwNQA3Jzc3XkyBHVrVtX9evXtx0HAAJKbGys7QhwYbI2bA4FQtjChQt16NAhRUVFady4cTTQAFAJBw4csB0BLkzWhlF1QAirX7++6tSpo7y8PB09etR2HAAIKIcOHbIdAS5M1obmGQhhdevWZcA/AJyFg0eOqHOnTrZjwEX37t2NXZvmGQAAoIL2pqbqkzFj1G/zZt388MO248DFl19+aezaNM8AAABlOJKTo5X33qu1LVqoWZ8+unDBAkUnJ+vb//5vLd+503Y8lGLSpEnGrk3zDAAAcBqnuFhpc+bo6169dKRJEw157jnVO3xYK8aPV2Fmpv736qvlPPecrty3T8Uc1uw5zz//vLFr0zxXs/nz56tLly6qXbu27rnnHttxAs6IESOq5X2Ljo7Wc889V+XrBJpQ/bkBoLrsTU3V0ssvV0ZEhGImTdJ56elKHTRI2z79VOcfPKjhb72lhh07ql1UlP5y3XX6uW9fTVi2zHZsnMbkyY811jxPmjRJPp9Pv/vd7864b8qUKfL5fEaX2GvKbbfdpmuuuUY//PCDHn30UU2aNElXXXWV0ddMTExUfHy86tWrp06dOum///u/jb6el8yePVuNGjU64/a1a9fqt7/9bc0HAgAEnNO3ZQz89FPtbdVKyX/5i1ocPqwRK1eq06WXnvG8os8+U/evv9a8Pn3YvuExjz32mLFr1+jKc/v27fXuu+/q8OHD/tuOHDmiefPmqUOHDjUZxYj8/Hzt27dPo0ePVps2bdSgQYNqu3ZhYWGpt2/fvl2XXXaZhg0bpm+//VZ/+MMf9Pvf/14ffvhhtb12IGrevHmNH9pz7NgxjqkHgABR3raMCzIzFT9tmmqXcQrrlClT9EVcnGrn5rJ9w2OmTJli7No12jz37dtXHTp00EcffeS/7aOPPlL79u3Vp0+fEo89evSofv/736tFixaqV6+ehg4dqrVr10qSiouL1a5duzNWWFNSUuTz+bRt2zZJx09P++1vf6sWLVooKipKF154odatW+d//Lp16zRy5Eg1aNBAUVFRio+PV1JSkmv+Z555Rueff77q16+v9u3ba8qUKcrPz5ckLV261N8sX3jhhfL5fBoxYoTmzJmjjz/+WD6fTz6fT0uXLpUk/fjjjxo3bpwaN26spk2basyYMcrMzPS/1skV6yeeeEJt2rRR165dS8303//93+rQoYOee+459ejRQ7fccosmT56sp59+uqxSaMOGDbr88ssVFRWlBg0aaNiwYcrIyPC/v//1X/+ldu3aqW7duoqLi9OiRYv8z83MzJTP59M//vEPDRs2TOHh4erfv782b96stWvXql+/foqMjNQll1yin3766Yyf6ZFHHvHX5LbbbnP9i4F0/C8NDz74oNq2bav69etr4MCB/vdw6dKl+s1vfqPc3Fz/+/vnP/9Z0pnbF7KysjRmzBhFRkYqKipK1157rfbu3eu//89//rPi4uI0d+5cRUdHq2HDhrruuut08OBB12wnV70XLlyomJgY1a1bVzt27NDPP/+siRMnqnHjxoqIiNCll16qLVu2nPFap3ruuecUHR19xnv19NNPq3Xr1mratKnuuOMO/fLLL/7H7Nu3T1dccYXCw8N17rnn6u2333bNCgA4rqLbMipi3rx5ahcVpcf27mX7hsfMmzfP2LVrfM/zb37zG73xxhv+719//XVNnjz5jMc9+OCD+vDDDzVnzhylpKSoS5cuGj16tA4cOKBatWrpuuuuO6NZeOeddzR48GB16tRJjuPo8ssv1549e/Tpp58qOTlZffv21UUXXeQ/dWb8+PFq166d1q5dq+TkZD300EM655xzXLPXqlVLzz//vL7//nvNmTNHX331lR588EFJ0pAhQ7Rp0yZJ0ocffqjdu3drwYIFuvbaa3XJJZdo9+7d2r17t4YMGaKCggKNHDlSkZGR+vrrr7V8+XJ/s3lqI7l48WKlp6friy++0MKFC0vNtGrVKv3qV78qcdvo0aOVlJRUotE61Y8//qjhw4erXr16+uqrr5ScnKzJkyerqKhIkvS3v/1Ns2bN0tNPP63169dr9OjRuvLKK0s0gJI0Y8YMTZ8+XSkpKQoLC9P111+vBx98UH/729+0bNkyZWRk6E9/+lOJ55z8mZYsWaJ58+bpn//8px555BHX9/w3v/mNVqxYoXfffVfr16/Xf/zHf+iSSy7Rli1bNGTIED333HOKioryv7/333//GddwHEdXXXWVDhw4oMTERH3xxRfKyMjQuHHjSjwuIyND8+fP18KFC7Vw4UIlJibqySefdM0mSQUFBXriiSf02muvacOGDWrRooUmTZqkpKQkLViwQKtWrZLjOLrssstc6+FmyZIlysjI0JIlSzRnzhzNnj1bs2fP9t8/adIkZWZm6quvvtIHH3ygl156Sfv27avUawBAKDjbbRnlGTZsmCTpofh4tm94zMnaGOFU0aFDh5ykpCTn0KFDZT7upptucsaMGeP89NNPTt26dZ3t27c7mZmZTr169ZyffvrJGTNmjHPTTTc5juM4+fn5zjnnnOO8/fbb/ucXFhY6bdq0cWbOnOk4juOkpKQ4Pp/PyczMdBzHcY4dO+a0bdvWefHFFx3HcZzFixc7UVFRzpEjR0rk6Ny5s/PKK684juM4DRo0cGbPnn3WP/s//vEPp2nTpv7vf/75Z0eSs2TJkjN+7lP97//+r9OtWzenuLjYf9vRo0ed8PBw59///rf/eS1btnSOHj1aZobzzjvPefzxx0vctmLFCkeSs2vXrlKfM23aNOfcc891CgsLS72/TZs2Z1yzf//+zpQpUxzHcZzt27c7kpzXXnvNf/+8efMcSc7ixYv9tz3xxBNOt27d/N/fdNNNTpMmTUr8s/Lyyy87kZGRzrFjxxzHcZyEhATn7rvvdhzHcbZu3er4fD7nxx9/LJHloosucqZNm+Y4juO88cYbTsOGDc/4GTp27Og8++yzjuM4zueff+7Url3bycrK8t+/YcMGR5KzZs0ax3EcZ8aMGU5ERISTl5fnf8wDDzzgDBw4sNT36ORrS3JSU1P9t23evNmR5KxYscJ/W3Z2thMeHu784x//8L9W7969S1zr2WefdTp27FjiverYsaNTVFTkv+0//uM/nHHjxjmO4zibNm1yJDnffPON//709HRHkv/nLsvJ39sPPvjAee2115xnn33W2b9/f7nPA4BAUXzsmLNh9mwnsWdP52efz3EkZ31kpJM4fryTc6J3qKqPP/7Y//9/yM11av/wg9M4Odk5dsq/32HHqbWpbjW+8tysWTNdfvnlmjNnjt544w1dfvnlatasWYnHZGRk6JdfftEFF1zgv+2cc87RgAEDlJ6eLknq06ePunfv7l+WT0xM1L59+3TttddKkpKTk5Wfn6+mTZsqMjLS/7V9+3b/9oT77rtPt9xyi0aNGqUnn3zSf7ubJUuW6OKLL1bbtm3VoEEDTZw4Ufv376/0EZDJycnaunWrGjRo4M/VpEkTHTlypESG888/X3XK2Gt1ks/nK/G9c2LP1em3n5Samqphw4aVusqel5enXbt2lXjvJemCCy7wv/cnxcbG+v9/y5Yt/ZlPve30ldDevXuX2Is8ePBg5efn64cffjgjS0pKihzHUdeuXUvUMDExsdxanSo9PV3t27dX+/bt/bfFxMSoUaNGJX6m6OjoEvvUW7duXe5Kbp06dUq8D+np6QoLC9PAgQP9tzVt2lTdunU74/0rT8+ePVW7du1S85x8nX79+vnv7969e6kfngSAUFKd2zLKc+qf0Wzf8JZTa1PdwoxduQyTJ0/WnXfeKUl68cUXz7jfrflzHKfEbePHj9c777yjhx56SO+8845Gjx7tb8SLi4vVunVr//7YU51sMP785z/rhhtu0CeffKLPPvtMM2bM0Lvvvqv/9//+3xnP2bFjhy677DL97ne/06OPPqomTZpo+fLluvnmmyv9n+OLi4sVHx9f6h7V5s2b+/9//fr1y71Wq1attGfPnhK37du3T2FhYWratGmpzwkPDy/3uuW995JKNN8n7zv9top+gK60Rr+4uFi1a9dWcnLyGb8EkZGRFbquW/bSbj/9LxMVyR8eHl7iGo7Lh0VOfa1atWqd8bjS/hkqK095f0ECgFByJCdHKY88onPeflt9f/pJAyWldOyo3NtuU9zUqWpdgYWos9G6desS3z8UH685J7ZvTNm5U0PbtTPyuijf6bWpTlbmPJ/c21tYWKjRo0efcX+XLl1Up04dLV++3H/bL7/8oqSkJPXo0cN/2w033KDvvvtOycnJ+uCDDzR+/Hj/fX379tWePXsUFhamLl26lPg6daW7a9euuvfee/X5559r7NixJfZjnyopKUlFRUWaNWuWBg0apK5du2rXrl3l/qx16tTRsWPHStzWt29fbdmyRS1atDgjW8OGDcu95qkGDx6sL774osRtn3/+ufr16+e6fzs2NlbLli0rtWGLiopSmzZtSrz3krRy5coS7/3ZWrduXYlpK998840iIyPVrpQ/YPr06aNjx45p3759Z7xPrVq1klT6+3u6mJgYZWVllVjdTktLU25ubrX8TKe/VlFRkVavXu2/bf/+/dq8ebP/tZo3b649e/aUaKBTU1Mr9To9evRQUVFRiQ+4btq0STk5OVXKDwCBojqmZVTVyUEGp2L6hjeUVpvqYqV5rl27ttLT05Wenl7qsnr9+vV1++2364EHHtCiRYuUlpamW2+9VQUFBbr55pv9jzv33HM1ZMgQ3XzzzSoqKtKYMWP8940aNUqDBw/WVVddpX//+9/KzMzUypUrNX36dCUlJenw4cO68847tXTpUu3YsUMrVqzQ2rVrXZupzp07q6ioSC+88IK2bdumuXPnVmiecnR0tNavX69NmzYpOztbv/zyi8aPH69mzZppzJgxWrZsmbZv367ExETdfffd2lnJDxr87ne/044dO3TfffcpPT1dr7/+uv73f/+31A/OnXTnnXcqLy9P1113nZKSkrRlyxbNnTvX/4HHBx54QH/961/13nvvadOmTXrooYeUmpqqu+++u1LZSlNYWKibb75ZaWlp/tX+O++8U7VqnfmPYteuXTV+/HhNnDhRH330kbZv3661a9fqr3/9qz799FNJx9/f/Px8LV68WNnZ2SooKDjjOqNGjVJsbKzGjx+vlJQUrVmzRhMnTlRCQkKJbQ/V4bzzztOYMWN06623avny5Vq3bp0mTJigtm3b+v/5HDFihH766SfNnDlTGRkZevHFF/XZZ59V6nW6deumSy65RLfeeqtWr16t5ORk3XLLLRX6rwoAEMhqcltGecaOHXvGbWzf8IbSalNdrJ0wGBUVpaioKNf7n3zySV199dW68cYb1bdvX23dulX//ve/1bhx4xKPGz9+vNatW6exY8eWaBx8Pp8+/fRTDR8+XJMnT1bXrl113XXXKTMzUy1btlTt2rW1f/9+TZw4UV27dtW1116rSy+91HXyQ1xcnJ555hn99a9/Va9evfT222/riSeeKPfnvPXWW9WtWzf169dPzZs314oVKxQREaGvv/5aHTp00NixY9WjRw9NnjxZhw8fLvM9Kc25556rTz/9VEuXLlVcXJweffRRPf/887r66qtdn9O0aVN99dVXys/PV0JCguLj4/Xqq6/6V6p///vfa+rUqZo6darOP/98LVq0SAsWLNB5551XqWylueiii3Teeedp+PDhuvbaa3XFFVf4x8uV5o033tDEiRM1depUdevWTVdeeaVWr17t3788ZMgQ/e53v9O4cePUvHlzzZw584xr+Hw+zZ8/X40bN9bw4cM1atQoderUSe+9916Vfx63zPHx8fr1r3+twYMHy3Ecffrpp/73t0ePHnrppZf04osvqnfv3lqzZk2Zf9kp63Xat2+vhIQEjR071j+WEQCCjalpGVX1yiuvlHo70zfsc6tNdfA5bps0K6igoEDp6enq0aNHjR9KgcAyadIk5eTkaP78+bajhLyTv7eZmZnKycnRwYMHNXHiRDVp0sR2NACQdHxbRvrcucp+6inFpqWpkePou8hI/TxmjHo//niNrS6frZ15eYrOy1PUvn3K7tNHtfiMStCwtvIMAABwOi9tyyhPWUdAs33DrqA5nhsAAOB0Xt2WUZ777ruvzPvZvmFPebWpiuBunnNzj3/BE2bPns2WDQCAJG9My6iql19+udzHMH3DjorU5mwFb/Ocmys9+ujxrxBsoEeMGKF77rnHdgwAAEoIpG0Z5fn1r39d7mPYvmFHRWpztoK3eS4okLKzj3+VMr7sVHv27NFdd92lTp06qW7dumrfvr2uuOIKLV68uIbCwov+/Oc/Ky4urtzHbdiwQVdffbWio6Pl8/n03HPPGc8GAIEkULdllGfdunUVehzbN2peRWtzNoK3ea6gzMxMxcfH66uvvtLMmTP13XffadGiRRo5cqTuuOMOq9kKCwutvj4qpqCgQJ06ddKTTz7pP7wFAEJdMGzLKI/bSb6lYftGzapMbSor5JvnKVOmyOfzac2aNbrmmmvUtWtX9ezZU/fdd5+++eYb/+OysrI0ZswYRUZGKioqStdee6327t0r6fjJbj6fTxs3bixx7WeeeUbR0dH+k+TS0tJ02WWXKTIyUi1bttSNN96o7Oxs/+NHjBihO++8U/fdd5+aNWumiy++uELPO3TokCZOnKjIyEi1bt1as2bNqtDPvmDBAvXr10/16tVTs2bNSgwU//nnnzVx4kQ1btxYERERuvTSS7Vlyxb//bNnz1ajRo20cOFCdevWTREREbrmmmt06NAhzZkzR9HR0WrcuLHuuuuuEicARkdH69FHH9UNN9ygyMhItWnTRi+88EKJXGW919L/rQjPnTtX0dHRatiwoa677jodPHjQ/xjHcTRz5kx16tRJ4eHh6t27tz744AP//UuXLpXP59PixYvVr18/RUREaMiQIf6DYmbPnq1HHnlE69atk8/nk8/n0+zZs0t9H/v376+nnnpK1113nerWrVuh9x4AglUwbcsoT2UOpmL7Rs0yeWhYSDfPBw4c0KJFi3THHXeofv36Z9zfqFEjSccbsauuukoHDhxQYmKivvjiC2VkZGjcuHGSjp/2Fh8fr7fffrvE89955x3dcMMN8vl82r17txISEhQXF6ekpCQtWrRIe/fu1bXXXlviOXPmzFFYWJhWrFihV155pULPe+CBB7RkyRL985//1Oeff66lS5cqOTm5zJ/9k08+0dixY3X55Zfr22+/9TeRJ02aNElJSUlasGCBVq1aJcdxdNlll5U40rugoEDPP/+83n33XS1atEhLly7V2LFj9emnn+rTTz/V3Llz9T//8z8lmlZJeuqppxQbG6uUlBRNmzZN9957r/+I8fLe65MyMjI0f/58LVy4UAsXLlRiYqKefPJJ//3Tp0/XG2+8oZdfflkbNmzQvffeqwkTJigxMbHEdf74xz9q1qxZSkpKUlhYmCZPnixJGjdunKZOnaqePXtq9+7d2r179xkZAADHBeu2jPJs3ry5Uo9n+0bNqWxtKsWpokOHDjlJSUnOoUOHqnqp6rVrl+PcdNPxr127Sn3I6tWrHUnORx99VOalPv/8c6d27dpOVlaW/7YNGzY4kpw1a9Y4juM4zzzzjNOpUyf//Zs2bXIkORs2bHAcx3Eefvhh51e/+lWJ6/7www+OJGfTpk2O4zhOQkKCExcXV+Ix5T3v4MGDTp06dZx3333Xf//+/fud8PBw5+6773b9mQYPHuyMHz++1Ps2b97sSHJWrFjhvy07O9sJDw93/vGPfziO4zhvvPGGI8nZunWr/zG33XabExER4Rw8eNB/2+jRo53bbrvN/33Hjh2dSy65pMTrjRs3zrn00ksdx6nYez1jxgwnIiLCycvL8z/mgQcecAYOHOg4juPk5+c79erVc1auXFnidW6++Wbn+uuvdxzHcZYsWeJIcr788kv//Z988okjyTl8+LD/dXr37l3qe+SmY8eOzrPPPlup59hw8vf2gw8+cF577TXn2Wefdfbv3287FoAAUnzsmLNh9mwnsWdP52efz3EkZ31kpJM4fryTk5lpO16NOPXfVRX1Q26uU/uHH5zGycnOseJiA6ngOGdXm4oK6ZVn58R2Cl85p/6kp6erffv2/iOhJSkmJkaNGjVSenq6JOm6667Tjh07/Fs93n77bcXFxSkmJkaSlJycrCVLligyMtL/1b17d0nHV1FPOnX1tyLPy8jIUGFhoQYPHux/TpMmTdStW7cyf6bU1FRddNFFrj9vWFiYBg4c6L+tadOm6tatm//nlaSIiAh17tzZ/33Lli0VHR2tyMjIErft27evxPVPzXry+5PXrch7LR3f/tGgQQP/961bt/a/Tlpamo4cOaKLL764xPv25ptvlnivJSk2NrbENSSdkRcA8H9CaVtGeebMmVPp57B9o2acTW0qKszYlQPAeeedJ5/Pp/T0dF111VWuj3Mcp9QG+9TbW7durZEjR+qdd97RoEGDNG/ePN12223+xxYXF+uKK67QX//61zOuc7Jpk3TG9pHynnfqPuTKKGsvkOPyQYbT34dzzjmnxP0+n6/U24qLi8vNc/K6FXmv3V775Ouc/N9PPvlEbdu2LfG40/ckn3qdk9evSF4ACCVHcnKU8sgjOuftt9X3p580UFJKx47Kve02xU2dqtYB/KG/qpg+ffpZPe+h+HjNObF9Y8rOnRrarl01J8PZ1qYiQnrluUmTJho9erRefPFFHTp06Iz7c3JyJB1f+czKytIPP/zgvy8tLU25ubnq0aOH/7bx48frvffe06pVq5SRkaHrrrvOf1/fvn21YcMGRUdHq0uXLiW+SttvXdHndenSReecc06JDzf+/PPP5e71iY2NdR3FFxMTo6KiIq1evdp/2/79+7V58+YSP+/ZOjXrye9PrqZX9L0uS0xMjOrWrausrKwz3rNTV7TLU6dOnRIfdgSAUBIK0zKqqipHQDN9wyyO5zbopZde0rFjxzRgwAB9+OGH2rJli9LT0/X888/7txeMGjVKsbGxGj9+vFJSUrRmzRpNnDhRCQkJJbZZjB07Vnl5ebr99ts1cuTIEqued9xxhw4cOKDrr79ea9as0bZt2/T5559r8uTJZTZo5T0vMjJSN998sx544AEtXrxY33//vSZNmqRatcou7YwZMzRv3jzNmDFD6enp+u677zRz5kxJx1fkx4wZo1tvvVXLly/XunXrNGHCBLVt21ZjxoypytstSVqxYoVmzpypzZs368UXX9T777+vu+++W1LF3+uyNGjQQPfff7/uvfdezZkzRxkZGfr222/14osvVuo/40RHR2v79u1KTU1Vdna2jh49WurjCgsLlZqaqtTUVBUWFurHH39Uamqqtm7dWuHXAgCvYFtGxU2bNu2sn8v2DbOqUpvyBG/zHBEhNWt2/CsiwvVh5557rlJSUjRy5EhNnTpVvXr10sUXX6zFixf7j3b0+XyaP3++GjdurOHDh2vUqFHq1KmT3nvvvRLXioqK0hVXXKF169Zp/PjxJe5r06aNVqxYoWPHjmn06NHq1auX7r77bjVs2LDMRrciz3vqqac0fPhwXXnllRo1apSGDh2q+Pj4Mt+eESNG6P3339eCBQsUFxenCy+8sMRK8xtvvKH4+Hj9+te/1uDBg+U4jj799NMztkucjalTpyo5OVl9+vTRo48+qlmzZmn06NGSKv5el+fRRx/Vn/70Jz3xxBPq0aOHRo8erX/9618699xzK3yNq6++WpdccolGjhyp5s2ba968eaU+bteuXerTp4/69Omj3bt36+mnn1afPn10yy23VCozANgSqtMyqurkotPZYvqGOVWtTVl8jtsG1woqKChQenq6evTooYgymlQrTh7L3bCh3Rzwi46O1j333MPR4Zad/L3NzMxUTk6ODh48qIkTJ6pJkya2owGoIU5xsdLnzlX2U08pNi1NjRxH30VG6ucxY9T78cdZXa6AHTt2qGMV36edeXmKzstT1L59yu7TR7XKGWKAiqmO2rgJ3pVn6XjTTOMMAIAf2zKqz9dff13la7B9w4zqqI2boG6ec098AQAQytiWYUZltgKWhe0b1a+6alOaoB1Vlyvp0RP//2FJobb+PGLECMXFxem5556zHaWEzMxM2xEAICScvi1jyIltGSvGj1fvxx/XBawuV1lRUVG1XeuLuDhFn5i+kd22Lds3qqg6a3O6oF15LpCUfeKroJzH7tmzR3fddZc6deqkunXrqn379rriiitcR7khNPz5z39WXFxcuY979dVXNWzYMDVu3FiNGzfWqFGjtGbNGvMBAaAUbMuoOXv27Km2a7F9o3pVZ21OF7TNc0VlZmYqPj5eX331lWbOnKnvvvtOixYt0siRI3XHHXdYzVZYWGj19VExS5cu1fXXX68lS5Zo1apV6tChg371q1/pxx9/tB0NQIhgW4Yd5U22qiy2b1Sf6q7NqUK+eZ4yZYp8Pp/WrFmja665Rl27dlXPnj113333lTjMIysrS2PGjFFkZKSioqJ07bXXau/evZKkTZs2yefzaePGjSWu/cwzzyg6Otp/Yl9aWpouu+wyRUZGqmXLlrrxxhuVnZ3tf/yIESN055136r777lOzZs108cUXV+h5hw4d0sSJExUZGanWrVtr1qxZFfrZFyxYoH79+qlevXpq1qyZxo4d67/v559/1sSJE9W4cWNFRETo0ksvLXGa4ezZs9WoUSMtXLhQ3bp1U0REhK655hodOnRIc+bMUXR0tBo3bqy77rqrxBzr6OhoPfroo7rhhhsUGRmpNm3a6IUXXiiRq6z3Wvq/FeG5c+cqOjpaDRs21HXXXaeDBw/6H+M4jmbOnKlOnTopPDxcvXv31gcffOC/f+nSpfL5fFq8eLH69euniIgIDRkyRJs2bfL/fI888ojWrVsnn88nn8+n2bNnl/o+vv3225oyZYri4uLUvXt3vfrqqyouLua/XAAwikNM7Js/f361X5PDU6qHidqcFNLN84EDB7Ro0SLdcccdpZ7y16hRI0nHG7GrrrpKBw4cUGJior744gtlZGRo3LhxkqRu3bopPj5eb7/9donnv/POO7rhhhvk8/m0e/duJSQkKC4uTklJSVq0aJH27t2ra6+9tsRz5syZo7CwMK1YsUKvvPJKhZ73wAMPaMmSJfrnP/+pzz//XEuXLlVycnKZP/snn3yisWPH6vLLL9e3337rbyJPmjRpkpKSkrRgwQKtWrVKjuPosssu0y+//OJ/TEFBgZ5//nm9++67WrRokZYuXaqxY8fq008/1aeffqq5c+fqf/7nf0o0rdLxudSxsbFKSUnRtGnTdO+99+qLL76o0Ht9UkZGhubPn6+FCxdq4cKFSkxM1JNPPum/f/r06XrjjTf08ssva8OGDbr33ns1YcIEJSYmlrjOH//4R82aNUtJSUkKCwvT5MmTJUnjxo3T1KlT1bNnT+3evVu7d+8+I4ObgoIC/fLLL4x9A2AE2zK846677qr2a7J9o3qYqI2fU0WHDh1ykpKSnEOHDlX1UtVql+M4N5342uXymNWrVzuSnI8++qjMa33++edO7dq1naysLP9tGzZscCQ5a9ascRzHcZ555hmnU6dO/vs3bdrkSHI2bNjgOI7jPPzww86vfvWrEtf94YcfHEnOpk2bHMdxnISEBCcuLq7EY8p73sGDB506deo47777rv/+/fv3O+Hh4c7dd9/t+jMNHjzYGT9+fKn3bd682ZHkrFixwn9bdna2Ex4e7vzjH/9wHMdx3njjDUeSs3XrVv9jbrvtNiciIsI5ePCg/7bRo0c7t912m//7jh07OpdcckmJ1xs3bpxz6aWXOo5Tsfd6xowZTkREhJOXl+d/zAMPPOAMHDjQcRzHyc/Pd+rVq+esXLmyxOvcfPPNzvXXX+84juMsWbLEkeR8+eWX/vs/+eQTR5Jz+PBh/+v07t271PeoLFOmTHE6d+7sv44Xnfy9/eCDD5zXXnvNefbZZ539+/fbjgXAxeGff3ZW3HOPs6Z5c6dIcgokZ3nHjk7SX/7iFB09ajteyHr00UeNXbt7YqKjvDxn2Q8/GHuNYGayNiG98uyc+M8hvnI+0Zqenq727durffv2/ttiYmLUqFEjpaenS5Kuu+467dixw7/V4+2331ZcXJxiYmIkScnJyVqyZIkiIyP9X927d5d0fBX1pNOPoC7veRkZGSosLPQfJS5JTZo0Ubdu3cr8mVJTU3XRRRe5/rxhYWEaOHCg/7amTZuqW7du/p9XkiIiItS5c2f/9y1btlR0dLQiIyNL3LZv374S1z8168nvT163Iu+1dHz7R4MGDfzft27d2v86aWlpOnLkiC6++OIS79ubb75Z4r2WpNjY2BLXkHRG3sqYOXOm5s2bp48++kj16tU76+sAANsyvG/69OnGrs32jaoxWZugHVVXEeedd558Pp/S09N11VVXuT7OcZxSG+xTb2/durVGjhypd955R4MGDdK8efN02223+R9bXFysK664Qn/961/PuM7Jpk3SGdtHynveqfuQKyM8PNz1Psfll/T09+H0o7p9Pl+ptxUXF5eb5+R1K/Jeu732ydc5+b+ffPKJ2rZtW+JxdevWLfH9qdc5ef2K5C3N008/rb/85S/68ssvSzTlAFAZe1NTlf7HP6rd4sWKOXpUu2vVUuqgQerw8MM6nw/9ecpjjz1mrElrFxWlx7Zs0bT4eE34+mu9M3y4kdcJViZrE9Irz02aNNHo0aP14osv6tChQ2fcn5OTI+n4ymdWVpZ++OEH/31paWnKzc1Vjx49/LeNHz9e7733nlatWqWMjAxdd911/vv69u2rDRs2KDo6Wl26dCnxVdp+64o+r0uXLjrnnHNKfLjx559/1ubNm8v82WNjY10/0BYTE6OioiKtXr3af9v+/fu1efPmEj/v2To168nvT66mV/S9LktMTIzq1q2rrKysM96zU1e0y1OnTp0SH3Ysy1NPPaVHH31UixYtOuO/HgBAeZiWEZhuueUWo9dn+sbZM1mbkG6eJemll17SsWPHNGDAAH344YfasmWL0tPT9fzzz/u3F4waNUqxsbEaP368UlJStGbNGk2cOFEJCQklGqWxY8cqLy9Pt99+u0aOHFli1fOOO+7QgQMHdP3112vNmjXatm2bPv/8c02ePLnMBq2850VGRurmm2/WAw88oMWLF+v777/XpEmTVKtW2aWdMWOG5s2bpxkzZig9PV3fffedZs6cKen4ivyYMWN06623avny5Vq3bp0mTJigtm3basyYMVV5uyVJK1as0MyZM7V582a9+OKLev/993X33XdLqvh7XZYGDRro/vvv17333qs5c+YoIyND3377rV588UXNmTOnwjmjo6O1fft2paamKjs7W0ePHi31cTNnztT06dP1+uuvKzo6Wnv27NGePXuUn59f4dcCEHrYlhH4/vWvfxl/DbZvnB2TtQna5jlCUrMTXxFlPO7cc89VSkqKRo4cqalTp6pXr166+OKLtXjxYr388suSjv/n/Pnz56tx48YaPny4Ro0apU6dOum9994rca2oqChdccUVWrduncaPH1/ivjZt2mjFihU6duyYRo8erV69eunuu+9Ww4YNy2x0K/K8p556SsOHD9eVV16pUaNGaejQoeXONxwxYoTef/99LViwQHFxcbrwwgtLrDS/8cYbio+P169//WsNHjxYjuPo008/PWO7xNmYOnWqkpOT1adPHz366KOaNWuWRo8eLani73V5Hn30Uf3pT3/SE088oR49emj06NH617/+VanjOq+++mpdcsklGjlypJo3b6558+aV+riXXnpJhYWFuuaaa9S6dWv/19NPP12pzABCA9MygkdFDtKqKqZvnB2TtfE5bhtcK6igoEDp6enq0aOHIiLKalNrXu6J/w21o7m9LDo6Wvfcc4/uuece21FC2snf28zMTOXk5OjgwYOaOHEi4/UAQ47k5CjlkUd0zttvq+9PP6lQUkrHjqp3222KmzqV1eUAtWjRIl1yySU18lo9vv5aG/v00bLcXA1t165GXjOQmaxN0K48S8ebZhpnAIANbMsIfocPH66x12L7RuWYrE1QN88AANQ0tmWEjvPOO6/GXovtG5VjsjY0zx4VHR2t5557znYM/1HY1SUzM5MtGwCCDtMyQtOSJUtq9PWYvlFxJmsT8s3zpEmT5PP5zvjaunVrjbz+7Nmz/ceAn2rt2rX67W9/WyMZynL//fe7jrQDgFDGtgxMnDixxl+T7RsVY7I2Id88S9Ill1yi3bt3l/iqzFQGE5o3b+6JD2BGRkaqadOmtmMAgGewLQMnvfDCCzX+mmzfqBiTtaF51vFT51q1alXiq3bt2po0adIZJw/ec889GjFihP/7ESNG6Pe//70efPBBNWnSRK1atdKf//znEs/JycnRb3/7W7Vs2VL16tVTr169tHDhQi1dulS/+c1vlJub61/xPvnc07dtZGVlacyYMYqMjFRUVJSuvfZa7d2713//ye0Vc+fOVXR0tBo2bKjrrrtOBw8edP25T656z58/X127dlW9evV08cUXlzigpLq3bQBAIGJbBkpj8gjosrB9o3wma0PzXA3mzJmj+vXra/Xq1Zo5c6b+67/+S1988YWk40c9X3rppVq5cqXeeustpaWl6cknn1Tt2rU1ZMgQPffcc4qKivKveN9///1nXN9xHF111VU6cOCAEhMT9cUXXygjI0Pjxo0r8biMjAzNnz9fCxcu1MKFC5WYmKgnn3yyzOwFBQV6/PHHNWfOHK1YsUJ5eXklTkYEgFDFtgyU57HHHrP22mzfKJvJ2oQZu7IFBQUF2rhxY7mP6969e4ktEQsXLlRkZKT/+0svvVTvv/9+hV83NjZWM2bMkHT8051///vftXjxYl188cX68ssvtWbNGqWnp6tr166SpE6dOvmf27BhQ/l8PrVq1cr1+l9++aXWr1+v7du3+4+Xnjt3rnr27Km1a9eqf//+ko436rNnz1aDBg0kSTfeeKMWL16sxx9/3PXav/zyi/7+979r4MCBko7/RaBHjx5as2aNBgwYUOH3AACCxd7UVKX/8Y9qt3ixYo4e1e5atZQ6aJA6PPywzmd1Gae48847rb12u6goPbZli6bFx2vC11/rneHDrWXxIpO1CarmeePGjeWerCdJycnJ6tu3r//7kSNH+k8TlKT69etX6nVjY2NLfN+6dWvt27dPkpSamqp27dr5G+ezkZ6ervbt2/sbZ0mKiYlRo0aNlJ6e7m+eo6Oj/Y3z6TnchIWFlTj2unv37v7r0jwDCBWnH2IyUMcPMck9cYhJa1aXUYq33nrLagP9UHy85pzYvjFl504OTzmFydoEVfPcvXt3JScnV+hxp6pfv766dOlyxuNq1aql0w9g/OWXX8543OlHVvt8PhUXF0uSwsPDy81THsdx5PP5yr29rBxlKe3apd0GAMHk5LaM/bNmKTYtTUMcR99FRmrF+PHq/fjjuoAP/aEcCQkJtiPoi7g4RZ/YvpHdtq1q8e9vSWZrE1TNc0RERIkV5apq3ry5vv/++xK3paamntGkliU2NlY7d+7U5s2bS119rlOnjo4dO1bmNWJiYpSVlaUffvjBv/qclpam3Nxc9ejRo8JZSlNUVKSkpCT/KvOmTZuUk5Nzxl8wACBY7ElJ0cbp09V+8WL1LCxkWwbOWkZGhs4//3yrGdi+UTqTteEDg2W48MILlZSUpDfffFNbtmzRjBkzzmimy5OQkKDhw4fr6quv1hdffKHt27frs88+06JFiyQd32qRn5+vxYsXKzs7WwUFBWdcY9SoUYqNjdX48eOVkpKiNWvWaOLEiUpISCix5eJsnHPOObrrrru0evVqpaSk6De/+Y0GDRrElg0AQeXUaRnN4+M18LPPtKd1a6ZloErqeGQ7D9M3zmSyNjTPZRg9erQefvhhPfjgg+rfv78OHjx4VkO3P/zwQ/Xv31/XX3+9YmJi9OCDD/pXm4cMGaLf/e53GjdunJo3b66ZM2ee8Xyfz6f58+ercePGGj58uEaNGqVOnTrpvffeq/LPGBERof/8z//UDTfcoMGDBys8PFzvvvtula8LALY5xcXa8MYbTMuAMS1btrQdwY/pGyWZrI3POX1TbyUVFBQoPT1dPXr08MShHqi42bNn65577lFOTo7tKKhhJ39vMzMzlZOT4/+LYZMmTWxHA6rs1G0ZnU9sy9g0cKA6PPwwq8uoVv/zP//jidOAT3oyOVnT4uN1Pds3jNYmqPY8AwBC0+nTMhrq+LSMHKZlwKAxY8bYjlAC0zf+j8nasG0DABCQ2JYB21599VXbEc7A9o3jTNaGbRtACGLbBgIZ2zKAsrF9wyxWngEAnse0DHiRzeO5y8L0DbO1oXkGAHgS2zLgdVOnTrUdwVWob98wWRuaZwCAp+xJSdHSyy7TtvBw9Zw8Weelpyt10CBt+/RTnX/woIa/9ZYacvofPOCll16yHcFVu6goPbZ3r37u21cTli2zHafGmawN0zYAANYxLQOB6Morr7QdoUyhPH3DZG1YeQYAWMG2DAS6lJQU2xHKFarbN0zWhuYZAFCj2JaBYNG8eXPbEcoVqts3TNam2rZtHD58uLouBcAwfl9R09iWgWBUt25d2xEqJBS3b5isTZWb57CwMNWqVUuZmZnVEAdATXEcR8eOHbMdA0HMKS5W2pw52j9rlmLT0jTEcfRdZKRWjB+v3o8/rgtYXUaAy8jI0AUXXGA7RoV8ERen6BPbN7LbtlUtn892JKNM1qbKzXOdOnXUs2dPFRUVKTc3VwsXLlT9+vUD5m9jCA6//PKL3njjDf3mN7/ROeecYztOQDh27JiKiopsx0AQOvUQk54nDjFJHTRIHR5+WOczixlBZMSIEbYjVFi7qCg9tmWLpsXHa0IIHJ5isjbVsm2jTp06qlOnjo4cOaJDhw7pl19+oXlGjSosLNQPP/ygn3/+WXX4z7+VcvToUdsREATYloFQNHfuXP3xj3+0HaPCQmn7hsnaVPl47lMdOnRI7733nvLy8qrrkkCFFBYWat68ebr++utpns9CVFSUxo0bp/r169uOggBy+raMRie2Zfw8Zox6P/44H/pD0CsuLlatWoE1e2FnXp6i8/IUtW+fsvv0CdrtGyZrU63Ns3S8gWYlCzXt4MGD6tatmzZt2qQGDRrYjhNw6tatS+OMCjt1W0bnE9syNg0cqA4PP8wR2Qgpjz32mKZPn247RqU9mZysafHxuj6It2+YrE21N8+ADXl5eWrYsKFyc3MVFRVlOw4QdE7fllGo49sy6p3YlsEsZoSiQFx5PqnH119rY58+WpabG5TbN0zWJjArDgAwjkNMgLI98cQTtiOctWA/PMVkbWieAQAlcIgJUDE33nij7QhnLdgPTzFZG5pnAICO5ORo5b33am2LFmoeH6+Bn32mPa1bK/kvf1GLw4c1YuVK9jMDp1m6dKntCFXyUHy8up+YvrF8507bcaqVydrQPANAiGJbBlA1nTt3th2hyoJ1+4bJ2tA8A0CIYVsGUD2CYbrYqds3bgyi7Rsma1Mth6QAALyNQ0yA6vfTTz/ZjlAtTh6e8k6fPro9SA5PMVkbVp4BIEixLQMwq2/fvrYjVJsv4uJUOy8vaLZvmKwNzTMABBm2ZQA1Y8GCBbYjVJt2UVF6dM+eoNm+YbI2HJKCoMAhKQh1HGIC1LzDhw8rPDzcdoxqFSyHp5isDSvPABCg2JYB2DVr1izbEapdsGzfMFkbVp4RFFh5RijZk5KijdOnq/3ixepcWKjdtWpp08CB6vDww8xiBlBlTyQn6w/x8brh66/19vDhtuN4DivPABAAOMQE8J7HHnvMdgQjpp04POWdAD48xWRtWHlGUGDlGcHIKS5W2pw52j9rlmLT0tTIcfRdZKR+HjNGvR9/nA/9AZbt3btXLVu2tB3DiJ15eYo+eFBRe/cqu08f1fL5bEeqFJO1YeUZADyGaRlAYPj4449tRzAm0KdvmKwNh6QAgAdwiAkQeOLj421HMGpafLzeDNDDU0zWhpVnALCEaRlAYNu7d6/tCMYF6vQNk7WheQaAGsa2DCA4FBYW2o5gXKBu3zBZG7ZtAEANYFsGEHw6d+5sO0KNCMTtGyZrw8ozABjCtgwguCUmJtqOUGMCbfuGydowqg5BgVF18BIOMQFCQ05Ojho1amQ7Ro0JpMNTTNaGlWcAqAYcYgKEnr///e+2I9SoQDo8xWRtWHlGUGDlGTZwiAmAUBPoh6dUB1aeAaCSmJYBQAre47nLEijTNzieGygHK88w7fRpGYU6Pi2j3olpGXzoDwg9ubm5atiwoe0YVvT4+mtt7NNHy3JzPTl9w2RtWHkGABdMywBQljfffNN2BGu8Pn3DZG1ongHgNGzLAFARI0eOtB3BGq9v3zBZG5pnABDTMgBU3pYtW2xHsMrL0zdM1obmGUDIYlsGgKoIDw+3HcE6r27fMFkbmmcAIYdtGQCqQ9OmTW1HsM6r2zdM1obmGUBIYFsGgOqWmppqO4IneHH7hsnaMKoOQYFRdSgNh5gAMGnPnj1q1aqV7Rie4LXDU0zWhpVnAEGHbRkAasJrr71mO4JneG37hsnasPKMoMDKMzjEBADs8/rhKdWBlWcAAYtpGQBsCsXjucvjlekbHM8NlIOV59CyJyVFG6dPV/vFi9W5sFC7a9XSpoED1eHhh/nQH4Aac+TIEdWrV892DM95IjlZf4iP1w1ff623hw+3ksFkbVh5BhAQmJYBwGteeOEF2xE8yQvTN0zWhpVnBAVWnoMT0zIAeNmWLVt03nnn2Y7hSbanb5isDSvPADyHaRkAAkFycrLtCJ5le/qGydqEGbsyAFTC6dMyGur4tIycE9MyWvOhPwAew4znsk2Lj9ebJ7Zv3L5zZ41O3zBZG1aeAVjDtAwAgSwsjDXI8tiavmGyNjTPAGoc2zIABIPt27fbjuB5trZvmKwNHxhEUOADg97HISYAgs2OHTvUkb/oV0hNH55isjasPAMwhm0ZAILZO++8YztCwKjp7Rsma8PKM4ICK8/ewiEmAELBsWPHVLt2bdsxAkZNHp5isjasPAOoFhxiAiDUPPHEE7YjBJSaPDzFZG1YeUZQYOXZDg4xAQBUhu3DU6oDK88AKo1pGQAgPfbYY7YjBJyamr5hsjasPCMosPJsHtMyAKCkH374Qe3bt7cdIyCZnr5hsjasPANwxbQMAHC3ePFi2xEClunpGyZrQ/MM4AxsywCA8nXt2tV2hIBlevuGydpwriQASWduy2io49syck5sy2jN6jIAlHD48GHbEQLatPh4vXli+sbtO3dW6/YNk7Vh5RkIYWzLAICzt3//ftsRAp6p7Rsma0PzDIQgtmUAQNX17t3bdoSAZ2r7hsna0DwDIYJDTACgei1cuNB2hKBg4vAUk7VhVB2CAqPqSschJgBgTkFBgSIiImzHCArVfXiKydqw8gwEIbZlAIB5zzzzjO0IQaO6t2+YrA0rzwgKrDxziAkAIPCZPjylOrDyDAQwpmUAgD0cz139qmv6BsdzA+UItZXnPSkp2jh9utovXqzOhYXaXauWNg0cqA4PP8yH/gCghvz0009q3ry57RhB54nkZP0hPl43fP213h4+/KyuYbI2rDwDAYJpGQDgLR999JHtCEGpOqZvmKwNzTPgYWzLAADv6t+/v+0IQauq2zdM1obmGfAgpmUAgPft3r3bdoSgVdXpGyZrE2bsygAq5fRpGQ11fFpGzolpGa1ZXQYATzl27JjtCEFtWny83jyxfeP2nTsrNX3DZG1YeQYsYlsGAASu6Oho2xGC3tlu3zBZG5pnwAK2ZQBA4FtWDYd5oGxnu33DZG0YVYegEAij6jjEBACCy4EDB9SkSRPbMUJCZQ9PMVkbVp4Bg9iWAQDB66WXXrIdIWRUdvuGydqw8oyg4LWVZw4xAQCgelXH4SnVgZVnoJpwiAkAhBaO565ZlTk8heO5gXLYWnl2iouVNmeO9s+apdi0NDVyHH0XGamfx4xR78cf50N/ABDE8vLyPPFfO0PJzrw8RR88qKi9e5Xdp49q+XylPs5kbVh5Bs4C0zIAALNnz7YdIeRUdPqGydqw8oygUBMrz0zLAACcKi0tTTExMbZjhKTypm+YrA0rz0AZmJYBAHCzceNG2xFCVnnTN0zWhuYZKAXbMgAA5alfv77tCCGrvO0bJmsTZuzKQIA5fVtGQx3flpFzYltGa1aXAQCn4IAUu6bFx+vNE9M3bt+5s8T2DZO1YeUZIY1tGQCAs7V+/XrbEUKe2/YNk7WheUZIYlsGAKCqLmV2v3Vu2zdM1obmGSGDQ0wAANXp9ddftx0BKv3wFJO1YVQdgoLbqDoOMQEAIPhV9PCU6sDKMzwlPz9fV199tbKysqp0HbZlAABM43hu7zh9+wbHcyMkvP7669qxY4f+67/+S9u3b1d0dHSFn3ty5fnz229Xow8+4BATAIBxR48eVd26dW3HwClOHp6yeN8+Xdi5s5HXoHmG5/h8vnKb56NHj+ro0aOSpC3bt+vOr77SN/fdp00tW2pP/fo6OGKEut5xhyJbt66h1ACAUPPks8/q6htvtB0Dp8g5fFjTjxzRnrfe0p5XXjGyfaPCzfO8efM0YMAAffjhh7r77rv11FNPafr06Xrsscc0efJkffbZZ4qNjdWBAwd06NAhde/eXV9++aUmTZqk559/3v/YKVOmaN68eRo2bJgyMzNVu3ZttW7dWmvXrtXYsWP1yiuv+B9733336eWXX9avf/1rrVu3Tk2bNlV4eLg2b96siy66SHPmzPE/dtq0aZo5c6ZuuOEGff311zr33HNVVFSkPXv2KD4+XvPnz9ddd92lp59+2v+cW265Rf/6178UFxen/fv36/DhwzrvvPO0ZMkSTZw4US+88IL/sXfeeafeeustJSQkKCMjQ3Xq1FHLli2VnJysMWPG6NVXX/U/durUqXrppZd05ZVXKiUlRc2bN1fdunWVkZGhESNGaO7cuZo2bZr+8pe/6A9/+IOeeOIJ3XjjjVq6dKk6d+6so0eP6qefflLfvn21YMECTZkyRbNmzfJf/9Zbb9XHH3+s+Ph47d27V4WFhercubMSExM1YcIE/f3vf/c/9q677tKbb76pkSNHasuWLQoPD1fTpk2VmpqqK664Qq+99pr/sffff79eeOEFXXXVVUpOTlarVq0UFham7du3a/jw4XrnnXf04IMP6oknnvA/56abbtLixYvVtWtXHT58WPv371fv3r21cOFC3X777XrmmWf8j73tttv00UcfqX///tq9e7eOHTum6OhoLVu2TNdff71eeuklTZ8+XT6fT+vXr9eSJUs0atQobdy4UfXr11eTJk20fv16XXrppZowYYKWLFlyxj+nV155pRo3bqxatWopJydHHTp00Pfff68hQ4Zo+fLlSkhIUGJiouLi4rRt2zY1a9ZMhYWFOnLkiFq0aKGtW7eqb9+++uabb/yP7devn9LS0tSuXTvl5eVJkqKiorRz50717NlTa9eu9T920KBBSklJUefOnZWdna06deqoXr162rdvn7p06aJvv/3W/9ihQ4dq1apViomJ0c6dO/17tfPy8tSuXTulpaVp8ODBJXL36dNHW7duVYsWLXTkyBEVFhaqWbNmysjIOCN3//79tWHDhlJzx8TEKCkp6YzcXbp00b59+1SvXj3VqVNH2dnZ6tSpk1JTU0vkXrlypXr16qWsrCw1atRIxcXFys/PV9u2bZWWlqZBgwZpxYoVZ+Ru2bKlDh8+7M+9bds2xcXFafXq1SVyf//99+rQoYNycnJUq1YtRUZGateuXerRo0eJ3IMHD1ZSUpK6du2qPXv2KCIiQmFhYdq/f/8ZuYcNG6YVK1bo/PPP144dO0rkbtOmjTZu3KgBAwZo5cqV/uf07dtXmzdvVqtWrVRQUKCioiI1adJEmZmZ6t27d4ncAwYM0Pr16xUdHa0DBw6odu3a/tzdu3dXcnKy/7FDhgzR2rVr1a1bN+3evduf+8CBA4qOjtb69es1dOhQLVu2TMOGDdPy5csVGxurzMxMNWnSREVFRSooKFDr1q21adMm9e/fv0Tu+Ph4bdy4UW3atFF+fr6OHTvmzx0bG6s1a9b4Hztw4ECtW7fOnzssLEwRERHas2ePunbtqpSUlBK516xZo+7du2vXrl2KjIz0/6517NhR3333nS644AItW7bsjN+1pk2b+nO3atVKmzdvVr9+/bRq1aoSv2vp6en+3MXFxWrUqJGysrLUq1evEr9rAwcOVGpqqjp16uT/XQsPD9fevXvP+F274IIL9M033ygmJkY//vhjidz8GcGfEVX5M6JTp07at28ff0Z48M+Irl27KqxJE02ZMKHUPuL111/39ycPPPCA/va3v+nqq69W5wqsVrPyDM+pyMrzln37dElKirYNGaLG336rP+zYoQduukkffPCBhgwZUnNhAQAhaUt2tp5/5BFF//73qt24se04OIWTlaVtb7yh38+YoeHnn1/t1+eEQQScx5KS9Oc2bXRsyBDdmJqq2cOHa/GXX0o6vmrSmq0aAADDsiVFRkbKd955CuffO55yWMdrYwrNMwJGVm6uRq1fry3DhqlJcrIWtmqlwcOH244FAAhRtWoxtMyrTNaGqiMgPJaUpE6HDmlL79668euv9VPfvhrctq3tWACAEJaTk2M7AlyYrA0rz/CMefPm6euvv5YkPfTQQxo+fLh+PX48q80AAE/q0KGD7QhwYbI2rDzDM66//nq9/PLLchxH7777rg4MGMBqMwDAs77//nvbEeDCZG1YeYbnsLcZABAIhgwZosO2Q6BUJidvsfIMT2FvMwAgUCxfvtx2BLgwWRtWnuEJrDYDAAJNQkKC8m2HQKkSEhKMXZuVZ1jHajMAIBAlJibajgAXJmvDyjOsYbUZABDI4uLibEeAC5O1YeUZVrDaDAAIdNu2bbMdAS5M1oaVZ9QoVpsBAMGiWbNmtiPAhcnasPKMGsNqMwAgmBQWFtqOABcma8PKM4xjtRkAEIyOHDliOwJcmKwNK88witVmAECwatGihe0IcGGyNjTPMCIrN1ddly3Tw/36qeHu3Vp58KDeHD5ctXw+29EAAKgWW7dutR0BLkzWhuYZ1Y7VZgBAKOjbt6/tCHBhsjY0z6g2rDYDAELJN998YzsCXJisDc0zqgWrzQCAUGPyCGhUDcdzw7NYbQYAhCqO5/Yuk7WhecZZY7UZABDK+vXrZzsCXJisDc0zKo3VZgAApLS0NNsR4MJkbWieUSmsNgMAcFy7du1sR4ALk7XhhEFUCKcEAgBQUl5enhrYDoFS5eXlGbs2K88oF6vNAAAAx7HyDFesNgMA4C4qKsp2BLgwWRtWnlEqVpsBACjbzp07bUeAC5O1YeUZJbDaDABAxfTs2VPFtkOgVD179jR2bVae4cdqMwAAFbd27VrbEeDCZG1YeQarzQAAnIWEhATl2w6BUnE8N4xhtRkAgLPD8dzeZbI2rDyHKFabAQComkGDBukX2yFQqkGDBhm7NivPIYjVZgAAqi4lJcV2BLgwWRtWnkMIq80AAFSfzp07244AFyZrw8pziGC1GQCA6pWdnW07AlyYrA0rz0GO1WYAAMyoU6eO7QhwYbI2rDwHMVabAQAwp169erYjwIXJ2tA8B6Gs3Fx1XbZMD/frp4a7d2vlwYN6c/hw1fL5bEcDACBo7Nu3z3YEuDBZG5rnIMNqMwAANaNLly62I8CFydrQPAcJVpsBAKhZ3377re0IcGGyNjTPQYDVZgAAap7JI6BRNRzPjVKx2gwAgD0cz+1dJmtD8xygWG0GAMCuoUOH2o4AFyZrQ/McYFhtBgDAG1atWmU7AlyYrA3NcwBhtRkAAO+IiYmxHQEuTNaG5jkAsNoMAID37Ny503YEuDBZG5pnj2O1GQAAb4qKirIdAS5M1ibM2JVRJVm5uRq1fr22DBumJsnJWtiqlQYPH247FgAAQEhj5dmDWG0GAMD78vLybEeAC5O1YeXZQ3bk5upiVpsBAAgI7dq1sx0BLkzWhpVnj/ivtWvVqaCA1WYAAAJEWlqa7QhwYbI2rDxbxmozAACBafDgwTpsOwRKNXjwYGPXZuXZIlabAQAIXMuXL7cdAS5M1oaVZwtYbQYAIPAlJCQo33YIlCohIcHYtVl5rmGsNgMAEBwSExNtR4ALk7Vh5bmGsNoMAEBw6dOnj+0IcGGyNqw81wBWmwEACD5bt261HQEuTNaGlWeDWG0GACB4tWjRwnYEuDBZG1aeDWG1GQCA4HbkyBHbEeDCZG1Yea5mrDYDABAaCgsLbUeAC5O1YeW5GrHaDABA6GjWrJntCHBhsjY0z9VgR26uui5bphn9+6vRrl1aefCg3hw+XLV8PtvRAACAIRkZGbYjwIXJ2tA8VxGrzQAAhKa+ffvajgAXJmtD83yWWG0GACC0ffPNN7YjwIXJ2tA8nwVWmwEAgMkjoFE1HM/tEaw2AwCAkzie27tM1obmuYJYbQYAAKfq37+/7QhwYbI2NM/lYLUZAACUZsOGDbYjwIXJ2tA8l4HVZgAA4KZdu3a2I8CFydpwwmApOCUQAACUJy8vTw1sh0Cp8vLyjF2blefTsNoMAAAAN6w8n8BqMwAAqIyoqCjbEeDCZG1YeRarzQAAoPJ27txpOwJcmKxNSK88s9oMAADOVkxMjBzbIVCqmJgYY9cO2ZVnVpsBAEBVJCUl2Y4AFyZrE3Irz6w2AwCA6pCQkKB82yFQKo7nriasNgMAgOrC8dzeZbI2IbHyzGozAACoboMGDdIvtkOgVIMGDTJ27aBfeWa1GQAAmJCSkmI7AlyYrE3Qrjyz2gwAAEzq0qWL7QhwYbI2QbnyzGozAAAwbd++fbYjwIXJ2gTVyjOrzQAAoKbUq1fPdgS4MFmboFl5ZrUZAADUpDp16tiOABcmaxPwK8+sNgMAABuys7PV2HYIlCo7O9vYtQN65ZnVZgAAYEunTp1sR4ALk7UJyOZ5R26uui5bphn9+6vRrl1aefCg3hw+XLV8PtvRAABAiEhNTbUdAS5M1ibgmmdWmwEAgBeYPAIaVcPx3GK1GQAAeAvHc3uXydoERPPMajMAAPCaoUOH2o4AFyZr4+nmmdVmAADgVStXrrQdAS5M1sazzTOrzQAAwMt69eplOwJcmKyN55pnVpsBAEAgyMrKsh0BLkzWxlPNM6vNAAAgUDRq1Mh2BLgwWRtPnDDIKYEAACDQFBcX244AFyZrY33lmdVmAAAQiPLz821HgAuTtbG28sxqMwAACGRtWezzLJO1sbLyzGozAAAIdGlpabYjwIXJ2tRo88wkDVTEzp07NXXqVNsxAAAo06BBg2xHgAuTtamx5pnVZlSE4zj6+OOPtX//fttRAAAo04oVK2xHgAuTtTHePLPajMr44osvdOGFF9qOAQBAuRISEmxHgAuTtTHaPE97911Wm1FhGRkZatmypcLDw21HAQCgXImJibYjwIXJ2hibtvGHWbP05NSparVqlT7q0IFJGihXamqqateurX379ikrK0vr169XbGxsqY89evSojh496v/+0KFDkqT8H3/U7u++q5G8AIDQtf/gQfXp00dFP/2kQ7bDoATn55/Vp08fY9evcPM8b948DRgwQB9++KHuvvtuPfXUU5o+fboee+wxTZ48WZ999pliY2N14MABHTp0SGOHDlVW7966LixMi//f/9PgE4+dMmWK5s2bp2HDhikzM1O1a9dW69attXbtWo0dO1avvPKK/7r33XefXn75Zf3617/WunXr1LRpU4WHh2vz5s266KKLNGfOHP9jp02bppkzZ+qGG27Q119/rXPPPVdFRUXas2eP4uPjNX/+fN111116+umn/c+55ZZb9K9//UtxcXHav3+/Dh8+rPPOO09LlizRxIkT9cILL/gfe+edd+qtt95SQkKCMjIyVKdOHbVs2VLJyckaM2aMXn31Vf9jp06dqpdeeklXXnmlUlJS1Lx5c9WtW1cZGRkaMWKE5s6dq2nTpukvf/mL/vCHP+iJJ57QjTfeqKVLl6pz5846evSofvrpJ/Xt21cLFizQlClTNGvWLP/1b731Vn388ceKj4/X3r17VVhYqM6dOysxMVETJkzQ3//+d/9j77rrLr355psaOXKktmzZovDwcDVt2lSpqam64oor9Nprr/kfe//99+uFF17QVVddpeTkZLVq1UphYWHavn27hg8frnfeeUcPPvignnjiCf9zbrrpJi1evFhdu3bV4cOHtX//fvXu3VsLFy7U7bffrmeeecb/2Ntuu00fffSR+vfvr927d+vYsWOKjo7WsmXLdP311ys9PV3/+Z//qauuukoFBQV6++23FRYWpo0bN6p+/fpq0qSJ1q9fr0svvVQTJkzQkiVLzvjndPY//6mPly5VrVq1lJOTow4dOuj777/XkCFDtHz5ciUkJCgxMVFxcXHatm2bmjVrpsLCQh05ckQtWrTQ1q1b1bdvX33zzTf+x/br109paWlq166d8vLyJElRUVHauXOnevbsqbVr1/ofO2jQIKWkpKhz587Kzs5WnTp1VK9ePe3bt09dunTRt99+63/s0KFDtWrVKsXExGjnzp2KioqSJOXl5aldu3ZKS0vT4MGDS+Tu06ePtm7dqhYtWujIkSMqLCxUs2bNlJGRcUbu/v37a8OGDaXmjomJUVJS0hm5u3Tpon379qlevXqqU6eOsrOz1alTJ6WmppbIvXLlSvXq1UtZWVlq1KiRiouLlZ+fr7Zt2yotLU2DBg3SihUrzsjdsmVLHT582J9727ZtiouL0+rVq0vk/v7779WhQwfl5OSoVq1aioyM1K5du9SjR48SuQcPHqykpCR17dpVe/bsUUREhMLCwrR///4zcg8bNkwrVqzQ+eefrx07dpTI3aZNG23cuFEDBgzQypUr/c/p27evNm/erFatWqmgoEBFRUVq0qSJMjMz1bt37xK5BwwYoPXr1ys6OloHDhxQ7dq1/bm7d++u5ORk/2OHDBmitWvXqlu3btq9e7c/94EDBxQdHa3169dr6NChWrZsmYYNG6bly5crNjZWmZmZatKkiYqKilRQUKDWrVtr06ZN6t+/f4nc8fHx2rhxo9q0aaP8/HwdO3bMnzs2NlZr1qzxP3bgwIFat26dP3dYWJgiIiK0Z88ede3aVSkpKSVyr1mzRt27d9euXbsUGRnp/13r2LGjvvvuO11wwQVatmzZGb9rTZs29edu1aqVNm/erH79+mnVqlUlftfS09P9uYuLi9WoUSNlZWWpV69eJX7XBg4cqNTUVHXq1Mn/uxYeHq69e/ee8bt2wQUX6JtvvlFMTIx+/PHHErn5M4I/I872z4jFy5erbu3aCp8+nT8jPPhnRL169VT7H/9Qs9q1S+0jXn/9dX9/8sADD+hvf/ubrr76anXu3LncntjnOI5T0Qa6shJ791b3779X00OHFFavnqmXQQg6feX5X2+/rQlTpujDm2/W4MaNLSYDAISCn4qK9ExhoSaNH6+m555rOw5O8XN2tt564QU98sgjat26dbVf3+ghKS0efFAtJ0zQ2r/+Vf1nzDD5UggxdevWVd26df3fR5zYJ93A51Pr+vVtxQIAhIpDh3QsO1vdGjQw0qDh7O2WdPjwYWPXN/qBwe7XX6/N9eqp6LXXTL4MgoTP5yv1CwAALyosLLQdAS5M1sZo8+yrVUu7fvUr9d25Uz9nZJh8KQQBx3FK/QIAwIuaNWtmOwJcmKyN8TnPPR9/XLUlrf/jH02/FILAyQ+tHDx40HISAADKtm3bNtsR4MJkbYw3z8179VJyy5ZqtnCh6ZdCEOjTp4/GjBmj999/33YUAADKFBcXZzsCXJisTY0cz+1MnKiehw5p68cf18TLIYA98sgj+vjjjzV58mTbUQAAKNPq1attR4ALk7Wpkea575/+pP0+n3Y+/nhNvBwC2Lp16/TVV1/pqaeeYr8zAMDTOJ7buwL2eO6T6kRG6vvzz1eP5GQVHTlSEy+JADVz5kxdeOGFKiws1NKlS23HAQDAFcdze5fJ2tRI8yydmPlcXKxv//rXmnpJBJg333xT7733niQpNzeXlWcAgKf179/fdgS4MFmbGmuemfmM8lx88cUKDw/X/Pnz1aFDB1144YW2IwEA4Or777+3HQEuTNbG6AmDpzo583nwggX6OSNDjStwdjhCS+vWrTVmzBjbMQAAqJAOHTrYjgAXJmtTYyvPEjOfAQBA8MjJybEdAS5M1qZGm2dmPgMAgGBRq1aNtlGoBJO1qfGqM/MZAAAEg8jISNsR4MJkbWq8eWbmMwAACAa7du2yHQEuTNamxptnZj4DAIBg0KNHD9sR4MJkbaxs1mHmMwAACHRJSUm2I8CFydpYaZ6Z+QwAAAIdx3N7V8Afz326kzOf++7cqZ8zMmxEAAAAqBKO5/auoDie+3TMfAYAAIFs8ODBtiPAhcnaWGuemfkMAAACGXuevSvo9jyfxMxnAAAQqLp27Wo7AlyYrI3V5pmZzwAAIFDt2bPHdgS4MFkbq80zM58BAECgioiIsB0BLkzWxvqh7Mx8BgAAgSgsLMx2BLgwWRvrzTMznwEAQCDav3+/7QhwYbI21ptnZj4DAIBA1KlTJ9sR4MJkbaw3zxIznwEAQOBJTU21HQEuTNbGE80zM58BAECg4Xhu7wq647lLw8xnAAAQSDie27uC8nju0zHzGQAABJJhw4bZjgAXJmvjmeaZmc8AACCQrFixwnYEuDBZG880zxIznwEAQOA4//zzbUeAC5O18VTzzMxnAAAQKHbs2GE7AlyYrI2nmmdmPgMAgEDRqFEj2xHgwmRtPNU8S8x8BgAAgaG4uNh2BLgwWRvPNc/MfAYAAIEgPz/fdgS4MFkbzzXPEjOfAQCA97Vp08Z2BLgwWRtPNs/MfAYAAF63ceNG2xHgwmRtPNk8M/MZAAB43YABA2xHgAuTtfFk8ywx8xkAAHjbypUrbUeAC5O18WzzzMxnAADgZQkJCbYjwIXJ2ni2eWbmMwAA8LLExETbEeDCZG082zxLzHwGAADe1bdvX9sR4MJkbTzdPDPzGQAAeNXmzZttR4ALk7XxdPMsMfMZAAB4U6tWrWxHgAuTtfF888zMZwAA4EUFBQW2I8CFydp4vnlm5jMAAPCioqIi2xHgwmRtPN88S8x8BgAA3tOkSRPbEeDCZG0Conlm5jMAAPCazMxM2xHgwmRtAqJ5ZuYzAADwmt69e9uOABcmaxMQzbPEzGcAAOAtq1evth0BLkzWJmCaZ2Y+AwAAL+F4bu8KyeO5S8PMZwAA4BUcz+1dIXs89+mY+QwAALxiwIABtiPAhcnaBFTzzMxnAADgFevXr7cdAS5M1iagmmeJmc8AAMAboqOjbUeAC5O1CbjmmZnPAADACw4cOGA7AlyYrE3ANc/MfAYAAF5Qu3Zt2xHgwmRtAq55lpj5DAAA7IuMjLQdAS5M1iYgm2dmPgMAANt27dplOwJcmKxNQDbPEjOfAQCAXd27d7cdAS5M1iZgm2dmPgMAAJuSk5NtR4ALk7UJ2OaZmc8AAMAmjuf2Lo7ndsHMZwAAYAvHc3sXx3O7YOYzAACwZciQIbYjwIXJ2gR088zMZwAAYMvatWttR4ALk7UJ6OZZYuYzAACwo1u3brYjwIXJ2gR888zMZwAAYMPu3bttR4ALk7UJ+OZZYuYzAACoeREREbYjwIXJ2gRF88zMZwAAUNPCwsJsR4ALk7UJiuaZmc8AAKCmHThwwHYEuDBZm6BoniVmPgMAgJoVHR1tOwJcmKxN0DTPzHwGAAA1af369bYjwIXJ2gRN88zMZwAAUJOGDh1qOwJcmKxN0DTPEjOfAQBAzVm2bJntCHBhsjZB1Twz8xkAANSUYcOG2Y4AFyZrE1TNs8TMZwAAUDOWL19uOwJcmKxN0DXPzHwGAAA1ITY21nYEuDBZm6Brnpn5DAAAakJmZqbtCHBhsjZB1zxLzHwGAADmNWnSxHYEuDBZm6Bsnpn5DAAATCsqKrIdAS5M1iYom2dmPgMAANMKCgpsR4ALk7UJyuZZYuYzAAAwq3Xr1rYjwIXJ2gRt88zMZwAAYNKmTZtsR4ALk7UJ2uZZYuYzAAAwp3///rYjwIXJ2gR188zMZwAAYMrKlSttR4ALk7UJ6uaZmc8AAMCUhIQE2xHgwmRtgrp5lpj5DAAAzEhMTLQdAS5M1ibom2dmPgMAABPi4+NtR4ALk7UJ+uaZmc8AAMCEjRs32o4AFyZrE/TNs8TMZwAAUP3atGljOwJcmKxNSDTPzHwGAADVLT8/33YEuDBZm5BoniVmPgMAgOp17Ngx2xHgwmRtQqZ5ZuYzAACoTk2aNLEdAS5M1iZkmmdmPgMAgOqUmZlpOwJcmKxNyDTPEjOfAQBA9YmNjbUdAS5M1iakmmdmPgMAgOqyZs0a2xHgwmRtQqp5ZuYzAACoLhzP7V0cz12NmPkMAACqA8dzexfHc1cjZj4DAIDqMHDgQNsR4MJkbUKueZaY+QwAAKpu3bp1tiPAhcnahGTzzMxnAABQVdHR0bYjwIXJ2oRk88zMZwAAUFUHDhywHQEuTNYmJJtniZnPAACgasLCwmxHgAuTtQnZ5pmZzwAAoCoiIiJsR4ALk7UJ2eaZmc8AAKAq9uzZYzsCXJisTcg2zxIznwEAwNnr2rWr7QhwYbI2Id08M/MZAACcrZSUFNsR4MJkbUK6eZaY+QwAAM4Ox3N7F8dzG8TMZwAAcDY4ntu7OJ7bIGY+AwCAszFkyBDbEeDCZG1CvnmWmPkMAAAqb82aNbYjwIXJ2tA8i5nPAACg8rp37247AlyYrA3Ns5j5DAAAKm/Xrl22I8CFydrQPJ/AzGcAAFAZkZGRtiPAhcna0DyfwMxnAABQGbVq0UZ5lcnaUPVTMPMZAABUVE5Oju0IcGGyNjTPp2DmMwAAqKiOHTvajgAXJmtD83wKZj4DAICK+u6772xHgAuTtaF5Pg0znwEAQEVccMEFtiPAhcna0DyfhpnPAACgIpYtW2Y7AlyYrA3N82mY+QwAACoiISHBdgS4MFkbmudSMPMZAACUJzEx0XYEuDBZG5rnUjDzGQAAlCcuLs52BLgwWRuaZxfMfAYAAGXZtm2b7QhwYbI2NM8umPkMAADK0rRpU9sR4MJkbWieXTDzGQAAlKWoqMh2BLgwWRua5zIw8xkAALgpKCiwHQEuTNaG5rkMzHwGAABuWrVqZTsCXJisDc1zGZj5DAAA3GzevNl2BLgwWRua53Iw8xkAAJSmX79+tiPAhcna0DyXg5nPAACgNKtWrbIdAS5M1obmuQKY+QwAAE7H8dzexfHcljHzGQAAnI7jub2L47ktY+YzAAA4HXuevYs9zx7AzGcAAHCq9PR02xHgwmRtaJ4riJnPAADgVG3atLEdAS5M1obmuYKY+QwAAE6Vn59vOwJcmKwNzXMlMPMZAACcVFxcbDsCXJisDc1zJTDzGQAAnNSoUSPbEeDCZG1oniuJmc8AAECSsrKybEeAC5O1oXmuJGY+AwAASerVq5ftCHBhsjY0z5XEzGcAACBJa9eutR0BLkzWhub5LDDzGQAAcDy3d3E8t8cw8xkAAHA8t3dxPLfHMPMZAAAMHDjQdgS4MFkbmuezxMxnAABCW2pqqu0IcGGyNjTPZ4mZzwAAhLZOnTrZjgAXJmtD81wFzHwGACB0ZWdn244AFyZrQ/NcBcx8BgAgdNWpU8d2BLgwWRua5ypg5jMAAKErPDzcdgS4MFkbmucqYuYzAAChae/evbYjwIXJ2tA8VxEznwEACE1dunSxHQEuTNaG5rmKmPkMAEBo+vbbb21HgAuTtaF5rgbMfAYAIPRwPLd3cTy3xzHzGQCA0MPx3N7F8dwBgJnPAACElgsuuMB2BLgwWRua52rCzGcAAELLN998YzsCXJisDc1zNWHmMwAAoSUmJsZ2BLgwWRua52rEzGcAAELHjz/+aDsCXJisDc1zNWLmMwAAoSMyMtJ2BLgwWRua52rEzGcAAEJHrVq0UV5lsjZUvZox8xkAgNCQk5NjOwJcmKwNzXM1Y+YzAAChoUOHDrYjwIXJ2tA8G8DMZwAAgt/3339vOwJcmKwNzbMBzHwGACD4DRkyxHYEuDBZG5pnA5j5DABA8Fu+fLntCHBhsjY0z4Yw8xkAgOCWkJBgOwJcmKwNzbMhzHwGACC4JSYm2o4AFyZrQ/NsCDOfAQAIbnFxcbYjwIXJ2tA8G8TMZwAAgte2bdtsR4ALk7WheTaImc8AAASvZs2a2Y4AFyZrQ/NsGDOfAQAIToWFhbYjwIXJ2tA8G8bMZwAAgtMRxtF6lsna0DwbxsxnAACCU4sWLWxHgAuTtaF5rgHMfAYAIPhs3brVdgS4MFkbmucawMxnAACCT9++fW1HgAuTtaF5rgHMfAYAIPh88803tiPAhcna0DzXEGY+AwAQXDie27s4njsIMPMZAIDgwvHc3sXx3EGCmc8AAASPfv362Y4AFyZrQ/Ncg5j5DABA8EhLS7MdAS5M1obmuQYx8xkAgODRrl072xHgwmRtaJ5rGDOfAQAIDnl5ebYjwIXJ2tA81zBmPgMAAAQumucaxsxnAACCQ1RUlO0IcGGyNjTPFjDzGQCAwLdz507bEeDCZG1oni1g5jMAAIGvZ8+etiPAhcna0DxbwsxnAAAC29q1a21HgAuTtaF5toSZzwAABDaO5/YujucOQsx8BgAgsHE8t3dxPHeQYuYzAACBa9CgQbYjwIXJ2tA8W8TMZwAAAldKSortCHBhsjY0zxYx8xkAgMDVuXNn2xHgwmRtaJ4tY+YzAACBKTs723YEuDBZG5pny5j5DABAYKpTp47tCHBhsjY0zx7AzGcAAAJPvXr1bEeAC5O1oXn2AGY+AwAQePbt22c7AlyYrA3Nswcw8xkAgMDTpUsX2xHgwmRtaJ49gpnPAAAElm+//dZ2BLgwWRuaZ49g5jMAAIGF47m9i+O5QwAznwEACCwcz+1dHM8dIpj5DABA4Bg6dKjtCHBhsjY0zx7CzGcAAALHqlWrbEeAC5O1oXn2GGY+AwAQGGJiYmxHgAuTtaF59hhmPgMAEBh27txpOwJcmKwNzbPHMPMZAIDAEBUVZTsCXJisDc2zBzHzGQAAwJtonj2Imc8AAHhfXl6e7QhwYbI2NM8exMxnAAC8r127drYjwIXJ2tA8exQznwEA8La0tDTbEeDCZG1onj2Kmc8AAHjb4MGDbUeAC5O1oXn2MGY+AwDgXcuXL7cdAS5M1obm2cOY+QwAgHclJCTYjgAXJmtD8+xhzHwGAMC7EhMTbUeAC5O1oXn2OGY+AwDgTX369LEdAS5M1obm2eOY+QwAgDdt3brVdgS4MFkbmmePY+YzAADe1KJFC9sR4MJkbWieAwAznwEA8J4jfB7Js0zWhuY5ADDzGQAA7yksLLQdAS5M1obmOUAw8xkAAG9p1qyZ7QhwYbI2NM8BgpnPAAB4SwafRfIsk7WheQ4QzHwGAMBb+vbtazsCXJisDc1zAGHmMwAA3vHNN9/YjgAXJmtD8xxAmPkMAIB3cDy3d3E8NyQx8xkAAC/heG7v4nhu+DHzGQAAb+jfv7/tCHBhsjY0zwGGmc8AAHjDhg0bbEeAC5O1oXkOQMx8BgDAvnbt2tmOABcma0PzHICY+QwAgH15eXm2I8CFydrQPAcgZj4DAADYQfMcoJj5DACAXVFRUbYjwIXJ2tA8ByhmPgMAYNfOnTttR4ALk7WheQ5QzHwGAMCumJgY2xHgwmRtaJ4DGDOfAQCwJykpyXYEuDBZG5rnAMbMZwAA7OF4bu/ieG64YuYzAAB2cDy3d3E8N1wx8xkAADsGDRpkOwJcmKwNzXOAY+YzAAB2pKSk2I4AFyZrQ/McBJj5DABAzevSpYvtCHBhsjY0z0GAmc8AANS8ffv22Y4AFyZrQ/McBJj5DABAzatXr57tCHBhsjY0z0GCmc8AANSsOnXq2I4AFyZrQ/McJJj5DABAzcrOzrYdAS5M1obmOYgw8xkAgJrTqVMn2xHgwmRtaJ6DCDOfAQCoOampqbYjwIXJ2tA8BxFmPgMAUHM4ntu7OJ4bFcbMZwAAagbHc3sXx3Ojwpj5DABAzRg6dKjtCHBhsjY0z0GGmc8AANSMlStX2o4AFyZrQ/MchJj5DACAeb169bIdAS5M1obmOQgx8xkAAPOysrJsR4ALk7WheQ5SzHwGAMCsRo0a2Y4AFyZrQ/McpJj5DACAWcXFxbYjwIXJ2tA8BylmPgMAYFZ+fr7tCHBhsjY0z0GMmc8AAJjTtm1b2xHgwmRtaJ6DGDOfAQAwJy0tzXYEuDBZG5rnIMbMZwAAzBk0aJDtCHBhsjY0z0GOmc8AAJixYsUK2xHgwmRtaJ6DHDOfAQAwIyEhwXYEuDBZG5rnEMDMZwAAql9iYqLtCHBhsjY0zyGAmc8AAFS/Pn362I4AFyZrQ/McApj5DABA9du6davtCHBhsjY0zyGCmc8AAFSvli1b2o4AFyZrQ/McIpj5DABA9Tp8+LDtCHBhsjY0zyGCmc8AAFSvwsJC2xHgwmRtaJ5DCDOfAQCoPs2aNbMdAS5M1obmOYQw8xkAgOqzbds22xHgwmRtaJ5DDDOfAQCoHnFxcbYjwIXJ2tA8hxhmPgMAUD1Wr15tOwJcmKwNzXOIYeYzAADVg+O5vYvjuVGtmPkMAEDVcTy3d3E8N6oVM58BAKi6/v37244AFyZrQ/Mcgpj5DABA1X3//fe2I8CFydrQPIcoZj4DAFA1HTp0sB0BLkzWhuY5RDHzGQCAqsnJybEdAS5M1obmOYQx8xkAgLNXqxZtlFeZrA1VD2HMfAYA4OxFRkbajgAXJmtD8xzCmPkMAMDZ27Vrl+0IcGGyNjTPIY6ZzwAAnJ0ePXrYjgAXJmtD8xzimPkMAMDZSUpKsh0BLkzWhuY5xDHzGQCAs8Px3N7F8dwwipnPAABUHsdzexfHc8MoZj4DAFB5gwcPth0BLkzWhuYZkpj5DABAZbHn2bvY8wzjmPkMAEDldO3a1XYEuDBZG5pnSGLmMwAAlbVnzx7bEeDCZG1onuHHzGcAACouIiLCdgS4MFkbmmf4MfMZAICKCwsLsx0BLkzWhuYZfsx8BgCg4vbv3287AlyYrA3NM0pg5jMAABXTqVMn2xHgwmRtaJ5RAjOfAQComNTUVNsR4MJkbWiecQZmPgMAUD6O5/YujudGjWLmMwAA5eN4bu/ieG7UKGY+AwBQvmHDhtmOABcma0PzjFIx8xkAgLKtWLHCdgS4MFkbmmeUipnPAACU7fzzz7cdAS5M1obmGaVi5jMAAGXbsWOH7QhwYbI2NM9wxcxnAADcNWrUyHYEuDBZG5pnuGLmMwAA7oqLi21HgAuTtaF5RpmY+QwAQOny8/NtR4ALk7WheUaZmPkMAEDp2rRpYzsCXJisDc0zysTMZwAASrdx40bbEeDCZG1onlEuZj4DAHCmAQMG2I4AFyZrQ/OMcjHzGQCAM61cudJ2BLgwWRuaZ5SLmc8AAJwpISHBdgS4MFkbmmdUCDOfAQAoKTEx0XYEuDBZG5pnVAgznwEAKKlv3762I8CFydrQPKPCmPkMAMD/2bx5s+0IcGGyNjTPqDBmPgMA8H9atWplOwJcmKwNzTMqjJnPAAD8n4KCAtsR4MJkbWieUSnMfAYA4LiioiLbEeDCZG1onlEpzHwGAOC4Jk2a2I4AFyZrQ/OMSmHmMwAAx2VmZtqOABcma0PzjEpj5jMAAFLv3r1tR4ALk7WheUalMfMZAABp9erVtiPAhcna0DzjrDDzGQAQ6jie27s4nhuew8xnAECo43hu7+J4bngOM58BAKFuwIABtiPAhcna0DzjrDHzGQAQytavX287AlyYrA3NM84aM58BAKEsOjradgS4MFkbmmecNWY+AwBC2YEDB2xHgAuTtaF5RpUw8xkAEKpq165tOwJcmKwNzTOqhJnPAIBQFRkZaTsCXJisDc0zqoyZzwCAULRr1y7bEeDCZG1onlFlzHwGAISi7t27244AFyZrQ/OMKmPmMwAgFCUnJ9uOABcma0PzjGrBzGcAQKjheG7v4nhueB4znwEAoYbjub2L47nhecx8BgCEmiFDhtiOABcma0PzjGrDzGcAQChZu3at7QhwYbI2NM+oNsx8BgCEkm7dutmOABcma0PzjGrFzGcAQKjYvXu37QhwYbI2NM+oVsx8BgCEioiICNsR4MJkbWieUa2Y+QwACBVhYWG2I8CFydrQPKPaMfMZABAKDhw4YDsCXJisDc0zqh0znwEAoSA6Otp2BLgwWRuaZ1Q7Zj4DAELB+vXrbUeAC5O1oXmGEcx8BgAEu6FDh9qOABcma0PzDCOY+QwACHbLli2zHQEuTNaG5hnGMPMZABDMhg0bZjsCXJisDc0zjGHmMwAgmC1fvtx2BLgwWRuaZxjDzGcAQDCLjY21HQEuTNaG5hlGMfMZABCsMjMzbUeAC5O1oXmGUcx8BgAEqyZNmtiOABcma0PzDKOY+QwACFZFRUW2I8CFydrQPMM4Zj4DAIJRQUGB7QhwYbI2NM8wjpnPAIBg1Lp1a9sR4MJkbWieUSOY+QwACDabNm2yHQEuTNaG5hk1gpnPAIBg079/f9sR4MJkbWieUSOY+QwACDYrV660HQEuTNaG5hk1hpnPAIBgkpCQYDsCXJisDc0zagwznwEAwSQxMdF2BLgwWRuaZ9QYZj4DAIJJfHy87QhwYbI2NM+oUcx8BgAEi40bN9qOABcma0PzjBrFzGcAQLBo06aN7QhwYbI2NM+occx8BgAEg/z8fNsR4MJkbWieUeOY+QwACAbHjh2zHQEuTNaG5hk1jpnPAIBg0KRJE9sR4MJkbWieYQUznwEAgS4zM9N2BLgwWRuaZ1jBzGcAQKCLjY21HQEuTNaG5hlWMPMZABDo1qxZYzsCXJisDc0zrGHmMwAgkHE8t3dxPDeCEjOfAQCBjOO5vYvjuRG0mPkMAAhUAwcOtB0BLkzWhuYZVjHzGQAQqNatW2c7AlyYrA3NM6xi5jMAIFBFR0fbjgAXJmtD8wzrmPkMAAhEBw4csB0BLkzWhuYZ1jHzGQAQiMLCwmxHgAuTtaF5hnXMfAYABKKIiAjbEeDCZG1onuEJzHwGAASaPXv22I4AFyZrQ/MMT2DmMwAg0HTt2tV2BLgwWRuaZ3gGM58BAIEkJSXFdgS4MFkbmmd4BjOfAQCBhOO5vYvjuRESmPkMAAgkHM/tXRzPjZDBzGcAQKAYMmSI7QhwYbI2NM/wFGY+AwACxZo1a2xHgAuTtaF5hqcw8xkAECi6d+9uOwJcmKwNzTM8h5nPAIBAsGvXLtsR4MJkbWie4TnMfAYABILIyEjbEeDCZG1onuFJzHwGAHhdrVq0UV5lsjZUHZ7EzGcAgNfl5OTYjgAXJmtD8wxPYuYzAMDrOnbsaDsCXJisDc0zPIuZzwAAL/vuu+9sR4ALk7WheYZnMfMZAOBlF1xwge0IcGGyNjTP8CxmPgMAvGzZsmW2I8CFydrQPMPTmPkMAPCqhIQE2xHgwmRtaJ7hacx8BgB4VWJiou0IcGGyNjTP8DxmPgMAvCguLs52BLgwWRuaZ3geM58BAF60bds22xHgwmRtaJ7hecx8BgB4UdOmTW1HgAuTtaF5RkBg5jMAwGuKiopsR4ALk7WheUZAYOYzAMBrCgoKbEeAC5O1oXlGQGDmMwDAa1q1amU7AlyYrA3NMwIGM58BAF6yefNm2xHgwmRtaJ4RMJj5DADwkn79+tmOABcma0PzjIDCzGcAgFesWrXKdgS4MFkbmmcEFGY+AwC8guO5vYvjuYETmPkMAPAKjuf2Lo7nBk7BzGcAgBew59m72PMMnIKZzwAAL0hPT7cdAS5M1obmGQGHmc8AAC9o06aN7QhwYbI2NM8ISMx8BgDYlp+fbzsCXJisDc0zAhIznwEAthUXF9uOABcma0PzjIDFzGcAgE2NGjWyHQEuTNaG5hkBi5nPAACbsrKybEeAC5O1oXlGwDp15nPxL7/YjgMACDG9evWyHQEuTNaG5hkB7eTM55y1a21HAQCEmLX8u8ezTNaG5hkB7eTM57rr1tmOAgAIMRzP7V0czw24ODnzuQPjggAANYzjub3LZG3CKvIgx3F08OBBYyGAyjp69KiOHj0qSWr8+99r6+9+J0nKPHZMq3JyLCYDAISCnGPHFBcXp8ydO3Wwbl3bcXCK7OxsxcXF6eDBg6pfv36ln9+gQQP5fD7X+32O4zjlXSQvL08NGzas9IsDAAAAgSQ3N1dRUVGu91eoeWblGV5z6sqzJG3fvl3Dhw/XP159Ve3atrWYDAAQCg4VFOjia65RcnKyIiMjbcfBKfLz8xUfH68ffvihzCbYTXkrzxXatuHz+c7qxYGaNviSS9SuXTvbMQAAQS4vL0+S1KVLF3okjzlZm6ioKCO14QODAAAAQAXRPAMAAAAVRPOMoFD3xCed6/KJZwBADahbt66uuOIK/r3jQaZrU6EPDAJed3IiTHmfkAUAoLrs2rVLbdq0sR0DpTBZG1aeAQAAzsLrr79uOwJcmKwNK88ICqw8AwCAmsDKMwAAwFl47LHHbEeAC5O1YeUZQYGVZwBATTt69CgfGPQok7Vh5RkAAOAs/O1vf7MdAS5M1obmGQAAoJJ27typTZs22Y6BUuTn5+urr75SVlaWketX6HhuAAAAHOc4jj7++GMdO3bMdhSc5vXXX9eOHTv073//W8XFxUZeg5VnBIUGDRooNzdXDRo0sB0FABDkvvjiC1144YW2Y6AUkydP1iOPPGL0NVh5RlDw+Xx8UBAAYFxGRoZatmyp8PBw21FgCc0zAABABaWmpqp27drat2+fsrKytH79esXGxtqOhRrEtg0AAIAKuvrqq3X55Zfr8OHDOnr0qJj4G3qY8wwAAICg4vP5tH37dkVHR1f7tVl5BgAAACqI5hkAAKCCfD5fqV/whnnz5un222+XJD300EN66aWXqv012LYBAAAAVBArzwAAAJWQl5cnSTp48KDlJLCB5hkAAKAS+vTpozFjxuj999+3HQUWsG0DAACgEt566y1NmDDBdgxYwsozAABAJaxbt05fffWVnnrqKeY8hyBWngEAACrBcRz5fD49/vjjGjJkiEaOHGk7EmoQK88AAAAV9Oabb+q9996TJOXm5rLyHIJYeQYAAKig3bt3a82aNXIcRzt37tSdd95pOxJqGM0zAAAAUEFs2wAAAAAqiOYZAAAAqCCaZwAAAKCCaJ4BAACACqJ5BgAAACqI5hkAAACoIJpnAAAAoIJongEAAIAKonkGAAAAKojmGQAAAKggmmcAAACggv4/d5UlD/05u7gAAAAASUVORK5CYII=\n", + "text/plain": [ + "Graphics object consisting of 15 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:54,131 Plotting... done\n", + "INFO: 2023-09-20 09:43:54,132 Completing 0 functional directed moves and 2 covered components...\n", + "INFO: 2023-09-20 09:43:54,132 Completion finished. Found 0 directed moves and 2 covered components.\n", + "INFO: 2023-09-20 09:43:54,133 Plotting covered intervals...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAALhCAYAAABPH7ejAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQbUlEQVR4nOzdd3xW5fnH8U8A2SQILqwo1om07lGZKpoH6qIuHFWsq1pHbWu1VqmjsU7cipOhoihOQFkiO+KAUlARkYpocUJJ2CM5vz9O5SfKSEJy7md83q9XXkDyPOf+kl5SLq5z7jsviqIISZIkSZJUbWqFDiBJkiRJUrax2ZYkSZIkqZrZbEuSJEmSVM1stiVJkiRJqmY225IkSZIkVTObbUmSJEmSqpnNtiRJkiRJ1SzxZjuKIkpLS/F4b0mSJElStkq82V68eDEFBQUsXrw46aUlSZIkrcczzzwTOoJU45Kuc28jlyRJknLcwQcfHDqCVOOSrnObbUmSJCnHvfDCC6EjSDUu6TrPixJ+eLq0tJSCggJKSkrIz89PcmlJkiRJ67Fy5Urq1asXOoZUo5KucyfbkiRJUo67/fbbQ0eQalzSde5kW5IkSZKkalYndABJkiRJYRUVFXHttddW6zVXrVrFmjVrqvWa0uZ47LHHOO+88yr02jp16lC3bt3NWs/JtiRJkpTj5s+fz/bbb19t11u1ahXvv/8+5eXl1XZNKUm1atWiTZs2m9VwO9mWJEmSctywYcM499xzq+16a9asoby8nFatWtGgQYNqu66UhOXLlzN37lzWrFljsy1JkiSp6vbee+8auW6DBg1o2LBhjVxbqmklJSWsWLGCevXq0ahRo0q/32ZbkiRJynELFy4MHUFKO0OHDmXp0qXk5+fTvXv3SjfcVT76a8mSJZx44onMmzevqpeQJEmSlAaWLl0aOoKUdho1akTdunUpLS1l5cqVlX5/lZrtPn36cPvtt/Piiy+66YEkSZKUyVasYPc99wydQko79erVo169elV+f5Wa7XPOOYcbbrihQq9duXIlpaWl63xIkiRJCm/xnDns8vXX9HrkkdBRpKxT4Wb7mWeeYc6cOdx2222sXLmSoqIiAO677z7mz5/P448/zjvvvMOIESN48cUX+eCDD7j33nu5/vrrKSgoWPvRsmVLAN577z0GDx7Mq6++ytSpU3n44Yf55ptv1l63qKiIZcuW0atXL2bNmsVzzz3H6NGjKS4upl+/fnz22WfrvLasrIybb76ZTz/9lCeffJKJEycyduxYBg4cyOzZs7n99ttZsWLFOu/58ssvefTRR3nnnXcYPnw4L730Eu+99x733XcfJSUl67x20aJF3H///cyYMYOXX36Z1157jSlTpvDII4/w1VdfrfPa5cuX06tXL2bPns2zzz7LG2+8waRJk3jiiSeYN28eN910E+Xl5RQVFVFeXs5NN93EvHnzeOKJJ5g0aRJvvPEGzz77LLNnz6ZXr14sX758net/9dVXPPLII0yZMoXXXnuNl19+mRkzZnD//fezaNGidV5bUlLCfffdx3vvvcdLL73E8OHDeeedd3j00Uf58ssv13ntihUruP3225k9ezYDBw5k7NixTJw4kSeffJJPP/2Um2++mbKysnXe89lnn9GvXz+Ki4sZPXo0zz33HLNmzaJXr14sW7Zsndd+8803PPzww0ydOpVXX32VwYMHM336dB544AEWLly4zmtLS0u59957+eCDD3jxxRcZMWIE77zzDo8//jjz589f57UrV67ktttuY86cOTzzzDOMHTuWCRMm8NRTTzF37lxuueUW1qxZs857Pv/8c/r27cvkyZMZNWoUgwYN4sMPP+Suu+5iyZIl67z222+/5aGHHmLatGkMHTqUIUOGMG3aNHr37s2CBQvWee3ixYu5++67+eCDD3jhhRcYOXIkb731Fn369PlR7tWrV3Prrbfy73//mwEDBjB+/HjGjx/PgAED+Pe//82tt97K6tWr13nP/Pnz6dOnD2+99RYjR47khRde4IMPPuDuu+9m8eLF67x2wYIF9O7dm2nTpjFkyBCGDh3KtGnTeOihh/j222/Xee2SJUu46667+PDDDxk0aBCjRo1i8uTJ9O3bl88//3yd165Zs4ZbbrmFuXPn8tRTTzFhwgTGjh27wT8jvsu9oT8jSktL13ntwoULeeCBB5g+fbp/RvhnhH9G+GeEf0b4Z4R/RtTknxG3385nBx/M0ocfZuVFF1XrnxHTp09HynRTp06lrKyMGTNmMHfu3LV/RlTUZp2znZeXxyeffEKrVq02+JqVK1euc397aWkpLVu29JxtSZIkKZTXX4df/QratOEPY8bQp1cvFl17LXnVdPlly5Yxc+ZMWrdu7W7kyjjf1e/cuXNZtGgRixcv5qyzzqJZs2aVuk6VN0irqHr16pGfn7/OhyRJkqRABg6EX/4SOnaE0aNJNWhA6bXX8mHoXDmgVatW3H333aFjKCE13mxLkiRJShP33AOnnQannw4vvwyNGtERqF1UxIjQ2aQKOPvss+nWrdsmXzd+/HiOPfZYtt9+e/Ly8nj55ZdrPNsP2WxLkiRJ2S6K4Oqr4fLL4aqroG9f2GILABoC7X/3O0YGDZg5Vq1aFTqCKmDp0qXss88+3H///cEyVKnZfuaZZ7jooosA+Mtf/sKDDz5YraEkSZIkVZPVq+Gcc+CWW+Cuu+If89Z9OnvLZ55hLLAiSMANKy8v59Zbb2XXXXelXr167Ljjjtx0001rvz5jxgyOOOIIGjRoQPPmzbngggtYsmQJACNGjKB+/fosWrRonWtedtlldOrUae2vi4uL6dixIw0aNKBly5Zcdtll65w73qpVK4qKijj77LMpKCjg/PPPr9D7vv76a4499lgaNGjAzjvvzIABAyr0e+7Tpw9t2rShXr16tGjRgksuuWTt1+bNm8fxxx9P48aNyc/P55RTTuGrr75a+/Xrr7+efffdlz59+rDjjjvSuHFjLrroIsrKyrjtttvYbrvt2Gabbdb5HkK8F1fv3r3p2rXr2ryDBg1a5zUb+17D/0+c77jjDlq0aEHz5s25+OKLWb169drXrFq1iiuvvJKf/OQnNGrUiEMOOWSdDcf69etH06ZNGTFiBK1bt6Zx48Z06dKFL774Yu3vr3///rzyyivk5eWRl5e3wQ3LunbtSlFRESeccEKFvu81oUrN9mmnnUbv3r2JooiBAwfyu9/9rrpzSZIkSdpcy5bFG6ENGBB/XH75el/26w4dWA5MTDTcpl199dXceuut9OzZkw8++ICnn36abbfdFog3serSpQtbbrkl77zzDoMGDeL1119f25weeeSRNG3alBdeeGHt9crKynjuuec444wzgLiBTKVSnHDCCUyfPp1nn32WiRMnrtPgAtx+++387Gc/Y8qUKfTs2bNC7zv77LOZO3cub7zxBs8//zwPPvggX3/99UZ/v7179+biiy/mggsuYMaMGQwePJhdd90VgCiK6NatGwsXLmTcuHGMGjWKOXPm0L1793WuMWfOHIYNG8bw4cN55pln6NOnD0cffTSff/4548aN49Zbb+Xaa69l8uTJ67yvZ8+enHjiifzrX//i17/+NaeddhozZ86s0Pf6O2PGjGHOnDmMGTOG/v37069fP/r167f267/5zW+YNGkSAwcOZPr06Zx88sl06dKF2bNnr33NsmXLuOOOO3jyyScZP3488+bN44orrgDgiiuu4JRTTlnbgH/xxRe0bdt2o9/ToKKElZSUREBUUlKS9NKSJElS7vj22yj6xS+iqFGjKBoxYqMvffmVV6Ltoyi6opqWXrp0afTuu+9GS5cu/f4no2jKlE1//O89paWlUb169aJHH310vWs88sgj0ZZbbhktWbJk7edeffXVqFatWtGXX34ZRVEUXXbZZdERRxyx9usjRoyI6tatGy1cuDCKoig688wzowsuuGCd606YMCGqVatWtHz58iiKominnXaKunXrts5rNvW+WbNmRUA0efLktV+fOXNmBER33XXXBr9v22+/fXTNNdes92sjR46MateuHc2bN2/t595///0IiN5+++0oiqLouuuuixo2bBiVlpaufU0qlYpatWoVlZWVrf3cHnvsEd18881rfw1EF1544TrrHXLIIdFFF10URVHFvtc9evSIdtppp2jNmjVrX3PyySdH3bt3j6Ioij7++OMoLy8v+s9//rPOOp07d46uvvrqKIqiqG/fvhEQffzxx2u//sADD0Tbbrvt2l/36NEjOv7449f7PdoQIHrppZcq/Prv6vf555+PHnvsseiuu+6KFixYUKk1oyiK6gTs8yVJkiTVhHnzIJWCBQtg7Fg48MCNvrxO7doUAiOA22sq04cfwgEHbPp1U6bA/vszc+ZMVq5cSefOndf7spkzZ7LPPvvQqFGjtZ9r164d5eXlzJo1i2233ZYzzjiDQw89lPnz57P99tszYMAAfvnLX7Llllv+b6kpfPzxx+vc4h1FEeXl5XzyySe0bt0agAN/8P3b1Ps++ugj6tSps8779txzT5o2bbrB3/bXX3/N/PnzN/r7bdmyJS1btlz7ub322oumTZsyc+ZMDjroICC+7b1JkyZrX7PttttSu3ZtatWqtc7nfjhlP/TQQ3/062nTpq1de1Pfa4A2bdpQu3btta9p0aIFM2bMAOIzq6MoYvfdd19nnZUrV9K8efO1v27YsCG77LLLOtfY1B0B6cpmW5IkScom770HXbpA3bowaRLsttsm39KiRQsKgX7AF0CLmsi1555xI12R1wENGjTY6MuiKCIvb/0ng3/3+YMPPphddtmFgQMHctFFF/HSSy/Rt2/fta8rLy/nt7/9LZdddtmPrrHjjjuu/fn3m8yKvG/WrFnr5KiIqv5+f/j5Lf638d138vLy1vu58vLyTWb67roV+V5vaO3v1ikvL6d27dpMmTJlnYYcoHHjxhu9Rjyczjw225IkSVK2mDgRjj0WWrWCYcNgu+0q9LZ33nmHE/ffnzxgJNCjJrI1bAj771/hl++22240aNCA0aNHc9555/3o63vttRf9+/dn6dKla5vhSZMmUatWrXWmp6effjoDBgxghx12oFatWhx99NFrv7b//vvz/vvvr30uuqI29b7WrVuzZs0a3n33XQ4++GAAZs2a9aPN2r6vSZMmtGrVitGjR3P44Yev9/c7b948Pvvss7XT7Q8++ICSkpK1E/jNMXnyZM4666x1fr3ffvutXbsi3+uN2W+//SgrK+Prr7+mQ4cOVc5Zt25dysrKqvz+JHn0lyRJkpQNXnkFjjoK9tsPxo2rcKMNcMIJJ7AVcACkzXnb9evX56qrruLKK6/kiSeeYM6cOUyePJnHH38cgDPOOIP69evTo0cP3nvvPcaMGcOll17KmWeeufa25u9eN3XqVG666SZOOukk6tevv/ZrV111FW+++SYXX3wx06ZNY/bs2QwePJhLL710o9k29b499tiDLl26cP755/PWW28xZcoUzjvvvE1Or6+//np69erFvffey+zZs5k6dSr33XcfEG/4tvfee6/9/bz99tucddZZdOrU6Ue3uVfFoEGD6NOnDx999BHXXXcdb7/99toN0Cr6vd6Y3XffnTPOOIOzzjqLF198kU8++YR33nmHW2+9lddee63COVu1asX06dOZNWsW33777Tq7nX/fkiVLmDZt2tpb4T/55BOmTZvGvHnzKrzW5rLZliRJkjLdo4/CCSfEU+1hwyA/v1Jvf/jhhwFIAaOATd9gnIyePXvypz/9ib/97W+0bt2a7t27r31+t2HDhowYMYKFCxdy0EEHcdJJJ9G5c+cfnau82267cdBBBzF9+vS1u5B/Z++992bcuHHMnj2bDh06sN9++9GzZ09atNj4jfQVeV/fvn1p2bIlnTp14oQTTuCCCy5gm2222eh1e/Towd13382DDz5ImzZtOOaYY9bu1J2Xl8fLL7/MlltuSceOHTnyyCP56U9/yrPPPlvh7+fG3HDDDQwcOJC9996b/v37M2DAAPbaay+g4t/rTenbty9nnXUWf/rTn9hjjz047rjjeOutt9Z5Dn1Tzj//fPbYYw8OPPBAtt56ayZNmrTe17377rvst99+a6fzf/zjH9lvv/3429/+VqnMmyMvSvgG+NLSUgoKCigpKSG/kn8ISJIkSfqeKIKiIvjb3+Dii+Gee+AHz8NWxnigE/AOsDmz0mXLljFz5kxat25Nw4YNN+NKSkJeXh4vvfQS3bp1Cx0lLXxXv3PnzmXRokUsXryYs846i2bNmlXqOk62JUmSpExUVgaXXBI32kVFcN99VW60i4qKADgUaEL83LakzWOzLUmSJGWaFSvg1FPhoYfiW8ivuQYqsfP1D/3xj38EYAvgCNLnuW0pk9lsS5IkSZmkpAS6doWhQ+Gll2A9O3VXVu/evdf+PAUUA6WbfVVliiiKvIW8BthsS5IkSZniiy+gUyeYNg1efx2OO65aLnvMMces/XkKWAOMqZYr6/tatWrF3XffHTqGEmKzLUmSJGWC2bOhbVtYsCA+T7tdu2q79L/+9a+1P/8psAs+t630dPbZZ1doCn/zzTdz0EEH0aRJE7bZZhu6devGrFmzaj7g99hsS5IkSenunXfiRrtBAyguhjZtqvXyzZs3X+fXKXxue0NWrVoVOoIqYNy4cVx88cVMnjyZUaNGsWbNGgoLC1m6dGliGWy2JUmSpHQ2YgQcfjjstls80a7EmcQV1aBBg3V+nQLm/O8jpPLycm699VZ23XVX6tWrx4477shNN9209uszZszgiCOOoEGDBjRv3pwLLriAJUuWADBixAjq16/PokWL1rnmZZddRqdOndb+uri4mI4dO9KgQQNatmzJZZddtk5D1qpVK4qKijj77LMpKCjg/PPPr9D7vv76a4499lgaNGjAzjvvzIABAyr0e+7Tpw9t2rShXr16tGjRgksuuWTt1+bNm8fxxx9P48aNyc/P55RTTuGrr75a+/Xrr7+efffdlz59+rDjjjvSuHFjLrroIsrKyrjtttvYbrvt2Gabbdb5HkJ89Ffv3r3p2rXr2ryDBg1a5zUb+17D/0+c77jjDlq0aEHz5s25+OKLWb169drXrFq1iiuvvJKf/OQnNGrUiEMOOYSxY8eu/Xq/fv1o2rQpI0aMoHXr1jRu3JguXbrwxRdfrP399e/fn1deeYW8vDzy8vLWef/3DR8+nLPPPps2bdqwzz770LdvX+bNm8eUKVMq9L9DdbDZliRJktLVgAFwzDFxs/3661DJc34r6qOPPlrn14cDdaje6fYyYGoFPpZ97z1XX301t956Kz179uSDDz7g6aefZtttt42vt2wZXbp0Ycstt+Sdd95h0KBBvP7662ub0yOPPJKmTZvywgsvrL1eWVkZzz33HGeccQYQN5CpVIoTTjiB6dOn8+yzzzJx4sR1GlyA22+/nZ/97GdMmTKFnj17Vuh9Z599NnPnzuWNN97g+eef58EHH+Trr7/e6Peod+/eXHzxxVxwwQXMmDGDwYMHs+uuuwL/v4nZwoULGTduHKNGjWLOnDl07959nWvMmTOHYcOGMXz4cJ555hn69OnD0Ucfzeeff864ceO49dZbufbaa5k8efI67+vZsycnnngi//rXv/j1r3/NaaedxsyZMyv0vf7OmDFjmDNnDmPGjKF///7069ePfv36rf36b37zGyZNmsTAgQOZPn06J598Ml26dGH27NlrX7Ns2TLuuOMOnnzyScaPH8+8efO44oorALjiiis45ZRT1jbgX3zxBW3btt3o9/Q7JSUlAJU+K3uzRAkrKSmJgKikpCTppSVJkqTM0atXFEEU/eY3UbR6dY0uNW/evB99rmMURcdV8XpLly6N3n333Wjp0qVrPzcliiIq8DHlf68vLS2N6tWrFz366KPrXeORRx6Jttxyy2jJkiVrP/fqq69GtWrVir788ssoiqLosssui4444oi1Xx8xYkRUt27daOHChVEURdGZZ54ZXXDBBetcd8KECVGtWrWi5cuXR1EURTvttFPUrVu3dV6zqffNmjUrAqLJkyev/frMmTMjILrrrrs2+H3bfvvto2uuuWa9Xxs5cmRUu3btdf63ev/99yMgevvtt6MoiqLrrrsuatiwYVRaWrr2NalUKmrVqlVUVla29nN77LFHdPPNN6/9NRBdeOGF66x3yCGHRBdddFEURRX7Xvfo0SPaaaedojVr1qx9zcknnxx17949iqIo+vjjj6O8vLzoP//5zzrrdO7cObr66qujKIqivn37RkD08ccfr/36Aw88EG277bZrf92jR4/o+OOPX+/3aEPKy8ujY489Nmrfvn2FXv9d/T7//PPRY489Ft11113RggULKrVmFEVRneTaekmSJEmbVF4Of/kL3H47XH013HTTZp2hXRH9+/fn2muvXedzKeBmYDXx+duba0+gIjfw7vm/H2fOnMnKlSvp3Lnzel83c+ZM9tlnHxo1arT2c+3ataO8vJxZs2ax7bbbcsYZZ3DooYcyf/58tt9+ewYMGMAvf/lLttxySwCmTJnCxx9/vM4t3lEUUV5ezieffELr1q0BOPDAA9dZe1Pv++ijj6hTp84679tzzz1p2rTpBn/fX3/9NfPnz9/o77dly5a0/N5jBHvttRdNmzZl5syZHHTQQUB823uTJk3Wvmbbbbeldu3a1KpVa53P/XDKfuihh/7o19OmTVu79qa+1wBt2rShdu3aa1/TokULZsyYAcDUqVOJoojdd999nXVWrly5zp4BDRs2ZJdddlnnGpu6I2BTLrnkEqZPn87EiRM36zqVZbMtSZIkpYvVq+Hcc+Gpp+Cee+CyyxJZ9oeNNsTN9jXAm0DHalijIbB/JV7/w+fIfyiKIvI28I8Q333+4IMPZpdddmHgwIFcdNFFvPTSS/Tt23ft68rLy/ntb3/LZev5Pu+4445rf/79JrMi7/tu1+sN5Vufqv5+f/j5LbZY959G8vLy1vu58vLyTWb67roV+V5vaO3v1ikvL6d27dpMmTJlnYYcoHHjxhu9RhRFm8y6IZdeeimDBw9m/Pjx7LDDDlW+TlX4zLYkSZKUDpYuheOPh4ED4ZlnEmu0AYqKin70uf2ArQm3K/luu+1GgwYNGD169Hq/vtdeezFt2rR1NiWbNGkStWrVWmd6evrppzNgwACGDBlCrVq1OProo9d+bf/99+f9999n1113/dFH3bp1N5htU+9r3bo1a9as4d133137nlmzZv1os7bva9KkCa1atdro73fevHl89tlnaz/3wQcfUFJSsnYCvzl++Az35MmT2XPPPdeuXZHv9cbst99+lJWV8fXXX//oe7bddttVOGfdunUpKyvb5OuiKOKSSy7hxRdf5I033mDnnXeu8BrVxWZbkiRJCu3bb+GII2DCBHjtNfjBplc17eqrr/7R52oBRxGu2a5fvz5XXXUVV155JU888QRz5sxh8uTJPP744wCcccYZ1K9fnx49evDee+8xZswYLr30Us4888y1tzV/97qpU6dy0003cdJJJ1G/fv21X7vqqqt48803ufjii5k2bRqzZ89m8ODBXHrppRvNtqn37bHHHnTp0oXzzz+ft956iylTpnDeeedtcnp9/fXX06tXL+69915mz57N1KlTue+++4B4w7e999577e/n7bff5qyzzqJTp04/us29KgYNGkSfPn346KOPuO6663j77bfXboBW0e/1xuy+++6cccYZnHXWWbz44ot88sknvPPOO9x666289tprFc7ZqlUrpk+fzqxZs/j222/X2e38+y6++GKeeuopnn76aZo0acKXX37Jl19+yfLlyyu81uay2ZYkSZJC+vRTaN8e5s6FcePgyCMTj3Dbbbet9/OFxDuEf5Nomv/Xs2dP/vSnP/G3v/2N1q1b071797XP7zZs2JARI0awcOFCDjroIE466SQ6d+7M/fffv841dtttNw466CCmT5++dhfy7+y9996MGzeO2bNn06FDB/bbbz969uxJixYtNpqrIu/r27cvLVu2pFOnTpxwwglccMEFbLPNNhu9bo8ePbj77rt58MEHadOmDcccc8zanbrz8vJ4+eWX2XLLLenYsSNHHnkkP/3pT3n22Wcr/P3cmBtuuIGBAwey9957079/fwYMGMBee+0FVPx7vSl9+/blrLPO4k9/+hN77LEHxx13HG+99dY6z6Fvyvnnn88ee+zBgQceyNZbb82kSZPW+7revXtTUlLCYYcdRosWLdZ+VNf3qyLyos25Ab4KSktLKSgooKSkhPz8/CSXliRJktLL9OnQpQs0bBifp/29jaGS9Omnn7LTTjv96PNfANsDTwOnVeJ6y5YtY+bMmbRu3ZqGDRtWU0rVlLy8PF566SW6desWOkpa+K5+586dy6JFi1i8eDFnnXVWpY8Nc7ItSZIkhTBuHHTsCC1awKRJwRptgPHjx6/38y2AvQl3K7mUyWy2JUmSpKS9+CKkUnDggTB2LFTwudeasrHNo1LASCDR22GlLODRX5IkSVKSHnoILr4YTj4Z+veHevVCJ2LNmjUb/FohcDswg3jKreyT8JPFOcPJtiRJkpSEKIIbboCLLoJLLoGnn06LRhvgyy+/3ODX2gMNiKfbkirOZluSJEmqaWVlcZN9/fVw881w991QK33+Kn7AAQds8Gv1gcPwuW2pstLnv3BJkiQpG61YAaecAo89Bn36wF/+Anl5oVOt4+WXX97o11PABGBZEmGkLGGzLUmSJNWURYvijdCGDYOXX4bf/CZ0ovW69NJLN/r1FLASGJdIGik72GxLkiRJNWH+/Phor/feg9Gj4ZhjQifaoDvuuGOjX98DaInPbUuV4W7kkiRJUnWbNSueaJeXw8SJ0Lp16EQbde21127063nE0+3KPre9fPnyqkaSgqmuurXZliRJkqrTW2/B0UfDdtvB8OGwww6hE21SUVHRJhvuFPAY8BnxlHtj6tSpQ61atZg7d271BJQSFkURZWVlm3UNm21JkiSpugwbBiedBPvtB0OGwJZbhk5UIeedd94mX9OZ+BnUEcCmXl23bl3atGnDmjVrKCkpYejQoTRq1Ih6aXLUmXLTsmXLaNiwYYVeW1ZWttHz5yvCZluSJEmqDk88AeeeC7/8JQwcCA0ahE5UYUOGDOH888/f6Gu2BA6mYs02xA133bp1WbFiBUuXLmX16tU22wpqxowZ/PznP6/Ue1auXFnl9Wy2JUmSpM11xx3w5z/DeedB795QJ7P+mr3vvvtW6HUp4B6gDKhdwWvXq1eP/Px8SktLWbVqVdUCStWgcePGLF68uNLvy8/Pr9I/FGXWnwKSJElSOikvj5vsO++Ea6+FG29MuzO0K2LBggUVel0KuAF4B/hFBa/dqFEjunfvvlkTQqk6jBkzhsMPP7zS76tXrx6NGjWq9PtstiVJkqSqWLUKzjkHnn4a7r8fLr44dKIqq+juywcBTYlvJa9osw1xw12VZkWqTrVq1aJZs2bJrZfYSpIkSVK2WLIEjj0WBg2CZ5/N6EYbYLfddqvQ6+oAR1L5I8CkdFDROq8uNtuSJElSZXz9NRx+OEyeHB/tdfLJoRNttjFjxlT4tYXAW8Cimgoj1ZDK1Hl1yIuiKEpywdLSUgoKCigpKSE/Pz/JpSVJkqTN88knUFgYT7aHDYMKbiyW7kpKSigoKKjQa+cBOwHPAyfWZCipmlWmzquDk21JkiSpIqZNg7Zt458XF2dNow1w3333Vfi1OwJ74q3kyjyVqfPq4GRbkiRJ2pSxY+H442H33eHVV2GbbUInCupy4CVgLpB5e69LyXCyLUmSJG3M889DKgWHHAJvvJGVjXZRUVGlXl9IfDv5rBpJI9WMytb55nKyLUmSJG3Igw/CJZfAaadB375Qt27oRDVi0aJFNG3atMKvXwo0A24HLquhTFJ1q2ydby4n25IkSdIPRRH87W/xkV6XXw5PPpm1jTbAU089VanXNwI64HPbyiyVrfPNZbMtSZIkfd+aNfDb38Lf/w633Qa9ekGt7P5rc6dOnSr9nhQwFlhZ3WGkGlKVOt8c2f2nhiRJklQZy5fDSSdBnz7Qvz/8+c+Ql/1bgM2ZM6fS70kBy4CJ1Z5GqhlVqfPNYbMtSZIkAfz3v/EZ2qNGwZAhcNZZoRMlpm4VbpH/ObAdMLLa00g1oyp1vjlstiVJkqTPP4cOHWDmzHjH8a5dQydK1Lbbblvp9+QR70ruc9vKFFWp881hsy1JkqTcNnMmtG0LixfDpEnxEV85ZsqUKVV6Xwr4F/BltaaRakZV67yqbLYlSZKUu958E9q3h4ICKC6GPfYInSiI448/vkrvO+p/P3oruTJBVeu8qmy2JUmSlJtefRU6d4Y2bWDCBPjJT0InCubRRx+t0vu2BvbHW8mVGapa51WVF0VRlOSCpaWlFBQUUFJSQn5+fpJLS5IkSbF+/eC88+DYY+Hpp6FBg9CJMtZfgceIbyV3kif9P/97kCRJUu6IIrj1VvjNb+Dcc+H55220gaKioiq/NwV8A0yrrjBSDdmcOq8KJ9uSJEnKDeXl8Mc/wj33wHXXxR85cIZ2RSxfvpwGVfxHh1VAc+IJ99XVGUqqZptT51XhZFuSJEnZb+VKOOMMuPde6N0brr/eRvt7HnzwwSq/ty5wBD63rfS3OXVeFXUSXU2SJElK2uLFcMIJ8SZozz8f/1zrOO644zbr/YXAH4DFQJPqCCTVgM2t88pysi1JkqTs9dVXcNhh8PbbMGKEjfYGTJ06dbPenwJWA2OrI4xUQza3zivLZluSJEnZac4caNcOvvginmp36hQ6UdraeuutN+v9uwI/xVvJld42t84ry2ZbkiRJ2eef/4S2baF2bSguhr33Dp0ordWrV2+zr5HCZlvprTrqvDJstiVJkpRd3ngjnmK3agUTJ8Y/aqPmzJmz2dcoBD4G/r3ZV5JqRnXUeWXYbEuSJCl7PPccdOkST7VHj4aEbxvNVIcddthmX+MI4t2XR272laSaUR11Xhk225IkScoO990Hp54K3bvDkCHQuHHoRBnjySef3Oxr5AOH4q3kSl/VUeeVkRdFUZTkgqWlpRQUFFBSUkJ+fn6SS0uSJCkbRRFcey384x9wxRVw661Qy5lSZZSXl1OrGr5nNwG3AguALTb7alL1qq46ryj/FJIkSVLmWrMGzjsvbrTvuANuv91Guwr+8Y9/VMt1UsRnbU+ulqtJ1au66ryinGxLkiQpMy1bFt8yPnw49OsHZ5wROlHGqq6JXxmwLXAR8PfNvppUvZxsS5IkSZuycCEceSSMGQNDh9pob6abb765Wq5TGzgKn9tWeqquOq8om21JkiRlls8+g/btYfbsuNlOpUInynhnnnlmtV0rBbwLfFttV5SqR3XWeUXYbEuSJClzvP9+fKzX8uUwaRIcdFDoRFlh7Nix1XatQiACXq+2K0rVozrrvCJstiVJkpQZiouhQwdo1iz++e67h06UNXbZZZdqu9b2wM/wVnKln+qs84qw2ZYkSVL6GzIEOneGvfeG8eOhRYvQibLKypUrq/V6KWAk8YRbShfVXeebYrMtSZKk9NanD/zqV3D00fHO4wUFoRNlnW+++aZar5cC5gPvV+tVpc1T3XW+KTbbkiRJSk9RFJ+ffe65cMEF8OyzUL9+6FRZaf/996/W63UAGuCt5Eov1V3nm2KzLUmSpPRTVgaXXQbXXAM33ggPPAC1a4dOlbUGDx5crderD3TCZlvppbrrfFPyoihK9FGK0tJSCgoKKCkpIT8/P8mlJUmSlAlWroQzz4QXXoCHHoLzzw+dKOstX76cBg0aVOs17wKuBv5LPOWWQquJOt8YJ9uSJElKH6Wl8MtfxhuivfCCjXZCevXqVe3XTAErgfHVfmWpamqizjfGybYkSZLSw5dfQteuMHcuDB4cH/OljBUBOwInA3cGziKF4GRbkiRJ4X38MbRtC19/DRMm2GgnrKioqNqvmUc83fa5baWLmqjzjXGyLUmSpLCmTIkn2s2awYgRsNNOoRPlnK+++optt9222q/7HNAdmAe0rParS5VTU3W+IU62JUmSFM6oUXDYYfDTn8LEiTbagbzyyis1ct0jiRuOUTVydalyaqrON8RmW5IkSWEMHAhHHw0dO8Lo0bDVVqET5awDDjigRq7bDDgIbyVXeqipOt8Qm21JkiQl7+674bTT4PTT4eWXoVGj0Ily2ldffVVj104RT7bLamwFqWJqss7Xx2ZbkiRJyYki+Mtf4A9/iH/s2xe22CJ0qpy3atWqGrt2ivis7XdrbAWpYmqyztenTqKrSZIkKXetXh2fm92/P9x1F1x+eehE+p9ddtmlxq59MFAAjAQOqbFVpE2ryTpfHyfbkiRJqnlLl0K3bvD00/GHjXZaGTduXI1duw7QGZ/bVng1Wefr49FfkiRJqlkLFsQbob3/Prz4Ihx1VOhE+oFFixbRtGnTGrv+I8DvgAXEU24phJqu8x9ysi1JkqSaM28etG8P//43jB1ro52m7r///hq9fiHxBmmja3QVaeNqus5/yMm2JEmSasZ770EqBfXqwYgRsNtuoRMpoD2Aw4CHA+eQkuJkW5IkSdVvwgTo0AG22QaKi22001xRUVGNr5Eifm470Umf9D1J1Pn3OdmWJElS9XrlFTj1VDj00PgMbf/Ol/ZKSkooKKjZp6lfBY4BZgG71+hK0volUeff52RbkiRJ1efRR+GEE+C442DYMBvtDPHEE0/U+BqHAXVxV3KFk0Sdf5/NtiRJkjZfFMGNN8IFF8DvfgfPPBM/q62McPjhh9f4Go2A9thsK5wk6vz7bLYlSZK0ecrK4OKL4brr4Kab4N57oZZ/zcwks2fPTmSdQmAMsDKR1aR1JVXn3/FPQUmSJFXdihXQvTs8/DA89hj89a+Qlxc6lSqpQYMGiayTApYBxYmsJq0rqTr/Tp1EV5MkSVL2KCmB44+Ht96Cl16Kn9NWRmrevHki6+wNbEt8K3myN/RKydX5d5xsS5IkqfK++AI6dYLp0+H11220M9y0adMSWacW8a3kPretEJKq8+/YbEuSJKlyPvoI2raFBQvi87TbtQudSJvp2GOPTWytQmAa8FViK0qxJOscbLYlSZJUGe+8EzfXDRpAcTG0aRM6karBY489lthahf/7cVRiK0qxJOscIC+KoijJBUtLSykoKKCkpIR8z12UJEnKHCNGwIknwt57w9Ch0KxZ6ETKUPsDbYAnQweRapCTbUmSJG3agAFwzDFw+OHxM9o22lmlqKgo0fVSwEigPNFVleuSrnMn25IkSdq4Xr3giivgnHPiI77qeKBNtlmxYgX169dPbL2xxLuRTwX2S2xV5bqk69zJtiRJktavvBz+/Oe40f7rX+NztG20s9J9992X6HptgUa4K7mSlXSd22xLkiTpx1avhh494qn2vffCTTdBXl7oVKoh3bp1S3S9usST7ZGJrqpcl3Sd22xLkiRpXUuWxOdmP/ssDBwIl14aOpFq2JQpUxJfMwVMBJYkvrJyVdJ1brMtSZKk//ftt9C5M0yaBMOGwSmnhE6kBGy33XaJr5kCVhM/vy0lIek6t9mWJElSbO7c+AztuXNh7Ni46VZOqBPgWfxdgVb43LaSk3Sd22xLkiQJpk+Htm2hrAyKi2H//UMnUoI++eSTxNfM4/+PAJOSkHSd22xLkiTlunHjoGNHaNEivn18l11CJ1LCOnbsGGTdFPARMDfI6so1Sde5zbYkSVIue/FFSKXgoIPiW8e33TZ0IgXw9NNPB1n3CKA23kquZCRd53lRFEVJLlhaWkpBQQElJSXk5+cnubQkSZK+76GH4He/g+7doX9/qFs3dCIFUlZWRu3atYOs3QHYGngxyOrKJUnXuZNtSZKkXBNFcP31cNFFcNllMGCAjXaOu/nmm4OtXQiMJt6ZXKpJSde5k21JkqRcUlYWT7MfeQRuuQWuvBLy8kKnUg57GziE+MztdoGzSNXJybYkSVKuWLECTj4ZHn8c+vaFq66y0RYARUVFwdY+AGiGz22r5iVd5062JUmScsGiRXDccfDuuzBoEBx9dOhESiOfffYZLVu2DLb+qcAnwFvBEigXJF3nTrYlSZKy3fz58dFe778Po0fbaOtHRo8eHXT9QuAdYEHQFMp2Sde5zbYkSVI2mzUL2raNJ9sTJ8Khh4ZOpDS0++67B12/EIiIN0qTakrSdW6zLUmSlK3eegvatYPGjaG4GFq3Dp1IaWr58uVB198BaIPPbatmJV3nNtuSJEnZaNgwOOKIuMGeMAF22CF0IqWxBQvC38CdIm62E91QSjkl6Tq32ZYkSco2TzwBxx4LRx0FI0fClluGTqQ0t88++4SOQAr4D/BB6CDKWknXuc22JElStogiuP126NEDzjkHnn8eGjQInUoZYOjQoaEj0AGoj7eSq+YkXece/SVJkpQNysvhiivgrrugZ0+44QbP0FaFLVu2jIYNG4aOQQrIA4aHDqKslHSdO9mWJEnKdKtWwZlnwt13wwMPwI032mirUu68887QEYC42R4HhN2uTdkq6Tp3si1JkpTJFi+Gk06CsWNhwID451KGeh/4GfGt5IWBs0iby8m2JElSpvr663jH8cmTYfhwG21VWVFRUegIAOwF/ASf21bNSLrOnWxLkiRlok8+gcJCWLIkPuZr331DJ1IG++abb9h6661DxwDgHOAdYEboIMo6Sde5k21JkqRMM20atG0bP5ddXGyjrc324osvho6wVgp4j/gYMKk6JV3nNtuSJEmZZMwY6NgRdtgBJk2CnXcOnUhZ4KCDDgodYa0jiXckHxk6iLJO0nVusy1JkpQpBg2CLl3g0EPjpjtNbvtV5vviiy9CR1irOXAQPret6pd0ndtsS5IkZYIHHoDu3eHkk2HIEGjcOHQiZZGysrLQEdZRCIwC0iuVMl3SdW6zLUmSlM6iCHr2hEsugT/8AZ54AurWDZ1KWaZVq1ahI6wjBSwEpoYOoqySdJ3bbEuSJKWrNWvgggugqAhuvx169YJa/vVN1W/ChAmhI6zjECAfbyVX9Uq6zj36S5IkKR0tXw6nngqvvgp9+sBZZ4VOpCy2cOFCmjVrFjrGOk4AvgHS658BlMmSrnP/aVSSJCnd/Pe/8Rnar78eP59to60a9uCDD4aO8COFwJtASeggyhpJ17mTbUmSpHTy+efxjuNffhlPtQ85JHQiKYhPgJ8CLwHdwkaRqsTJtiRJUrqYORPatoUlS+IztG20lZCioqLQEX5kZ2A3fG5b1SfpOneyLUmSlA7efBOOOQZ+8hMYPhy23z50IuWQ0tLStPy7+aXAq8AcIC9wFmW+pOvcybYkSVJoQ4dC587ws5/B+PE22kpcv379QkdYrxTx7eQfhw6irJB0ndtsS5IkhdS3L3TrFj+nPWIENG0aOpFy0JFHHhk6wnodBmyBt5KreiRd5zbbkiRJIUQR3HILnHMOnHceDBoE9euHTqUc9eGHH4aOsF6NgXbAyNBBlBWSrnObbUmSpKSVl8Pll8PVV8P110Pv3lC7duhUymGNGjUKHWGDUsAYYFXoIMp4Sde5zbYkSVKSVq6EM86A+++Pm+zrroM8t35SWM2aNQsdYYNSwBKgOHQQZbyk69xmW5IkKSmLF8c7jr/0Unzb+IUXhk4kATB9+vTQETZoH2BrfG5bmy/pOrfZliRJSsJXX8Fhh8Hbb8cboZ1wQuhE0lpdu3YNHWGDagGF+Ny2Nl/SdW6zLUmSVNPmzIF27eCLL2DCBOjUKXQiaR19+vQJHWGjUsBU4OvQQZTRkq7zvCiKoiQXLC0tpaCggJKSkkQPFJckSQpi6lTo2jU+0mvECGjVKnQiKeN8BWwHPAWcETiLVFFOtiVJkmrK6NHxFLtVK5g0yUZbaauoqCh0hI3aFtgXn9vW5km6zp1sS5Ik1YRnn4Uzz4TOneH55yGNj1aSVq5cSb169ULH2KirgP7AfJwYqmqSrnPrVJIkqbrddx+cdhqceioMHmyjrbR3zz33hI6wSSni28lnhA6ijJV0ndtsS5IkVZcogr/+FS67DK64Avr1gy22CJ1K2qQTTzwxdIRNagc0xFvJVXVJ17nNtiRJUnVYswbOOw9uvhl69YLbboNa/lVLmeHtt98OHWGT6gGHY7Otqku6zuskupokSVI2WrYMuneH4cPhqafgDPdLVmZp0aJF6AgVUgj8GVgK+HCGKivpOvefWyVJkjbHggVw5JEwZgwMHWqjrYxUu3bt0BEqJAWsAsaFDqKMlHSd22xLkiRV1WefQYcOMHt23GynUqETSVXy6aefho5QIbsDO+Gt5KqapOvc28glSZKq4v334+Z6iy3iM7R33z10IqnK2rdvHzpCheQRT7dttlUVSde5k21JkqTKmjQJ2reHrbaC4mIbbWW8gQMHho5QYSlgFpAZs3ilk6TrPC+KoijJBUtLSykoKKCkpIT8/Pwkl5YkSdp8gwfHm6H94hfw8stQUBA6kbTZ1qxZQ506mXHT6yJgK+BB4IKwUZRhkq5zJ9uSJEkV9fjj8KtfwTHHwLBhNtrKGrfcckvoCBXWFDgEGBk4hzJP0nXuZFuSJGlTogj+8Q+49lr43e/g3nshQ3ZvlrLRjcCdwLe4CZXSl5NtSZKkjSkrg8suixvtG2+E+++30VbWKSoqCh2hUlJACfB26CDKKEnXuf8QJEmStCErV8KZZ8ILL8Ajj8D554dOJNWIs88+O3SESjkQ2JJ4V/K2gbMocyRd5062JUmS1qekBLp2hSFD4mbbRltZbNSoUaEjVEpt4Eh8bluVk3Sd22xLkiT90JdfwmGHwT//CaNGQbduoRNJNap169ahI1Raivg28v+GDqKMkXSd22xLkiR93+zZ0LYtfPMNTJgQn6ctZbnFixeHjlBpKaAceD10EGWMpOvcZluSJOk7774L7dpBvXpQXAw/+1noRFIiFi1aFDpCpe0A7EX83LZUEUnXuc22JEkSxLeLH3YY7LILTJwIO+4YOpGUmJ///OehI1RJIXGznehZxspYSde5zbYkSdIzz8DRR8fN9uuvQ/PmoRNJiRo2bFjoCFWSAj4HPgwdRBkh6TrPi6Io0X8IKi0tpaCggJKSEvLz85NcWpIk6cfuvhv+8Afo0QMefRS22CJ0IilxS5YsoXHjxqFjVNoyoBlwC3B52CjKAEnXuZNtSZKUm6II/vKXuNH+y1+gb18bbeWsu+++O3SEKmkIdMTntlUxSde5k21JkpR7Vq+G886DJ56Au+6Cyy8PnUhSFd0B/A1YCNQPnEX6PifbkiQptyxdCscfHz+n/fTTNtoSUFRUFDpClaWA5cDE0EGU9pKucyfbkiQpd3z7LRxzDLz/Prz4Ihx1VOhEUlr49ttv2WqrrULHqJKI+Biw04HbA2dReku6zp1sS5Kk3PDpp9C+PXzyCYwda6Mtfc/zzz8fOkKV5fH/R4BJG5N0ndtsS5Kk7DdjBrRtGz+rPWkSHHBA6ERSWvnFL34ROsJmSQEzgPmhgyitJV3nNtuSJCm7TZgAHTrANtvEjfauu4ZOJKWdzz//PHSEzXIk8YR7ZOggSmtJ17nNtiRJyl4vvxzfLn7AATBuHGy3XehEUlpKeBunarcVcAA229q4pOvcZluSJGWnRx6BE0+Mdx5/7TVwY1Zpg1q2bBk6wmZLAaOA8tBBlLaSrnObbUmSlF2iCG68EX77W/jd7+IjvurVC51KSmtvvvlm6AibLQV8C0wNHURpK+k69+gvSZKUPcrK4NJLoXdvuOkmuPpqyMsLnUpKewsWLKB58+ahY2yW1UBz4CrgmsBZlJ6SrnMn25IkKTusWAGnnBLfPv744/DXv9poSxXUu3fv0BE22xbAEXgEmDYs6Tp3si1JkjLfokXQrRu89RY89xwce2zoRJIC6A1cBiwA7DQUmpNtSZKU2ebPh06dYPp0GD3aRluqgqKiotARqkUKWAOMCR1EaSnpOneyLUmSMtdHH0FhYfys9ogRsNdeoRNJGWnx4sU0adIkdIxqsRtwFPBg6CBKO0nXuZNtSZKUmd5+G9q1g0aNoLjYRlvaDI8//njoCNWmEJ/b1volXec225IkKfOMGAFHHAG77w4TJkAWnBEshVRYWBg6QrVJAf8G5oQOorSTdJ3bbEuSpMzy1FNwzDFw+OEwahQ0axY6kZTxZs6cGTpCtTkcqIPTbf1Y0nVusy1JkjJHr15w5plw1lnw0kvQsGHoRFJWyJbntQGaAO2w2daPJV3nNtuSJCn9lZfDFVfEH3/9Kzz2GNSpEzqVlDUKCgpCR6hWhcAbwKrQQZRWkq5zm21JkpTeVq+GHj3gzjvh3nvhppsgLy90KimrvP/++6EjVKsUsAR4M3QQpZWk69x/EpYkSelryRI46SQYMwYGDoRTTgmdSMpKXbp0CR2hWu0HbA2MBDoFzqL0kXSdO9mWJEnp6Ztv4h3Hi4th2DAbbakG9enTJ3SEalWL+Kxtn9vW9yVd53lRFEVJLlhaWkpBQQElJSXk5+cnubQkScoUc+dCYSGUlsaN9n77hU4kKcM8AZwNfEU85ZaS5mRbkiSll+nToW3beFO04mIbbSkBRUVFoSNUu6OACBgVOojSRtJ17mRbkiSlj3Hj4LjjYNdd4bXXYNttQyeScsLq1avZYostQseodvsQP7/dL3AOpYek69zJtiRJSg8vvgipFBx8MIwda6MtJejOO+8MHaFGpIg3SUt0uqi0lXSd22xLkqTwHnoo3nX8V7+CV1+FJk1CJ5Jyysknnxw6Qo1IAV8AM0IHUVpIus5ttiVJUjhRBNddBxddBJddBgMGQN26oVNJOefNN7PzROp2QAPclVyxpOvcZluSJIWxZg1ceCHceCPccgvcdRfU8q8mUggtW7YMHaFG1AcOw2ZbsaTrvE6iq0mSJAEsXw6nnw5DhkC/ftCjR+hEkrJUCrgSWAY0DJxFucV/PpYkSclatCjeCG3ECHjlFRttKQ189tlnoSPUmBSwChgXOoiCS7rObbYlSVJy/vMf6NAB3n8f3ngDjj46dCJJwKGHHho6Qo3ZA9gRbyVX8nVusy1JkpLx4YfQti2UlMDEifCLX4ROJOl/Bg0aFDpCjckDCrHZVvJ1nhdFUaLHzpWWllJQUEBJSQn5+flJLi1JkkJ56614ir3ddjB8OOywQ+hEkr5n9erVbLHFFqFj1JjngZOBT4mn3MpNSde5k21JklSzhg2DI46A1q1hwgQbbSkN3XrrraEj1KjOxI3PyNBBFFTSde5kW5Ik1Zz+/eHcc+GYY+CZZ6BBg9CJJOWotsBPgOy9YV7pxsm2JEmqflEEt90GZ58N55wDzz9voy2lsaKiotARalwh8DqwJnQQBZN0ndtsS5Kk6lVeDn/8I1x1FfTsCQ8/DHXqhE4laSPOOeec0BFqXApYBLwTOIfCSbrObbYlSVL1WbUKfv1ruOceePBBuPFGyMsLnUrSJgwfPjx0hBp3ENAUn9vOZUnXuc22JEmqHosXx89mv/ACPPccXHRR6ESSKqhNmzahI9S4OsCReARYLku6zm22JUnS5vv6azj88PiIrxEj4KSTQieSVAklJSWhIyQiBbwF/Dd0EAWRdJ3bbEuSpM3z739Du3bwn//A+PFw2GGhE0mqpMWLF4eOkIhCoBwYHTqIgki6zm22JUlS1U2bBm3bxs9lFxfDPvuETiSpClq3bh06QiJ2BPbE57ZzVdJ1brMtSZKqZswY6NgRWraESZNg551DJ5JURSNH5k77mSJ+bjsKHUSJS7rO86IoSrTOSktLKSgooKSkhPz8/CSXliRJ1WXQoHjX8cMOizdEa9w4dCJJm2Hx4sU0adIkdIxEDAN+CcwknnIrdyRd5062JUlS5dx/P3TvDiefDEOG2GhLWeCee+4JHSExHYG6uCt5Lkq6zp1sS5Kkioki6NkTbroJ/vhHuP12qOW/20vKPEcSN9yvhQ6irOb/Q0qSpE1bswbOPz9utG+/HXr1stGWskhRUVHoCIlKAWOBlYFzKFlJ17mTbUmStHHLlsFpp8Frr0GfPnDmmaETSapmCxYsoHnz5qFjJGY6sA/wOtA5cBYlJ+k695+kJUnShi1cCIWF8Prr8fPZNtpSVnruuedCR0jUz4Ht8LntXJN0ndtsS5Kk9fv8c+jQAT78EN54A7p0CZ1IUg059NBDQ0dIVB5QiM12rkm6zm22JUnSj82cCW3bwtKl8RnahxwSOpGkGvTZZ5+FjpC4FPHt5F+EDqLEJF3nNtuSJGldb74J7dtD06ZQXAx77BE6kaQalpeXFzpC4o4innCPCh1EiUm6zm22JUnS/xs6FDp3hp/9DMaPh+23D51IUgJ22GGH0BEStzWwP95KnkuSrnObbUmSFOvbF7p1g65dYcSIeLItKSdMnjw5dIQgCoGRQHnoIEpE0nVusy1JUq6LIrj5ZjjnnPgs7eeeg/r1Q6eSlKCTTjopdIQgUsC3wD9DB1Eikq5zm21JknJZeTlcfjn89a9www3w4INQu3boVJIS9tBDD4WOEMShQGPi6bayX9J1nhdFUZTkgqWlpRQUFFBSUkJ+fn6SS0uSpO9buRJ69IBBg+Im+7e/DZ1IkhJ3PFACjA2cQ9nHybYkSbmotBSOPhpefhmef95GW8pxRUVFoSMEkwImAYtDB1GNS7rOnWxLkpRrvvoq3gTt3/+GwYOhY8fQiSQFtmTJEho3bhw6RhAfA7sBrwDHBc6impV0nTvZliQpl8yZA+3awZdfwoQJNtqSAHj00UdDRwhmV+Cn+Nx2Lki6zm22JUnKFVOnQtu28QZoxcXw85+HTiQpTXTt2jV0hKBSeN52Lki6zm22JUnKBa+/Dp06QatWMGlS/KMk/c+MGTNCRwgqRXw7+b9DB1GNSrrObbYlScp2AwfCL38JHTrAG2/AVluFTiQpzTRt2jR0hKAOB+rgdDvbJV3nNtuSJGWze++F006LP155BRo1Cp1IUhpq0qRJ6AhB5ROfuW2znd2SrnObbUmSslEUwdVXw+9/D1deCf36wRZbhE4lKU3NnDkzdITgUsAbwOrQQVRjkq5zm21JkrLNmjVw7rlwyy1w551w662Qlxc6laQ0dtRRR4WOEFyK+KztyaGDqMYkXec225IkZZNly+BXv4Inn4SnnoI//CF0IkkZoF+/fqEjBLc/0BxvJc9mSdd5XhRFUZILlpaWUlBQQElJCfn5+UkuLUlSdluwAI49FqZPhxdfhMLC0IkkKaOcRrwr+TuhgygrONmWJCkbfPZZvNv47NkwZoyNtqRKKSoqCh0hLaSAKcC3oYOoRiRd5062JUnKdO+/D6lUvAHaiBGw++6hE0nKMGvWrKFOnTqhYwQ3H/gJ8AxwauAsqn5J17mTbUmSMtnEidC+fXx2dnGxjbakKrnjjjtCR0gL2wM/x+e2s1XSdW6zLUlSpho8GI46CvbdF8aNgxYtQieSlKFOPdU57ncKgZFAorf/KhFJ17nNtiRJmeixx+Jdx485BoYPh4KC0IkkZbCJEyeGjpA2UsS3k78XOoiqXdJ1brMtSVImiSIoKoLzz4eLLoKBA6FevdCpJGW4nXbaKXSEtNEBaEA83VZ2SbrObbYlScoUZWVw6aXQsyf8/e9w331Qu3boVJKyQFlZWegIaaM+0Amf285GSde5Ww5KkpQJVq6EX/86Pj/70UfhvPNCJ5KURb744ovQEdJKCvgLsAxoGDiLqk/Sde5kW5KkdFdSAl27wtChcbNtoy2pmh188MGhI6SVQmAlMD50EFWrpOvcZluSpHT25Zdw2GHwz3/CqFFw/PGhE0nKQi+88ELoCGmlNbADPredbZKu87woihLd1b60tJSCggJKSkrIz89PcmlJkjLL7NmQSsGqVfGO4z/7WehEkrLUypUrqedmi+s4D3gTeD90EFWbpOvcybYkSeno3XehXbt4p/HiYhttSTXq9ttvDx0h7aSAD4DPQgdRtUm6zp1sS5KUbkaOhBNOgJ//PH5Ou3nz0IkkKecsBLYGHgHODZxFmcnJtiRJ6eTpp+Hoo+PntEePttGWlIiioqLQEdJOM+AgPAIsmyRd5zbbkiSli7vugjPOiI/4euklaOiBM5KScc4554SOkJZSwOuAp5Bnh6Tr3GZbkqTQogiuugr++Ee4+mro0we22CJ0Kkk5ZNiwYaEjpKUU8F/g3dBBVC2SrvM6ia4mSZLWtXp1fG72E0/A3XfD738fOpGkHLT33nuHjpCWDgYKiG8lPyRwFm2+pOvcybYkSaEsXRqfm/3MM/GHjbakQBYuXBg6QlqqA3TG57azRdJ1brMtSVII334LnTvDhAnw2mtw6qmhE0nKYUuXLg0dIW2lgLeARYFzaPMlXec225IkJe3TT6F9e/jkExg7Fo48MnQiSTluzz33DB0hbaWIN0h7I3QQbbak69xmW5KkJM2YAW3bxs9qT5oEBxwQOpEk8frrr4eOkLZ2AvbAW8mzQdJ1nhdFUZTkgqWlpRQUFFBSUkJ+fn6SS0uSFNb48XDccfDTn8a3jm+3XehEkgTEf0f37+YbdhkwGPgEyAucRVWXdJ072ZYkKQkvvQSFhXDggfGt4zbaktLIvffeGzpCWksBnwIfhQ6izZJ0nTvZliSppj38MPzud3DSSfERX/XqhU4kSaqEpUAz4A7g0sBZlDmcbEuSVFOiCG68ES68EC6+OD7ey0ZbUhoqKioKHSGtNQLa43PbmS7pOneyLUlSTSgrg0sugYcegn/8A/7yF8jzST9J6WnhwoU0a9YsdIy0dhtwA7AQ8J9NM1PSde5kW5Kk6rZiBZxyCjz6KDz+OFx9tY22pLT2zDPPhI6Q9gqBZcCk0EFUZUnXuc22JEnVadEi6NIl3m38pZfgnHNCJ5KkTerQoUPoCGlvb2BbvJU8kyVd5zbbkiRVl/nzoWNHmD4dRo+GY48NnUiSKmTu3LmhI6S9WsTT7ZGhg6jKkq5zm21JkqrDrFnQti38978wcWL8c0nKELVr1w4dISOkgGnAV4FzqGqSrnObbUmSNtfbb0O7dtCoEbz5Juy1V+hEklQpLVq0CB0hIxz1vx+dbmempOvcZluSpM0xfDgcfjjsuSdMmAA77BA6kSRV2jvvvBM6QkbYBtgPn9vOVEnXuc22JElV9eST8XPZnTvDyJHgsTmSMtQJJ5wQOkLGSAGjgPLQQVRpSde5zbYkSVVxxx1w1lnQowe8+CI0bBg6kSRV2cMPPxw6QsZIAV8D/wodRJWWdJ3nRVEUJblgaWkpBQUFlJSUkJ+fn+TSkiRtvvJyuPJK6NULrrkG/v53z9CWpByyCmgGXAv8JXAWpTcn25IkVdTq1fEk+8474b77oKjIRltSVigqKgodIWPUBQ7H57YzUdJ17mRbkqSKWLIETjoJxoyJn9U+5ZTQiSSp2ixbtoyGPg5TYfcDfwQWAo0DZ1HFJV3nTrYlSdqUb76BI46A4mIYNsxGW1LW6d27d+gIGSUFrAbGBs6hykm6zm22JUnamE8+ic/QnjcPxo2Lm25JyjLHHHNM6AgZZVdgZ7yVPNMkXec225Ikbci//gVt20IUxVPt/fYLnUiSasS//uXe2pWRBxRis51pkq5zm21JktZn7Fjo2BF+8hOYNAl++tPQiSSpxjRv3jx0hIyTAmYDn4QOogpLus5ttiVJ+qEXXoBUCg45JN4QbZttQieSpBrVoEGD0BEyzhFAbWBk6CCqsKTr3GZbkqTv690bTj4ZTjwRhg6FJk1CJ5KkGvfRRx+FjpBxCoBD8VbyTJJ0ndtsS5IE8XPZ110Hv/sd/P738NRTULdu6FSSlIjOnTuHjpCRUsBo4p3Jlf6SrnObbUmS1qyBCy+EG2+EW2+FO++EWv5fpKTc0b9//9ARMlIhUAq8FTqIKiTpOs+LoihKcsHS0lIKCgooKSkhPz8/yaUlSfqx5cvh9NNhyBB4/HHo0SN0IklShigDtgF+B/w9cBalH//ZXpKUu/77XygshBEj4JVXbLQl5ayioqLQETJSbeAo3CQtUyRd5062JUm56T//gS5dYP58ePVV+MUvQieSpGDKysqoXbt26BgZqS9wLvAN4AFq6S3pOneyLUnKPR9+CG3bQmlpfIa2jbakHHfbbbeFjpCxjgIi4PXQQbRJSde5zbYkKbdMngzt2kF+PhQXw557hk4kScGdfvrpoSNkrB2ANngEWCZIus5ttiVJueO11+CII6BNGxg/Hn7yk9CJJCktjB8/PnSEjJYifm470edzVWlJ17nNtiQpN/TvD8cdB6lUvCHalluGTiRJaWPnnXcOHSGjpYD/AB+EDqKNSrrObbYlSdktiuC22+Dss+Hcc2HQIGjQIHQqSUora9asCR0ho3UA6uOt5Oku6Tq32ZYkZa/ycvjjH+Gqq+Bvf4OHHoI6dUKnkqS08+WXX4aOkNEaAB2x2U53Sde5f+OQJGWnVaviafbAgfDgg3DRRaETSVLaOuCAA0JHyHgp4BpgOXHzrfSTdJ072ZYkZZ/Fi+Hoo+GFF+C552y0JWkTXn755dARMl4KWAFMCB1EG5R0nedFUZTopnmlpaUUFBRQUlJCfn5+kktLknLB11/DL38Js2fDK6/AYYeFTiRJaW/FihXUr18/dIyMFgEtge5Ar8BZtH5J17mTbUlS9vj3v+MztP/zn/hoLxttSaqQO+64I3SEjJcHFOJz2+ks6Tp3si1Jyg7//Cd07Qr5+fHRXh5jI0lK2LPAqcBnwA6Bsyg8J9uSpMz3xhvQqRPsuCNMmmSjLUmVVFRUFDpCVjiSeMI9KnQQrVfSde5kW5KU2Z57Ds48Ew4/HJ5/Hho3Dp1IkjLOl19+yXbbbRc6RlY4BNgZGBg6iH4k6Tp3si1Jylz33w+nngqnnAKDB9toS1IVDRkyJHSErJEinmyXhQ6iH0m6zm22JUmZJ4rg2mvh0kvhj3+E/v2hbt3QqSQpY+27776hI2SNQmAhMCV0EP1I0nVusy1Jyixr1sB558FNN8Htt8Mdd0At/+9MkjbHggULQkfIGocA+bgreTpKus7924kkKXMsWwYnnABPPBF/XHFF6ESSlBWWL18eOkLW2ALoDIwMHUQ/knSd22xLkjLDwoVw1FEwejQMGRJviiZJqha77bZb6AhZJQW8CZSEDqJ1JF3nNtuSpPT32WfQoQN89BGMGQNduoROJElZZcyYMaEjZJVC4g3S3ggdROtIus49+kuSlN4++ABSKahdG0aOhN13D51IkrJOSUkJBQUFoWNkld2BI4CHQgfRWknXuZNtSVL6Ki6G9u2hWbP45zbaklQj7rvvvtARsk6KeJO0RCeb2qik69zJtiQpPQ0ZAt27w0EHwSuvQNOmoRNJklRhQ4FjgY8An4jPTU62JUnpp29f+NWvoGtXGDHCRluSalhRUVHoCFnnMOKdyT0CLH0kXedOtiVJ6SOK4Oab4Zpr4MIL4f7742e1JUk1atGiRTT1Hzar3eFAY2BI6CACkq9zJ9uSpPRQXg6//33caN9wAzz4oI22JCXkqaeeCh0hK6WAMcCq0EEEJF/nNtuSpPBWroTTToMHHoCHHoK//Q3y8kKnkqSc0alTp9ARslIKWAoUhw4iIPk6t9mWJIVVWgq//GW8Cdrzz8Nvfxs6kSTlnDlz5oSOkJX2AbbB57bTRdJ1brMtSQrnyy/hsMNgypT4DO1f/Sp0IknKSXXr1g0dISvVAo7CZjtdJF3nNtuSpDA+/hjatYOvvoIJE6Bjx9CJJClnbbvttqEjZK0U8E/gq9BBlHid22xLkpI3dWrcaG+xBRQXw89/HjqRJOW0KVOmhI6QtQr/9+PrQVMIkq9zm21JUrJefx06dYKdd4aJE2GnnUInkqScd/zxx4eOkLW2BfbFW8nTQdJ1brMtSUrOwIHxZmgdOsDo0bDVVqETSZKARx99NHSErFYIjATKQwfJcUnXeV4URVGSC5aWllJQUEBJSQn5+flJLi1JCumee+Dyy+Gss+Cxx+JbyCVJygFvAJ2Jn93eN2wUJcjJtiSpZkURXH113GhfeSX062ejLUlppqioKHSErNYOaIi3koeWdJ072ZYk1ZzVq+GCC+IG+8474Q9/CJ1IkrQey5cvp0GDBqFjZLVjgOXA6NBBcljSde5kW5JUM5Yti8/NHjAg/rDRlqS09eCDD4aOkPVSwERgaeggOSzpOrfZliRVvwULoHNnGDsWhg6F008PnUiStBHHHXdc6AhZrxBYBYwNnCOXJV3nNtuSpOo1bx60bw9z5sTNdmHhJt8iSQpr6tSpoSNkvd2BnfC57ZCSrvM6ia4mScpu770HXbpA3bowaRLstlvoRJKkCth6661DR8h6ecS3ko8MHSSHJV3nTrYlSdVj4sT4/OyttoLiYhttScog9erVCx0hJ6SAWcCnoYPkqKTr3GZbkrT5XnkFjjoK9t0Xxo2D7bYLnUiSVAlz5swJHSEnHAHUxlvJQ0m6zm22JUmb59FH4YQT4JhjYPhwKCgInUiSVEmHHXZY6Ag5oSlwCDbboSRd5zbbkqSqiSL4+9/jc7QvuggGDgRvQ5SkjPTkk0+GjpAzUsRnba8JHSQHJV3neVEURUkuWFpaSkFBASUlJeTn5ye5tCSpupSVwWWXwYMPQlER/PWvkJcXOpUkqYrKy8upVcs5XBLeAn4BTALaBs6Sa5Kuc/+LkiRVzooVcOqp8NBD8S3k11xjoy1JGe4f//hH6Ag540BgS7yVPISk69zJtiSp4kpKoFs3mDwZnn0WjjsudCJJUjVwsp2sU4B5wOTQQXKMk21JUnr64gvo1AmmTYPXX7fRlqQscvPNN4eOkFNSwDvAwtBBckzSdW6zLUnatNmzoW1b+Pbb+Dztdu1CJ5IkVaMzzzwzdISckgLKiTdKU3KSrnObbUnSxr37btxcN2gAxcXQpk3oRJKkajZ27NjQEXLKDsBe+Nx20pKuc5ttSdKGjRwJhx0Gu+wCEybAjjuGTiRJqgG77LJL6Ag5p5C42U50A60cl3Sd22xLktZvwAA4+ui42R49Gpo3D51IklRDVq5cGTpCzkkBnwMzQwfJIUnXuc22JOnH7rwTfv3r+OOll6Bhw9CJJEk16JtvvgkdIed0BOrhreRJSrrObbYlSf+vvByuvBL+9Ce4+mro0we22CJ0KklSDdt///1DR8g5DYkb7pGhg+SQpOvcZluSFFu9Gs4+G+64A+65B/7xD8jLC51KkpSAwYMHh46Qk1LAOGBF6CA5Iuk6z4uiKNFn8ktLSykoKKCkpIT8/Pwkl5YkbcjSpXDyyfH52U8+Cd27h04kSUrQ8uXLadCgQegYOWcGsDfxdPuowFlyQdJ17mRbknLdt9/CEUfEu42/9pqNtiTloF69eoWOkJN+BmyPz20nJek6d7ItSbns008hlYL//heGDQOf2ZMkKVG/Ad4lnnIruzjZlqRcNWMGtG0bP6tdXGyjLUk5rKioKHSEnJUC3gPmhw6SA5Kuc5ttScpF48dDhw6w7bZxo73LLqETSZICOv/880NHyFlHAnm4K3kSkq5zm21JyjUvvgiFhXDggTB2bNxwS5Jy2iuvvBI6Qs7aCjgAn9tOQtJ1brMtSbnkoYfiXcePPx5efRXcO0OSBBxwwAGhI+S0FDAKKAsdJMslXec225KUC6IIbrgBLroILrkEnnkG6tULnUqSlCa++uqr0BFyWgpYAPwzdJAsl3Sd22xLUrYrK4ub7Ouvh5tvhrvvhlr+8S9J+n+rVq0KHSGn/QJogreS17Sk69y/bUlSNluxAk45BR57DPr0gb/8BfLyQqeSJKWZXdwoM6gtgCOw2a5pSde5zbYkZatFi+IztIcNg5dfht/8JnQiSVKaGjduXOgIOS8FvAmUhg6SxZKu87woiqIkFywtLaWgoICSkhLy3ZhHkmrG/PnQpQt8/nm8Edqhh4ZOJElKY4sWLaJp06ahY+S0fwO7AC8B3cJGyVpJ17mTbUnKNrNmQdu28N//wsSJNtqSpE26//77Q0fIeT8FdsXztmtS0nXuZFuSsslbb8HRR8dnZ48YATvsEDqRJEmqoIuB4cCc0EFULZxsS1K2GDYMjjgC9twTJkyw0ZYkVVhRUVHoCCJ+bvvfwMehg2SppOvcybYkZYMnnoBzz4WuXWHgQGjYMHQiSVIGKSkpoaCgIHSMnLcYaAbcTTzlVvVKus6dbEtSprvjDujRI/548UUbbUlSpT3xxBOhI4j4rO12+Nx2TUm6zm22JSlTlZfDn/4Ef/4zXHstPPoo1KkTOpUkKQMdfvjhoSPof1LAG8Cq0EGyUNJ1brMtSZlo1So46yy46y64/374+98hLy90KklShpo9e3boCPqfQmAJ8Znbql5J17kjEEnKNEuWwIknwtix8OyzcPLJoRNJkjJcgwYNQkfQ/+wHbA2MADoFzpJtkq5zJ9uSlEm++SbecfzNN2H4cBttSVK1aN68eegI+p9awFHEzbaqV9J1brMtSZnik0+gXTuYNw/GjQOfr5MkVZNp06aFjqDvSQFTgW9CB8kySde5zbYkZYJp06BtW4giKC6G/fYLnUiSlEWOPfbY0BH0PUf978dRQVNkn6Tr3GZbktLd2LHQqRP85CcwaRL89KehE0mSssxjjz0WOoK+pwWwN95KXt2SrvO8KIqiJBcsLS2loKCAkpIS8vPzk1xakjLP88/DGWfEzfYLL0CTJqETSZKkBFwJPAnMBzxvJDM52ZakdPXgg3DKKXDSSTB0qI22JKnGFBUVhY6gH0gBXwIzQgfJIknXuZNtSUo3UQTXXRefnf2HP8Add0At/21UklRzVqxYQf369UPH0PesBLYEbgD+HDhLtki6zv3bmySlkzVr4Le/jRvt226DXr1stCVJNe6+++4LHUE/UA84DJ/brk5J13mdRFeTJG3Y8uVw2mnxLeP9+8NZZ4VOJEnKEd26dQsdQeuRIn52eynQKHCWbJB0nTsukaR08N//QmEhjBoFgwfbaEuSEjVlypTQEbQeKWAVMC50kCyRdJ3bbEtSaJ9/Dh07wgcfwOjR8Mtfhk4kScox2223XegIWo89gB2BkaGDZImk69zbyCUppJkzIZWCvLz4DO099wydSJKUg+rUsS1IR3lAIT63XV2SrnMn25IUyptvQvv2UFAAxcU22pKkYD755JPQEbQBKeBDYF7oIFkg6Tq32ZakEF59FTp3hjZtYPx4+MlPQieSJOWwjh07ho6gDehM3LQ53d58Sde5zbYkJa1fPzj++Pj28REjYMstQyeSJOW4p59+OnQEbcCWwCH43HZ1SLrO86IoipJcsLS0lIKCAkpKSsjPz09yaUkKK4ris7P/8he44AJ48EGoXTt0KkmSKCsro7b/n5S2bgDuBr7BTbc2R9J17mRbkpJQXg5/+EPcaF93HTz0kI22JClt3HzzzaEjaCMKgUXAO4FzZLqk69zJtiTVtFWr4OyzYeDAeJp94YWhE0mSpAyyBtga+D1wfdgoqgQn25JUkxYvhqOPhhdegEGDbLQlSWmpqKgodARtRB3gSNwkbXMlXec225JUU776Cg47DN5+G0aOhBNPDJ1IkqT16tGjR+gI2oQU8Dbw39BBMljSdW6zLUk1Yc4caNcO5s+Pj/bq1Cl0IkmSNmj06NGhI2gTCoFywP+lqi7pOrfZlqTq9s9/Qtu2UKsWFBfDPvuETiRJ0kbtvvvuoSNoE3YE9sRbyTdH0nVusy1J1emNN+Ip9k47waRJsPPOoRNJkrRJy5cvDx1BFZAibrYT3eE6iyRd5zbbklRdnnsOunSJp9pvvAFbbx06kSRJFbJgwYLQEVQBKeAzYFboIBkq6Tq32Zak6nDffXDqqdC9OwwZAo0bh04kSVKF7eMjTxmhE1AXbyWvqqTr3GZbkjZHFME118Bll8Gf/gT9+8MWW4ROJUlSpQwdOjR0BFVAQ6ADNttVlXSd50VRlOgt/6WlpRQUFFBSUkJ+fn6SS0tS9VqzBn77W+jTB+64I262JUnKQMuWLaNhw4ahY6gCbgeuAxYC9QNnyTRJ17mTbUmqimXL4IQT4Ikn4MknbbQlSRntzjvvDB1BFZQClgMTQwfJQEnXuZNtSaqshQvhmGNg+nR4/vl4UzRJkqQERMD2wJnAbYGzaOOcbEtSZXz2GbRvD7NnxzuO22hLkrJAUVFR6AiqoDygEJ/broqk69zJtiRV1Pvvx8117dowciTsvnvoRJIkVYtvvvmGrT2yMmM8DZwBzAdaBM6SSZKucyfbklQRxcXQoQM0axb/3EZbkpRFXnzxxdARVAlHEU+4R4YOkmGSrnObbUnalCFDoHNn2HtvGD8ett8+dCJJkqrVQQcdFDqCKmFrYH9stisr6Tq32ZakjenTB371Kzj6aBg+HAoKQieSJKnaffHFF6EjqJJSxM12eeggGSTpOrfZlqT1iSL4xz/g3HPhggvg2WehvqdZSpKyU1lZWegIqqRC4Fvgn6GDZJCk69xmW5J+qLwcfv97uOYauPFGeOCBeFM0SZKyVKtWrUJHUCUdCjTGXckrI+k6t9mWpO9buRJOOy1usB9+GHr2hLy80KkkSapREyZMCB1BlVQXOAKb7cpIus49+kuSvlNaGj+fPWkSDBwI3bqFTiRJUiIWLlxIs2bNQsdQJT0I/B5YCDQJnCUTJF3nTrYlCeDLL6FTJ5gyJT5D20ZbkpRDHnzwwdARVAWFwBpgTOggGSLpOneyLUkffwyFhfEt5MOHw89/HjqRJElShewCdAEeCB1EP+JkW1JumzIF2raFunWhuNhGW5KUk4qKikJHUBWl8Lntikq6zp1sS8pdo0bBCSdAmzYwdChstVXoRJIkBVFaWurfzTPUK0A34GPiKbc2LOk6d7ItKTcNHAhHHw0dO8Lo0TbakqSc1q9fv9ARVEWHA3WAkaGDZICk69xmW1Luueee+Hiv00+Hl1+GRo1CJ5IkKagjjzwydARVUT7xmdveSr5pSde5zbak3BFF8Je/wOWXw1VXQd++sMUWoVNJkhTchx9+GDqCNkMKeANYHTpImku6zm22JeWG1avhN7+BW2+Fu+6CW26BvLzQqSRJSguNvMsro6WAxcCboYOkuaTrvE6iq0lSCEuXwimnxBuiDRgQ3z4uSZLWatasWegI2gz7A82Jn9vuGDhLOku6zp1sS8puCxZA584wbly847iNtiRJPzJ9+vTQEbQZagFH4XPbm5J0ndtsS8pe8+ZB+/bw73/D2LFQWBg6kSRJaalr166hI2gzpYApwLehg6SxpOvcZltSdnrvPTj0UFi5EiZNggMPDJ1IkqS01adPn9ARtJkKgQgYFTpIGku6zvOiKIqSXLC0tJSCggJKSkoSPVBcUg6ZMAGOOw5atYJhw2C77UInkiRJqnF7AwcAfUMHEeBkW1K2eeWV+Hbx/faLn9O20ZYkaZOKiopCR1A1SBFvkpboNDWDJF3nTrYlZY9HH4ULL4QTT4Qnn4R69UInkiQpI6xcuZJ6/v9mxhtFfDv5dODngbOko6Tr3Mm2pMwXRfD3v8MFF8BFF8Ezz9hoS5JUCffcc0/oCKoGHYAGuCv5hiRd5zbbkjJbWRlcfDH87W9QVAT33Qe1a4dOJUlSRjnxxBNDR1A1qA90wmZ7Q5Kuc5ttSZlrxQro3h0efji+hfyaayAvL3QqSZIyzttvvx06gqpJCpgALAsdJA0lXec225IyU0kJdOkCr74KL70E550XOpEkSRmrRYsWoSOomhQCK4HxoYOkoaTr3GZbUub54gvo1AmmT4fXX4+P+ZIkSVVW20ewskZrYAe8lXx9kq5zm21JmeWjj6BtW1iwID5Pu1270IkkScp4n376aegIqiZ5xLeS22z/WNJ1brMtKXO8807cXDdoAMXF0KZN6ESSJGWF9u3bh46gapQCZgKfhQ6SZpKuc5ttSZlhxAg4/HDYbTeYOBFatgydSJKkrDFw4MDQEVSNOhM3eiNDB0kzSdd5XhRFUZILlpaWUlBQQElJCfn5+UkuLSlTDRgAZ58db4j27LPQsGHoRJIkZZU1a9ZQp06d0DFUjX4B7Ag8FzpIGkm6zp1sS0pvd94Jv/41nHlmvOu4jbYkSdXulltuCR1B1SwFvA6UhQ6SRpKucyfbktJTeTlcdRXccQdcfTXcdJNnaEuSJFVQMdAOeJN4yq3kOdmWlH5Wr4YePaBXL7jnHvjHP2y0JUmqQUVFRaEjqJodDBTgc9vfl3SdO9mWlF6WLIGTT4bRo+HJJ6F799CJJEnKep9//jk77LBD6BiqZicCXwKTQgdJE0nXuZNtSenj22+hc2eYNAmGDbPRliQpIaNGjQodQTUgBbwFLAqcI10kXec225LSw9y58Rnac+fC2LFx0y1JkhLRunXr0BFUA1LEG6SNDh0kTSRd5zbbksKbPh3atoWyMiguhv33D51IkqScsnjx4tARVAN2AvYARoQOkiaSrnObbUlhjRsHHTtCixbx7eO77BI6kSRJOWfRokWhI6iGpIg3SUt0o640lXSd22xLCufFFyGVggMPjG8d33bb0IkkScpJP//5z0NHUA0pBD4FPgodJA0kXec225LCeOiheNfxbt3g1VehSZPQiSRJylnDhg0LHUE15DCgLt5KDsnXuUd/SUpWFMENN8Qfl10Gd90Ftfx3P0mSQlqyZAmNGzcOHUM1pDNQH3g1dJDAkq5z/4YrKTllZXDhhXGjffPNcPfdNtqSJKWBu+++O3QE1aAUMBZYGThHaEnXuZNtSclYsQJOPx0GD4ZHH4Xf/CZ0IkmSpJwwDdiP+AiwI8JGySmOlCTVvEWLoLAQhg+Hl1+20ZYkKc0UFRWFjqAatDewLT63nXSdO9mWVLPmz4cuXeA//4GhQ+HQQ0MnkiRJP/Dtt9+y1VZbhY6hGnQWMJ14yp2rkq5zJ9uSas6sWdC2bTzZnjjRRluSpDT1/PPPh46gGpYC/gV8GTpIQEnXuc22pJrx1lvQrh00bgzFxdC6dehEkiRpA37xi1+EjqAadtT/fhwVNEVYSde5zbak6jdsGBxxBOy5J0yYADvsEDqRJEnaiM8//zx0BNWwbYg3Scvl57aTrnObbUnV64kn4Nhj4cgjYdQo2HLL0IkkSdImJLyNkwJJASOB8tBBAkm6zm22JVWPKILbb4cePeLdxl94ARo0CJ1KkiRVQMuWLUNHUAJSwDfk7iZpSde5zbakzVdeDn/6E1x5JVx7LTzyCNSpEzqVJEmqoDfffDN0BCWgLdCIeLqdi5Kuc4/+krR5Vq2KJ9nPPAP33QcXXxw6kSRJqqQFCxbQvHnz0DGUgGOBJcCY0EECSLrOnWxLqrrFi+Pns59/Hp591kZbkqQM1bt379ARlJAUMIm44c41Sde5k21JVfP113D00fDRR/Dyy3D44aETSZIkaRNmA7sDg4mn3Ko5TrYlVd4nn8RnaH/+OYwbZ6MtSVKGKyoqCh1BCdkV2JncPAIs6Tp3si2pcqZNg65doXFjGDkSdt45dCJJkrSZFi9eTJMmTULHUEIuAkYDH4UOkrCk69zJtqSKGzMGOnWCHXaASZNstCVJyhKPP/546AhKUCHx7eSfhA6SsKTr3GZbUsUMGgRdusAhh8Abb8A224ROJEmSqklhYWHoCErQEUBtcu9W8qTr3GZb0qY98AB07w4nnQRDh4K3mUmSlFVmzpwZOoISVAAcSu4120nXuc22pA2LIujZEy65BC6/HJ58EurWDZ1KkiRVM5/Xzj0p4A1gdeggCUq6zm22Ja3fmjVwwQVQVAS33Qa9ekEt/8iQJCkbFRQUhI6ghBUCpcBboYMkKOk692/Okn5s+XI48UTo2xf694c//xny8kKnkiRJNeT9998PHUEJOwBoRm7dSp50ndtsS1rXf/8LhYXw+uswZAicdVboRJIkqYZ16dIldAQlrDZwFLnVbCdd5zbbkv7f559Dhw4wc2a843jXrqETSZKkBPTp0yd0BAWQAt4Fvg0dJCFJ13leFEVRkguWlpZSUFBASUkJ+fn5SS4taWNmzoRUKr5dfORI2GOP0IkkSZJUg/4D7AAMBLoHzpKNnGxLgjffhPbtoaAAiotttCVJyjFFRUWhIyiAnwBtyJ1byZOucyfbUq4bOhROOQUOPBAGD4amTUMnkiRJCVu9ejVbbLFF6BgK4E/Ek+3PgWzfDjfpOneyLeWyvn2hW7f49vERI2y0JUnKUXfeeWfoCAokBcwHcmE/+qTr3GZbykVRBLfcAuecA+eeC88/Dw0ahE4lSZICOfnkk0NHUCAdgPrAyNBBEpB0ndtsS7mmvBwuvxyuvhquuw4eeghq1w6dSpIkBfTmm2+GjqBAGgAdyY3ntpOu8zqJriYprJUr4eyz4bnnoHdvuPDC0IkkSVIaaNmyZegICigFXAMsJ26+s1XSde5kW8oVixfDMcfASy/BoEE22pIkSQLiZnsFMD50kCxjsy3lgq++gsMOg7ffjjdCO+GE0IkkSVIa+eyzz0JHUEB7ER8Dlu23kidd595GLmW7OXPi3caXLYMJE2DvvUMnkiRJaebQQw8NHUEB5RFPt7N9k7Sk69zJtpTNpk6Ftm3jDdCKi220JUnSeg0aNCh0BAVWSHz81+ehg9SgpOs8L4qiKMkFS0tLKSgooKSkhPz8/CSXlnLL6NHxGdp77QVDh8LWW4dOJEmS0tTq1avZYostQsdQQAuArYHHgHMCZ6kpSde5k20pGz37LHTtCu3axU23jbYkSdqIW2+9NXQEBdYcOIjsfm476Tp3si1lm/vug9//Hs44A/r0Af+VWpIkSRXwN+AB4GugduAs2cDJtpQtogj++le47DL405+gf38bbUmSVCFFRUWhIygNFAILgSmhg9SQpOvcybaUDdasgd/+Np5k9+oFf/xj6ESSJCmDzJ8/n+233z50DAW2GtgKuALoGThLTUi6zp1sS5lu2TL41a/giSfgqadstCVJUqUNHz48dASlgS2AzmTvc9tJ17nNtpTJFi6EI4+EMWPiHcfPOCN0IkmSlIHatGkTOoLSRAqYDJSEDlIDkq5zm20pU332GbRvD7Nnx812KhU6kSRJylAlJdnYWqkqCoEy4I3QQWpA0nVusy1lovffh0MPheXLYdIkOOig0IkkSVIGW7x4cegIShM7A7uRnbeSJ13nNttSppk0KZ5oN28OxcWw++6hE0mSpAzXunXr0BGURlLEzXaiO2knIOk6t9mWMsngwfEz2vvsA+PHQ4sWoRNJkqQsMHLkyNARlEZSwFxgduAc1S3pOvfoLylTPP44XHBBvPP4U09B/fqhE0mSpCyxePFimjRpEjqG0sQSoBlwJ3BJ4CzVKek6d7ItpbsogptugvPOi8/SfvZZG21JklSt7rnnntARlEYaA+3Ivue2k65zJ9tSOisrg8svh/vvhxtvhGuvhby80KkkSZKU5W4BioCFQN3AWTKVk20pXa1cCaedBg8+CI88Aj172mhLkqQaUVRUFDqC0kwKWApMCh2kGiVd5062pXRUWho/m11cDM88A926hU4kSZKy2IIFC2jevHnoGEoj5UAL4DfEU+5skHSdO9mW0s2XX0KnTjB1KowcaaMtSZJq3HPPPRc6gtJMLaAQyKZ96pOuc5ttKZ3Mng1t28LXX8OECdChQ+hEkiQpBxx66KGhIygNFQL/BL4KHaSaJF3nNttSunj3XWjXDurWjW8f/9nPQieSJEk54rPPPgsdQWmo8H8/jgqaovokXec221I6GDUKDjsMfvpTmDgRdtopdCJJkpRD8tyEVeuxLbAv2XMEWNJ1brMthfbMM3D00fFz2qNHw1ZbhU4kSZJyzA477BA6gtJUiniyXR46SDVIus5ttqWQ7r4bTj89/nj5ZWjUKHQiSZKUgyZPnhw6gtJUIfEz29NDB6kGSde5zbYUQhTBX/4Cf/hD/GPfvrDFFqFTSZKkHHXSSSeFjqA01Q5oSHbcSp50ndtsS0lbvRp+8xu49Va46y64+WbwOSlJkhTQQw89FDqC0lQ94HCyo9lOus7zoiiKklywtLSUgoICSkpKyM/PT3JpKbylS+GUU+IN0fr3h9NOC51IkiRJ2qj7gD8BC4HGgbNkEifbUlK+/RY6d4bx4+HVV220JUlS2igqKgodQWksBawGxoUOspmSrnMn21ISPv0UUilYuBCGDYMDDgidSJIkaa0lS5bQuLEzS61fBOwMHAfcGzjL5ki6zp1sSzVtxgxo2xZWrYJJk2y0JUlS2nn00UdDR1AayyOebmf6c9tJ17nNtlSTJkyADh1gm22guBh22y10IkmSpB/p2rVr6AhKcyngI2Bu4BybI+k6t9mWasrLL8NRR8H++8O4cbDddqETSZIkrdeMGTNCR1CaOwKoDYwMHWQzJF3nNttSTXjkETjxRDj++PgZbfcnkCRJaaxp06ahIyjNNQUOIbNvJU+6zm22peoURXDjjfDb38LvfgfPPAP16oVOJUmStFFNmjQJHUEZIAWMBtaEDlJFSde5zbZUXcrK4OKL4brr4Kab4N57oZb/iUmSpPQ3c+bM0BGUAVJACfBW6CBVlHSd10l0NSlbrVgBv/41vPQSPPYYnHtu6ESSJEkVdtRRR4WOoAxwINCM+FbydoGzVEXSde7YTdpcixZBly7w6qtxs22jLUmSMky/fv1CR1AGqA0cSeZukpZ0nedFURQluWBpaSkFBQWUlJSQ76ZRynTz50PXrvDZZzBkCLTLxH/jkyRJkirmceAC4BviKbc2zMm2VFUffQRt28LChfF52jbakiQpQxUVFYWOoAyRAsqB10MHqYKk69zJtlQVb78NRx8NW28NI0ZAy5ahE0mSJFXZmjVrqFPH7ZxUMW2AXxBPuTNJ0nXuZFuqrBEj4IgjYLfdYOJEG21JkpTx7rjjjtARlEFSxM9tJzq1rQZJ17nNtlQZTz0FxxwDhx8Or78OzXxSRZIkZb5TTz01dARlkELgcyDTDoxLus5ttqWK6tULzjwTzjor3nW8YcPQiSRJkqrFxIkTQ0dQBukI1CM+AiyTJF3nNtvSppSXw5//DFdcAX/9a3yOts80SZKkLLLTTjuFjqAM0pC44c60ZjvpOrdjkDZm9Wo45xwYMADuvRcuvTR0IkmSpGpXVlYWOoIyTAq4FlgONAicpaKSrnMn29KGLFkCxx4Lzz4LAwfaaEuSpKz1xRdfhI6gDJMCVgCZ9ABC0nVusy2tzzffxDuOFxfDsGFwyimhE0mSJNWYgw8+OHQEZZg2wPZk1q3kSde5zbb0Q3PnQrt28OmnMHYsdO4cOpEkSVKNeuGFF0JHUIbJI96VPJOa7aTrPC+KokSPRystLaWgoICSkhLy8/OTXFratOnToUuXeKfxESNgl11CJ5IkSapxK1eupF69eqFjKMMMBE4jPgbsJ4GzVETSde5kW/rOuHHQoQO0aAGTJtloS5KknHH77beHjqAMdCTxhHtk6CAVlHSdO9mWAF58EU4/PW62X3wRmjQJnUiSJElKewcBuwLPhA6ShpxsSw89BCedBL/6Fbz6qo22JEnKOUVFRaEjKEOlgFFAJhwel3Sd22wrd0URXH89XHQRXHZZfJZ23bqhU0mSJCXunHPOCR1BGSoFLACmhg5SAUnXuc22clNZGVx4IdxwA9xyC9x1F9TyPwdJkpSbhg0bFjqCMtQvgCZkxq7kSde53YVyz/Ll8W3jjz8OffvCVVdBXl7oVJIkScHsvffeoSMoQ20BdCYzNklLus5ttpVbFi2CVCo+1uuVV+Dss0MnkiRJCm7hwoWhIyiDFQJvAqWhg2xC0nVus63c8Z//xLuNv/8+jB4NRx8dOpEkSVJaWLp0aegIymApYA3wRuggm5B0ndtsKzd8+CG0bQslJTBxIhx6aOhEkiRJaWPPPfcMHUEZ7KfEx3+l+3PbSde5zbay31tvQfv28ZFexcXQunXoRJIkSWnl9ddfDx1BGS5F3GxHoYNsRNJ1nhdFUaLfj9LSUgoKCigpKSE/Pz/JpZWLhg2LN0Pbf38YPBi23DJ0IkmSpLRTWlrq3821WQYDxwOziafc6SjpOneyrez1xBNw7LFw1FEwcqSNtiRJ0gbce++9oSMowx0O1CG9byVPus6dbCv7RBHcfnt8pNf558ODD0KdOqFTSZIkSVntMCCfeMotJ9vKNuXl8Mc/xo12z57w8MM22pIkSZtQVFQUOoKyQAoYA6wKHWQDkq5zJ9vKHqtWxedmDxwI998Pv/td6ESSJEkZYeHChTRr1ix0DGW4qcABwFigU9go65V0nTvZVnZYvBiOOQZeeAGee85GW5IkqRKeeeaZ0BGUBfYFtiZ9n9tOus5ttpX5vv4aDj88PuJr+PB493FJkiRVWIcOHUJHUBaoBRxF+jbbSde5zbYy27//De3awX/+A+PGxU23JEmSKmXu3LmhIyhLpIhvJ/86dJD1SLrObbaVuaZNg7ZtIS8Pioth331DJ5IkScpItWvXDh1BWeKo//04KmiK9Uu6zm22lZnGjIGOHaFlS5g0CXbeOXQiSZKkjNWiRYvQEZQlWgB7AyNDB1mPpOvcZluZZ9Ag6NIFDj00brq33jp0IkmSpIz2zjvvhI6gLJIibrYTPfaqApKuc5ttZZYHHoDu3eHkk2HIEGjcOHQiSZKkjHfCCSeEjqAskgK+BKaHDvIDSde5zbYyQxTBtdfCJZfAH/4ATzwBdeuGTiVJkpQVHn744dARlEXaAw1Jv13Jk67zvCiKEp3ul5aWUlBQQElJCfn5+UkurUy1Zg1ceCE8/jjcfjtccUXoRJIkSZI24mhgJfB66CABOdlWelu2DE48Efr1g/79bbQlSZJqQFFRUegIyjKFwARgaegg35N0nTvZVvpauBCOOw7++U94/nno2jV0IkmSpKy0bNkyGjZsGDqGssiHQGvgVeCXgbN8J+k6d7Kt9PT559ChA3z4Ibzxho22JElSDerdu3foCMoyewA7kl7PbSdd53USXU2qiJkzIZWCWrXiM7T32CN0IkmSpKx2zDHHhI6gLJNHvCt5OjXbSde5k22llzffhPbtoWlTKC620ZYkSUrAv/71r9ARlIUKgVnAp6GD/E/SdW6zrfQxdCh07gw/+xmMHw/bbx86kSRJUk5o3rx56AjKQp2JG86RoYP8T9J1brOt9NC3L3TrBl26wIgR8WRbkiRJiWjQoEHoCMpCWwKHkD63kidd5zbbCiuK4Oab4Zxz4LzzYNAgqF8/dCpJkqSc8tFHH4WOoCyVIj5re03oICRf5zbbCqe8HC6/HP76V7j+eujdG2rXDp1KkiQp53Tu3Dl0BGWpFFACvBM6CMnXuc22wli5Ek4/He6/P26yr7sO8vJCp5IkScpJ/fv3Dx1BWepAoCnpcSt50nWeF0VRlOSCpaWlFBQUUFJSQn5+fpJLK12UlsIJJ8DEifD00/HPJUmSJGWlk4HPgTdDB0mYk20l66uv4LDD4J134o3QbLQlSZKCKyoqCh1BWSwFvA38N3COpOvcybaSM2cOpFKwbBkMHw577x06kSRJkoCysjJqu3eOasg8YCfgOeIpdyhJ17mTbSVj6lRo2zbeAK242EZbkiQpjdx2222hIyiL7QjsSfjztpOuc5tt1bzXX4dOnaBVK5g0Kf5RkiRJaeP0008PHUFZLkW8SVqit1X/QNJ1brOtmjVwIPzyl9C+PbzxBmy1VehEkiRJ+oHx48eHjqAslwI+Az4MmCHpOrfZVs2591447TQ49VQYPBgaNQqdSJIkSeux8847h46gLNcJqEfYI8CSrnObbVW/KIKrr4bf/x7+/Gfo1w+22CJ0KkmSJG3AmjVrQkdQlmsIdCDsc9tJ17nNtqrXmjVw7rlwyy3QqxfcdhvUsswkSZLS2Zdffhk6gnJAITAWWBFo/aTr3C5I1WfZMvjVr+DJJ+Gpp+CPfwydSJIkSRVwwAEHhI6gHJAClgMTA62fdJ3bbKt6LFgARx4JY8bA0KFwxhmhE0mSJKmCXn755dARlAN+DrQg3HPbSdd5XhRFie6+XlpaSkFBASUlJeTn5ye5tGrKZ59BKgXffAOvvQYHHRQ6kSRJkiphxYoV1K9fP3QM5YCzganA9ABrJ13nTra1ed5/Hw49FJYvj8/QttGWJEnKOHfccUfoCMoRhcAM4IsAaydd5062VXWTJsExx8BOO8GwYdCiRehEkiRJktLYN8C2QF+gR+AsNc3Jtqpm8OD4Ge1994Vx42y0JUmSMlhRUVHoCMoRWwP7E+a57aTr3GZblffYY/Gu48ccE0+0CwpCJ5IkSdJmOO+880JHUA5JAaOA8oTXTbrObbZVcVEERUVw/vlw4YUwcCC4kYYkSVLGGzJkSOgIyiEp4Fvgnwmvm3Sd22yrYsrK4NJLoWdPuPFGuP9+qF07dCpJkiRVg3333Td0BOWQXwCNSf5W8qTr3GZbm7ZyJZx6KvTuDY88EjfceXmhU0mSJKmaLFiwIHQE5ZC6wBEk32wnXec229q4khLo2hWGDoUXXohvIZck/V979x5jZXXucfy7BUGwzKiIUDx6iKi05rRWiTYdQcDLbJUiarWpFaohNa1Ga4+11ppWYx3keCmWYmltLVW8IVop3iIgN4E5xiOK1nLkIFLAiohS9gYZRmD2+eO1F8ttZnj3Wvvy/SSTgZm93/ULeSaZh+d915KkitLU1BQ7gqpMFmgE8gHXDF3nNtvatXffhcGD4ZVXYOZMOOec2IkkSZJUBEcddVTsCKoyWWAbMCfgmqHr3GZbO7dsGdTVwbp1MH8+DBgQO5EkSZKKZM6ckC2PBH2BI4AZAdcMXeeZQqFQCLlgPp+ntraWXC5HTU1NyKXVWi+9BGedBd27w/TpcPjhsRNJkiSpiHK5HLUe56rALidptt8MtF7oOneyrU+aMSO5dbxvX1iwwEZbkiSpCowfPz52BFWhLLD8448QQte5k239w0MPwcUXQzYLjzwC++8fO5EkSZKkCpUHugPjSKbclcbJthJ33gkXXZR8TJ1qoy1JklRFGhoaYkdQFaoB6gj33HboOneyXe0KBbjuOrjttuTzLbd4hrYkSVKV2bBhAwcccEDsGKpCo4FbgQ+AfYu8Vug6d7JdzbZuhUsuSRrtO++EMWNstCVJkqrQAw88EDuCqlQW2Aj8d4C1Qtd5x6CrqXR8+CFccAE89xw8/DB87WuxE0mSJCmSQYMGxY6gKnU8cDAwHTi5yGuFrnMn29Xo/ffh1FOT87OfecZGW5IkqcotXx5qP2jpk/YBTidptostdJ3bbFeblSthwABYsQLmzoXTToudSJIkSZF16tQpdgRVsXrgZWBdkdcJXec229Xkj3+EurrkWe2FC6F//9iJJEmSVAJ69uwZO4KqWD1QAJ4r8jqh69xmu1o8/zwMHAiHHJI02kceGTuRJEmSSsSiRYtiR1AV6w18juLfSh66zm22q8HUqVBfn0yy582DXr1iJ5IkSVIJGT58eOwIqnJZkvO2i3kudeg6t9mudHffDeefD8OHJ5uheba5JEmS/sVvfvOb2BFU5bLAGuD1Iq4Rus4zhUKhmP95sIN8Pk9tbS25XI4aG7/iKRTg5pvhxhvhiitg3DjYx/9bkSRJklR6tgAHAT8BromcJS12X5Vo+3a4/PKk0R49Gn7+cxttSZIk7VJDQ0PsCKpy+wGDKO5z26Hr3Ml2pdmyBS66CKZNg1//GkaNip1IkiRJJa6pqYkuXbrEjqEq9zPgOmA90LUI1w9d5447K8mGDXDGGcmz2VOn2mhLkiSpVSZMmBA7gkQWaAbmFen6oevcZrtSvPMODBoEr70Gs2bBsGGxE0mSJKlMnH322bEjSHwG+DeSXcmLIXSd22xXgqVLoa4O1q+HBQuSP0uSJEmt9PLLL8eOIJEhmW4X67nt0HVus13uXnwRTjoJ9t8fGhvhmGNiJ5IkSVKZ6dGjR+wIEpA02/8LrC7CtUPXuc12OXv2WRgyBPr1g/nz4bDDYieSJElSGercuXPsCBIAp5E0qcWYboeuc5vtcnX//clz2aecAjNnwkEHxU4kSZKkMrV8+fLYESQADgROpDjPbYeuc5vtcnTHHfCNbyQfU6dC12JsjC9JkqRqMXjw4NgRpL+rB54Dtqd83dB1brNdTlpa4Jpr4Pvfh+uvh3vugY4dY6eSJElSmbv//vtjR5D+Lgv8FfiflK8bus4zhUKhEHLBfD5PbW0tuVyOmpqakEuXt61bk3OzH3wQxo2DK6+MnUiSJEkVoqWlhX32cQ6n0rANOBj4T+DGFK8bus79iSoHmzYlz2dPmQKTJ9toS5IkKVW33HJL7AjS33Uk2Sgt7U3SQte5k+1St24dDB0Kb7wBf/hDsiGaJEmSlCIn2yo1vwYuAz4ADkjpmk629Q8rViRnaK9aBfPm2WhLkiSpKMaMGRM7gvQJWaAFmJXiNUPXuc12qXr1VairSzZFa2yE446LnUiSJEkVauTIkbEjSJ/w70A/0r2VPHSd22yXorlz4eSToXdvWLgQjjgidiJJkiRVsLlz58aOIO0gS9Jsp/Xcc+g6t9kuNb//PWSzcOKJSdPds2fsRJIkSapwffv2jR1B2kEWWAUsTel6oevcZruU/PKXcMEFcN558PTT0K1b7ESSJEmqAs3NzbEjSDsYBHQCZqR0vdB1brNdCgoFuPFGuPxyuOqq5CztTp1ip5IkSVKVWLduXewI0g72BwaQ3nPboevcZju2bdvg29+Gn/wEbr0Vxo4Fj12QJElSQMcff3zsCNJOZYG5QBoz6dB1blcXU1NTctv4b38L994L114LmUzsVJIkSaoyTzzxROwI0k5lgc3AghSuFbrOM4VCIa3N3Voln89TW1tLLpejpqYm5NKl5a9/heHD4aWX4NFHYejQ2IkkSZJUpZqamujSpUvsGNIOWoDewMXArXt5rdB17mQ7hr/8JTna609/gtmzbbQlSZIU1U9/+tPYEaSd2geoJ53ntkPXuZPt0N54Iznaq1CA6dPhs5+NnUiSJEmSStaDwAhgDdArcpa2cLId0gsvwEknJUd6NTbaaEuSJKkkNDQ0xI4g7dLpH3/e2yPAQte5k+1QnnkGzj8f+veHJ56AAw+MnUiSJEkCYO3atfTs2TN2DGmX+gOfIZlyt1foOneyHcJ998HZZ0N9PcyYYaMtSZKkkjJt2rTYEaTdqgdmkmyY1l6h69xmu5gKBbjtNrjkEhg1Ch57DNzlUZIkSSWmf//+sSNIu5UF1gGL9+IaoevcZrtYWlrg6qvhBz+AG26Au++Gjh1jp5IkSZJ2sHbt2tgRpN2qAz7F3u1KHrrObbaL4aOPYMQIGDcOJkyAm26CTCZ2KkmSJGmnPvroo9gRpN3qBAxh75rt0HXuqDVtGzfCeefB88/DlCnJpmiSJElSCevbt2/sCNIe1QNXAxuBbu14f+g6d7KdpvfegyFD4MUXkzO0bbQlSZJUBubNmxc7grRHWWArMLed7w9d5x79lZa33oJsFjZtgmefhWOPjZ1IkiRJapUNGzZwwAEHxI4h7VYB6AucBdzVjveHrnMn22l45RWoq0uey25stNGWJElSWbnrrva0LlJYGZLpdnuf2w5d506299bs2XDOOdCvHzzzDPToETuRJEmSJFWkPwDnAsuBI+JG2SMn23tjyhQ480z40pdgzhwbbUmSJJWlhoaG2BGkVhkCdABmtOO9oevcyXZ73XUXfOc78PWvw8SJ0KlT7ESSJElSu+RyOWpra2PHkFplIHAwMLWN7wtd506226pQgB/9CK68Eq6+GiZNstGWJElSWZs0aVLsCFKrZYFZJDuTt0XoOrfZbott2+DSS2H0aLj9drjjDtjHf0JJkiSVtyFDhsSOILValuSs7Rfa+L7QdW6n2FqbN8N558F99yXT7GuuiZ1IkiRJSsWyZctiR5Ba7XjgINr+3HboOrfZbo316+H002HWLHjySRg5MnYiSZIkKTVdunSJHUFqtQ7A6bT9CLDQdW6zvSerV8PAgbB0aXLM1xlnxE4kSZIkpap79+6xI0htkgVeAt5vw3tC17nN9u4sWQJ1dfDhh7BwIXzxi7ETSZIkSalbvHhx7AhSm9QDBeC5NrwndJ3bbO9KYyMMGAAHHpj8uV+/2IkkSZKkohg2bFjsCFKbHAr8B227lTx0ndts78yTT8Jpp8HnPgfPPw+9e8dOJEmSJBXNPffcEzuC1Gb1JJukFVr5+tB1nikUCq3Nlop8Pk9tbS25XI6ampqQS7fO736XHO81fDg8+CDst1/sRJIkSZKkfzGD5NntP5JMuUuNk+2/KRRgzBgYNSpptqdMsdGWJElSVWhoaIgdQWqzgcB+tP5W8tB17mQboKUFvvtdGD8ebroJfvxjyGRip5IkSZKC2LJlC/s5aFIZOgNooXVnboeucyfbzc1w4YXwi1/Ar34FN9xgoy1JkqSqMn78+NgRpHapB54Hmlrx2tB1Xt3Ndj4PZ50F06bBY4/Bt74VO5EkSZIU3DnnnBM7gtQuWaCZpOHek9B1Xr3N9rvvwuDBsGgRzJgB554bO5EkSZIUxaJFi2JHkNrlGJJjwFrz3HboOu8YdLVS8eabkM1CUxPMn58c8SVJkiRVqV69esWOILVLhmS63ZpmO3SdV99k++WX4aSToGNHaGy00ZYkSVLV69ixOmdwqgxZYAmweg+vC13n1dVsP/ccDBoEffrAwoXJZ0mSJKnKrVixInYEqd1OJZlwz9zD60LXefU025MnJ5uhDRwIs2fDwQfHTiRJkiSVhJNPPjl2BKndugMnsOdbyUPXeXU02+PGJcd7XXhhsvP4/vvHTiRJkiSVjIceeih2BGmvZEkm29t385rQdZ4pFAqFkAvm83lqa2vJ5XLU1NQUd7FCAa6/Hv7rv+Daa5PPnqEtSZIkfcL27dvp0KFD7BhSuy0EBgAvAF/cxWtC13nlTra3boVRo5IGe+xYuPVWG21JkiRpJ8aMGRM7grRXTgRqgBm7eU3oOq/MyfbmzfDVr8L06XDvvXDRRcVZR5IkSZJUEs4D3gMWxA7yscqbbH/wAZx6KsydC08/baMtSZIk7UFDQ0PsCNJey5LcRp7bxfdD13llNdurVsGAAfDmmzBnDtTXx04kSZIklbyLL744dgRpr2VJNkibtYvvh67zymm2X38d6upgy5bkDO0TToidSJIkSSoLs2btqj2Rykcf4Gh2fQRY6DqvjGZ7wYLk/OyDD4bGRjj66NiJJEmSpLJxtL8/q0LUkzTbO9uYLHSdl3+z/cQTcPrp8IUvwLx58OlPx04kSZIklZWmpqbYEaRUZIGVwLKdfC90nZd3s33PPXDuufDlL8Ozz0JtbexEkiRJUtn54IMPYkeQUjEY2Jed30oeus7Ls9kuFODmm+HSS+Gyy2DyZOjcOXYqSZIkqSwde+yxsSNIqfgUMICdN9uh67z8mu3t2+GKK+CGG5KGe/x46NAhdipJkiSpbD311FOxI0ipqQfmAM3/8vXQdZ4pFAo7e3a8aPL5PLW1teRyOWpqatr25i1bYORIePxxuPtu+OY3ixNSkiRJqiKbN2+ma9eusWNIqXgFOB6YDQz5p6+HrvPymWzncnDmmfDUU0mzbaMtSZIkpWLs2LGxI0ipORY4hB1vJQ9d5+Ux2V6zJmm0V66EJ5+EAQOKG1KSJEmSVLZGAq+TTLljKf3J9rJlUFcH778P8+fbaEuSJEkpa2hoiB1BSlUWWAys/aevha7z0p5sv/QSnHUWdO8O06fD4YeHCSlJkiRVkXXr1tGjR4/YMaTUrAV6AfcDIz7+Wug6L93J9owZMHgw9O0LCxbYaEuSJElF8vjjj8eOIKWqJ/AFPvncdug6L81m+8EHYejQpNmeNSuZbEuSJEkqihNOOCF2BCl1WWAG0PLx30PXeek122PHwogRycfUqeARBJIkSVJRrVmzJnYEKXVZ4D3g1Y//HrrOS6fZbmmBa6+F730PfvhDmDgR9t03dipJkiSp4m3fvj12BCl1dUBXkuk2hK/z0mi2t26FSy6B22+Hn/0MbrkFMpnYqSRJkqSq0KdPn9gRpNR1Bobwj+e2Q9d5/Gb7ww9h+HCYPBkefhiuuip2IkmSJKmqzJ8/P3YEqSiywAJgE+HrPO7RXx99lGyEtmRJ8nz2aaeFjCJJkiQJWL9+PQcddFDsGFLq/g/oBzwJ1AWu83iT7VWrYMAA+POfYe5cG21JkiQpkgkTJsSOIBXFUUAfklvJQ9d5vMl2r17UdO0K06fDkUeGjCBJkiRJqhLfAuYCSwOvG36yvXBh8vmQQ6Cx0UZbkiRJiqyhoSF2BKlosiS3k38vcJ23arJdKBTYuHFjuxZobm6mubk5+ctbb7Hx1FM5Zts2Vi9ZQs2hh7brmpIkSZLSk8/nqampiR1DKoocya3ko/N5Lk+pzrt160ZmDydotarZ/tut35IkSZIkVbtcLrfH/6AKO9kG1qxZw4knnsiSJUs41Mm2JEmSFFU+n+ewww5j9erVTrdVsdKu89ZMtju25kKZTCb1H7xu3br5wyxJkiSViJqaGn8/V8ULWefxjv6SJEmSJKlC2WxLkiRJkpSy4M12586dP/FZkiRJUjydO3dm2LBh/n6uihajzlu1QVqa/razeWt2b5MkSZJUfO+88w69e/eOHUMqqtB17m3kkiRJUpWbOHFi7AhS0YWucyfbkiRJkiSlzMm2JEmSVOUaGhpiR5CKLnSdO9mWJEmSqlxzc7MbpKniha5zJ9uSJElSlRs3blzsCFLRha5zm21JkiSpir399tssXbo0dgypqDZt2sTs2bNZtWpVsDU7BltJkiRJUkkpFApMmzaN7du3x44iFc3EiRNZuXIl06dPp6WlJdi6wSfb3bp1I5fL0a1bt9BLS5IkSfonM2fO5JRTTokdQyqqUaNGcdNNNwVfN/hkO5PJuDGaJEmSFNny5cvp2bMnXbp0iR1FqkjeRi5JkiRVocWLF9OhQwfee+89Vq1axWuvvcbnP//52LGkiuEGaZIkSVIV+spXvsLQoUNpamqiubmZwCcCSxUv+DnbkiRJkiSFlslkWLFiBX369AmynpNtSZIkSZJSZrMtSZIkVaFMJrPTD6nSPPzww1x22WUAXHfddUyYMCHIut5GLkmSJElSypxsS5IkSVUqn88DsHHjxshJpMpjsy1JkiRVqeOOO47hw4fz6KOPxo4iVRxvI5ckSZKq1AMPPMCIESNix5AqkpNtSZIkqUq9+uqrzJ49m9tvv91ztqWUOdmWJEmSqlShUCCTyTB69Gjq6uoYMmRI7EhSxXCyLUmSJFWhSZMm8cgjjwCQy+WcbEspc7ItSZIkVaE1a9bw4osvUigUePvtt7niiitiR5Iqis22JEmSJEkp8zZySZIkSZJSZrMtSZIkSVLKbLYlSZIkSUqZzbYkSZIkSSmz2ZYkSZIkKWU225IkSZIkpcxmW5IkSZKklNlsS5IkSZKUMpttSZIkSZJSZrMtSZIkSVLKbLYlSZIkSUrZ/wMAGMTMwGv0QAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "Graphics object consisting of 2 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:54,261 Plotting covered intervals... done\n", + "INFO: 2023-09-20 09:43:54,262 All intervals are covered (or connected-to-covered). 2 components.\n", + "INFO: 2023-09-20 09:43:54,295 Finite dimensional test: Solution space has dimension 0.\n", + "INFO: 2023-09-20 09:43:54,296 Thus the function is extreme.\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "extremality_test(h, show_plots=True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "The documentation string of each function reveals its optional\n", + "The documentation string of each function reveals its optional\n", "arguments, usage examples, and bibliographic information. :" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mgmic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_gmic\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_gmic(default_values=(('f', 4/5), ('field', None), ('conditioncheck', True)), names=('f',))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: GMIC (Gomory mixed integer cut);\n", + "\n", + " * Infinite (or Finite); Dim = 1; Slopes = 2; Continuous;\n", + " Analysis of subadditive polytope method;\n", + "\n", + " * Discovered [55] p.7-8, Eq.8;\n", + "\n", + " * Proven extreme (for infinite group) [60] p.377, thm.3.3;\n", + " (finite group) [57] p.514, Appendix 3.\n", + "\n", + " * (Although only extremality has been established in literature,\n", + " the same proof shows that) gmic is a facet.\n", + "\n", + " Parameters:\n", + " f (real) \\in (0,1).\n", + "\n", + " Examples:\n", + " [61] p.343, Fig. 1, Example 1\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = gmic(4/5)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Reference:\n", + " [55]: R.E. Gomory, An algorithm for the mixed integer problem,\n", + " Tech. Report RM-2597, RAND Corporation, 1960.\n", + "\n", + " [57]: R.E. Gomory, Some polyhedra related to combinatorial\n", + " problems, Linear Algebra and its Application 2 (1969) 451-558.\n", + "\n", + " [60]: R.E. Gomory and E.L. Johnson, Some continuous functions\n", + " related to corner polyhedra, part II, Mathematical Programming 3\n", + " (1972) 359-389.\n", + "\n", + " [61]: R.E. Gomory and E.L. Johnson, T-space and cutting planes,\n", + " Mathematical Programming 96 (2003) 341-375.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "gmic?" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "The docstring tells us that we can set the \\`f' value using an optional\n", + "The docstring tells us that we can set the \\`f' value using an optional\n", "argument:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:54,776 Rational case.\n" + ] + } + ], "source": [ "h = gmic(1/5)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "Of course, we know it will still be extreme; but let's test it to see\n", + "Of course, we know it will still be extreme; but let's test it to see\n", "all the informative graphs:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:54,782 pi(0) = 0\n", + "INFO: 2023-09-20 09:43:54,783 pi is subadditive.\n", + "INFO: 2023-09-20 09:43:54,783 pi is symmetric.\n", + "INFO: 2023-09-20 09:43:54,784 Thus pi is minimal.\n", + "INFO: 2023-09-20 09:43:54,784 Plotting 2d diagram...\n", + "INFO: 2023-09-20 09:43:54,784 Computing maximal additive faces...\n", + "INFO: 2023-09-20 09:43:54,785 Computing maximal additive faces... done\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAALfCAYAAABb1rW9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlDElEQVR4nO3dd3xV9f3H8XcYCSEhYchUIMhGCgjVolWGgmgr4qosGVLFXRy4fkJFBBfiLlRRDGgZVRQxraggywlCQdEIGIOoDSor7ADJ+f2R3is3897k3nO+55zX8/HIo01yx5cI3hdfv/dz4izLsgQAAAAgKqo4vQAAAADASwhsAAAAIIoIbAAAACCKCGwAAAAgighsAAAAIIoIbAAAACCKCGwAAAAgighsuJ5lWdq7d68Y6Q4AAExAYMP19u3bp9TUVO3bt8/ppaAU8+bNc3oJAAAfMOX1Jo4rOcLt9u7dq9TUVOXm5iolJcXp5QAAAJ9jBxtAzE2aNMnpJQAAfMCU1xt2sOF67GCb79ixY6pWrZrTywAAeJwprzfsYAOIuccee8zpJQAAfMCU1xsCG0DMDRo0yOklAAB8wJTXG+f30AF43gcffKC0tDSnlwEY4ciRIzp27JjTywA86bPPPlODBg0q9RjVqlVTfHx85R6jUvcGgDA0b97c6SUARjhy5Ii+/PJLFRQUOL0UwJNatGihzMzMSj1GlSpVdMopp1QqsglsADGXn5/v9BIAIxw7dkwFBQVKS0tTYmKi08sBUMShQ4e0detWHTt2jMAGYLacnBynlwAYJTExUTVr1nR6GQBKkZubq8OHDyshIUFJSUkR35/ABhBzp59+utNLAAAgbBkZGTpw4IBSUlI0cODAiCObKSIAYm7BggVOLwEAgLAlJSUpPj5ee/fuVV5eXsT3J7ABxNyYMWOcXgIAAGFLSEhQQkJChe9PYAOImR9/lBo2lAYMmKJDh5xeDQAA9iCwAcTMrbdKO3dK77wzTo0aSddeK338sWRZTq8MAIDYIbABxMQ770ivvipNmybdcsskjRkjLV4snXmm1Lat9OCD0vffO71KAACij8AGEHW5udLVV0t9+kjXXCPdcccoTZwoZWdLS5dK3btLkyZJzZtL550nzZkjjpAANpgwYYK6dOlS5m1Gjhypiy++OPh5r169dMstt5R5n/T0dNWuXbvS6yvPwoUL1apVK1WtWrXcNQFOIrABRN3YsYWR/cILUlyc9Pbbb0uSqlSRzjlHmj1b2r698PuHD0tDh4ojJEAFfPTRR6patarOP//8mD3H66+/rgceeCD4eVpamp588smQ2wwcOFCbN2+O2RoCrr32Wl1++eX6/vvvQ9YEmIbABhBV77xTGM6PPVa4Qy1JnTp1Kna7lBRp1Chp5UppyxZxhASogJkzZ+rmm2/WBx98oG3btsXkOerWratatWqVeZvExEQ1aNAgJs8fsH//fv3888/q16+fmjRpUu6aACcR2ACipujRkIBdu3aVeb9WrcQREiBCBw4c0D//+U9df/31uvDCC5Wenl7sNg8//LAaNmyoWrVq6c9//rMOHz4c8v38/Hzddtttql27turVq6c777xTVpH/hHT8EZFevXrpu+++06233qq4uDjFxcVJCj0ismnTJsXFxenrr78OeZzHH39caWlpwcf/6quv9Ic//EHJyclq2LChhg0bph07dpT4a12+fHkwqM855xzFxcVp+fLl2rlzpwYPHqyTTjpJNWvW1G9+8xvNnTs35L4FBQV65JFH1KpVKyUkJKhZs2aaPHly8Ps//vijBg4cqDp16qhevXoaMGCAtm7dWvoPHggDgQ0gaooeDQk4cOBAWPfnCAkQvvnz56tt27Zq27atrrzySr300kshcfzPf/5T9913nyZPnqzPPvtMjRs31rRp00IeY+rUqZo5c6ZefPFFffDBB9q1a5feeOONUp/z9ddf10knnaSJEycqJydHOTk5xW7Ttm1bdevWTf/4xz9Cvj5nzhwNGTJEcXFxysnJUc+ePdWlSxd99tlnWrx4sX766SddccUVJT7vmWeeqU2bNkkqvHBVTk6OzjzzTB0+fFjdunVTRkaGNm7cqNGjR2vYsGH69NNPg/e955579Mgjj2j8+PH66quvNGfOHDVs2FCSdPDgQfXu3VvJyclauXKlPvjgAyUnJ+v888/XkSNHyvknAJTBAlwuNzfXkmTl5uY6vRRfW7zYsiTLeu654t/78ssvK/XYW7ZY1vjxltWsWeFztG5tWZMnW9a2bZV6WMB2Bw4csD777DPrwIEDlX6sM88803ryyScty7Kso0ePWieccIL13nvvBb9/xhlnWNddd13IfX73u99ZnTt3Dn7euHFj6+GHHw5+fvToUeukk06yBgwYEPxaz549rTFjxgQ/b968ufXEE0+EPO5LL71kpaamBj9//PHHrZNPPjn4+aZNmyxJwX8XjB8/3jrvvPNCHuP777+3JFmbNm0q8de7e/duS5K1bNmyEr8f8Ic//MG6/fbbLcuyrL1791oJCQnWjBkzSrztiy++aLVt29YqKCgIfi0vL89KTEy03nnnnTKfB94U+DP62muvWS+88IL1xBNPWDt37oz4cdjBBlBppR0NCViyZEmlHp8jJECoTZs2afXq1Ro0aJAkqVq1aho4cKBmzpwZvE1mZqbOOOOMkPsd/3lubq5ycnJCvlatWjX99re/rfT6Bg0apO+++06ffPKJJOkf//iHunTpog4dOkiS1q5dq2XLlik5OTn40a5dO0lSVlZW2M+Tn5+vyZMnq1OnTqpXr56Sk5P17rvvBs+jZ2ZmKi8vT+eee26J91+7dq2++eYb1apVK7iOunXr6vDhwxGtAyiqmtMLAOB+pR0NCRg5cmRUnidwhOScc6Rnn5Vee01KTy88QpKSIg0aJI0cWRjgJa0D8IoXX3xRx44d04knnhj8mmVZql69unbv3q06deo4uDqpcePG6t27t+bMmaPu3btr7ty5uvbaa4PfLygoUP/+/fXII4+UeN9wTZ06VU888YSefPJJ/eY3v1FSUpJuueWW4PGOxMTEMu9fUFBQ4nEWSapfv37Y6wCKYgcbQKWUNDWkqKeffjrqz8sUEvjVsWPHNHv2bE2dOlXr168PfmzYsEHNmzcPxmL79u2DO8gBx3+empqqxo0bh3zt2LFjWrt2bZnPHx8fr/z8/HLXOXToUM2fP18ff/yxsrKygrvtktS1a1d9+eWXSktLU6tWrUI+kpKSwvo5SNKqVas0YMAAXXnllercubNOPvlkbdmyJfj91q1bKzExUUuXLi3x/l27dtWWLVvUoEGDYutITU0Nex1AUQQ2gAor72hIwLhx42K6Do6QwE8yMjK0e/du/fnPf1bHjh1DPi6//HK9+OKLkqQxY8Zo5syZmjlzpjZv3qz77rtPX375ZchjjRkzRg8//LDeeOMNff3117rhhhu0Z8+eMp8/LS1NK1eu1I8//ljq1A9JuvTSS7V3715df/316t27d8hu+4033qhdu3Zp8ODBWr16tb799lu9++67GjVqVFjxHtCqVSu99957+uijj5SZmalrr71W27dvD36/Ro0auuuuu3TnnXdq9uzZysrK0ieffBL8GQ0dOlQnnHCCBgwYoFWrVik7O1srVqzQmDFj9MMPP4S9DqAoAhtAhZV3NCRg0qRJtqyHKSTwgxdffFF9+vQpcYf1sssu0/r167Vu3ToNHDhQf/3rX3XXXXepW7du+u6773T99deH3P7222/X8OHDNXLkSJ1xxhmqVauWLrnkkjKff+LEidq6datatmxZ5jGKlJQU9e/fXxs2bNDQoUNDvtekSRN9+OGHys/PV79+/dSxY0eNGTNGqampqlIl/DQZP368unbtqn79+qlXr15q1KhRyFUoA7e5/fbb9de//lXt27fXwIED9fPPP0uSatasqZUrV6pZs2a69NJL1b59e40aNUqHDh1SSkpK2OsAioqzLF5q4G579+5VamqqcnNz+Reijd55Rzr/fOm556TRo8u+7a5du1S3bl17FlaCb74pjO5Zs6Rt26TWrQvPag8bJjVt6tiy4EMHDx5UZmam2rdvr5o1azq9HABFBP6Mbt26VXv27NG+ffs0fPjwiF/D2MEGELFwj4YEFL3wg904QgIAsBOBDSBi4R4NCTj77LNjv6gwcIQEAGAHAhtARMKZGlKUiZcdZgoJACBWCGwAYYv0aEhA1apVY7eoKOAICRBdW7duVVxcnNavX+/0UsLitvXCfAQ2gLBFejQkIJILRziJIyRwk+3bt+vmm2/WySefrISEBDVt2lT9+/cvdeaz1yxfvlxxcXGKi4tTlSpVlJqaqlNPPVV33nmncnJyovLY5Y0sDMfIkSOD66xevbpOPvlkjR07VgcOHKj0Y8NcBDaAsFTkaEjAmjVrYrOoGOIICUy2detWdevWTe+//74effRRffHFF1q8eLF69+6tG2+80enl2WrTpk3673//qzVr1uiuu+7SkiVL1LFjR33xxRdOLy3o/PPPV05Ojr799ltNmjRJ06ZN09ixY51eFmKIwAZQrooeDQm49NJLo78oG3GEBKa54YYbFBcXp9WrV+vyyy9XmzZtdMopp+i2224LuTLjtm3bNGDAACUnJyslJUVXXHGFfvrpp+D3J0yYoC5dumjmzJlq1qyZkpOTdf311ys/P1+PPvqoGjVqpAYNGmjy5Mkhzx8XF6fp06frggsuUGJiolq0aKFXX321zDV/9dVX+sMf/qDk5GQ1bNhQw4YNC16oZvny5YqPj9eqVauCt586dapOOOGEcnejGzRooEaNGqlNmzYaNGiQPvzwQ9WvX7/YzO+XXnpJ7du3V40aNdSuXTtNmzatxMfbunWrevfuLUmqU6eO4uLiNHLkSEnS4sWLddZZZ6l27dqqV6+eLrzwQmVlZZW5PklKSEhQo0aN1LRpUw0ZMkRDhw7VwoULy70f3IvABlCuih4NCXjuueeivygHcIQEsXD06FHl5OSU+3H06FFJhXPlFy9erBtvvLHEy4rXrl1bkmRZli6++GLt2rVLK1as0HvvvaesrCwNHDgw5PZZWVl6++23tXjxYs2dO1czZ87UH//4R/3www9asWKFHnnkEY0bN67YZdfHjx+vyy67TBs2bNCVV16pwYMHKzMzs8RfY05Ojnr27KkuXbros88+0+LFi/XTTz/piiuukCT16tVLt9xyi4YNG6bc3Fxt2LBB9957r2bMmBHxEbPExERdd911+vDDD4MXlJkxY4buvfdeTZ48WZmZmXrwwQc1fvx4zZo1q9j9mzZtqgULFkgq3B3PycnRU089JUk6cOCAbrvtNq1Zs0ZLly5VlSpVdMkll6igoCDiNQb+ecKbqjm9AABmCxwNee65yI+GBMT6UulOCBwhGTUq9EI2zz/PhWwQmR07duj5558v93ajR49W48aN9c0338iyLLVr167M2y9ZskSff/65srOz1fR/vxFffvllnXLKKVqzZo1OO+00SVJBQYFmzpypWrVqqUOHDurdu7c2bdqkf//736pSpYratm2rRx55RMuXL1f37t2Dj/+nP/1JV199tSTpgQce0HvvvadnnnmmxJ3h6dOnq2vXrnrwwQeDX5s5c6aaNm2qzZs3q02bNpo0aZKWLFmi0aNH68svv9SwYcPKvapkaQI/m61bt6pBgwZ64IEHNHXq1OB/TWvRooW++uorPffccxoxYkTIfatWrRq8qEiDBg2Cf2GRCq+UebwXX3xRDRo00FdffaWOHTuGtbbVq1drzpw5Ovfccyv0a4M7ENgASlXZoyEBkyZN8mRkBwSOkEyYIC1fLqWnFx4hGTeu8Gc3cqR0ySVSYqKz64SZTjjhBI0u73Ko/7udVLgzLRUe0yhLZmammjZtGoxrSerQoYNq166tzMzMYGCnpaWpVq1awds0bNhQVatWDblkecOGDYO7wQFnnHFGsc9Lm8Kxdu1aLVu2TMnJycW+l5WVpTZt2ig+Pl6vvPKKOnXqpObNm+vJJ58s89dXluN/Rr/88ou+//57/fnPf9Y1x/2L7NixYyVebr4sWVlZGj9+vD755BPt2LEjuHO9bdu2MgM7IyNDycnJOnbsmI4ePaoBAwbomWeeqcCvDG5BYAMoVWWPhgTcdttt0VuUwQJHSM45R3r2Wem11wpje+jQwh3vQYMKY7t798r9POEt1atXj+gYROvWrRUXF6fMzExdfPHFpd7OsqwSI7zo16tXrx7y/cC0i6JfC+cYRGnRX1BQoP79++uRRx4p9r3jf+0fffSRpMJjMLt27SrxCEw4AkdV0tLSguueMWOGfve734XcLtIRov3791fTpk01Y8YMNWnSRAUFBerYsaOOHDlS5v169+6t6dOnq3r16mrSpEmxny+8hzPYAEpUmakhRU2fPj06i3IRppAgVurWrat+/frpb3/7W4mj3gKj5Tp06KBt27bp++N+o3311VfKzc1V+/btK72OomeyP/nkk1KPrXTt2lVffvml0tLS1KpVq5CPQERnZWXp1ltv1YwZM9S9e3cNHz484rPNknTo0CE9//zz6tGjh+rXr6+GDRvqxBNP1LffflvsuVu0aFHiY8THx0uS8vPzg1/buXOnMjMzNW7cOJ177rlq3769du/eHdaakpKS1KpVKzVv3py49gkCG0Ax0ToaEnDhhRdW/kFcjCkkiLZp06YpPz9fp59+uhYsWKAtW7YoMzNTTz/9dPDoRp8+fdSpUycNHTpU69at0+rVqzV8+HD17NlTv/3tbyu9hldffVUzZ87U5s2bdd9992n16tW66aabSrztjTfeqF27dmnw4MFavXq1vv32W7377rsaNWqU8vPzlZ+fr2HDhum8887TVVddpZdeekkbN27U1KlTy13Hzz//rO3bt2vLli2aN2+efv/732vHjh0hf7GfMGGCHnroIT311FPavHmzvvjiC7300kt6/PHHS3zM5s2bKy4uThkZGfrll1+0f/9+1alTR/Xq1dPzzz+vb775Ru+//75v/uscIkdgAygmWkdDAjZs2FD5B/EAppAgWlq0aKF169apd+/euv3229WxY0f17dtXS5cuDYZlXFycFi5cqDp16qhHjx7q06ePTj75ZM2fPz8qa7j//vs1b948derUSbNmzdI//vEPdejQocTbNmnSRB9++KHy8/PVr18/dezYUWPGjFFqaqqqVKmiyZMna+vWrcE3ezZq1EgvvPCCxo0bV+7VFdu2basmTZqoW7duevjhh9WnTx9t3LgxZC1XX321XnjhBaWnp+s3v/mNevbsqfT09FJ3sE888UTdf//9uvvuu9WwYUPddNNNqlKliubNm6e1a9eqY8eOuvXWWzVlypSK/fDgeXGWxb/K4W579+5VamqqcnNzlZKS4vRyXO+dd6Tzzy+cGhLG+67CsnTpUt4xX4bjp5Bs28YUEi87ePCgMjMz1b59e9WsWdPp5VRYXFyc3njjjTLPgANuFPgzunXrVu3Zs0f79u3T8OHDg5NlwsUONoCgaB8NCUhkfEaZOEICAN5CYAMIivbRkIDNmzdH78E8jCMkAOANBDYASdGdGlIUx0MixxQSOCVwVcWyBK4SWVHLly9XXFxccOKJ223atEmNGjXSvn37wrp9RkaGTj311ApNSYmmHj16aM6cOWHdNi8vT82aNdPatWtjvKqyvfjiizrvvPPCvv3YsWP1l7/8JYYrKhmBDSBmR0MCSrocMcLHERLY6fXXX9cDDzwQtccrKdjPPPNM5eTkRHyhF7utXLlS/fv3V5MmTYJvGi3JvffeqxtvvDF4wZ7AXyCKfgQuuHXhhRcqLi4u7LiNxPLlyzVgwAA1btxYSUlJ6tKli/7xj38Uu11GRoa2b9+uQYMGBb+WlpZWbM0nnXSSJCkhIUFjx47VXXfdFfU1S9K1116rli1bKjExUfXr19eAAQP09ddfh9wmLy9Pf/3rXzV+/Pjg1yZMmFDiz3rJkiWSpDvvvFMvvfSSsrOzY7Lu0hDYAGJ2NCTAy1dxtBNHSFAZ5V0MJaBu3bohV3aMhfj4eDVq1Kjcq1E67cCBA+rcubOeffbZUm/zww8/aNGiRbrqqquKfW/Tpk3KyckJftx9993B71111VUxuZrjRx99pE6dOmnBggX6/PPPNWrUKA0fPlxvvfVWyO2efvppXXXVVSFX7JSkiRMnhqz5P//5T/B7Q4cO1apVq4IX8ommbt266aWXXlJmZqbeeecdWZal8847L2QW+YIFC5ScnKyzzz475L6nnHJKyJpzcnLUo0cPSYWXuz/vvPP097//PeprLpMFuFxubq4lycrNzXV6Ka60eLFlSZb13HOxe44HHnggdg8Oa8sWyxo/3rKaNSv8Z9m6tWVNnmxZ27Y5vTIUdeDAAeuzzz6zDhw4UKnH6dmzp3XjjTdaN954o5WammrVrVvXuvfee62CgoLgbZo3b2498MAD1ogRI6yUlBRr+PDhlmVZ1muvvWZ16NDBio+Pt5o3b2499thjxR57zJgxwc/z8vKsO+64w2rSpIlVs2ZN6/TTT7eWLVsWcp8PPvjA6tGjh5WYmGjVrl3bOu+886xdu3ZZI0aMsCSFfGRnZ1vLli2zJFm7d+8OPkZ562revLk1efJk66qrrrKSk5Otpk2bWs8d9y+uvLw868Ybb7QaNWpkJSQkWM2bN7cefPDBUn+GI0aMsAYMGGBNmDDBql+/vlWrVi1r9OjRVl5eXom3l2S98cYbxb4+depU67e//W3I10r69RW1detWS5KVlZVV6m2KCjxuRkaG1alTJyshIcE6/fTTrc8//7zM+/3hD3+wrrrqquDnv/zyixUXF2dt3Lgx5HbNmze3nnjiiTIfq1evXtb48ePDXnPgcSdOnGgNHjzYSkpKsho3bmw9/fTTZd5nw4YNliTrm2++CX6tf//+1tixY0Nud99991mdO3cu87HS09Otpk2bhrXWwJ/R1157zXrhhResJ554wtq5c2dY9z0eO9iAj8X6aEjAPffcE7sHB0dIfGrWrFmqVq2aPv30Uz399NN64okn9MILL4TcZsqUKerYsaPWrl2r8ePHa+3atbriiis0aNAgffHFF5owYYLGjx+v9PT0Up/nqquu0ocffqh58+bp888/15/+9Cedf/752rJliyRp/fr1Ovfcc3XKKafo448/1gcffKD+/fsrPz9fTz31lM444wxdc801wZ3FpiXMngx3XVOnTtVvf/tb/ec//9ENN9yg66+/PniM4Omnn9aiRYv0z3/+U5s2bdIrr7yitLS0Mn+GS5cuVWZmppYtW6a5c+fqjTfe0P3331/+D/84K1eurNCFe5o3b64GDRpo1apVEd/3jjvu0GOPPaY1a9aoQYMGuuiii3T06NFSb5+bmxsyZu6DDz5QzZo1K3RFz9NPP71Ca54yZYo6deqkdevW6Z577tGtt96q9957r8TbHjhwQC+99JJatGgR8vtl1apVFfpZn3766fr+++/13XffRXzfCos4yQHDsINdcVdfbVm1alnW1q2xfZ6ydpEQG7m5lvXii5Z19tmFu9opKZY1erRlffSRZR23yQmbRXMHu3379iE71nfddZfVvn374OfNmze3Lr744pD7DRkyxOrbt2/I1+644w6rQ4cOIY8d2MH+5ptvrLi4OOvHH38Muc+5555r3XPPPZZlWdbgwYOt3//+92Wu9fgdccsqvsMbzrqaN29uXXnllcHPCwoKrAYNGljTp0+3LMuybr75Zuucc84J+ZmUZcSIEVbdunVD/llMnz7dSk5OtvLz84vdXqXsYHfu3NmaOHFiib++pKSkkI8dO3aE3O7UU0+1JkyYENZ6j3/cefPmBb+2c+dOKzEx0Zo/f36J93n11Vet+Pj4kN3qJ554wjr55JOL3bZ58+ZWfHx8yJqfeuqpkNs89dRTVlpaWthrDjzu+eefH/K1gQMHWhdccEHI1/72t79ZSUlJliSrXbt2IbvXu3fvtiRZK1euDLnPfffdZ1WpUiVkzaeddlrIbQKdsHz58nLXyg42gEqJ5dSQooYMGRLbJ0AxTCHxvu7du4ecYT7jjDO0ZcuWkDOrRXf7MjMz9fvf/z7ka7///e+L3S9g3bp1sixLbdq0UXJycvBjxYoVysrKkvTrDnZlhLuuTp06Bf9/XFycGjVqpJ9//lmSNHLkSK1fv15t27bVX/7yF7377rvlPm/nzp1DLvhzxhlnaP/+/fo+gj8chw4dUo0aNUr83qpVq7R+/frgR506dUK+n5iYqIMHD4b9XMevM6Bu3bpq27Ztieeily9frpEjR2rGjBk65ZRTwlrzHXfcEbLm4cOHR33Ngc+Lrnno0KH6z3/+oxUrVqh169a64oordPjw4eCaJZW47rZt24asecGCBcXWLKlC666oarY9EwBj2HU0JGDlypUaNmxY7J8IJQocIZkwQVq+XEpPLzxCMm5c4e+BkSOlSy6RuB6Q9yQlJYV8bllWsTcWWmW8K7agoEBVq1bV2rVrVbVq1ZDvJScnS4rOhaTCXVf16tVDPo+LiwuOuuvatauys7P19ttva8mSJbriiivUp08fvfbaaxGvJ5I3X55wwgnavXt3id9r0aKFateuXep9d+3apfr160e6vBIVXfOKFSvUv39/Pf7448Uiuaw1n3DCCWrVqlWpzxPLNaempio1NVWtW7dW9+7dVadOHb3xxhsaPHiw6tWrp7i4uBLXHR8fX+6aJUVt3eFgBxvwoVhPDSmqRYsWsX8SlIspJN7yySefFPu8devWxUL4eB06dNAHH3wQ8rWPPvpIbdq0KfF+p556qvLz8/Xzzz+rVatWIR+NGjWSVLirvHTp0lKfMz4+vsTd8cqsqzQpKSkaOHCgZsyYofnz52vBggXBuCrJhg0bgjujUuHPMDk5OTiaLhynnnqqvvrqq7BvH3D48GFlZWXp1FNPjfi+x/+z3717tzZv3qx27doFv7Z8+XL98Y9/1MMPP6zRo0eXuObt27eXGtll2bhxY6XXHPj8+DWXxLIs5eXlSSr8fdShQ4cK/aw3btyo6tWrh+zixxqBDfiMnUdDAo4dO2bPEyFsHCFxv++//1633XabNm3apLlz5+qZZ57RmDFjyrzP7bffrqVLl+qBBx7Q5s2bNWvWLD377LMaO3Zsibdv06aNhg4dquHDh+v1119Xdna21qxZo0ceeUT//ve/JRW+iXnNmjW64YYb9Pnnn+vrr7/W9OnTtWPHDkmFs5U//fRTbd26VTt27Cjx4iqRrqskTzzxhObNm6evv/5amzdv1quvvqpGjRqVuYN85MgR/fnPf9ZXX32lt99+W/fdd59uuumm4Oi6/fv3B48dSFJ2drbWr1+vbdu2BR+jX79++vjjj8v9S0RRn3zyiRISEoodnQjHxIkTtXTpUm3cuFEjR47UCSecELzwTyCu//KXv+iyyy7T9u3btX379pC/aJx66qmqX7++Pvzww4ife9WqVRFd6CXgww8/1KOPPqrNmzfrb3/7m1599dXg79dvv/1WDz30kNauXatt27bp448/1hVXXKHExET94Q9/CD5Gv379iv1FLNw1n3322VH5ry1hi/jUNmAY3uQYvj17LOukkyyrTx973+g2d+5c+54MFZafb1lLl1rWsGGWlZhoWXFxltW3r2X94x+WdfCg06vzhmi+yfGGG26wrrvuOislJcWqU6eOdffddxcb01fSyLXAOLzq1atbzZo1s6ZMmVLssY9/U+KRI0esv/71r1ZaWppVvXp1q1GjRtYll1wSMhpu+fLl1plnnmklJCRYtWvXtvr16xd8A+OmTZus7t27W4mJiWGN6SttXSX9ejp37mzdd999lmVZ1vPPP2916dLFSkpKslJSUqxzzz3XWrduXak/w8CYvr/+9a9WvXr1rOTkZOvqq6+2Dh8+HLxNYJ1FP0aMGBG8zbFjx6wTTzzRWrx4cbH7lTWmb/To0da1115bbE09e/Ys9T6Bx33rrbesU045xYqPj7dOO+00a/369SGPUdKaiz7u3XffbQ0aNCjka+WN6fvoo4+s2rVrWweP+xdCYE3Z2dml3q958+bW/fffb11xxRVWzZo1rYYNG1pPPvlk8Ps//vijdcEFF1gNGjSwqlevbp100knWkCFDrK+//jrkcTIzM63ExERrz549wa+FM6avTZs2Yb8ORetNjgQ2XI/ADp9dU0OK2rx5s71PiEpjCklsRDOwi07miJbu3btb9957b0we2ySBwI6Gv/3tb9Z5550X9u1//vlnq27duta3334b8vWePXsG/8JQknDCPVzbt2+36tWrZ22N4AXh8ssvtyZPnhzytZdeeslq1aqVdeTIkVLvF8587XD96U9/imgyVUZGhtW+fXvr6NGjYd2eKSIAIuLE0ZCA0i4vDHNxhMR/8vLy9Nlnn+nLL7+09ayqF4wePVo9evTQvn37wrp9dna2pk2bFvL+lH379ikrKyuiYzGV0bBhQ7344oshx13KkpeXp86dO+vWW28N+frixYv14IMPFnsDaqxMmTIl+AbbcARmalerZu9cjzjL4u0scLe9e/cqNTVVubm5SklJcXo5RsrNlTp2lNq1k9591543Nh7v8OHDpY6EgnsUFPw6heS11wrfIMkUksgcPHhQmZmZat++fch4uEj16tVLXbp00ZNPPhm1tS1cuFDDhw9X//79lZ6eblswOWXkyJHas2ePqzYAli9frt69e2v37t1lni03TVpamm655RbdcsstTi+lXIE/o1u3btWePXu0b98+DR8+PORCPeEgsOF6BHb5rrlGmj9f+uIL+3evJWnSpEkaN26c/U+MmNm7tzCy09OlVasKd7wHDSqM7e7d7f9LnFtEK7BNZUpITZgwQQsXLgy+OREIV7QCmyMigMc5eTQkgLj2Ho6QOGvkyJGKi4sr9vHNN9/Y8vzp6ekl7qCuWbOmxLFwdhs7dmyZowOBWCOwAQ+z+4IypZk0aZJzT46YC1zIJjtbWrq0cAd70qTCv9Cdd540Z4503KhhRMn555+vnJyckA+nZ87Xr1/fiJ355ORk1atXz+llwMcIbMDD7L6gTGmuvvpq554ctuFCNvZKSEhQo0aNQj6qVq2qkSNHBmciB9xyyy3q1atX8PNevXrpL3/5i+68807VrVtXjRo10oQJE0Lus2fPHo0ePVoNGzZUjRo11LFjR2VkZGj58uW66qqrlJubG9w5D9w3LS0t5Fz4tm3bNGDAACUnJyslJUVXXHGFfvrpp+D3J0yYoC5duujll19WWlqaUlNTNWjQoDLfLBjYPV+4cKHatGmjGjVqqG/fviGXNw88LuAUAhvwKBOOhgS89dZbzi4AtuMIiflmzZqlpKQkffrpp3r00Uc1ceJEvffee5IKL5F+wQUX6KOPPtIrr7yir776Sg8//LCqVq2qM888U08++aRSUlKCO+clTb6wLEsXX3yxdu3apRUrVui9995TVlaWBg4cGHK7rKwsLVy4UBkZGcrIyNCKFSv08MMPl7n2gwcPavLkyZo1a5Y+/PBD7d27V4MGDYreDweoJHtnlgCwhSlHQwLYSfK3wBGSCRN+nUIyaZI0bhxTSCTp4EHp66/Lv127dtLxpy8yMjJCxpVdcMEFevXVV8N+3k6dOum+++6TJLVu3VrPPvusli5dqr59+2rJkiVavXq1MjMz1aZNG0nSySefHLxvamqq4uLigpdLL8mSJUv0+eefKzs7W02bNpUkvfzyyzrllFO0Zs0anXbaaZIKYz49PV21atWSJA0bNkxLly7V5MmTS33so0eP6tlnn9Xvfvc7SYV/WWjfvr1Wr16t008/PeyfARArBDbgQaYcDQnYuXOn00uAAQJHSM45R3r22V+nkAwd6u8pJF9/LXXrVv7t1q6Vunb99fPevXtr+vTpwc+TkpIiet5OnTqFfN64cWP9/PPPkqT169frpJNOCsZ1RWRmZqpp06bBuJakDh06qHbt2srMzAwGdlpaWjCui66jNNWqVdNvf/vb4Oft2rULPi6BDRMQ2IDHBI6GPPec80dDAg7xDjcUEThCMmqU9M03hee2Z82Snn9eat26MLSHDZOOazPPateuMJ7Dud3xkpKS1KpVq2K3q1KliopO4D169Gix2xWdcx0XF6eCggJJUmIU/nOCZVmKK+FvSkW/XtY6ylLSY5f0NcAJnMEGPMS0oyEBrVu3dnoJMJjfp5DUrFm4M13eR7jDOerXr6+cnJyQr0U6D7pTp0764YcftHnz5hK/Hx8fr/z8/DIfo0OHDtq2bVvImw+/+uor5ebmqn379hGtp6hjx47ps88+C36+adMm7dmzR+2K/i0EcAiBDXiIaUdDApYtW+b0EuACTCGJjnPOOUefffaZZs+erS1btui+++7Txo0bI3qMnj17qkePHrrsssv03nvvKTs7W2+//bYWL14sqfBYx/79+7V06VLt2LFDBw8eLPYYffr0UadOnTR06FCtW7dOq1ev1vDhw9WzZ8+Q4x0VUb16dd1888369NNPtW7dOl111VXq3r07x0NgDAIb8AiTpoYUNXz4cKeXAJdhCknF9evXT+PHj9edd96p0047LXglukgtWLBAp512mgYPHqwOHTrozjvvDO5an3nmmbruuus0cOBA1a9fX48++mix+8fFxWnhwoWqU6eOevTooT59+ujkk0/W/PnzK/1rrFmzpu666y4NGTJEZ5xxhhITEzVv3rxKPy4QLVwqHa7HpdILd607diw8o/nuu2btXktcKh3RUVDw6xSS114r3N122xQSr18q3Q7p6em65ZZbtGfPHqeXAg/iUukAgkw9GhJAXCMaOEICwC0IbMDlTD4aEsCl0hFtHCEBYDICG3AxU6eGFHXTTTc5vQR4mN+nkPjNyJEjOR4C4xHYgIuZfjQk4JVXXnF6CfABjpAAMAWBDbiUG46GBPTs2dPpJcBnOEICwEkENuBCbjkaEpCVleX0EuBjHCEBYDcCG3AhtxwNCYiPj3d6CQBHSADYhsAGXMZNR0MCGjZs6PQSgBAcIQEQSwQ24CJuOxoSsHbtWqeXAJSKIyQAoq2a0wsAED63HQ0JGDBggNNLAMoVOEJyzjnSs88WXi0yPb3wCElKijRoUOFVI7t3r/yfv0MUO2CkaP3ZJLABlwgcDXnuOfccDQmYMWMGV3OEqwSOkIwaJX3zTeG57VmzpOefl1q3LgztYcOkpk0je9xq1aqpSpUq2rp1ayyWDSAKLMtSfn5+pR4jzrJ4Owfcbe/evUpNTVVubq5SUlKcXk5M5OZKHTtK7dpJ777rrt1rwCsKCqTlywt3tV97rfANkn36FMb2JZdIiYnhPc6RI0d07Ngx5ebmKiMjQ0lJSUpISIjhygFEIj8/X8eOHdOhQ4e0b98+DR8+XHXr1o3oMdjBBlzArUdDAiZNmsQONlwvWkdI4uPjFR8fr8OHD+vAgQM6evQogQ1EySeffKLu3btH5bHy8vIqfF92sOF6Xt/Bfucd6fzzC4+GjB7t9Goq5tChQ0oMd3sPcJnjj5Bs2xb+EZIDBw5o/vz52rt3r21rBbzu2LFjqlYtevvHKSkpGjhwoJKSkiK6H4EN1/NyYHvlaMjUqVN1++23O70MIKYqcoTkwIEDldolAxDq73//u6677rqoPV5CQkLEcS0R2PAALwf2NddI8+dLX3zhvjc2Hm/Lli1q3bq108sAbLN3769HSFativ4UEgAlM+X1hjnYgKHceEGZ0qxbt87pJQC24kI2gDNMeb0hsAEDufWCMqWpX7++00sAHMOFbAD7mPJ6Q2ADBnL71JCimJAA/DqFZPZsafv2wj/fhw8XTiFp1Ei69lrp448lDm4CFWfK6w2BDRjGS0dDArKyspxeAmAUjpAAsWHK6w1vcoTreelNjl6ZGlLUtm3b1KxZM6eXARgtWheyAfzMlNcbdrABg4wdK+3Z452jIQEvv/yy00sAjMcREqDyTHm9YQcbrueVHezABWX+/vfCF1IvKSgoUJUq/H0eqIiKXsgG8CNTXm+cXwGAkKkhbr1aY1kefPBBp5cAuBZTSIDwmfJ6ww42XM8LO9jXXCPNmydt3OidNzYez5QdBcAruJANUDJTXm+cXwHgc16cGlLUQw895PQSAE9hCglQMlNeb9jBhuu5eQfbq1NDijLlXd2AlzGFBDDn9YYdbMBBXp0aUtTy5cudXgLgeUwhAcx5vSGwAYf44WhIQMuWLZ1eAuArHCGBX5nyekNgAw7w+tSQovLy8pxeAuBbTCGBn5jyekNgAw7wy9GQgF9++cXpJQC+xxES+IEprzcENmAzPx0NCejatavTSwBwHI6QwKtMeb0hsAEb+e1oSMCiRYucXgKAUnCEBF5iyusNY/rgem4a0+f1C8qU5tChQ0pkRhjgGlzIBm5lyusNO9iATfx4NCRg6tSpTi8BQAQ4QgK3MuX1hh1suJ4bdrD9ckEZAN7FhWyA8LGDDdjAb1NDipo0aZLTSwBQSUwhgRuY8nrDDjZcz/Qd7Hfekc4/X/r73wtfgPzop59+UsOGDZ1eBoAY+OabwuieNUvatk1q3bpwV3vYMKlpU6dXB78x5fWGHWwghvw6NaSoN9980+klAIgRppDAJKa83hDYQAz5/WhIQLdu3ZxeAoAY4wgJTGDK6w2BDcSIn6eGFPXTTz85vQQANmIKCZxiyusNgQ3EAEdDQh05csTpJQBwCEdIYCdTXm8IbCAGOBoSqmXLlk4vAYDDOEICO5jyekNgA1HG0ZDiVqxY4fQSABiEIySIFVNebxjTB9czaUwfF5Qp2Z49e1S7dm2nlwHAYFzIBtFgyusNO9hAFHE0pGTPPvus00sAYDiOkCAaTHm9YQcbrmfKDjYXlAGA6ONCNnAjdrCBKGBqSNlMuXQtAPdhCgkiYcrrDTvYcD0TdrCvuUaaN0/auJE3NpYkNzdXqampTi8DgEfs3Vt4Tjs9XVq1qvBNk4MGFe5sd+/OET0/M+X1hh1soJKYGlK+2bNnO70EAB7CFBKUxpTXG3aw4XpO7mAzNSQ8GzduVMeOHZ1eBgAPYwoJJHNeb9jBBiqBqSHh2bJli9NLAOBxTCGBZM7rDYENVBBHQ8KXyNYRABtxhMS/THm9IbCBCmBqSGTq1avn9BIA+BRTSPzFlNcbAhuoAI6GRGb9+vVOLwGAz3GExB9Meb3hTY5wPbvf5MgFZSK3fft2NWrUyOllAEAxXMjGW0x5vWEHG4gAR0Mq5oUXXnB6CQBQIo6QeIsprzfsYMP17NzB5oIyAOB9XMgGlcUONhAmpoZUnCmXrgWAcDCFxL1Meb1hBxuuZ8cONheUqZzDhw+rRo0aTi8DACqMC9m4gymvN+xgA2FgakjlPPPMM04vAQAqhSkk7mDK6w072HC9WO9gMzWk8rZs2aLWrVs7vQwAiDqmkJjFlNcbdrCBMjA1JDrWrl3r9BIAICaYQmIWU15vCGygDBwNiQ4TZpICQCxxhMQMprzeENhAKZgaEj3VqlVzegkAYBumkDjHlNcbAhsoAUdDois7O9vpJQCAIzhCYi9TXm8IbKAEHA2Jrh49eji9BABwFEdI7GHK6w2BDRTB0ZDomzNnjtNLAABjcIQkdkx5vWFMH1wvmmP6uKBMbOTn56tq1apOLwMAjMWFbKLDlNcbdrCB43A0JDYeeughp5cAAEbjCEl0mPJ6ww42XC9aO9hcUAYAYBouZONO7GADYmpIrE2aNMnpJQCAKzGFJDKmvN6wgw3Xi8YO9jXXSPPmSRs38sbGWPj+++/VlK0WAIiKvXsLz2mnp0urVhW+aXLQoMKd7e7d/X3E0ZTXG3aw4XtMDYm9pUuXOr0EAPAMppCUzpTXGwIbvsbREHu0adPG6SUAgCdxhCSUKa83BDZ8jakh9jjkp3+7A4ADmEJSyJTXGwIbvsXREPvs3LnT6SUAgG/4+QiJKa83vMkRrleRNzlyQRl7bdq0SW3btnV6GQDgW365kI0przfsYMOXOBpir4yMDKeXAAC+5pcjJKa83rCDDdeLdAebC8rY7+DBg6pZs6bTywAAFOG1C9mY8nrDDjZ8hakhznj88cedXgIAoARem0JiyusNO9hwvUh2sLmgDAAAZeNCNpXHDjZ8g6khzjHl0rUAgPK5eQqJKa837GDD9cLZwWZqiLN++eUX1a9f3+llAAAqyC1TSEx5vWEHG77A1BBnvf76604vAQBQCW6ZQmLK6w2BDc/jaIjzTjvtNKeXAACIEpOPkJjyekNgw9OYGmKGnJwcp5cAAIgB06aQmPJ6U83pBQDR8uWXXyo5OTnkaxMmnKhdu1I1duwWbdx41KGVISsrS1988YXTywAAxFD9+tIdd0jXX19F772XqjffrKOhQ5OUnJyv88/fowED9qhTp4MxPaqZn58fuwePAIENz/rww2S9/npdjR//o5o0Ia6ddOKJJzq9BACATZKTC3TJJbt1ySW7tW1bvN56q7YWLaqj116rp+bN83TRRbvVv/8eNWoU/dfmtLS0qD9mRXBEBJ60b18VTZhworp336fLL9/l9HJ8b926dU4vAQDggGbNjujGG3/W229v0owZ3+o3vzmoGTMaqF+/trr22jT961+pOnw4elvaq1atitpjVQZj+uB6gTF9H330UfCIyIQJJ2rx4lS9/voWdq8NkJubq9TUVKeXAQAwwP79vx4hWbcuukdITjzxRNWtWzd6i60gdrDhOYGjIbffvp24NsT8+fOdXgIAwBCBIyTp6d8qI2OThg7doQ8/rKVhw1rqoovaaMaM+tq+vXqFHnvatGlRXm3FsIMN1zt+B9uyUnTppa3VokWenntuKzOvAQBwgYICac2aJL35Zh0tWZKqvLw4de++XxddtFvnnrtXNWqEl6u/+c1vYrzS8LCDDU+ZOrWx9u2rqgkTfiSuDfL88887vQQAgMGqVJF+97sDevDBH/T++5maMOFH5eVV0T33NNM557TXxIlNtGFDzXIvZMOl0oEoCexgP/74Bt12WyeNH/+j/vQn3thokv379xcboQgAQHmOn0KSkxNf7hSS5s2bKyUlxYGVhmIHG0bZv3+/LrvsMm3bti3i+z70UBOmhhjqzTffdHoJAAAXinQKSXp6unOLPQ472DDGzJkz9d1332nixInKzs4Oe5blnj17VadOqhITd+mNN37ijY2GOXbsmL777ju1bNnS6aUAADygrCkkp56ap1NO6eD0EglsmCcuLq7MwM7Ly1NeXl7w874r0rX6ojE6beGTeqzOqTatEuHYv3+/1v3nP9pfrUCtzu6mKlWrOr0kAICH7NxZVev/U1Pr1iXpwF6pRcGnenPBlapdu6aj6wo7sOfOnavTTz9dCxYs0JgxYzRlyhSNGzdOkyZN0qhRo/T222+rU6dO2rVrlw4cOKB27dppyZIlGjlypJ5++ungbW+44QbNnTtXZ599trZu3aqqVauqcePGWrNmjS699FI999xzwdvedtttmj59ui688EJt2LBB9erVU2JiojZv3qxzzz1Xs2bNCt72nnvu0aOPPqohQ4Zo5cqVatGihY4dO6bt27erW7duWrhwoW6++WY99thjwftcffXVeuutt9SlSxft3LlThw4dUuvWrbVs2TINHz5czzzzTPC2N910k1555RX17NlTWVlZio+PV8OGDbV27VoNGDBAM2bMCN729ttv17Rp03TRRRdp3bp1ql+/vhISEpSVlaVevXrp5Zdf1j333KMHH3xQ//d//6eHHnpIw4YN0/Lly9WyZUvl5eXpl19+UdeuXbVo0SLdcMMNmjp1avDxr7nmGr355pvq1q2bfvrpJx05ckQtW7bUihUrdOWVV+rZZ58N3vbmm2/W7Nmz1bt3b23ZskWJiYmqV6+e1q9fr/79++uFF14I3nbs2LF65plndPHFF2vt2rVq1KiRqlWrpuzsbPXo0UNz5szRnXfeqYceeih4nxEjRmjp0qVq06aNDh06pJ07d6pz587KyMjQ9ddfr8cffzx422uvvVavv/66TjvtNOXk5Cg/P19paWlatWqVBg8erGnTpmncuHGKi4vT559/rmXLlqlZs2bKzs5WYmKiUlNTtXnzZmVlZenll18O/t7s8to4rb98ku6++27VqFEjZn9YAACAO9x6661KT09Xnz599PXXXyspKUl169bV559/rgsuuEAzZ84M9skdd9yhp556SpdddplWr16txo0bq2rVqvruu+901llnad68eRo7dqwefvhhjRs3LqznZwcbxjl+B/uLL74o9v0jR47oyJEjkgr/M9FVVT/Vj+eO0U2T7tVJ1Wqpf//+qlOnjt3LRim2b9+uRYsWqaCK9HafFP1wUrzTSwIAeNAJO47pskV71KdPH51++umqXr1is7SjoZpjzwxUUHx8vOLjCyPtnXfq6Fivwvfqrjqvga79rLr+/e9/a8SIEapfv76Ty0QRzZqcpAve/1H/uLyOsk7mvzQAAGIjPz9f2dnZatGihWORzRQRuNqiRXVU7X9/dvISqmr48OFKSkrSrFmz9Msvvzi7OIQ477zz1DqtpYa+tlstvz3s9HIAAB6Wl5en7OxsHT3qzOADAhuu9d138frPf5IUH//rKaekpCQi21DVqlXToIEDiWwAgC2cjGwCG8aYO3eurr/+eknS3XffrWnTppV5+0WL6qhWrXxVqxb6NgIi21xENgDATk5FNoENYwwePFjTp0+XZVmaN2+ebrjhhlJvm58vLVpUW+efv0clXRGdyDYXkQ0AsJMTkU1gw5XWrEnSTz/F66KLdpd6GyLbXEQ2AMBOdkc2gQ1XevPNOkpLO6xOnQ6VeTsi21xENgDATnZGNoEN19m3r4qWLk3VgAF7FFfS+ZAiiGxzEdkAADvZFdkENlzn3XdTdeRInC68sPTjIUUR2eYisgEAdsrLy9POnTtj+hwENlxn0aI66t59vxo2PBbR/YhscxHZAAAvIbDhKoHZ1wMGhL97fTwi21xENgDAKwhsuEpg9nXv3nsr/BhEtrmIbACAFxDYcI3jZ1/XqGGVf4cyENnmIrIBAG5HYMM1wpl9HQki21xENgDAzQhsuEa4s68jQWSbi8gGALgVgQ1XiHT2dSSIbHMR2QAANyKw4QoVmX0dCSLbXEQ2AMBtCGy4QkVnX0eCyDYXkQ0AcBMCG8ar7OzrSBDZ5iKyAQBuQWDDeNGYfR0JIttcRDYAwA0IbBgtmrOvI0Fkm4vIBgCYjsCG0aI9+zoSRLa5iGwAgMkIbBgtFrOvI0Fkm4vIBgCYisCGsXJzFbPZ15Egss1FZAMATERgw1ivvqqYzr6OBJFtLiIbAGAaAhvGSk9XzGdfR4LINheRDQAwCYENI23ZIn34oWyZfR0JIttcRDYAwBQENow0a5aUmirbZl9Hgsg2F5ENADABgQ3j5OcXBvagQbJ19nUkiGxzEdkAAKcR2DDOsmXSDz9II0c6vZKyEdnmIrIBAE4isGGc9HSpbVvpd79zeiXlI7LNRWQDAJxCYMMoubnS668X7l47Ofs6EkS2uYhsAIATCGwY5dVXpbw8adgwp1cSGSLbXEQ2AMBuBDaMkp4u9e0rnXii0yuJHJFtLiIbAGAnAhvGCMy+Nv3NjWUhss1FZAMA7EJgwxiB2dcDBji9ksohss1FZAMA7EBgwwjHz75OTHR6NZVHZJuLyAYAxBqBDSO4ZfZ1JIhscxHZAIBYIrBhBDfNvo4EkW0uIhsAECsENhznxtnXkSCyzUVkAwBigcCG49w6+zoSRLa5iGwAQLQR2HCcm2dfR4LINheRDQCIJgIbjvLC7OtIENnmIrIBANFCYMNRXpl9HQki21xENgAgGghsOMZrs68jQWSbi8gGAFQWgQ3HeHH2dSSIbHMR2QCAyiCw4Rivzr6OBJFtLiIbAFBRBDYc4fXZ15Egss1FZAMAKoLAhiP8MPs6EkS2uYhsAECkCGw4wi+zryNBZJuLyAYARILAhu38Nvs6EkS2uYhsAEC4CGzYzo+zryNBZJuLyAYAhIPAhq38PPs6EkS2uYhsAEB5CGzYyu+zryNBZJuLyAYAlIXAhq2YfR0ZIttcRDYAoDQENmzD7OuKIbLNRWQDAEpCYMM2zL6uOCLbXEQ2AKAoAhu2YfZ15RDZ5iKyAQDHI7BhC2ZfRweRbS4iGwAQQGDDFsy+jh4i21xENgBAIrBhA2ZfRx+RbS4iGwBAYCPmmH0dG0S2uYhsAPA3Ahsxx+zr2CGyzUVkA4B/EdiIKWZfxx6RbS4iGwD8icBGTDH72h5EtrmIbADwHwIbMcXsa/sQ2eYisgHAXwhsxAyzr+1HZJuLyAYA/yCwETPMvnYGkW0uIhsA/IHARkww+9pZRLa5iGwA8D4CGzHB7GvnEdnmIrIBwNsIbMQEs6/NQGSbi8gGAO8isBF1zL42C5FtLiIbALyJwEbUMfvaPES2uYhsAPAeAhtRx+xrMxHZ5iKyAcBbCGxEFbOvzUZkm4vIBgDvILARVcy+Nh+RbS4iGwC8gcBG1DD72j2IbHMR2QDgfgQ2oobZ1+5CZJuLyAYAdyOwETXMvnYfIttcRDYAuBeBjahg9rV7EdnmIrIBwJ0IbEQFs6/djcg2F5ENAO5DYCMqmH3tfkS2uYhsAHAXAhuVxuxr7yCyzUVkA4B7ENioNGZfewuRbS4iGwDcgcBGpTD72puIbHMR2QBgPgIblcLsa+8iss1FZAOA2QhsVAqzr72NyDYXkQ0A5iKwUWHMvvYHIttcRDYAmInARoUx+9o/iGxzEdkAYB4CGxXG7Gt/IbLNRWQDgFkIbFQIs6/9icg2F5ENAOYgsFEhzL72LyLbXEQ2AJiBwEbEmH0NIttcRDYAOI/ARsSYfQ2JyDYZkQ0AziKwETFmXyOAyDYXkQ0AziGwERFmX6MoIttcRDYAOIPARkSYfY2SENnmIrIBwH4ENiLC7GuUhsg2F5ENAPYisBE2Zl+jPES2uYhsALAPgY2wMfsa4Sga2bt373Z6SfgfIhsA7EFgIyzMvkYkjo/st956y+nl4DhENgDEHoGNsDD7GpEKRHbi//5Gxk62OYhsAIgtAhthYfY1KiIpKUkXXnihJOmtt97iTLZBiGwAiB0CG+Vi9jUqI7CDnZiYyBsfDUNkA0BsENgoF7OvEQ0XXngh00UMRGQDQPQR2CgXs68RDYmJiYzwMxSRDQDRRWCjTMy+RjQxJ9tcRDYARA+BjTIx+xrRRmSbi8gGgOggsFEqZl8jVohscxHZAFB5BDZKxexrxBKRbS4iGwAqh8BGqZh9jVgjss1FZANAxRHYKBGzr2EXIttcRDYAVAyBjRIx+xp2IrLNRWQDQOQIbJSI2dewG5FtLiIbACJDYKMYZl/DKUS2uYhsAAgfgY1imH0NJxHZ5iKyASA8BDZCMPsaJiCyzUVkA0D5CGyEYPY1TEFkm4vIBoCyEdgIwexrmITINheRDQClI7ARxOxrmIjINheRDQAlI7ARxOxrmIrINheRDQDFEdgIYvY1TEZkm4vIBoBQBDYkMfsa7kBkm4vIBoBfEdiQxOxruAeRbS4iGwAKEdhg9jVch8g2F5ENAAQ2xOxruBORbS4iG4DfEdhg9jVci8g2F5ENwM8IbJ9j9jXcjsg2F5ENwK8IbJ9j9jW8gMg2F5ENwI8IbJ9j9jW8gsg2F5ENwG8IbB9j9jW8hsg2F5ENwE8IbB9j9jW8iMg2F5ENwC8IbJ9i9jW8jMg2F5ENwA8IbJ9i9jW8jsg2F5ENwOsIbJ9i9jX8gMg2F5ENwMsIbB9i9jX8hMg2F5ENwKsIbB9i9jX8hsg2F5ENwIsIbB9i9jX8iMg2F5ENwGsIbJ9h9jX8jMg2F5ENwEsIbJ9h9jX8jsg2F5ENwCsIbB9h9jVQiMg2F5ENwAsIbB9h9jXwKyLbXEQ2ALcjsH2E2ddAKCLbXEQ2ADcjsH2C2ddAyYhscxHZANyKwPYJZl8DpSOyzUVkA3AjAtsnmH0NlI3INheRDcBtCGwfYPY1EB4i21xENgA3IbB9gNnXQPiIbHMR2QDcgsD2OGZfA5Ejss1FZANwAwLb45h9DVQMkW0uIhuA6Qhsj2P2NVBxRLa5iGwAJiOwPYzZ10DlEdnmIrIBmIrA9jBmXwPRQWSbi8gGYCIC28OYfQ1ED5FtLiIbgGkIbI9i9jUQfUS2uYhsACYhsD2K2ddAbBDZ5iKyAZiCwPYgZl8DsUVkm4vIBmACAtuDmH0NxB6RbS4iG4DTCGwPYvY1YA8i21xENgAnEdgew+xrwF5EtrmIbABOIbA9htnXgP2IbHMR2QCcQGB7DLOvAWcQ2eYisgHYjcD2EGZfA84iss1FZAOwE4HtIcy+BpxHZJuLyAZgFwLbI5h9DZiDyDYXkQ3ADgS2RzD7GjALkW0uIhtArBHYHsHsa8A8RLa5iGwAsURgewCzrwFzEdnmIrIBxAqB7QHMvgbMRmSbi8gGEAsEtgcw+xowH5FtLiIbQLQR2C7H7GvAPYhscxHZAKKJwHY5Zl8D7kJkm4vIBhAtBLaLMfsacCci21xENoBoILBdjNnXgHsR2eYisgFUFoHtYsy+BtyNyDYXkQ2gMghsl2L2NeANRLa5iGwAFUVguxSzrwHvILLNRWQDqAgC26WYfQ14C5FtLiIbQKQIbBdi9jXgTUS2uYhsAJEgsF2I2deAdxHZ5iKyAYSLwHYZZl8D3kdkm4vIBhAOAttlmH0N+AORbS4iG0B5CGyXYfY14B9EtrmIbABlIbBdhNnXgP8Q2eYisgGUhsB2EWZfA/5EZJuLyAZQEgLbRZh9DfgXkW0uIhtAUQS2SzD7GgCRbS4iG8DxCGyXYPY1AInINhmRDSCAwHYBZl8DOB6RbS4iG4BEYLsCs68BFEVkm4vIBkBguwCzrwGUhMg2F5EN+BuBbThmXwMoC5FtLiIb8C8C23DMvgZQHiLbXEQ24E8EtuGYfQ0gHES2uYhswH8IbIMx+xpAJIhscxHZgL8Q2AZj9jWASBHZ5iKyAf8gsA3F7GsAFUVkm4vIBvyBwDYUs68BVAaRbS4iG/A+AttQzL4GUFlEtrmIbMDbCGwDMfsaQLQQ2eYisgHvIrANxOxrANFEZJuLyAa8icA2ELOvAUQbkW0uIhvwHgLbMMy+BhArRLa5iGzAWwhswzD7GkAsEdnmIrIB7yCwDcLsawB2ILLNRWQD3kBgG4TZ1wDsQmSbi8gG3I/ANgizrwHYicg2F5ENuBuBbQhmXwNwApFtLiIbcC8C2xDMvgbgFCLbXEQ24E4EtiGYfQ3ASUS2uYhswH0IbAMw+xqACYhscxHZgLsQ2AZg9jUAUxDZ5iKyAfcgsB3G7GsApiGyzUVkA+5AYDuM2dcATERkm4vIBsxHYDuM2dcATEVkm4vIBsxGYDuI2dcATEdkm4vIBsxFYDuI2dcA3IDINheRDZiJwHYQs68BuAWRbS4iGzAPge0QZl8DcBsi21xENmAWAtshzL4G4EZEtrmIbMAcBLYDmH0NwM2IbHMR2YAZCGwHMPsagNsR2eYisgHnEdgOYPY1AC8gss1FZAPOIrBtxuxrAF5CZJuLyAacQ2DbjNnXALyGyDYXkQ04g8C2GbOvAXgRkW0uIhuwH4FtI2ZfA/AyIttcRDZgLwLbRsy+BuB1RLa5iGzAPgS2TZh9DcAviGxzEdmAPQhsmzD7GoCfENnmIrKB2COwbcLsawB+Q2Sbi8gGYovAtgGzrwH4FZFtLiIbiB0C2wbMvgbgZ0S2uYhsIDYIbBsw+xqA3xHZ5iKygegjsGOM2dcAUIjINheRDUQXgR1jzL4GgF8R2eYisoHoIbBjiNnXAFAckW0uIhuIDgI7hph9DQAlI7LNRWQDlUdgxxCzrwGgdES2uYhsoHII7Bhh9jUAlI/INheRDVQcgR0jzL4GgPAQ2eYisoGKIbBjhNnXABA+IttcRDYQOQI7Bph9DQCRI7LNRWQDkSGwY4DZ1wBQMUS2uYhsIHwEdpQx+xoAKofINheRDYSHwI4yZl8DQOUR2eYisoHyEdhRxuxrAIgOIttcRDZQNgI7iph9DQDRRWSbi8gGSkdgRxGzrwEg+ohscxHZQMkI7Chi9jUAxAaRbS4iGyiOwI4SZl8DQGwR2eYisoFQBHaUMPsaAGKPyDYXkQ38isCOAmZfA4B9iGxzEdlAIQI7Cph9DQD2IrLNRWQDBHZUMPsaAOxHZJuLyIbfEdiVxOxrAHAOkW0uIht+RmBXErOvAcBZRLa5iGz4FYFdScy+BgDnEdnmIrLhRwR2JTD7GgDMQWSbi8iG3xDYlcDsawAwC5FtLiIbfkJgVxCzrwHATES2uYhs+AWBXUHMvgYAcxHZ5iKy4QcEdgUx+xoAzEZkm4vIhtcR2BXA7GsAcAci21xENryMwK4AZl8DgHsQ2eYisuFVBHYFMPsaANyFyDYXkQ0vIrAjxOxrAHAnIttcRDa8hsCOELOvAcC9iGxzEdnwEgI7Asy+BgD3I7LNRWTDKwjsCDD7GgC8gcg2F5ENLyCwI8DsawDwDiLbXEQ23I7ADhOzrwHAe4hscxHZcDMCO0zMvgYAbyKyzUVkw60I7DAx+xoAvIvINheRDTcisMPA7GsA8D4i21xENtyGwA4Ds68BwB+IbHMR2XATArsczL4GAH8hss1FZMMtCOxyMPsaAPyHyDYXkQ03ILDLwexrAPAnIttcRDZMR2CXgdnXAOBvRLa5iGyYjMAuA7OvAQBEtrmIbJiKwC4Ds68BABKRbTIiGyYisEvB7GsAwPGIbHMR2TANgV0KZl8DAIoiss1FZMMkBHYJmH0NACgNkW0uIhumILBLwOxrAEBZiGxzEdkwAYFdAmZfAwDKQ2Sbi8iG0wjsIph9DQAIF5FtLiIbTiKwi2D2NQAgEkS2uYhsOIXALoLZ1wCASBHZ5iKy4QQC+zjMvgYAVBSRbS4iG3YjsI/D7GsAQGUQ2eYismEnAvt/mH0NAIgGIttcRDbsQmD/D7OvAQDRQmSbi8iGHQjs/2H2NQAgmohscxHZiDUCW8y+BgDEBpFtLiIbsURgi9nXAIDYIbLNRWQjVghsMfsaABBbRLa5iGzEgu8Dm9nXAAA7ENnmIrIRbb4PbGZfAwDsQmSbi8hGNPk6sJl9DQCwG5FtLiIb0eLrwGb2NQDACUS2uYhsRIOvA5vZ1wAApxDZ5iKyUVm+DWxmXwMAnEZkm4vIRmX4NrCZfQ0AMAGRbS4iGxXl28Bm9jUAwBREtrmIbFSELwOb2dcAANMQ2eYishEpXwY2s68BACYiss1FZCMSvgtsZl8DAExGZJuLyEa4fBfYzL4GAJiOyDYXkY1w+C6wmX0NAHADIttcRDbK46vAZvY1AMBNiGxzEdkoi68Cm9nXAAC3IbLNRWSjNL4KbGZfAwDciMg2F5GNkvgmsJl9DQBwMyLbXEQ2ivJNYDP7GgDgdkS2uYhsHM8Xgc3sawCAVxDZ5iKyEeCLwGb2NQDAS4hscxHZkHwS2My+BgB4DZFtLiIbng9sZl8DALyKyDYXke1vng9sZl8DALyMyDYXke1fng9sZl8DALyOyDYXke1Png5sZl8DAPyCyDYXke0/ng5sZl8DAPyEyDYXke0vng1sZl8DAPyIyDYXke0fng1sZl8DAPyKyDYXke0Png1sZl8DAPyMyDYXke19ngxsZl8DAEBkm4zI9jZPBjazrwEAKERkm4vI9i5PBjazrwEA+BWRbS4i25s8F9jMvgYAoDgi21xEtvd4LrCZfQ0AQMmIbHMR2d7iqcBm9jUAAGUjss1FZHuHpwKb2dcAAJSPyDYXke0NngpsZl8DABAeIttcRLb7eSawmX0NAEBkiGxzEdnu5pnAZvY1AACRI7LNRWS7l2cCm9nXAABUDJFtLiLbnTwR2My+BgCgcohscxHZ7uOJwGb2NQAAlUdkm4vIdhfXBzazrwEAiB4i21xEtnu4PrCZfQ0AQHQR2eYist3B9YHN7GsAAKKPyDYXkW0+Vwc2s68BAIgdIttcRLbZXB3YzL4GACC2iGxzEdnmcnVgM/saAIDYI7LNRWSbybWBzexrAADsQ2Sbi8g2j2sDm9nXAADYi8g2F5FtFlcGNrOvAQBwBpFtLiLbHK4MbGZfAwDgHCLbXES2GVwZ2My+BgDAWUS2uYhs57kusJl9DQCAGYhscxHZznJdYDP7GgAAcxDZ5iKyneO6wGb2NQAAZiGyzUVkO8NVgc3sawAAzERkm4vItp+rApvZ1wAAmIvINheRbS/XBDazrwEAMB+RbS4i2z6uCWxmXwMA4A5EtrmIbHu4JrCZfQ0AgHsQ2eYismPPFYHN7GsAANyHyDYXkR1brghsZl8DAOBORLa5iOzYcUVgM/saAAD3IrLNRWTHhvGBzexrAADcj8g2F5EdfcYHNrOvAQDwBiLbXER2dBkd2My+BgDAW4hscxHZ0WN0YDP7GgAA7yGyzUVkR4fRgc3sawAAvInINheRXXnGBjazrwEA8DYi21xEduUYG9jMvgYAwPuIbHMR2RVnbGAz+xoAAH8gss1FZFeMkYHN7GsAAPyFyDYXkR05IwOb2dcAAPgPkW0uIjsyxgU2s68BAPAvIttcRHb4jAtsZl8DAOBvRLa5iOzwGBfYzL4GAABEtrmI7PIZFdjMvgYAAAFEtrmI7LIZFdjMvgYAAMcjss1FZJfOqMBm9jUAACiKyDYXkV0yYwKb2dcAAKA0RLa5iOzijAlsZl8DAICyENnmIrJDGRHYzL4GAADhILLNRWT/yojAZvY1AAAIF5FtLiK7kBGBzexrAAAQCSLbXES2AYHN7GsAAFARRLa5/B7Zjgc2s68BAEBFEdnm8nNkOx7YzL4GAACVQWSby6+R7WhgM/saAABEA5FtLj9GtqOBzexrAAAQLUS2ufwW2Y4FNrOvAQBAtBHZ5vJTZDsW2My+BgAAsUBkm8svke1YYDP7GgAAxAqRbS4/RLYjgc3sawAAEGtEtrm8HtmOBDazrwEAgB2IbHN5ObIdCWxmXwMAALsQ2ebyamTbHtjMvgYAAHYjss3lxci2PbCZfQ0AAJxAZJvLa5Fta2Az+xoAADiJyDaXlyLb1sBm9jUAAHAakW0ur0S2rYHN7GsAAGACIttcXohs2wKb2dcAAMAkRLa53B7ZtgU2s68BAIBpiGxzuTmybQtsZl8DAAATEdnmcmtk2xLYzL4GAAAmI7LN5cbItiWwmX0NAABMR2Sby22RHfPAZvY1AABwCyLbXG6K7JgHNrOvAQCAmxDZ5nJLZMc8sJl9jXAdOHBA//rXv9S3b1+nlwIA8Dki21xuiOyYBjazrxGJpKQk/fGPf9TRo0edXgoAAES2wUyP7JgGNrOvAQCAmxHZ5ioa2Sf9cMTpJQVVi+WDP/WU1KcPs68RXUeOHNGRI7/+IapSNV+SlLrriHJycpxaFkqxY8eOkP8FADfq16+fMjIyNHPmTPXv31916tRxekn4n549eijv8GFdsOQHSVJ+fr7DK5LiLMuywrnh3Llzdfrpp2vBggUaM2aMpkyZonHjxmnSpEkaNWqU3n77bXXq1Em7du3SgQMHdOBAOw0fvkQtW47UhRc+rSefLLztDTfcoLlz5+rss8/W1q1bVbVqVTVu3Fhr1qzRpZdequeeey74uLfddpumT5+uCy+8UBs2bFC9evWUmJiozZs369xzz9WsWbOCt73nnnv06KOPasiQIVq5cqVatGihY8eOafv27erWrZsWLlyom2++WY899ljwPldffbXeeustdenSRTt37tShQ4fUunVrLVu2TMOHD9czzzwTvO1NN92kV155RT179lRWVpbi4+PVsGFDrV27VgMGDNCMGTOCt7399ts1bdo0XXTRRVq3bp3q16+vhIQEZWVlqVevXnr55Zd1zz336MEHH9T//d//6aGHHtKwYcO0fPlytWzZUnl5efrll1/UtWtXLVq0SDfccIOmTp0afPxrrrlGb775prp166affvpJR44cUcuWLbVixQpdeeWVevbZZ4O3vfnmmzV79mz17t1bW7ZsUWJiourVq6f169erf//+euGFF4K3HTt2rJ555hldfPHFWrt2rRo1aqRq1aopOztbPXr00Jw5c3TnnXfqoYceCt5nxIgRWrp0qdq0aaNDhw5p586d6ty5szIyMnT99dfr8ccfD9722muv1euvv67TTjtNOTk5ys/PV1pamlatWqXBgwdr2rRpGjdunFq0aKENGzYoPT1dzZo1U3Z2thITE5WamqrNmzcrKytLL7/8cvD3Zt8X7tV7V0/W3XffrRo1asTsDwsAADDf3r17dfnll+vNN99U9+7di3XEWWedpXfffVePPPKIJk2apDvuuENPPfWULrvsMq1evVqNGzdW1apV9d133+mss87SvHnzNHbsWD388MMaN25cWGsIO7Ar4uWXpQkTpP/+V5o0SbrlFqlq1Vg9G9wuLy9PCxYsCP6l49JLL9XmzZuL3a7oDvbNBZ9p7Vl/0d13362+ffuqffv2di4b5dixY4def/11XXrppTrhhBOcXg4AVMqhQ4eUkZGhQ4cOsZNtmO3bt2vRokW64IILlFjObOj69eurUaNGMVtLTI+IDBsmXXaZdO+90h13FL7hcebMwqkiQFEJCQkaMmSIhgwZUubt4uPjFR8fH/z8lg2dNUxSZtsaqrFqlVJTU9WtW7cYrxaROuGEE9S4cWOnlwEAlfbnP/9Zs2fP1r///W+NGDFC9evXd3pJOM6JJ56oo0ePat++fY6tIeZj+mrWlJ54Qlq5Uvr5Z6lLF2nq1MIL0ADR9MlpSVrdraYyMjK0du1ap5cDAPAo3vhotipVqqhZs2aqVauWc2uw64nOOkvasEG67rrC3ewePaRNm+x6drhBXFxcsY9OnTpF8ADSv89LJbIBADFHZJvN6ci2LbAldrNRNsuyin18/vnnkT1IXByRDQCwBZFtNicj29bADmA3G6XZu3evJFXu3BSRDQCwCZFtNqci25HAltjNRslOPfVUDRgwQK+++mrlHojIBgDYhMg2mxOR7VhgB7CbjePdf//9evPNNzVq1KjKPxiRDQCwCZFtNrsj2/HAltjNxq82bNig999/X1OmTFFURrQT2QAAmxDZZrMzso0I7AB2s/Hoo4/qnHPO0ZEjR7R8+fLoPCiRDQCwCZFttkBkJyUlxfZ5YvroFcButn/Nnj1b8+fPlyTl5uZGZwc7gMgGANiEyDZblSpVYr6LbVxgB7Cb7T99+/ZVYmKiFi5cqGbNmumcc86J7hMQ2QAAmxDZ/mZsYEvsZvtN48aNNWDAAF188cW66aabYvMkRDYAwCZEtn8ZHdgB7GYjqohsAIBNiGx/ckVgS+xmI8qIbACATYhs/3FNYAewm42oIbIBADYhsv3FdYEtsZuNKCKyAQA2IbL9w5WBHcBuNqKCyAYA2ITI9gdXB7bEbjaihMgGANiEyPY+1wd2ALvZqDQiGwBgEyLb2zwT2BK72YgCIhsAYBMi27s8FdgB7GajUohsAIBNiGxv8mRgS+xmo5KIbACATYhs7/FsYAewm40KI7IBADYhsr3F84EtsZuNSiCyAQA2IbK9wxeBHcBuNiqEyAYA2ITI9gZfBbbEbjYqiMgGANiEyHY/3wV2ALvZiBiRDQCwCZHtbr4NbIndbFQAkQ0AsAmR7V6+DuwAdrMRESIbAGATItudCOz/YTcbESGyAQA2IbLdh8Augt1shI3IBgDYhMh2FwK7BOxmI2xENgDAJkS2exDYZWA3G2EhsgEANiGy3YHALge72QgLkQ0AsAmRbT4CO0zsZqNcRDYAwCZEttkI7Aiwm41yEdkAAJsQ2eYisCuA3WyUicgGANiEyDYTgV1B7GajTEQ2AMAmRLZ5COxKYjcbpSKyAQA2IbLNQmBHAbvZKBWRDQCwCZFtDgI7itjNRomIbACATYhsMxDYUcZuNkpEZAMAbEJkO4/AjhF2s1EMkQ0AsAmR7SwCO4bYzUYxRDYAwCZEtnMIbBuwm40QRDYAwCZEtjMIbJuwm40QRDYAwCZEtv0IbJuxm40gIhsAYBMi214EtgPYzUYQkQ0AsAmRbR8C20HsZkMSkQ0AsA2RbQ8C22HsZkMSkQ0AsA2RHXsEtiHYzQaRDQCwC5EdWwS2QdjNBpENALALkR07BLaB2M32OSIbAGATIjs2CGxDsZvtc0Q2AMAmRHb0EdiGYzfbx4hsAIBNiOzoIrBdgN1sHyOyAQA2IbKjh8B2EXazfYrIBgDYhMiODgLbZdjN9ikiGwBgEyK78ghsl2I324eIbACATYjsyiGwXYzdbB8isgEANiGyK47A9gB2s32GyAYA2ITIrhgC2yPYzfYZIhsAYBMiO3IEtsewm+0jRDYAwCZEdmQIbA9iN9tHiGwAgE2I7PAR2B7GbrZPENkAAJsQ2eEhsD2O3WyfILIBADYhsstHYPsEu9k+QGQDAGxCZJeNwPYRdrN9gMgGANiEyC4dge1D7GZ7HJENALAJkV0yAtun2M32OCIbAGATIrs4Atvn2M32MCIbAGATIjsUgQ12s72MyAYA2ITI/hWBjSB2sz2KyAYA2ITILkRgIwS72R5FZAMAbEJkE9goBbvZHkRkAwBs4vfIJrBRKnazPYjIBgDYxM+RTWCjXOxmewyRDQCwiV8jm8BGWNjN9hgiGwBgEz9GNoGNiLCb7SFENgDAJn6LbAIbEWM320OIbACATfwU2QQ2KozdbI8gsgEANvFLZBPYqBR2sz2CyAYA2MQPkU1gIyrYzfYAIhsAYBOvRzaBjahhN9sDiGwAgE28HNkENqKO3WyXI7IBADbxamQT2IgJdrNdjsgGANjEi5FNYCOm2M12MSIbAGATr0U2gY2YYzfbxYhsAIBNvBTZBDZsw262SxHZAACbeCWyCWzYit1slyKyAQA28UJkE9hwBLvZLkRkAwBs4vbIJrDhGHazXYjIBgDYxM2RTWDDcexmuwyRDQCwiVsjm8CGEdjNdhkiGwBgEzdGNoENoxTdzb7qqpOVnR3v9LJQEiIbAGATt0U2gQ3jHL+bvWtXNV1xRWvNmnUCu9kmIrIBADZxU2QT2DDWWWdJr766RX/60y49/ngjdrNNRWQDAGzilsgmsGG0xERLd96Zo5de+pbdbJMR2QAAm7ghsglsuELXrgfZzTYdkQ0AsInpkU1gwzVK280uKHB6ZQgisgEANika2bt373Z6SUEENlyn6G723/5W1+kl4XhFIjszM9PpFQEAPOr4yH7rrbecXk5QtXBuZFmW9u3bF+u1AMXs37+/2NeOHDmio0ePasSI7eratYZmzDgsSTrti3glH0u0e4koTbNE/fxzjt577z1J0uXfzFPubo71AACiL+F3+Trz7X1KPpyvK7cv0htJg2P2XLVq1VJcXFyZt4mzLMsq74H27t2r1NTUqC0MAAAAcKPc3FylpKSUeZuwApsdbJgkLy9PeXl5wc+//jpbffv20L//vVSJiVV06NAhB1eHou6vt1n7tu9UlaZ1ZSVUd3o5AACPqnI0X/nf7VBi5zS9X+fymD1P1HawAZP98MMPatq0qb7//ns1adJE3333XYlHS+CM/fv368wzz9RHH32kNm3aqF69ek4vCQDgQYETF+HsMMcab3KEp1SpUkXNmzdXcnKy00tBCf773/9q586dTi8DAICYIrDhOUS22YhsAIDXEdhwvYSEhJD/lYhsk8THx+uss85SfPyvE0SIbABAtCUkJOiCCy4I6QGncAYbrlfWmauCggLOZBsgNze3xElETZo04Uw2ACBqdu3apbp1nb8+BjvY8DR2ss0wf/78Er/OTjYAIJqmTZvm9BIksYMNDwjnXcPsZJuNnWwAgJewgw1fCOxk16pVS1WqVOHD5o8ZM2aU+f3t27dr9+7dTv82AQC43KRJk5xegiR2sOEBJs29RMn27t3LPxsAQMyZ8nrDDjaAmEtPT3d6CQAAHzDl9YbABhATBw4c0L/+9S/17dtXffr0cXo5AACP279/v9566y1t27bN6aUQ2ABiIykpSX/84x919OhRff31104vBwDgYTNnztSUKVO0ZMkSFRQUOL0cVXN6AQC8LykpyeklAAA8bNSoUZKkiRMnOrySQuxgA4g5E4b+AwBgFwIbQMx9/vnnTi8BAADbENgAYiIvL09z5szR1q1blZeXp7y8PKeXBACALQhsADGRkJCgIUOGaOvWrdq1a5cSEhKcXhIAALYgsAHE3Lhx45xeAgAAtiGwAcREXFxciR8AAETb3Llzdf3110uS7r77bk2bNs3R9XCpdLgel0o3X15eHkdEAAAxZ8rrDTvYAGJm7969kqRHH33U4ZUAAPzgqaeecnoJkghsADF06qmnasCAAapevbrTSwEA+MBll13m9BIkcUQEHsAREXO98soruvLKK51eBgAAtmIHG65Xq1Yt5ebmqlatWk4vBUVs2LBB77//vqZMmSL+Lg8A8At2sAHEjGVZiouL0+TJk3XmmWeqd+/eTi8JAICYYwcbQEzMnj1b8+fPlyTl5uaygw0A8A12sAHERE5OjlavXi3LsvTDDz/opptucnpJAADYgsAGAAAAoogjIgAAAEAUEdgAAABAFBHYAAAAQBQR2AAAAEAUEdgAAABAFBHYAAAAQBQR2AAAAEAUEdgAAABAFBHYAAAAQBQR2AAAAEAUEdgAAABAFP0/6BGoQ1mheaAAAAAASUVORK5CYII=\n", + "text/plain": [ + "Graphics object consisting of 25 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:54,955 Plotting 2d diagram... done\n", + "INFO: 2023-09-20 09:43:54,955 Gomory-Johnson's 2-slope theorem applies. The function is extreme. Continuing anyway because full_certificates=True.\n", + "INFO: 2023-09-20 09:43:54,957 Plotting...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAALhCAYAAACg1EnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABslElEQVR4nO3de3iU1bn//89ATEiIgXAOosYAAQLGcD4IBCpUsSpudYuKUqrtdnuq9di6pdUWqhREW49fqz8FT2itbrSobJVCykkCiQEkASQYAgYQiCFAgAB5fn9gpoRDSMisWTOz3q/rytUryTPPfDKF3DfLNffyeZ7nCQAAAMApNbIdAAAAAAgXNM8AAABAHdE8AwAAAHVE8wwAAADUEc0zAAAAUEc0zwAAAEAd0TwDAAAAdUTzjIjgeZ7Ky8vF2HIAAGASzTMiwu7du9WsWTPt3r3bdhScwMyZM21HAAA4xGTdoXkGYFy/fv1sRwAAOMRk3aF5BmDce++9ZzsCAMAhJuuOz2OTKCJAeXm5mjVrpl27dikhIcF2HBzjwIEDiomJsR0DAOAIk3WHlWcAxk2dOtV2BACAQ0zWHVaeERFYeQYAAMEQFYibVFZW6tChQ4G4FXBa9u/fry5dumj//v2Kijq9P9ZRUVGKjo4OcDJI0qRJkzRhwgTbMQAAjjBZdxq88lxZWanVq1erqqoqUJkAKxo1aqTu3bvTQBtQUlKi9u3b244BAHCEybrT4JXnQ4cOqaqqSsnJyYqNjQ1EJiDo9u3bp6KiIh06dIjm2YBPPvlEt9xyi+0YAABHmKw7Adm2IUmxsbGKi4sL1O0AK3bt2qX9+/crJiZGTZs2tR0nYqSnp9uOAABwiMm6E7DmGYgEs2fP1t69e5WQkKAxY8bQQAdIaWmp7QgAAIeYrDuMqgOO0rRpU0VHR6u8vFwHDhywHSdi7N2713YEAIBDTNYdmmfgKDExMRzmEWAHDh5U8lln2Y4BAHBI165djd2b5hmAUbdOnaoff/CBLv30U+Vu3Wo7DgDAAZ9//rmxe9M8AzBm86JFGvfBB+rYpYs+GTJEvVu3Vptly3TP4sUq27/fdjwAQIQaP368sXvTPAMwwquq0rYrrlDXnByNXLVKRZWVGrtokfY1aaI/DxqkFvv3q8e//qVXV69WFQedAgAC6OmnnzZ2b5rnevL5fJo1a1at14wfP15XXnllne9ZVFQkn8+nvLy8BmUDQsmCcePUu7RUJb//vSY98YTObdZMbwwdqt3nn6+PN2zQgLw8FXTurJu7d1fshg26dP58tnUAAALC5Km2TjfP9W1yJWnLli0aNWqUpJM3vX/5y180ffr0wIQEwtDmRYvU8803tSA1VX0efliTJk2q8f1RKSlaPGyY9rVpo8dycpS0das+6d+fbR0AgIA4tu4EktPN8+lo167dKacxNGvWTM2bNw9OICDEVG/X2N24sdI/+0ySdPvtt5/w2ujGjfVQ794quvBCtnUAAALmZHUnEGiejzJs2DD98pe/1IMPPqgWLVqoXbt2evTRR2tcc/S2jfPOO0+S1LNnT/l8Pg0bNkzS8Svac+bM0eDBg9W8eXO1bNlSl112mQoLC+uVLTk5WZMmTdK4ceMUHx+vc889Vx988IG2b9+u0aNHKz4+Xueff76WL19e43HvvfeeunfvrpiYGCUnJ2vatGn+7z300EMaMGDAcc+Vnp6uRx55xP/5q6++qm7duqlJkybq2rWrnn/+ef/3KisrdeeddyopKUlNmjRRcnKyHn/88Xr9bIgsR2/XaHbOOZKkmTNnnvJxbOsAAARKXerO6aJ5PsaMGTPUtGlTLV26VFOmTNEf/vAHffbD6tmxsrOzJR0Zh7Jlyxa9//77J7xu7969uvfee7Vs2TLNnTtXjRo10n/8x3+oqqqqXtmeeuopXXjhhfryyy/1k5/8RDfddJPGjRunG2+8Ubm5uerUqZPGjRsn74dVupycHF177bW67rrrtGrVKj366KP67W9/699SMnbsWC1durRGI7969WqtWrVKY8eOlSS99NJLevjhh/XHP/5RBQUFeuyxx/Tb3/5WM2bMkHRkQ/6HH36ov/3tb1q7dq3eeOMNJScn1+vnQuQ4drtGtSFDhtTrPmzrAAA0RH3rTn1wPPcxjl517dy5s5599lnNnTtXI0eOPO7a1q1bS5Jatmypdu3anfSeV199dY3P/7//7/9TmzZtlJ+frx49etQ526WXXqpbb71VkvS73/1OL7zwgvr27av//M//lCT9+te/1sCBA7Vt2za1a9dOTz75pC666CL99re/lSSlpqYqPz9fU6dO1fjx49WjRw+lp6frrbfe8l/z5ptvqm/fvkpNTZUkTZw4UdOmTdNVV10l6chqe35+vl588UX99Kc/VXFxsTp37qzBgwfL5/Pp3HPPrfPPg8hSvV2j0VHbNaoVFRUpPT293ves3tbxkKSNu3bp4WXL9EFiov7ct6/+UlamtOxs3deypX6alqZGPl+AfhIAQLg73bpTF6w8H+PYFzopKUnfffddg+5ZWFioG264QSkpKUpISPBv9yguLj7tbG3btpUknX/++cd9rTpvQUGBLrzwwhr3uPDCC/X111/r8OHDko6sPr/55puSJM/zNHPmTP+q8/bt27Vp0ybdcsstio+P939MmjTJv1o9fvx45eXlqUuXLvrlL3+pTz/9tF4/EyLHibZrVGvcuHGD78+2DgBAXQWi7pwMK8/HOOOMM2p87vP56r294liXX365zj77bL300ktq3769qqqq1KNHD1VWVp52Nt8Pq2wn+lp1Xs/z/F+r5h3zxqsbbrhBv/nNb5Sbm6t9+/Zp06ZNuu6662rc56WXXlL//v1rPK76D2WvXr30zTff6JNPPtHnn3+ua6+9ViNGjNDf//73ev1sCG9Hb9cYctR2jWpJSUkBfb5RKSkalZKiysOHNS0nRy/u369P+vfXJ9HRar1smcYePKhHevVS8yZNAvq8AIDwEOi6czRWnhsgOjpakvyruCeyc+dOFRQUaMKECbrooovUrVs3ff/990HJl5aWpoULF9b42uLFi5Wamupvfjt06KChQ4fqzTff1JtvvqkRI0b4V7Dbtm2rs846Sxs2bFCnTp1qfFSvnktSQkKCxowZo5deeknvvPOO3nvvPZWWlgblZ4R9J5qucaxly5YZeW6mdQAATsRU3ZFYeW6QNm3aKDY2VnPmzFGHDh3UpEkTNWvWrMY1iYmJatmypf76178qKSlJxcXF+s1vfhOUfPfdd5/69u2riRMnasyYMVqyZImeffbZGtMypCNbNx599FFVVlbqqaeeqvG9Rx99VL/85S+VkJCgUaNG6cCBA1q+fLm+//573XvvvXrqqaeUlJSkjIwMNWrUSO+++67atWvHqD6HLBg3TkNLS7V80iT1OWa7RrXqPfMmVW/rkKRPNmzQxOJiLe3SRTcnJem/Cwt10aZNmtS1q3rV8v4EAEBkMFl3WHlugKioKD399NN68cUX1b59e40ePfq4axo1aqS3335bOTk56tGjh+655x5NnTo1KPl69eqlv/3tb3r77bfVo0cP/e53v9Mf/vCH4857/8///E/t3LlTFRUVxx0a8/Of/1wvv/yypk+frvPPP1+ZmZmaPn26f+U5Pj5ef/rTn9SnTx/17dtXRUVF+vjjj9WoEX+0XHCy6RrHevHFF4OYimkdAOA6k3XH5x27CbaeKioqVFBQoG7duikuLi5QuYCgqv5zXFRUpLKyMu3evVvjxo1TixYtbEcLWV5VlXJbt1bSrl1qumHDcW8SDDUbd+3SwytW6IPERO05/3z5ysqUtnIl0zoAAPXC8iCA01LbdI1jmTwmta6Y1gEA7jBZd1h5BsTKc31tXrRIzQYPVl5qqoasXXvK6ysqKkLy90Pl4cOalpenF/fv18ZevaToaLXOzWVaBwCEOZN1Jzgrz7t2HfkAEPbqMl3jWC+88ILhVKeHaR0AEJlM1h3zzfOuXdLEiUc+HGyghw0bpl/96le2YwABU5/tGtUuu+wyw6kajm0dABA5TNYd881zRYW0Y8eRj4qKWi/dunWr7rrrLqWkpCgmJkZnn322Lr/8cs2dO9d4TISuRx99VBkZGae8bvXq1br66quVnJwsn8+nP//5z8azuaau0zWOtWLFCoOpAo9pHQAQ3kzWnZB5w2BRUZF69+6tf/7zn5oyZYpWrVqlOXPmaPjw4brjjjusZqvvSYCwo6KiQikpKZo8ebLaMcs34E5nu0a1li1bGkplFts6ACA8maw7IdM833777fL5fMrOztY111yj1NRUde/eXffee6+++OIL/3XFxcUaPXq04uPjlZCQoGuvvVbbtm2TJK1du1Y+n09r1qypce8nn3xSycnJ/qOp8/Pzdemllyo+Pl5t27bVTTfdpB07dvivHzZsmO68807de++9atWqlUaOHFmnx+3du1fjxo1TfHy8kpKSNG3atDr97B9++KH69OmjJk2aqFWrVjUGe3///fcaN26cEhMTFRcXp1GjRunrr7/2f3/69Olq3ry5Zs+erS5duiguLk7XXHON9u7dqxkzZig5OVmJiYm66667apyEmJycrIkTJ+qGG25QfHy82rdvr2eeeaZGrtpea+nfK8Kvv/66kpOT1axZM1133XXavXu3/xrP8zRlyhSlpKQoNjZWF1xwQY2ju+fPny+fz6e5c+eqT58+iouL06BBg7T2hzehTZ8+Xb///e+1YsUK+Xw++Xw+TZ8+/YSvY9++fTV16lRdd911iomJqdNrj7o7ne0a1WJjYw2lCh62dQBA+DBZd0KieS4tLdWcOXN0xx13qGnTpsd9v/q0Os/zdOWVV6q0tFRZWVn67LPPVFhYqDFjxkiSunTpot69e+vNN9+s8fi33npLN9xwg3w+n7Zs2aLMzExlZGRo+fLlmjNnjrZt26Zrr722xmNmzJihqKgoLVq0SC+++GKdHvfAAw9o3rx5+t///V99+umnmj9/vnJycmr92T/66CNdddVV+slPfqIvv/zS30RWGz9+vJYvX64PP/xQS5Ysked5uvTSS3Xw4EH/NRUVFXr66af19ttva86cOZo/f76uuuoqffzxx/r444/1+uuv669//WuNplWSpk6dqvT0dOXm5uqhhx7SPffco89+WFE81WtdrbCwULNmzdLs2bM1e/ZsZWVlafLkyf7vT5gwQa+++qpeeOEFrV69Wvfcc49uvPFGZWVl1bjPww8/rGnTpmn58uWKiorSzTffLEkaM2aM7rvvPnXv3l1btmzRli1bjssA8053u0a1devWGUhlD9s6ACC0Ga07XgPt3bvXW758ubd3794TX1BS4nk//emRj5KSE16ydOlST5L3/vvv1/pcn376qde4cWOvuLjY/7XVq1d7krzs7GzP8zzvySef9FJSUvzfX7t2rSfJW716ted5nvfb3/7W+/GPf1zjvps2bfIkeWvXrvU8z/MyMzO9jIyMGtec6nG7d+/2oqOjvbffftv//Z07d3qxsbHe3XfffdKfaeDAgd7YsWNP+L1169Z5krxFixb5v7Zjxw4vNjbW+9vf/uZ5nue9+uqrniRv/fr1/mtuvfVWLy4uztu9e7f/axdffLF36623+j8/99xzvUsuuaTG840ZM8YbNWqU53l1e60feeQRLy4uzisvL/df88ADD3j9+/f3PM/z9uzZ4zVp0sRbvHhxjee55ZZbvOuvv97zPM+bN2+eJ8n7/PPP/d//6KOPPEnevn37/M9zwQUXnPA1Oplzzz3Xe+qpp+p8ffWf47///e/eyy+/7D311FPezp076/Wckarq8GFveYsW3reNG3tlGzee1j2O/nMUqYrKyryxWVle/MqVnjzP833/vdc9K8t75auvvMNVVbbjAYBTTNadkFh59n7YTuE7xQlfBQUFOvvss3X22Wf7v5aWlqbmzZuroKBAknTddddp48aN/q0eb775pjIyMpSWliZJysnJ0bx58xQfH+//6Nq1q6Qjq6jVjl79rcvjCgsLVVlZqYEDB/of06JFC3Xp0qXWnykvL08XXXTRSX/eqKgo9e/f3/+1li1bqkuXLv6fV5Li4uLUsWNH/+dt27ZVcnKy4uPja3ztu+++q3H/o7NWf15937q81tKR7R9nnnmm//OkpCT/8+Tn52v//v0aOXJkjdfttddeq/FaS1J6enqNe0g6Li/saMh2jWozZswIcKrQw7YOAAgdJutOlLE710Pnzp3l8/lUUFCgK6+88qTXeZ53wgb76K8nJSVp+PDheuuttzRgwADNnDlTt956q//aqqoqXX755frTn/503H2qmzZJx20fOdXjjt6HXB+17cnxTvImpGNfhzPOOKPG930+3wm/VlVVdco81fety2t9sueufp7q//3oo4901lln1bju2D3JR9+n+v51yQuzjt6uMeQ0tmtUmzBhQgBThb5RKSkalZJy5BCWnBy9uH+/PunfX59ER6v1smUcwgIAhpmsOyGx8tyiRQtdfPHFeu6557R3797jvl9WVibpyMpncXGxNm3a5P9efn6+du3apW7duvm/NnbsWL3zzjtasmSJCgsLdd111/m/16tXL61evVrJycnq1KlTjY8T7beu6+M6deqkM844o8abG7///vtT7rlJT08/6Si+tLQ0HTp0SEuXLvV/befOnVq3bl2Nn/d0HZ21+vPq1fS6vta1SUtLU0xMjIqLi497zY5e0T6V6OjoGm92RHA0ZLrGsULheG4bmNYBAHaYrDsh0TxL0vPPP6/Dhw+rX79+eu+99/T111+roKBATz/9tH97wYgRI5Senq6xY8cqNzdX2dnZGjdunDIzM2tss7jqqqtUXl6u2267TcOHD6+x6nnHHXeotLRU119/vbKzs7VhwwZ9+umnuvnmm2tt0E71uPj4eN1yyy164IEHNHfuXH311VcaP368GjWq/SV+5JFHNHPmTD3yyCMqKCjQqlWrNGXKFElHVuRHjx6tX/ziF1q4cKFWrFihG2+8UWeddZZGjx7dkJdbkrRo0SJNmTJF69at03PPPad3331Xd999t6S6v9a1OfPMM3X//ffrnnvu0YwZM1RYWKgvv/xSzz33XL3+c0pycrK++eYb5eXlaceOHTpw4MAJr6usrFReXp7y8vJUWVmpb7/9Vnl5eVq/fn2dnwv/FojtGtUeeuihAKUKX2zrAIDgMVl3zDfPcXFSq1ZHPmo5Y/y8885Tbm6uhg8frvvuu089evTQyJEjNXfuXP8Riz6fT7NmzVJiYqKGDh2qESNGKCUlRe+8806NeyUkJOjyyy/XihUrNHbs2Brfa9++vRYtWqTDhw/r4osvVo8ePXT33XerWbNmtTa6dXnc1KlTNXToUF1xxRUaMWKEBg8erN69e9f68gwbNkzvvvuuPvzwQ2VkZOhHP/pRjZXmV199Vb1799Zll12mgQMHyvM8ffzxx8dtlzgd9913n3JyctSzZ09NnDhR06ZN08UXXyyp7q/1qUycOFG/+93v9Pjjj6tbt266+OKL9Y9//EPnnXdene9x9dVX65JLLtHw4cPVunVrzZw584TXlZSUqGfPnurZs6e2bNmiJ554Qj179tTPf/7zemVGw6drHKv6H4Q4gmkdAGCWybrj8062sbaOKioqVFBQoG7duinuZM1x9bHczZo15KkQQMnJyfrVr37F0eE/qP5zXFRUpLKyMu3evVvjxo1TixYtbEcLOq+qSrmtWytp1y413bChwavOkrRx40ade+65AUgXuTbu2qWHV6zQB4mJ2nP++fKVlSlt5Urd17KlfpqWpkaneEM1AODfTNad4GzbaNaMxhkIE4HcrlHtX//6V0DuE8nY1gEAgWOy7gSled71wweA0Bbo7RrV6rNNB2zrAICGMll3jDfPuyRN/OHDxQZ62LBhIbk1oqioKCRzwZ5ATtc41qFDhwJ6P1cwrQMATo/JumO8ea6QtOOHj4pTXLt161bdddddSklJUUxMjM4++2xdfvnlJx3lBjc8+uijysjIOOV1L730koYMGaLExEQlJiZqxIgRys7ONh8wQpjYrlFtK9sNGoxtHQBQdybrTsiMqisqKlLv3r31z3/+U1OmTNGqVas0Z84cDR8+XHfccYfVbJWVlVafH3Uzf/58XX/99Zo3b56WLFmic845Rz/+8Y/17bff2o4W8kxt16h2qqkzqB+2dQBA7UzWnZBpnm+//Xb5fD5lZ2frmmuuUWpqqrp376577723xmEexcXFGj16tOLj45WQkKBrr71W27ZtkyStXbtWPp9Pa9asqXHvJ598UsnJyf4T+/Lz83XppZcqPj5ebdu21U033aQdO3b4rx82bJjuvPNO3XvvvWrVqpVGjhxZp8ft3btX48aNU3x8vJKSkjRt2rQ6/ewffvih+vTpoyZNmqhVq1a66qqr/N/7/vvvNW7cOCUmJiouLk6jRo2qcZrh9OnT1bx5c82ePVtdunRRXFycrrnmGu3du1czZsxQcnKyEhMTddddd9WYY52cnKyJEyfqhhtuUHx8vNq3b69nnnmmRq7aXmvp3yvCr7/+upKTk9WsWTNdd9112r17t/8az/M0ZcoUpaSkKDY2VhdccIH+/ve/+78/f/58+Xw+zZ07V3369FFcXJwGDRqktWvX+n++3//+91qxYoV8Pp98Pp+mT59+wtfxzTff1O23366MjAx17dpVL730kqqqqvgvF6dgcrtGtVmzZhm5r+vY1gEAJ2ay7oRE81xaWqo5c+bojjvuOOEpf82bN5d0pBG78sorVVpaqqysLH322WcqLCzUmDFjJEldunRR79699eabb9Z4/FtvvaUbbrhBPp9PW7ZsUWZmpjIyMrR8+XLNmTNH27Zt07XXXlvjMTNmzFBUVJQWLVqkF198sU6Pe+CBBzRv3jz97//+rz799FPNnz9fOTk5tf7sH330ka666ir95Cc/0ZdffulvIquNHz9ey5cv14cffqglS5bI8zxdeumlOnjwoP+aiooKPf3003r77bc1Z84czZ8/X1dddZU+/vhjffzxx3r99df117/+tUbTKh2ZS52enq7c3Fw99NBDuueee/TZD83TqV7raoWFhZo1a5Zmz56t2bNnKysrS5MnT/Z/f8KECXr11Vf1wgsvaPXq1brnnnt04403Kisrq8Z9Hn74YU2bNk3Lly9XVFSUbr75ZknSmDFjdN9996l79+7asmWLtmzZclyGk6moqNDBgwedHDdXHya3a1S76667jNwX/8a2DgD4N6N1x2ugvXv3esuXL/f27t17wu+XeJ730x8+Sk5yj6VLl3qSvPfff7/W5/r000+9xo0be8XFxf6vrV692pPkZWdne57neU8++aSXkpLi//7atWs9Sd7q1as9z/O83/72t96Pf/zjGvfdtGmTJ8lbu3at53mel5mZ6WVkZNS45lSP2717txcdHe29/fbb/u/v3LnTi42N9e6+++6T/kwDBw70xo4de8LvrVu3zpPkLVq0yP+1HTt2eLGxsd7f/vY3z/M879VXX/UkeevXr/dfc+utt3pxcXHe7t27/V+7+OKLvVtvvdX/+bnnnutdcsklNZ5vzJgx3qhRozzPq9tr/cgjj3hxcXFeeXm5/5oHHnjA69+/v+d5nrdnzx6vSZMm3uLFi2s8zy233OJdf/31nud53rx58zxJ3ueff+7//kcffeRJ8vbt2+d/ngsuuOCEr1Ftbr/9dq9jx47++9Sm+s/x3//+d+/ll1/2nnrqKW/nzp31fs5ws2nhQq9c8v6Vmmr0eSZOnGj0/jixA4cOeY8tX+6du3Chp4oKT4cOea2zs71fLVrkfV+HvxcAEK5M1p2QWHn2fvhPir5THAJQUFCgs88+W2effbb/a2lpaWrevLkKCgokSdddd502btzo3+rx5ptvKiMjQ2lpaZKknJwczZs3T/Hx8f6Prl27Sjqyilrt2COoT/W4wsJCVVZW+o8Sl6QWLVqoS5cutf5MeXl5uuiii07680ZFRal///7+r7Vs2VJdunTx/7ySFBcXp44dO/o/b9u2rZKTkxUfH1/ja999912N+x+dtfrz6vvW5bWWjmz/OPPMM/2fJyUl+Z8nPz9f+/fv18iRI2u8bq+99lqN11qS0tPTa9xD0nF562PKlCmaOXOm3n//fTVp0uS07xPJgrFdo9qECROM3h8nxrYOAK4yWXeijN25Hjp37iyfz6eCggJdeeWVJ73O87wTNthHfz0pKUnDhw/XW2+9pQEDBmjmzJm69dZb/ddWVVXp8ssv15/+9Kfj7lPdtEk6bvvIqR539D7k+oiNjT3p97yTFLRjX4djj+r2+Xwn/FpVVdUp81Tfty6v9cmeu/p5qv/3o48+0llnnVXjupiYmBqfH32f6vvXJe+JPPHEE3rsscf0+eef12jKUdOCceM0tLRUyydNUh9D2zWqTZo0iQbasuptHZL0yYYNmlhcrKVduujmpCT9d2GhLtq0SZO6dlWvdu0sJwWAhjNZd0Ji5blFixa6+OKL9dxzz2nv3r3Hfb+srEzSkZXP4uJibdq0yf+9/Px87dq1S926dfN/bezYsXrnnXe0ZMkSFRYW6rrrrvN/r1evXlq9erWSk5PVqVOnGh8n2m9d18d16tRJZ5xxRo03N37//fdat25drT97enr6Sd/QlpaWpkOHDmnp0qX+r+3cuVPr1q2r8fOerqOzVn9evZpe19e6NmlpaYqJiVFxcfFxr9nRK9qnEh0dXePNjrWZOnWqJk6cqDlz5hz3Xw/wb6anaxzr5z//ufHnQN0xrQNApDNZd0KieZak559/XocPH1a/fv303nvv6euvv1ZBQYGefvpp//aCESNGKD09XWPHjlVubq6ys7M1btw4ZWZm1miUrrrqKpWXl+u2227T8OHDa6x63nHHHSotLdX111+v7OxsbdiwQZ9++qluvvnmWhu0Uz0uPj5et9xyix544AHNnTtXX331lcaPH69GjWp/iR955BHNnDlTjzzyiAoKCrRq1SpNmTJF0pEV+dGjR+sXv/iFFi5cqBUrVujGG2/UWWedpdGjRzfk5ZYkLVq0SFOmTNG6dev03HPP6d1339Xdd98tqe6vdW3OPPNM3X///brnnns0Y8YMFRYW6ssvv9Rzzz2nGTNm1DlncnKyvvnmG+Xl5WnHjh06cODACa+bMmWKJkyYoFdeeUXJycnaunWrtm7dqj179tT5uVwQzO0a1f7xj38E5XlQP2zrABCpTNYd481znKRWP3zE1XLdeeedp9zcXA0fPlz33XefevTooZEjR2ru3Ll64YUXJB35z/mzZs1SYmKihg4dqhEjRiglJUXvvPNOjXslJCTo8ssv14oVKzR27Nga32vfvr0WLVqkw4cP6+KLL1aPHj109913q1mzZrU2unV53NSpUzV06FBdccUVGjFihAYPHnzKOYPDhg3Tu+++qw8//FAZGRn60Y9+VGOl+dVXX1Xv3r112WWXaeDAgfI8Tx9//PFx2yVOx3333aecnBz17NlTEydO1LRp03TxxRdLqvtrfSoTJ07U7373Oz3++OPq1q2bLr74Yv3jH/+o17GZV199tS655BINHz5crVu31syZM0943fPPP6/Kykpdc801SkpK8n888cQT9coc6YIxXeNYdTnkBnYxrQNAJDFZd3zeyTbW1lFFRYUKCgrUrVs3xcWduD2uPpa7WUOeCAGVnJysX/3qVxzR/YPqP8dFRUUqKyvT7t27NW7cuIgbc7d50SI1GzxYeampGvLDLO1gmDNnji655JKgPR8Co/LwYU3Ly9OL+/drY69eUnS0WufmauzBg3qkVy815824AEKUyboTlG0bzUTjDNhmY7tGtX379gX1+RAYbOsAEK5M1p2Q2fMMwCwb2zWqde7cOajPh8BjWweAcGKy7tA8n0JycrL+/Oc/247hPwo7UIqKitiy4ZBgT9c41rx584L+nDCHaR0AQp3JuhMyzfP48ePl8/mO+1i/fn1Qnn/69On+Y8CPtmzZMv3Xf/1XUDLU5v777z/pSDugNja3a1QbN26cleeFWWzrABCqTNadkGmeJemSSy7Rli1banzUZyqDCa1btz7pGyGDKT4+Xi1btrQdA2HI5naNas8884yV50XwsK0DQCgxWXdCqnmOiYlRu3btanw0btxY48ePP+7kwV/96lcaNmyY//Nhw4bpl7/8pR588EG1aNFC7dq106OPPlrjMWVlZfqv//ovtW3bVk2aNFGPHj00e/ZszZ8/Xz/72c+0a9cu/4p39WOP3bZRXFys0aNHKz4+XgkJCbr22mu1bds2//ert1e8/vrrSk5OVrNmzXTddddp9+7dJ/25q1e9Z82apdTUVDVp0kQjR46scUBJoLdtwA22t2tU43RBt7CtA4BtJutOSDXPDTVjxgw1bdpUS5cu1ZQpU/SHP/xBn/3wn6mrqqo0atQoLV68WG+88Yby8/M1efJkNW7cWIMGDdKf//xnJSQk+Fe877///uPu73merrzySpWWliorK0ufffaZCgsLNWbMmBrXFRYWatasWZo9e7Zmz56trKwsTZ48udbsFRUV+uMf/6gZM2Zo0aJFKi8vr3EyIlBfobBdo9qkSZOsPj/sYFsHAFtM1p0oEzetqKjQmjVrar2ma9eux22HmD17tuLj4/2fjxo1Su+++26dnzc9PV2PPPKIpCPvsnz22Wc1d+5cjRw5Up9//rmys7NVUFCg1NRUSVJKSor/sc2aNZPP51O7du1Oev/PP/9cK1eu1DfffOM/Xvr1119X9+7dtWzZMvXt21fSkUZ9+vTpOvPMMyVJN910k+bOnas//vGPJ733wYMH9eyzz6p///6SjvxDoFu3bsrOzla/fv3q/BoA1RaMG6ehpaVaPmmS+ljarlHtzjvvtPr8sK96W4ckfbJhgyYWF2tply66OSlJ/11YqIs2bdKkrl3Vq5bfwQBQVybrjpHmec2aNac8WS8nJ0e9evWq8bXhw4f7TxOUpKZNm9bredPT02t8npSUpO+++06SlJeXpw4dOvgb59NRUFCgs88+2984S1JaWpqaN2+ugoICf/OcnJzsb5yPzXEyUVFRNY697tq1q/++NM+or6O3awyxuF2j2htvvEEDDb9RKSkalZJy5BCWnBy9uH+/PunfX59ER6v1smUcwgKgwUzWHSPNc9euXZWTk3PKa47VtGlTderU6bivN2rUSMcehHjw4MHjrjv2yGqfz6eqqipJUmxs7Clzn4rnefL5fKf8em05anOie5/oa0BtqrdrNAqB7RrVMjMzbUdACKre1vGQpOJduzRh2TLNat5cf+7bV38pK1Nadrbua9lSP01LUyN+FwKoB5N1x0jzHBcXd9yqckO0bt1aX331VY2v5eXlHdek1iY9PV2bN2/WunXrTrj6HB0drcOHD9d6j7S0NBUXF2vTpk3+1ef8/Hzt2rVL3bp1q3OWEzl06JCWL1/uX2Veu3atysrKTviPDKA2obRdo1phYaHOP/982zEQws5p1kyvsa0DQICYrDth8YbBH/3oR1q+fLlee+01ff3113rkkUeOa6ZPJTMzU0OHDtXVV1+tzz77TN98840++eQTzZkzR9KRrRZ79uzR3LlztWPHDlVUVBx3jxEjRig9PV1jx45Vbm6usrOzNW7cOGVmZtbYcnE6zjjjDN11111aunSpcnNz9bOf/UwDBgxgywbqJVSmaxwrOjradgSEEaZ1AGgok3UnLJrniy++WL/97W/14IMPqm/fvtq9e/dpDb9+77331LdvX11//fVKS0vTgw8+6F9tHjRokP77v/9bY8aMUevWrTVlypTjHu/z+TRr1iwlJiZq6NChGjFihFJSUvTOO+80+GeMi4vTr3/9a91www0aOHCgYmNj9fbbbzf4vnBHKE3XOFbbtm1tR0AYOnpax8bKSt20aJH2x8QwrQPAKZmsOz7v2M3E9VRRUaGCggJ169YtJA4TCUfTp0/Xr371K5WVldmO4qzqP8dFRUUqKyvz/wOtRYsWtqPV2b9uvFFD33zzyHaNEFp1lqS//vWvIXFSJyLD0ds6qpKSFM22DgDHMFl3wmLlGUDtQnW7RrXRo0fbjoAIwrYOAKdisu7QPANhLpS3a1R76aWXbEdABGJbB4CTMVl32LYBKLy3bYTydg3ABrZ1ADCJlWcgjIX6do1qHM+NYGJbBwCTdYfmGQhT4bBdo9p9991nOwIcxLYOwF0m6w7NMxCmFowbp96lpSr5/e/VLEQOQzmZ559/3nYEOK76EJby9HR9vGGDBuTlqaBzZ93cvbtiN2zQpfPnK3frVtsxAQSIybpD8wyEoXDZrlHtiiuusB0B8GNbBxD5TNYdmmcgzITTdo1qubm5tiMAx2FbBxC5TNYdmmcgzITTdo1qrVu3th0BqBXbOoDIYrLuRAXqRvv27QvUrYCgC5c/v0dv1xgSBts1qsXExNiOANTZqJQUjUpJUeXhw5qWk6MX9+/XJ/3765PoaLVetkxjDx7UI716qXmTJrajAjgJk3Wnwc1zVFSUGjVqpKKiogDEAezxPE+HDx+2HeOkqrdrNAqj7RrVCgsLdeGFF9qOAdRL9baOhyQV79qlCcuWaVbz5vpz3776S1mZ0rKzdV/LlvppWpoa+Xy24wI4ism60+DmOTo6Wt27d9ehQ4e0a9cuzZ49W02bNmWlCUF18OBBvfrqq/rZz36mM84447TucfjwYR06dCjAyQJnwbhxGlpaeuQwlDDZrlFt2LBhtiMADVK9rUOqeQjLzUlJ+m8OYQFCjsm6E5BtG9HR0YqOjtb+/fu1d+9eHTx4kOYZQVVZWalNmzbp+++/V3R0dIPudeDAgQClCpxw3a5R7fXXX9fDYZgbOBG2dQChz2TdafDx3Efbu3ev3nnnHZWXlwfqlkCdVFZWaubMmbr++usb3DxLUkJCgsaMGaOmTZsGIF3DeFVVym3dWkm7dqnphg1h8ybBo1VVValRI96fjMhVvGuXJqxYoVnNm2t3erp8ZWVKW7mSbR2AJSbrTkCbZ+lIAx2KK3eIbLt371aXLl20du1anXnmmQ2+X0xMTEg0zpL0rxtv1NA33zyyXSNMV28nTZqkCRMm2I4BBMXR2zqqkpIUzbYOIOhM1p2AN8+ADeXl5WrWrJl27dqlhIQE23ECZvOiRWo2eLDyUlM1ZO1a23FOGyvPcFHl4cOalpenF/fv18ZevaToaLXOzWVbBxAEJusO1QwIUeF4GMrJPP7447YjAEHHISyAPSbrDs0zEKLC8TCUk7nppptsRwCs4hAWILhM1h2aZyAEHT1dI1z3OR9t/vz5tiMAIWNUSooWDxumfW3a6LGcHCVt3apP+vdX79at1WbZMt2zeLHK9u+3HRMIaybrDs0zEGIiabtGtY4dO9qOAIQctnUA5pisOzTPQIhZMH58xGzXqMYEHqB2bOsAAstk3aF5BkLIt0uWKOP11yNmu0a17du3244AhA22dQANZ7LuMKoOESESRtVFwmEoJ/P111+rc+fOtmMAYYtDWID6MVl3WHkGQkQkbteo9uGHH9qOAIQ1tnUA9WOy7rDyjIgQ7ivP3y5ZojMHDdKKMD8M5WT27dun2NhY2zGAiMIhLMDJmaw7rDwDlnlVVdp62WXaE0HTNY41bdo02xGAiMO0DuDkTNYdVp4REcJ55flf48Zp6Ouva/mkSRH1JkEAdnyyYYMmFhdraZcuqkpKUnRhoS7atEmTunZVr3btbMcDwh4rz4BFkTpd41iTJk2yHQFwBtM6ALN1h5VnRIRwXHmO5Okax9q2bZvatm1rOwbgLKZ1wDUm6w4rz4AlkTxd41gffPCB7QiA05jWAdeYrDusPCMihNvKc6RP1zhWTk6OevfubTsGgKMwrQORzGTdYeUZCDIXpmsca9u2bbYjADgG0zoQyUzWHZpnIMhc2q5RrbKy0nYEALVgWwcijcm6w7YNRIRw2bbh2naNaqtWrdL5559vOwaAemBbB8KZybrDyjMQJC5u16iWlZVlOwKAemJbB8KZybrDyjMiQjisPLt8GEpZWZmaN29uOwaAAOAQFoQDk3WHlWcgCFw5DOVknn32WdsRAAQIh7AgHJisO6w8IyKE8sqzS4ehAHATh7DAJaw8A4a5OF3jWBzPDUQ2pnUg1HA8N3AKobry7Op0jWPt2rVLzZo1sx0DQBAxrQM2maw7rDwDhrg8XeNYr732mu0IAIKMaR2wyWTdoXkGDGG7xr8NHz7cdgQAFrGtA8Fmsu7QPAMGuD5d41hff/217QgAQgTTOhAMJusOzTMQYGzXOF5sbKztCABCDNs6YJLJukPzDAQY2zWO17JlS9sRAIQwtnUg0EzWHZpnIIDYrnFieXl5tiMACBNs60AgmKw7jKpDRAiFUXUchnJyW7duVTuO7QVwmjiEBfVlsu6w8gwECNs1Tu7ll1+2HQFAGDt2W8fAvDyt6dTJv61jFNs6cAyTdYeVZ0QE2yvPHIYCAMFVefiwnszL0/876hCWVrm5uuHgQf2eQ1hgECvPQAMxXePUOJ4bQKBFN26s3xwzreNATIyeZloHxPHcwCnZXHn+17hxGvr661o+aRJvEjyJ/fv3qwmrQACC4JMNGzSpuFhLU1N1uH17RRcW6kebNumPXbuqF++9cIbJusPKM9AATNeom2eeecZ2BACOGJWSokXDhqmibVs9/sO0jjk/TOtovWyZ7mZahxNM1h1WnhERbKw8M12j7r7++mt17tzZdgwAjmJah3tM1h1WnoHTxHSNusvJybEdAYDDmNbhHpN1h+YZOA1s16gfZjwDCBVs63CDybpD8wzUE9M16i8qKsp2BACogWkdkc1k3aF5BuqJ7Rr1980339iOAAAnxbaOyGOy7vCGQUSEYL1hkMNQTs/GjRt17rnn2o4BAHXGISzhzWTdYeUZqCO2a5y+t956y3YEAKgXtnWEN5N1h5VnRIRgrDxzGMrpO3z4sBo3bmw7BgA0GIewhAeTdYeVZ6AOmK7RMI8//rjtCAAQEEzrCA8m6w4rz4gIJleeOQwFAFAbDmFxCyvPwCkwXaPhJk2aZDsCABjDtI7QY7LusPKMiGBq5ZnpGoGxadMmnX322bZjAEDQMK3DLpN1h5Vn4CSYrhE4c+fOtR0BAIKKaR12maw7NM/ASbBdI3BSU1NtRwAAa9jWEXwm6w7NM3ACTNcIrH379tmOAAAhgWkdwWGy7tA8A8dgu0bg7dy503YEAAgpbOswy2TdoXkGjsF2jcC74IILbEcAgJDFto7AM1l3aJ6Bo7Bdw4zZs2fbjgAAYYFtHYFhsu4wqg4RIRCj6jgMxZyKigrFxcXZjgEAYYlDWOrPZN1h5Rn4Ads1zHnyySdtRwCAsMW2jvozWXdYeUZEaOjKM4ehAADCCYew2MPKM5zHdA3zOJ4bAAKLaR2143hu4BQasvL8r3HjNPT117V80iTeJGjI9u3b1bp1a9sxACDifbJhgyYVF2tpaqoOt2+v6MJC/WjTJv2xa1f1atfOdrygMVl3WHmG05iuERzvv/++7QgA4ASmdRxhsu7QPMNZbNcInr59+9qOAABOcX1bh8m6Q/MMZzFdI3i2bNliOwIAOMvFaR0m6w7NM5zEdo3gOnz4sO0IAAC5s63DZN2heYZz2K4RfMnJybYjAACOEunbOkzWHZpnOIftGsG3YMEC2xEAACcRids6TNYdRtUhItR1VB2HodhRWlqqFi1a2I4BAKijcD+ExWTdYeUZzmC7hj3PP/+87QgAgHoI920dJusOK8+ICHVZeeYwFAAAGoZDWFh5hiOYrmEXx3MDQGQIl2kdHM8NnEJtK89eVZVyW7dW0q5darphA28StKC8vLzex6YDAMJD8a5dmrBihWY1b67d6enylZUpbeVK3deypX6alqZGPl/QM5msO6w8I+IxXcO+6dOn244AADAkFKd1mKw7rDwjIpxs5ZnpGqEhPz9faWlptmMAAILE9rQOk3WHlWdELKZrhI41a9bYjgAACCLb0zpM1h2aZ0QstmuEjqZNm9qOAACwxMa2DpN1h+YZEYnpGqGFA1IAAFLwpnWYrDs0z4g4bNcIPStXrrQdAQAQQkxv6zBZd2ieEXHYrhF6Ro0aZTsCACBEmdjWYbLu0DwjopRkZ7NdIwS98sortiMAAMJAoLZ1mKw7jKpDRKgeVTc/MVGdy8s5DAUAgAgRaoewsPKMkLJnzx5dffXVKi4uPq3H9/z+e7ZrhCCO5wYAnK7T2dbB8dxwwiuvvKKNGzfqD3/4g7755hslJyfX+bFrPv9c3UaO1CcdO+qS9evNhcRpOXDggGJiYmzHAABEiFMdwhLr8xmrOzTPCDk+n++UzfOBAwd04MABSUema1zz17/q81//Wos/+0zJ3bsHKSnqavJTT+nqm26yHQMAEIFKKyr0j2+/1YrYWFV26CBVVKj8//0/ffHMM2oXHx/w56tz8zxz5kz169dP7733nu6++25NnTpVEyZM0KRJk3TzzTfrk08+UXp6ukpLS7V371517dpVn3/+ucaPH6+nn37af+3tt9+umTNnasiQISoqKlLjxo2VlJSkZcuW6aqrrtKLL77ov/bee+/VCy+8oMsuu0wrVqxQy5YtFRsbq3Xr1umiiy7SjBkz/Nc+9NBDmjJlim644Qb961//0nnnnadDhw5p69at6t27t2bNmqW77rpLTzzxhP8xP//5z/WPf/xDGRkZ2rlzp/bt26fOnTtr3rx5GjdunJ555hn/tXfeeafeeOMNZWZmqrCwUNHR0Wrbtq1ycnI0evRovfTSS/5r77vvPj3//PO64oorlJubq9atWysmJkaFhYUaNmyYXn/9dT300EN67LHH9D//8z96/PHHddNNN2n+/Pnq2LGjDhw4oO3bt6tXr1768MMPdfvtt2vatGn++//iF7/QBx98oN69e2vbtm2qrKxUx44dlZWVpRtvvFHPPvus/9q77rpLr732moYPH66vv/5asbGxatmypfLy8nT55Zfr5Zdf9l97//3365lnntGVV16pnJwctWvXTlFRUfrmm280dOhQvfXWW3rwwQf1+OOP+x/z05/+VHPnzlVqaqr27dunnTt36oILLtDs2bN122236cknn/Rfe+utt+r9999X3759tWXLFh0+fFjJyclasGCBrr/+ej3//POaMGGCfD6fVq5cqXnz5mnEiBFas2aNmjZtqhYtWmjlypUaNWqUbrzxRs2bN++4P6dXXHGFEhMT1ahRI5WVlemcc87RV199pUGDBmnhwoXKzMxUVlaWMjIytGHDBrVq1UqVlZXav3+/2rRpo/Xr16tXr1764osv/Nf26dNH+fn56tChg8rLyyVJCQkJ2rx5s7p3765ly5b5rx0wYIByc3PVsWNH7dixQ9HR0WrSpIm+++47derUSV9++aX/2sGDB2vJkiVKS0vT5s2b/ceKl5eXq0OHDsrPz9fAgQNr5O7Zs6fWr1+vNm3aaP/+/aqsrFSrVq1UWFh4XO6+fftq9erVJ8ydlpam5cuXH5e7U6dO+u6779SkSRNFR0drx44dSklJUV5eXo3cixcvVo8ePVRcXKzmzZurqqpKe/bs0VlnnaX8/HwNGDBAixYt8j/mvPPO044dO9S2bVvt27fPn3vDhg3KyMjQ0qVLa+T+6quvdM4556isrEyNGjVSfHy8SkpK1K1btxq5Bw4cqOXLlys1NVVbt25VXFycoqKitHPnzuNyDxkyRIsWLdL555+vjRs31sjdvn17rVmzRv369dPixYv9j+nVq5fWrVundu3aqaKiQocOHVKLFi1UVFSkCy64oEbufv36aeXKlUpOTlZpaakaN27sz921a1fl5OT4rx00aJCWLVumLl26aMuWLf7cpaWlSk5O1sqVKzV48GAtWLBAQ4YM0cKFC5Wenq6ioiK1aNFChw4dUkVFhZKSkrR27Vr17du3Ru7evXtrzZo1at++vfbs2aPDhw/7c6enpys7O9t/bf/+/bVixQp/7qioKMXFxWnr1q1KTU1Vbm5ujdzZ2dnq2rWrSkpKFB8f7/+7du6552rVqlW68MILtWDBguP+rrVs2dKfu127dlq3bp369OmjJUuW1Pi7VlBQ4M9dVVWl5s2bq7i4WD169Kjxd61///7Ky8tTSkqK/+9abGystm3bdtzftQsvvFBffPGF0tLS9O2339bIze+I0PgdUZ2b3xH8jgjU74jU1FQlJiXppv/8zxP2Ea+88oq/P3nggQf0l7/8RVdffbU6duwYuOYZCJb6rjxnLligb2Njtf2ii/T3v/9dgwYNClJS1MXXO3bo6d//Xsm//KUaJybajgMAiHBecbE2vPqqfvnIIxp6/vkBv39UwO8IBEFMTIxiYmJUcfCgVvTrp77/93/ariOrJklJSbbj4Sg7JMXHx8vXubNi+f8GAGDYPh2pO6YwbQNh7fEvv5TXurUua9zYdhTUolEjftUAAILHZN2hoiGsvVJVpdg1azSgVSvbUVCLsrIy2xEAAA4xWXdonhEyZs6cqdtuu02S9Jvf/EbPP/98rdev3blTJb166ZJt24IRDw1wDnO3AQBBZLLu0DwjZFx//fV64YUX5Hme3n77bd1+++21Xv/wV19JPp/+yGi6kPfVV1/ZjgAAcIjJukPzjLD1cZs2SsrJUTe2bIQ8JqAAAILJZN2heUZY+vu6ddrXrZvGB/k8e5yehQsX2o4AAHCIybpD84ywNLmkRL7t2zWhVy/bUVAHmZmZtiMAABxisu7QPCPsVBw8qNzu3ZWRn6+4M86wHQd1kJWVZTsCAMAhJusOzTPCTvVs59+0a2c7CuooIyPDdgQAgENM1h2aZ4Sd6tnO13bpYjsK6mjDhg22IwAAHGKy7tA8I6ww2zk8tWIiCgAgiEzWHZpnhBVmO4enyspK2xEAAA4xWXdonhFWmO0cnvbv3287AgDAISbrDs0zwgazncNXmzZtbEcAADjEZN2heUbYYLZz+Fq/fr3tCAAAh5isOzTPCAvMdg5vvfgHDwAgiEzWHZpnhAVmO4e3L774wnYEAIBDTNYdmmeEBWY7hzeO5wYABBPHc8NpzHYOfxzPDQAIJo7nhtOY7Rz++vTpYzsCAMAhJusOzTNCHrOdw19+fr7tCAAAh5isOzTPCGnMdo4MHTp0sB0BAOAQk3WH5hkhjdnOkaG8vNx2BACAQ0zWHZpnhCxmOwMAgFBD84yQxWznyJGQkGA7AgDAISbrDs0zQhaznSPH5s2bbUcAADjEZN2heUZIYrZzZOnOmEEAQBCZrDs0zwhJzHaOLMuWLbMdAQDgEJN1h+YZIYnZzpGF47kBAMHE8dxwCrOdIw/HcwMAgslk3YkydmfgNE0uKZEvMZHZzhFkwIABOmg7BADAGQMGDDB2b1aeEVKY7RyZcnNzbUcAADjEZN2heUZIYbZzZOrYsaPtCAAAh5isOzTPCCnMdo5MO3bssB0BAOAQk3WH5hkhg9nOkSs6Otp2BACAQ0zWHZpnhAxmO0euJk2a2I4AAHCIybpD84yQwWznyPXdd9/ZjgAAcIjJukPzjJDAbOfI1qlTJ9sRAAAOMVl3aJ4REiaXlMi3fTuznSPUl19+aTsCAMAhJusOzTOsY7Zz5ON4bgBAMHE8NyIas50jH8dzAwCCyWTdoXmGdcx2jnyDBw+2HQEA4BCTdYfmGVYx29kNS5YssR0BAOAQk3WH5hlWMdvZDWlpabYjAAAcYrLu0DzDKmY7u2Hz5s22IwAAHGKy7tA8wxpmO7sjISHBdgQAgENM1p0oY3cGTmFySYl8iYnMdgYAAGGDlWdYwWxnt5SXl9uOAABwiMm6Q/MMK5jt7JYOHTrYjgAAcIjJukPzDCuY7eyW/Px82xEAAA4xWXdonhF0zHZ2z8CBA21HAAA4xGTdoXlG0DHb2T0LFy60HQEA4BCTdYfmGUHHbGf3ZGZm2o4AAHCIybpD84ygYrazm7KysmxHAAA4xGTdYc4zgorZzm7q2bOn7QgAAIeYrDusPCNomO3srvXr19uOAABwiMm6Q/OMoGG2s7vatGljOwIAwCEm6w7NM4KG2c7u2r9/v+0IAACHmKw7NM8ICmY7u62ystJ2BACAQ0zWHZpnBAWznd3WirGEAIAgMll3aJ4RFMx2dlthYaHtCAAAh5isOzTPMI7ZzujFaEIAQBCZrDs0zzBuckmJfNu3M9vZYV988YXtCAAAh5isOzTPMIrZzpA4nhsAEFwcz42wxWxnSBzPDQAILpN1h+YZRjHbGZLUt29f2xEAAA4xWXdonmEMs51RbfXq1bYjAAAcYrLu0DzDGGY7o1qHDh1sRwAAOMRk3aF5hjHMdka18vJy2xEAAA4xWXdonmEEs50BAEAkirIdAJFpckmJfImJzHaGJCkhIcF2BACAQ0zWHVaeEXDMdsaxNm/ebDsCAMAhJusOzTMCjtnOOFZaWprtCAAAh5isOzTPCDhmO+NYy5cvtx0BAOAQk3WH5hkBxWxnnAjHcwMAgonjuRE2mO2ME+F4bgBAMHE8N8IGs51xIgMGDLAdAQDgEJN1h+YZAcNsZ5xMbm6u7QgAAIeYrDvMeUbAMNsZJ9OpUyfbEQAADjFZd1h5RkAw2xm1+e6772xHAAA4xGTdoXlGQDDbGbVp0qSJ7QgAAIeYrDs0zwgIZjujNtHR0bYjAAAcYrLu0DyjwZjtjFPZsWOH7QgAAIeYrDs0z2gwZjvjVFJSUmxHAAA4xGTdoXlGgzHbGaeSl5dnOwIAwCEm6w7NMxqE2c6oC47nBgAEE8dzI2RNLimRb/t2ZjujVhzPDQAIJo7nRkhitjPqavDgwbYjAAAcYrLu0DzjtDHbGXW1ePFi2xEAAA4xWXdonnHamO2MuurRo4ftCAAAh5isOzTPOC3MdkZ9FBcX244AAHCIybpD84zTwmxn1Efz5s1tRwAAOMRk3aF5xmlhtjPqo6qqynYEAIBDTNYdmmfUG7OdUV979uyxHQEA4BCTdSfK2J0RsSaXlMiXmMhsZ9TZWWedZTsCAMAhJusOK8+oF2Y743Tk5+fbjgAAcIjJukPzjHphtjNOx4ABA2xHAAA4xGTdoXlGvTDbGadj0aJFtiMAABxisu7QPKPOmO2M05WZmWk7AgDAISbrDs0z6ozZzjhdWVlZtiMAABxisu7QPKPOmO2M09WzZ0/bEQAADjFZd2ieUSfMdkZDrF+/3nYEAIBDTNYd5jyjTpjtjIZo27at7QgAAIeYrDusPOOUmO2Mhtq3b5/tCAAAh5isOzTPOCVmO6OhKisrbUcAADjEZN2hecYpMdsZDdWKN5kCAILIZN2heUatmO2MQNiwYYPtCAAAh5isOzTPqBWznREIGRkZtiMAABxisu7QPKNWzHZGICxdutR2BACAQ0zWHZpnnBSznREoHM8NAAgmjueGFZNLSuTbvp3ZzmgwjucGAAQTx3Mj6JjtjEDq27ev7QgAAIeYrDs0zzghZjsjkL766ivbEQAADjFZd2iecULMdkYgnXPOObYjAAAcYrLu0DzjOMx2RqCVlZXZjgAAcIjJukPzjOMw2xmB1qgRv2oAAMFjsu5Q0XAcZjsj0OLj421HAAA4xGTdoXlGDcx2hgklJSW2IwAAHGKy7kQZuzPC0uSSEvkSE5ntjIDq1q2bPNshAADO6Natm7F7s/IMP2Y7w5Tly5fbjgAAcIjJukPzDD9mO8MUjucGAAQTx3MjKJjtDFM4nhsAEEwczw3jmO0MkwYOHGg7AgDAISbrDs0zJDHbGWax5xkAEEzseYZxzHaGSampqbYjAAAcYrLu0DyD2c4wbuvWrbYjAAAcYrLuMOcZzHaGcXFxcbYjAAAcYrLusPLsOGY7Ixiiovh3OgAgeEzWHZpnxzHbGcGwc+dO2xEAAA4xWXdonh3HbGcEQ0pKiu0IAACHmKw7NM8OY7YzgiUvL892BACAQ0zWHZpnhzHbGcHC8dwAgGDieG4YwWxnBAvHcwMAgonjuRFwzHZGMA0ZMsR2BACAQ0zWHZpnR00uKZFv+3ZmOyMoFi1aZDsCAMAhJusOzbODmO2MYDv//PNtRwAAOMRk3aF5dhCznRFsGzdutB0BAOAQk3WH5tlBzHZGsDVv3tx2BACAQ0zWHZpnxzDbGTZUVVXZjgAAcIjJukPz7BhmO8OGPXv22I4AAHCIybpD8+wYZjvDhvbt29uOAABwiMm6Q/PsEGY7w5Y1a9bYjgAAcIjJuhNl7M4IOZNLSuRLTGS2M4KuX79+OmA7BADAGf369TN2b1aeHcFsZ9i0ePFi2xEAAA4xWXdonh3BbGfYlJmZaTsCAMAhJusOzbMjmO0Mm7KysmxHAAA4xGTdoXl2ALOdYVsv9tkDAILIZN2heXYAs51h27p162xHAAA4xGTdoXl2ALOdYVs79toDAILIZN2heY5wzHZGKKioqLAdAQDgEJN1hznPEY7ZzggFhw4dsh0BAOAQk3WHlecIxmxnhIoWLVrYjgAAcIjJukPzHMGY7YxQUVRUZDsCAMAhJusOzXMEY7YzQsUFF1xgOwIAwCEm6w7Nc4RitjNCydKlS21HAAA4xGTdoXmOUMx2RijheG4AQDBxPDfqjdnOCCUczw0ACCaO50a9MNsZoaZfv362IwAAHGKy7tA8R6DJJSXybd/ObGeEjJUrV9qOAABwiMm6Q/McYZjtjFCUnJxsOwIAwCEm6w7Nc4RhtjNCUWlpqe0IAACHmKw7NM8RhtnOCEWNGze2HQEA4BCTdYfmOYIw2xmhKj4+3nYEAIBDTNYdmucIwmxnhKqSkhLbEQAADjFZd2ieIwiznRGqunbtajsCAMAhJusOzXOEYLYzQllOTo7tCAAAh5isOzTPEYLZzghlHM8NAAgmjudGrZjtjFDH8dwAgGDieG7UitnOCHWDBg2yHQEA4BCTdYfmOQIw2xmhbtmyZbYjAAAcYrLu0DyHOWY7Ixx04R92AIAgMll3aJ7DHLOdEQ62bNliOwIAwCEm6w7Nc5hjtjPCQVxcnO0IAACHmKw7NM9hjNnOCBdRUVG2IwAAHGKy7tA8hzFmOyNclJaW2o4AAHCIybpD8xymmO2McJKcnGw7AgDAISbrDs1zmGK2M8LJypUrbUcAADjEZN2heQ5TzHZGOBk8eLDtCAAAh5isOzTPYYjZzgg3CxYssB0BAOAQk3WH5jkMMdsZ4WbIkCG2IwAAHGKy7tA8hyFmOyPcLFy40HYEAIBDTNYdmucww2xnhKP09HTbEQAADjFZd2iewwyznRGOioqKbEcAADjEZN2heQ4jzHZGuGrRooXtCAAAh5isOzTPYYTZzghXhw4dsh0BAOAQk3WH5jmMMNsZ4aqiosJ2BACAQ0zWHZrnMMFsZ4SzpKQk2xEAAA4xWXdonsMEs50RztauXWs7AgDAISbrDs1zmGC2M8JZ3759bUcAADjEZN2heQ4DzHZGuFu8eLHtCAAAh5isOzTPYYDZzgh3mZmZtiMAABxisu7QPIc4ZjsjEmRlZdmOAABwiMm6Q/Mc4pjtjEjQu3dv2xEAAA4xWXdonkMcs50RCdasWWM7AgDAISbrDs1zCGO2MyJF+/btbUcAADjEZN2heQ5hzHZGpNizZ4/tCAAAh5isOzTPIYzZzogUhw8fth0BAOAQk3WH5jlEMdsZkaRFixa2IwAAHGKy7tA8hyhmOyOSFBUV2Y4AAHCIybpD8xyCmO2MSJOenm47AgDAISbrDs1zCGK2MyJNdna27QgAAIeYrDs0zyGI2c6INBzPDQAIJo7ndgiznRGJOJ4bABBMHM/tEGY7IxL179/fdgQAgENM1h2a5xDDbGdEohUrVtiOAABwiMm6Q/McQqpnO/+M2c6IMMnJybYjAAAcYrLu0DyHkOrZzg8z2xkRprS01HYEAIBDTNYdmucQUT3buefq1cx2RsSJioqyHQEA4BCTdYfmOURUz3Z+qH1721GAgIuLi7MdAQDgEJN1h+Y5RLxSVaXYggJdk5pqOwoQcFu3brUdAQDgEJN1h+Y5BFTPdh713Xe2owBGpPKPQgBAEJmsOzTPIeDhr76SJD3Wo4flJIAZubm5tiMAABxisu7QPIeAj9u0UVJurrq0bGk7CmAEx3MDAIKJ47kjGLOd4QKO5wYABJPJusP8KMsml5TIl5jIbGdEtEGDBumA7RAAAGcMGjTI2L1ZebaI2c5wRXZ2tu0IAACHmKw7NM8WMdsZrujatavtCAAAh5isOzTPFjHbGa4oKSmxHQEA4BCTdYfm2RJmO8Ml8fHxtiMAABxisu7QPFvCbGe4pFEjftUAAILHZN2holnCbGe4pKyszHYEAIBDTNYdmmcLmO0M15x77rm2IwAAHGKy7tA8WzC5pES+7duZ7QxnrFq1ynYEAIBDTNYdmucgY7YzXHThhRfajgAAcIjJukPzHGTMdoaLFixYYDsCAMAhJusOzXOQMdsZLsrMzLQdAQDgEJN1h+Y5iJjtDFdlZWXZjgAAcIjJukPzHETMdoarMjIybEcAADjEZN2heQ4iZjvDVRs2bLAdAQDgEJN1h+Y5SJjtDJe15B+MAIAgMll3oozdGTVMLimRLzGR2c5w0qFDh2xHAAA4xGTdYeU5CJjtDNdVVFTYjgAAcIjJukPzHATMdobr2rVrZzsCAMAhJusOzXMQMNsZrlu3bp3tCAAAh5isOzTPhjHbGZD69OljOwIAwCEm6w7Ns2HMdgakJUuW2I4AAHCIybpD82wYs50BjucGAAQXx3OHKWY7A0dwPDcAIJhM1h3mPBvEbGfgiD59+sizHQIA4Az2PIchZjsD/1ZQUGA7AgDAISbrDs2zIcx2Bv6tPX8PAABBZLLu0Dwbwmxn4N/27NljOwIAwCEm6w7NswHMdgZqqqqqsh0BAOAQk3WH5tkAZjsDNTVv3tx2BACAQ0zWHZpnA5jtDNRUXFxsOwIAwCEm6w7Nc4Ax2xk4Xg/+KwwAIIhM1h2a5wCbXFIi3/btzHYGjrJs2TLbEQAADjFZd2ieA4jZzsCJcTw3ACCYOJ47TDDbGTgxjucGAASTybpD8xxAzHYGTqx///62IwAAHGKy7tA8BwiznYGTy8vLsx0BAOAQk3WH5jlAmO0MnFxKSortCAAAh5isOzTPAcJsZ+DkduzYYTsCAMAhJusOzXMAMNsZqF10dLTtCAAAh5isO1HG7uyQySUl8iUmMtsZOInY2FjbEQAADjFZd1h5biBmOwOntm3bNtsRAAAOMVl3aJ4biNnOwKl16tTJdgQAgENM1h2a5wZitjNwal9++aXtCAAAh5isOzTPDcBsZ6BuOJ4bABBMHM8dopjtDNQNx3MDAIKJ47lDFLOdgbq58MILbUcAADjEZN2heT5NzHYG6u6LL76wHQEA4BCTdYc5z6eJ2c5A3aWlpdmOAABwiMm6w8rzaWC2M1A/3377re0IAACHmKw7NM+ngdnOQP3Ex8fbjgAAcIjJukPzfBqY7QzUT6NG/KoBAASPybpDRasnZjsD9VdWVmY7AgDAISbrDs1zPTHbGai/c845x3YEAIBDTNYdmud6YrYzUH9f/fCPTgAAgsFk3aF5rgdmOwOnZ9CgQbYjAAAcYrLu0DzXw+SSEvm2b2e2M1BPCxcutB0BAOAQk3WH5rmOmO0MnL7MzEzbEQAADjFZd2ie64jZzsDpy8rKsh0BAOAQk3WH5rmOmO0MnL6MjAzbEQAADjFZd2ie64DZzkDDbNiwwXYEAIBDTNYdmuc6YLYz0DCtWrWyHQEA4BCTdYfmuQ6Y7Qw0TGVlpe0IAACHmKw7NM+nwGxnoOH2799vOwIAwCEm606UsTtHiMklJfIlJjLbGWiANm3a2I4AAHCIybrDynMtmO0MBMb69ettRwAAOMRk3aF5rgWznYHA6MV/uQEABJHJukPzXAtmOwOB8cUXX9iOAABwiMm6Q/N8Esx2BgKH47kBAMHE8dwWMNsZCByO5wYABBPHc1vAbGcgcPr06WM7AgDAISbrDs3zCTDbGQis/Px82xEAAA4xWXeY83wCzHYGAqtDhw62IwAAHGKy7rDyfAxmOwOBV15ebjsCAMAhJusOzfMxmO0MAACAk6F5PgaznYHAS0hIsB0BAOAQk3WH5vkozHYGzNi8ebPtCAAAh5isOzTPR2G2M2BG9+7dbUcAADjEZN2heT4Ks50BM5YtW2Y7AgDAISbrDs3zD5jtDJjD8dwAgGDieO4gmFxSIt/27cx2BgzgeG4AQDBxPLdhzHYGzBowYIDtCAAAh5isOzTPYrYzYFpubq7tCAAAh5isOzTPYrYzYFrHjh1tRwAAOMRk3XG+eWa2M2Dejh07bEcAADjEZN1xvnlmtjNgXnR0tO0IAACHmKw7zjfPzHYGzGvSpIntCAAAh5isO043z8x2BoLjO7ZFAQCCyGTdiTJ25zAwuaREvsREZjsDhnXq1Ml2BACAQ0zWHWdXnpntDATPl19+aTsCAMAhJuuOs80zs52B4OF4bgBAMHE8twHMdgaCh+O5AQDBxPHcAcZsZyC4Bg8ebDsCAMAhJuuOk80zs52B4FqyZIntCAAAh5isO042z8x2BoIrLS3NdgQAgENM1h3nmmdmOwPBt3nzZtsRAAAOMVl3nJvzzGxnIPgSEhJsRwAAOMRk3XFq5ZnZzgAAAGgIp5pnZjsDdpSXl9uOAABwiMm641TzzGxnwI4OHTrYjgAAcIjJuuNM88xsZ8Ce/Px82xEAAA4xWXecaZ6Z7QzYM3DgQNsRAAAOMVl3nGmeme0M2LNw4ULbEQAADjFZd5xonpntDNiVmZlpOwIAwCEm644TzfPkkhL5tm9ntjNgSVZWlu0IAACHmKw7Ed88M9sZsK9nz562IwAAHGKy7kR888xsZ8C+9evX244AAHCIyboT8c0zs50B+9q0aWM7AgDAISbrTkQ3z8x2BkLD/v37bUcAADjEZN2J6OaZ2c5AaKisrLQdAQDgEJN1J6KbZ2Y7A6GhVatWtiMAABxisu5EbPPMbGcgdBQWFtqOAABwiMm6E2XszpZNLimRLzGR2c5ACOjVq5cO2g4BAHBGL4P9X0SuPDPbGQgtX3zxhe0IAACHmKw7Edk8M9sZCC0czw0ACCaO564nZjsDoYXjuQEAwcTx3PXAbGcg9PTt29d2BACAQ0zWnYhrnpntDISe1atX244AAHCIyboTcc0zs52B0NOhQwfbEQAADjFZdyKqeWa2MxCaysvLbUcAADjEZN2JqDnPzHYGAACASRGz8sxsZyB0JSQk2I4AAHCIyboTMc0zs52B0LV582bbEQAADjFZdyKmeWa2MxC60tLSbEcAADjEZN2JiOaZ2c5AaFu+fLntCAAAh5isOxHRPDPbGQhtHM8NAAgmjuc+BWY7A6GN47kBAMHE8dy1YLYzEPoGDBhgOwIAwCEm607YN8+TS0rk276d2c5ACMvNzbUdAQDgEJN1J6ybZ2Y7A+GhU6dOtiMAABxisu6EdfPMbGcgPHzHJBwAQBCZrDth3Twz2xkID02aNLEdAQDgEJN1J2ybZ2Y7A+EjOjradgQAgENM1p2wbZ6Z7QyEjx07dtiOAABwiMm6E7bNM7OdgfCRkpJiOwIAwCEm605YNs/MdgbCS15enu0IAACHmKw7Ydk8M9sZCC8czw0ACCaO5z4Ks52B8MPx3ACAYOJ47qMw2xkIP4MHD7YdAQDgEJN1J+yaZ2Y7A+Fn8eLFtiMAABxisu6EVfPMbGcgPPVgpCQAIIhM1p2wap6Z7QyEp+LiYtsRAAAOMVl3wqp5ZrYzEJ6aN29uOwIAwCEm607YNM/MdgbCV1VVle0IAACHmKw7YdM8M9sZCF979uyxHQEA4BCTdScsmmdmOwPh7ayzzrIdAQDgEJN1JyyaZ2Y7A+EtPz/fdgQAgENM1p2waJ6Z7QyEtwEDBtiOAABwiMm6E/LNM7OdgfC3aNEi2xEAAA4xWXdCvnlmtjMQ/jIzM21HAAA4xGTdCfnmmdnOQPjLysqyHQEA4BCTdSekm2dmOwORoWfPnrYjAAAcYrLuhHTzzGxnIDKsX7/edgQAgENM1p2QbZ6Z7QxEjrZt29qOAABwiMm6E7LNM7Odgcixb98+2xEAAA4xWXdCtnlmtjMQOSorK21HAAA4xGTdCcnmmdnOQGRp1aqV7QgAAIeYrDsh2Twz2xmILBs2bLAdAQDgEJN1JySbZ2Y7A5ElIyPDdgQAgENM1p2Qa56Z7QxEnqVLl9qOAABwiMm6E3LNM7OdgcjD8dwAgGBy5nhuZjsDkYnjuQEAweTM8dzMdgYiU9++fW1HAAA4xGTdCanmmdnOQGT66ocJOgAABIPJuhMyzTOznYHIdc4559iOAABwiMm6EzLNM7OdgchVVlZmOwIAwCEm607INM/MdgYiV6NGIfOrBgDgAJN1JyQqGrOdgcgWHx9vOwIAwCEm605INM/MdgYiW0lJie0IAACHmKw71ptnZjsDka9bt262IwAAHGKy7lhvnpntDES+5cuX244AAHCIybpjvXlmtjMQ+TieGwAQTBF7PDeznQE3cDw3ACCYIvZ4bmY7A24YOHCg7QgAAIeYrDtWm2dmOwNuYM8zACCYInLPM7OdAXek8p4GAEAQmaw71ppnZjsD7ti6davtCAAAh5isO1aaZ2Y7A26Ji4uzHQEA4BCTdcdK88xsZ8AtUVFRtiMAABxisu5YaZ6Z7Qy4ZefOnbYjAAAcYrLuBL15ZrYz4J6UlBTbEQAADjFZd4LePDPbGXBPXl6e7QgAAIeYrDtBb56Z7Qy4h+O5AQDBFDHHczPbGXATx3MDAIIpYo7nZrYz4KYhQ4bYjgAAcIjJuhO05pnZzoC7Fi1aZDsCAMAhJutO0JpnZjsD7jr//PNtRwAAOMRk3Qla88xsZ8BdGzdutB0BAOAQk3UnKM0zs50BtzVv3tx2BACAQ0zWnaA0z8x2BtxWVVVlOwIAwCEm605QmmdmOwNu27Nnj+0IAACHmKw7xptnZjsDaM8bhQEAQWSy7hhvnpntjLrau3evPvroI40cOdJ2FATYmjVrbEcAADjEZN0x2jwz2xn10bRpU/3kJz/RwYMHbUdBgPXr1892BACAQ0zWHaPNM7OdAUjS4sWLbUcAADjEZN0x2jwz2xmAJGVmZtqOAABwiMm6E2Xqxsvz8rStVy9d/sknUrdupp4Gjjpw4IAOHDjg/3zv3r2SpD3ffqstq1bZioUT2Ll7t7KysnTBf/yH9toOAwCIeN733ysrK0vDr7rKyP19nud5dblw5syZ6tevn9577z3dfffdmjp1qiZMmKBJkybp5ptv1ieffKL09HSVlpZq7969WrxihV6tqtLnzz+vFzp31ouLF+uPjz2m22+/XTNnztSQIUNUVFSkxo0bKykpScuWLdNVV12lF1980X/fe++9Vy+88IIuu+wyrVixQi1btlRsbKzWrVuniy66SDNmzPBf+9BDD2nKlCm64YYb9K9//UvnnXeeDh06pK1bt6p3796aNWuW7rrrLj3xxBP+x/z85z/XP/7xD2VkZGjnzp3at2+fOnfurHnz5mncuHF65pln/NfeeeedeuONN5SZmanCwkJFR0erbdu2ysnJ0ejRo/XSSy/5r73vvvv0/PPP64orrlBubq5at26tmJgYFRYWatiwYXr99df10EMP6bHHHtP//M//6PHHH9dNN92k+fPnq2PHjjpw4IC2b9+uXr166cMPP9Ttt9+uadOm+e//i1/8Qh988IF69+6tbdu2qbKyUh07dlRWVpZuvPFGPfvss/5r77rrLr322msaPny4vv76a8XGxqply5bKy8vT5Zdfrpdfftl/7f33369nnnlGV155pXJyctSuXTtFRUXpm2++0dChQ/XWW2/pwQcf1OOPP+5/zE9/+lPNnTtXqamp2rdvn3bu3KkLLrhAs2fP1m233aYnn3zSf+2tt96q999/X3379tWWLVt0+PBhJScna8GCBbr++uv19NNPKzU1VXfccYemTZumsrIyXXLJJVqzZo2aNm2qFi1aaOXKlRo1apRuvPFGzZs377g/p1dccYUSExPVqFEjlZWV6ZxzztFXX32lQYMGaeHChcrMzFRWVpYyMjK0YcMGtWrVSpWVldq/f7/atGmj9evXq1evXvriiy/81/bp00f5+fnq0KGDysvLJUkJCQnavHmzunfvrmXLlvmvHTBggHJzc9WxY0ft2LFD0dHRatKkib777jt16tRJX375pf/awYMHa8mSJUpLS9PmzZuVkJAgSSovL1eHDh2Un5+vgQMH1sjds2dPrV+/Xm3atNH+/ftVWVmpVq1aqbCw8Ljcffv21erVq0+YOy0tTcuXLz8ud6dOnfTdd9+pSZMmio6O1o4dO5SSkqK8vLwauRcvXqwePXqouLhYzZs3V1VVlfbs2aOzzjpL+fn5GjBggBYtWqTMzEzNXbhQXTt31rZvv1Xbtm21b98+f+4NGzYoIyNDS5curZH7q6++0jnnnKOysjI1atRI8fHxKikpUbdu3WrkHjhwoJYvX67U1FRt3bpVcXFxioqK0s6dO4/LPWTIEC1atEjnn3++Nm7cWCN3+/bttWbNGvXr10+LFy/2P6ZXr15at26d2rVrp4qKCh06dEgtWrRQUVGRLrjgghq5+/Xrp5UrVyo5OVmlpaVq3LixP3fXrl2Vk5Pjv3bQoEFatmyZunTpoi1btvhzl5aWKjk5WStXrtTgwYO1YMECDRkyRAsXLlR6erqKiorUokULHTp0SBUVFUpKStLatWvVt2/fGrl79+6tNWvWqH379tqzZ48OHz7sz52enq7s7Gz/tf3799eKFSv8uaOiohQXF6etW7cqNTVVubm5NXJnZ2era9euKikpUXx8vP/v2rnnnqtVq1bpwgsv1IIFC477u9ayZUt/7nbt2mndunXq06ePlixZUuPvWkFBgT93VVWVmjdvruLiYvXo0aPG37X+/fsrLy9PKSkp/r9rsbGx2rZt23F/1y688EJ98cUXSktL07ffflsjN78j7P+OODo3vyP4HRGo3xHdu3dXbPPmGn/99SfsI1555RV/f/LAAw/oL3/5i66++mp17NgxcM3z6di+Zo2+/vGPNWjTJn2RlKSUOXPUJj3d1NPBIceuPP/jzTd14+23671bbtHAxESLyXCs7YcO6dcbN+rX99+vluedZzsOACDCfb9jh554+GG9+OKLSkpKCvj9jW3bkKTWXbuqdXGxljzwgDpNm6bGGRlafMcdGviXv8jXKCjnsyBCxcTEKCYmxv95XGysJOlMn09JTZvaioUT2btXZ7dqpS5nnmnklxgAAEfbIqldu3bG7h+UDnbg1KlqVFCgNR06aNCzz2pphw76buXKYDw1wojP5zvhB8JfRUWF7QgAAIeYrDtBW/5t2aWLBhUXa8n996vj1q2KysjQ4rvukmfw7HGEF8/zTviB8Hfo0CHbEQAADjFZd4K+d4JVaNSm+k0ru3fvtpwEgdSiRQvbEQAADjFZd6xsPGYVGifTs2dPjR49Wu+++67tKAigoqIi2xEAAA4xWXesvmuPVWgc6/e//70++OAD3XzzzbajIIAuuOAC2xEAAA4xWXesj7xgFRpHW7Fihf75z39q6tSp7HeOIEuXLrUdAQDgEJN1x3rzXI1VaEjSlClT9KMf/UiVlZWaP3++7TgIEI7nBgAEk8m6EzLNs8QqtOtee+01vfPOO5KkXbt2sfIcQbKysmxHAAA4xGTdCanmuRqr0G4aOXKkYmNjNWvWLJ1zzjn60Y9+ZDsSAqRfv362IwAAHGKy7oRk8yyxCu2ipKQkjR49WldeeaXuvPNO23EQQCv5xy8AIIhM1p2QbZ6rsQoNhL/k5GTbEQAADjFZd0K+eZZYhQbCXWlpqe0IAACHmKw7YdE8V2MVGghPjRs3th0BAOAQk3UnrJpniVVoIBzFx8fbjgAAcIjJuhN2zXM1VqGB8FFSUmI7AgDAISbrTtg2zxKr0EC46Nq1q+0IAACHmKw7Yd08V2MVGghtOTk5tiMAABxisu5ERPMssQoNhDKO5wYABJMzx3MHAqvQQOjheG4AQDA5dzx3Q7EKDYSWQYMG2Y4AAHCIyboTkc1zNVahgdCwbNky2xEAAA4xWXciunmWWIUGQkGXLl1sRwAAOMRk3Yn45rkaq9CAPVu2bLEdAQDgEJN1x5nmWWIVGrAlLi7OdgQAgENM1h2nmudqrEIDwRUVFWU7AgDAISbrjpPNs8QqNBBMpaWltiMAABxisu442zxXYxUaMC85Odl2BACAQ0zWHeebZ4lVaMC0lfyDFAAQRCbrDs3zUViFBswYPHiw7QgAAIeYrDs0z8dgFRoIvAULFtiOAABwiMm6Q/N8EqxCA4EzZMgQ2xEAAA4xWXdonmvBKjQQGAsXLrQdAQDgEJN1h+a5DliFBhomPT3ddgQAgENM1h2a5zpiFRo4fUVFRbYjAAAcYrLu0DzXE6vQQP21aNHCdgQAgENM1h2a59PAKjRQP4cOHbIdAQDgEJN1h+a5AViFBuqmoqLCdgQAgENM1h2a5wZiFRo4taSkJNsRAAAOMVl3aJ4DhFVo4OTWrl1rOwIAwCEm6w7NcwCxCg2cWN++fW1HAAA4xGTdoXk2gFVooKbFixfbjgAAcIjJukPzbAir0MC/ZWZm2o4AAHCIybpD82wYq9CAlJWVZTsCAMAhJusOzXMQsAoN1/Xu3dt2BACAQ0zWHZrnIGIVGq5as2aN7QgAAIeYrDs0z0HGKjRc1L59e9sRAAAOMVl3aJ4tYRUaLtmzZ4/tCAAAh5isOzTPFrEKDVccPnzYdgQAgENM1h2a5xDAKjQiXYsWLWxHAAA4xGTdoXkOEaxCI5IVFRXZjgAAcIjJukPzHGJYhUYkSk9Ptx0BAOAQk3WH5jkEsQqNSJOdnW07AgDAISbrDs1zCGMVGpGC47kBAMHE8dwOYxUakYDjuQEAwcTx3GAVGmGtf//+tiMAABxisu7QPIcRVqERrlasWGE7AgDAISbrDs1zGGIVGuEmOTnZdgQAgENM1h2a5zDFKjTCSWlpqe0IAACHmKw7NM9hjlVohIOoqCjbEQAADjFZd2ieIwCr0Ah1cXFxtiMAABxisu7QPEcQVqERqrZu3Wo7AgDAISbrDs1zhGEVGqEoNTXVdgQAgENM1h2a5wjFKjRCSW5uru0IAACHmKw7NM8RjFVohAqO5wYABBPHc6NBWIWGbRzPDQAIJo7nRoOxCg2bBg0aZDsCAMAhJusOzbNjWIWGDdnZ2bYjAAAcYrLu0Dw7iFVoBFvXrl1tRwAAOMRk3aF5dhir0AiWkpIS2xEAAA4xWXdonh3HKjSCIT4+3nYEAIBDTNYdmmdIYhUaZjVqxK8aAEDwmKw7VDT4sQoNU8rKymxHAAA4xGTdoXnGcViFRqCde+65tiMAABxisu7QPOOEWIVGIK1atcp2BACAQ0zWHZpn1IpVaATChRdeaDsCAMAhJusOzTNOiVVoNNSCBQtsRwAAOMRk3aF5Rp2xCo3TlZmZaTsCAMAhJusOzTPqhVVonI6srCzbEQAADjFZd2iecVpYhUZ9ZGRk2I4AAHCIybpD84zTxio06mrDhg22IwAAHGKy7tA8o8FYhcaptGzZ0nYEAIBDTNYdmmcEBKvQqM2hQ4dsRwAAOMRk3aF5RkCxCo0TqaiosB0BAOAQk3WH5hkBxyo0jtWuXTvbEQAADjFZd2ieYQyr0Ki2bt062xEAAA4xWXdonmEUq9CQpD59+tiOAABwiMm6Q/OMoGAV2m1LliyxHQEA4BCTdYfmGUHDKrS7OJ4bABBMHM+NiMIqtHs4nhsAEEwcz42Iwyq0W9jzDAAIJvY8I2KxCu2GgoIC2xEAAA4xWXdonmEdq9CRr3379rYjAAAcYrLu0DwjZLAKHbn27NljOwIAwCEm6w7NM0IKq9CRqYr//wAAQWSy7tA8IySxCh1ZmjdvbjsCAMAhJusOzTNCFqvQkaO4uNh2BACAQ0zWHZpnhDxWocNfjx49bEcAADjEZN2heUZYYBU6vC1btsx2BACAQ0zWHZpnhBVWocMTx3MDAIKJ47mBo5xoFXrH55/bjoVacDw3ACCYTNadqLpc5Hmedu/ebSwEUF8HDhzQ2Xffra2XXabC669Xm6VLJUlFhw9rSVmZ3XCooezwYWVkZKho82btjomxHQcAEOF27NihjIwM7d69W02bNq33488880z5fL6Tft/neZ53qpuUl5erWbNm9X5yAAAAIJzs2rVLCQkJJ/1+nZpnVp4Rag4cOKADBw74P//mm280dOhQ/e2ll9ThrLMsJsOx9lZUaOQ11ygnJ0fx8fG24wAAItyePXvUu3dvbdq0qdYm+GROtfJcp20bPp/vtJ4cCLaBl1yiDh062I6Bo5SXl0uSOnXqxO8RAIBx1XUnISHBSN3hDYMAAABAHdE8AwAAAHVE84yIEPPDFIcYpjmEnJiYGF1++eX8fwMACArTdadObxgEQl31RJhTvUMWdpSUlKh9+/a2YwAAHGGy7rDyDMC4V155xXYEAIBDTNYdVp4REVh5BgAAwcDKMwDjJk2aZDsCAMAhJusOK8+ICKw8h7YDBw7whkEAQNCYrDusPAMw7i9/+YvtCAAAh5isOzTPAIzZu3evPvroI3344Ye2owAAHLFnzx7985//VHFxsZH70zwDMKZp06b6yU9+oqioKNtRAAAOeOWVVzR16lT93//9n6qqqow8B3ueERE8z9Pu3bt15plnyufz2Y6DYwwbNkzz58+3HQMA4Aifz6dvvvlGycnJAb83y0GICD6fjzcKAgAA49i2AQAAANQRzTMAYw4cOKC33npLRUVFmjlzpg4cOGA7EgAADcKeZwAAAEQUk3ueWXkGAAAA6ojmGYAxPp/vhB8AAJgwc+ZM3XbbbZKk3/zmN3r++ecD/hxs2wAAAADqiJVnAEaVl5dLknbv3m05CQAADUfzDMConj17avTo0Xr33XdtRwEAoMHYtgHAqDfeeEM33nij7RgAAAQEK88AjFqxYoX++c9/aurUqeLf6gCAcMfKMwCjPM+Tz+fTH//4Rw0aNEjDhw+3HQkAgNPGyjMAY1577TW98847kqRdu3ax8gwACHusPAMwZsuWLcrOzpbnedq8ebPuvPNO25EAAGgQmmcAAACgjti2AQAAANQRzTMAAABQRzTPAAAAQB3RPAMAAAB1RPMMAAAA1BHNMwAAAFBHNM8AAABAHdE8AwAAAHVE8wwAAADUEc0zAAAAUEc0zwAAAEAd/f8GUfFZeYfNaAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "Graphics object consisting of 15 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:55,087 Plotting... done\n", + "INFO: 2023-09-20 09:43:55,088 Plotting...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAALhCAYAAACg1EnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1NElEQVR4nO3de1yVZbr/8e9SQkFEwSOeIlRUNMTzIRUtG7OT/aydlWWO1TSdpimrPe1xb6ddMzmWTVNT7aZ2aU5Z02FbY+VUpqRoIhCaiicU0fBsiIiKwPP7w1gjCoq67nWvtZ7P+/XiNcM6POvLMrgub2+u2+M4jiMAAAAAZ1TPdgAAAAAgWNA8AwAAAHVE8wwAAADUEc0zAAAAUEc0zwAAAEAd0TwDAAAAdUTzDAAAANQRzTNCguM4Ki4uFmPLAQCASTTPCAkHDx5UkyZNdPDgQdtRUIM5c+bYjgAAcBGTdYfmGYBx/fv3tx0BAOAiJusOzTMA4z788EPbEQAALmKy7ngcNokiBBQXF6tJkyY6cOCAoqOjbcfBSY4ePaoGDRrYjgEAcAmTdYeVZwDGPfPMM7YjAABcxGTdYeUZIYGVZwAA4A9hvrhIWVmZysvLfXEp4JwcOXJEXbp00ZEjRxQW5pP/rENeWFiYwsPD/fJaTz31lKZMmeKX1wIAwGTdOe+V57KyMq1Zs0aVlZW+ygTAD+rVq6fu3bv7pYEuLCxUmzZtjL8OAACS2bpz3kt05eXlqqysVHx8vCIiInyRCYBhhw8fVn5+vsrLy/3SPH/++ee64447jL8OAACS2brjs3/fjoiIUGRkpK8uB8APDhw4oCNHjqhBgwZq1KiRsddJTk42dm0AAE5msu6wORRwsXnz5unQoUOKjo7WuHHjjDXQ+/fvN3JdAABqYrLuMKoOcLFGjRopPDxcxcXFOnr0qLHXOXTokLFrAwBwMpN1h+YZcLEGDRoYP7zk6LFjim/b1uhrAABwoq5duxq7Ns0zAKPufuYZ/ezjj3XlF18oe+dO23EAAC7w1VdfGbs2zTMAY7anp2vCxx+rY5cu+nzoUPVp0UItV6zQQ0uXqujIEdvxAAAhauLEicauTfMMwAinslK7rr1WXbOydPn33yu/rEzj09N1uGFDPT94sGKPHFGPb77Rm2vWqJKDTgEAPvTCCy8YuzbNs4/NnTtXnTp1Uv369fXrX//adpygM3z4cJ+8b/Hx8Xr++efP+zrBJpC+7sUTJqjP/v0qfOIJPfXss7qwSRP9bdgwHbz4Yn22ebMG5uQot3NnTereXRGbN+vKRYvY1gEA8AmTp9r6rXmeOHGiPB6PfvnLX55y37333iuPx2N0id1f7r77bt1www3atm2bnnzySU2cOFHXXXed0ddMS0tTnz591LBhQyUkJOh//ud/jL5eIJk5c6aaNm16yu0rVqzQL37xC/8HgqTj2zV6vf22Ficmqu9vf6unnnqq2v2jExK0dPhwHW7ZUn/IylLczp36fMAAtnUAAHzi5LrjS35deW7fvr3effddHT582HvbkSNHNGfOHHXo0MGfUYwoKSnR7t27NWrUKLVp00aNGzf22bXLyspqvH3Lli268sorNXToUH333Xf6j//4D/3qV7/Shx9+6LPXDkYtWrTw+6E9FRUVHFOvf23XOFi/vpK//FLS8b8g1yS8fn093qeP8i+5hG0dAACfqa3u+IJfm+fevXurQ4cO+uijj7y3ffTRR2rfvr169epV7bFHjx7Vr371K7Vs2VINGzbUkCFDtGLFCklSZWWl2rVrd8oKa3Z2tjwejzZv3izp+Olpv/jFL9SyZUtFR0fr0ksv1cqVK72PX7lypUaMGKHGjRsrOjpaffr0UWZmZq35n3vuOV188cVq1KiR2rdvr3vvvVclJSWSpEWLFnmb5UsvvVQej0fDhw/XrFmz9PHHH8vj8cjj8WjRokWSpB9++EHjxo1TTEyMmjVrpjFjxig/P9/7WlUr1k8//bTatGmjxMTEGjP9z//8jzp06KDnn39e3bp105133qlJkybp2WefPd0fhdasWaOrrrpK0dHRaty4sYYOHaq8vDzv+/vf//3fateunRo0aKCUlBTNnz/f+9z8/Hx5PB79/e9/19ChQxUREaF+/fppw4YNWrFihfr27auoqChdccUV2rNnzylf0xNPPOH9M7n77rtr/YuBdPwvDY899pjatm2rRo0aacCAAd73cNGiRfr5z3+uAwcOeN/f3/3ud5JO3b5QUFCgMWPGKCoqStHR0brxxhu1a9cu7/2/+93vlJKSotmzZys+Pl5NmjTRTTfdpIMHD9aarWrVe968eUpKSlKDBg20detW/fjjj5owYYJiYmIUGRmp0aNHa+PGjae81omef/55xcfHn/JePfvss4qLi1OzZs1033336dixY97H7N69W9dcc40iIiJ00UUX6e233641qz+duF2jyU9/KZ4zZ84Zn8e2DgCAr9Sl7pwrv+95/vnPf64333zT+/kbb7yhSZMmnfK4xx57TB9++KFmzZql7OxsderUSaNGjdL+/ftVr1493XTTTac0C++8844GDRqkhIQEOY6jq666Sjt37tRnn32mrKws9e7dW5dddpn31Jnx48erXbt2WrFihbKysvSb3/xGF1xwQa3Z69WrpxdeeEGrV6/WrFmz9PXXX+uxxx6TJA0ePFjr16+XJH344YfasWOHPvnkE91444264oortGPHDu3YsUODBw9WaWmpRowYoaioKH3zzTdasmSJt9k8sZFcsGCBcnNz9eWXX2revHk1Zlq2bJl+9rOfVbtt1KhRyszMrNZoneiHH37QsGHD1LBhQ3399dfKysrSpEmTVF5eLkn685//rBkzZujZZ5/VqlWrNGrUKF177bXVGkBJmjp1qqZMmaLs7GyFhYXp5ptv1mOPPaY///nPWrx4sfLy8vRf//Vf1Z5T9TUtXLhQc+bM0f/93//piSeeqPU9//nPf6709HS9++67WrVqlf7t3/5NV1xxhTZu3KjBgwfr+eefV3R0tPf9feSRR065huM4uu6667R//36lpaXpyy+/VF5ensaNG1ftcXl5eZo7d67mzZunefPmKS0tTdOmTas1mySVlpbq6aef1uuvv641a9aoZcuWmjhxojIzM/XJJ59o2bJlchxHV155Za1/HrVZuHCh8vLytHDhQs2aNUszZ87UzJkzvfdPnDhR+fn5+vrrr/XBBx/o5Zdf1u7du8/qNXzt5O0aVYYOHXpW12FbBwDgfJxt3Tkrznk6dOiQk5mZ6Rw6dOi0j7v99tudMWPGOHv27HEaNGjgbNmyxcnPz3caNmzo7NmzxxkzZoxz++23O47jOCUlJc4FF1zgvP32297nl5WVOW3atHGmT5/uOI7jZGdnOx6Px8nPz3ccx3EqKiqctm3bOi+99JLjOI6zYMECJzo62jly5Ei1HB07dnReffVVx3Ecp3Hjxs7MmTPP+Wv/+9//7jRr1sz7+Y8//uhIchYuXHjK132i//3f/3W6dOniVFZWem87evSoExER4fzzn//0Pq9Vq1bO0aNHT5uhc+fOzu9///tqt6WnpzuSnMLCwhqf8/jjjzsXXXSRU1ZWVuP9bdq0OeWa/fr1c+69917HcRxny5YtjiTn9ddf994/Z84cR5KzYMEC721PP/2006VLF+/nt99+uxMbG1vtv5VXXnnFiYqKcioqKhzHcZzU1FTnwQcfdBzHcTZt2uR4PB7nhx9+qJblsssucx5//HHHcRznzTffdJo0aXLK13DhhRc6f/rTnxzHcZwvvvjCqV+/vlNQUOC9f82aNY4kJyMjw3Ecx5k6daoTGRnpFBcXex/z6KOPOgMGDKjxPap6bUlOTk6O97YNGzY4kpz09HTvbXv37nUiIiKcv//9797X6tmzZ7Vr/elPf3IuvPDCau/VhRde6JSXl3tv+7d/+zdn3LhxjuM4zvr16x1Jzrfffuu9Pzc315Hk/bpPp+r79oMPPnBef/11509/+pOzb9++Mz7vdCorKpzM2Fjnh/r1naKtW6vd9/HHH5/XtR3HcfKLipzxaWlO1KpVjhzH8fz4o9M9Lc15Y/Vqp+KE7yUAAHxRd2rj95Xn5s2b66qrrtKsWbP05ptv6qqrrlLz5s2rPSYvL0/Hjh3TJZdc4r3tggsuUP/+/ZWbmytJ6tWrl7p27epdlk9LS9Pu3bt14403SpKysrJUUlKiZs2aKSoqyvuxZcsW7/aEhx9+WHfeeadGjhypadOmeW+vzcKFC3X55Zerbdu2aty4sSZMmKB9+/ad9RGQWVlZ2rRpkxo3buzNFRsbqyNHjlTLcPHFFys8PPyM1/N4PNU+d37aH3ry7VVycnI0dOjQGlfZi4uLVVhYWO29l6RLLrnE+95XSU5O9v7/Vq1aeTOfeNvJK6E9e/asthd50KBBKikp0bZt207Jkp2dLcdxlJiYWO3PMC0t7Yx/VifKzc1V+/bt1b59e+9tSUlJatq0abWvKT4+vto+9bi4uDOu5IaHh1d7H3JzcxUWFqYBAwZ4b2vWrJm6dOlyyvt3Jt27d1f9+vVrzFP1On379vXe37Vr1xp/edJfatquUeXEr+Ncsa0DAFBXvqg7tQkzduXTmDRpku6//35J0ksvvXTK/bU1f47jVLtt/Pjxeuedd/Sb3/xG77zzjkaNGuVtxCsrKxUXF+fdH3uiqgbjd7/7nW655RZ9+umn+vzzzzV16lS9++67+n//7/+d8pytW7fqyiuv1C9/+Us9+eSTio2N1ZIlS3THHXec9T/HV1ZWqk+fPjXuUW3RooX3/zdq1OiM12rdurV2ntQw7N69W2FhYWrWrFmNz4mIiDjjdc/03kuq1nxX3XfybXX9BbqaGv3KykrVr19fWVlZp3wTREVF1em6tWWv6faT/zJRl/wRERHVruHU8ottJ75WvXr1TnlcTf8NnS7Pmf6C5G8nbtcYesJ2jSpxcXE+fb3RCQkanZCgsooKzcjK0qtHjujzAQP0eXi4WqxYofHHjmlq795q2rChT18XABAcfF13TmRlznPV3t6ysjKNGjXqlPs7deqk8PBwLVmyxHvbsWPHlJmZqW7dunlvu+WWW/T9998rKytLH3zwgcaPH++9r3fv3tq5c6fCwsLUqVOnah8nrnQnJibqoYce0hdffKGxY8dW2499oszMTJWXl2vGjBkaOHCgEhMTVVhYeMavNTw8XBUVFdVu6927tzZu3KiWLVuekq1JkyZnvOaJBg0apC9/mmhQ5YsvvlDfvn1r3b+dnJysxYsX19iwRUdHq02bNtXee0launRptff+XK1cubLatJVvv/1WUVFRateu3SmP7dWrlyoqKrR79+5T3qfWrVtLqvn9PVlSUpIKCgqqrW6vXbtWBw4c8MnXdPJrlZeXa/ny5d7b9u3bpw0bNnhfq0WLFtq5c2e1BjonJ+esXqdbt24qLy+v9guu69evV1FR0XnlPxc1Tdc4WdUv+/oa0zoAADUxVXckS81z/fr1lZubq9zc3BqX1Rs1aqR77rlHjz76qObPn6+1a9fqrrvuUmlpqe644w7v4y666CINHjxYd9xxh8rLyzVmzBjvfSNHjtSgQYN03XXX6Z///Kfy8/O1dOlSTZkyRZmZmTp8+LDuv/9+LVq0SFu3blV6erpWrFhRazPVsWNHlZeX68UXX9TmzZs1e/bsOs1Tjo+P16pVq7R+/Xrt3btXx44d0/jx49W8eXONGTNGixcv1pYtW5SWlqYHH3xQ27dvP6v38pe//KW2bt2qhx9+WLm5uXrjjTf0v//7vzX+4lyV+++/X8XFxbrpppuUmZmpjRs3avbs2d5feHz00Uf1xz/+Ue+9957Wr1+v3/zmN8rJydGDDz54VtlqUlZWpjvuuENr1671rvbff//9qlfv1P8UExMTNX78eE2YMEEfffSRtmzZohUrVuiPf/yjPvvsM0nH39+SkhItWLBAe/fuVWlp6SnXGTlypJKTkzV+/HhlZ2crIyNDEyZMUGpqarVtD77QuXNnjRkzRnfddZeWLFmilStX6tZbb1Xbtm29/30OHz5ce/bs0fTp05WXl6eXXnpJn3/++Vm9TpcuXXTFFVforrvu0vLly5WVlaU777yzTv+q4Gun265RZezYscZzsK0DAFDFZN2xdsJgdHS0oqOja71/2rRpuv7663Xbbbepd+/e2rRpk/75z38qJiam2uPGjx+vlStXauzYsdUaB4/Ho88++0zDhg3TpEmTlJiYqJtuukn5+flq1aqV6tevr3379mnChAlKTEzUjTfeqNGjR9c6+SElJUXPPfec/vjHP6pHjx56++239fTTT5/x67zrrrvUpUsX9e3bVy1atFB6eroiIyP1zTffqEOHDho7dqy6deumSZMm6fDhw6d9T2py0UUX6bPPPtOiRYuUkpKiJ598Ui+88IKuv/76Wp/TrFkzff311yopKVFqaqr69Omj1157zbtS/atf/UqTJ0/W5MmTdfHFF2v+/Pn65JNP1Llz57PKVpPLLrtMnTt31rBhw3TjjTfqmmuu8Y6Xq8mbb76pCRMmaPLkyerSpYuuvfZaLV++3Lt/efDgwfrlL3+pcePGqUWLFpo+ffop1/B4PJo7d65iYmI0bNgwjRw5UgkJCXrvvffO++upLXOfPn109dVXa9CgQXIcR5999pn3/e3WrZtefvllvfTSS+rZs6cyMjJO+5ed071O+/btlZqaqrFjx3rHMvpTbdM1Tvbqq6/6MRXTOgDA7UzWHY9T2ybNOiotLVVubq66devm90MpEFwmTpyooqIizZ0713YU16v6vs3Pz1dRUZEOHjyoCRMmKDY2ts7XcCorld2iheIOHFCjzZtrXXUOFFsPHNBvV67UxzExKrn4YnmKipS0apUmN2um25OSVC9A9o8DAAKbtZVnAMGtLts1qpg8JrWu2NYBAO4RMsdzAwgNdd2uUeXhhx/2Q6q6Y1sHAIQ2k3UntJvnAweOfyAgzJw5ky0bIaAu0zVO9sorrxhOdW6Y1gEAoclk3Qnd5vnAAenJJ49/uLCBHj58uH7961/bjoEQdDbbNapcffXVhlOdP7Z1AEDoMFl3Qrd5Li2V9u49/lHD+LIT7dy5Uw888IASEhLUoEEDtW/fXtdcc40WLFjgp7AIRL/73e+UkpJyxsetWbNG119/veLj4+XxePT8888bz2bL2W7XqLJy5UqDqXyPbR0AENxM1p3QbZ7rKD8/X3369NHXX3+t6dOn6/vvv9f8+fM1YsQI3XfffVazlZWVWX191E1paakSEhI0bdo07+EtoehctmtUqe20y0DHtg4ACE4m647rm+d7771XHo9HGRkZuuGGG5SYmKju3bvr4Ycf1rfffut9XEFBgcaMGaOoqChFR0frxhtv1K5duyQdP9nN4/Fo3bp11a793HPPKT4+3nuS3Nq1a3XllVcqKipKrVq10m233aa9e/d6Hz98+HDdf//9evjhh9W8eXNdfvnldXreoUOHNGHCBEVFRSkuLk4zZsyo09f+ySefqG/fvmrYsKGaN29ebaD4jz/+qAkTJigmJkaRkZEaPXq0Nm7c6L1/5syZatq0qebNm6cuXbooMjJSN9xwgw4dOqRZs2YpPj5eMTExeuCBB6qdABgfH68nn3xSt9xyi6KiotSmTRu9+OKL1XKd7r2W/rUiPHv2bMXHx6tJkya66aabdPDgQe9jHMfR9OnTlZCQoIiICPXs2VMffPCB9/5FixbJ4/FowYIF6tu3ryIjIzV48GDvQTEzZ87UE088oZUrV8rj8cjj8WjmzJk1vo/9+vXTM888o5tuukkNGjSo03sfjM5lu0YVG4e3+BrbOgAgeJisO65unvfv36/58+frvvvuU6NGjU65v2nTppKON2LXXXed9u/fr7S0NH355ZfKy8vTuHHjJB0/7a1Pnz56++23qz3/nXfe0S233CKPx6MdO3YoNTVVKSkpyszM1Pz587Vr1y7deOON1Z4za9YshYWFKT09Xa+++mqdnvfoo49q4cKF+r//+z998cUXWrRokbKysk77tX/66acaO3asrrrqKn333XfeJrLKxIkTlZmZqU8++UTLli2T4zi68sorqx3pXVpaqhdeeEHvvvuu5s+fr0WLFmns2LH67LPP9Nlnn2n27Nn661//Wq1plaRnnnlGycnJys7O1uOPP66HHnrIe8T4md7rKnl5eZo7d67mzZunefPmKS0tTdOmTfPeP2XKFL355pt65ZVXtGbNGj300EO69dZblZaWVu06v/3tbzVjxgxlZmYqLCxMkyZNkiSNGzdOkydPVvfu3bVjxw7t2LHjlAxucq7bNaps2LDBQCp72NYBAIHNaN1xztOhQ4eczMxM59ChQ+d7Kd8qLHSc228//lFYWONDli9f7khyPvroo9Ne6osvvnDq16/vFBQUeG9bs2aNI8nJyMhwHMdxnnvuOSchIcF7//r16x1Jzpo1axzHcZz//M//dH72s59Vu+62bdscSc769esdx3Gc1NRUJyUlpdpjzvS8gwcPOuHh4c67777rvX/fvn1ORESE8+CDD9b6NQ0aNMgZP358jfdt2LDBkeSkp6d7b9u7d68TERHh/P3vf3ccx3HefPNNR5KzadMm72PuvvtuJzIy0jl48KD3tlGjRjl333239/MLL7zQueKKK6q93rhx45zRo0c7jlO393rq1KlOZGSkU1xc7H3Mo48+6gwYMMBxHMcpKSlxGjZs6CxdurTa69xxxx3OzTff7DiO4yxcuNCR5Hz11Vfe+z/99FNHknP48GHv6/Ts2bPG96g2F154ofOnP/3prJ5jQ9X37QcffOC8/vrrzp/+9Cdn3759NT62sqLCyYyNdX6oX98p2rr1nF7vxD/PUJVfVOSMT0tzolatcuQ4jufHH53uaWnOG6tXOxWVlbbjAYCrmKw7rl55dn7aTuE5w8liubm5at++vfdIaElKSkpS06ZNlZubK0m66aabtHXrVu9Wj7ffflspKSlKSkqSJGVlZWnhwoWKioryfnTt2lXS8VXUKieu/tbleXl5eSorK9OgQYO8z4mNjVWXLl1O+zXl5OTosssuq/XrDQsL04ABA7y3NWvWTF26dPF+vZIUGRmpjh07ej9v1aqV4uPjFRUVVe223bt3V7v+iVmrPq+6bl3ea+n49o/GjRt7P4+Li/O+ztq1a3XkyBFdfvnl1d63t956q9p7LUnJycnVriHplLxudz7bNarMmjXLx6kCD9s6ACBwmKw7YcauHAQ6d+4sj8ej3NxcXXfddbU+znGcGhvsE2+Pi4vTiBEj9M4772jgwIGaM2eO7r77bu9jKysrdc011+iPf/zjKdepatoknbJ95EzPO3Ef8tk43V4gp5Zffjr5fbjggguq3e/xeGq8rbKy8ox5qq5bl/e6tteuep2q//3000/Vtm3bao87eU/yidepun5d8rrFids1hp7Ddo0qU6ZM8WGqwDc6IUGjExJUVlGhGVlZevXIEX0+YIA+Dw9XixUrNP7YMU3t3VtNGza0HRUAQpLJuuPqlefY2FiNGjVKL730kg4dOnTK/UVFRZKOr3wWFBRo27Zt3vvWrl2rAwcOqFu3bt7bxo8fr/fee0/Lli1TXl6ebrrpJu99vXv31po1axQfH69OnTpV+6hpv3Vdn9epUyddcMEF1X658ccffzzjXp/k5ORaR/ElJSWpvLxcy5cv9962b98+bdiwodrXe65OzFr1edVqel3f69NJSkpSgwYNVFBQcMp7duKK9pmEh4dX+2VHtzmf6RonC4TjuW1gWgcA2MHx3Aa9/PLLqqioUP/+/fXhhx9q48aNys3N1QsvvODdXjBy5EglJydr/Pjxys7OVkZGhiZMmKDU1NRq2yzGjh2r4uJi3XPPPRoxYkS1Vc/77rtP+/fv180336yMjAxt3rxZX3zxhSZNmnTaBu1Mz4uKitIdd9yhRx99VAsWLNDq1as1ceJE1at3+j/aqVOnas6cOZo6dapyc3P1/fffa/r06ZKOr8iPGTNGd911l5YsWaKVK1fq1ltvVdu2bTVmzJjzebslSenp6Zo+fbo2bNigl156Se+//74efPBBSXV/r0+ncePGeuSRR/TQQw9p1qxZysvL03fffaeXXnrprP4ZJz4+Xlu2bFFOTo727t2ro0eP1vi4srIy5eTkKCcnR2VlZfrhhx+Uk5OjTZs21fm1ApEvtmtUefzxx32UKnixrQMA/Mdk3Qnd5jkyUmre/PhHZGStD7vooouUnZ2tESNGaPLkyerRo4cuv/xyLViwwHu0o8fj0dy5cxUTE6Nhw4Zp5MiRSkhI0HvvvVftWtHR0brmmmu0cuVKjR8/vtp9bdq0UXp6uioqKjRq1Cj16NFDDz74oJo0aXLaRrcuz3vmmWc0bNgwXXvttRo5cqSGDBmiPn36nPbtGT58uN5//3198sknSklJ0aWXXlptpfnNN99Unz59dPXVV2vQoEFyHEefffbZKdslzsXkyZOVlZWlXr166cknn9SMGTM0atQoSXV/r8/kySef1H/913/p6aefVrdu3TRq1Cj94x//0EUXXVTna1x//fW64oorNGLECLVo0UJz5syp8XGFhYXq1auXevXqpR07dujZZ59Vr169dOedd55V5kByvtM1Tlb1FzMcx7QOADDLZN3xOLVtcK2j0tJS5ebmqlu3boo8TZNqRdWx3E2a2M0Br/j4eP3617/m6HDLqr5v8/PzVVRUpIMHD2rChAmKjY2VU1mp7BYtFHfggBpt3nzeq86StHXrVl144YU+SB66th44oN+uXKmPY2JUcvHF8hQVKWnVKk1u1ky3JyWp3hl+sRkA8C8m607orjxLx5tmGmfgrPhyu0aVb775xifXCWVs6wAA3zFZd0K6eT7w0weAuvH1do0qZ7NdBmzrAIDzZbLuhGzzfEDSkz99uLGBHj58eEBujcjPzw/IXPDtdI2TlZeX+/R6bsG0DgA4NybrTsg2z6WS9v70UXqGx+7cuVMPPPCAEhIS1KBBA7Vv317XXHNNraPc4A6/+93vlJKScsbHvfbaaxo6dKhiYmIUExOjkSNHKiMjw3xAH1v+q1/5fLtGlZ1sNzhvbOsAgLozWXdCtnmuq/z8fPXp00dff/21pk+fru+//17z58/XiBEjdN9991nNVlZWZvX1UTeLFi3SzTffrIULF2rZsmXq0KGDfvazn+mHH36wHa3ODu3erR4ffeTz7RpVzjT9BWeHbR0AcHom647rm+d7771XHo9HGRkZuuGGG5SYmKju3bvr4YcfrnaYR0FBgcaMGaOoqChFR0frxhtv1K5duyRJ69evl8fj0bp166pd+7nnnlN8fLz3xL61a9fqyiuvVFRUlFq1aqXbbrtNe/fu9T5++PDhuv/++/Xwww+refPmuvzyy+v0vEOHDmnChAmKiopSXFycZsyYUaev/ZNPPlHfvn3VsGFDNW/eXGPHjvXe9+OPP2rChAmKiYlRZGSkRo8eXe00w5kzZ6pp06aaN2+eunTposjISN1www06dOiQZs2apfj4eMXExOiBBx6oNsc6Pj5eTz75pG655RZFRUWpTZs2evHFF6vlOt17Lf1rRXj27NmKj49XkyZNdNNNN+ngwYPexziOo+nTpyshIUERERHq2bOnPvjgA+/9ixYtksfj0YIFC9S3b19FRkZq8ODBWr9+vffre+KJJ7Ry5Up5PB55PB7NnDmzxvfx7bff1r333quUlBR17dpVr732miorK4PnXy4cR0cWLNAhA9s1qsydO9fIdd2ObR0AUDOTdcfVzfP+/fs1f/583XfffTWe8te0aVNJxxux6667Tvv371daWpq+/PJL5eXlady4cZKkLl26qE+fPnr77berPf+dd97RLbfcIo/Hox07dig1NVUpKSnKzMzU/PnztWvXLt14443VnjNr1iyFhYUpPT1dr776ap2e9+ijj2rhwoX6v//7P33xxRdatGiRsrKyTvu1f/rppxo7dqyuuuoqfffdd94mssrEiROVmZmpTz75RMuWLZPjOLryyit17Ngx72NKS0v1wgsv6N1339X8+fO1aNEijR07Vp999pk+++wzzZ49W3/961+rNa3S8bnUycnJys7O1uOPP66HHnpIX/7UtJ3pva6Sl5enuXPnat68eZo3b57S0tI0bdo07/1TpkzRm2++qVdeeUVr1qzRQw89pFtvvVVpaWnVrvPb3/5WM2bMUGZmpsLCwjRp0iRJ0rhx4zR58mR1795dO3bs0I4dO07JUJvS0lIdO3ZMsbGxdXq8bds//1zNysq085FHfL5do8oDDzxg5Lr4F7Z1AMC/GK07znk6dOiQk5mZ6Rw6dOh8L+VThY7j3P7TR2Etj1m+fLkjyfnoo49Oe60vvvjCqV+/vlNQUOC9bc2aNY4kJyMjw3Ecx3nuueechIQE7/3r1693JDlr1qxxHMdx/vM//9P52c9+Vu2627ZtcyQ569evdxzHcVJTU52UlJRqjznT8w4ePOiEh4c77777rvf+ffv2OREREc6DDz5Y69c0aNAgZ/z48TXet2HDBkeSk56e7r1t7969TkREhPP3v//dcRzHefPNNx1JzqZNm7yPufvuu53IyEjn4MGD3ttGjRrl3H333d7PL7zwQueKK66o9nrjxo1zRo8e7ThO3d7rqVOnOpGRkU5xcbH3MY8++qgzYMAAx3Ecp6SkxGnYsKGzdOnSaq9zxx13ODfffLPjOI6zcOFCR5Lz1Vdfee//9NNPHUnO4cOHva/Ts2fPGt+j07n33nudjh07eq8TiKq+b2e99JLzcrduzm+GDXP27dtn7PWefPJJY9dG7Y6Wlzt/yMx0LlyyxFFpqaPycqdFRobz6/R058cA/u8TAM6Xybrj6pVn56d/yvSc4fCB3NxctW/fXu3bt/felpSUpKZNmyo3N1eSdNNNN2nr1q3erR5vv/22UlJSlJSUJEnKysrSwoULFRUV5f3o2rWrpOOrqFVOPoL6TM/Ly8tTWVmZ9yhxSYqNjVWXLl1O+zXl5OTosssuq/XrDQsL04ABA7y3NWvWTF26dPF+vZIUGRmpjh07ej9v1aqV4uPjFRUVVe223bt3V7v+iVmrPq+6bl3ea+n49o/GjRt7P4+Li/O+ztq1a3XkyBFdfvnl1d63t956q9p7LUnJycnVriHplLxnY/r06ZozZ44++ugjNWzY8Jyv4y+H589XWb16ivlpi5ApU6ZMMXp91IxtHQDcymTdCTN25SDQuXNneTwe5ebm6rrrrqv1cY7j1Nhgn3h7XFycRowYoXfeeUcDBw7UnDlzdPfdd3sfW1lZqWuuuUZ//OMfT7lOVdMm6ZTtI2d63on7kM9GRERErfc5tRTSk9+Hk4/q9ng8Nd5WWVl5xjxV163Le13ba1e9TtX/fvrpp2rbtm21xzVo0KDa5ydep+r6dclbk2effVZ/+MMf9NVXX1VrygNZ86NHtW7wYDU64S88Jjz11FM00JZVbeuQpM83b9aTBQVa3qWLJsXF6Zd5ebps2zY91bWrerdubTkpAJw/k3XH1SvPsbGxGjVqlF566SUdOnTolPuLiookHV/5LCgo0LZt27z3rV27VgcOHFC3bt28t40fP17vvfeeli1bpry8PN10003e+3r37q01a9YoPj5enTp1qvZR037ruj6vU6dOuuCCC6r9cuOPP/6oDRs2nPZrT05OrvUX2pKSklReXq7ly5d7b9u3b582bNhQ7es9Vydmrfq8ajW9ru/16SQlJalBgwYqKCg45T07cUX7TMLDw6v9suPpPPPMM3ryySc1f/78U/71IJDtbNJErU/4FwZT7rzzTuOvgbpjWgeAUGey7ri6eZakl19+WRUVFerfv78+/PBDbdy4Ubm5uXrhhRe82wtGjhyp5ORkjR8/XtnZ2crIyNCECROUmpparVEaO3asiouLdc8992jEiBHVVj3vu+8+7d+/XzfffLMyMjK0efNmffHFF5o0adJpG7QzPS8qKkp33HGHHn30US1YsECrV6/WxIkTVa/e6f9op06dqjlz5mjq1KnKzc3V999/r+nTp0s6viI/ZswY3XXXXVqyZIlWrlypW2+9VW3bttWYMWPO5+2WJKWnp2v69OnasGGDXnrpJb3//vt68MEHJdX9vT6dxo0b65FHHtFDDz2kWbNmKS8vT999951eeuklzZo1q8454+PjtWXLFuXk5Gjv3r06evRojY+bPn26pkyZojfeeEPx8fHauXOndu7cqZKSkjq/li3NrrrKL6/zj3/8wy+vg7PDtg4Aocpk3QnZ5jlSUvOfPiJP87iLLrpI2dnZGjFihCZPnqwePXro8ssv14IFC/TKK69IOv7P+XPnzlVMTIyGDRumkSNHKiEhQe+99161a0VHR+uaa67RypUrNX78+Gr3tWnTRunp6aqoqNCoUaPUo0cPPfjgg2rSpMlpG926PO+ZZ57RsGHDdO2112rkyJEaMmTIGecbDh8+XO+//74++eQTpaSk6NJLL6220vzmm2+qT58+uvrqqzVo0CA5jqPPPvvslO0S52Ly5MnKyspSr1699OSTT2rGjBkaNWqUpLq/12fy5JNP6r/+67/09NNPq1u3bho1apT+8Y9/nNVxnddff72uuOIKjRgxQi1atNCcOXNqfNzLL7+ssrIy3XDDDYqLi/N+PPvss2eV2YYLDG/XqFKXw2ZgF9M6AIQSk3XH49S2wbWOSktLlZubq27duiky8nRtqv9VHcvdxGoKnCg+Pl6//vWvOaLbsqrv2/z8fBUVFengwYOaMGGCsfF68+fP1xVXXGHk2jCnrKJCM3Jy9OqRI9rau7cUHq4W2dkaf+yYpvburaZB8EuxANzJZN0J2ZVn6XjTTOMM2Hf48GHbEXAO2NYBIFiZrDsh3TwDCAydO3e2HQHniW0dAIKJybpD8xyg4uPj9fzzz9uO4T0K21fy8/PZsuFCCxcutB0BPsS0DgCBzmTdcX3zPHHiRHk8nlM+Nm3a5JfXnzlzpvcY8BOtWLFCv/jFL/yS4XQeeeSRWkfaAXU1YcIE2xFgANs6AAQqk3XH9c2zJF1xxRXasWNHtY+zmcpgQosWLQLiFzCjoqLUrFkz2zEQ5F588UXbEWAY2zoABBKTdYfmWcdPnWvdunW1j/r162vixImnnDz461//WsOHD/d+Pnz4cP3qV7/SY489ptjYWLVu3Vq/+93vqj2nqKhIv/jFL9SqVSs1bNhQPXr00Lx587Ro0SL9/Oc/14EDB7wr3lXPPXnbRkFBgcaMGaOoqChFR0frxhtv1K5du7z3V22vmD17tuLj49WkSRPddNNNOnjwYK1fd9Wq99y5c5WYmKiGDRvq8ssvr3ZAia+3bcCdOF3QXdjWAcA2k3WH5tkHZs2apUaNGmn58uWaPn26/vu//1tffvmlpONHPY8ePVpLly7V3/72N61du1bTpk1T/fr1NXjwYD3//POKjo72rng/8sgjp1zfcRxdd9112r9/v9LS0vTll18qLy9P48aNq/a4vLw8zZ07V/PmzdO8efOUlpamadOmnTZ7aWmpfv/732vWrFlKT09XcXFxtZMRAV946qmnbEeABWzrAGCLyboTZuzKFpSWlmrdunVnfFzXrl2rbYmYN2+eok44LGL06NF6//336/y6ycnJmjp1qqTjv935l7/8RQsWLNDll1+ur776ShkZGcrNzVViYqIkKSEhwfvcJk2ayOPxqHXr1rVe/6uvvtKqVau0ZcsW7/HSs2fPVvfu3bVixQr169dP0vFGfebMmWrcuLEk6bbbbtOCBQv0+9//vtZrHzt2TH/5y1804KcjmmfNmqVu3bopIyND/fv3r/N7AJzO/fffbzsCLKva1iFJn2/erCcLCrS8SxdNiovTL/PydNm2bXqqa1f1Ps3PQgCoK5N1J6Sa53Xr1p3xZD1JysrKUu/evb2fjxgxwnuaoCQ1atTorF43OTm52udxcXHavXu3JCknJ0ft2rXzNs7nIjc3V+3bt/c2zpKUlJSkpk2bKjc319s8x8fHexvnk3PUJiwsrNqx1127dvVel+YZvvK3v/2NBhpeoxMSNDoh4fghLFlZevXIEX0+YIA+Dw9XixUrOIQFwHkzWXdCqnnu2rWrsrKy6vS4EzVq1EidOnU65XH16tXTyQcwHjt27JTHnXxktcfjUWVlpSQpIiLijHnOxHEceTyeM95+uhynU9O1a7oNOFepqam2IyAAVW3reFxSwYEDmrJiheY2barn+/XTn4uKlJSRocnNmun2pCTV42cSgLNgsu6EVPMcGRlZbUX5fLVo0UKrV6+udltOTs4pTerpJCcna/v27dqwYUONq8/h4eGqqKg47TWSkpJUUFCgbdu2eVef165dqwMHDqhbt251zlKT8vJyZWZmeleZ169fr6KiolP+ggGcj7y8PF188cW2YyCAdWjSRG+xrQOAj5isO/zC4GlceumlyszM1FtvvaWNGzdq6tSppzTTZ5Kamqphw4bp+uuv15dffqktW7bo888/1/z58yUd32pRUlKiBQsWaO/evSotLT3lGiNHjlRycrLGjx+v7OxsZWRkaMKECUpNTa225eJcXHDBBXrggQe0fPlyZWdn6+c//7kGDhzIlg34VHh4uO0ICCJM6wBwvkzWHZrn0xg1apT+8z//U4899pj69eungwcPntPQ7Q8//FD9+vXTzTffrKSkJD322GPe1ebBgwfrl7/8pcaNG6cWLVpo+vTppzzf4/Fo7ty5iomJ0bBhwzRy5EglJCTovffeO++vMTIyUv/+7/+uW265RYMGDVJERITefffd874ucKJWrVrZjoAgdOK0jq1lZbotPV1HGjRgWgeAMzJZdzzOyZt6z1Jpaalyc3PVrVu3gDjUA3U3c+ZM/frXv1ZRUZHtKPCzqu/b/Px8FRUVef9iGBsba+T1/vrXvwbEiZkIDSdu66iMi1M42zoAnMRk3WHlGYBxY8aMsR0BIYRtHQDOxGTdoXkGYNxrr71mOwJCENs6ANTGZN1h2wbgQv7etgH4E9s6AJjEyjMA4zieG/7Etg4AJusOzTMA4yZPnmw7AlyIbR2Ae5msOzTPAIx7+eWXbUeAy1UdwlKcnKzPNm/WwJwc5XburEnduyti82ZduWiRsnfutB0TgI+YrDs0zwCMu/baa21HALzY1gGEPpN1h+YZgHHZ2dm2IwCnYFsHELpM1h2aZwDGtWjRwnYE4LTY1gGEFpN1J8xXFzp8+LCvLgXAMH9/vzZo0MCvrwecj9EJCRqdkKCyigrNyMrSq0eO6PMBA/R5eLharFih8ceOaWrv3mrasKHtqABqYbLunHfzHBYWpnr16ik/P98HcQD4i+M4qqio8Mtr5eXl6ZJLLvHLawG+UrWt43FJBQcOaMqKFZrbtKme79dPfy4qUlJGhiY3a6bbk5JUz+OxHRfACUzWnfM+JEWSysrKVF5ergMHDmjevHlq1KgRK03wq2PHjunNN9/Uz3/+c11wwQW24xix4+uvFbdpk/b066cWvXqd9/UqKipUXl6uw4cPGz8kpaCgQB06dDBybcDfOIQFCHwm645Ptm2Eh4crPDxcR44c0aFDh3Ts2DGaZ/hVWVmZtm3bph9//FHh4eG24/jcwcJCNVi4UGtiYtT2ootUVFTks2sfPXrUZ9eqzezZs/Xb3/7W+OsA/sC2DiDwmaw7Pll5rnLo0CG99957Ki4u9tUlgTopKyvTnDlzdPPNN4dc8+w4jva/+64ijh1T2NixCo+K8vlrREdHa9y4cWrUqJHPry1JlZWVqleP309G6Co4cEBTVq7U3KZNdTA5WZ6iIiWtWsW2DsASk3XHp82zdLyB9sdKFnCigwcPqkuXLlq/fr0aN25sO45PfXv//Rr40Uda+e//rp4PPmjkNRo0aGCscZaOH5M6ZcoUY9cHAgnbOgD7TNYdnzfPgA3FxcVq0qSJDhw4oOjoaNtxfGZ7erqaDBminMREDV2/3nacc8bKM9yorKJCM3Jy9OqRI9rau7cUHq4W2dls6wD8wGTdoZoBAcqprNSua6/Vwfr1lfzll7bjnJenn37adgTA7ziEBbDHZN2heQYC1OIJE9Rn/34VPvGEmgT5pIrbbrvNdgTAKg5hAfzLZN2heQYC0Pb0dPV6+20tTkxU3xCYUrFo0SLbEYCAMTohQUuHD9fhli31h6wsxe3cqc8HDFCfFi3UcsUKPbR0qYqOHLEdEwhqJusOzTMQYEJpu0aVjh072o4ABBy2dQDmmKw7NM9AgFk8cWLIbNeowgQe4PTY1gH4lsm6Q/MMBJAfli1TyuzZIbNdo8qePXtsRwCCBts6gPNnsu4wqg4hIRRG1TmVlcpu0UJxBw6o0ebNIbPqLEkbN25U586dbccAghaHsABnx2TdYeUZCBChuF2jyieffGI7AhDU2NYBnB2TdYeVZ4SEYF95/mHZMjUePFgrg/wwlNocPnxYERERtmMAIYVDWIDamaw7rDwDljmVldp59dUqCaHpGiebMWOG7QhAyGFaB1A7k3WHlWeEhGBeef5mwgQNmz1bmU89FVK/JAjAjs83b9aTBQVa3qWLKuPiFJ6Xp8u2bdNTXbuqd+vWtuMBQY+VZ8CiUJ2ucbKnnnrKdgTANZjWAZitO6w8IyQE48pzKE/XONmuXbvUqlUr2zEA12JaB9zGZN1h5RmwJJSna5zs448/th0BcDWmdcBtTNYdVp4REoJt5TnUp2ucLCsrS3369LEdA8AJmNaBUGay7rDyDPiZG6ZrnGzXrl22IwA4CdM6EMpM1h2aZ8DP3LRdo0pZWZntCABOg20dCDUm6w7bNhASgmXbhtu2a1T5/vvvdfHFF9uOAeAssK0Dwcxk3WHlGfATN27XqJKWlmY7AoCzxLYOBDOTdYeVZ4SEYFh5dvNhKEVFRWratKntGAB8gENYEAxM1h1WngE/cMthKLX5y1/+YjsCAB/hEBYEA5N1h5VnhIRAXnl202EoANyJQ1jgJqw8A4a5cbrGyTieGwhtTOtAoOF4buAMAnXl2a3TNU524MABNWnSxHYMAH7EtA7YZLLusPIMGOLm6Rone+utt2xHAOBnTOuATSbrDs0zYAjbNf5lxIgRtiMAsIhtHfA3k3WH5hkwwO3TNU62ceNG2xEABAimdcAfTNYdmmfAx9iucaqIiAjbEQAEGLZ1wCSTdYfmGfAxtmucqlmzZrYjAAhgbOuAr5msOzTPgA+xXaNmOTk5tiMACBJs64AvmKw7jKpDSAiEUXUchlK7nTt3qjXH9gI4RxzCgrNlsu6w8gz4CNs1avf666/bjgAgiJ28rWNQTo7Wderk3dYxmm0dOInJusPKM0KC7ZVnDkMBAP8qq6jQczk5+p8TDmFpnp2tW44d0xMcwgKDWHkGzhPTNc6M47kB+Fp4/fr6zUnTOo42aKAXmNYBcTw3cEY2V56/mTBBw2bPVuZTT/FLgrU4cuSIGrIKBMAPPt+8WU8VFGh5YqIq2rRReF6eLt22Tb/v2lW9+d0L1zBZd1h5Bs4D0zXq5sUXX7QdAYBLjE5IUPrw4Spt1UpP/zStY/5P0zparFihB5nW4Qom6w4rzwgJNlaema5Rdxs3blTnzp1txwDgUkzrcB+TdYeVZ+AcMV2j7rKysmxHAOBiTOtwH5N1h+YZOAds1zg7zHgGECjY1uEOJusOzTNwlpiucfbCwsJsRwCAapjWEdpM1h2aZ+AssV3j7G3ZssV2BACoFds6Qo/JusMvDCIk+OsXBjkM5dxs3bpVF154oe0YAFBnHMIS3EzWHVaegTpiu8a5e+edd2xHAICzwraO4Gay7rDyjJDgj5VnDkM5dxUVFapfv77tGABw3jiEJTiYrDusPAN1wHSN8/P000/bjgAAPsG0juBgsu6w8oyQYHLlmcNQAACnwyEs7sLKM3AGTNc4f0899ZTtCABgDNM6Ao/JusPKM0KCqZVnpmv4xrZt29S+fXvbMQDAb5jWYZfJusPKM1ALpmv4zoIFC2xHAAC/YlqHXSbrDs0zUAu2a/hOYmKi7QgAYA3bOvzPZN2heQZqwHQN3zp8+LDtCAAQEJjW4R8m6w7NM3AStmv43r59+2xHAICAwrYOs0zWHZpn4CRs1/C9nj172o4AAAGLbR2+Z7Lu0DwDJ2C7hhnz5s2zHQEAggLbOnzDZN1hVB1Cgi9G1XEYijmlpaWKjIy0HQMAghKHsJw9k3WHlWfgJ2zXMOe5556zHQEAghbbOs6eybrDyjNCwvmuPHMYCgAgmHAIiz2sPMP1mK5hHsdzA4BvMa3j9DieGziD81l5/mbCBA2bPVuZTz3FLwkasmfPHrVo0cJ2DAAIeZ9v3qynCgq0PDFRFW3aKDwvT5du26bfd+2q3q1b247nNybrDivPcDWma/jHRx99ZDsCALgC0zqOM1l3aJ7hWmzX8J9+/frZjgAAruL2bR0m6w7NM1yL6Rr+s2PHDtsRAMC13Ditw2TdoXmGK7Fdw78qKipsRwAAyD3bOkzWHZpnuA7bNfwvPj7edgQAwAlCfVuHybpD8wzXYbuG/y1evNh2BABALUJxW4fJusOoOoSEuo6q4zAUO/bv36/Y2FjbMQAAdRTsh7CYrDusPMM12K5hz8svv2w7AgDgLAT7tg6TdYeVZ4SEuqw8cxgKAADnh0NYWHmGSzBdwy6O5waA0BAs0zo4nhs4g9OtPDuVlcpu0UJxBw6o0ebN/JKgBcXFxWd9bDoAIDgUHDigKStXam7TpjqYnCxPUZGSVq3S5GbNdHtSkup5PH7PZLLusPKMkMd0DftmzpxpOwIAwJBAnNZhsu6w8oyQUNvKM9M1AsPatWuVlJRkOwYAwE9sT+swWXdYeUbIYrpG4Fi3bp3tCAAAP7I9rcNk3aF5Rshiu0bgaNSoke0IAABLbGzrMFl3aJ4RkpiuEVg4IAUAIPlvWofJukPzjJDDdo3As2rVKtsRAAABxPS2DpN1h+YZIYftGoFn9OjRtiMAAAKUiW0dJusOzTNCSmFGBts1AtAbb7xhOwIAIAj4aluHybrDqDqEhKpRdYtiYtS5uJjDUAAACBGBdggLK88IKCUlJbr++utVUFBwTs/v9eOPbNcIQBzPDQA4V+eyrYPjueEKb7zxhrZu3ar//u//1pYtWxQfH1/n56776it1u/xyfd6xo67YtMlcSJyTo0ePqkGDBrZjAABCxJkOYYnweIzVHZpnBByPx3PG5vno0aM6evSopOPTNW7461/11b//u5Z++aXiu3f3U1LU1bQ//UnX33ab7RgAgBC0v7RU//jhB62MiFBZu3ZSaamK/+d/9O2LL6p1VJTPX6/OzfOcOXPUv39/ffjhh3rwwQf1zDPPaMqUKXrqqac0adIkff7550pOTtb+/ft16NAhde3aVV999ZUmTpyoF154wfvYe++9V3PmzNHQoUOVn5+v+vXrKy4uTitWrNDYsWP16quveh/78MMP65VXXtHVV1+tlStXqlmzZoqIiNCGDRt02WWXadasWd7HPv7445o+fbpuueUWffPNN7roootUXl6unTt3qk+fPpo7d64eeOABPfvss97n3HnnnfrHP/6hlJQU7du3T4cPH1bnzp21cOFCTZgwQS+++KL3sffff7/+9re/KTU1VXl5eQoPD1erVq2UlZWlMWPG6LXXXvM+dvLkyXr55Zd17bXXKjs7Wy1atFCDBg2Ul5en4cOHa/bs2Xr88cf1hz/8Qf/xH/+hp59+WrfddpsWLVqkjh076ujRo9qzZ4969+6tTz75RPfee69mzJjhvf5dd92ljz/+WH369NGuXbtUVlamjh07Ki0tTbfeeqv+8pe/eB/7wAMP6K233tKIESO0ceNGRUREqFmzZsrJydE111yj119/3fvYRx55RC+++KKuu+46ZWVlqXXr1goLC9OWLVs0bNgwvfPOO3rsscf09NNPe59z++23a8GCBUpMTNThw4e1b98+9ezZU/PmzdM999yj5557zvvYu+++Wx999JH69eunHTt2qKKiQvHx8Vq8eLFuvvlmvfzyy5oyZYo8Ho9WrVqlhQsXauTIkVq3bp0aNWqk2NhYrVq1SqNHj9att96qhQsXnvLf6bXXXquYmBjVq1dPRUVF6tChg1avXq3BgwdryZIlSk1NVVpamlJSUrR582Y1b95cZWVlOnLkiFq2bKlNmzapd+/e+vbbb72P7du3r9auXat27dqpuLhYkhQdHa3t27ere/fuWrFihfexAwcOVHZ2tjp27Ki9e/cqPDxcDRs21O7du9WpUyd999133scOGTJEy5YtU1JSkrZv3+49Vry4uFjt2rXT2rVrNWjQoGq5e/XqpU2bNqlly5Y6cuSIysrK1Lx5c+Xl5Z2Su1+/flqzZk2NuZOSkpSZmXlK7k6dOmn37t1q2LChwsPDtXfvXiUkJCgnJ6da7qVLl6pHjx4qKChQ06ZNVVlZqZKSErVt21Zr167VwIEDlZ6e7n3ORRddpL1796pVq1Y6fPiwN/fmzZuVkpKi5cuXV8u9evVqdejQQUVFRapXr56ioqJUWFiobt26Vcs9aNAgZWZmKjExUTt37lRkZKTCwsK0b9++U3IPHTpU6enpuvjii7V169Zqudu0aaN169apf//+Wrp0qfc5vXv31oYNG9S6dWuVlpaqvLxcsbGxys/PV8+ePavl7t+/v1atWqX4+Hjt379f9evX9+bu2rWrsrKyvI8dPHiwVqxYoS5dumjHjh3e3Pv371d8fLxWrVqlIUOGaPHixRo6dKiWLFmi5ORk5efnKzY2VuXl5SotLVVcXJzWr1+vfv36Vcvdp08frVu3Tm3atFFJSYkqKiq8uZOTk5WRkeF97IABA7Ry5Upv7rCwMEVGRmrnzp1KTExUdnZ2tdwZGRnq2rWrCgsLFRUV5f1eu/DCC/X999/rkksu0eLFi0/5XmvWrJk3d+vWrbVhwwb17dtXy5Ytq/a9lpub681dWVmppk2bqqCgQD169Kj2vTZgwADl5OQoISHB+70WERGhXbt2nfK9dskll+jbb79VUlKSfvjhh2q5+RkRGD8jqnLzM4KfEb76GZGYmKiYuDjd9m//VmMf8cYbb3j7k0cffVR//vOfdf3116tjx46+a54BfznblefUxYv1Q0SE9lx2mT744AMNHjzYT0lRFxv37tULTzyh+F/9SvVjYmzHAQCEOKegQJvffFO/mjpVwy6+2OfXD/P5FQE/aNCggRo0aKDSY8e0sn9/9fvnP7VHx1dN4uLibMfDCfZKioqKkqdzZ0XwZwMAMOywjtcdU5i2gaD29HffyWnRQlfXr287Ck6jXj1+1AAA/Mdk3aGiIai9UVmpiHXrNLB5c9tRcBpFRUW2IwAAXMRk3aF5RsCYM2eO7rnnHknSb37zG7388sunffz6fftU2Lu3rti1yx/xcB46MHcbAOBHJusOzTMCxs0336xXXnlFjuPo3Xff1b333nvax/929WrJ49HvGU0X8FavXm07AgDARUzWHZpnBK3PWrZUXFaWurFlI+AxAQUA4E8m6w7NM4LSBxs26HC3bpro5/PscW6WLFliOwIAwEVM1h2aZwSlaYWF8uzZoym9e9uOgjpITU21HQEA4CIm6w7NM4JO6bFjyu7eXSlr1yryggtsx0EdpKWl2Y4AAHARk3WH5hlBp2q2829at7YdBXWUkpJiOwIAwEVM1h2aZwSdqtnON3bpYjsK6mjz5s22IwAAXMRk3aF5RlBhtnNwas5EFACAH5msOzTPCCrMdg5OZWVltiMAAFzEZN2heUZQYbZzcDpy5IjtCAAAFzFZd2ieETSY7Ry8WrZsaTsCAMBFTNYdmmcEDWY7B69NmzbZjgAAcBGTdYfmGUGB2c7BrTd/4QEA+JHJukPzjKDAbOfg9u2339qOAABwEZN1h+YZQYHZzsGN47kBAP7E8dxwNWY7Bz+O5wYA+BPHc8PVmO0c/Pr27Ws7AgDARUzWHZpnBDxmOwe/tWvX2o4AAHARk3WH5hkBjdnOoaFdu3a2IwAAXMRk3aF5RkBjtnNoKC4uth0BAOAiJusOzTMCFrOdAQBAoKF5RsBitnPoiI6Oth0BAOAiJusOzTMCFrOdQ8f27dttRwAAuIjJukPzjIDEbOfQ0p0xgwAAPzJZd2ieEZCY7RxaVqxYYTsCAMBFTNYdmmcEJGY7hxaO5wYA+BPHc8NVmO0cejieGwDgTybrTpixKwPnaFphoTwxMcx2DiEDBw7UMdshAACuMXDgQGPXZuUZAYXZzqEpOzvbdgQAgIuYrDs0zwgozHYOTR07drQdAQDgIibrDs0zAgqznUPT3r17bUcAALiIybpD84yAwWzn0BUeHm47AgDARUzWHZpnBAxmO4euhg0b2o4AAHARk3WH5hkBg9nOoWv37t22IwAAXMRk3aF5RkBgtnNo69Spk+0IAAAXMVl3aJ4REKYVFsqzZw+znUPUd999ZzsCAMBFTNYdmmdYx2zn0Mfx3AAAf+J4boQ0ZjuHPo7nBgD4k8m6Q/MM65jtHPqGDBliOwIAwEVM1h2aZ1jFbGd3WLZsme0IAAAXMVl3aJ5hFbOd3SEpKcl2BACAi5isOzTPsIrZzu6wfft22xEAAC5isu7QPMMaZju7R3R0tO0IAAAXMVl3woxdGTiDaYWF8sTEMNsZAAAEDVaeYQWznd2luLjYdgQAgIuYrDs0z7CC2c7u0q5dO9sRAAAuYrLu0DzDCmY7u8vatWttRwAAuIjJukPzDL9jtrP7DBo0yHYEAICLmKw7NM/wO2Y7u8+SJUtsRwAAuIjJukPzDL9jtrP7pKam2o4AAHARk3WH5hl+xWxnd0pLS7MdAQDgIibrDnOe4VfMdnanXr162Y4AAHARk3WHlWf4DbOd3WvTpk22IwAAXMRk3aF5ht8w29m9WrZsaTsCAMBFTNYdmmf4DbOd3evIkSO2IwAAXMRk3aF5hl8w29ndysrKbEcAALiIybpD8wy/YLazuzVnLCEAwI9M1h2aZ/gFs53dLS8vz3YEAICLmKw7NM8wjtnO6M1oQgCAH5msOzTPMG5aYaE8e/Yw29nFvv32W9sRAAAuYrLu0DzDKGY7Q+J4bgCAf3E8N4IWs50hcTw3AMC/TNYdmmcYxWxnSFK/fv1sRwAAuIjJukPzDGOY7Ywqa9assR0BAOAiJusOzTOMYbYzqrRr1852BACAi5isOzTPMIbZzqhSXFxsOwIAwEVM1h2aZxjBbGcAABCKwmwHQGiaVlgoT0wMs50hSYqOjrYdAQDgIibrDivP8DlmO+Nk27dvtx0BAOAiJusOzTN8jtnOOFlSUpLtCAAAFzFZd2ie4XPMdsbJMjMzbUcAALiIybpD8wyfYrYzasLx3AAAf+J4bgQNZjujJhzPDQDwJ47nRtBgtjNqMnDgQNsRAAAuYrLu0DzDZ5jtjNpkZ2fbjgAAcBGTdYc5z/AZZjujNp06dbIdAQDgIibrDivP8AlmO+N0du/ebTsCAMBFTNYdmmf4BLOdcToNGza0HQEA4CIm6w7NM3yC2c44nfDwcNsRAAAuYrLu0DzjvDHbGWeyd+9e2xEAAC5isu7QPOO8MdsZZ5KQkGA7AgDARUzWHZpnnDdmO+NMcnJybEcAALiIybpD84zzwmxn1AXHcwMA/InjuRGwphUWyrNnD7OdcVoczw0A8CeO50ZAYrYz6mrIkCG2IwAAXMRk3aF5xjljtjPqaunSpbYjAABcxGTdoXnGOWO2M+qqR48etiMAAFzEZN2hecY5YbYzzkZBQYHtCAAAFzFZd2iecU6Y7Yyz0bRpU9sRAAAuYrLu0DzjnDDbGWejsrLSdgQAgIuYrDs0zzhrzHbG2SopKbEdAQDgIibrTpixKyNkTSsslCcmhtnOqLO2bdvajgAAcBGTdYeVZ5wVZjvjXKxdu9Z2BACAi5isOzTPOCvMdsa5GDhwoO0IAAAXMVl3aJ5xVpjtjHORnp5uOwIAwEVM1h2aZ9QZs51xrlJTU21HAAC4iMm6Q/OMOmO2M85VWlqa7QgAABcxWXdonlFnzHbGuerVq5ftCAAAFzFZd2ieUSfMdsb52LRpk+0IAAAXMVl3mPOMOmG2M85Hq1atbEcAALiIybrDyjPOiNnOOF+HDx+2HQEA4CIm6w7NM86I2c44X2VlZbYjAABcxGTdoXnGGTHbGeerOb9kCgDwI5N1h+YZp8VsZ/jC5s2bbUcAALiIybpD84zTYrYzfCElJcV2BACAi5isOzTPOC1mO8MXli9fbjsCAMBFTNYdmmfUitnO8BWO5wYA+BPHc8OKaYWF8uzZw2xnnDeO5wYA+BPHc8PvmO0MX+rXr5/tCAAAFzFZd2ieUSNmO8OXVq9ebTsCAMBFTNYdmmfUiNnO8KUOHTrYjgAAcBGTdYfmGadgtjN8raioyHYEAICLmKw7NM84BbOd4Wv16vGjBgDgPybrDhUNp2C2M3wtKirKdgQAgIuYrDs0z6iG2c4wobCw0HYEAICLmKw7YcaujKA0rbBQnpgYZjvDp7p16ybHdggAgGt069bN2LVZeYYXs51hSmZmpu0IAAAXMVl3aJ7hxWxnmMLx3AAAf+J4bvgFs51hCsdzAwD8ieO5YRyznWHSoEGDbEcAALiIybpD8wxJzHaGWex5BgD4E3ueYRyznWFSYmKi7QgAABcxWXdonsFsZxi3c+dO2xEAAC5isu4w5xnMdoZxkZGRtiMAAFzEZN1h5dnlmO0MfwgL4+/pAAD/MVl3aJ5djtnO8Id9+/bZjgAAcBGTdYfm2eWY7Qx/SEhIsB0BAOAiJusOzbOLMdsZ/pKTk2M7AgDARUzWHZpnF2O2M/yF47kBAP7E8dwwgtnO8BeO5wYA+BPHc8PnmO0Mfxo6dKjtCAAAFzFZd2ieXWpaYaE8e/Yw2xl+kZ6ebjsCAMBFTNYdmmcXYrYz/O3iiy+2HQEA4CIm6w7Nswsx2xn+tnXrVtsRAAAuYrLu0Dy7ELOd4W9Nmza1HQEA4CIm6w7Ns8sw2xk2VFZW2o4AAHARk3WH5tllmO0MG0pKSmxHAAC4iMm6Q/PsMsx2hg1t2rSxHQEA4CIm6w7Ns4sw2xm2rFu3znYEAICLmKw7YcaujIAzrbBQnpgYZjvD7/r376+jtkMAAFyjf//+xq7NyrNLMNsZNi1dutR2BACAi5isOzTPLsFsZ9iUmppqOwIAwEVM1h2aZ5dgtjNsSktLsx0BAOAiJusOzbMLMNsZtvVmnz0AwI9M1h2aZxdgtjNs27Bhg+0IAAAXMVl3aJ5dgNnOsK01e+0BAH5ksu7QPIc4ZjsjEJSWltqOAABwEZN1hznPIY7ZzggE5eXltiMAAFzEZN1h5TmEMdsZgSI2NtZ2BACAi5isOzTPIYzZzggU+fn5tiMAAFzEZN2heQ5hzHZGoOjZs6ftCAAAFzFZd2ieQxSznRFIli9fbjsCAMBFTNYdmucQxWxnBBKO5wYA+BPHc+OsMdsZgYTjuQEA/sTx3DgrzHZGoOnfv7/tCAAAFzFZd2ieQ9C0wkJ59uxhtjMCxqpVq2xHAAC4iMm6Q/McYpjtjEAUHx9vOwIAwEVM1h2a5xDDbGcEov3799uOAABwEZN1h+Y5xDDbGYGofv36tiMAAFzEZN2heQ4hzHZGoIqKirIdAQDgIibrDs1zCGG2MwJVYWGh7QgAABcxWXdonkMIs50RqLp27Wo7AgDARUzWHZrnEMFsZwSyrKws2xEAAC5isu7QPIcIZjsjkHE8NwDAnzieG6fFbGcEOo7nBgD4E8dz47SY7YxAN3jwYNsRAAAuYrLu0DyHAGY7I9CtWLHCdgQAgIuYrDs0z0GO2c4IBl34ix0AwI9M1h2a5yDHbGcEgx07dtiOAABwEZN1h+Y5yDHbGcEgMjLSdgQAgIuYrDs0z0GM2c4IFmFhYbYjAABcxGTdoXkOYsx2RrDYv3+/7QgAABcxWXdonoMUs50RTOLj421HAAC4iMm6Q/McpJjtjGCyatUq2xEAAC5isu7QPAcpZjsjmAwZMsR2BACAi5isOzTPQYjZzgg2ixcvth0BAOAiJusOzXMQYrYzgs3QoUNtRwAAuIjJukPzHISY7Yxgs2TJEtsRAAAuYrLu0DwHGWY7IxglJyfbjgAAcBGTdYfmOcgw2xnBKD8/33YEAICLmKw7NM9BhNnOCFaxsbG2IwAAXMRk3aF5DiLMdkawKi8vtx0BAOAiJusOzXMQYbYzglVpaantCAAAFzFZd2iegwSznRHM4uLibEcAALiIybpD8xwkmO2MYLZ+/XrbEQAALmKy7tA8BwlmOyOY9evXz3YEAICLmKw7NM9BgNnOCHZLly61HQEA4CIm6w7NcxBgtjOCXWpqqu0IAAAXMVl3aJ4DHLOdEQrS0tJsRwAAuIjJukPzHOCY7YxQ0KdPH9sRAAAuYrLu0DwHOGY7IxSsW7fOdgQAgIuYrDs0zwGM2c4IFW3atLEdAQDgIibrDs1zAGO2M0JFSUmJ7QgAABcxWXdongMYs50RKioqKmxHAAC4iMm6Q/McoJjtjFASGxtrOwIAwEVM1h2a5wDFbGeEkvz8fNsRAAAuYrLu0DwHIGY7I9QkJyfbjgAAcBGTdYfmOQAx2xmhJiMjw3YEAICLmKw7NM8BiNnOCDUczw0A8CeO53YRZjsjFHE8NwDAnzie20WY7YxQNGDAANsRAAAuYrLu0DwHGGY7IxStXLnSdgQAgIuYrDs0zwGkarbzz5ntjBATHx9vOwIAwEVM1h2a5wBSNdv5t8x2RojZv3+/7QgAABcxWXdongNE1WznXmvWMNsZIScsLMx2BACAi5isOzTPAaJqtvPjbdrYjgL4XGRkpO0IAAAXMVl3aJ4DxBuVlYrIzdUNiYm2owA+t3PnTtsRAAAuYrLu0DwHgKrZzqN377YdBTAikb8UAgD8yGTdoXkOAL9dvVqS9IcePSwnAczIzs62HQEA4CIm6w7NcwD4rGVLxWVnq0uzZrajAEZwPDcAwJ84njuEMdsZbsDx3AAAfzJZd5gfZdm0wkJ5YmKY7YyQNnjwYB21HQIA4BqDBw82dm1Wni1itjPcIiMjw3YEAICLmKw7NM8WMdsZbtG1a1fbEQAALmKy7tA8W8RsZ7hFYWGh7QgAABcxWXdoni1htjPcJCoqynYEAICLmKw7NM+WMNsZblKvHj9qAAD+Y7LuUNEsYbYz3KSoqMh2BACAi5isOzTPFjDbGW5z4YUX2o4AAHARk3WH5tmCaYWF8uzZw2xnuMb3339vOwIAwEVM1h2aZz9jtjPc6JJLLrEdAQDgIibrDs2znzHbGW60ePFi2xEAAC5isu7QPPsZs53hRqmpqbYjAABcxGTdoXn2I2Y7w63S0tJsRwAAuIjJukPz7EfMdoZbpaSk2I4AAHARk3WH5tmPmO0Mt9q8ebPtCAAAFzFZd2ie/YTZznCzZvyFEQDgRybrTpixK6OaaYWF8sTEMNsZrlReXm47AgDARUzWHVae/YDZznC70tJS2xEAAC5isu7QPPsBs53hdq1bt7YdAQDgIibrDs2zHzDbGW63YcMG2xEAAC5isu7QPBvGbGdA6tu3r+0IAAAXMVl3aJ4NY7YzIC1btsx2BACAi5isOzTPhjHbGeB4bgCAf3E8d5BitjNwHMdzAwD8yWTdYc6zQcx2Bo7r27evHNshAACuwZ7nIMRsZ+BfcnNzbUcAALiIybpD82wIs52Bf2nD9wEAwI9M1h2aZ0OY7Qz8S0lJie0IAAAXMVl3aJ4NYLYzUF1lZaXtCAAAFzFZd2ieDWC2M1Bd06ZNbUcAALiIybpD82wAs52B6goKCmxHAAC4iMm6Q/PsY8x2Bk7Vg3+FAQD4kcm6Q/PsY9MKC+XZs4fZzsAJVqxYYTsCAMBFTNYdmmcfYrYzUDOO5wYA+BPHcwcJZjsDNeN4bgCAP5msOzTPPsRsZ6BmAwYMsB0BAOAiJusOzbOPMNsZqF1OTo7tCAAAFzFZd2iefYTZzkDtEhISbEcAALiIybpD8+wjzHYGard3717bEQAALmKy7tA8+wCznYHTCw8Ptx0BAOAiJutOmLEru8i0wkJ5YmKY7QzUIiIiwnYEAICLmKw7rDyfJ2Y7A2e2a9cu2xEAAC5isu7QPJ8nZjsDZ9apUyfbEQAALmKy7tA8nydmOwNn9t1339mOAABwEZN1h+b5PDDbGagbjucGAPgTx3MHKGY7A3XD8dwAAH/ieO4AxWxnoG4uueQS2xEAAC5isu7QPJ8jZjsDdfftt9/ajgAAcBGTdYc5z+eI2c5A3SUlJdmOAABwEZN1h5Xnc8BsZ+Ds/PDDD7YjAABcxGTdoXk+B8x2Bs5OVFSU7QgAABcxWXdons8Bs52Bs1OvHj9qAAD+Y7LuUNHOErOdgbNXVFRkOwIAwEVM1h2a57PEbGfg7HXo0MF2BACAi5isOzTPZ4nZzsDZW/3TXzoBAPAHk3WH5vksMNsZODeDBw+2HQEA4CIm6w7N81mYVlgoz549zHYGztKSJUtsRwAAuIjJukPzXEfMdgbOXWpqqu0IAAAXMVl3aJ7riNnOwLlLS0uzHQEA4CIm6w7Ncx0x2xk4dykpKbYjAABcxGTdoXmuA2Y7A+dn8+bNtiMAAFzEZN2hea4DZjsD56d58+a2IwAAXMRk3aF5rgNmOwPnp6yszHYEAICLmKw7NM9nwGxn4PwdOXLEdgQAgIuYrDthxq4cIqYVFsoTE8NsZ+A8tGzZ0nYEAICLmKw7rDyfBrOdAd/YtGmT7QgAABcxWXdonk+D2c6Ab/TmX24AAH5ksu7QPJ8Gs50B3/j2229tRwAAuIjJukPzXAtmOwO+w/HcAAB/4nhuC5jtDPgOx3MDAPyJ47ktYLYz4Dt9+/a1HQEA4CIm6w7Ncw2Y7Qz41tq1a21HAAC4iMm6w5znGjDbGfCtdu3a2Y4AAHARk3WHleeTMNsZ8L3i4mLbEQAALmKy7tA8n4TZzgAAAKgNzfNJmO0M+F50dLTtCAAAFzFZd2ieT8BsZ8CM7du3244AAHARk3WH5vkEzHYGzOjevbvtCAAAFzFZd2ieT8BsZ8CMFStW2I4AAHARk3WH5vknzHYGzOF4bgCAP3E8tx9MKyyUZ88eZjsDBnA8NwDAnzie2zBmOwNmDRw40HYEAICLmKw7NM9itjNgWnZ2tu0IAAAXMVl3aJ7FbGfAtI4dO9qOAABwEZN1x/XNM7OdAfP27t1rOwIAwEVM1h3XN8/MdgbMCw8Ptx0BAOAiJuuO65tnZjsD5jVs2NB2BACAi5isO65unpntDPjHbrZFAQD8yGTdCTN25SAwrbBQnpgYZjsDhnXq1Ml2BACAi5isO65deWa2M+A/3333ne0IAAAXMVl3XNs8M9sZ8B+O5wYA+BPHcxvAbGfAfzieGwDgTxzP7WPMdgb8a8iQIbYjAABcxGTdcWXzzGxnwL+WLVtmOwIAwEVM1h1XNs/Mdgb8KykpyXYEAICLmKw7rmueme0M+N/27dttRwAAuIjJuuO6Oc/Mdgb8Lzo62nYEAICLmKw7rlp5ZrYzAAAAzoermmdmOwN2FBcX244AAHARk3XHVc0zs50BO9q1a2c7AgDARUzWHdc0z8x2BuxZu3at7QgAABcxWXdc0zwz2xmwZ9CgQbYjAABcxGTdcU3zzGxnwJ4lS5bYjgAAcBGTdccVzTOznQG7UlNTbUcAALiIybrjiuZ5WmGhPHv2MNsZsCQtLc12BACAi5isOyHfPDPbGbCvV69etiMAAFzEZN0J+eaZ2c6AfZs2bbIdAQDgIibrTsg3z8x2Buxr2bKl7QgAABcxWXdCunlmtjMQGI4cOWI7AgDARUzWnZBunpntDASGsrIy2xEAAC5isu6EdPPMbGcgMDRv3tx2BACAi5isOyHbPDPbGQgceXl5tiMAAFzEZN0JM3Zly6YVFsoTE8NsZyAA9O7dW8dshwAAuEZvg/1fSK48M9sZCCzffvut7QgAABcxWXdCsnlmtjMQWDieGwDgTxzPfZaY7QwEFo7nBgD4E8dznwVmOwOBp1+/frYjAABcxGTdCbnmmdnOQOBZs2aN7QgAABcxWXdCrnlmtjMQeNq1a2c7AgDARUzWnZBqnpntDASm4uJi2xEAAC5isu6E1JxnZjsDAADApJBZeWa2MxC4oqOjbUcAALiIyboTMs0zs52BwLV9+3bbEQAALmKy7oRM88xsZyBwJSUl2Y4AAHARk3UnJJpnZjsDgS0zM9N2BACAi5isOyHRPDPbGQhsHM8NAPAnjuc+A2Y7A4GN47kBAP7E8dynwWxnIPANHDjQdgQAgIuYrDtB3zxPKyyUZ88eZjsDASw7O9t2BACAi5isO0HdPDPbGQgOnTp1sh0BAOAiJutOUDfPzHYGgsNuJuEAAPzIZN0J6uaZ2c5AcGjYsKHtCAAAFzFZd4K2eWa2MxA8wsPDbUcAALiIyboTtM0zs52B4LF3717bEQAALmKy7gRt88xsZyB4JCQk2I4AAHARk3UnKJtnZjsDwSUnJ8d2BACAi5isO0HZPDPbGQguHM8NAPAnjuc+AbOdgeDD8dwAAH/ieO4TMNsZCD5DhgyxHQEA4CIm607QNc/MdgaCz9KlS21HAAC4iMm6E1TNM7OdgeDUg5GSAAA/Mll3gqp5ZrYzEJwKCgpsRwAAuIjJuhNUzTOznYHg1LRpU9sRAAAuYrLuBE3zzGxnIHhVVlbajgAAcBGTdSdommdmOwPBq6SkxHYEAICLmKw7QdE8M9sZCG5t27a1HQEA4CIm605QNM/MdgaC29q1a21HAAC4iMm6ExTNM7OdgeA2cOBA2xEAAC5isu4EfPPMbGcg+KWnp9uOAABwEZN1J+CbZ2Y7A8EvNTXVdgQAgIuYrDsB3zwz2xkIfmlpabYjAABcxGTdCejmmdnOQGjo1auX7QgAABcxWXcCunlmtjMQGjZt2mQ7AgDARUzWnYBtnpntDISOVq1a2Y4AAHARk3UnYJtnZjsDoePw4cO2IwAAXMRk3QnY5pnZzkDoKCsrsx0BAOAiJutOQDbPzHYGQkvz5s1tRwAAuIjJuhOQzTOznYHQsnnzZtsRAAAuYrLuBGTzzGxnILSkpKTYjgAAcBGTdSfgmmdmOwOhZ/ny5bYjAABcxGTdCbjmmdnOQOjheG4AgD+55nhuZjsDoYnjuQEA/uSa47mZ7QyEpn79+tmOAABwEZN1J6CaZ2Y7A6Fp9U8TdAAA8AeTdSdgmmdmOwOhq0OHDrYjAABcxGTdCZjmmdnOQOgqKiqyHQEA4CIm607ANM/MdgZCV716AfOjBgDgAibrTkBUNGY7A6EtKirKdgQAgIuYrDsB0Twz2xkIbYWFhbYjAABcxGTdsd48M9sZCH3dunWzHQEA4CIm64715pnZzkDoy8zMtB0BAOAiJuuO9eaZ2c5A6ON4bgCAP4Xs8dzMdgbcgeO5AQD+FLLHczPbGXCHQYMG2Y4AAHARk3XHavPMbGfAHdjzDADwp5Dc88xsZ8A9EvmdBgCAH5msO9aaZ2Y7A+6xc+dO2xEAAC5isu5YaZ6Z7Qy4S2RkpO0IAAAXMVl3rDTPzHYG3CUsLMx2BACAi5isO1aaZ2Y7A+6yb98+2xEAAC5isu74vXlmtjPgPgkJCbYjAABcxGTd8XvzzGxnwH1ycnJsRwAAuIjJuuP35pnZzoD7cDw3AMCfQuZ4bmY7A+7E8dwAAH8KmeO5me0MuNPQoUNtRwAAuIjJuuO35pnZzoB7paen244AAHARk3XHb80zs50B97r44ottRwAAuIjJuuO35pnZzoB7bd261XYEAICLmKw7fmmeme0MuFvTpk1tRwAAuIjJuuOX5pnZzoC7VVZW2o4AAHARk3XHL80zs50BdyspKbEdAQDgIibrjvHmmdnOANrwi8IAAD8yWXeMN8/MdkZdHTp0SJ9++qkuv/xy21HgY+vWrbMdAQDgIibrjtHmmdnOOBuNGjXSVVddpWPHjtmOAh/r37+/7QgAABcxWXeMNs/MdgYgSUuXLrUdAQDgIibrjtHmmdnOACQpNTXVdgQAgIuYrDthpi6cmZOjXb1765rPP5e6dTP1MnCpo0eP6ujRo97PDx06JEkq+eEH7fj+e1uxUIN9Bw8qLS1NPf/f/9Mh22EAACHP+fFHpaWlacTYsUau73Ecx6nLA+fMmaP+/fvrww8/1IMPPqhnnnlGU6ZM0VNPPaVJkybp888/V3Jysvbv369Dhw5p6cqVerOyUl+9/LJe6dxZry5dqt//4Q+69957NWfOHA0dOlT5+fmqX7++4uLitGLFCo0dO1avvvqq97oPP/ywXnnlFV199dVauXKlmjVrpoiICG3YsEGXXXaZZs2a5X3s448/runTp+uWW27RN998o4suukjl5eXauXOn+vTpo7lz5+qBBx7Qs88+633OnXfeqX/84x9KSUnRvn37dPjwYXXu3FkLFy7UhAkT9OKLL3ofe//99+tvf/ubUlNTlZeXp/DwcLVq1UpZWVkaM2aMXnvtNe9jJ0+erJdfflnXXnutsrOz1aJFCzVo0EB5eXkaPny4Zs+erccff1x/+MMf9B//8R96+umnddttt2nRokXq2LGjjh49qj179qh379765JNPdO+992rGjBne69911136+OOP1adPH+3atUtlZWXq2LGj0tLSdOutt+ovf/mL97EPPPCA3nrrLY0YMUIbN25URESEmjVrppycHF1zzTV6/fXXvY995JFH9OKLL+q6665TVlaWWrdurbCwMG3ZskXDhg3TO++8o8cee0xPP/209zm33367FixYoMTERB0+fFj79u1Tz549NW/ePN1zzz167rnnvI+9++679dFHH6lfv37asWOHKioqFB8fr8WLF+vmm2/WCy+8oMTERN13332aMWOGioqKdMUVV2jdunVq1KiRYmNjtWrVKo0ePVq33nqrFi5ceMp/p9dee61iYmJUr149FRUVqUOHDlq9erUGDx6sJUuWKDU1VWlpaUpJSdHmzZvVvHlzlZWV6ciRI2rZsqU2bdqk3r1769tvv/U+tm/fvlq7dq3atWun4uJiSVJ0dLS2b9+u7t27a8WKFd7HDhw4UNnZ2erYsaP27t2r8PBwNWzYULt371anTp303XffeR87ZMgQLVu2TElJSdq+fbuio6MlScXFxWrXrp3Wrl2rQYMGVcvdq1cvbdq0SS1bttSRI0dUVlam5s2bKy8v75Tc/fr105o1a2rMnZSUpMzMzFNyd+rUSbt371bDhg0VHh6uvXv3KiEhQTk5OdVyL126VD169FBBQYGaNm2qyspKlZSUqG3btlq7dq0GDhyo9PR0paamasGSJeraubN2/fCDWrVqpcOHD3tzb968WSkpKVq+fHm13KtXr1aHDh1UVFSkevXqKSoqSoWFherWrVu13IMGDVJmZqYSExO1c+dORUZGKiwsTPv27Tsl99ChQ5Wenq6LL75YW7durZa7TZs2Wrdunfr376+lS5d6n9O7d29t2LBBrVu3VmlpqcrLyxUbG6v8/Hz17NmzWu7+/ftr1apVio+P1/79+1W/fn1v7q5duyorK8v72MGDB2vFihXq0qWLduzY4c29f/9+xcfHa9WqVRoyZIgWL16soUOHasmSJUpOTlZ+fr5iY2NVXl6u0tJSxcXFaf369erXr1+13H369NG6devUpk0blZSUqKKiwps7OTlZGRkZ3scOGDBAK1eu9OYOCwtTZGSkdu7cqcTERGVnZ1fLnZGRoa5du6qwsFBRUVHe77ULL7xQ33//vS655BItXrz4lO+1Zs2aeXO3bt1aGzZsUN++fbVs2bJq32u5ubne3JWVlWratKkKCgrUo0ePat9rAwYMUE5OjhISErzfaxEREdq1a9cp32uXXHKJvv32WyUlJemHH36olpufEfZ/RpyYm58R/Izw1c+I7t27K6JpU028+eYa+4g33njD2588+uij+vOf/6zrr79eHTt29F3zfC72rFunjT/7mQZv26Zv4+KUMH++WiYnm3o5uMjJK8//ePtt3Xrvvfrwjjs0KCbGYjKcbE95uf5961b9+yOPqNlFF9mOAwAIcT/u3atnf/tbvfrqq4qLi/P59Y1t25CkFl27qkVBgZY9+qg6zZih+ikpWnrffRr05z/LU88v57MgRDVo0EANGjTwfh4ZESFJauzxKK5RI1uxUJNDh9S+eXN1adzYyA8xAABOtENS69atjV3fLx3soGeeUb3cXK1r106D//IXLW/XTrtXrfLHSyOIeDyeGj8Q/EpLS21HAAC4iMm647fl32ZdumhwQYGWPfKIOu7cqbCUFC194AE5Bs8eR3BxHKfGDwS/8vJy2xEAAC5isu74fe8Eq9A4napfWjl48KDlJPCl2NhY2xEAAC5isu5Y2XjMKjRq06tXL40ZM0bvv/++7Sjwofz8fNsRAAAuYrLuWP2tPVahcbInnnhCH3/8sSZNmmQ7CnyoZ8+etiMAAFzEZN2xPvKCVWicaOXKlfr666/1zDPPsN85hCxfvtx2BACAi5isO9ab5yqsQkOSpk+frksvvVRlZWVatGiR7TjwEY7nBgD4k8m6EzDNs8QqtNu99dZbeu+99yRJBw4cYOU5hKSlpdmOAABwEZN1J6Ca5yqsQrvT5ZdfroiICM2dO1cdOnTQpZdeajsSfKR///62IwAAXMRk3QnI5lliFdqN4uLiNGbMGF133XW6//77bceBD63iL78AAD8yWXcCtnmuwio0EPzi4+NtRwAAuIjJuhPwzbPEKjQQ7Pbv3287AgDARUzWnaBonquwCg0Ep/r169uOAABwEZN1J6iaZ4lVaCAYRUVF2Y4AAHARk3Un6JrnKqxCA8GjsLDQdgQAgIuYrDtB2zxLrEIDwaJr1662IwAAXMRk3Qnq5rkKq9BAYMvKyrIdAQDgIibrTkg0zxKr0EAg43huAIA/ueZ4bl9gFRoIPBzPDQDwJ9cdz32+WIUGAsvgwYNtRwAAuIjJuhOSzXMVVqGBwLBixQrbEQAALmKy7oR08yyxCg0Egi5dutiOAABwEZN1J+Sb5yqsQgP27Nixw3YEAICLmKw7rmmeJVahAVsiIyNtRwAAuIjJuuOq5rkKq9CAf4WFhdmOAABwEZN1x5XNs8QqNOBP+/fvtx0BAOAiJuuOa5vnKqxCA+bFx8fbjgAAcBGTdcf1zbPEKjRg2ir+QgoA8COTdYfm+QSsQgNmDBkyxHYEAICLmKw7NM8nYRUa8L3FixfbjgAAcBGTdYfmuRasQgO+M3ToUNsRAAAuYrLu0DyfBqvQgG8sWbLEdgQAgIuYrDs0z3XAKjRwfpKTk21HAAC4iMm6Q/NcR6xCA+cuPz/fdgQAgIuYrDs0z2eJVWjg7MXGxtqOAABwEZN1h+b5HLAKDZyd8vJy2xEAAC5isu7QPJ8HVqGBuiktLbUdAQDgIibrDs3zeWIVGjizuLg42xEAAC5isu7QPPsIq9BA7davX287AgDARUzWHZpnH2IVGqhZv379bEcAALiIybpD82wAq9BAdUuXLrUdAQDgIibrDs2zIaxCA/+SmppqOwIAwEVM1h2aZ8NYhQaktLQ02xEAAC5isu7QPPsBq9Bwuz59+tiOAABwEZN1h+bZj1iFhlutW7fOdgQAgIuYrDs0z37GKjTcqE2bNrYjAABcxGTdoXm2hFVouElJSYntCAAAFzFZd2ieLWIVGm5RUVFhOwIAwEVM1h2a5wDAKjRCXWxsrO0IAAAXMVl3aJ4DBKvQCGX5+fm2IwAAXMRk3aF5DjCsQiMUJScn244AAHARk3WH5jkAsQqNUJORkWE7AgDARUzWHZrnAMYqNEIFx3MDAPyJ47ldjFVohAKO5wYA+BPHc4NVaAS1AQMG2I4AAHARk3WH5jmIsAqNYLVy5UrbEQAALmKy7tA8ByFWoRFs4uPjbUcAALiIybpD8xykWIVGMNm/f7/tCAAAFzFZd2iegxyr0AgGYWFhtiMAAFzEZN2heQ4BrEIj0EVGRtqOAABwEZN1h+Y5hLAKjUC1c+dO2xEAAC5isu7QPIcYVqERiBITE21HAAC4iMm6Q/McoliFRiDJzs62HQEA4CIm6w7NcwhjFRqBguO5AQD+xPHcOC+sQsM2jucGAPgTx3PjvLEKDZsGDx5sOwIAwEVM1h2aZ5dhFRo2ZGRk2I4AAHARk3WH5tmFWIWGv3Xt2tV2BACAi5isOzTPLsYqNPylsLDQdgQAgIuYrDs0zy7HKjT8ISoqynYEAICLmKw7NM+QxCo0zKpXjx81AAD/MVl3qGjwYhUaphQVFdmOAABwEZN1h+YZp2AVGr524YUX2o4AAHARk3WH5hk1YhUavvT999/bjgAAcBGTdYfmGafFKjR84ZJLLrEdAQDgIibrDs0zzohVaJyvxYsX244AAHARk3WH5hl1xio0zlVqaqrtCAAAFzFZd2iecVZYhca5SEtLsx0BAOAiJusOzTPOCavQOBspKSm2IwAAXMRk3aF5xjljFRp1tXnzZtsRAAAuYrLu0DzjvLEKjTNp1qyZ7QgAABcxWXdonuETrELjdMrLy21HAAC4iMm6Q/MMn2IVGjUpLS21HQEA4CIm6w7NM3yOVWicrHXr1rYjAABcxGTdoXmGMaxCo8qGDRtsRwAAuIjJukPzDKNYhYYk9e3b13YEAICLmKw7NM/wC1ah3W3ZsmW2IwAAXMRk3aF5ht+wCu1eHM8NAPAnjudGSGEV2n04nhsA4E8cz42Qwyq0u7DnGQDgT+x5RshiFdodcnNzbUcAALiIybpD8wzrWIUOfW3atLEdAQDgIibrDs0zAgar0KGrpKTEdgQAgIuYrDs0zwgorEKHpkr+/AAAfmSy7tA8IyCxCh1amjZtajsCAMBFTNYdmmcELFahQ0dBQYHtCAAAFzFZd2ieEfBYhQ5+PXr0sB0BAOAiJusOzTOCAqvQwW3FihW2IwAAXMRk3aF5RlBhFTo4cTw3AMCfOJ4bOEFNq9B7v/rKdiycBsdzAwD8yWTdCavLgxzH0cGDB42FAM7W0aNH1f7BB7Xz6quVd/PNarl8uSQpv6JCy4qK7IZDNUUVFUpJSVH+9u062KCB7TgAgBC3d+9epaSk6ODBg2rUqNFZP79x48byeDy13u9xHMc500WKi4vVpEmTs35xAAAAIJgcOHBA0dHRtd5fp+aZlWcEmqNHj+ro0aPez7ds2aJhw4bp76+9pnZt21pMhpMdKi3V5TfcoKysLEVFRdmOAwAIcSUlJerTp4+2bdt22ia4Nmdaea7Ttg2Px3NOLw7426ArrlC7du1sx8AJiouLJUmdOnXi5wgAwLiquhMdHW2k7vALgwAAAEAd0TwDAAAAdUTzjJDQ4KcpDg2Y5hBwGjRooGuuuYY/GwCAX5iuO3X6hUEg0FVNhDnTb8jCjsLCQrVp08Z2DACAS5isO6w8AzDujTfesB0BAOAiJusOK88ICaw8AwAAf2DlGYBxTz31lO0IAAAXMVl3WHlGSGDlObAdPXqUXxgEAPiNybrDyjMA4/785z/bjgAAcBGTdYfmGYAxhw4d0qeffqpPPvnEdhQAgEuUlJTo66+/VkFBgZHr0zwDMKZRo0a66qqrFBYWZjsKAMAF3njjDT3zzDP65z//qcrKSiOvwZ5nhATHcXTw4EE1btxYHo/HdhycZPjw4Vq0aJHtGAAAl/B4PNqyZYvi4+N9fm2WgxASPB4PvygIAACMY9sGAAAAUEc0zwCMOXr0qN555x3l5+drzpw5Onr0qO1IAACcF/Y8AwAAIKSY3PPMyjMAAABQRzTPAIzxeDw1fgAAYMKcOXN0zz33SJJ+85vf6OWXX/b5a7BtAwAAAKgjVp4BGFVcXCxJOnjwoOUkAACcP5pnAEb16tVLY8aM0fvvv287CgAA541tGwCM+tvf/qZbb73VdgwAAHyClWcARq1cuVJff/21nnnmGfF3dQBAsGPlGYBRjuPI4/Ho97//vQYPHqwRI0bYjgQAwDlj5RmAMW+99Zbee+89SdKBAwdYeQYABD1WngEYs2PHDmVkZMhxHG3fvl3333+/7UgAAJwXmmcAAACgjti2AQAAANQRzTMAAABQRzTPAAAAQB3RPAMAAAB1RPMMAAAA1BHNMwAAAFBHNM8AAABAHdE8AwAAAHVE8wwAAADUEc0zAAAAUEc0zwAAAEAd/X9JzG6FeAow4wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "Graphics object consisting of 15 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:55,325 Plotting... done\n", + "INFO: 2023-09-20 09:43:55,326 Completing 0 functional directed moves and 2 covered components...\n", + "INFO: 2023-09-20 09:43:55,327 Completion finished. Found 0 directed moves and 2 covered components.\n", + "INFO: 2023-09-20 09:43:55,328 Plotting covered intervals...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAALhCAYAAABPH7ejAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNhUlEQVR4nOzdd5iV1bn38e8A0plBiCJGFGNFY28BRaSIGmusUaMYo0Zj9OREkxxPNCZ5x9hjjWiMYImKvZc99CqKcBBUVCQiKmKBsDdN2jzvH49ORCnDMLPWLt/PdXEBM3s/68dIyH3PamVJkiRIkiRJkqR60yh2AEmSJEmSio3NtiRJkiRJ9cxmW5IkSZKkemazLUmSJElSPbPZliRJkiSpntlsS5IkSZJUz2y2JUmSJEmqZ8Gb7SRJyOVyeL23JEmSJKlYBW+2FyxYQEVFBQsWLAg9tBTUgw8+GDuCJEmSpC+Frs9dRi41kH333Td2BEmSJElfCl2f22xLDeSxxx6LHUGSJEnSl0LX52VJ4M3TuVyOiooKstks5eXlIYeWglq6dCnNmjWLHUOSJEkS4etzZ7alBnLttdfGjiBJkiTpS6Hrc2e2JUmSJEmqZ01iB5CKVWVlJZdeemnsGJIkSVEsW7aMFStWxI4h1fjHP/7BWWedVavXNmnShKZNm27QeM5sSw1k9uzZbL755rFjSJIkBbds2TLeeOMNqqurY0eR6qRRo0bsvPPOG9RwO7MtNZAXXniBn/3sZ7FjSJIkBbdixQqqq6vp3LkzLVq0iB1HWi9Llixh5syZrFixwmZbyke77rpr7AiSJElRtWjRgpYtW8aOIdVJNpvliy++oFmzZrRq1Wq932+zLTWQefPmxY4gSZIkqY6effZZFi1aRHl5OSeddNJ6N9x1vvpr4cKFHHfcccyaNauuj5CK2qJFi2JHkCRJklRHrVq1omnTpuRyOZYuXbre769Tsz1gwACuvfZaHn/8cQ89kFbji+pqdtxxx9gxJEmSJNVRs2bNaNasWZ3fX6dm+8wzz+RPf/pTrV67dOlScrncKj+kYvbB4sXs8NFHXDNwYOwokiRJkiKpdbP94IMPMmPGDK655hqWLl1KZWUlALfccguzZ8/mrrvuYsKECWQyGR5//HHefPNNbr75Zv74xz9SUVFR86NTp04AvP766zz99NM899xzTJo0iTvuuIPPPvus5rmVlZUsXryY66+/nrfffpuHH36YoUOHMm7cOO6++24++OCDVV67cuVKrrzySt5//33uu+8+xowZw4gRIxg0aBDTp0/n2muv5YsvvljlPXPmzOHOO+9kwoQJvPjiizzxxBO8/vrr3HLLLWSz2VVeO3/+fG699VamTp3Kk08+yfPPP8/EiRP5+9//zieffLLKa5csWcL111/P9OnTeeihhxg2bBhjx47l3nvvZdasWVxxxRVUV1dTWVlJdXU1V1xxBbNmzeLee+9l7NixDBs2jIceeojp06dz/fXXs2TJklWe/8knn/D3v/+diRMn8vzzz/Pkk08ydepUbr31VubPn7/Ka7PZLLfccguvv/46TzzxBC+++CITJkzgzjvvZM6cOau89osvvuDaa69l+vTpDBo0iBEjRjBmzBjuu+8+3n//fa688kpWrly5yns++OAD7r77bsaNG8fQoUN5+OGHefvtt7n++utZvHjxKq/97LPPuOOOO5g0aRLPPfccTz/9NFOmTOFvf/sb8+bNW+W1uVyOm2++mTfffJPHH3+cTCbDhAkTuOuuu5g9e/Yqr126dCnXXHMNM2bM4MEHH2TEiBGMHj2af/7zn8ycOZOrrrqKFStWrPKeDz/8kIEDBzJ+/HgGDx7MI488wltvvcUNN9zAwoULV3nt559/zu23387kyZN59tlneeaZZ5g8eTL9+/dn7ty5q7x2wYIFPPzf/80e997LPbvuynlVVbz88ssMGDDgW7mXL1/O1Vdfzb/+9S/uv/9+Ro0axahRo7j//vv517/+xdVXX83y5ctXec/s2bMZMGAAL7/8MlVVVTz22GO8+eab3HjjjSxYsGCV186dO5f+/fszefJknnnmGZ599lkmT57M7bffzueff77KaxcuXMgNN9zAW2+9xSOPPMLgwYMZP348AwcO5MMPP1zltStWrOCqq65i5syZ/POf/2T06NGMGDFijf9GfJV7Tf9G5HK5VV47b948/va3vzFlyhT/jfDfiKL8N+LGG2/kzTff5LHHHqPKfyP8N8J/I/w3okj/jZgyZQpSoZs0aRIrV65k6tSpzJw5s+bfiNraoHu2y8rKeO+99+jcufMaX7N06dJV1rfncjk6derkPdsqXv/1XyRPPkmPs85i9GWX8TvgSqAsdi5JkqRAFi9ezLRp0+jSpYunkavgfPX3d+bMmcyfP58FCxZw+umn065du/V6Tp0PSKutZs2aUV5evsoPqahlMpQdcgijLruMG4CrgZ8CyyPHkiRJUlydO3fmxhtvjB1DgTR4sy2VlPffh7ffhkMOobKykl8B9wMPAMcAnk8uSZIk1d0ZZ5zBMcccs87XjRo1iiOPPJLNN9+csrIynnzyyQbP9k0221J9qqqCRo2gVy9+8YtfAHAK8CwwEugNzI0YT5IkSRtm2bJlsSOoFhYtWsRuu+3GrbfeGi1DnZrtBx98kPPOOw+A//mf/+G2226r11BSwcpkYL/9YOONefDBB2s+3BcYAfwLOADwdnpJkqR1q66u5uqrr2bbbbelWbNmbLnlllxxxRU1n586dSq9evWiRYsWtG/fnnPOOYeFCxcCkMlkaN68OfPnz1/lmRdeeCE9evSo+f24ceM48MADadGiBZ06deLCCy9k0aL/rEfs3LkzlZWVnHHGGVRUVHD22WfX6n2ffvopRx55JC1atGDrrbfm/vvvr9WfecCAAey88840a9aMjh078stf/rLmc7NmzeLoo4+mdevWlJeXc+KJJ/LJJ5/UfP6Pf/wju+++OwMGDGDLLbekdevWnHfeeaxcuZJrrrmGzTbbjE033XSVryGkZ3H179+fww47rCbvI488sspr1va1hv/MOF933XV07NiR9u3bc/7557N8+X82Uy5btozf/va3fPe736VVq1bst99+qxw4dvfdd9O2bVsymQxdunShdevWHHrooXz88cc1f7577rmHp556irKyMsrKytZ4YNlhhx1GZWUlxx57bK2+7g2hTs32ySefTP/+/UmShEGDBtXM4EklbcUKGDIEDjkEgO7du6/y6b2BscBSoCvweuh8kiRJBeaSSy7h6quv5rLLLuPNN9/kgQceoEOHDkB6iNWhhx7KxhtvzIQJE3jkkUcYMmRITXPap08f2rZty2OPPVbzvJUrV/Lwww9z6qmnAmkDecghh3DssccyZcoUHnroIcaMGbNKgwtw7bXX8v3vf5+JEydy2WWX1ep9Z5xxBjNnzmTYsGE8+uij3HbbbXz66adr/fP279+f888/n3POOYepU6fy9NNPs+222wKQJAnHHHMM8+bNY+TIkQwePJgZM2Zw0kknrfKMGTNm8MILL/Diiy/y4IMPMmDAAA4//HA+/PBDRo4cydVXX82ll17K+PHjV3nfZZddxnHHHcdrr73GT37yE04++WSmTZtWq6/1V4YPH86MGTMYPnw499xzD3fffTd33313zed/+tOfMnbsWAYNGsSUKVM44YQTOPTQQ5k+fXrNaxYvXsx1113Hfffdx6hRo5g1axYXX3wxABdffDEnnnhiTQP+8ccf061bt7V+TaNKAstmswmQZLPZ0ENLDWvs2CSBJHnppSRJkuSpp55a7cs+TpJktyRJ2iZJMipUNkmSpIAWLVqUvPrqq8miRYu+/sEkmThx3T++fE8ul0uaNWuW3Hnnnasd4+9//3uy8cYbJwsXLqz52HPPPZc0atQomTNnTpIkSXLhhRcmvXr1qvl8JpNJmjZtmsybNy9JkiQ57bTTknPOOWeV544ePTpp1KhRsmTJkiRJkmSrrbZKjjnmmFVes673vf322wmQjB8/vubz06ZNS4DkhhtuWOPXbfPNN09+//vfr/ZzVVVVSePGjZNZs2bVfOyNN95IgOSVV15JkiRJLr/88qRly5ZJLperec0hhxySdO7cOVm5cmXNx3bYYYfkyiuvrPk9kJx77rmrjLfffvsl5513XpIktfta9+vXL9lqq62SFStW1LzmhBNOSE466aQkSZLk3XffTcrKypKPPvpolXF69+6dXHLJJUmSJMnAgQMTIHn33XdrPv+3v/0t6dChQ83v+/Xrlxx99NGr/RqtCZA88cQTtX79V39/H3300eQf//hHcsMNNyRz585drzGTJEmaROzzpeKSyUDbtrDPPgA0btx4tS/bjHT/9jGky8sHAUcHCShJkhTRW2/BXnut+3UTJ8KeezJt2jSWLl1K7969V/uyadOmsdtuu9GqVauaj+2///5UV1fz9ttv06FDB0499VS6du3K7Nmz2Xzzzbn//vv54Q9/yMYbb/zlUBN59913V1ninSQJ1dXVvPfee3Tp0gWAvffe+xsR1/6+d955hyZNmqzyvh133JG2bduu8Y/96aefMnv27LX+eTt16kSnTp1qPrbTTjvRtm1bpk2bxj5f1qCdO3emTZs2Na/p0KEDjRs3plGjRqt87Juz7F27dv3W7ydPnlwz9rq+1gA777zzKjVwx44dmTp1KpDeWZ0kCdtvv/0q4yxdupT27dvX/L5ly5Zss802qzxjXSsC8pXNtlRfqqqgTx/48h+Yjh07rvGlFcCLwGnAscDtwNkBIkqSJEWz445pI12b1wEtWrRY68uSJKGsrGy1n/vq4/vuuy/bbLMNgwYN4rzzzuOJJ55g4MCBNa+rrq7m5z//ORdeeOG3nrHlllvW/PrrTWZt3vf222+vkqM26vrn/ebHN9poo1U+X1ZWttqPVVdXrzPTV8+tzdd6TWN/NU51dTWNGzdm4sSJ35qUat269VqfkU5OFx6bbak+/Pvf8Mor8LOf1XxowoQJ7Lnnnmt8SzPgQeC/gHOAOcClQO3/SZYkSSogLVvCWmqjb9puu+1o0aIFQ4cO5ayzzvrW53faaSfuueceFi1aVNMMjx07lkaNGq0ye3rKKadw//33s8UWW9CoUSMOP/zwms/tueeevPHGGzX7omtrXe/r0qULK1as4NVXX2XfffcF4O233/7WYW1f16ZNGzp37szQoUPp2bPnav+8s2bN4oMPPqiZ3X7zzTfJZrM1M/AbYvz48Zx++umr/H6PPfaoGbs2X+u12WOPPVi5ciWffvrpt842Wh9NmzZl5cqVdX5/SF79JdWHIUOgurrmcDSgVicfNgZuASqBPwDnA4XxT4ckSVLDat68Ob/73e/47W9/y7333suMGTMYP348d911FwCnnnoqzZs3p1+/frz++usMHz6cCy64gNNOO61mWfNXr5s0aRJXXHEFxx9/PM2bN6/53O9+9zteeuklzj//fCZPnsz06dN5+umnueCCC9aabV3v22GHHTj00EM5++yzefnll5k4cSJnnXXWOmev//jHP3L99ddz8803M336dCZNmsQtt9wCpAe+7brrrjV/nldeeYXTTz+dHj16fGuZe1088sgjDBgwgHfeeYfLL7+cV155peYAtNp+rddm++2359RTT+X000/n8ccf57333mPChAlcffXVPP/887XO2blzZ6ZMmcLbb7/N559/vspp51+3cOFCJk+eXLMU/r333mPy5MnMmhXuXiCbbak+ZDLQpQt8bQ/NHXfcUau3lgG/B+4E7gBOAr5ogIiSJEmF5rLLLuOiiy7iD3/4A126dOGkk06q2b/bsmVLMpkM8+bNY5999uH444+nd+/e37pXebvttmOfffZhypQpNaeQf2XXXXdl5MiRTJ8+ne7du7PHHntw2WWXrXU7YG3fN3DgQDp16kSPHj049thjOeecc9h0003X+tx+/fpx4403ctttt7HzzjtzxBFH1JzUXVZWxpNPPsnGG2/MgQceSJ8+ffje977HQw89VOuv59r86U9/YtCgQey6667cc8893H///ey0005A7b/W6zJw4EBOP/10LrroInbYYQeOOuooXn755VX2oa/L2WefzQ477MDee+/NJptswtixY1f7uldffZU99tijZnb+17/+NXvssQd/+MMf1ivzhihLAi+Az+VyVFRUkM1mKS8vDzm01DCSBLbcEo47Dm68cYMe9TRps70f8BTp3m5JkqRCs3jxYqZNm0aXLl1o2bJl7Dhah7KyMp544gmOOeaY2FHywld/f2fOnMn8+fNZsGABp59+Ou3atVuv5zizLW2ot96CDz9cZQk5QGVl5Xo/6ihgCPAa0AP4uD7ySZIkSQrOZlvaUJkMNGsGPXqs8uFf//rXdXrc/sAY4HOgG/DOhuaTJEmSFJzNtrShMhno3j09YfNr+vfvX+dH7gyMA1qQNt8TNiSfJEmStBZJkriEvAHYbEsb4osvYOTIby0hBzjiiCM26NFbAqOBbYGeQGaDniZJkqTYOnfuzI0beMaPCofNtrQhxoyBJUugb99vfeq1117b4Me3B4aSNttHAPdv8BMlSZKkwnXGGWfUahb+yiuvZJ999qFNmzZsuummHHPMMbz99tsNH/BrbLalDZHJQMeOsMsu3/pU+/bt62WIlsATwGnAT4C/1stTJUmSVBfLli2LHUG1MHLkSM4//3zGjx/P4MGDWbFiBX379mXRokXBMthsSxsik0lntcvKvvWpFi1a1NswTYC7gEuAi4DfANX19nRJkqT8VF1dzdVXX822225Ls2bN2HLLLbniiitqPj916lR69epFixYtaN++Peeccw4LFy4EIJPJ0Lx5c+bPn7/KMy+88EJ6fO1g23HjxnHggQfSokULOnXqxIUXXrhKQ9a5c2cqKys544wzqKio4Oyzz67V+z799FOOPPJIWrRowdZbb83999dujeKAAQPYeeedadasGR07duSXv/xlzedmzZrF0UcfTevWrSkvL+fEE0/kk08+qfn8H//4R3bffXcGDBjAlltuSevWrTnvvPNYuXIl11xzDZttthmbbrrpKl9DSK/+6t+/P4cddlhN3kceeWSV16ztaw3/mXG+7rrr6NixI+3bt+f8889n+fLlNa9ZtmwZv/3tb/nud79Lq1at2G+//RgxYkTN5++++27atm1LJpOhS5cutG7dmkMPPZSPP/645s93zz338NRTT1FWVkZZWdkq7/+6F198kTPOOIOdd96Z3XbbjYEDBzJr1iwmTpxYq/8O9cFmW6qr2bNh6tTV7tcGeOed+j1HvAz4C3ATcD3QD1i+1ndIkiTlj8XApFr8WPy191xyySVcffXVXHbZZbz55ps88MADdOjQIX3e4sUceuihbLzxxkyYMIFHHnmEIUOG1DSnffr0oW3btjz22GM1z1u5ciUPP/wwp556KpA2kIcccgjHHnssU6ZM4aGHHmLMmDGrNLgA1157Ld///veZOHEil112Wa3ed8YZZzBz5kyGDRvGo48+ym233cann3661q9R//79Of/88znnnHOYOnUqTz/9NNtuuy3wn0PM5s2bx8iRIxk8eDAzZszgpJNOWuUZM2bM4IUXXuDFF1/kwQcfZMCAARx++OF8+OGHjBw5kquvvppLL72U8ePHr/K+yy67jOOOO47XXnuNn/zkJ5x88slMmzatVl/rrwwfPpwZM2YwfPhw7rnnHu6++27uvvvums//9Kc/ZezYsQwaNIgpU6ZwwgkncOihhzJ9+vSa1yxevJjrrruO++67j1GjRjFr1iwuvvhiAC6++GJOPPHEmgb8448/plu3bmv9mn4lm80CrPdd2RskCSybzSZAks1mQw8t1a+BA5OkrCxJPv10tZ+eNWtWgw09KEmSjZIkOTRJkgUNNookSVLdLFq0KHn11VeTRYsW1XxsYpIk1OLHxC9fn8vlkmbNmiV33nnnasf4+9//nmy88cbJwoULaz723HPPJY0aNUrmzJmTJEmSXHjhhUmvXr1qPp/JZJKmTZsm8+bNS5IkSU477bTknHPOWeW5o0ePTho1apQsWbIkSZIk2WqrrZJjjjlmldes631vv/12AiTjx4+v+fy0adMSILnhhhvW+HXbfPPNk9///ver/VxVVVXSuHHjVWrMN954IwGSV155JUmSJLn88suTli1bJrlcruY1hxxySNK5c+dk5cqVNR/bYYcdkiuvvLLm90By7rnnrjLefvvtl5x33nlJktTua92vX79kq622SlasWFHzmhNOOCE56aSTkiRJknfffTcpKytLPvroo1XG6d27d3LJJZckSZIkAwcOTIDk3Xffrfn83/72t6RDhw41v+/Xr19y9NFHr/ZrtCbV1dXJkUcemRxwwAG1ev1Xf38fffTR5B//+Edyww03JHPnzl2vMZMkSZqEa+ulIlNVBXvuCZtsstpP33PPPVx66aUNMvRJpIen/QjoDTwHfKdBRpIkSaofOwK1WcC745c/T5s2jaVLl9K7d+/Vvm7atGnstttutGrVquZj+++/P9XV1bz99tt06NCBU089la5duzJ79mw233xz7r//fn74wx+y8cYbAzBx4kTefffdVZZ4J0lCdXU17733Hl26dAFg7733XmXsdb3vnXfeoUmTJqu8b8cdd6Rt27Zr/HN/+umnzJ49e61/3k6dOtGpU6eaj+200060bduWadOmsc8++wDpsvc2bdrUvKZDhw40btyYRo0arfKxb86yd+3a9Vu/nzx5cs3Y6/paA+y88840bty45jUdO3Zk6tSpAEyaNIkkSdh+++1XGWfp0qWrnHXUsmVLttlmm1Wesa4VAevyy1/+kilTpjBmzJgNes76stmW6qK6GgYPhnPOWeNLGqrR/kofYCRwGOld3Bmgc4OOKEmSVHctgT3X4/XrOv8mSRLKVnNuDlDz8X333ZdtttmGQYMGcd555/HEE08wcODAmtdVV1fz85//nAsvvPBbz9hyyy1rfv31JrM27/vq1Os15Vuduv55v/nxjTbaaJXPl5WVrfZj1dXrPgHoq+fW5mu9prG/Gqe6uprGjRszceLEVRpygNatW6/1GUmSrDPrmlxwwQU8/fTTjBo1ii222KLOz6kL92xLdTFpEnz++Rr3awNUVlY2eIw9gXHACqAbMKXBR5QkSQpju+22o0WLFgwdOnS1n99pp52YPHnyKoeSjR07lkaNGq0ye3rKKadw//3388wzz9CoUSMOP/zwms/tueeevPHGG2y77bbf+tG0adM1ZlvX+7p06cKKFSt49dVXa97z9ttvf+uwtq9r06YNnTt3Xuufd9asWXzwwQc1H3vzzTfJZrM1M/Ab4pt7uMePH8+OO+5YM3ZtvtZrs8cee7By5Uo+/fTTb33NNttss1rnbNq0KStXrlzn65Ik4Ze//CWPP/44w4YNY+utt671GPXFZluqi0wGWreGbyy3+bpLLrkkSJRtSBvujsCBpLPdkiRJha558+b87ne/47e//S333nsvM2bMYPz48dx1110AnHrqqTRv3px+/frx+uuvM3z4cC644AJOO+20mmXNX71u0qRJXHHFFRx//PE0b9685nO/+93veOmllzj//POZPHky06dP5+mnn+aCCy5Ya7Z1vW+HHXbg0EMP5eyzz+bll19m4sSJnHXWWeucvf7jH//I9ddfz80338z06dOZNGkSt9xyC5Ae+LbrrrvW/HleeeUVTj/9dHr06PGtZe518cgjjzBgwADeeecdLr/8cl555ZWaA9Bq+7Vem+23355TTz2V008/nccff5z33nuPCRMmcPXVV/P888/XOmfnzp2ZMmUKb7/9Np9//vkqp51/3fnnn88///lPHnjgAdq0acOcOXOYM2cOS5YsqfVYG8pmW6qLqiro1Qu+sczl66655ppgcToAI4C9gUOAx4ONLEmS1HAuu+wyLrroIv7whz/QpUsXTjrppJr9uy1btiSTyTBv3jz22Wcfjj/+eHr37s2tt966yjO222479tlnH6ZMmVJzCvlXdt11V0aOHMn06dPp3r07e+yxB5dddhkdO3Zca67avG/gwIF06tSJHj16cOyxx3LOOeew6aabrvW5/fr148Ybb+S2225j55135ogjjqg5qbusrIwnn3ySjTfemAMPPJA+ffrwve99j4ceeqjWX8+1+dOf/sSgQYPYddddueeee7j//vvZaaedgNp/rddl4MCBnH766Vx00UXssMMOHHXUUbz88sur7ENfl7PPPpsddtiBvffem0022YSxY8eu9nX9+/cnm81y0EEH0bFjx5of9fX1qo2yZEMWwNdBLpejoqKCbDZLeXl5yKGl+pHLQfv2cNNN8ItfrPFl77//PltttVXAYLCU9EqwR4C/AecGHV2SJCm1ePFipk2bRpcuXWjZsmXsOFqHsrIynnjiCY455pjYUfLCV39/Z86cyfz581mwYAGnn376el8b5sy2tL6GD4cVK9a6Xxtg1KhRgQL9RzPgAeCXwHnAH4Gg302TJEmSBHgaubT+MhnYZpv0x1rEOIQB0u+g3Ui6h/sS4GPgNqDxWt4jSZIkqX7ZbEvrK5NZ56w2wIoVKwKEWb0y4H9I93KfDXxGOuPdfG1vkiRJUkkKvLO4ZLiMXFofM2bAv/5Vq2Z7zpw5AQKt3U+BJ4EXgb7A/JhhJEmSpBJisy2tj0wGmjSBnj3X+dK99torQKB1OwIYCrxOejXY7LhxJEmSpJJgsy2tj0wGunWDWpyk/+STTzZ8nlrqCowB/g10A96OG0eSJEkqejbbUm0tWwbDhtVqCTnABRdc0MCB1s9OwEtAa2B/4OW4cSRJkqSiZrMt1db48bBwIfTtW6uXX3fddQ0caP1tAYwGdgR6AS/EjSNJkiQVLU8jl2ork4HvfAf23LNWL7/00ksbOFDdbAwMBn4MHAXcBZweNZEkSSpWS5YsiR1BWm/19ffWZluqrUwGDj4YGtVuQUhlZWXeNtwtgMeA84B+wCfAxaRXhkmSJG2oJk2a0KhRI2bOnBk7ilQnSZKwcuXKDXqGzbZUG599BpMmwXrswz7rrLMaMNCGawL8HdgM+C3wMXAd7i2RJEkbrmnTpuy8886sWLGCbDbLs88+S6tWrWjWrFnsaCphixcvpmXLlrV67cqVK1mxYsUGjWezLdXG4MGQJOnMdi0988wznH322Q0YasOVAf+PtOG+gHSGeyDQNGYoSZJUFJo2bUrTpk354osvWLRoEcuXL7fZVlRTp05ll112Wa/3LF26tM7j2WxLtVFVBbvsAptvXuu37L777g2Xp56dD2wK/AT4HHgUaBM1kSRJKhbNmjWjvLycXC7HsmXLYsdRCWvdujULFixY7/eVl5fX6RtFNtvSuiRJ2myfeup6vW3u3LkNFKhhnAB8Bzia9KTy50gbcEmSpA3RqlUrTjrppA2aIZTqw/Dhw+nZs+d6v69Zs2a0atVqvd9nsy2ty9Sp8PHHtb5f+yuFePpmT2AkcBjpXdxVwNZRE0mSpGLQqlWrOjUrUn1q1KgR7dq1CzdesJGkQpXJQIsWcMAB6/W27bbbroECNaw9gHFf/robMDleFEmSJKnehK7Pbbaldamqgh49oHnz9Xrb8OHDGyhQw/seMBbYAugBjIiaRpIkSdpwoetzm21pbRYvhtGj13sJOcDpp5/eAIHC2RQYBuwHHEJ6aJokSZJUqELX5zbb0tqMHAlLl9ap2b7lllsaIFBYbYBngeOBE4G/xY0jSZIk1Vno+rwsSZIk5IC5XI6Kigqy2Szl5eUhh5bW369+BY8/Du+/D2VlsdNEUw1cDNwAXAr8mfSObkmSJEmr58y2tDaZTDqrXYdGu7KysgECxdEIuB64BqgEzgFWRE0kSZIkrZ/Q9bkz29KazJoFW20FDz8MJ5yw3m+fP38+bdu2rf9ckd0LnAkcDgwCWsSNI0mSJNVK6PrcmW1pTaqqoFEj6NOnTm//5z//Wc+B8sPpwNPAEKAv8O+4cSRJkqRaCV2f22xLa5LJwL77wsYb1+ntPXr0qOdA+eOHpCeVTwO6Ax/GjSNJkiStU+j63GZbWp0VK2DIkDqdQv6VGTNm1GOg/LMf6V3cC4BupI23JEmSlK9C1+c229LqvPoqzJ8PffvW+RFNmzatvzx5agdgHFABHAC8FDeOJEmStEah63ObbWl1MhmoqEiXkddRhw4d6jFQ/vouMBrYGehNei+3JEmSlG9C1+c229LqZDLpwWhNmtT5ERMnTqzHQPmtLZABDgGOAQbGDCNJkiStRuj63GZb+qZ//xtefnmD9msDHH300fUUqDC0AB4FfkZ6NdhVQNB7BSVJkqS1CF2f22xL3zR0KFRXb9B+bYA777yzngIVjsbA7cDlwCXAr4DqmIEkSZKkL4Wuz8uSJAk6+ZTL5aioqCCbzVJeXh5yaKl2zjkHRo2Ct96KnaSg3Q78AjgJuBtoFjWNJEmSFJYz29LXJUm6X3sDl5ADVFZW1kOgwnUu8AjwOHAE6RVhkiRJUiyh63NntqWve+st6NIFnnsOfvjDDXrUkiVLaNGiRT0FK1wjgaOAbYHngdI4o12SJEn5JnR97sy29HWZDDRtCj16bPCjbrvttnoIVPh6kF4N9jGwPzAjbhxJkiSVqND1uc229HVVVXDAAdCq1QY/6qijjqqHQMVhV2Ac6QFq3YBJceNIkiSpBIWuz222pa8sXQojRtTLfm2ASZNsKb+uMzDmy597AENjhpEkSVLJCV2f22xLXxkzBhYvrrdme5NNNqmX5xSTTUib7P2Bw4CH4saRJElSCQldn9tsS1/JZGCzzWDXXevlcc2aednV6rQGniG9Euxk4Ja4cSRJklQiQtfnNtvSVzIZ6NsXysrq5XEzZngU2JpsBNwDXARcCPwvEPRaBEmSJJWc0PW5zbYE8PHHMGVK2mzXk4MOOqjenlWMGgHXAtcBVwJnASuiJpIkSVIxC12f22xLAIMHpz8ffHC9PfK+++6rt2cVs4uA+4B7gR8Bi+PGkSRJUpEKXZ+XJUkSdPVmLpejoqKCbDZLeXl5yKGlNTv1VHjrLZg4sd4eWV1dTaNGfj+rtl4Ejie9JuxZoF3cOJIkSSoyoetzOwGpujq9X7ueTiH/yl/+8pd6fV6xOxQYDkwHDgA+iBtHkiRJRSZ0fe7MtjRpEuy1FwwfDvW4j8OZ7bp5BziEdP/2i8DOceNIkiSpSDizLYWWyUDr1tCtW70+9sorr6zX55WK7YFxpMvIDwDGxo0jSZKkIhG6PrfZljIZ6NkTmjat18eedtpp9fq8UtIRGAXsBvQBno4bR5IkSUUgdH1us63StmABjB1b7/u1AUaMGFHvzywlFaTLyA8nPaX8rrhxJEmSVOBC1+c22yptw4fDihUN0mxvs8029f7MUtMceAj4Oek93FcAQQ+ZkCRJUtEIXZ83CTqalG+qqmDrraEB/oe3dOnSen9mKWoM/I10afmlwBzgxi8/LkmSJNVW6PrcZlulLZNJZ7XLyur90Z999lm9P7NUlQGXAR2A84BPgPuAZjFDSZIkqaCErs9dRq7S9a9/wbvvNsgScoA999yzQZ5bys4BHiM9MO2HQC5uHEmSJBWQ0PW5zbZKVyYDjRtDr14N8vinn/YM7YZwDDAYmAT0IF1WLkmSJK1L6Pq8LEmSoOcN5XI5KioqyGazlJeXhxxaWtWPfgSffw6jRzfI45csWUKLFi0a5NmC14FDSJeSZ4Dt4saRJElSngtdnzuzrdK0fDkMHdpgS8gBrr/++gZ7tuD7wDigKbA/8GrcOJIkScpzoetzZ7ZVmkaPhgMPhFdegX32iZ1GG+Bz4AjSme4ngIPjxpEkSZIAZ7ZVqjIZaN8eGvCQhMrKygZ7tv7jO8BQ0v3bhwMPxo0jSZKkPBW6PndmW6Vpn31g223hwYZrzT755BM6dOjQYM/XqpYDZwP3ADcAv4qaRpIkSfkmdH3uzLZKz+efw8SJ0Ldvgw7z1FNPNejztaqNgIHA74D/Bv4HCPqdREmSJOW10PV5k6CjSflgyBBIkgZvtvfaa68Gfb6+rQy4CtiMtOGeA9xJ2ohLkiSptIWuz222VXoyGfj+9+G7323QYT755JMGfb7W7FdAB6Af8BnwMNAqZiBJkiRFF7o+dxm5SkuSQFVVg1759ZVly5Y1+Bhas5OB54BRQG9gbtw4kiRJiix0fW6zrdLyxhswe3aDLyEH2GabbRp8DK3dwcAI4F+kd3G/HzWNJEmSYgpdn9tsq7RkMtC8OXTv3uBDjRw5ssHH0LrtBYwFlgHdgKlx40iSJCmS0PW5V3+ptPTtC40awYsvNvhQ8+fPp23btg0+jmpnDnAY8B7wDNDw326RJElSPgldnzuzrdKxeDGMGhVkvzbArbfeGmQc1c5mwEhgT9Ll5U9GTSNJkqTQQtfnzmyrdLz4Ihx2WLpve6edYqdRJEuB04DHgP7AOXHjSJIkqUg5s63SUVWVXvfVpUuQ4SorK4OMo/XTDHgQOA/4OfBnIOh3HCVJkhRF6PrcmW2Vjp13hh/8AO66K8hw2WyWioqKIGNp/SXAlcDvSRvvW4DGURNJkiSpIYWuz53ZVmn44AN4881g+7UB7r333mBjaf2VAf8L/AO4AzgJ+CJqIkmSJDWk0PW5zbZKQ1UVlJVBnz7BhuzZs2ewsVR3PwOeAJ4DDgWyceNIkiSpgYSuz222VRoyGdhnH2jXLtiQ06dPDzaWNsxRwBBgCnAgMDtuHEmSJDWA0PW5zbaK38qVMGRI0CXkAC1atAg6njbM/sBoYB7QDXgnbhxJkiTVs9D1uc22it+rr8K//x282W7fvn3Q8bThdgbGAS1Jm+9X4saRJElSPQpdn9tsq/hlMlBRAfvtF3TYyZMnBx1P9aMTMAbYDugFZOLGkSRJUj0JXZ/bbKv4ZTLQuzc0aRJ02COPPDLoeKo/7Uj3cPcEjgD+GTeOJEmS6kHo+txmW8Vt/nx4+WXo2zf40P/4xz+Cj6n605L0lPLTvvxxfdw4kiRJ2kCh6/OyJEmSkAPmcjkqKirIZrOUl5eHHFql6PHH4bjj4L33oHPn2GlUgBLgUuAvwMXA1fhdSkmSJK2bNaOKWyYD228fpdGurKwMPqbqXxlwBXAz6ex2P2B51ESSJEmqi9D1uTPbKl5JAltvDUcdBTffHHz4L774gubNmwcfVw3nYeAnpAenPQq0jhtHkiRJ6yF0fe7MtorXO+/A++9H2a8NcMstt0QZVw3nROAF0uvBegGfxY0jSZKk9RC6PrfZVvGqqoKNNoKDDooy/DHHHBNlXDWs3sAI4H3Su7hnxgwjSZKkWgtdn9tsq3hlMnDAAdA6zmLfiRMnRhlXDW9P0tntaqAbMCVuHEmSJNVC6PrcZlvFaelSGD4cDjkkWoTNNtss2thqeNsAY4GOQHdgZNw4kiRJWofQ9bnNtorT2LGweHHUZrtJkybRxlYYHUiXlO8DHAI8HjWNJEmS1iZ0fW6zreJUVQWbbgq77hotwnvvvRdtbIXTBngO+BFwPHB73DiSJElag9D1uVNvKk6ZTHoKeaN430868MADo42tsJoB95POdJ8HzAEuJ72jW5IkSfkhdH3uzLaKzyefwOTJUZeQAzzwwANRx1dYjYAbgKuAPwHnAiujJpIkSdLXha7Py5IkSUIOmMvlqKioIJvNUl5eHnJolYr77oPTT4c5c6BDh2gxVq5cSePGjaONr3juBs4CjgQeAFpETSNJkiQIX587s63ik8nA7rtHbbQBrrzyyqjjK54zgKeADOnBafNjhpEkSRIQvj53ZlvFpboaOnaEn/4UrroqdhqVuJeAI4DNgReB78aNI0mSpICc2VZxee01+PTT6Pu1ASorK2NHUGRdgTFAFugGvBU3jiRJUkkLXZ/bbKu4ZDLQqhXsv3/sJPTr1y92BOWBLsA40ivCDgBejhtHkiSpZIWuz222VVwyGejZE5o2jZ2EoUOHxo6gPLEFMBrYEegFvBA3jiRJUkkKXZ/bbKt4LFwIY8em92vnge233z52BOWRjYHBQB/SU8rvjRtHkiSp5ISuz222VTxGjIDly/NivzbAkiVLYkdQnmkBPAacCfQDrgWCnlApSZJUwkLX502CjiY1pEwGOneG7baLnQSAuXPnxo6gPNQEuAPYDPgt8DFwHX7nU5IkqaGFrs9ttlU8Mpl0VrusLHYSAHbbbbfYEZSnyoA/kzbcvwQ+AQYC8U8akCRJKl6h63MnU1Qc3nsPpk/Pm/3aAM8++2zsCMpzvwAeBh4lvY97Qdw4kiRJRS10fV6WJEnQLYO5XI6Kigqy2Szl5eUhh1Yxu+MOOP98mDsXKipipwFg8eLFtGzZMnYMFYDhwDHAdsDzwKZR00iSJBWn0PW5M9sqDpkM/OAHedNoA/z1r3+NHUEFoicwEvgI2B/4V9w4kiRJRSl0fe7Mtgrf8uXwne/AxRfDZZfFTiPV2XtAX9Ll5C8Cu0dNI0mSpA3hzLYK38svQy6XN1d+faWysjJ2BBWYrYGxQCfgQNLl5ZIkSaofoetzm20VvqoqaNcO9tordpJV/PznP48dQQVoU9ImuytwKPBI3DiSJElFI3R9brOtwpfJQJ8+0Lhx7CSrePzxx2NHUIFqDTwDnACcBPwtbhxJkqSiELo+955tFba5c2HCBMjDWeR99tkndgQVsKbAvUAH0ru455DezZ0ft8hLkiQVntD1uc22CtuQIZAkeXW/9lc+/vjj2BFU4BoB1wMdgd+QNtz98R9uSZKkughdn1uzqbBlMrDzzrDFFrGTfMvKlStjR1CRuJh0L/eZwKfAg4A3uEuSJK2f0PW5e7ZVuJIkPRwtD2e1ATp37hw7gorI6aT7uIeQXg82L24cSZKkghO6PrfZVuF680346KO8u/LrK6NHj44dQUXmMGAY8BbQHfgwbhxJkqSCEro+t9lW4cpkoHlzOPDA2ElW6+STT44dQUVoP9K7uBcC3YBpceNIkiQVjND1uc22ClcmkzbaLVrETrJat912W+wIKlI7AC8BbYEDvvy1JEmS1i50fV6WJEkScsBcLkdFRQXZbJby8vKQQ6uYLFkC7dpBZSVcdFHsNFIU84GjgQnAw8ARUdNIkiTp65zZVmEaPRq++CJv92sDVFZWxo6gItcWyACHAscAA2OGkSRJynOh63NntlWYLroIHnoIPvgAyspip1mtXC7n33EFsRI4H7gDuBL4HZCf/6uQJEmKJ3R97sy2ClMmk175laeNNsDdd98dO4JKRGOgP/BH4BLgV0B1xDySJEn5KHR9brOtwvPhh/DGG3m9hBygT58+sSOohJQBl5M23bcCpwBLoyaSJEnKL6Hrc5ttFZ7Bg9MZ7TxvZt96663YEVSCzgUeAZ4EDgdyUdNIkiTlj9D1uc22Ck8mA3vvDe3bx06yVq1atYodQSXqWNKD0yYABwGfRE0jSZKUH0LX5zbbKiwrV6Yz23m+hBygXbt2sSOohPUARgNzgP2BGXHjSJIkRRe6PrfZVmGZOBHmzSuIZnvKlCmxI6jE7QqMIz1ArRswKW4cSZKkqELX5zbbKixVVdCmDey3X+wk63TYYYfFjiDRGRj75c89gKExw0iSJEUUuj632VZhyWSgd2/YaKPYSdZpwIABsSNIAHwHGAYcABwGPBQ3jiRJUhSh6/OyJEmSkAPmcjkqKirIZrNBLxRXEchm00PRbr0Vzj03dhqp4CwHfgb8E7gRuDBqGkmSpOLmzLYKx7Bh6QFpBbBfG6CysjJ2BGkVGwF3AxcD/wVcAgT9bqskSVJEoetzZ7ZVOM49N22433kndpJaWbp0Kc2aNYsdQ1qtvwIXAT8F/g40iRtHkiSpwYWuz53ZVmFIknS/dt++sZPU2k033RQ7grRGvyZdTn4f8CNgcdw4kiRJDS50fW6zrcLw7rswc2bBLCEHOO6442JHkNbqVOBZYDjQB5gbN44kSVKDCl2f22yrMGQy6QnkPXvGTlJrr7zySuwI0jodQtpsTwe6Ax/EjSNJktRgQtfnNtsqDJkM7L8/tG4dO0mtdezYMXYEqVb2Ib2LewnQFXgjbhxJkqQGEbo+t9lW/lu2DIYPL6j92gCNGzeOHUGqte2BcaR3ch9A2nxLkiQVk9D1uc228t+4cbBoUUHt1wZ4//33Y0eQ1ktHYCSwO+ke7qejppEkSapfoetzm23lv0wGNtkEdt89dpL1csABB8SOIK23CuAF4AjSU8r/ETeOJElSvQldn9tsK/99deVXo8L66zpo0KDYEaQ6aQ4MAs4FzgYqgSRqIkmSpA0Xuj4vS5IkaA2Vy+WoqKggm81SXl4ecmgVok8+gc02g3vvhdNOi51mvaxYsYImTZrEjiHVWULaaP8BOB+4CfAkAkmSVKhC1+eFNVWo0jNkSPrzwQfHzVEHV111VewI0gYpAy4D/g70B34MLI2aSJIkqe5C1+fObCu/nX46TJkCkyfHTiKVtCeBk0mvBnuCdG+3JEmS1syZbeWv6mqoqiq4U8i/UllZGTuCVG+OAaqA/wMOAubEDCNJklQHoetzm23lrylT0j3bBdpsn3HGGbEjSPWqOzAa+AzoBkyPG0eSJGm9hK7PbbaVv6qqoGVL2H//2EnqZPDgwbEjSPXu+8A4oBmwP/Bq3DiSJEm1Fro+t9lW/spk4KCDoFmz2EnqpEuXLrEjSA1iS2AMsA3pknK/rSRJkgpB6PrcZlv5adEiGDOmYJeQAyxYsCB2BKnBtAeGkDbbhwMPRE0jSZK0bqHrc5tt5acRI2DZsoJutufPnx87gtSgWpGeTH4KcCpwQ9w4kiRJaxW6Pg93o7e0PjIZ2Gor2H772EnqbJdddokdQWpwGwEDgY7Ar0lPKb+K9I5uSZKkfBK6PndmW/mpqgr69oWywi3ZX3jhhdgRpCDKgCtJZ7avAc4AlscMJEmStBqh6/OyJEmSkAPmcjkqKirIZrOUl5eHHFqF4v33oXNnePRROO642GnqbOHChbRu3Tp2DCmoB4F+QB/gEdKl5pIkSfkgdH3uzLbyTyYDjRtD796xk2yQG2+8MXYEKbiTgedI7+PuDXweN44kSVKN0PW5M9vKP8cdB3PmwNixsZNIqqOJwA+BjYEMsFXcOJIkScE5s638smIFDB2a7tcucJWVlbEjSNHsBYwl3bvdDZgaN44kSVLw+txmW/nllVcgmy3oK7++cu6558aOIEW1LWnDvSnQnXRpuSRJUiyh63ObbeWXTAY23hj22Sd2kg326KOPxo4gRbcZMJJ0pvtg4MmoaSRJUikLXZ/bbCu/ZDLQp096QFqB+8EPfhA7gpQXyoHngaOB44A74saRJEklKnR9brOt/DFvHkyYUBRLyAE+/PDD2BGkvNGM9FqwXwDnAn8Ggp7OKUmSSl7o+rxJ0NGktRk6FKqri+JwNIDAB/1Lea8RcDPQEfg98DFwK1D461gkSVIhCF2f22wrf2Qy0KULdOoUO0m96FQkfw6pPpUB/wt0AM4BPgXuB5rHDCVJkkpC6PrcZeTKD0mSNttFsoQc4KWXXoodQcpbPyM9LO154FBgfswwkiSpJISuz222lR+mTYMPPyyqZvvEE0+MHUHKa0cCQ4EpQA9gdtw4kiSpyIWuz222lR8yGWjWDA48MHaSetO/f//YEaS81w0YA8z78tfvxI0jSZKKWOj6vCwJvEs8l8tRUVFBNpulvLw85NDKZ4cdBitWwODBsZNIiuAD0uXknwLPAfvGjSNJkrTBnNlWfF98ASNHFtUScoDKysrYEaSC0QkYDWwP9ARejBtHkiQVodD1uTPbim/w4PS6rylTYJddYqepNwsWLKBNmzaxY0gFZTFwEmmzPQA4LW4cSZJURELX585sK75MBjp2hO9/P3aSenXXXXfFjiAVnJbAE8DpX/64Lm4cSZJURELX596zrfiqqtKZ7bKy2EnqVd++fWNHkApSE+AfwGbAb4A5wDX43WFJkrRhQtfn1i6Ka/ZsmDq16PZrA0ybNi12BKlglQFXADcDfwX6AcujJpIkSYUudH3uzLbiqqpKZ7QPPjh2knrnfm1pw10AdCDdu/0Z8CjQOmoiSZJUqELX585sK65MBvbaC77zndhJ6l1FRUXsCFJROBF4ARgH9CJtuiVJktZX6PrcZlvxrFz5n5PIi9Abb7wRO4JUNHoBI4FZwP7AzKhpJElSIQpdn9tsK57/+z+YO7co92sDHHroobEjSEVlD9LZ7WqgK/Ba3DiSJKnAhK7PbbYVTyYDbdpA166xkzSIAQMGxI4gFZ3vAWOBzYEDgRFR00iSpEISuj4vS5IkCTlgLpejoqKCbDZLeXl5yKGVbw48ENq1gyefjJ1EUoFZABwLjAIeAI6LG0eSJOlbnNlWHLkcvPRS0S4hB6isrIwdQSpabYDnSBvuE4D+ceNIkqQCELo+d2ZbcTz1FBxzDLz7LmyzTew0DWL58uVstNFGsWNIRa0a+DVwE/AH4I+kd3RLkiR9U+j63JltxZHJpE12kTbaAH/9619jR5CKXiPgBuAq4M/AucCKqIkkSVK+Cl2fNwk6mvSVTAaK/LTuE044IXYEqSSUAb8DNgN+BnxKuo+7RcxQkiQp74Suz53ZVnjvvgv/+ldR79cGeOmll2JHkEpKP+ApIAMcAsyPmkaSJOWb0PW5zbbCy2SgSRM46KDYSRpUp06dYkeQSs7hwDDgDaA78FHcOJIkKY+Ers9tthVeVRV06wYekCepAfwAGANkgW7AW3HjSJKkEmWzrbCWLYNhw4p+CTnABx98EDuCVLK6AONIrwjbHxgfN44kScoDoetzm22F9dJLsHBhSTTbXbt2jR1BKmlbAKOBnYBewPNx40iSpMhC1+c22work4HvfAf22CN2kgb3yCOPxI4glbyNgSqgL3AUcE/cOJIkKaLQ9XlZkiRJyAFzuRwVFRVks1nK3bNbevbeG7bfHh54IHaSBrd8+XI22mij2DEkkd69/QvgTuBq4DekV4ZJkqTSEbo+d2Zb4Xz2GUyaVBJLyAGuvvrq2BEkfakJcAdwGemd3L8GqqMmkiRJoYWuz53ZVjgPPACnngqzZ0PHjrHTSCpR/YHzgR8DdwNNo6aRJEnFyplthZPJwK67lkyjXVlZGTuCpNU4D3gYeAw4AlgQN44kSQokdH1us60wkiS9X7tv39hJgjnzzDNjR5C0BscDGeBloCfwadw4kiQpgND1uc22wpg6FebMKZn92gAvvvhi7AiS1uIgYBTwEeld3P+KmkaSJDW00PW5zbbCyGSgRQs44IDYSYLZeeedY0eQtA67AeNITybvBvxf3DiSJKkBha7PbbYVRiYDBx0EzZvHThJMNpuNHUFSLWwNjAU6AT2AYXHjSJKkBhK6PrfZVsNbtAhGjy6pJeQACxZ47JJUKDYBhgNdgcNID1CTJEnFJXR9brOthjdqFCxbVlKHowF06dIldgRJ66E18AxwAum1YLfGjSNJkupZ6PrcZlsNL5OBTp1gxx1jJwmqqqoqdgRJ66kpcC/w38AFwKVAEjWRJEmqL6Hr87IkSYLWEblcjoqKCrLZLOXl5SGHVixduqQHo915Z+wkQS1YsIA2bdrEjiGpjq4DfgP8DLgdaBI3jiRJ2kCh63NnttWwZs2Ct94quf3aADfddFPsCJI2wMWks9z3AMcBi+PGkSRJGyh0fe7MthrWnXfCuefC55/DxhvHTiNJ6+1F0mZ7D+BpoF3cOJIkqUA4s62GVVUF++5bko12ZWVl7AiS6sGhpNeBvQV0Bz6IG0eSJNVR6PrcZlsNZ8UKGDKkJJeQA5x33nmxI0iqJ/uR3sW9COgGvBk3jiRJqoPQ9bnNthrOhAkwf37JNtsPP+xNvVIx2QEYB2wMHPDlryVJUuEIXZ/bbKvhZDLQti3ss0/sJFF07do1dgRJ9WxzYBSwC9CH9F5uSZJUGELX5zbbajhVVdC7NzQpzQtzPvjAnZ1SMWoLZIDDgB8BA6OmkSRJtRW6PrfZVsP497/h5ZdLdgk5QFlZWewIkhpIc+Bh4GzgTOBKIOjVHpIkab2Frs9Lc8pRDW/oUKiuLulme4sttogdQVIDagzcBnQE/heYA9yA38WWJClfha7PrQnUMDIZ2HFH2HLL2EmiGT9+fOwIkhpYGfAH4HbgVuAUYGnURJIkaU1C1+c226p/SZI22yU8qw1w/PHHx44gKZCfA48CTwKHA7moaSRJ0uqErs9ttlX/3n4bPvgA+vaNnSSq22+/PXYESQH9CKgCXgUOAj6JmkaSJH1T6Pq8LEmSoGe65HI5KioqyGazlJeXhxxaodx0E/z2tzBvHrRqFTuNJAU1FTgEaEF6avm2ceNIkqRInNlW/ctkoHv3km+0KysrY0eQFMEuwDjSE0j3BybFjSNJkr4Uuj53Zlv164svoF07+NOf4De/iZ0mqoULF9K6devYMSRF8jnp/u03gSeAPnHjSJJU8kLX585sq36NHQtLlpT8fm2AO++8M3YESRF9BxgGdAd+CAyKG0eSpJIXuj632Vb9ymRgs81g111jJ4nusMMOix1BUmStgKeAk7/8cXPcOJIklbTQ9bnNtupXJpPOapeVxU4S3dSpU2NHkJQHNgLuBn4L/BdwCRB0/5YkSQLC1+c226o/H38MU6aU/P3aX2nbtm3sCJLyRBlwNfBX4CrgZ8CKqIkkSSo9oevzJkFHU3Grqkp/PvjguDnyRJs2bWJHkJRn/hvYFDgD+Ax4CGgZM5AkSSUkdH3uzLbqT1UV7LknbLJJ7CR5Ydq0abEjSMpDpwLPAcNJTyifGzeOJEklI3R9brOt+lFdnTbbLiGvcbAz/JLWoC9psz0dOACYFTeOJEklIXR9brOt+vF//weff26z/TV333137AiS8tg+wFjgC6Ab8HrcOJIkFb3Q9XlZkiRBD0XN5XJUVFSQzWYpLy8PObQa0l/+AldeCXPnQtOmsdNIUsH4GDgMeB94hnSmW5IkFT5ntlU/qqqgZ08b7a+prKyMHUFSAegIjAR2Bw4Gno6aRpKk4hW6PndmWxtuwQJo1w5uvBHOPz92mryxYsUKmjTxwH9JtbMU+AnwOHAHcFbcOJIkFZ3Q9bkz29pww4fDihXu1/6G6667LnYESQWkGTAIOA84G6gEgn43XJKkIhe6PnfaTRsuk4HvfQ+23TZ2krzy4x//OHYESQWmMXALsBlwGTAHuOnLj0uSpA0Tuj53ZlsbLpNxVns1xowZEzuCpAJUBlwK3An0B35MemK5JEnaMKHrc5ttbZgZM9IfffvGTpJ3ttpqq9gRJBWws0j3bz9Lelp5Nm4cSZIKXuj63GZbG6aqCpo0gV69YifJOytXrowdQVKBOxoYDEwGepBeEyZJkuomdH1us60Nk8lA167gyfLf8vHHlsWSNtwBwGjgc6AbMD1uHEmSClbo+txmW3W3fDkMG+Z+7TXYd999Y0eQVCS+D4wDmgP7A6/GjSNJUkEKXZ/bbKvuxo9P79h2v/ZqPfbYY7EjSCoiWwJjgG2Ag4CqqGkkSSo8oevzsiRJgl7jmcvlqKioIJvNUu7S48J26aVw++3wySfQ2Itpvmnp0qU0a9YsdgxJRWYxcCKQAe4BTokbR5KkghG6PndmW3WXycDBB9tor8G1114bO4KkItQSeAL4CXAqcEPcOJIkFYzQ9bkz26qbzz+HTTeFAQPgjDNip5GkkpMAvweuBH4LXEV6R7ckScoPzmyrbgYPhiRxv/ZaVFZWxo4gqYiVAX8BbgSuAc4AlkfMI0lSvgtdnzcJOpqKR1UVfP/7sPnmsZPkrTPPPDN2BEkl4L+ADsDpwGfAI0CrqIkkScpPoetzZ7a1/pIkbba98mutXnjhhdgRJJWIHwPPk97H3Yv0Tm5JkrSq0PW5zbbW3+uvw+zZNtvrsOuuu8aOIKmE9AFGADOBA4D3Y4aRJCkPha7Pbba1/jIZaN4cunePnSSvzZs3L3YESSVmL2As6d7tbsDUuHEkScoroetzm22tv6oq6NEjbbi1RosWLYodQVIJ2hYYR7qPuzswKm4cSZLyRuj63GZb62fxYhg1yiXktbDjjjvGjiCpRHUgXVK+N9CX9F5uSZJKXej63GZb62fUKFi61Ga7FoYMGRI7gqQSVg48BxwNHA/cETeOJEnRha7PvfpL6yeTgS22gC5dYifJe2eccUbsCJJKXDPgQdKZ7nOBT4DLSO/oliSp1ISuz53Z1vrJZNJZ7TJLtXW5+eabY0eQJBoBNwF/AS4HfgGsjJpIkqQ4QtfnZUmSJCEHzOVyVFRUkM1mKS8vDzm0NtQHH8CWW8JDD8GJJ8ZOI0laTwOAc0iXlt8PeMylJEkNx5lt1V5VFTRqBH36xE5SECorK2NHkKRVnEl6WNrzwCHA/KhpJEkKK3R97sy2au/EE2HWLBg/PnaSgjBv3jzatWsXO4Ykfcs44AhgC+BFYPO4cSRJCiJ0fe7Mtmpn5UoYMsRTyNfDgw8+GDuCJK1WN2AM8O8vf/123DiSJAURuj632VbtTJgA//439O0bO0nB6N69e+wIkrRGOwEvAa2A/YFX4saRJKnBha7PbbZVO1VVUFEB++0XO0nBmDlzZuwIkrRWWwCjgR2BnqRLyiVJKlah63ObbdVOJgO9e0MTr2avrcaNG8eOIEnr1A6oAnoDRwL3xY0jSVKDCV2f22xr3ebPh5dfdr/2eurYsWPsCJJUKy2Bx4F+wOnAdXHjSJLUIELX5zbbWrehQ9MD0tyvvV4mTJgQO4Ik1VoT4E7g98BvgIuA6qiJJEmqX6Hrc9cEa92qqmD77aFz59hJCsqxxx4bO4IkrZcyoBLYDLgQ+AQYADSNGUqSpHoSuj53ZltrlyTpfm2XkK+3O+64I3YESaqTXwKDgEdI93EvjBtHkqR6Ebo+L0uSJAk5YC6Xo6Kigmw2S3l5ecihVRdvvw077gjPPguHHx47jSQpoGHAMaSnlT8HbBI1jSRJhcWZba1dJgMbbQQHHRQ7ScGprKyMHUGSNkgvYCQwi/Qu7vfixpEkaYOErs+d2dbaHX44LFkCw4bFTlJwFi9eTMuWLWPHkKQN9i/gENLl5C8Cu8WNI0lSnYSuz53Z1potXQojRrhfu4769+8fO4Ik1YvvAWOB7wIHAiOippEkqW5C1+c221qzsWNh8WKb7To64ogjYkeQpHqzKTAc2I90lvuxuHEkSVpvoetzm22tWSYDHTrArrvGTlKQXnvttdgRJKletQGeBY4DTgBcvyNJKiSh63Pv2daaZTLQty808nsyddG+ffvYESSp3jUF/gl0AH4BfAz8ifSObkmS8lno+twuSqs3Zw689lrabKtOWrRoETuCJDWIRsBfgauB/wf8HFgRNZEkSesWuj632dbqDR6c/myzXWfvvPNO7AiS1GDKgN8CdwMDgOOBJTEDSZK0DqHrc5ttrV4mA3vsAZtuGjtJwerdu3fsCJLU4PoBTwODgb7Av+PGkSRpjULX5zbb+rbqaqiq8hTyDXTPPffEjiBJQfwQGAq8SXo12Edx40iStFqh6/OyJEmSkAPmcjkqKirIZrOUl5eHHFq1NWkS7LUXDBsGPXvGTiNJKhBvkV4LBpABdoyYRZKk2JzZ1rdVVUGrVrD//rGTFLTKysrYESQpqB2BcUA5sD8wPm4cSZJWEbo+d2Zb39azJ7RuDc88EztJQVu5ciWNGzeOHUOSgvs3cDTwKvAo6TJzSZJiC12fO7OtVS1cCGPHul+7HlxzzTWxI0hSFBuTLiM/BDiK9MRySZJiC12f22xrVcOHw/LlNtv14JRTTokdQZKiaQE8AvwM+CnpndxBl9JJkvQNoetzm22tqqoKOneGbbeNnaTgjRo1KnYESYqqCXA78Afgf4D/BqqjJpIklbLQ9XmToKMp/2Uy6ax2WVnsJAVv6623jh1BkqIrA/4EbAacD3xKuqy8acRMkqTSFLo+d2Zb//HeezB9ukvI68mKFStiR5CkvHEe6bLyx4DDgQVx40iSSlDo+txmW/+RyUDjxtCrV+wkRWHOnDmxI0hSXjkOqAJeAXqSznJLkhRK6PrcZlv/kclA165QURE7SVHYa6+9YkeQpLzTAxgFfER6F/e/4saRJJWQ0PW5zbZSy5fDsGHQt2/sJEXjySefjB1BkvLSbsA40v3c3YD/ixtHklQiQtfnZUmSBL2JI5fLUVFRQTabpby8POTQWpsxY6B7d3j5Zdh339hpisIXX3xB8+bNY8eQpLz1Gen+7beAJwE3MUmSGlLo+tyZbaUyGWjXDlz6XG+uu+662BEkKa9tAgwjnd0+DHg4bhxJUpELXZ87s63UvvvC974HgwbFTiJJKjHLgJ8B9wM3ARfEjSNJUr1wZlswdy68+qr7tetZZWVl7AiSVBCaAvcAvwYuBH4PBJ0JkCSVhND1eZOgoyk/DRkCSWKzXc/OOuus2BEkqWA0Aq4DNgN+A8wB7sBCRZJUf0LX585sK92vvfPOsMUWsZMUlWeeeSZ2BEkqOBcD937541hgcdw4kqQiEro+t9kudUmSNtuHHBI7SdHZfffdY0eQpIJ0GvAM6eFpBwPz4saRJBWJ0PW5zXape+MNmD3bZrsBzJ07N3YESSpYh5I22+8A3YEP4saRJBWB0PW5zXapq6qC5s3TO7ZVr5YsWRI7giQVtH2BscAi0uvB3owbR5JU4ELX5zbbpS6TgQMPhBYtYicpOtttt13sCJJU8LYHxgHtgAO+/LUkSXURuj632S5lS5bAqFEuIW8gw4cPjx1BkorC5sBIYBegD+l+bkmS1lfo+txmu5SNGgVffGGz3UBOP/302BEkqWi0BTLAYcCPgAFR00iSClHo+txmu5RVVcF3vws77RQ7SVG65ZZbYkeQpKLSHHgYOBv4GfAXIImaSJJUSELX52VJkgT9/6lcLkdFRQXZbJby8vKQQ+ubvv992HdfGOD8gCSpcCTA/wMuBy4AbsTZA0lS/vH/m0rVhx+m1365hLzBVFZWxo4gSUWpDPgDcAfwN+BkYGnURJKkQhC6Pndmu1QNGABnnQWffQbt28dOU5Tmz59P27ZtY8eQpKL2JPBjYH/gCcDKQpK0JqHrc2e2S1UmA/vsY6PdgP75z3/GjiBJRe8YoAqYCBwEzIkZRpKU10LX5zbbpWjlShgyBPr2jZ2kqPXo0SN2BEkqCQcCo4FPSGe4340bR5KUp0LX5zbbpWjiRJg3z/3aDWzGjBmxI0hSydgFGAdsRNpwT4obR5KUh0LX5zbbpSiTgfJy2G+/2EmKWtOmTWNHkKSSshUwBtga6AEMiRtHkpRnQtfnNtulKJOB3r1ho41iJylqHTp0iB1BkkrOd4ChQHfgh8CguHEkSXkkdH1us11qslkYP9792gFMnDgxdgRJKkmtgKdIrwQ7GbgpbhxJUp4IXZ83CTqa4hs2LD0gzf3aDe7oo4+OHUGSStZGwN3AZsCvSE8p/wvpHd2SpNIUuj53ZrvUZDKw3Xaw9daxkxS9O++8M3YESSppZcDVwA3AVcCZwPKoiSRJMYWuz8uSJElCDpjL5aioqCCbzVJeXh5yaCUJfO97cMQRcMstsdNIkhTMA8AZQF/gYaBl1DSSpFLgzHYpmT4dZs50CXkglZWVsSNIkr50CvAsMALoDcyNmkaSFEPo+tyZ7VJy663w61+nd2y3bh07TdFbsmQJLVq0iB1DkvQ1r5KeUt4eyABbxo0jSQoodH3uzHYpyWRg//1ttAO57bbbYkeQJH3D3sBYYCnQDXg9bhxJUkCh63Ob7VKxbBkMH+4S8oCOOuqo2BEkSauxHTCO9E7u7sCYuHEkSYGErs9ttkvF2LGwaJHNdkCTJk2KHUGStAabASOB3YGDSe/lliQVt9D1uc12qaiqgk02gd12i52kZGyyySaxI0iS1qICeBE4AjgW8MJGSSpuoetzm+1SkclA377QyP/koTRr1ix2BEnSOjQDBgHnAecA/w8IenKsJCmY0PW5nVcp+OQT+L//cwl5YDNmzIgdQZJUC42BW4BK4A/AL4GVURNJkhpC6Pq8SdDRFMfgwenPffvGzVFiDjrooNgRJEm1VAb8HugA/Bz4FLgPaB4zlCSpXoWuz53ZLgWZDOy+O3ToEDtJSbnvvvtiR5AkraezgCeAZ4HDgGzcOJKkehS6Pi9LkiTo1qRcLkdFRQXZbJby8vKQQ5em6mrYfHPo1w+uvjp2mpJSXV1NI/fIS1JBGkt6cNpWwAtAx7hxJEn1IHR9bidQ7KZMSfdsu187uL/85S+xI0iS6mh/0vu3Pwe6Ae/EjSNJqgeh63Nntovd1VfDn/8M8+aBp2MH5cy2JBW+WcChwGfA88A+ceNIkjaAM9uqX5kM9Oxpox3BlVdeGTuCJGkDbQmMBrYFegKZuHEkSRsgdH1us13MFi2CMWM8hTyS0047LXYESVI9aA8MBQ4i3cd9f9Q0kqS6Cl2f22wXsxEjYPly92tHMmLEiNgRJEn1pCXpKeWnAT8B/ho3jiSpDkLX596zXcwyGdhqK9h++9hJStI222wTO4IkqR5tBNwFbAZcBMwBrsKZC0kqFKHrc5vtYpbJpLPaZWWxk5SkpUuXxo4gSapnZcBfSBvuX5E23HeRNuKSpPwWuj73m7HFauZMeOcdl5BH9Nlnn8WOIElqIBcCDwKDgKOBRXHjSJJqIXR9brNdrKqqoHFj6NUrdpKSteeee8aOIElqQCeRXgc2GuhFeie3JCl/ha7PbbaLVSYD++0HbdvGTlKynn766dgRJEkNrA8wEpgJHPDlz5Kk/BS6Pi9LkiQJOWAul6OiooJsNkt5eXnIoUvHihXwne/Ar38Nf/hD7DQla8mSJbRo0SJ2DElSADOAvsAS4EVg17hxJEmrEbo+d2a7GL38MmSz7teO7Prrr48dQZIUyDbAONKD0w4kne2WJOWX0PW5M9vF6A9/gFtvhc8+S/dtS5KkIHLAscAY4IEvfy1JKk3ObBejqiro08dGO7LKysrYESRJgZUDzwHHACcAt0dNI0n6utD1ufdsF5t582DCBDj77NhJSt7Z/jeQpJLUjHRWuwNwHvAJ8AfSO7olSfGErs+d2S42Q4ZAdbX7tfPAU089FTuCJCmSRsCNwJXAH0mb7pUR80iSwtfnzmwXm0wGdtoJttgidpKSt9dee8WOIEmKqAz4H9IZ7rOBz4D7geYxQ0lSCQtdnzuzXUySJN2v3bdv7CQCPvnkk9gRJEl54KfAk8ALwCHA/JhhJKmEha7PbbaLybRp8OGHLiHPE8uWLYsdQZKUJ44AhgJTSa8Gmx03jiSVpND1uc12MclkoFkzOPDA2EkEbLPNNrEjSJLySFfSK8H+DXQD3o4bR5JKTuj63Ga7mGQyaaPdsmXsJAJGjhwZO4IkKc/sBLwEtAL2B16OG0eSSkro+txmu1gsWQIjR7pfO4/85Cc/iR1BkpSHtgBGAzsCvUj3ckuSGl7o+txmu1iMGQNffOF+7Txy6623xo4gScpT7YDBQB/gKODeuHEkqSSErs/LkiRJQg6Yy+WoqKggm81SXl4ecujidvHF8OCD6QFpZWWx00iSpFpYQXoH9z+Aa4GL48aRJNUjZ7aLRSaTLiG30c4blZWVsSNIkvJcE+DvwKXAb4CLgOqoiSSpeIWuz53ZLgYffQRbbJHObP/4x7HT6EvZbJaKiorYMSRJBeJvwAXAKcAAoGncOJJUdELX585sF4PBg9MZ7T59YifR19x7rzvwJEm1dz7wEPAIcCSwMG4cSSo6oetzm+1ikMnAXnvBd74TO4m+pmfPnrEjSJIKzAnAi6TXg/UEPo0bR5KKSuj63Ga70K1cmc5sewp53pk+fXrsCJKkAtQTGAl8QHoX93tx40hS0Qhdn9tsF7pJk2DuXJvtPNSiRYvYESRJBWoPYNyXv+4GTI4XRZKKRuj63Ga70GUy0KYN/OAHsZPoG9q3bx87giSpgH0PGAt8F+gBjIiaRpIKX+j63Ga70FVVQa9esNFGsZPoGyZPnhw7giSpwG0KDAf2Aw4BHo0bR5IKWuj63Ga7kOVy8NJLLiHPU0ceeWTsCJKkItAGeBY4HjgRuC1uHEkqWKHrc5vtQjZsGKxYYbOdp/7xj3/EjiBJKhJNgfuAX5FeEfYHIIkZSJIKUOj6vCxJkqD/VudyOSoqKshms5SXl4ccuvicdx4MGQKeei1JUklIgOuA3wJnk85yN4maSJK0Js5sF7KqKujbN3YKrUFlZWXsCJKkIlMG/Aa4BxhAurR8SdREklQ4QtfnzmwXqnffhe22g6eegqOOip1Gq/HFF1/QvHnz2DEkSUXqeeAEYE/gaWDjuHEkKe+Frs+d2S5UmQw0aQI9e8ZOojW45ZZbYkeQJBWxHwJDgTeB7sCHceNIUt4LXZ/bbBeqTAb23z+9Y1t56ZhjjokdQZJU5H5Aehf3AqAbMC1uHEnKa6Hrc5vtQrRsGQwf7n7tPDdx4sTYESRJJWBHYBxQARwAvBQ3jiTlrdD1uc12IXrpJVi40Cu/8txmm20WO4IkqUR8FxgN7Az0Bp6LG0eS8lLo+txmuxBlMrDJJrDHHrGTaC2aNPEyFklSOG2BDHAIcDRwd8wwkpSHQtfnNtuFKJOBgw+GRv7ny2fvvfde7AiSpBLTAngU+BnwU+Bq0ru5JUnh63O7tULz6acwaZJLyAvAgQceGDuCJKkENQZuBy4H/gf4b6A6aiJJyg+h63Ob7UIzZEj688EHx82hdXrggQdiR5Aklagy4I9Af+Bm4CfAspiBJCkPhK7Py5IkCbq6KJfLUVFRQTabpby8POTQxaFfP5g8GV57LXYSrcPKlStp3Lhx7BiSpBL3GHAKcCDwOOCloZJKVej63JntQpIkUFXlEvICceWVV8aOIEkSxwFVwCvAQcAnUdNIUjyh63NntgvJa6/B7runS8l7946dRpIkFZDXgMOAlqSnlm8TN44kFT1ntgtJJgMtWsABB8ROolqorKyMHUGSpBq7AeNID1DrBvxf3DiSFFzo+txmu5BUVcFBB0GzZrGTqBb69esXO4IkSavoDIz58ucewLCYYSQpsND1uc12oVi0CEaPdr92ARk6dGjsCJIkfcsmwFDS2e1DgYfjxpGkYELX5zbbhWLkSFi2zGa7gGy//faxI0iStFqtgWeAk4AfA7fEjSNJQYSuz5sEHU11l8nAllvCDjvETqJaWrJkSewIkiSt0UbAPcBmwIXAHKCS9I5uSSpGoetzm+1CUVUFfftCmf8XWCjmzp0bO4IkSWvVCLiWtOG+mLThvgMLREnFKXR97jLyQjBrFrz1lkvIC8xuu+0WO4IkSbVyEXAfcC/wI2Bx3DiS1CBC1+c224Ugk4FGjbxbu8A8++yzsSNIklRrPyHdxz0c6APMixtHkupd6Pq8LEmSJOSAuVyOiooKstks5eXlIYcuXMcfD7Nnw7hxsZNoPSxevJiWLVvGjiFJ0np5BTic9NTyDNApbhxJqjeh63NntvPdihUwZIhLyAvQX//619gRJElab/sCY4ElpNeDvRE3jiTVm9D1uTPb+e6ll6Bbt3RWu2vX2GkkSVKJ+Jj0Hu4PgGdJG29JUu05s53vMhlo2xb22Sd2Eq2nysrK2BEkSaqzjsAoYFegN+l+bkkqZKHrc2e2813XrrDFFvDII7GTaD199tlnbLLJJrFjSJK0Qb4gPTztSeDvwJlR00hS3YWuz53Zzmf//je88or7tQvU448/HjuCJEkbrDnwEHAO8DPgL0DQmRpJqieh6/MmQUfT+hk6FKqroW/f2ElUB/u49F+SVCQaA38jXVr+e9L93Dd++XFJKhSh63Ob7XyWycCOO8KWW8ZOojr4+OOPY0eQJKnelAGXAR2A84BPgPuAZjFDSdJ6CF2fu4w8XyVJ2my7hLxgrVy5MnYESZLq3TnAY8DTwA+BXNw4klRroetzm+189dZb8MEHNtsFrHPnzrEjSJLUII4BBgOTgB7AnKhpJKl2QtfnNtv5KpOBpk2hR4/YSVRHo0ePjh1BkqQG0x0YDXxKegf3u3HjSNI6ha7PvforX/3wh7BsGQwZEjuJ6mjevHm0a9cudgxJkhrU+8AhwDzgBWCvuHEkaY1C1+fObOejL76AESNcQl7gbrvtttgRJElqcFsBY4DvAQeRLi+XpHwUuj53ZjsfDRkCBx8Mr70Gu+4aO40kSdI6LQJOJG227wV+HDeOJEXnzHY+ymRgs81gl11iJ9EGqKysjB1BkqRgWgFPAqcAJwM3RU0jSd8Wuj53Zjsf7bYb7L473HNP7CTaALlczr/jkqSSkwCXAFcDvwOuJL2jW5JiC12fO7Odbz7+GKZMcb92Ebj77rtjR5AkKbgy4CrgBtKG+6fA8qiJJCkVuj5vEnQ0rVtVFZSVpXu2VdD69OkTO4IkSdH8CugA9AM+Ax4mXWouSbGErs+d2c43mQzsuSdssknsJNpAb731VuwIkiRFdTLwHDAK6A3MjRtHUokLXZ/bbOeT6moYPNgl5EWiVSu/fy9J0sHACOBfwAHArKhpJJWy0PW5zXY++b//g88/h759YydRPWjXrl3sCJIk5YW9gLHAUqAr8HrcOJJKVOj63GY7n2Qy0Lo1dO0aO4nqwZQpU2JHkCQpb2wHjAM2BboDo+PGkVSCQtfnNtv5JJOBXr2gadPYSVQPDjvssNgRJEnKK5sBI4E9gL7AU3HjSCoxoetzm+18kcvBuHHu1y4iAwYMiB1BkqS8Uw68ABwJHAvcGTeOpBISuj4vS5IkCTlgLpejoqKCbDYb9ELxvPf003D00TB9Omy7bew0kiRJDWol8F/A34A/A5eS3tEtScXCme18kcnA975no11EKisrY0eQJClvNQZuASqBPwDnkzbgktRQQtfnzmzni223TU8hv+222ElUT5YuXUqzZs1ix5AkKe/dBZwD/Aj4J9A8bhxJRSp0fe7Mdj6YMSP94X7tonLTTTfFjiBJUkH4GfAE8BxwKJCNG0dSkQpdn9ts54NMBpo0gZ49YydRPTruuONiR5AkqWAcBQwBpgA9gI/jxpFUhELX5zbb+aCqKr1b22X1ReWVV16JHUGSpIKyP+n923OBbsA7ceNIKjKh63Ob7diWL4dhw1xCXoQ6duwYO4IkSQVnZ2Ac0IK0+Z4QN46kIhK6PrfZju2ll2DBApvtItS4cePYESRJKkidgDHAdkBPIBM3jqQiEbo+t9mOLZOB9u1hzz1jJ1E9e//992NHkCSpYLUj3cPdEzgCuD9uHElFIHR9brMdW1UVHHwwNPI/RbE54IADYkeQJKmgtSQ9pfw04CfAX+PGkVTgQtfndngxff45TJzoEvIiNWjQoNgRJEkqeE1I7+G+BLgI+A1QHTWRpEIVuj4vS5IkCTlgLpejoqKCbDZLeamfvv3gg3DKKfDRR7D55rHTqJ6tWLGCJk2axI4hSVLRuAX4L+BUYACwUdw4kgpM6Prcme2YMhnYZRcb7SJ11VVXxY4gSVJRuQAYBDxEei/3wrhxJBWY0PW5M9uxJAl897tw6qlw7bWx00iSJBWMocCPgC7Ac8B34saRpNVyZjuW11+Hjz+Gvn1jJ1EDqaysjB1BkqSi1BsYAcwkvYt7ZsQskgpH6PrcZjuWTAZatIDu3WMnUQM544wzYkeQJKlo7QmMA1YC3YApceNIKgCh63Ob7VgyGejRA5o3j51EDWTw4MGxI0iSVNS2AcYCHYEDgZFx40jKc6Hrc5vtGBYvhtGjvfKryHXp0iV2BEmSil4H0iXlewOHAI9HTSMpn4Wuz222Yxg5EpYudb92kVuwYEHsCJIklYQ2pAelHQMcD9weNY2kfBW6PvcS4BiqqmCLLcCZz6I2f/782BEkSSoZzYAHgM2A84A5wOVAWcxQkvJK6PrcZjuGTCZdQl7mP//FbJdddokdQZKkktIIuIF0D/f/AB8DtwGNY4aSlDdC1+cuIw/tgw9g2jT3a5eAF154IXYESZJKThnwO2AgcBdwAvBF1ESS8kXo+rwsSZIk5IC5XI6Kigqy2Szl5eUhh84P//gH/Pzn8Nln0K5d7DRqQAsXLqR169axY0iSVLKeI2229waeBtpGTSMpttD1uTPboVVVwT772GiXgBtvvDF2BEmSStrhwFDgDdKrwWbHjSMpstD1uTPbIa1cCZtsAhdcAH/6U+w0kiRJJWEa6bVgjYAMsEPcOJJKhDPbIU2YAP/+t/u1S0RlZWXsCJIkCegCjANaA/sDL8eNIymS0PW5zXZImQxUVMC++8ZOogDOPffc2BEkSdKXtgBGAzsCvQCPMZVKT+j63GY7pEwGeveGJt64VgoeffTR2BEkSdLXbAwMBvoARwL3xo0jKbDQ9bnNdijz58PLL7uEvIT84Ac/iB1BkiR9QwvgMeCnQD/gWiDoAUaSogldn9tshzJ0KFRX22yXkA8//DB2BEmStBpNgL8DlwG/BS4CqqMmkhRC6Prc9cyhZDKwww6w1VaxkyiQwAf9S5Kk9VAG/BnYDPgl8AkwEGgaM5SkBhW6PrfZDiFJ0mb7mGNiJ1FAnTp1ih1BkiStwy+ATYFTgc+BR4E2URNJaiih63OXkYfwzjswaxb07Rs7iQJ66aWXYkeQJEm1cDzwIjCe9KTyT+PGkdRAQtfnNtshZDLQtCkcdFDsJAroxBNPjB1BkiTVUk9gJPAh6V3c78WNI6kBhK7PbbZDyGTggAOgVavYSRRQ//79Y0eQJEnrYXdg3Je/7gZMjpZEUkMIXZ+XJYF3iedyOSoqKshms5SXl4ccOo6lS6FdO7j8cvjtb2OnkSRJ0jp8ChwOvAM8STrrLUnry5nthjZmDCxe7H7tElRZWRk7giRJqoNNgWHAfsChwCNx40iqJ6Hrc2e2G9rvfgf33AOzZ0Mjv7dRShYsWECbNp5nKklSoVoG/BR4ELgFOD9uHEkbKHR9bvfX0DKZdFbbRrvk3HXXXbEjSJKkDdAUuA/4b9K7uC8Dwt7SK6k+ha7P7QAb0pw58NprcMghsZMogr5uHZAkqeA1Aq4HrgUqgXOAFVETSaqr0PW5zXZDqqpKfz744Lg5FMW0adNiR5AkSfXkYuAeYCBwHLAkbhxJdRC6PrfZbkhVVbDHHrDpprGTKAL3a0uSVFxOB54BhgB9gX/HjSNpPYWuz222G0p1ddpsu4S8ZFVUVMSOIEmS6tlhpCeVTwO6Ax/GjSNpPYSuz222G8rkyfDZZzbbJeyNN96IHUGSJDWA/YCxwAKgG2njLSn/ha7PbbYbSiYDrVpBt26xkyiSQw89NHYESZLUQHYAxgEVwAHAS3HjSKqF0PW5zXZDyWSgZ09o2jR2EkUyYMCA2BEkSVID+i4wGvg+0Bt4Nm4cSesQuj4vS5Ik6HWBuVyOiooKstks5eXlIYcOZ8ECaN8e/vpX+OUvY6eRJElSA/oCOAV4GrgT+GncOJLyhDPbDWHECFi+3P3aJa6ysjJ2BEmSFEBz4BHgLOBM4Cog6GyWpFoJXZ87s90QfvlLeP55mDEDyspip1Eky5cvZ6ONNoodQ5IkBZIAfwb+CFwI3IAzW1I+CV2f+7//hpDJpLPaNtol7a9//WvsCJIkKaAy4HKgP3ArcCqwNGoiSV8Xuj632a5v//oXvPsu9O0bO4kiO+GEE2JHkCRJEZxLuqz8CeAI0ivCJMUXuj632a5vVVXQuDH06hU7iSJ76SUvAZEkqVQdC2SAV4CDgE+ippEE4etzm+36lslA165QURE7iSLr1KlT7AiSJCmiHqRXg30M7A/MiBtHKnmh63Ob7fq0fDkMHeop5JIkSQJgV2Ac0BjoBkyKG0dSQDbb9Wn8+PSObZttAR988EHsCJIkKQ90BsZ8+XMPYGjMMFIJC12f22zXp6oqaNcO9twzdhLlga5du8aOIEmS8sQmwDDgAOAw4KG4caSSFLo+t9muT5kMHHxwekCaSt4jjzwSO4IkScojrYCngR8DJwO3xI0jlZzQ9XlZkiRJyAFzuRwVFRVks1nKy8tDDt2wPv8cNt0U7roLfvrT2GmUB5YvX85GG20UO4YkScoz1cD/ANcClwBXkN7RLalhha7PndmuL0OGQJJ4v7ZqXH311bEjSJKkPNQIuAa4HrgSOAtYETWRVBpC1+fObNeXM8+EV16B11+PnUSSJEkF4n7gDOBQ0n3cLaOmkVSfnNmuD0mS7tf2FHJ9TWVlZewIkiQpz50KPAsMB/oA8+LGkYpa6PrcZrs+vPEGzJ5ts61VnHnmmbEjSJKkAnAIabM9nfS0ci8PlRpG6PrcZrs+ZDLQvDl07x47ifLIiy++GDuCJEkqEPsAY4ElQDfgjbhxpKIUuj632a4PmQz06AEtWsROojyy8847x44gSZIKyPbAOKA96Qz32LhxpKITuj632d5QS5bAqFGeQq5vyWazsSNIkqQC0xEYCexOuof76ahppOISuj632d5Qo0bB0qXu19a3LFiwIHYESZJUgCqAF4AjgB8Bd8WNIxWN0PW5zfaGymTgu9+FnXaKnUR5pkuXLrEjSJKkAtUcGAScS3oP9xVA0Pt6pSIUuj632d5QX135VVYWO4nyTFVVVewIkiSpgDUGbgX+DFwKXAisjJpIKmyh6/OyJEmCfpMsl8tRUVFBNpulvLw85ND178MPoVMnGDQITjopdhrlmQULFtCmTZvYMSRJUhG4k3SW+zjgPqBZ3DhSQQpdnzuzvSGqqtIZ7T59YidRHrrppptiR5AkSUXibOAx4Bngh0AubhypIIWuz53Z3hAnnQQzZ8LLL8dOIkmSpBIwGjgK6Ex6iNpmUdNIWhtntutq5UoYPNhTyLVGlZWVsSNIkqQi05204f4M6AZMjxtHKiih63Nntuvq5ZfhBz+AMWNg//1jp1Eemjt3Lu3bt48dQ5IkFaFZwCHAXOB5YO+4caSCELo+d2a7rqqqoLwc9t03dhLlqYcffjh2BEmSVKS2BMYA2wAHAYOjppEKQ+j63Ga7rjIZ6N0bNtoodhLlqa5du8aOIEmSilh7YAhps3048GDUNFL+C12f22zXRTYL48e7X1tr9cEHH8SOIEmSilwr4AnglC9/3Bg1jZTfQtfnTYKOViyGDk0PSOvbN3YS5bGysrLYESRJUgnYCBgIdAT+G5gDXAlYiUirCl2f22zXRVUVbLcdbL117CTKY1tssUXsCJIkqUSUkTbYHfhPw30naSMuKRW6PncZ+fpKknS/tkvItQ7jx4+PHUGSJJWYXwEPfPnjGGBRzDBSngldn9tsr6/p02HmTJttrdPxxx8fO4IkSSpBJwPPAaOA3sDnceNIeSN0fW6zvb4ymfQE8oMOip1Eee7222+PHUGSJJWog4ERwL+AA4D3o6aR8kPo+rwsSZIk5IC5XI6Kigqy2Szl5eUhh64fRxwBixfDsGGxk0iSJElr9S5wCPAF8CKwS9w4UklxZnt9LF0Kw4d7CrlqpbKyMnYESZJU4rYFxgKbAt2B0XHjSFGFrs+d2V4fw4dDr14waRLssUfsNMpzCxcupHXr1rFjSJIkkQN+RNp4DyI9PE0qNaHrc2e210cmA5tuCrvtFjuJCsCdd94ZO4IkSRIA5cDzwNHAccDf48aRoghdn3vP9vrIZNIl5I38HoXW7bDDDosdQZIkqUYz4EHSJeU/J72L+zLSO7qlUhC6PrdrrK1PPoHJk92vrVqbOnVq7AiSJEmraATcDFwBXA6cD6yMmkgKJ3R97sx2bQ0enP5ss61aatu2bewIkiRJ31IG/C/QATgH+BT4J9A8ZigpgND1uTPbtZXJwO67Q4cOsZOoQLRp0yZ2BEmSpDX6GfAE8BxwKJCNG0dqcKHrc5vt2qiuhqoqOOSQ2ElUQKZNmxY7giRJ0lodBQwBpgAHArPjxpEaVOj63Ga7Nl57DT791GZb6+Xggw+OHUGSJGmd9gfGAPOAbsA7ceNIDSZ0fW6zXRtVVdCyJXTrFjuJCsjdd98dO4IkSVKt7ASMA1qRNt+vxI0jNYjQ9XlZkiRJyAFzuRwVFRVks1nKy8tDDl13vXqlzfazz8ZOIkmSJDWYecCRwGvAY4DrOqW6c2Z7XRYuhDFjXEKu9VZZWRk7giRJ0nppBwwGegJHkJ5SLhWL0PW5M9vr8uyzcOSR8PbbsP32sdOogKxYsYImTbxdT5IkFZ4VwM+BAcB1wEVx40j1InR97sz2ulRVwVZbwXbbxU6iAnPdddfFjiBJklQnTYB/kN7HfTHwG6A6aiJpw4Wuz512W5dMJl1CXlYWO4kKzI9//OPYESRJkuqsDLgC2Az4L2AO6Uz3RjFDSRsgdH3uzPbazJwJ77zjfm3VyZgxY2JHkCRJ2mAXAIOAh0gPT1sYN45UZ6Hrc5vttclkoHFj6N07dhIVoK222ip2BEmSpHpxIvAi6fVgvYDP4saR6iR0fW6zvTaZDPzgB1BRETuJCtDKlStjR5AkSao3vYCRwCzSu7hnRk0jrb/Q9bnN9pqsWAFDh0LfvrGTqEB9/PHHsSNIkiTVqz1IZ7ergW7AlLhxpPUSuj632V6Tl1+GXM792qqzfffdN3YESZKkevc9YCzQEehOOtstFYLQ9bnN9ppkMtCuHey9d+wkKlCPPfZY7AiSJEkNogMwAtgXOAR4PGoaqXZC1+dlSZIkIQfM5XJUVFSQzWYpLy8POfT62W8/6NwZHnoodhIVqKVLl9KsWbPYMSRJkhrMMqAf6UnltwHnxo0jrVXo+tyZ7dWZOxcmTHC/tjbItddeGzuCJElSg2oK3A9cCJwH/BEIOpMnrYfQ9bkz26vz8MNw0knwwQewxRax00iSJEl5LQGuAf4HOId0lrtx1ERSfM5sr04mAzvtZKOtDVJZWRk7giRJUhBlwO+AgcBdwPHAkqiJpG8LXZ/bbH9TkqTNtqeQawOdeeaZsSNIkiQFdQbwFJAhPThtfsww0jeErs9ttr/pzTfho49strXBXnjhhdgRJEmSgjscGAa8QXo12Edx40g1QtfnNtvfVFUFzZpB9+6xk6jA7brrrrEjSJIkRfEDYAyQBboBb8WNIwHh63Ob7W/KZODAA6Fly9hJVODmzZsXO4IkSVI0XYBxQBvgAODluHGk4PW5zfbXLVkCI0e6hFz1YtGiRbEjSJIkRbUFMJq08e4FuMlOMYWuz222v270aPjiC5tt1Ysdd9wxdgRJkqToNgaqgIOBI4F748ZRCQtdn9tsf10mA5tvDjvvHDuJisCQIUNiR5AkScoLLYBHgTOBfsC1pHdzSyGFrs/LkiQJ+vc8l8tRUVFBNpulvLw85NDrtssusPfeMHBg7CQqArlcLv/+jkuSJEWUAJcD/w/4b+A6nP1TOKHrc/9uf+Wjj+D1111Crnpz8803x44gSZKUV8qAPwN/A24EfgIsixlIJSV0fe7M9lcGDoSf/Qw++wzat4+dRpIkSSpqjwKnAj2Ax0hPLZeKiTPbX8lk0iXkNtqqJ5WVlbEjSJIk5a3jgQzplWA9gU/jxlEJCF2fO7MNsHIlbLopnHce2CCpnsybN4927drFjiFJkpTXXgMOBVqTNt/fixtHRSx0fe7MNsCkSTBvnvu1Va8efPDB2BEkSZLy3m7AONL93N2AyVHTqJiFrs9ttiFdQt6mDfzgB7GTqIh07949dgRJkqSCsDUwFugEHAgMjxtHRSp0fW6zDWmz3bs3bLRR7CQqIjNnzowdQZIkqWBsQtpkdyVdVv5I3DgqQqHrc5vtbBZeegn69o2dREWmcePGsSNIkiQVlNbAM8AJwEmkV4RJ9SV0fd4k6Gj5aPjw9IA092urnnXs2DF2BEmSpILTFLgX6AD8EvgY+H+ke7qlDRG6PndmO5OBbbeF73nuoerXhAkTYkeQJEkqSI2A64FrgSuAs4EVUROpGISuz0t7ZjtJ0mb7hz+MnURF6Nhjj40dQZIkqaBdTDrDfSbwGfAg0DJqIhWy0PV5ac9sv/suvPeeS8jVIO64447YESRJkgreaaT7uIcAfYF5ceOogIWuz8uSJElCDpjL5aioqCCbzVJeXh5y6G/729/gV79K79hu0yZuFkmSJElr9DJwOOlMdwbYIm4caZ1Ke2Y7k4H997fRVoOorKyMHUGSJKlo7Ed6F/cioBswLW4cFaDQ9XnpzmwvWwbt28P//i9cckm8HCpaixcvpmVLdxVJkiTVp9mk93B/BDxLei+3VBuh6/PSndkeNw4WLnS/thpM//79Y0eQJEkqOpsDo4DvA71JG26pNkLX56XbbGcysMkmsPvusZOoSB1xxBGxI0iSJBWltqT7tg8FjgEGxgyjghG6Pi/dZruqCg4+GBqV7pdADeu1116LHUGSJKloNQceAc4ivRrsSiDo/lgVnND1eWl2mp9+CpMmuYRcDap9+/axI0iSJBW1xkB/4E/A/wK/AqpjBlJeC12fNwk6Wr4YPDj9uW/fuDlU1Fq0aBE7giRJUtErA/5AeiXYL4BPgHuAZjFDKS+Frs9Lc2Y7k4HddoPNNoudREXsnXfeiR1BkiSpZPwceBR4kvQ+7lzUNMpHoevz0mu2kyTdr+2sthpY7969Y0eQJEkqKT8CqoBXgYNIZ7mlr4Suz0uv2Z4yBT75xP3aanD33HNP7AiSJEkl50BgNDAH2B+YETeO8kjo+rwsSZKgh/blcjkqKirIZrOUl5eHHDp1zTXwpz/BvHnQzJ0ckiRJUjGaCRwCzAdeAPaMGUYlqfRmtjMZOOggG201uMrKytgRJEmSSlZnYOyXP/cAhsYMo7wQuj4vrZntRYugXTu49lq48MKwY6vkrFy5ksaNG8eOIUmSVNIWAceTNtv3ASfFjaOIQtfnpTWzPXIkLFvm4WgK4pprrokdQZIkqeS1Ap4GTv7yx81x4yii0PV5ad2zncnAllvCDjvETqIScMopp/z/9u49yO66vOP4+4RASEL2oIAJUBQawLZK0VCwCYlJIFlEhMTa2qJAOi0M0mIRp/XeseoKtVwUo6EUpBbToKKUq/YsuQcygQFEHDIoRpRoEppwOSeQzUKyp3/8IgMIYZP9ne/z+53zfs3shIHN+X5gwszz7PO9REeQJEkSsCfwTWAccAGwHriI7I1udY7U9XlnTbZrtewW8or/W6n1li9fHh1BkiRJO1SALwGXA/8K/C2wLTSRUktdn3dOs/2rX8FPf+qTX0rmsMMOi44gSZKkl7kQmE92fvu9wJbYOEoodX3eOc12by8MGwYnnBCdRB1i2zZ/VipJklREHwRuB5YAM4AnYuMokdT1eec027UavOMd8LrXRSdRh9iwYUN0BEmSJL2KbrJm+xFgCrA2No4SSF2fd0azvW0bLFzoFnIldcwxx0RHkCRJ0k4cS/YWdx8wEXgoNo5aLHV93hnN9j33QL1us62kbrrppugIkiRJeg1HAiuB/YHJZM232lPq+rzSbDabKRdsNBpUq1Xq9TpdXV1pFv3sZ+GrX4VNmyDhI+bqbFu3bmXvvfeOjiFJkqRBqAOzgVXAd4DTQtOoFVLX550x2e7thRkzbLSV1KWXXhodQZIkSYNUBX4IvIfslvJrYuOoBVLX5+0/2X7qKdh/f7jqKjj77NavJ0mSJKm0tgMXAF8HvgB8muyNbmlXtf9ke+FCGBjwvLaS6+npiY4gSZKkXbQHMJes0f5n4MNkDbjKL3V93v6T7bPPhpUrYfXq1q8lvciGDRsYN25cdAxJkiTtpmuAc4E/A+YDI2LjaIhS1+ftPdluNrPz2t3d0UnUgW699dboCJIkSRqCs4EbgduAk8kuUVN5pa7P27vZfvhhWLvWLeQK8ba3vS06giRJkoZoFnAH8CNgGrAhNI2GInV93t7Ndq0GI0bA1KnRSdSBnnjiiegIkiRJysFkYAWwEZgEPBIbR7spdX3e/s32lCkwalR0EnWgvr6+6AiSJEnKyVuBlWTnto8H7o2No92Quj5v32Z761ZYtswt5ApzxBFHREeQJElSjt4I3AmMJ9tS3huaRrsqdX3evs32nXdCX5+XoynMkiVLoiNIkiQpZ/sBi8ia7VOABaFptCtS1+ft22zXanDggXDUUdFJ1KHOOuus6AiSJElqgVHA/wBnAB8EvhwbR4OUuj5v72a7uxsqlegk6lBz586NjiBJkqQW2RO4Fvgk8FHg40AzNJFeS+r6vNJsNpP+mWg0GlSrVer1Ol1dXa1ZZN06OPhgWLAATj+9NWtIkiRJEnAF8BHgLOAaskZcas/J9h13ZBPtGTOik6iD9fT0REeQJElSAhcA1+/4mgU8GxtHryJ1fd6ek+0PfAB+9jO41wv5Fefpp59m3333jY4hSZKkRBYC7wXeAtwG7B8bRy+Tuj5vv8n2wEA22fbJLwWbP39+dARJkiQlNANYCjwKTAZ+FZpGL5e6Pm+/Zvv++2HTJptthZs6dWp0BEmSJCV2DHAX8DwwCfhJbBy9SOr6vP2a7VoN9tkHJk6MTqIOt2bNmugIkiRJCnA4WcM9FpgCLI+Nox1S1+ft12z39sIJJ8Ce3gGoWHvttVd0BEmSJAUZR7al/E+AbrJ3uRUrdX3eXs12owErV7qFXIUwduzY6AiSJEkK1AXcTnZD+Z8DV8XG6Xip6/P2araXLIFt22y2VQj33XdfdARJkiQFG0H2JNjfAx8CPg8kfQ5KL0hdnw9Pulqr1Wowfnz2JQWbNWtWdARJkiQVwDDgCuBA4FPAeuBrwB6RoTpQ6vq8vSbbvb3Q3R2dQgLg6quvjo4gSZKkgqgAnwS+AVwNvB/YGpqo86SuzyvNZjPpLoZGo0G1WqVer9PV1ZXfB69ZA4cfDjfdBE4UJUmSJBXUrWTN9juAm4B9I8OoZdpnsl2rwfDhMH16dBIJgJ6enugIkiRJKqBTgUXAg8BUYF1snI6Ruj5vn8n2rFnw9NOwbFl+nykNQV9fHyNHjoyOIUmSpIJaDZxEdna7FzgyNk7bS12ft8dk+7nnYPFibyFXocybNy86giRJkgrsj4CVwGjgeOCe2DhtL3V93h7N9qpV8MwzXo6mQjnttNOiI0iSJKngDgFWAG8GpgP/GxunraWuz9uj2a7VYP/9YcKE6CTSC+6///7oCJIkSSqB15NtIz+R7Dz3t2LjtK3U9Xn7NNszZ8Kw9vjXUXs44IADoiNIkiSpJEYBNwJzgLOAS2PjtKXU9Xn5u9ONG+H++z2vrcIZMWJEdARJkiSVyHCyN7g/DfwT8I/AQGii9pK6Pi9/s71wITSb2WRbKpA1a9ZER5AkSVLJVIAeYC5wOdmk+/nQRO0jdX0+POlqrVCrwVFHwUEHRSeRXmLatGnRESRJklRS5wNvAM4ENgLfA/YJTVR+qevzck+2m03o7XULuQrpW9/yagtJkiTtvvcDPyR7HuwEsqZbuy91fV5pNpvNlAs2Gg2q1Sr1ep2urq6hfdiDD8LRR8Mdd8CMGfkElHIyMDDAMC/tkyRJ0hD9CDgZ6CK7tfzQ0DTllbo+L3cnUKvByJEweXJ0Eul3XHTRRdERJEmS1AbeTjbdbgITgR/Hximt1PV5uSfbM2fC8OHwwx/mE07KkZNtSZIk5en/gHcDjwA3A9NC05SPk+3B2rIFVqzwvLYK6+KLL46OIEmSpDbyBmAJ8A7gJOD7sXFKJ3V9Xt5me9ky6O+32VZhnXnmmdERJEmS1GbGALcB7wP+ArgyNk6ppK7Py9ts12pwyCHwB38QnUR6RUuXLo2OIEmSpDa0FzAfuAD4O+CzZOe5tXOp6/PyvrNdq0F3N1Qq0UmkVzR+/PjoCJIkSWpTw4DLgQOBjwMbgK9T5gav9VLX5+WcbD/2GDz8sFvIVWj9/f3RESRJktTGKsDHgG8C3yDbVt4XGajgUtfn5Wy2e3th2DDf1lahbdy4MTqCJEmSOsAcstvJa2QXpz0dmqa4Utfn5Wy2azU47jh43euik0ivasKECdERJEmS1CFOARYDDwFTgN/Eximk1PV5+Zrtbdtg4UK3kKvwbrnllugIkiRJ6iB/CtwFNIBJwMOxcQondX1eaTabSS+uazQaVKtV6vU6XV1du/4Bq1bBxIlw110waVL+AaWc9PX1MXLkyOgYkiRJ6jC/Ad4FrANuJ2vClb4+L99ku1aDajXbRi4V2GWXXRYdQZIkSR3oYGA58BbgBOAHsXEKI3V9Xr7J9qRJcNBB8L3v5R9OkiRJktpEH/AB4Fay28rnxMbpOOWabD/1FNx9t+e1VQo9PT3RESRJktTBRgI3AH8L/DXwb0DSSWvBpK7Py/Xm+aJFMDAA3d3RSaTXdM4550RHkCRJUocbDvw7MA74OLAeuIyyTV3zkbo+L9d/495eePOb4U1vik4ivaabb745OoIkSZJEBfgcMA+4AjgDeC40UYzU9Xl5JtvNZnY52uzZ0UmkQTnmmGOiI0iSJEkvOA84APggsAn4PjAmNFFaqevz8ky2f/pTeOwxz2urNB5//PHoCJIkSdJL/DlQA+4GpgP/FxsnqdT1eXma7VoN9toLpk6NTiINynPPdeLmHEmSJBXdNLKnwX4DHA/8IjRNOqnr8/I02729MHkyjB4dnUQalPHjx0dHkCRJkl7R0cBKsvPck4AfxcZJInV9Xo5mu78fli51C7lKZdmyZdERJEmSpFd1GHAX8EZgKrA4Nk7Lpa7Py9Fs33knbNlis61SOeOMM6IjSJIkSTt1AFmTPQk4GfhubJyWSl2fl6PZrtVg7Fj44z+OTiIN2te+9rXoCJIkSdJr2ge4BXg/8FdAu1axqevzSrPZbKZcsNFoUK1WqdfrdHV1De43HX109nXdda0NJ0mSJEkdagD4GHAZ8GngC2RnurV7ij/ZXr8eHnzQLeQqnZ6enugIkiRJ0qANAy4FLgG+CJwDbAtNlK/U9XnxJ9vXXQdz5sDjj8Mb3tD6gFJO6vU61Wo1OoYkSZK0y74F/A3wbuB6YFRsnFykrs+LP9mu1WDCBBttlc51HnuQJElSSZ0J3AosBGYCT8bGyUXq+rzYzfbAQPa+tlvIVULTp0+PjiBJkiTttncBS4CfAVOAtbFxhix1fV7sZvuBB2DTJujujk4i7bJHHnkkOoIkSZI0JMeRvcX9LNnzYKtj4wxJ6vq82M12rQb77AOTJkUnkXbZyJEjoyNIkiRJQ3YksBJ4PTB5x1+XUer6vPjN9vTpsNde0UmkXbbffvtFR5AkSZJycRCwDDgKmEF2nrtsUtfnxW22N2+Gu+7yvLZK64EHHoiOIEmSJOVmX6AGnAy8F/jP0DS7LnV9Xtxme8kS2LbN89oqrVNPPTU6giRJkpSrvYHvkr3B/TfAxUDSt6SHIHV9Xtxmu7cXDjsMDj88Oom0W6655proCJIkSVLu9gDmAZ8DPgV8BBiIDDRIqevzSrPZTPqDiEajQbVapV6v09XV9erfeMQRMGMGXHllunCSJEmSpEG7Cvg74C+A/wJGxMYplGJOtn/xC/j5zz2vrVLr6emJjiBJkiS11LnA94GbgFOARmianUtdnxdzsn3llfDhD8OTT8LOpt9SgW3dupW99947OoYkSZLUcsuB04DfB34AjIuN84pS1+fFnGz39sLEiTbaKrW5c+dGR5AkSZKSeCewAngcOB74eWycV5S6Pi9es/3887BokVvIVXqzZ8+OjiBJkiQlcxSwEtiTrOG+PzbO70hdnxev2V61Kntj22ZbJXffffdFR5AkSZKSehNwJ3AYMBVYGBvnJVLX58Vrtms12G8/mDAhOok0JOPGFfGkiiRJktRa+wOLgCnAu4Fvx8Z5Qer6vJjN9syZsMce0UmkIRk+fHh0BEmSJCnEaOBm4PQdX1+NjQOkr8+L1Wxv2gT33Qfd3dFJpCF79NFHoyNIkiRJYfYEvgl8DLgA+CSQ9Cmsl0ldnxdr9LZwITSbNttqC+985zujI0iSJEmhKsCXyJ4C+yjZbeX/QUwjmro+L9Zku1aDt74VDj44Ook0ZAsWLIiOIEmSJBXChcB/A/OB2cCWgAyp6/NKs9lMOslvNBpUq1Xq9TpdL35Hu9mE3/s9OP10uPTSlJGklti+fTt7ePeAJEmS9IJe4M/Ingm7Ddgv4dqp6/PiTLYfegjWrXMLudrGxRdfHB1BkiRJKpRuYCmwBpgMPJZw7dT1eXEm25ddBp/5DDz5JIwcmTKSJEmSJCmhR4CTgOeA/wXeGhunJYoz2a7VYOpUG221jZ6enugIkiRJUiEdAawke5N7CnBngjVT1+fFaLa3bIHly+Gkk6KTSLmZM2dOdARJkiSpsMYBy4C3ATOBW1q8Xur6vBjN9vLl0N9vs622smjRougIkiRJUqFVybaRvwd4L3BNC9dKXZ8Xo9nu7c2e+/rDP4xOIuXmyCOPjI4gSZIkFd4I4NvAecA5QA/QiovFUtfnEW+J/65aLZtqVyrRSaTc9PX1RUeQJEmSSmEPYC5wIPAZYANwxY6/n5fU9Xn8ZHvtWli92i3kajtPPPFEdARJkiSpNCrAp4GrgSuBvwK25vj5qevz+Ga7tzebaM+YEZ1EytXRRx8dHUGSJEkqnbOB/wFuA04G6jl9bur6vBjN9rHHwutfH51EytVtt90WHUGSJEkqpdOAhcADwFRgfQ6fmbo+rzSbzVacPX9VjUaDarVKvV6na/RoOOAAOP98+PznU8aQWm7Lli2MGjUqOoYkSZJUWg8BJwF7Ar1k73PvrtT1eexk+9574amnPK+ttnT55ZdHR5AkSZJK7S3ASmAkcDxw7xA+K3V9HjvZ/spX4PLLYdMmGF6Mi9ElSZIkScXyBNlb3D8BbgS6Y+MMSuxku1aDE0+00VZb6unpiY4gSZIktYX9gEXANOAUYMFufEbq+jyu2X76abj7buguw88kpF137rnnRkeQJEmS2sYoslvKzwQ+CHx5F39/6vo8rtlevhy2b/e8ttrWjTfeGB1BkiRJait7At8APgl8FPg4MNhz0anr87j924sWwZFHwqGHhkWQWunYY4+NjiBJkiS1nQpwETAO+AiwAbiGrBHfmdT1eWyzPXt22PJSq61fn8drgJIkSZJeyT8AY8m2lW8EbgBG7+T7U9fncdvI1671vLba2vbt26MjSJIkSW3tL4EfACuAE4BNO/ne1PV5XLM9fDhMmxa2vNRqh3pEQpIkSWq5GcAy4JfAZOBXr/J9qevzuGZ74kTYZ5+w5aVWW7FiRXQESZIkqSNMAFYCzwOTyN7jfrnU9Xn6Zru/P/v1xBOTLy2ldPrpp0dHkCRJkjrGeLKGeywwBVj+sn+euj5P32yvWpX9arOtNjdv3rzoCJIkSVJHGQssBf4E6CZ7l/u3UtfnlWazOdhnyXLRuPBCql/5CvWnnqJr331TLi1JkiRJ6gD9wByyG8rnAecGZEg/2V60aMfKccfFpRR6enqiI0iSJEkdaQSwADgf+BDwOeALievzQU22m80mmzdv3q0F+vv76f/tOe2NG9k8YQJ/BKxdu5aurq7d+kypDBqNhn/GJUmSpEBN4Mtkzfa/NBpcmFN9PmbMGCqVyk6/Z1DNdqPRoFqt5hJKkiRJkqQyq9frrzlYSzvZBtavX89xxx3H6tWrOfjgg3frM6WiazQaHHLIIe7gkCRJkgog7/p8MJPt4YP5oEqlknvDMGbMGJsQtb2uri7/nEuSJEkFkbI+95YySZIkSZJyZrMtSZIkSVLOkjfbI0aMeMmvUjsaMWIEp556qn/OJUmSpAKIqM8HdUFann57s/lgbm+TymzdunUcdNBB0TEkSZIkkb4+dxu51CLXXnttdARJkiRJO6Suz51sS5IkSZKUMyfbUov09PRER5AkSZK0Q+r63Mm21CL9/f1ekCZJkiQVROr63Mm21CJXXHFFdARJkiRJO6Suz222pRw9++yz3H777cycOZP3ve990XEkSZIkAc888wyLFy/mscceS7amzbaUo9GjR3PKKafw/PPPM378+Og4kiRJUse79tprueSSS6jVagwMDCRbN/mZ7WazyebNmxkzZgyVSiXl0lIy06ZNY+nSpdExJEmSJO1QqVR49NFHOfTQQ5OsNzzJKi9SqVS8GE2SJEmS1NbcRi5JkiRJUs5stqUc9ff3s2DBAn75y19y/fXX09/fHx1JkiRJUoDkZ7YlSZIkSUot9ZltJ9uSJEmSJOXMZlvKUaVSecUvSZIkSTGuv/56zjvvPAA+8YlPMG/evCTruo1ckiRJkqScOdmWctZoNADYvHlzcBJJkiRJUWy2pZy9/e1vZ9asWdxwww3RUSRJkiQFcRu5lLP58+dzxhlnRMeQJEmSFMjJtpSzH//4xyxevJhLLrkEf5YlSZIkdSYn21LOms0mlUqFL37xi0yaNInp06dHR5IkSZKUmJNtKUfXXXcd3/nOdwCo1+tOtiVJkqQO5WRbytH69eu55557aDab/PrXv+b888+PjiRJkiQpgM22JEmSJEk5cxu5JEmSJEk5s9mWJEmSJClnNtuSJEmSJOXMZluSJEmSpJzZbEuSJEmSlDObbUmSJEmScmazLUmSJElSzmy2JUmSJEnKmc22JEmSJEk5s9mWJEmSJClnNtuSJEmSJOXs/wEb0MUOX0q3IQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "Graphics object consisting of 2 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:55,450 Plotting covered intervals... done\n", + "INFO: 2023-09-20 09:43:55,451 All intervals are covered (or connected-to-covered). 2 components.\n", + "INFO: 2023-09-20 09:43:55,454 Finite dimensional test: Solution space has dimension 0.\n", + "INFO: 2023-09-20 09:43:55,455 Thus the function is extreme.\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "extremality_test(h, show_plots=True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "Let's learn about a different function. It's from\n", + "Let's learn about a different function. It's from\n", "Dey--Richard--Li--Milller -- hence the prefix of the function:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mdrlm_backward_3_slope\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_drlm_backward_3_slope\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_drlm_backward_3_slope(default_values=(('f', 1/12), ('bkpt', 1/6), ('field', None), ('conditioncheck', True)), names=('f', 'bkpt'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Dey--Richard--Li--Miller's Backward 3-Slope;\n", + "\n", + " * Infinite; Dim = 1; Slopes = 3; Continuous; Group relations\n", + " method;\n", + "\n", + " * Discovered [40] p.154 eq.5;\n", + "\n", + " * Proven [40] p.153 thm.6.\n", + "\n", + " * (Although only extremality has been established in literature,\n", + " the same proof shows that) drlm_backward_3_slope is a facet.\n", + "\n", + " Parameters:\n", + " f, bkpt (real) \\in (0,1).\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " f < bkpt < (1+f)/4 < 1.\n", + "\n", + " Note:\n", + " In [40], they require that f, bkpt are rational numbers. The\n", + " proof is based on interpolation of finite cyclic group extreme\n", + " functions(cf. [8]), so it needs rational numbers. But in fact,\n", + " by analysing covered intervals and using the condition f < bkpt\n", + " <= (1+f)/4 < 1, one can prove that the function is extreme\n", + " without assuming f, bkpt being rational numbers.\n", + "\n", + " In [61] p.374, Appendix C, p.360. Fig.10, they consider real\n", + " number f, bkpt, and claim (without proof) that:\n", + "\n", + " 1. the function (named pi3(u)) is facet (thus extreme);\n", + "\n", + " 2. can add a perturbation (zigzag) on the third slope as shown\n", + " in Fig.10;\n", + "\n", + " An extremality proof for the general (not necessarily rational)\n", + " case appears in [KZh2015b, section 4].\n", + "\n", + " Examples:\n", + " * Finite group --> Example 3.8 in [8] p.386,\n", + "\n", + " * Infinite group --> Interpolation using Equation 5 from [40]\n", + " p.154\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: h = drlm_backward_3_slope(f=1/12, bkpt=2/12)\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = drlm_backward_3_slope(f=1/12, bkpt=3/12)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " References:\n", + "\n", + " * [8] J. Araoz, L. Evans, R.E. Gomory, and E.L. Johnson, Cyclic\n", + " groups and knapsack facets, Mathematical Programming 96 (2003)\n", + " 377-408.\n", + "\n", + " * [40] S.S. Dey, J.-P.P. Richard, Y. Li, and L.A. Miller, On the\n", + " extreme inequalities of infinite group problems, Mathematical\n", + " Programming 121 (2010) 145-170.\n", + "\n", + " * [61] R.E. Gomory and E.L. Johnson, T-space and cutting planes,\n", + " Mathematical Programming 96 (2003) 341-375.\n", + "\n", + " * [KZh2015b] M. Koeppe and Y. Zhou, An electronic compendium of\n", + " extreme functions for the Gomory-Johnson infinite group problem,\n", + " Operations Research Letters, 2015,\n", + " http://dx.doi.org/10.1016/j.orl.2015.06.004\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "drlm_backward_3_slope?" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "Let's change the parameters a little bit, so that they do NOT satisfy\n", - "the known sufficient conditions from the literature about this class of\n", + "Let's change the parameters a little bit, so that they do NOT satisfy\n", + "the known sufficient conditions from the literature about this class of\n", "functions:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:55,593 Conditions for extremality are NOT satisfied.\n", + "INFO: 2023-09-20 09:43:55,594 Rational case.\n" + ] + } + ], "source": [ "h = drlm_backward_3_slope(f=1/12, bkpt=4/12)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Let's run the extremality test:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:55,598 pi(0) = 0\n", + "INFO: 2023-09-20 09:43:55,600 pi is subadditive.\n", + "INFO: 2023-09-20 09:43:55,600 pi is symmetric.\n", + "INFO: 2023-09-20 09:43:55,601 Thus pi is minimal.\n", + "INFO: 2023-09-20 09:43:55,601 Plotting 2d diagram...\n", + "INFO: 2023-09-20 09:43:55,602 Computing maximal additive faces...\n", + "INFO: 2023-09-20 09:43:55,604 Computing maximal additive faces... done\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAALfCAYAAABb1rW9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADREElEQVR4nOzddZhU5d8G8Hu2u2ZTaqVLukVCkAGkBCUkFQUJRQGDn2CiiGIrvCySUoo0AktId0gvzVJud8fsvH8cd2Rhe+fMc87M/bmuvZTdM+d8GZ45c+8zT2gMBoMBRERERERkEjaiCyAiIiIisiQM2EREREREJsSATURERERkQgzYREREREQmxIBNRERERGRCDNhERERERCbEgE1EREREZEIM2GQRDAYDkpOTwWXdiYiISDQGbLIIKSkp8PT0REpKiuhSSmX16tWiSyDB2AaI5MHXFimhDWi4kyNZguTkZHh6eiIpKQkeHh6iyyEiIiIrxh5sIgFmzpwpugQSjG2ASB58bZES2gB7sMkiqK0HOzc3F3Z2dqLLIIHYBojkwdcWKaENsAebSIA5c+aILoEEYxsgkgdfW6SENsAebLIIauvBDg8PR3BwsOgySCC2ASJ58LVFSmgD/AyFSICDBw+a5cWfnZ2N3Nxc2a9DZXfy5En4+/uLLoMEs7Ozg4ODg+gyLIq57q+kXEpoAwzYRAJUq1ZN9mtkZ2fj4sWLyMvLk/1aVHaPP/44wsLCRJdBgtnY2KBBgwYM2SZkjvsrKZsS2gADNpEAer1e9mvk5uYiLy8PwcHBcHZ2lv16RFQ2GRkZCA8PR25uLgO2CZnj/krKpoQ2wIBNJEBERITZruXs7AwXFxezXY+IyiYpKQmZmZlwdHSEq6ur6HJUz5z3V1ImJbQBBmwiAVq1aiW6BCJSiC1btiAtLQ0eHh4YNGgQQ3YF8f5KSmgDXKaPSIC1a9eKLoGIFMLV1RUODg5ITk5GVlaW6HJUj/dXUkIbYMAmEmDSpEmiSyAihXB0dISjo6PoMiwG76+khDbAgE1kRjExQNWqwCuvfCW6FCIii/TVV7y/WjsltAEGbCIz2rYNuHsX2Lx5OvbuFV0NEZHlmT59uugSSDAltAEGbCIzOnsWCAoCtNqZeOYZICREdEVERJZl5syZoksgwZTQBhiwicxo+3age3fgr79extixwNixwBtvAJa42eJHH32EJk2aFHvMqFGj0K9fP+OfO3XqhDfffLPYxyxZsgReXl4Vrq8kGzZsQM2aNWFra1tiTUSkHC+//LLoEkgwJbQBBmwiM7l7F7h0CdDpgF27tuGnn4C5c6WvZ58FEhPNX5MmZ0Gpjz18+DBsbW3RvXt32epZt24dPv30U+Ofg4OD8d133xU4ZtCgQbh69apsNeQbO3Ysnn/+edy9e7dATUSkbNu2bRNdAgmmhDbAgE1kJjt2ABoN0LUr0KhRIwDAuHHS90+cANq0Aa5dE1xkMRYtWoTXX38dBw8exJ07d2S5ho+PD9zd3Ys9xtnZGf7+/rJcP19qaiqio6Oh0+nw2GOPlVgTESlH/v2VrJcS2gADNpGZhIYCLVsCWi0QHx9v/P7TTwPHjkn/37o1sGuXoAKLkZaWht9//x3jxo1Dr169sGTJkkeO+eKLLxAQEAB3d3eMHj0amZmZBX6u1+sxefJkeHl5QavV4p133oHBYChwzINDRDp16oTbt2/jrbfegkajgUajAVBwiMiVK1eg0Whw+fLlAuf55ptvEBwcbDz/pUuX0LNnT7i5uSEgIADDhw9HbGxsoX/XvXv3GgP1008/DY1Gg7179yIuLg5DhgxB5cqV4eLigieeeAKrVq0q8Ni8vDzMnj0bNWvWhKOjI6pWrYrPPvvM+PP79+9j0KBB8Pb2hlarRd++fREeHl70E09EZfbg/ZWskxLaAAM2kRno9VJw1umkP6elpRX4ea1awNGjUgDv3l0aNqIkv/32G+rUqYM6depg2LBhWLx4cYFw/Pvvv+PDDz/EZ599hpMnTyIoKAhzH/pLfP3111i0aBEWLlyIgwcPIj4+HuvXry/ymuvWrUPlypXxySefICIiotCtb+vUqYPmzZtjxYoVBb6/cuVKvPjii9BoNIiIiEDHjh3RpEkTnDx5Etu3b0dUVBQGDhxY6HXbtWuHK1euAJA2K4iIiEC7du2QmZmJ5s2bY8uWLbhw4QLGjBmD4cOH41j+b0cApk2bhtmzZ2PGjBm4dOkSVq5ciYCAAABAeno6OnfuDDc3N+zfvx8HDx6Em5sbunfvjuzs7BL+BYiotB6+v5L1UUQbMBBZgKSkJAMAQ1JSkuhSCnXkiMEAGAyHDkl/vnjxYqHH5eQYDG+8IR07bpzBkJ1d/mumpaUZTp48aUhLSyvyGGSHlOpc7dq1M3z33Xf/1phj8PX1NezcudP487Zt2xpee+21Ao9p3bq1oXHjxsY/BwUFGb744gvjn3NycgyVK1c29O3b1/i9jh07GiZNmmT8c7Vq1QzffvttgfMuXrzY4OnpafzzN998Y6hevbrxz1euXDEAMD7HM2bMMHTr1q3AOe7evWsAYLhy5Uqhf9+EhAQDAMOePXsK/Xm+nj17GqZMmWIwGAyG5ORkg6Ojo2HBggWFHrtw4UJDnTp1DHl5ecbvZWVlGZydnQ2hoaHFXocsU/5r9I8//jD88ssvhm+//dYQFxcnuizVK+r+StZDCW2APdhEZhAaCnh6Aq1aSX/eVcQ4EDs74PvvgfnzgQULgB49ANGfdF25cgXHjx/H4MGD/63RDoMGDcKiRYuMx4SFhaFt27YFHvfgn5OSkhAREVHge3Z2dmjRokWF6xs8eDBu376No0ePAgBWrFiBJk2aoH79+gCAU6dOYc+ePXBzczN+1a1bFwBw48aNUl9Hr9fjs88+Q6NGjaDVauHm5oYdO3YYx6OHhYUhKysLXbp0KfTxp06dwvXr1+Hu7m6sw8fHB5mZmWWqg4iKV9T9layHEtqAnegCiKxBaKg0udHu31fcqFGjij1+zBigdm1gwABpXPbmzcC/mdDsFi5ciNzcXFSqVMn4PYPBAHt7eyQkJMDb21tMYf8KCgpC586dsXLlSrRp0warVq3C2LFjjT/Py8tD7969MXv27EIfW1pff/01vv32W3z33Xd44okn4OrqijfffNM4vMPZ2bnYx+fl5RU6nAUA/Pz8Sl0HERWvpPsrWT4ltAH2YBPJLCFBmsSYP/4aAH744YcSH9epk7S6iIODtMLIjh3y1ViU3NxcLFu2DF9//TXOnDlj/Dp79iyqVatmDIv16tUz9iDne/DPnp6eCAoKKvC93NxcnDp1qtjrOzg4QK/Xl1jn0KFD8dtvv+HIkSO4ceOGsbcdAJo1a4aLFy8iODgYNWvWLPDl6upaqucBAA4cOIC+ffti2LBhaNy4MapXr45rDyz7UqtWLTg7O2P37t2FPr5Zs2a4du0a/P39H6nD09Oz1HUQUfFKc38ly6aENsCATSSzXbuAvLyCAbu027hWrw4cOQI8+aQ0XOSHH4CHFt6Q1ZYtW5CQkIDRo0ejYcOGBb6ef/55LFy4EAAwadIkLFq0CIsWLcLVq1fx4Ycf4uLFiwXONWnSJHzxxRdYv349Ll++jPHjxyOxhMW/g4ODsX//fty/f7/IVT8AoH///khOTsa4cePQuXPnAr3tEyZMQHx8PIYMGYLjx4/j5s2b2LFjB15++eVShfd8NWvWxM6dO3H48GGEhYVh7NixiIyMNP7cyckJ7777Lt555x0sW7YMN27cwNGjR43P0dChQ+Hr64u+ffviwIEDuHXrFvbt24dJkybh3r17pa6DiIqnhG2ySSwltAEGbCKZhYZKwzuqVv3ve2XZxtXDA9i0CXjrLWDSJOC11wBzLTqxcOFCdO3atdAe1gEDBuDMmTM4ffo0Bg0ahA8++ADvvvsumjdvjtu3b2PcuHEFjp8yZQpGjBiBUaNGoW3btnB3d8dzzz1X7PU/+eQThIeHo0aNGsUOo/Dw8EDv3r1x9uxZDB06tMDPHnvsMRw6dAh6vR46nQ4NGzbEpEmT4OnpCRub0t8CZ8yYgWbNmkGn06FTp04IDAwssAtl/jFTpkzBBx98gHr16mHQoEGIjo4GALi4uGD//v2oWrUq+vfvj3r16uHll19GRkYGPDw8Sl0HERVPCdtkk1hKaAMag8Gc/WFE8khOToanpyeSkpIUFVYMBilYDxgAPLghYXx8PHx8fMp8vkWLpIDdrh2wdq20pnZR0tPTERYWhnr16sHFxaXsxRORrPJfo+Hh4UhMTERKSgpGjBhRrnsD/ae891eyHEpoA+zBJpJRWBhw717B4SEAHtmgpLRefhnYvRu4eFFakeTSJRMUSURkQcp7fyXLoYQ2wIBNJKPQUMDREejYseD3n3rqqXKf86mnpMmPLi7S5MetWytYJBGRBanI/ZUsgxLaAAM2kYxCQ4EOHaQw/KCKbo8dHAwcPiytNNK7N/DNN+ad/EhEpFQVvb+S+imhDTBgE8kkIwPYt+/R4SEAYGtrW+Hzu7sD69cDb78NTJkCvPKK+SY/Kkl4eDg0Gg3OnDkjupRSUVu9RGpjivsrqZsS2gADNpFMDhwAMjMLD9hl2eCkOLa2wBdfAEuXAsuXS5vZxMSY5NQFREZG4vXXX0f16tXh6OiIKlWqoHfv3kWu+Wxp9u7dC41GA41GAxsbG3h6eqJp06Z45513EBERYZJzl7RkYWmMGjXKWKe9vT2qV6+OqVOnIi0trcLnJlILU91fSb2U0AYYsIlkEhoKVKoENGjw6M9OnDhh0muNGAHs2QNcuSJNfjx/3nTnDg8PR/PmzfHXX3/hyy+/xPnz57F9+3Z07twZEyZMMN2FVODKlSv4559/cOLECbz77rvYtWsXGjZsiPOmfMIrqHv37oiIiMDNmzcxc+ZMzJ07F1OnThVdFpHZmPr+SuqjhDbAgE0kk+3bgW7dAI3m0Z/179/f5Ndr1w44fhzw9JT+f/9+05x3/Pjx0Gg0OH78OJ5//nnUrl0bDRo0wOTJkwvszHjnzh307dsXbm5u8PDwwMCBAxEVFWX8+UcffYQmTZpg0aJFqFq1Ktzc3DBu3Djo9Xp8+eWXCAwMhL+/Pz777LMC19doNJg3bx569OgBZ2dnPP7441izZk2xNV+6dAk9e/aEm5sbAgICMHz4cONGNXv37oWDgwMOHDhgPP7rr7+Gr69vib3R/v7+CAwMRO3atTF48GAcOnQIfn5+j6z5vXjxYtSrVw9OTk6oW7cu5s6dW+j5wsPD0blzZwCAt7c3NBqNcYvf7du3o3379vDy8oJWq0WvXr1w48aNYusDAEdHRwQGBqJKlSp48cUXMXToUGzYsKHExxFZCjnur6QuSmgDDNhEMrh7V1pCr7DhIQAwf/58Wa5brRpw8KA0VOSttx79eU5ODiIiIkr8ysnJASCtJbp9+3ZMmDCh0G3Fvby8AAAGgwH9+vVDfHw89u3bh507d+LGjRsYNGhQgeNv3LiBbdu2Yfv27Vi1ahUWLVqEZ599Fvfu3cO+ffswe/ZsTJ8+/ZFt12fMmIEBAwbg7NmzGDZsGIYMGYKwsLBCn4OIiAh07NgRTZo0wcmTJ7F9+3ZERUVh4MCBAIBOnTrhzTffxPDhw5GUlISzZ8/i/fffx4IFC8r8saKzszNee+01HDp0yLihzIIFC/D+++/js88+Q1hYGD7//HPMmDEDS5cufeTxVapUwdq1awFIveMRERH4/vvvAQBpaWmYPHkyTpw4gd27d8PGxgbPPfcc8vLyylxj/r8nkTWQ6/5K6qGENmAnugAiS7Rjh9Rz3bVr4T+XcxtXNzdpE5qvv370Z7GxsQgJCSnxHGPGjEFQUBCuX78Og8GAunXrFnv8rl27cO7cOdy6dQtVqlQBAPz6669o0KABTpw4gZYtWwIA8vLysGjRIri7u6N+/fro3Lkzrly5gq1bt8LGxgZ16tTB7NmzsXfvXrRp08Z4/hdeeAGvvPIKAODTTz/Fzp078eOPPxbaMzxv3jw0a9YMn3/+ufF7ixYtQpUqVXD16lXUrl0bM2fOxK5duzBmzBhcvHgRw4cPL3FXyaLkPzfh4eHw9/fHp59+iq+//trYg/L444/j0qVLmD9/PkaOHFngsba2tsbNEPz9/Y2/sADSTpkPWrhwIfz9/XHp0iU0bNiwVLUdP34cK1euRJcuXcr1dyNSIyVsk01iKaENMGATySA0FGjZsuidFmfOnCnrDcDGBpgwQdro5kG+vr4YM2ZMiY/39fUFIPVMA9IwjeKEhYWhSpUqxnANAPXr14eXlxfCwsKMATs4OBju7u7GYwICAmBra1tgy/KAgABjb3C+tm3bPvLnolbhOHXqFPbs2QM3N7dHfnbjxg3Url0bDg4OWL58ORo1aoRq1arhuwe32SyjB5+jmJgY3L17F6NHj8arr75qPCY3N7fQ7eaLc+PGDcyYMQNHjx5FbGyssef6zp07xQbsLVu2wM3NDbm5ucjJyUHfvn3x448/luNvRqROct9fSfmU0AYYsIlMTK8Hdu0CJk4s+pjJkyebr6AH2Nvbl2kYRK1ataDRaBAWFoZ+/foVeZzBYCg0hD/8fXt7+wI/z1/t4uHvlWYYRFGhPy8vD71798bs2bMf+dmDf/fDhw8DkIbBxMfHFzoEpjTyh6oEBwcb616wYAFat25d4LiyLhvVu3dvVKlSBQsWLMBjjz2GvLw8NGzYENklrMXYuXNnzJs3D/b29njsscceeX6JLJ2o+ysphxLaAMdgE5nYiRNAQgLQvXvRx8ybN898BVWAj48PdDodfv7550KXestfWq5+/fq4c+cO7t69a/zZpUuXkJSUhHr16lW4jofHZB89erTIYSvNmjXDxYsXERwcjJo1axb4yg/RN27cwFtvvYUFCxagTZs2GDFiRJnHNgNARkYGQkJC0KFDB/j5+SEgIACVKlXCzZs3H7n2448/Xug5HBwcAAB6vd74vbi4OISFhWH69Ono0qUL6tWrh4SEhFLV5Orqipo1a6JatWoM12SV1HJ/JfkooQ0wYBOZWGiotJJHq1ZFH9OrVy/zFVRBc+fOhV6vR6tWrbB27Vpcu3YNYWFh+OGHH4xDN7p27YpGjRph6NChOH36NI4fP44RI0agY8eOaNGiRYVrWLNmDRYtWoSrV6/iww8/xPHjxzGxiI8IJkyYgPj4eAwZMgTHjx/HzZs3sWPHDrz88svQ6/XQ6/UYPnw4unXrhpdeegmLFy/GhQsX8HVhg9YfEh0djcjISFy7dg2rV6/Gk08+idjY2AI3848++gizZs3C999/j6tXr+L8+fNYvHgxvvnmm0LPWa1aNWg0GmzZsgUxMTFITU2Ft7c3tFotQkJCcP36dfz111+K6JEhUgM13V9JHkpoAwzYRCYWGipNbrQrZgDW2bNnzVdQBT3++OM4ffo0OnfujClTpqBhw4Z45plnsHv3bmOw1Gg02LBhA7y9vdGhQwd07doV1atXx2+//WaSGj7++GOsXr0ajRo1wtKlS7FixQrUr1+/0GMfe+wxHDp0CHq9HjqdDg0bNsSkSZPg6ekJGxsbfPbZZwgPDzdO9gwMDMQvv/yC6dOnl7i7Yp06dfDYY4+hefPm+OKLL9C1a1dcuHChQC2vvPIKfvnlFyxZsgRPPPEEOnbsiCVLlhTZg12pUiV8/PHHeO+99xAQEICJEyfCxsYGq1evxqlTp9CwYUO89dZb+Oqrr8r35BFZGTXdX0keSmgDGkP+DB0iFUtOToanpyeSkpLg4eEhrI6EBMDXF/i//wMemOP2iN27d8u+skN6ejrCwsJQr149uLi4yHotOWk0Gqxfv77YMeBEapT/Gg0PD0diYiJSUlIwYsQI48oyVD7muL+SsimhDbAHm8iEdu0C8vKKXv86n7Ozs3kKIiKyMry/khLaAAM2kQmFhgJ16wJVqxZ/3NWrV81TEBGRleH9lZTQBhiwiUzEYJACdkm91wCEf3SlFPm7KhYnf5fI8tq7dy80Go1xxRO1u3LlCgIDA5GSklKq47ds2YKmTZuWa5UUU+rQoQNWrlxZqmOzsrJQtWpVnDp1Suaqirdw4UJ069at1MdPnToVb7zxhowVUWnw/kpKaAMM2EQmEhYG3LtXuoBd2LbZIpw/f17o9detW4dPP/3UZOcrLLC3a9cOERERZd7oxdz279+P3r1747HHHjNOGi3M+++/jwkTJhg37Mn/BeLhr/xNFnr16gWNRlPqcFsWe/fuRd++fREUFARXV1c0adIEK1aseOS4LVu2IDIyEoMHDzZ+Lzg4+JGaK1euDABwdHTE1KlT8e6775q8ZgAYO3YsatSoAWdnZ/j5+aFv3764fPlygWOysrLwwQcfYMaMGcbvffTRR4U+17t27QIAvPPOO1i8eDFu3bolS91UOkq5v5I4SmgDDNhEJhIaCjg6Ah07lnys6B2m5FbSZij5fHx8CuzsKAcHBwcEBgaWuBulaGlpaWjcuDF++umnIo+5d+8eNm3ahJdeeumRn125cgURERHGr/fee8/4s5deekmW3RwPHz6MRo0aYe3atTh37hxefvlljBgxAps3by5w3A8//ICXXnqpwI6dAPDJJ58UqPnvv/82/mzo0KE4cOCAcSMfU2revDkWL16MsLAwhIaGwmAwoFu3bgXWIl+7di3c3Nzw1FNPFXhsgwYNCtQcERGBDh06AJC2u+/WrRv+7//+z+Q1U+lZ+v2VSqaENsCATWQioaFAhw5AaRbsmDlzpvwFmUinTp0wceJETJw4EV5eXtBqtZg+fToeXIAoODgYM2fOxKhRo+Dp6WncJnzt2rVo0KABHB0dERwc/Mha0w/3OGdnZ+Odd95BpUqV4OrqitatW2Pv3r0FHnPo0CF07NgRLi4u8Pb2hk6nQ0JCAkaNGoV9+/bh+++/N/YshoeHFzpEpKS6goOD8fnnn+Pll1+Gu7s7qlatalzWL7/OiRMnIigoCE5OTggODsasWbOKfA5HjRqFfv364eOPP4a/vz88PDwwduzYAr+I9OjRAzNnzkT//v2LPM/vv/+Oxo0bG3t6H+Tv74/AwEDj14Nbxffp08e4Jnhp5T9vf/75Jxo3bgwnJye0bt26wKce//vf//Dpp5+iXbt2qFGjBt544w10794d69evNx4TGxuLXbt2oU+fPo9cw93dvUDNfn5+xp9ptVq0a9cOq1atKnXNgPRv9+mnn+LFF1+Em5sbHnvssUd+uRgzZgw6dOiA4OBgNGvWDDNnzsTdu3cRHh5uPGb16tWF1mxnZ1eg5sDAQONmQYD0XJe1ZjItNd1fSR5KaAMM2EQmkJEB7NtXuuEhADBt2jR5CzKxpUuXws7ODseOHcMPP/yAb7/9Fr/88kuBY7766is0bNgQp06dwowZM3Dq1CkMHDgQgwcPxvnz5/HRRx9hxowZWLJkSZHXeemll3Do0CGsXr0a586dwwsvvIDu3bvj2rVrAIAzZ86gS5cuaNCgAY4cOYKDBw+id+/e0Ov1+P7779G2bVu8+uqrxp7FKlWqPHKN0tb19ddfo0WLFvj7778xfvx4jBs3zjiM4IcffsCmTZvw+++/48qVK1i+fDmCg4OLfQ53796NsLAw7NmzB6tWrcL69evx8ccfl/zkP2D//v3l2rinWrVq8Pf3x4EDB8r82Lfffhtz5szBiRMn4O/vjz59+iAnJ6fI45OSkgosM3fw4EG4uLiUa0fPVq1alavmr776Co0aNcLp06cxbdo0vPXWW9i5c2ehx6alpWHx4sV4/PHHC7SXAwcOlOu5btWqFe7evYvbt2+X+bFkGmq7v5LpKaINGIgsQFJSkgGAISkpScj1Q0MNBsBgOH++dMd//vnn8hZkMBjS0tIMJ0+eNKSlpRV5zLlz50o8T8eOHQ316tUz5OXlGb/37rvvGurVq2f8c7Vq1Qz9+vUr8LgXX3zR8MwzzxT43ttvv22oX79+gXNPmjTJYDAYDNevXzdoNBrD/fv3CzymS5cuhmnTphkMBoNhyJAhhieffLLYWvPPl2/Pnj0GAIaEhIRS11WtWjXDsGHDjH/Oy8sz+Pv7G+bNm2cwGAyG119/3fD0008XeE6KM3LkSIOPj0+Bf4t58+YZ3NzcDHq9/pHjARjWr1//yPcbN25s+OSTTwr9+7m6uhb4io2NLXBc06ZNDR999FGp6n3wvKtXrzZ+Ly4uzuDs7Gz47bffCn3MmjVrDA4ODoYLFy4Yv/ftt98aqlev/six1apVMzg4OBSo+fvvvy9wzPfff28IDg4udc355+3evXuB7w0aNMjQo0ePAt/7+eefDa6urgYAhrp16xquX79u/FlCQoIBgGH//v0FHvPhhx8abGxsCtTcsmXLAsfk34v27t1bYq35r9E//vjD8Msvvxi+/fZbQ1xcXJn+vvQoc9xfSdmU0AbYg01kAqGhQKVKQIMGpTv+xRdflLcgE2vTpk2BMcxt27bFtWvXCoxZfbi3LywsDE8++WSB7z355JOPPC7f6dOnYTAYULt2bbi5uRm/9u3bhxs3bgD4rwe7IkpbV6NGjYz/r9FoEBgYiOjoaADSkI8zZ86gTp06eOONN7Bjx44Sr9u4ceMCG/60bdsWqampuHv3bqlrz8jIgJOTU6E/O3DgAM6cOWP88vb2LvBzZ2dnpKenl/paD9aZz8fHB3Xq1Cl0XPTevXsxatQoLFiwAA0eeCEUV/Pbb79doOYRI0aYvOb8Pz9c89ChQ/H3339j3759qFWrFgYOHIjMzExjzQAKrbtOnToFal67du0jNQMoV91kGmq7v5LpKaENFLOZMxGV1vbtQLduQGnn0e3fvx/Dhw+Xtygzc3V1LfBng8HwyMRCQzEbx+bl5cHW1hanTp2Cra1tgZ/ljyc2xeYBpa3L3t6+wJ81Go1xqbtmzZrh1q1b2LZtG3bt2oWBAweia9eu+OOPP8pcT1kmX/r6+iIhIaHQnz3++OPw8vIq8rHx8fEFxjhXxMM179u3D71798Y333zzSEgurmZfX1/UrFmzyOvIWbOnpyc8PT1Rq1YttGnTBt7e3li/fj2GDBkCrVYLjUZTaN0ODg4l1gzAZHVT2Vni/ZXKRgltgD3YRBV09y5w6VLpx18DUhhSk6NHjz7y51q1aj0ShB9Uv359HDx4sMD3Dh8+jNq1axf6uKZNm0Kv1yM6Oho1a9Ys8BUYGAhA6lXevXt3kdd0cHAotHe8InUVxcPDA4MGDcKCBQvw22+/Ye3atcZwVZizZ88ae0YB6Tl0c3MrdMJiUZo2bYpLly6V+vh8mZmZuHHjBpo2bVrmxz74b5+QkICrV6+ibt26xu/t3bsXzz77LL744guMGTOm0JojIyOLDNnFuXDhQoVrzv/zgzUXxmAwICsrC4DUjurXr1+u5/rChQuwt7cv0ItP5qW2+yuZnhLaAAM2UQXt2CH1XHftWvrH5ObmyleQDO7evYvJkyfjypUrWLVqFX788UdMmjSp2MdMmTIFu3fvxqeffoqrV69i6dKl+OmnnzB16tRCj69duzaGDh2KESNGYN26dbh16xZOnDiB2bNnY+vWrQCkiSsnTpzA+PHjce7cOVy+fBnz5s1DbGwsAGkFiWPHjiE8PByxsbGFbq5S1roK8+2332L16tW4fPkyrl69ijVr1iAwMLDYHuTs7GyMHj0aly5dwrZt2/Dhhx9i4sSJxqXrUlNTjcMOAODWrVs4c+YM7ty5YzyHTqfDkSNHSvwl4mFHjx6Fo6PjI0MnSuOTTz7B7t27ceHCBYwaNQq+vr7GjX/yw/Ubb7yBAQMGIDIyEpGRkQV+0WjatCn8/Pxw6NChMl/7wIEDZdroJd+hQ4fw5Zdf4urVq/j555+xZs0aY3u9efMmZs2ahVOnTuHOnTs4cuQIBg4cCGdnZ/Ts2dN4Dp1O98gvYqWt+amnnlLEVs3WSm33VzI9JbQBBmyiCgoNBVq2BLTa0j8mMjJSvoLK4IknnijVcSNGjEBGRgZatWqFCRMm4PXXXy+0t/JBzZo1w++//47Vq1ejYcOG+OCDD/DJJ59g1KhRRT5m8eLFGDFiBKZMmYI6deqgT58+OHbsmHF1h9q1a2PHjh04e/YsWrVqhbZt22Ljxo2ws5NGu02dOhW2traoX78+/Pz8CoTTitT1MDc3N8yePRstWrRAy5YtER4ejq1btz6yzvODunTpglq1aqFDhw4YOHAgevfujY8++sj485MnT6Jp06bGHtvJkyejadOm+OCDD4zH9OzZE/b29saNTUpr1apVGDp0aIEx4KNGjUKnTp1KfOwXX3yBSZMmoXnz5oiIiMCmTZuMy9ItWbIE6enpmDVrFoKCgoxfDy41aGtri5dffrnQDWiKc+TIESQlJeH55583fi9/6cAHl9MrzJQpU3Dq1Ck0bdoUn376Kb7++mvo/v2IycnJCQcOHEDPnj1Rs2ZNDBw4EK6urjh8+DD8/f2N53j11VexdetWJCUllanuVatWGZepJDGUcn8lcRTRBkTOsCQyFVGriOTmGgze3gbDjBlle9zVq1flKegBpVlFpDQKW5nDVNq0aWN4//33ZTm3kowcOdLQt29fk5zr559/NnTr1q3Ux0dHRxt8fHwMN2/eLPD9jh07Gj788MMiH/fw6isVERkZadBqtYbw8PBSP+b55583fPbZZwW+t3jxYkPNmjUN2dnZRT6uWrVqhm+//ba8pRbwwgsvlGk1gi1bthjq1atnyMnJKdXxXEVEHua4v5KyKaENsAebqAJOnAASEoDu3cv2uKK2wbYWWVlZOHnyJC5evMixqmWUv0lKSkpKqY6/desW5s6dW2BMYkpKCm7cuFGmYTEVERAQgIULFxb6iUJhsrKy0LhxY7z11lsFvr99+3Z8/vnnj0xAlctXX31VYMOekuSvqZ3/iQqJYe33V1JGG+BdgKgCQkMBT0+gVauyPe7111+XpyCV2LZtG0aMGIHevXsXGAJAJbOzs8P7779f6uNbtWqFVg81UHd39zItD2gKffv2LfWxjo6OhW51vHr1alOWVKJq1aqV6bU6cOBAGauh0rL2+yspow2wB5uoAkJDpcmNZe2wmjNnjjwFyWDv3r347rvvTHrOfv36ITk5GStWrCh3b2RwcLDJ6yqPjz76CE2aNCn2mCVLliiiR6UsOnXqBIPBUOzETSUKDw/Hm2++KboMEkhN91eShxLaAAM2UTklJADHjpVteb58hfXOKdWoUaOg0Wge+bp+/bpZrr9kyZJCQ96JEydKnGhpDlOnTi126UAiMp+EBGDqVPXcX0keSniPZcAmKqddu4C8vPIF7JkzZ5q+IBl1794dERERBb5ErzPq5+dXYFUMUdzc3KAtyxIyRGRSsbHAqlXA8OGAnx9Qq9ZM5OSIropEUsJ7LAM2UTmFhgJ16wJVq5b9sa+88orpC5KRo6MjAgMDC3zZ2tpi1KhRxjWR87355psFln/r1KkT3njjDbzzzjvw8fFBYGBggeXpACAxMRFjxoxBQEAAnJyc0LBhQ2zZsgV79+7FSy+9hKSkJGPPef5jHx4icufOHfTt2xdubm7w8PDAwIEDERUVZfx5/lCOX3/9FcHBwfD09MTgwYOLnSyY33u+YcMG1K5dG05OTnjmmWcKjF8uzRARIjKdnBxg/35g+nRpiVR/f+DFF4Fz54BnngEiIl5Bt25AXJzoSkkUJbzHMmATlYPBIAXs8vReA8DmzZtNW5DCLV26FK6urjh27Bi+/PJLfPLJJ9i5cycAaYv0Hj164PDhw1i+fDkuXbqEL774Ara2tmjXrh2+++47eHh4GHvOC1v5wmAwoF+/foiPj8e+ffuwc+dO3LhxA4MGDSpw3I0bN7BhwwZs2bIFW7Zswb59+/DFF18UW3t6ejo+++wzLF26FIcOHUJycjIGDx5suieHiEp08yYwbx7Qr5+050DHjsD8+UCtWsDixcA//wBnzwLbtgGTJ2/GhQtA69ZAWJjoykkEJbzHchURonIICwPu3St/wBbV45meDly+XPJxdesCD46+2LJlS4Hlynr06IE1a9aU+rqNGjXChx9+CACoVasWfvrpJ+zevRvPPPMMdu3ahePHjyMsLAy1a9cGAFSvXt34WE9PT2g0GuN26YXZtWsXzp07h1u3bhk3pfn111/RoEEDnDhxAi1btgQghfklS5bA3d0dADB8+HDs3r0bn332WZHnzsnJwU8//YTWrVsDkH5ZqFevHo4fP/7I6hxEZBqpqcCePVJHRmgocP26NJm8XTvg3Xele2+zZkBhezu98EITjBsH9OkDtGkDrF4N9Ohh/r8DiaOETxUZsInKITQUcHSUelHKI07QZ5eXLwPNm5d83KlT0ptXvs6dO2PevHnGP7u6upbpuo0aNSrw56CgIERHRwMAzpw5g8qVKxvDdXmEhYWhSpUqxnANAPXr14eXlxfCwsKMATs4ONgYrh+uoyh2dnZo0aKF8c9169Y1npcBm8g08vKAM2f+C9SHD0tDQapXl8L0nDlA586Ah0fJ54qLi0PLltI5hg4FevWSHv/mm4BGI/ffhJRA1HvsgxiwicohNBTo0KFgL29ZZGRkmLagUqpbVwrPpTnuQa6urqhZs+Yjx9nY2MBgMBT4Xk4hs4seXopPo9EgLy8PAODs7FxyQSUwGAzQFPLO+fD3i6ujOIWdu7DvEVHpRUUBO3ZI99OdO4HoaMDNTQrS334rBetCbjslyr+/ursD69cD//sfMHkycPEiMHcu4OBg4r8IKY6o99gHMWATlVFGBrBvH1CRScq1atUyXUFl4OJSsGe6ovz8/HDhwoUC3ztz5kyZ1rZu1KgR7t27h6tXrxbai+3g4AC9Xl/sOerXr487d+7g7t27xl7sS5cuISkpCfXq1St1LYXJzc3FyZMnjb3VV65cQWJiIuo+/FsIERUrKws4dOi/UH3mjPT9Zs2A0aOlQN22bcUD8IP3V1tbYPZsoEED4NVXgatXgbVrpdVGyHKJeo99ECc5EpXRgQNAZmb5x18DwJ49e0xXkEBPP/00Tp48iWXLluHatWv48MMPHwncJenYsSM6dOiAAQMGYOfOnbh16xa2bduG7du3A5CGdaSmpmL37t2IjY1Fenr6I+fo2rUrGjVqhKFDh+L06dM4fvw4RowYgY4dOxYY3lEe9vb2eP3113Hs2DGcPn0aL730Etq0acPhIUQlMBikQPvjj9IwDa0W6NIFWLIEeOIJYPlyqRf71Cng88+lIXem6F0u7P46YoQ0pvvKFWnn3TLepkhllPAey4BNVEbbtwOVKkk9IuU1YsQI0xUkkE6nw4wZM/DOO++gZcuWSElJKdffbe3atWjZsiWGDBmC+vXr45133jH2Wrdr1w6vvfYaBg0aBD8/P3z55ZePPF6j0WDDhg3w9vZGhw4d0LVrV1SvXh2//fZbhf+OLi4uePfdd/Hiiy+ibdu2cHZ2NvuW3URqkZQkDct47TVp/HSdOsDUqdInfzNmAH//La34sWyZND7a39/0NRR1D2rXDjh+HPD0lHrKt2wx/bVJGZTwHqsxPDyAkkiFkpOT4enpiaSkJHiUZhZMBTRoIC3/tGhR+c8xc+ZM2XeaSk9PR1hYGOrVq6eIDVnUaMmSJXjzzTeRmJgouhSyQPmv0fDwcCQmJhp/QfXx8RFdWqnp9VIPdGioNPTjyBHpe7VrS5/y6XRAp05AGedFV0hJ99fUVGlTmo0bpeEjU6dy8qOlMcd7bEk4BpuoDO7eBS5dAj74oGLnEf3CJyIqr/v3/xtHvWuXtKGLh4c0/OPnn6VQHRwsrr6S7q9ubtI47BkzgHfekSY/zp8vrQxFlkEJ77EcIkJUBjt2SD0dXbtW7DxK2MaViKg0MjOlVT6mTpXGTleuLE1KvHULGD9empcSGwusWweMHSs2XAOlu7/a2ACffSaNA1+9Gnj6aWkVE7IMSniP5RARsgjmGiIycCBw+zZw7FjFzpOYmAgvLy+T1FQUDhEhUjalDhExGKTNtPLXpN63TwrZjz3237CPrl2lSYtKVNb767Fj0g6RDg7A5s3AQ8v2kwqZ4z22JOzBJiolvV76OLR794qfa/ny5RU/CRGRiSQkAGvWAK+8AlStKs01mTZN2gBm5kzg/Hlp99pFi4BBg5QbroGy319bt5YmP2q10kTIjRtlKozMRgnvsRyDTVRKJ05Ib0IVWZ4vX8fybgFJRGQCublSqMyfnHj8uBSm69cHXnhBus916ACYYB8osyvP/bVKFWmoy8iRwHPPScNH3nuPkx/VSgnvsQzYRKUUGiot72SK5Y9v3LiBJ554ouInIiIqpTt3/hv2sXs3kJgIeHtLwz1eeQXo1k0KmmpX3vurqyvw++/Axx9Luz9eugQsWAA4OclQJMlKCe+xDNhEpRQaKr0R2ZngVePAvXqJSGbp6dL46fxQffmyNLmvTRvgrbekQN2ypbTboSWpyP3VxkYK2PXrA6NGAdeuARs2AIGBJiuPzEAJ77EM2ESlkJAgTYT5v/8zzfkCAgJMcyIion8ZDNJY6fxAfeAAkJ0tjanW6aSx1F26AILnfsnOFPfXQYOAGjWAvn2lX0I2bQKaNjVBcWQWSniP5SRHolLYtUsan2iK8dcAcOrUKdOciIisWmwssGqV1NtaqRLQuDHw0UfSms5ffimtBhIeDoSEAAMGWH64Bkx3f23RQhqbHhgItG8vrZ1N6qCE91j2YBOVQmgoULeu1BNkCn379jXNiUohIyPDbNciotIrz2szJ0faLTF/cuKpU1LPdaNGwLBhUidA+/bWvWmKKe+vlSpJw2xefhl4/nngk0+A6dM5+VHpzPkeWxQGbKISGAzSm9mAAaY754IFC2TfacrOzg42NjYIDw+X9TpEVH4GgwF6vb7YY27e/G/Yx19/ASkpgK8v8MwzwMSJ0ljqoCAzFawCpr6/urhInxI0aCDt4nvpkrRcoRpXWLEW5niPLQk3miGLIOdGM5cuSTfWrVuBHj1MemrZZWdnIzc3F0lJSdiyZQtcXV3haAFdW5GRUu+dg4PUY+ftLboiovLR6/XIzc1FRkaGcaMZe3sf7N37X6i+fl2aXN2u3X8bvTRtKk3II/P64w9gxAigYUNp8uNjj4muiJSKPdhEJQgNlT5uNeWymjNnzjTLb9cODg5wcHBAZmYm0tLSkJOTYxEB28lJ+vfYsAH4+Wfg2WeBxx8XXVXZHD16FG3atBFdBimAwQDcv5+F27elT8oOHZKGglSvLoXpOXOAzp0BGTeptShy3l+ff16a/NinjzT5ceNGaaw2KYu53mOLwx5ssghy9mB37y5NcNyxw3TnzMjIgLMZP19MS0vDb7/9huTkZLNd0xxycqSVEu7eld7k6tdXz9jI3Nxc2JlizUdSpYwM4J9/gPv3gYgIaStyg8EDVasOgk7nCp0OqFlTdJXqZI77a0SEtCHNuXPAkiXAwIGyXo7KyNzvsYVhwCaLIFfAzsgAfHyk5a2mTDHZafH1119jiilPWAppaWnIysoy6zXNQa8HvvhC6skePBiYPRuwtxddVcn+7//+D6+99proMshMsrOl3WD37pW+Ll6Uvv/EE0CnTtJXu3aO8PZ2FVekhTDX/TUzU9qgZ8UK4MMPpfHZHLajDCLeYx/G7hOiYhw4IN1ETbU8X74+ffqY9oSl4OrqCldXy3zz/vpraXmyV1+VJoStXQv4+YmuqngvvPACfHx8RJdBMjEYpE1K8sdR790LpKUBAQHSpMTJk6VJiv7+oiu1POa6vzo5Ab/+Ks3R+d//pF+ali6VJkWSWCLeYx/G37WIirF9u7RMU4MGpj3v6dOnTXtCwogRwJ49wJUr0nb2Fy6Irqh4bAOWJykJWL8eeO01afx0nTrA1KnSJ2EzZgB//y0NC1m2DBg6lOFaLuZ8bWk0wLRp0r/7tm3AU08B9+6Z7fJUBCXcX9mDTVSM0FCpt8nU43r9lN69qlLt2kkbQ/TtC7RtKy2t1auX6KoKxzagfnq9tA51/prUR45I36tdG+jdW/rkq1MnwEI/OFIsEa+tfv2kyam9e0uTHzdsAFq3NnsZ9C8l3F/Zg01UhLt3pSX6TD08BIBFrOShVNWqAQcPAl27SjP9v/pK+rheadgG1On+fWDxYmm8v7+/FKLmzJGGJP38M3DrlvQpyg8/SKvbMFybn6jXVuPG0jj76tWlVY5WrhRSBkEZ91cGbKIi7Ngh9Vx37Wr6c9+4ccP0JyUjNzdpHPb//ge88w7w0kuA0uZ3sg2oQ2amdC+YOlWakFi5MjB6tBSkJ0yQfpmLjQXWrQPGjgWCg0VXTCJfWwEB0mZAgwZJw4CmT5dWoSLzUsL9lauIkEWQYxWRgQOB27eBY8dMcroC7ty5g6qm2nedirVypbTNcfPmUggKCBBdkYRtQJkMBiAs7L/Jifv2SSH7scf+2+Sla1dAqxVdKRVFCa8tg0H6ZOPdd6XhI8uWSb/4k3kooQ2wB5uoEHo9sGuXtAa2HH799Vd5TkyPePFFKSTdvClNfjx7VnRFErYB5UhIANaskZZcq1pVmtQ8bZoUkmbOBM6flyauLVok9UwyXCubEl5bGg3w9tvSRjQ7dwLt2wN37oiuynooog2wB5ssgal7sI8elSbJHTokTZwztby8PNhwwVSzundPmvx45QqwfLnUqyQS24A4ubnSZNj8XuoTJ6SP8evX/6+XukMHQPA+FVROSnttnT8vzQdJT5cmP7ZtK7oiy6eENqCcFkikIKGhgKen1OMph88//1yeE1ORKlcG9u8HevSQdmCbNUvs5Ee2AfO6cwdYsEDa6trPD3jySeDHH6Ue65AQ6ecXLwLffCMFbIZr9VLaa+uJJ6Rf6OrUkVaVUUDnqsVTQhtgDzZZBFP3YLdrJ425/OMPExRXCCX8dm2t8vKAjz8GPvlEmoT0yy/ShhHmr4NtQE7p6dLmLjt2SL8wX74s7bLXps1/vdQtWgC2tqIrJVNT6msrOxsYN04aavTuu8Bnn7H9yUUJbUB5LZBIsIQEaWKjHMvz5Zs1a5Z8J6di2dhIAXv1ammlkU6dgMhI89fBNmBaBgNw7py0LGPXroC3t7RM3vr10uYff/wBxMVJw74++EBaXo/hxjIp9bXl4CD9Qv/NN1I7fe45ICVFdFWWSQltgD3YZBFM2YO9Zs1/K4jINQlZCTOcCTh5UhqXbWMDbNoENG1qvmuzDVRcbKw0gSx/o5eICGmb6k6dpA2idDrpY3lTbxRFyqaG19a2bdJa6tWqSfceLu9oWkpoA+zBJnpIaChQt6584RoA9u7dK9/JqdRatJAmuAUFSbP8164137XZBsouJ0caR//++9K/nb+/tErM338Dw4ZJK//ExwN//glMmiS9jhmurY8aXls9ekg7f6alSXN9Dh4UXZFlUUIbYMAmeoDBIAVsOYeHAECNGjXkvQCV2mOPScv49ekjTYD75BPzTH5kGyidmzeBefOkVV+0WmmHvJAQaTvyxYuBf/6Rll788kugSxdAARu4kWBqeW3Vry9NfmzQAHj6aak9k2kooQ3YiS6ASEnCwqTl3OQO2FlK21bQyjk7SxvS1K8vjc+9dEl6s5NzJQm2gcKlpEiTE/OX0Lt+HbCzkyYev/ee9Nps2lQa1kNUGDW9trRaqZ2//rq0IdaFC9Ivi5wfUDFKaAMM2EQPCA2VesA6dpT3OjExMfJegMpMowFmzJBC9ogR0jrIGzdKPdxyYBuQ5OUBZ878F6gPH5aGglSvLoXpOXOAzp0BE23QSlZAba8tBwfg//5P6sl+6y1pxZtVq9jmK0IJbYCTHMkimGqSY/fu0hv+jh0mLK4Q165dQ61ateS9CJXb339LQ0by8qSQ3aKF6a9hzW0gKuq/5fN27gSio6VtpDt3/m8JvZo1RVdJaqXm19aOHdIk+0qVgM2bpV80qeyU0Ab4IRvRvzIypLG4cg8PAYBNmzbJfxEqt6ZNpbGRVapIS7z99pvpr2FNbSArC/jrL2nt36ZNgcBA6VOCsDBg9GhpSEhcnLSawoQJDNdUMWp+bXXrJu0knJ0tTX7ct090ReqkhDbAHmyyCKbowd6xQwrX588DDRuauMCHZGRkwJlbxSleZibwyivAihXS2OwPPzTd2F9LbgMGA3Dt2n/DPvbulVZLCAj4b/m8Z56RVgEhMjVLeG3Fx0s92fv2AXPnAq++KroidVFCG2APNtG/tm+XPpZr0ED+a3399dfyX4QqzMlJ2tZ41izg00+BQYOkoGgKltYGkpKkTV1ee036WLtOHWDqVOmToQ8+kIbd/PMPsGyZtIMmwzXJxRJeWz4+0lrZY8ZIX2++CeTmiq5KPZTQBtiDTRbBFD3YDRpIu7stWmTi4sgibNwoBcPataWhDJUri65ILL0eOHXqv17qo0el79Wu/d846k6dAFdX0ZUSqdvcucAbb0g7lK5eDXh5ia6ISoM92EQA7t6VlmYzx/hrAJg5c6Z5LkQm07evtM12XBzQsiVw7FjFzqfGNnD/vrR84eDBUg9069bSKh8BAcDPPwO3bgFXrgA//CBtU85wTSKo8bVVnPHjpV9ijx8H2rSRhl9R8ZTQBtiDTRahoj3YCxdKY9xiYqR1SeUWFRWFgIAA+S9EJhcVBfTvL/XeLlok7SRYvvMovw1kZko7J+b3Ul+8KC1n2LLlf73UrVtL61QTKYUaXlvlce0a0Lu3tOrOH39Im9NQ4ZTQBtiDTQQpPLRsaZ5wDQAbN240z4XI5AICpBUxBg2Shoy8/760nF9ZKbENGAzSJznffistWentLYXo1aulFQ1Wr5Z+CT12TNrx8sknGa5JeZT42jKFWrWkoVgtW0qThefNE12RcimhDfDWSFZPrwd27ZJ20jKX5s2bm+9iZHKOjsCSJcATTwDvvCMtN7dsmbSWc2kppQ3ExwO7d//XS33v3n+bLX32mRSw69eXeq6J1EApry05eHkBf/4JTJkiDR25eBH47jv+ovswJbQB/pOQ1TtxAkhIMN/4a0D6+IrUTaORVsmoWxcYMgRo316a/Fi1aukeL6oN5OZKYznzA/WJE1IPfP36wAsvSK+DDh3k3SaeSE6Wfn+1swO+/16amD9hgjTv4fffpU+cSKKENsCATVYvNBTw9JQ+AjeX7Oxs812MZNWrF3DkiDQ2smVLaam6du1Kfpw528CdO/8F6t27gcRE6c24a1dp7kG3btKmOkSWwFrur2PGSKv2DBggzYXYvFlaHpOU0QY4BpusXmioFDTM+RFbjRo1zHcxkl3DhlKvcJ060nbfy5aV/Bg520BaGrB1KzBpElCvHlCtmrQ+dUQE8NZb0jjOmBip12v0aIZrsizWdH/t1Em699jZSSuM7NwpuiJlUEIbYMAmq5aQIE3YMufwEADYx/1vLY6fnzSWf/hwYORIaVtwvb7o403ZBgwG4Nw54KuvpF8WfXykZfI2bJC2ev/jD2l5wUOHpE1fWrcGbG1NdnkiRbG2+2uNGtKnaG3bAj16AD/+KN0TrJkS2gCX6SOLUN5l+taskbajvX279GNnTSExMRFe3C3AIhkM0qSjqVOlkLtiBeDu/uhxFW0DsbFSb1VoKLBjh9Q77eIi9Wjlb0depw4nJ5L1sdb7q14vTbr+5htg7FgpaNvbi65KDCW0AfZgk1ULDZUmqZkzXAPATz/9ZN4LktloNNIwjC1bgH37pPHY4eGPHlfWNpCTI61J/f77QIsW0kYvL74obUE+bJjUex4fL60wMGmS1K4ZrskaWev91dYW+Ppr4JdfpDX6u3WTPrmyRkpoA+zBJotQnh5sg0EK1gMGSD2ORKZ26RLQpw+QlCRNfmzfvmyPv3nzv8mJf/0FpKQAvr7AM89IPdTdugFBQfLUTkTqtX+/9N7m6SlNfqxXT3RF1oc92GS1wsKkNX/NPf4aUMY2riS/+vWlMf4NG0q7ri1e/N/PCmsDKSnSUn8TJ0qbStSoAbzxhjRX4L33gJMnpZ0kV66UxnkzXBM9ivdXaanN48el5TbbtAG2bxddkXkpoQ2wB5ssQnl6sL/9Fpg2TfpY3cVF5gIfkpSUBE9PT/NelITJyZE2Mpo/H5g8GfjySyA1NQnu7p44c+a/XurDh6Vjq1f/byvyzp2BMkwrILJ6vL/+JyVF2nH2zz+l4SOTJlnH0DEltAH2YJPVCg2Vfss3d7gGgGWlWceNLIa9vbSt8Q8/SL/YNWsGdO68DEFBQPPmwOefSx/lfvcdcO0acOMGMHcu0LcvwzVRWfH++h93d2l42tSp0tyQMWMABSwRLTsltAFuNENWKSNDmoAm6lOkzp07i7kwCaPRSL3Y1apJwfmxxzpj9Gipl7ptW8DBQXSFRJaB99eCbG2B2bOlIWtjxkg7P65dKy0taqmU0AbYg01W6cABIDNTzPhrALh27ZqYC5NwffoAV68CP/10DZ9/DnTsyHBNZEq8vxZu5Ehgzx4pYLdqBVy4ILoi+SihDTBgk1Xavh2oVAlo0EDM9Z2dncVcmBShVi22ASK58LVVtHbtpMmPHh7SJ2dbtoiuSB5KaAMM2GSVQkOlJc5ETfbQarViLkyKwTZAJA++topXrZq0q2vXrtInanPmWN7Oj0poAwzYZHXu3pXWJxY1PAQAzpw5I+7ipAhsA0Ty4GurZG5u0jjsadOAt98GXn4ZyMoSXZXpKKENcJk+sghlWaZv4ULg1VeBmBhA1C+5kZGRCAwMFHNxUgS2ASJ58LVVNitWAKNHSzvErlsn7RKrdkpoA+zBJqsTGgq0bCkuXAPAL7/8Iu7ipAhsA0Ty4GurbIYOlVbVunFDmvx47pzoiipOCW2APdhkEUrbg63XS0sTvf468PHHZiyQiIhIwe7elZYQvXpV6tXu21d0RerGHmyyKidOSNtOixx/DShjG1cSi22ASB58bZVPlSrSErbduwPPPQfMmqXeyY9KaAPswSaLUNoe7I8/lnbSi40F7ARus5SZmQknJydxBZBwbANE8uBrq2Ly8oCPPgI+/RQYNgxYsABQ29OphDbAHmyyKqGh0tJEIsM1APz4449iCyDh2AaI5MHXVsXY2ACffAKsXg388QfQuTMQGSm6qrJRQhtgwCarkZAAHDsmfngIAPTr1090CSQY2wCRPPjaMo1Bg4D9+4Hbt6XJj3//Lbqi0lNCG2DAJquxa5f00ZcSAvapU6dEl0CCsQ0QyYOvLdNp2VKauxQQALRvLy3jpwZKaAMM2GQ1QkOBunWBqlVFVwLh63OSeGwDRPLga8u0KlWSlvHr3RsYMACYOVP5kx+V0AYEj0QlMg+DQQrYAwaIrkRiJ3oQOAnHNkAkD762TM/FBVi1CmjQAJgxA7h4EVi0CHB2Fl1Z4ZTQBtiDTVYhLAy4d08Zw0MA4NatW6JLIMHYBojkwdeWPDQaKVyvWQNs3Ah07Aj884/oqgqnhDbAgE1WITQUcHSUbghK0KFDB9ElkGBsA0Ty4GtLXs8/Dxw8KIXrli2BkydFV/QoJbQBBmyyCqGhQIcO0sdcSrBy5UrRJZBgbANE8uBrS37NmkmTHytXlt5bf/9ddEUFKaENcKMZsgjFbTSTkQH4+EgTM6ZMEVTgQ/R6PWxtbUWXQQKxDRDJg68t88nIAF59Vdpa/cMPgQ8+kNbRFk0JbUABTwORvA4cADIzlTP+GgBmzZolugQSjG2ASB58bZmPszPw66/A559LOyUPHgykp4uuShltgD3YZBGK68GePFn6+OruXWmSBhEREZnWhg3S1up16kiTICtXFl2RWOzBJosXGgp066ascD1z5kzRJZBgbANE8uBrS4x+/YBDh4CYGGnnx+PHxdWihDbAgE0W7e5d4NIlZQ0PAYCRI0eKLoEEYxsgkgdfW+I0bixNfgwOliY/ipprqIQ2wIBNFm3HDqnnumtX0ZUUtHv3btElkGBsA0Ty4GtLrIAAYM8eYNAgYOhQYPp0IC/PvDUooQ2I3+qGSEahodI6nVqt6EoKql27tugSSDC2ASJ58LUlnqMjsGSJtPPje+9JnyQvWwa4uZnn+kpoA+zBJoul1wO7dgHdu4uu5FEZGRmiSyDB2AaI5MHXljJoNMA770gTHnfuBNq3B+7cMc+1ldAGGLDJYp04ASQkKG/8NQDExcWJLoEEYxsgkgdfW8rSuzdw+DCQlCRNfjxyRP5rKqENMGCTxQoNBTw9pRe00jRu3Fh0CSQY2wCRPPjaUp4nnpBWFaldG+jUSVo7W05KaAMM2GSxQkOlyY12CpxpsGXLFtElkGBsA0Ty4GtLmfz8pGGbw4YBI0ZIY7PlmvyohDbAjWbIIjy80UxCAuDrC/zf/0nbuCpNeno6XFxcRJdBArENEMmDry1lMxiAb78F3n4bePZZaZt1d3fTXkMJbYA92GSRdu2SfjNW4vhrAPjmm29El0CCsQ0QyYOvLWXTaKQdljdvBvbuBZ58EggPN+01lNAG2INNFuHhHuxXXpF2lAoLE10ZERERFebSJWkSZEoKsG6dtNKIpWAPNlkcg0Eaf63U3mtAGdu4klhsA0Ty4GtLPerXB44dk/779NPS2tmmoIQ2wB5ssggP9mDfu+eBBg2ArVuBHj1EV1a4mJgY+Pn5iS6DBGIbIJIHX1vqk50NvP46EBICTJkCzJ4N2NqW/3xKaAPswSaLExoq7SLVsaPoSoq2bt060SWQYGwDRPLga0t9HBykRQm+/16aANm3L5CcXP7zKaENMGCTxQkNBTp0AJQ8ibxly5aiSyDB2AaI5MHXljppNMAbbwDbtgEHDwJt2wI3b5bvXEpoAwzYZFEyMoB9+5Q9/hoAIiIiRJdAgrENEMmDry1169YNOHpUGjbSqpX0nl5WSmgDDNhkUQ4fBjIzlR+w9Xq96BJIMLYBInnwtaV+detKkx8bN5Y2jFuwoGyPV0IbUOAed0Tl99tvcfD3d0Ze3mWcPy+6mqLl5OTgvJILJNmpqQ088cQToksgKrW7d+9i69atossgE5g0SQMnp/oYM6Ya/vzzFkaPvgxb25LX5ggODpa/uBKwB5ssyvHjrmjXLgUajehKinf69GnRJZBgbANE8rh48aLoEshE7OwMmDDhIsaNu4DNm6vho49aIC2t5L7hAwcOmKG64jFgk0W5dcsJ7dqlii6jRD2Uun4gmQ3bAJE8Oip5CSkql1697uCTT07gyhUvTJ7cDv/8U/wqBkOGDDFTZUVjwCYLY0CbNsoP2L/99pvoEkgwtgEiefz555+iSyAZNG0ah2+/PQQAeOutdjh7VlvksXPnzjVXWUXiRjNkEfI3mqlXLwK//RYjuhwii8Ix2KQmHH9t2VJT7TB7dlOcPavFa69dQs+edx45pmfPngIqK4g92GQR8icMq6H3GgBCQkJEl0CCsQ0QyWP16tWiSyAZubnl4qOPTuLZZ2/j558bYt68+tDrC068UsJW6VxFhCxC/nwxKWBXYH9VM3nxxRdFl0CCsQ0QyaNPnz6iSyCZ2doaMHZsGKpWTcW8eQ1w754b3nvvNNzdcwEAb7zxhuAK2YNNCpOamooBAwbgzp1HP/Ipzq5d0n/r1cuQoSrT27hxo+gSSDC2ASJ57Mp/QyCL16PHXXz66XHcuOGByZOfxL17rgCAJUuWiC0MDNikIIsWLcJXX32FdevWIS8vr0yP3b1bmkpgp4LPZAwGA9q0aSO6DBKIbYBIHgaDAU2aNBFdBplR48bx+Oabw7C1zcPkye3w99++6Nq1q+iyOMmRlEej0eDWrVvFLhSflZWFrKwsAMC5cymYf/AXLJ/2Edoc/wGzMxqbqdKyy87OxvkLF5CRkYGWbVrD1lb5w1nItHJzc3Dp/AVkpGegTZs2qmgDtWrVEl0CUYn0ej12796Na9evof4TDWFjwz5Ea5KRYYdff62F69fc8FyfvzBr1hC4uBS/nJ+cSh2wV61ahVatWmHt2rWYNGkSvvrqK0yfPh0zZ87Eyy+/jG3btqFRo0aIj49HWloa6tati127dmHUqFH44YcfjMeOHz8eq1atwlNPPYXw8HDY2toiKCgIJ06cQP/+/TF//nzjsZMnT8a8efPQq1cvnD17FlqtFs7Ozrh69Sq6dOmCpUuXGo+dNm0avvzyS7z44ovYv38/Hn/8ceTm5iIyMhLNmzfHhg0b8Prrr2POnDnGx7zyyivYvHkzmjRpgri4OGRkZKBWrVrYs2cPRowYgR9//NF47MSJE7F8+XJ07NgRN27cgIODAwICAnDq1Cn07dsXCxYsMB47ZcoUzJ07F3369MHp06fh5+cHR0dH3LhxA506dcKvv/6KadOm4fPPP8f//vc/zJo1C8OHD8fevXtRo0YNZGVlISYmBs2aNcOmTZswfvx4fP3118bzv/rqq9i4cSOaN2+OqKgoZGdno0aNGti3bx+GDRuGn376yXjs66+/jmXLlqFz5864du0anJ2dodVqcebMGfTu3Ru//PKL8dipU6fixx9/RL9+/XDq1CkEBgbCzs4Ot27dQocOHbBy5Uq88847mDVrlvExI0eOxO7du1G7dm1kZGQgLi4OjRs3xpYtWzBu3Dh88803xmPHjh2LdevWoWXLloiIiIBer0dwcDAOHDiAIUOGYO7cuZg+fTo0Gg3OnTuHPXv2wMHBAXfv3oWTkxPc3d1x69YttGjRAnPmzMG5c+cAAK6urhj1zuv4+cMv8N5778HJyUnWFw0REREpW/fu3XHs2DF07doVly9fhqurK3x8fHDu3Dn06NEDixYtMuaTt99+G99//z0GDBiA48ePIygoCLa2trh9+zbat2+P1atXY+rUqfjiiy8wffr0Ul2fPdikOA/2YBe13FJOTg6ys3Pw008NcPhwIOrsXIiLnd/GWx9Mw6uDh8PLy8u8RZfB/fv38eeffyLbQYP1z3oi0VsF41rIpHpFeaHSn9dha2uLXr16ISAgQHRJRcrJyUF8fDx8fHxgb28vuhyiYkVHR2PDhg0wANjZ2R23HncUXRKZWc1YG3TZFI3+/fsLXWKU7+ykSvb29ti4sQ7276+Lt98+g/WeUlPOcrbF1q1bMWrUKGi1RS9CrwS+rp7oG5qChUN9EOPH4GJNsuAGAPDz88O2bdswfPhwVK5cWXBVRatataroEojKpEaNGsDeG1jjZYdL9ZxFl0Nm5Pvv9MKEhATExcUJywIcoESqdPSoP5YsqYNBg66jU6d/jN8/1MUPTk5OWLJkCeLi4gRWWLJ+vfvgMTcfjF4RD7+YHNHlkAA9evRAYGAgfv31V9y7d090OYVKSUnB/v37kZKSIroUolJ7unNnNGzQEC9sSED9MHWsLkWm988//wjLAgzYpDrh4e6YM6cJ2rSJwrBhVwv8LMvRFiNHjlRFyHZycsLokaMYsq2Yvb09hg4dquiQnZ6ejhMnTiA9PV10KUSlZmNjg/7PPceQTcJCNgM2KcaqVaswbtw4AMB7772HuXPnPnJMUpIDPv64OQID0zFlylkUNknczc1NNSHbxcWFIdvKOTg4KDpkBwQEYMqUKYoeJ05UGIZsyiciZDNgk2IMGTIE8+bNg8FgwOrVqzF+/PgCP8/JscFnnzVDdrYtPvjgJJyd9UWeiyGb1ETpIZtIrRiyKZ+5QzYDNqmCwQD8/HMDXLniienTT8HfP7PExzBkk5ooNWTHxMRg/vz5iImJEV0KUbkwZFM+c4ZsBmxShQ0bHsfOnVUwadJ51KuXWOrHMWSTmigxZDs4OKBy5cpwcHAQXQpRuTFkUz5zhWwGbFK8Eyf8sGhRXTz//A08/fQ/JT/gIQzZpCZKC9menp549tln4enpKbQOoopiyKZ85gjZDNikaLdvu2H27CZo0SIaI0deKfd5GLJJTZQUsnNzc5GYmIjc3FxhNRCZCkM25fvnn3+QmVnycNPyYsAmxYqNBT75pDkCAjLw9ttnCl0xpCwYsklNlBKyY2Ji8P3333MMNlkMhmzKl5eXJ9u5GbBJkbKzgeefBzIy7PDBB6fg4lL0iiFlwZBNaqKEkO3j44Phw4fDx8fH7NcmkgtDNsmNAZsUx2AAJk4EDh8G3n//NAICTHvjY8gmNREdsh0dHVG9enU4Ojqa9bpEcmPIJjkxYJPi/PgjsGABMH8+0KBBgizXYMgmNREZslNTU3HkyBGkpqaa7ZpE5sKQTXJhwCZFCQ0F3noLmDIFeOklea/FkE1qIipkp6amYu/evQzYZLEYskkODNikGJcvA4MGAd27A7Nnm+eaDNmkJiJCdmBgIKZNm4bAwEDZr0UkCkM2mRoDNilCfDzQuzdQqRKwahVga2u+azNkk5qIHpNNZKkYssmUGLBJuJwc4IUXgIQEYPNmwMPD/DUwZJOamDNkx8bGYtGiRYiNjZXtGkRKwZBNpsKATcJNmgTs3w+sXQtUry6uDoZsUhNzhWw7Ozv4+PjAzs5OlvMTKQ1DNpkCAzYJNXcuMG+e9N+OHUVXw5BN6mKOkO3l5YV+/frBy8vL5OcmUiqGbKooBmwSZtcu4I03pB7sV18VXc1/GLJJTeQO2Xq9HmlpadDrTbPZE5FaMGRTRTBgkxBXr0rjrrt2BebMEV3NoxiySU3kDNnR0dGYM2cOoqOjTXZOIrVgyKbyYsAms0tIkFYMCQgAVq8GlDq0kyGb1ESukO3t7Y3BgwfD29vbJOcjUhuGbCoPBmwyq9xcYPBgICZGWjFE6cM6GbJJTeQI2U5OTqhTpw6cnJxMUCGROjFkU1kxYJNZTZ4M7N4N/PEHUKuW6GpKhyGb1MTUITstLQ0nT55EWlqaiSokUieGbCoLBmwym/nzgR9/lL6eflp0NWXDkE1qYsqQnZycjK1btyI5OdmEFRKpE0M2lRYDNpnFnj3AxInAhAnAuHGiqykfhmxSE1OF7KCgIHzwwQcICgoycYVE6sSQTaXBgE2yu34deP55oFMn4LvvRFdTMQzZpCbcVp1IHgzZVBIGbJJVUhLQpw+g1QK//67cFUPKgiGb1KSiITsuLg7Lly9XdDsnEoEhm4rDgE2y0euBIUOAiAhpxRBLWuWLIZvUpCIh28bGBo6OjrCx4dsF0cMYsqkovGOSbN5+G9ixQ+q5rlNHdDWmx5BNalLekO3t7Y0XXniB62ATFYEhmwrDgE2yWLgQ+PZb6euZZ0RXIx+GbFKT8oTsvLw8ZGdnIy8vzwwVEqkTQzY9jAGbTG7/fmmlkLFjpZVDLB1DNqlJWUN2VFQUZs2ahaioKDNVSKRODNn0IAZsMqlbt4ABA4Ann5TWu9ZoRFdkHgzZpCZlCdleXl7o378/vJS+7SqRAjBkUz4GbDKZ5GSgd2/A01PaqdHeXnRF5sWQTWpS2pDt7OyMJ554As7OzmaukEidGLIJYMAmE9HrgaFDgbt3pRVDtFrRFYnBkE1qUpqQnZGRgXPnziEjgyGBqLQYsokBm0xi2jRg61Zg9WqgXj3R1YjFkE1qUlLITkxMxPr165GYmCimQCKVYsi2bgzYVGFLlgBffQXMmQP06CG6GmVgyCY1KS5kBwYG4v3330dgYKDAConUiSHbejFgU4UcOiStFjJ6NPDmm6KrURaGbFKTokK2RqOBnZ0dNNYyY5nIxBiyrRMDNpXb7dvAc88BrVsDc+daz4ohZcGQTWpSWMhOSEjAb7/9hoSEBNHlEakWQ7b1YcCmcklNBfr0AVxdgbVrAQcH0RUp18MhW8ljWRmy6eGQHRERAb1eD4PBILo0IlVjyLYuDNhUZnl5wLBhwM2b0oohfn6iK1K+B0P25s2bRZdTLIZsejBkb9y4ER06dICPj4/osohUjyHbejBgU5lNnw5s2gSsWgU0bCi6GvXID9mOjo4AwJ5sUrTybKtORCVjyLYODNhUJsuXA7NmAbNnA716ia5Gfdzc3NDr3ydu8+bNHJNNiubg4IAuXbogOzsbS5cuZcgmMhGGbMvHgE2ldvQo8MorwMiRwNSpoqtRLxcXFwCAo6MjJz6S4vn6+qJHjx4ICAhgTzaRCTFkWzYGbCqVu3eBfv2A5s2B+fO5Yogp9OrVi6uLkOK5uLigVatWGDFiBIeLEJkYQ7blYsCmEqWlSSuGODoC69dL/6WKc3Fx4RJ+pHgZGRkICwuDXq/nmGwiGTBkWyYGbCpWXp40JOTaNWnFEH9/0RVZFq6TTUqXmJiI33//HYmJiZz4SCQThmzLw4BNxfroI2DdOmDFCqBRI9HVWCaGbFKygIAAvPPOOwgICADA1UWI5MKQbVkYsKlIq1cDn34KfP450Lev6GosG0M2KZWNjQ2cnZ1hY/Pf2wVDNpE8GLItBwM2FerECeCll6QNZd59V3Q11oEhm5QoISEB69ate2SrdIZsInkwZFsGBmx6xP37Uo91kybAggVcMcScGLJJafLy8pCcnIy8vLxHfsaQTSQPhmz1Y8CmAtLTpXBtayutGOLkJLoi68OQTUqi1WoxatQoaLXaQn/OkE0kD4ZsdWPAJiODQRoWEhYmbYUeGCi6IuvFkE1qwpBNJA+GbPViwCajTz8Ffv8d+PVXoGlT0dUQQzYpQWRkJD7//HNERkYWexxDNpE8GLLViQGbAABr1gAffiiF7P79RVdD+RiySTR3d3d06dIF7u7uJR7LkE0kD4Zs9WHAJpw+LW0mM3gw8P77oquhhzFkk0iurq5o3bo1XF1dS3U8QzaRPBiy1YUB28pFREjboDdsCCxaxBVDlIohm0TJysrC9evXkZWVVerHMGQTyYMhWz0YsK1YRgbQr580uXHDBsDZWXRFVByGbBIhPj4eK1asQHx8fJkex5BNJA+GbHVgwLZSBgPwyivA+fPAxo3AY4+JrohKgyGbzM3f3x9vvfUW/P39y/xYhmwieTBkKx8DtpWaNQtYuRJYsgRo0UJ0NVQWDNlkTra2tvDw8ICtrW25Hs+QTSQPhmxlY8C2QuvXS5MZP/wQGDhQdDVUHgzZZC5JSUnYvHkzkpKSyn0OhmwieTBkKxcDtpU5cwYYNgx4/nnggw9EV0MVwZBN5pCTk4PIyEjk5FTs34whm0geDNnKxIBtRaKipBVD6tYFli4FbPivr3oM2SQ3X19fvPrqq/D19a3wuRiyieTBkK08jFhWIjMTeO45ICdHmtTo4iK6IjIVhmxSE4ZsInkwZCsLA7YVMBiAsWOlDWU2bAAqVxZdEZkaQzbJJSoqCl999RWioqJMdk6GbCJ5MGQrBwO2FfjqK2DZMmkjmdatRVdDcmHIJjm4urqiTZs2pd7JsbQYsonkwZCtDAzYFm7TJuC996RVQ158UXQ1JDeGbDI1Nzc3PPXUU3BzczP5uRmyieTBkC0eA7YFO38eGDpU2q3xk09EV0PmwpBNppSdnY07d+4gOztblvMzZBPJgyFbLAZsCxUTA/TuDdSoIQ0P4Yoh1oUhm0wlLi4OixcvlrUNMWQTyYMhWxzGLguUlQX07w9kZEhDRGT4ZJdUgCGbTMHPzw8TJkyAn5+frNdhyCaSB0O2GAzYFsZgAMaNA44fl1YMqVpVdEUkEkM2VZSdnR18fX1hZ2cn+7UYsonkwZBtfgzYFubbb4HFi4FffgHathVdDSkBQzZVRHJyMkJDQ5GcnGyW6zFkE8mDIdu8GLAtyNatwNtvA+++CwwfLroaUhKGbCqvrKws3LhxA1lZWWa7JkM2kTwYss2HAdtCXLwIDB4MPPss8NlnoqshJWLIpvLw8/PD+PHjZR+D/TCGbCJ5MGSbBwO2BYiNBfr0AYKDgRUrAFtb0RWRUjFkk5owZBPJgyFbfgzYKpedDTz/PJCcLK0Y4u4uuiJSOoZsKovo6Gh89913iI6OFnJ9hmwieTBky4sBW8UMBmDiRODwYWD9eqkHm6g0GLKptJydndGoUSM4OzsLq4Ehm0geDNnyYcBWsR9/BBYsAObPB9q3F10NqQ1DNpWGu7s7nn76abgL/niMIZtIHgzZ8mDAVqnQUOCtt4ApU4CXXhJdDakVQzaVJCcnBxEREcjJEf98M2QTyYMh2/QYsFXo8mVg0CCge3dg9mzR1ZDaMWRTcWJjYxESEoLY2FjRpQBgyCaSC0O2aTFgq0x8PNC7N1CpErBqFVcMIdNgyKai+Pr6YsyYMfD19RVdihFDNpE8GLJNhwFbRXJygBdeABISgM2bAQ8P0RWRJWHIpsLY29sjKCgI9vb2okspgCGbSB4M2abBgK0ikyYB+/cDf/wBVK8uuhqyRAzZ9LCUlBT89ddfSElJEV3KIxiyieTBkF1xDNgqMXcuMG+e9N9OnURXQ5aMIZselJGRgXPnziEjQ5lvsAzZRPJgyK4YBmwV2LULeOMNqQf71VdFV0PWgCGb8vn7++PNN9+Ev7+/6FKKxJBNJA+G7PJjwFa4q1elcddduwJz5oiuhqwJQzapCUM2kTwYssuHAVvBEhKkFUMCAoDVqwE7O9EVkbVhyKaYmBjMnTsXMTExokspEUM2kTwYssuOAVuhcnOBwYOBmBhpxRAvL9EVkbViyLZujo6OqFGjBhwdHUWXUioM2UTyYMguGwZshZo8Gdi9W1oxpFYt0dWQtWPItl4eHh7Q6XTwUNG6oAzZRPJgyC49BmwFmj8f+PFH6evpp0VXQyRhyLZOubm5iI2NRW5uruhSyoQhm0geDNmlw4CtMHv2ABMnAhMmAOPGia6GqCCGbOsTExODn3/+WRVjsB/GkE0kD4bskjFgK8j168Dzz0vrXH/3nehqiArHkG1dtFotXnrpJWi1WtGllAtDNpE8GLKLx4CtEElJQJ8+gFYL/P47VwwhZWPIth4ODg6oWrUqHBwcRJdSbgzZRPJgyC4aA7YC6PXAkCFARIS0Yoi3t+iKiErGkG0dUlNTceDAAaSmpooupUIYsonkwZBdOAZsBXj7bWDHDqnnuk4d0dUQlR5DtuVLS0vD0aNHkZaWJrqUCmPIJpIHQ/ajGLAFW7gQ+PZb6euZZ0RXQ1R2DNmWLSAgAG+//TYCAgJEl2ISDNlE8mDILogBW6D9+6WVQsaOlVYOIVIrhmxSE4ZsInkwZP+HAVuQW7eAAQOAJ5+U1rvWaERXRFQxDNmWKTY2FgsWLEBsbKzoUkyKIZtIHgzZEgZsAZKTgd69AU9PaadGe3vRFRGZBkO25bG3t0dgYCDsLfBGxZBNJA+GbAZss9PrgaFDgbt3pRVDVLq0LFGRGLIti6enJ3r37g1PT0/RpciCIZtIHtYeshmwzWzaNGDrVmD1aqBePdHVEMmDIdty6PV6JCcnQ6/Xiy5FNgzZRPKw5pDNgG1GS5YAX30FzJkD9OghuhoieTFkW4bo6Gh8++23iI6OFl2KrBiyieRhrSGbAdtMDh2SVgsZPRp4803R1RCZB0O2+vn4+GDo0KHw8fERXYrsGLKJ5GGNIZsB2wxu3waeew5o3RqYO5crhpB1YchWN0dHR9SsWROOjo6iSzELhmwieVhbyGbAlllqKtCnD+DqCqxdCzg4iK6IyPwYstUrLS0Nx44ds4idHEuLIZtIHtYUshmwZZSXBwwbBty8Ka0Y4ucnuiIicRiy1SklJQW7d+9GSkqK6FLMiiGbSB7WErIZsGU0fTqwaROwahXQsKHoaojEY8hWn8DAQPzvf/9DYGCg6FLMjiGbSB7WELIZsGWyfDkwaxYwezbQq5foaoiUgyGb1IQhm0gelh6yGbBlcPQo8MorwMiRwNSpoqshUh6GbPWIi4tT/L+R3BiyieRhySGbAdvE7t4F+vUDmjcH5s/niiFERWHIVgcbGxt4eHjAxsa63y4YsonkYakh27rvmCaWliatGOLoCKxfL/2XiIrGkK183t7e6N+/P7y9vUWXIhxDNpE8LDFkM2CbSF6eNCTk2jVpxRB/f9EVEakDQ7ay5eXlISMjA3l5eaJLUQSGbCJ5WFrIZsA2kY8+AtatA1asABo1El0NkbowZCtXVFQUvvzyS0RFRYkuRTEYsonkYUkhmwHbBFavBj79FPjsM6BvX9HVEKkTQ7YyeXl5YeDAgfDy8hJdiqIwZBPJw1JCNgN2BZ04Abz0krShzHvvia6GSN0YspXH2dkZ9erVg7Ozs+hSFIchm0gelhCyGbAr4P59qce6cWNgwQKuGEJkCgzZypKeno7Tp08jPT1ddCmKxJBNJA+1h2wG7HJKT5fCta0tsGED4OQkuiIiy8GQrRxJSUnYvHkzkpKSRJeiWAzZRPJQc8hmwC4Hg0EaFhIWJm2FboU7CBPJjiFbGYKCgvDhhx8iKChIdCmKxpBNJA+1hmwG7HL49FPg99+BZcuApk1FV0NkuRiySU0YsonkocaQzYBdRmvWAB9+CHzyCTBggOhqiCwfQ7ZY8fHxWLlyJeLj40WXogoM2UTyUFvIZsAug9Onpc1kBg8Gpk8XXQ2R9WDIFkej0cDW1hYazuIuNYZsInmoKWQzYJdSRIS0DXqDBsCiRVwxhMjcGLLF8Pb2xqBBg7hVehkxZBPJQy0hmwG7FDIygH79pMmNGzcCXA6WSAyGbPMzGAzIzc2FwWAQXYrqMGQTyUMNIZsBuwQGA/DKK8D581K4fuwx0RVZrvT0dCxatAibN2/G6NGjkZeXJ7okUiCGbPOKjIzEZ599hsjISNGlqBJDNpE8lB6yGbBLMGsWsHIlsGQJ0KKF6GosW1hYGG7cuIFevXrh/PnzyMrKEl0SKRRDtvl4eXnhueee41bpFcCQTSQPJYdsBuxirF8PvP++tGrIwIGiq7F8zZs3x5tvvomff/4Zb7zxBrdmpmKpOWSHJ6inN9jZ2RmNGjXi67GCGLKJ5PFwyH7sljJ2nbUTXYBSLVgAjB8PPP888MEHoquxHn5+fpg4cSJ69OiBFsV8ZJCTk4OcHKknMDc3Fy1vxeM6ALvENERERJip2vKJjY0t8F+qmO7du2PLli1YuHAhevfureie1md0z2DJlrVo+6cUsM/G3BZcUckyMzNx7949VK5cGU7csrbCunTpgm3btmHp0qV49tlnERAQILoki8L7q/Vq26YNMjIygD03AAB6vV5oPRpDKWeurFq1Cq1atcLatWsxadIkfPXVV5g+fTpmzpyJl19+Gdu2bUOjRo0QHx+PtLQ01K1bF7t27cKoUaPwww8/GI8dP348Vq1ahaeeegrh4eGwtbVFUFAQTpw4gf79+2P+/PnGYydPnox58+ahV69eOHv2LLRaLZydnXH16lV06dIFS5cuNR47bdo0fPnll3jxxRexf/9+PP7448jNzUVkZCSaN2+ODRs24PXXX8ecOXOMj3nllVewefNmNGnSBHFxccjIyECtWrWwZ88e3LkzAnPm/Ijz56djw4aZmDhxIpYvX46OHTvixo0bcHBwQEBAAE6dOoW+fftiwYIFxvNOmTIFc+fORZ8+fXD69Gn4+fnB0dERN27cQKdOnfDrr79i2rRp+Pzzz/G///0Ps2bNwvDhw7F3717UqFEDWVlZiImJQbNmzbBp0yaMHz8eX3/9tfH8r776KjZu3IjmzZsjKioK2dnZqFGjBvbt24dhw4bhp59+Mh77+uuvY9myZejcuTOuXbsGZ2dnaLVanDlzBr1798Yvv/xiPHbq1Kn48ccf0a9fP5w6dQqBgYGws7PDrVu30KFDB6xcuRLvvPMOZs2aZXzMyJEjsXv3btSuXRsZGRmIi4tD48aNsWXLFowbNw7ffPON8dixY8di3bp1aNmyJSIiIqDX6xEcHIwDBw5gyJAhGDlyJHr16oWYmBgcOnQIVatWxaRJk3D58mW4urrCx8cH586dQ48ePTBs2DDs2bMHgPQR9og3X8MPH32B9957jyGAiIjIyj3xxBM4fvw42rRpg1u3bsHZ2Rmenp64evUq2rdvjw0bNmD27Nn45ptv8Pbbb+P777/HgAEDcPz4cQQFBcHW1ha3b99G+/btsXr1akydOhVffPEFppdyneZSB2xrk5wM+PgAP/wg9WST/C5duoQzZ87A1dUVx44dw6effgpbW9tCj83KyiowRrvNuf9D2FPvYuIn/8Mbg0fBzc3NXGWXWWxsLNatW4f+/fvD19dXdDkWIz09HVu2bEFWVpaie7KTDFmYdncHmmyPQIYDcODZAHzl+zQe17iLLq1QeXl50Ov1sLW1hY0NRxWaSk5ODrZt24bY2Fj2ZJsQ768UExOD9evXo2fPniV2uNWoUQMuLi6y1MEhIkXw8ACefBIIDWXANpf69eujfv36AIC+ffsWe6yjoyMcHR2NfzZ4uAIAbKDB9u3bMXLkSHh4eMhXrAn4+voiKChIdBkWZfTo0Vi6dCm2bt2KUaNGQavVii7pEUEAZqEbfsNSpLvYol1oDF4ZehDrAvujrsZLdHlkRi+99BJWrFiBbdu2Yfjw4ahcubLokiwG769UqVIl5ObmIikpScj12R1RDJ0O+OsvIDtbdCVUWoe6+iE3NxdLly5FcnKy6HLIzNQy8dFTI/1yeLlnFaS52uDZFffRP2IdLhsSxRZWiISEBKxZswYJCQmiS7E4nPhIJB+NRoMqVarA09NTyPUZsIvRrRuQmgocOSK6Euug0WgK/SqLNFc7jBo1iiHbiqklZAPAD64dcXpoLUWH7Ly8PGRlZXFdepkwZBPJR2TIZsAuRrNmgK+vNEyE5GcwGAr9Kitvb2+GbCunlpDtqXHEVo8+ig7ZWq0Ww4YNU+RwG0vBkE0kH1EhmwG7GDY2wDPPADt2iK7Euty7dw9Tpkyp0DkYskktIdtH46T4kE3yY8gmko+IkM2AXQKdDjh9GoiJEV2JdTAYDNi4caNJwhBDNjFkV1xERAQ++eQTxa8vbwkYsonkY+6QzYBdgm7dAIMB2LlTdCXWYefOnXj66adNdj6GbGLIrhgPDw/07NlT8avyWAqGbCL5mDNkM2CXICgIaNSI47DN4caNGwgICDD5lswM2cSQXX6urq5o0aIFXF1dhdVgbRiyieRjrpDNgF0KOp00Dptb8sjrzJkzuHXrFnbs2IE7d+7g3LlzJjs3QzYxZJdPZmYmrly5gszMTCHXt1YM2UTyyQ/ZD+6nYWoM2KWg0wGRkYAJ8x4VYsCAAXj22WeRkZGBrKyscq0gUhyGbGLILruEhASsXr2a62ALwJBNJB+NRlPkbtGmwIBdCu3bA87OHCZiDvb29pg0aRIOHTqExo0bm/z8DNnEkF02/v7+mDp1Kvz9/c16XZIwZBOpEwN2KTg6Ap06MWBbCoZsYsguPVtbW7i6usra00PFY8gmUh8G7FLS6YCDB4G0NNGVkCkwZBNDdukkJiZiw4YNSEw0z/WocAzZROrCgF1KOh2QnQ3s2ye6EjIVhmxiyC5Zbm4u4uPjkZubK/u1qHgM2UTqwYBdSnXqAFWrcpiIpWHIJobs4vn6+uLll1+Gr6+vrNeh0mHIJlIHBuxS0mikXmwGbMvDkE0M2aQmDNlEyseAXQY6HXDlCnD7tuhKyNQYsokhu3CRkZGYNWsWIiMjZTk/lQ9DNpGyMWCXQZcugK0te7EtFUM2MWQ/ys3NDZ06dYKbm5vJz00Vw5BNpFwM2GXg5QW0bs2AbckYsokhuyA3Nze0bduWAVuhGLKJlIkBu4x0OmD3boAT6i0XQzYxZP8nKysLN2/eRFZWlsnOSabFkE2kPAzYZdStG5CUBBw7JroSkhNDNjFkS+Lj4/Hrr78iPj7eJOcjeTBkEykLA3YZtWwJeHtzmIg1YMgmhmzAz88PkyZNgp+fX8ULJVkxZBMpBwN2GdnaAl27Ajt2iK6EzIEhm6w9ZNvZ2cHLywt2dnamKZRkxZBNpAwM2OWg0wEnTgD8xNQ6MGSTNYfspKQk/Pnnn0hKSjJdoSQrhmwi8Riwy0GnA/LygF27RFdC5sKQTdYasrOzs3Hv3j1kZ2ebtlCSFUM2kVgM2OVQuTJQvz7HYVsbhmyyxpDt5+eHsWPHcgy2CjFkE4nDgF1O+dumGwyiKyFzYsgmawzZpF4M2URiMGCXk04H3L8PXLokuhIyN4ZssqaQHRUVha+//hpRUVHyFUqyYsgmMj8G7HLq0AFwdOQwEWvFkE3WErJdXFzQsmVLuLi4yFsoyYohm8i8GLDLydlZCtkM2NaLIZusIWS7u7ujQ4cOcHd3l79QkhVDNpH5MGBXgE4H7N8PZGSIroREYcgmSw/Z2dnZuHv3LlcRsRAM2UTmwYBdATodkJkJHDgguhISiSGbLDlkx8XFYdGiRYr9O1HZMWQTyY8BuwIaNAAqVeIwEWLIJssN2b6+vhg3bhx8fX3NWyjJiiGbSF4M2BWg0QDdujFgk4QhmywxZNvb28Pf3x/29vbmL5RkxZBNJB8G7ArS6YCLFwHelwhgyCbLC9nJycnYsWMH27KFYsgmkgcDdgV17Sr1ZO/YIboSUgqGbLKkkJ2ZmYmrV68iMzNTXKEkK4ZsItNjwK4grRZo2ZLDRKgghmyylJDt7++PiRMnwt/fX2yhJCuGbCLTYsA2AZ0O2LkT0OtFV0JKwpBNlhKyyTowZBOZDgO2CXTrBiQkACdPiq6ElIYhm9Qeso9F3cAPP/yA6Oho0SWSGTBkE5kGA7YJtG4NeHhwmAgV7uGQnZqaKrokMrOHQ3ZiYqLokgpVWMgen7wbgfVrwMnJSXR5ZCYM2UQVx4BtAvb2QJcunOgokn12nugSivVgyN6yZYvockiAB0P25s2bRZdTpIdD9tMbovBR/Sj8467s1xiZFkM2UcUwYJuITgccPQokJYmuxDo1Pxov/Y/BILaQYuSHbP2/g/XZk2198kO2o6MjAKijJ9tFg96/3sMLd//gmGwrw5BNVH4M2Cai00mTHHfvFl2JdTrf1FP6H41GbCEl8Pb2Ru/evQEAW7Zs4ZhsK+Tm5oZevXoBADZv3qz4MdnXu1WBS6YBPVf9w4mPVoghm6h8GLBNJDgYqF2b47BFSXOXdpnT5Bmwe/duRfcOe3h4AAD0ej0nPlopFxcXAICjo6PiJz7+WvU5HB4cjBQ3ri5irRiyicqOAduEdDopYCt4lILFc8rU4/z584iIiBBdSol69+7N1UWsXK9evRS/ukiAowdW1R6E08Nqcwk/K8aQTVQ2DNgmpNMBt28DV6+KrsR6ZbjYYeLEiahVqxYAICcnR3BFRfPw8OASflbOxcVF8Uv4paSk4Ny+o1ijeZrrZFs5hmyi0mPANqFOnaQVRThMRCw7OzsAwIkTJxASEoKsrCzBFRWN62ST0tfJTk9Px+nTp+GQoedmNMSQTVRKDNgm5OoKtG/PgK0U1atXR5MmTeDg4CC6lGIxZJOSQ3ZAQAAmT56MgIAA7vhIABiyiUqDAdvEdDpg715AwZ2mVkOr1eLJJ5+ERqPBrVu3FD3xkSGblByyH8SQTQBDNlFJGLBNTKcD0tOBQ4dEV0L59Ho9Nm3ahIMHD4oupVgM2aTEkB0TE4N58+YhJibG+D2GbAIYsomKw4BtYo0aAQEBHCaiJLa2thg5ciS6du0qupQSMWST0kK2g4MDgoODHxlqxZBNAEM2UVEYsE3Mxgbo1o0BW2m8vLxgZ2eHuLg4/PrrrxwuQoqmpJDt6emJHj16wNPT85GfMWQTwJBNVBgGbBnodMDZs0BkpOhKSK0YskkpITs3Nxfx8fHIzc0t9OcM2QQwZBM9jAFbBs88I/13xw6xddCjtFothg8fDjc3N2RmZrInmxRNCSE7JiYGP/74Y4Ex2A9jyCaAIZvoQQzYMvD3B5o14zARpdu4cSN+//13GBS89SZDNokO2T4+Phg5ciR8fHyKP44hm8CQTZSPAVsmOp3Ug52XJ7oSKkrXrl3Ro0cPaDQa0aUUiyGbRIZsR0dHBAcHw9HRscRjGbIJYMgmAhiwZaPTAbGxwN9/i66EiqLVahEUFIS8vDzs2bOHw0VI0USF7NTUVBw6dKjUrw+GbAIYsokYsGXSti3g5sZhImqQmpqKM2fO4P79+6JLKRZDNokI2ampqTh48GCZfgFlyCaAIZusGwO2TBwcgM6dOdFRDTw8PDBx4kTUqVMHAIpcLUEJGLLJ3CE7MDAQ7777LgIDA8v0OIZsAhiyyXoxYMtIp5N2dExJEV0JlcTe3h4AcOrUKYSEhCBLwXvdM2ST6ImPpcWQTQBDNlknBmwZ6XRAbi6wZ4/oSqi0goOD8cQTTzyya53SMGSTuUJ2bGwsFi5ciNjY2HI9niGbAIZssj4M2DKqWROoXp3jsNVEq9Xiqaeegkajwe3btznxkRTNHCHbzs4Ofn5+sLOzK/c5GLIJYMgm68KALTOdjgFbjfR6PTZu3Ij9+/eLLqVYDNkkd8j28vJCnz594OXlVaHzMGQTwJBN1oMBW2Y6HXDjhvRF6mFra4sRI0agW7duokspEUM2yRmy9Xo9UlJSoNfrK3wuhmwCGLLJOjBgy6xzZ8DOjr3YauTl5QU7OzvEx8dj+fLlHC5CiiZXyI6OjsY333yD6Ohok5yPIZsAhmyyfAzYMvPwANq1Y8BWM4PBAL1er+gt1QGGbJInZHt7e2PIkCHw9vY2QYUShmwCGLLJsjFgm0G3bsBffwHZ2aIrofLQarUYOXIk3N3dkZWVxZ5sUjRTh2wnJyfUrl0bTk5OJqpQwpBNAEM2WS4GbDPQ6YDUVODIEdGVUEVt2rQJv/32m6J7sxmyyZQhOy0tDcePH0daWpoJK5QwZBPAkE2WiQHbDJo1A3x9uaujJXj66afRvXt3aDQa0aUUiyGbTBWyk5OTsWPHDtnaEEM2AQzZZHkYsM3AxgZ45hmOw7YEWq0WlSpVgsFgwL59+zhchBTNFCE7KCgI06dPR1BQkAwVShiyCWDIJsvCgG0mOh1w+jQQEyO6EjKF1NRUnD59Gnfu3BFdSrEYsonbqpOaMGSTpWDANpNu3QCDAdi5U3QlZAru7u6YMGEC6tevDwDIzc0VXFHRGLKpIiE7Li4Oy5YtM0swZ8gmgCGbLAMDtpkEBQGNGnGYiCVxcHAAAJw5cwYhISHIzMwUXFHRGLKpvCHbxsYGrq6usLExz9sFQzYBDNmkfgzYZqTTSRMdFbwABZVDlSpVUL9+fTg6OooupVgM2VSekO3t7Y0BAwaYdB3skjBkE8CQTerGgG1GOh0QGQmcOye6EjIlrVaLTp06QaPR4O7du5z4SIpW1pCdl5eHrKws5OXlmalCCUM2AQzZpF4M2Gb05JOAszOHiViqvLw8bNiwAXv37hVdSrEYsqksITsqKgpffPEFoqKizFihhCGbAIZsUicGbDNycgI6dWLAtlQ2NjYYNmwYdDqd6FJKxJBNpQ3ZXl5eeP755+Hl5WXeAv/FkE0AQzapDwO2mel0wMGDgAybopECeHt7w97eHomJiVi5ciWHi5CilSZkOzs7o0GDBnB2dhZQoYQhmwCGbFIXBmwz0+mA7Gxg3z7RlZCc9Ho9srKyoNfrRZdSLIZsKilkp6en48yZM0hPTxdUoYQhmwCGbFIPBmwzq1MHqFqVw0QsnVarxahRo+Dp6Yns7GykKfgjC4ZsKi5kJyUlYePGjUhKShJYoYQhmwCGbFIHBmwz02ikXmwGbMun0WgAAJs3b8aqVatgUPD6jAzZVFTIDgwMxIwZMxAYGCi4QglDNgEM2aR8DNgC6HTAlSvA7duiKyFz6NSpE3Q6nTFwKxVDNhUWsjUaDWxsbBTVfhmyCWDIJmVjwBagSxfA1pa92NZCq9WiSpUqMBgMOHDggPCxrMVhyKaHQ/bNmzexatUqxMfHiy6tAIZsAh4N2SKWkyQqDAO2AF5eQOvWDNjWJjU1FSdOnEBERIToUorFkE0Phuy1a9ciOztbdEmFYsgmoGDI/vPPP0WXQwSAAVuYbt2A3buB3FzRlZC5uLu7Y+LEiahRowYAKHqFEYZsyg/ZLi4uiI2NVewcAoZsAv4L2b6+vgDAnmwSjgFbEJ0OSEoCjh0TXQmZk4ODg/H/161bh8zMTIHVFI8hm9zc3DBixAg4Ojpi8eLFJW6rLgpDNgHS/bVHjx4AgD///JNjskkoBmxBWrYEvL2BHTtEV0KiBAcHw9HRUXQZxWLIptTUVMTFxcHe3r7EbdVFYsgmALC3twcA+Pr6cuIjCcWALYitLdC1K8dhW7OWLVtCo9Hg/v373PGRFMvT0xN9+/bFiy++WOK26qIxZFO+Hj16cHUREooBWyCdDjhxAlDY5Hwyo7y8PKxfvx5//fWX6FKKxZBtvVxcXNCkSRP4+fmVuK26EjBkEyD1ZHMJPxKJAVsgnQ7IywN27RJdCYliY2ODoUOHonv37qJLKRFDtnXKyMjAxYsXkZGRUeK26krBkE0A18kmsRiwBapcGahfn8NErJ23tzccHByQnJyMVatWcbgIKUpiYiL++OMPJCYmAih+W3UlYcgmgCGbxGHAFix/23SFroBFZpSTk4P09HTkKnztRoZs6xIQEID33nsPAQEBxu8xZJOaMGSTCAzYgul0wP37wKVLoish0bRaLV5++WV4eXkhJycHaWlpoksqEkO29bCxsYGjoyNsbAq+XTBkk5owZJO5MWAL9tRTgKMjh4mQRKPRAAC2bNmClStXKnZzD4Ah21okJCRg7dq1SEhIeORnDNmkJgzZZE4M2IK5uAAdOjBgU0EdOnRAt27djIFbqRiyLV9eXh7S0tKQl5dX6M8ZsklNGLLJXBiwFUCnA/bvBzIyRFdCSqHValGtWjUYDAYcOnSIEx9JGK1WixEjRkCr1RZ5DEM2qQlDNpkDA7YC6HRAZiZw4IDoSkhp0tLScOzYMdy8eVN0KcViyCaGbFIThmySGwO2AjRoAFSqxGEi9Cg3NzdMmDABjRo1AgDo9XrBFRWNIdsyRUREYObMmYiIiCjxWIZsUhOGbJITA7YCaDRAt24M2FQ4R0dHAMCFCxcQEhKCDAWPJWLItjweHh7o1q0bPDw8SnU8QzapCUM2yYUBWyF0OuDiRYCvbSpKUFAQatasCScnJ9GlFIsh27K4urqiVatWcHV1LfVjGLJJTRiySQ4M2ArRtavUk71jh+hKSKm0Wi2eeeYZaDQa/PPPP5z4SGaRmZmJq1evIjMzs0yPY8gmNWHIJlNjwFYIrRZo2ZLDRKhkeXl5WL9+PXbv3i26lGIxZFuGhIQErFq1qtB1sEvCkE1qwpBNpsSArSDdugE7dwIKnsdGCmBjY4MhQ4age/fuokspEUO2+vn7+2Py5Mnw9/cv1+MZsklNGLLJVBiwFUSnAxISgJMnRVdCSufj4wNHR0ekpKTgt99+43ARko2trS3c3d1ha2tb7nMwZJOaMGSTKTBgK0jr1oCHB8dhU+llZ2cjJSUF2dnZokspFkO2eiUmJmLTpk1ITEys0HkYsklNGLKpohiwFcTeHujSheOwqfS0Wi1Gjx4NHx8f5ObmIi0tTXRJRWLIVqfc3FzExMQgNze3wudiyCY1YcimimDAVhidDjh6FEhKEl0JqYVGowEA/Pnnn1ixYgUMBoPgiorGkK0+vr6+GD16NHx9fU1yPoZsUhOGbCovBmyF0emkSY4KXyCCFKh9+/bGZfyUjCGbGLJJTRiyqTwYsBUmOBioXZvDRKjstFotHn/8cRgMBhw5coQTH8kkIiMjMXv2bERGRpr0vAzZpCYM2VRWDNgKpNNJAVvBn/STgqWnp+PIkSO4fv266FKKxZCtDm5ubmjfvj3c3NxkOTdDNqkFQzaVBQO2Aul0wO3bwNWroishNXJ1dcX48ePRpEkTANLGNErFkK18bm5uePLJJ2UJ2PnnZ8gmtWDIptJiwFagjh2lFUU4TITKy8nJCQAQFhaG+fPnIyMjQ3BFRWPIVrasrCyEh4cjKytLtmswZJOaMGRTaTBgK5CbG9C+PQM2VZy/vz+qV68OR0dH0aUUiyFbueLj47F06VLEx8fLeh2GbFIThmwqCQO2Qul0wN69gIydRmQFtFotdDodbGxsEBkZyYmPVGZ+fn54/fXX4efnJ/u1GLJJTRiyqTgM2Aql0wHp6cChQ6IrIUtgMBiwfv167Ny5U3QpxWLIVh47Ozv4+PjAzs7OLNdjyCY1YcimojBgK1SjRkBAAIeJkGloNBoMGjQIPXr0EF1KiRiylSUpKQnbtm1Dkhl3v2LIJjVhyKbCMGArlI0N0K0bAzaZjo+PD5ycnJCWloY1a9ZwuAiVSnZ2NsLDw5GdnW3W6zJkk5owZNPDGLAVTKcDzp4FTLy/A1m5zMxMJCQkyLoqhCkwZCuDn58fxo0bZ5Yx2A9jyCY1YcimBzFgK9gzz0j/3bFDbB1kWbRaLV599VVotVro9Xqkp6eLLqlIDNnEkE1qwpBN+RiwFczfH2jWjMNEyPQ0Gg0AYOvWrfj111+5GQ0VKSoqCt988w2ioqKE1cCQTWrCkE0AA7bi6XRSD7aC8w+pWLt27dC1a1fY2Cj7VsCQLY6LiwuaNWsGFxcXoXUwZJOaMGSTst9VCd26AbGxwN9/i66ELJFWq0WNGjVgMBhw/PhxTnykR7i7u6NTp05wd3cXXQpDNqkKQ7Z1Y8BWuHbtpJ0dOQ6b5JSRkYEDBw7g6tWrokspFkO2+WVnZ+P+/ftmX0WkKAzZpCYM2daLAVvhHByAzp05Dpvk5eLigvHjx6NZs2YAwDHZZBQXF4dffvlFUUGWIZvUhCHbOjFgq4BOJ+3omJIiuhKyZM7OzgCAK1euICQkhKuLEADA19cXr732Gnx9fUWXUgBDNqkJQ7b1YcBWAZ0OyM0F9uwRXQlZA19fX1SrVg1OTk6iSykWQ7Z52NvbIyAgAPb29qJLeQRDNqkJQ7Z1YcBWgZo1gerVOUyEzEOr1aJHjx6wsbFBdHQ0Jz5aueTkZOzatUuxzy1DNqkJQ7b1YMBWCZ2OAZvMy2AwYN26dQhVeMNjyJZXZmYmLl26hMzMTNGlFIkhm9SEIds6MGCrhE4H3LghfRGZg0ajwcCBA9GzZ0/RpZSIIVs+/v7+eOONN+Dv7y+6lGIxZJOaMGRbPgZslejcGbCzYy82mZePjw+cnZ2Rnp6OP/74g8NFSNEYsklNGLItGwO2Snh4AG3bMmCTGBkZGYiLi0NGRoboUorFkG160dHR+OmnnxAdHS26lFJhyCY1Yci2XAzYKqLTAX/9BShkvweyIlqtFmPGjIGfnx/0ej2X8LMiTk5OqF27tuJXlXkQQzapCUO2ZWLAVhGdDkhNBY4eFV0JWSONRgMA2L59O5YtW8bNaKyEh4cHunXrBg8PD9GllAlDNqkJQ7blYcBWkWbNAF9fDhMhsdq0aYOnn34aNjbKvn0wZJtGTk4OoqOjkZOTI7qUMmPIJjVhyLYsyn6HpAJsbIBnnmHAJrG0Wi1q164NADh58iQnPlq42NhYzJs3D7GxsaJLKReGbFIThmzLwYCtMjodcPo0EBMjuhKydhkZGdi3bx8uX74supRiMWRXjFarxcsvvwytViu6lHJjyCY1Yci2DAzYKtOtG2AwADt3iq6ErJ2zszPGjx+PFi1aAADHZFsoBwcHVKlSBQ4ODqJLqRCGbFIThmz1Y8BWmaAgoFEjDhMhZXB2dgYAXLt2DQsWLODqIhYoJSUF+/fvR0pKiuhSKowhm9SEIVvdGLBVSKcDduyQerKJlMDHxweVKlWCo6Oj6FKKxZBddunp6Thx4oSif3kqC4ZsUhOGbPViwFahbt2AyEjg3DnRlRBJtFotevXqBVtbW8TExHDiowUJCAjAlClTEBAQILoUk2HIJjVhyFYnBmwVat8ecHbmMBFSHoPBgHXr1mH79u2iSykWQzYxZJOaMGSrDwO2Cjk5AZ06ScNEiJREo9Hg+eefR8+ePUWXUiKG7NKJiYnB/PnzEWOBSxcxZJOaMGSrCwO2Sul0wIEDQFqa6EqICtJqtXBxcUFGRgbWrVvH4SIq5+DggMqVK6t+FZGiMGSTmjBkqwcDtkrpdEB2NrBvn+hKiAqXkZGB6OhopCn8t0CG7OJ5enri2Wefhaenp+hSZMOQTWrCkK0ODNgqVacOULUqx2GTcvn4+GDs2LEICAhAXl6eolehYMguWm5uLhITE5Gbmyu6FFkxZJOaMGQrHwO2Smk0Ui82AzYpmUajAQCEhoZi2bJl3IxGhWJiYvD9999b5BjshzFkk5owZCsbA7aK6XTAlSvA7duiKyEqXqtWrdCpUyfY2Cj7lsOQ/SgfHx8MHz4cPj4+oksxC4ZsUhOGbOVS9rsdFatLF8DGhr3YpHxarRZ169YFAJw+fZoTH1XE0dER1atXV/wmQqbEkE1qwpCtTAzYKublBbRuzYBN6pGZmYm9e/fi4sWLokspFkP2f1JTU3HkyBFF/1IkB4ZsUhOGbOVhwFY5nQ7YvRuw8PlHZCGcnJzw2muvoVWrVgCkjWmUiiFbkpqair1791pdwAYYskldGLKVhQFb5XQ6ICkJOH5cdCVEpePi4gKNRoMbN24gJCRE0cv4MWQDgYGBmDZtGgIDA0WXIgRDNqkJQ7ZyMGCrXMuWgLc3h4mQ+nh5eSEoKAhOTk6iSykWQzYxZJOaMGQrAwO2ytnaAl27MmCT+mi1WvTp0we2traIi4tT9BAEaw7ZsbGxWLRoEWJjY0WXIhRDNqkJQ7Z4DNgWQKcDTpwA4uNFV0JUdgaDAevWrcPWrVtFl1Isaw3ZdnZ28PHxgZ2dnehShGPIJjVhyBaLAdsC6HRAXh6wa5foSojKTqPRoH///ujZs6foUkpkjSHby8sL/fr1g5eXl+hSFIEhm9SEIVscBmwLULkyUL8+h4mQemm1Wri5uSEzMxMbNmzgcBEF0ev1SEtLg16vF12KYjBkk5owZIvBgG0h8rdNV/CqZ0QlSk9Pxz///KPogA1YV8iOjo7GnDlzEB0dLboURWHIJjVhyDY/BmwL0a0bcP8+cOmS6EqIys/Hxwfjxo1DYGAg8vLykJGRIbqkIllLyPb29sbgwYPh7e0tuhTFYcgmNWHINi8GbAvRoQPg6MhhIqR+Go0GALBr1y4sWbJE0UMTrCFkOzk5oU6dOopfTlEUhmxSE4Zs82HAthAuLlLI3rFDdCVEptG8eXN07NgRtra2oksplqWH7LS0NJw8eVLRGwKJxpBNasKQbR4M2BZEpwP27QMU/Kk6UalptVrUr18fAHDmzBlFj8u25JCdnJyMrVu3WtTfSQ4M2aQmDNnyY8C2IDodkJkJHDgguhIi08nMzMRff/2F8+fPiy6lWJYasoOCgvDBBx8gKChIdCmKx5BNasKQLS8GbAvSoAFQqRLHYZNlcXJywtixY9GmTRsA0sY0SmWpIZtKjyGb1IQhWz4M2BZEo5FWE2HAJkvj6uoKjUaDW7duYcGCBYoeD2xpITsuLg7Lly9XbFBUIoZsUhOGbHkwYFsYnQ64eBHg64MskYeHBwICAuDo6Ci6lGJZUsi2sbGBo6MjbGz4dlEWDNmkJgzZpsc7poXp2lXqyeZqImSJtFot+vbtCzs7OyQkJHDioxl4e3vjhRde4DrY5cCQTWrCkG1aDNgWRqsFWrTgMBGybAaDAWvXrsWff/4pupRiWULIzsvLQ3Z2NvLy8kSXokoM2aQmDNmmw4BtgXQ6YOdOQMH7cxBViEajwXPPPYeePXuKLqVEag/ZUVFRmDVrFqKiokSXoloM2aQmDNmmwYBtgXQ6ICEBOHVKdCVE8tFqtXB3d0dWVhY2btyoquEiSq71YV5eXujfvz+8vLxEl6JqDNmkJgzZFceAbYFatwY8PKxzmIh7Yrbx/2NiYpCUlAQAyM3NRUREBLKysgAAqampiIyMNB4bGxuLxMREAIBer0dERAQyMzMBSDvZRUREGI+Ni4tDQkICAOnj84iICGT8u7tPeno6IiIijEvJxcfHIz4+HoA0rOHB82ZlZSEiIsL40XtCQkKBN92IiAjjahmZmZmIiIgwbhuemJiI2NhY47GRkZHG0JZ/3tzcXABAUlISYmJijMdGRUUhJSUFAJCdnY2IiAjk5OQAkDYViY6ONh4bHR1t7HHNyclBREQEsrOl5zglJaVAr6aI5zsjIwPh4eG4d+8ekpOTkZCQYHy+85/D9PR047HFPd+RkZHG5zv/Ocx/vpOSkgo831FRUcbnO/85zH++k5OTCzzf0dHRSElJgbe3N4YOHYqsrCxs3rzZ+Hd98PmOiYkxPt/5z2H+852amlrg+Y6NjTU+3/nPYf7znZaWVuD5Lk2bzRcfH2881mAwIDExETVr1oSzs3OJzyHbbPHPt5ubGwYOHAg7OzssXrwYcXFxhd4jSttm5Xq+c6KTsEbztBSyXTTo/es9vHD3D1w2JKri+c5/Ph58DvPvyUq+Rzz4HOa375SUFGH3CL1ej6FDh8LPzw9Lly41huyH7xEP35NF3yPynzvRGLAtkL090KWLZQTs8+fPl+or798XaLt9/72Q//jjDxw+fBiAdEMLCQkx3pTPnj2LpUuXGo/duHEj9u/fD0AKHCEhIbhz5w4A4OLFi1i4cKHx2D///BN//fUXAOmFHBISgps3bwIArl69ipCQEOPNPDQ0FKH//kMYDAaEhITg9u3bAID79+8jJCTEeDP466+/CowpXrhwIS5evAgAuHPnDkJCQoxvBPv378fGjRuNxy5duhRnz54FIN3AQkJCjDfhw4cP448//jAeu2LFCpz69+ONmJgYhISEGN9wjh8/jtWrVxuP/f3333H06FEA0o0yJCTEeAP/+++/sXz5cuOx69atw8GDBwFIN/qQkBDcv3/f+O+4ePFi47GbNm3C3r17AUg32Qefl7CwMCxYsMB47LZt27Br1y4A0htKSEgIrl+/DgC4du0aVq9ejVdffRWPPfYYQkNDCzyHISEhuHz5MgAgPDwcISEhxjeYPXv2GIMuACxatAgXLlwAANy9exchISHGN4L9+/dj/fr1xmOXLVuGv//+G4D0JhASEmIMA0eOHMGaNWuMx65cuRInTpwAIL3JpaWlISNHekM8c+YMVq5caTx2zZo1OHLkCADpzSYkJMT4Jvj3339j2bJlxmPXr19vbLNpaWkICQnB3bt3AQAXLlzAokWLjMdu3rwZe/bsASC9UYWEhCA8PBwAcPnyZYSEhBiP3b59O3b8O0tar9cjJCQEu3fvRkZGBq5fv46QkBDjm9yuXbuwbds242MXLFiAsLAwAMDt27cREhJiDDp79+7Fpk2bjMcuXrzYuHlQ/msh/8304MGDWLdunfHY5cuXG5/vqKgohISEGN/gjx49it9//9147OrVq3H8+HEAUhAICQkxvhGfOnUKK1asMB4r4h5x//59JCYmGnuyN2/e/Mg94urVqwCAmzdvCrtH3Dh9AVs9+uBG1ypwyTSg56p/0D9iHbYfP6Doe0R+WMsPg9euXUNISIjx+zt27MD27duNj1XaPSI2NhYhISHGoHnixAmh9wgHBwc0atQIubm5xp7swu4R165dAwBF3CMe/AVKJI1Bybs2ULnNnw9MmADExQGenqKrKb/S7t73fO4eXG02CS33fYPjHd4CIIVHBwcHeHp6Ijc3FzExMfDx8YGjoyNSU1ORmpqKwMBAANJNzc7ODl5eXtDr9YiOjoa3tzecnJyQlpaG5ORk4052cXFxsLGxgbe3N/Ly8hAVFQUvLy84OzsjPT0dSUlJCAwMhEajMb7QfXx8YDAYEBkZiczMTCxbtgwjR46Eo6MjAgICYGNjg4SEBOTl5UGr1QKQ3gQ9PDzg6uqKzMxMJCQkwN/fH7a2tkhMTERubi58fX0BSDdwNzc3uLm5ISsrC/Hx8fDz84OdnR2SkpKQnZ0NPz8/AFJAcXFxgbu7O7KzsxEXFwdfX1/Y29sjOTkZmZmZ8Pf3ByD1rDg5OcHDwwM5OTmIjY2FVquFg4MDUlJSkJ6ejoCAAGHPd0ZGBhITE43P95YtWxAeHo5x48bB1tYWERER8PT0hIuLi/HYop7vyMhIuLu7w9XV1fgc5j/fSUlJyMnJMT7fUVFRcHV1hZubm/E5zH++k5OTkZWVZXy+o6Oj4ezsDHd3d+NzuDn2EiLWHYSzmyuef64/qlevbnwOHR0d4eHhYXwO85/v1NRUpKWlGZ/v2NhY2Nvbw9PT0/gc5j/faWlpSElJMT7fpWmz+c93fHw8NBoNvL29YTAYcOHCBaxbtw5jxoyBl5dXsc8h22zp7xFubm5YtmwZ0tPTMWDAAFSvXt14jyhtmzXH8x2VlYzhd9aj5o67cE034K9+AZjr0QWtA2oo8vm+f/8+fvnlF4wYMQKPP/74I/eIhIQEGAwG+Pj4GJ9DJd4j8tt3SkoKMjIyjO1b1D0iNjYWu3fvRmRkJPr27YugoCDjPSIyMvKRe7LINnvnzh0sXrwYY8aMEboDLQO2hQoPBx5/HFi7FujfX3Q15VfWgF337E8IazRB5qoqJr/3SPSL3xLFxcUhIiICDRs2FF1KsZbeP47wX7Yhw9UWAY4eGD1yFDw8PESXVSiDwQC9Xg9bW1toNBrR5ViU1NRULF26FJmZmRg1apQxhChNvCETPZM3odmKa3BNy8OfQythXVB/1NV4iS7tEby/yic7OxsrVqxAZGQkhg8fjsqVK4suqVBKaQMcImKhgoOB2rUtY5gIUWlptVpjuD5//rziJxOu7+GBiNwULFy6RLGri2g0GtjZ2TFcy4ATH0lNOPGxbBiwLZhOJwVsfkZB1iYrKws7d+40jjlVqhQPW/wy1EfRITshIQG//fabccwzmRZDNqkJQ3bpMWBbMJ0OuH0b+He+DJHVcHR0xJgxY9CuXTsAgJJHwiV42yk6ZOcPEVHyc6h2DNmkJgzZpcOAbcE6dpRWFOEwEbJGbm5u0Gg0uH37Nn755RfjbH8lUnLI9vHxwYsvvmicFEbyYMgmNWHILhkDtgVzcwPatwf+XU2HyCq5ubnB19cXDg4OoksplpJDNpkHQzapCUN28RiwLZxOB+zZA/y7rCeR1dFqtXjuuedgb2+PxMRERU98VGLIjoiIwMcff1xgYw+SD0M2qQlDdtEYsC2cTgekpwOHDomuhEgsg8GAdevWFdg4QomUFrI9PT3Ru3dveKp5QX2VYcgmNWHILhwDtoVr1AgICOA4bCKNRoO+ffuiZ8+eokspkZJCtouLC5o1awYXFxdhNVgjhmxSE4bsRzFgWzgbG6BbNwZsIkAaLuLp6Yns7Gxs3ryZw0VKISMjA2FhYcjIyBByfWvGkP3/7d15eFTl3f/x92Tft5OFuABKcS+iKKWKKAqGHYWigguIuLC41O0HPnR5WuuubbWIgFAQJVglLCGCCiJYHxcUEbUoioBiSSCEhCQkk2Xm98doBCUhwMzc58x8XteVyxYmM99LJ+Gdw7nvW5xEkX0gBXYYyMuDjz+G4mLTk4jYQ3V1Ndu2baO8vNz0KC2yQ2SXl5fzr3/9y/b/rkKVIlucRJH9IwV2GOjd2/dP7SYi4pOens64ceM47rjj8Hq91NbWmh6pWaYjOycnh3vvvZecnJygvq78SJEtTqLI9lFgh4HsbDj7bN0mIrK/iAjft79Vq1Yxa9YsGhsbDU/UPJORHRERQXx8fNO/LzFDkS1OoshWYIeNSy/1XcH2eExPImIvZ555Jueffz6RkZGmR2mRqcjes2cPBQUFOirdBhTZ4iThHtkK7DCRlwelpbB+velJROzFsizOPPNMAD777DMtfPwJj8fD3r178einc1tQZIuThHNkK7DDxHnn+U521G0iIgdXV1fHq6++ykcffWR6lBYFO7Ity2LUqFFYlhXQ15HWU2SLk4RrZCuww0RMDPTsqcAWaU5MTAw33ngj3bt3B3wH09iV6YWPYp4iW5wkHCNbgR1G8vJ8JzpWVpqeRMSekpOTcblcfPvtt8ycOVO3iwDFxcU88MADFGufT9tRZIuThFtkK7DDSF4eNDTAqlWmJxGxt4SEBNLT04mJiTE9SouCEdnJyclccsklJCcn+/255egpssVJwimyFdhh5Be/gBNP1G0iIodiWRZDhw4lJiaGvXv3hvWV7MTERH71q1+RmJjo1+cV/1Fki5OES2QrsMNMXp4CW6S1vF4vCxYsYPHixaZHaVEgI9vtdvPVV1/hdrv99pzif4pscZJwiGwFdpjJy4PNm30fItIyl8vFoEGD6N+/v+lRDilQkV1WVsYLL7xAWVmZX55PAkeRLU4S6pGtwA4zPXtCVJSuYou0lmVZpKWlUV9fz9KlS8PudpHs7Gx++9vfkp2d7YcJJdAU2eIkoRzZCuwwk5ICv/61AlvkcFVVVbFlyxbbX8n1d2RHRkaSkpJi+5Mu5UeKbHGSUI1sBXYYysuDN96A+nrTk4g4R3p6OuPHj6dt27Z4vV5qa2tNj9Qsf0Z2RUUFhYWFVFRU+HFCCTRFtjhJKEa2AjsM5eVBVRW8847pSUScJSLC9y1zzZo1zJo1i4aGBsMTNc9fkV1fX09xcTH1+onccRTZ4iShFtkK7DB09tmQmanbRESO1BlnnMGvf/1roqKiTI/SIn9EdmZmJjfeeCOZmZkBmFACTZEtThJKka3ADkMREdC7twJb5EhZlsVZZ50FwMaNG8Nu4aM4iyJbnCRUIluBHaby8mDdOti1y/QkIs5VX1/P8uXL+eCDD0yP0qKjieySkhIeffRRSkpKAjihBJoiW5wkFCJbgR2mLr0UvF54/XXTk4g4V3R0NGPGjOHCCy8EfAfT2NWRRnZiYiLdunXTSY4hQJEtTuL0yFZgh6ncXOjUSbeJiByt5ORkXC4X3333HbNmzQq520WSkpK44IILSEpKCsKEEmiKbHESJ0e2AjuMXXopvPaa70q2iByduLg4UlJSiI6ONj1Kiw43suvq6vjmm2+oq6sL0oQSaIpscRKnRrYCO4zl5UFxMWzYYHoSEeezLIthw4YRGxtLZWVlyFzJ3r17N//85z9tG2FyZBTZ4iROjGwFdhjr3h3i431XsUXEfwoKCli0aJHpMVrU2sjOyspi/PjxZGVlBXlCCTRFtjiJ0yJbgR3G4uLgoot0H7aIvw0YMIB+/fqZHuOQWhPZUVFRZGZm2n7PbzkyimxxEidFtgI7zOXlwVtvQXW16UlEQodlWWRkZNDQ0MArr7zi6NtF9u7dy6uvvqr9s0OYIlucxCmRrcAOc3l5UFcHq1ebnkQk9FRVVfHVV1/ZNlh+0FJku91uNm/ejNvtNjihBJoiW5zECZGtwA5zJ58Mbdva4zaR6upqioqK6N27t+lRRPwiLS2N8ePH065dO7xer60jtbnIzsrKYty4cboHOwwossVJ7B7ZCuww53L5rmLbIbATExPp378/9fX1pkcR8ZvIyEgA/v3vfzNz5kxbv791rLo4PbK3eCtNjyZBZOfIVmALeXnwxRewbZvpSURC12mnncavfvUrx+2T/fXXX/O3v/2NnTt3mh5NgsTJkX1P6Rumx5Ig+2lkl5SUmB4JAC0LFy6+2Hcle9o0eOAB09O0Tl1dXdPBFx6Ph45fl7MJiCqvZseOHWaHO4TS0tID/inh45hjjmHHjh1UfLIFgMzSBsMTNW/xpclcvmwvLy8s4MR27dm7dy+NjY2mx5Ig6tOnD0uXLmXmzJkMHDiQtLQ00yMd1GxvV27rXcMpr3zLBUW+uPp4l64YhZtLLrmEZcuWsXTpUgAaGsx+f3V5va07xy8/P5+uXbuyYMECbr/9dh599FEmT57M/fffz+jRo1m2bBmdOnWirKyM6upqTjnlFFasWMGoUaN48sknmx47btw48vPzueCCC9i6dSuRkZHk5uaydu1ahgwZwrRp05oee+eddzJ16lQGDBjAxx9/jGVZxMfHs2nTJi655BLmzJnT9NhJkybxyCOPMGLECNasWcMJJ5xAQ0MDxcXFdOnShUWLFnHrrbfy2GOPNX3OmDFjKCwspHPnzuzevZuamho6duzIqlWruO6663jqqaeaHjthwgSef/55LrzwQjZv3kxMTAw5OTl8+OGHDB48mBkzZjQ99q677uLpp59m0KBBrFu3jqysLGJjY9m8eTMXXXQRc+fOZdKkSTzwwAPcd999PPjgg1x77bW8+eabdOjQAbfbza5duzj77LNZsmQJ48aN4/HHH296/htvvJHFixfTpUsXSkpKqKuro0OHDqxevZprrrmGf/zjH02PvfXWW3nuuefo2bMnX375JfHx8ViWxfr16xk4cCDPPvss55wzmb597+dXv7qboUOf4rLLLuPDDz+kTZs2REVFsWXLFnr06MG8efO49957efDBB5uef+TIkaxcuZKTTjqJmpoadu/ezZlnnsnSpUsZO3YsTzzxRNNjb775ZgoKCjj33HPZsWMHjY2NtG/fnrfeeovhw4fz9NNPM3nyZE444QQ+/vhjZs+eTdu2bdmyZQvx8fGkpqayadMmunfvzqRJk1i7di0A2dnZXHfjaB77y0NMnDiRuLi4gH7RiIiIiL316dOH9957j169evH555+TmJhIRkYGGzZsoG/fvsyaNaupT+655x7+/ve/M3ToUN5//31yc3OJjIxk27ZtdO/enfnz53P33Xfz0EMPMXny5Fa9fqsDW0LTxo3QrZvv0JklS+D720WNcLvdLFiwoOmHjiFDhrBp06aDPnb/K9gA4/atYX2vidz48P8w+aqbbP3X8KWlpRQUFDBkyBAyMzNNjyMGfPPNNyxfvpwhQ4ZgWRYul8v0SM0qKytj6dKlREdHM3DgQJKSkkyPJEG2b98+li5ditvttvWV7Aqvm0nfvkbn5Tuoi3GxsH8q5en6i/pw07EYLn6llMsvv5xOnToZm0PvvDC2ezcMHAjHHw/5+WbjGiA2NpYRI0YwYsSIQz42JiaGmJiYpv+/Ly4egNRKDytXruTqq68+4PftKDMzk9zcXNNjiGGvvvoqw4YNs3W41tbWEhkZyfLlyxk5ciQpKSmmR5Igu+GGG5gzZw6vvPIKo0aNwrIs0yP9TC7wBH15jllkJqYy+NVKZl6dwa4s+15wEf+zvL7lhV999RW5ubnGdkDSIscwVV8Pw4ZBebnvynWo/Hn5fz0zKS4u5oUXXjjgCreIHUVFRZGQkGDrUxIzMzO56aabuO6662hoaGDOnDnaXSQMOWXhY5zL97V02cBBHJOUwQ0vlJG1y74790jgNDY2sm7dOnbt2mXk9RXYYcjrhdtu853gWFAAJ55oeiIfl8v1s4/D/eudssxYrr32WkW2OEJaWhpXXnklcXFxVFVV2fLEx+joaHJzc8nOzmbUqFGK7DDmlMgGiIuL44aRoxTZYc5kZCuww9CUKfDMMzB1KvToYXqaH3m93p99bNiw4bCf57jjjlNki+MsXLiQhQsXmh7jZyorK3njjTeorKwkPT1dkR3mnBTZCQkJimwxFtkK7DDz+utwxx2+jzFjTE9zoH379jFr1iwKCwu54YYb8Hg8R/xcimxxmn79+tG3b1/TY/xMTU0NGzZsoKamBkCRLYpscRwTka3ADiObNsEVV0Dv3vDoo6an+bmNGzeyefNmBgwYwCeffHLUx0orssVJLMsiMzOTxsZGli9fbpvbRbKzs7njjjvIzs5u+jVFtiiyxWmCHdkK7DCxZ49vx5A2bWD+fLDjmqouXbpwxx13MGXKFG677Tbi4+OP+jkV2eI0lZWVfPHFF8YW5rSWIlsU2eI0wYxsBXYYaGjwXbkuLYXCQkhNNT1R87KyspgwYQIvvPACn3/+uV+eU5EtTpKWlsaECRM44YQT8Hq9xt+vu3bt4umnnz7oH0iKbFFki9MEK7IV2GHgt7+FN9+El1+GX/zC9DTNmzJlCtOmTQN825dt3rzZb8+tyBYnifx+U/p33nmHZ599lvp6cyEQGxtLhw4diI2NPejvK7JFkS1O80NkB/JWPAV2iHvmGfjHP3wfPXuanqZlPXv2JDk5mcWLF/PLX/6SPn36+PX5FdniNCeffDLnnHOO0ZNJU1JSyMvLa/FwGUW2KLLFaRobG6mtrQ3Y8yuwQ9gbb8CECb6Pm282Pc2hnXbaaYwYMYLBgwfzwAMPNF3F8ydFtjiJZVl07doVgC+//NLIwseGhgZKS0tpaGho8XGKbFFki/xIgR2ivvoKfvMbuPhi+OtfTU9jL4pscZqGhgaKiop49913g/7au3btYsqUKa26X1GRLYpsER8FdggqL/ftGJKVBS++aM8dQ0xTZIuTREVFcf3113PxxRcDvkOZgsWyLK6//nosy2rV4xXZosgWUWCHnIYGuOoqKC727RiSnm56IvtSZIuTpKamEhERQUlJCXPmzAna7SIxMTG0bduWmJiYVn+OIlsU2RLuFNgh5p57YMUKeOklOOkk09PYnyJbnCYqKorY2NiArFE4mKqqKt56663DDnpFtiiyJZwpsEPIs8/C3/4Gf/879OplehrnUGSLk1iWxfDhw4mPj2ffvn0Bv5JdXV3Nu+++S3V19WF/riJbFNkSrhTYIWL1ahg7Fm65BcaNMz2N8yiyxYkWLlzIggULAvoaOTk53HPPPeTk5BzR5yuyRZEt4UiBHQK+/hqGDoUePeDJJ8HlMj2RMymyxWn69OlD3759TY9xSIpsUWRLuFFgO9zevb4dQ9LSfPddGzyPIiQossVJLMsiOzubxsZGXnvttYDcLlJaWsqMGTMoLS09qudRZIsiW8KJAtvBGhthxAjYvt23Y0hGhumJQoMiW5ymqqqKjRs3UlJS4vfnjo6Opk2bNn45TVKRLYpsCRcKbAebOBGWLfPtdX3qqaanCS2KbHGS1NRUxo8fT4cOHQD8+n5NTU1l4MCBpKam+uX5FNmiyJZwoMB2qNmz4bHH4IknoE8f09OEJkW2OEnU9ydKvfvuu8yYMcNv79fGxkb27t1LY2OjX54PFNmiyJbQp8B2oLffhptugjFj4LbbTE8T2hTZ4jQdO3akS5cuh3UwTEt27tzJX//6V3bu3OmX5/uBIlsU2RLKFNgOs3UrXH45nHceTJmiHUOCQZEtTmJZFt26dQNg8+bNR73wMSMjg6uvvpqMACzyUGSLIltClQLbQSorYdAgSEqCl18GP12gklZQZIvTNDQ0sHTpUv7v//7vqJ4nNjaWX/ziF8TGxvppsgMpskWRLaFIge0QHg9cc43vCnZhIWRmmp4o/CiyxUmioqIYNWoUl1xyyVE9T3V1Ne+9994RneTYWopsUWRLqFFgO8T//I8vrPPz4fTTTU8TvhTZ4iSpqalERkaya9cu5syZc0S3i1RWVrJy5UoqKysDMOGPFNmiyJZQosB2gLlz4aGH4NFHoX9/09OIIlucJiIigqioKCIiDv9bfps2bbjvvvto06ZNACY7kCJbFNkSKhTYNvfuu77dQq6/Hu680/Q08gNFtjiJZVlcffXVJCQkUFNTE5ATH/1FkS2KbAkFCmwb++YbuOwy6NoVpk7VjiF2o8gWJ1q0aBEvv/wyXq+3VY/fvXt30CNHkS2KbHE6BbZNVVfD4MEQFwcLFkCAFvDLUVJki9Nceuml9O3bF1crf2KPiIggJSXliG4vORqKbFFki5MpsG3I44HrroMvv4QlSyA72/RE0hJFtjiJZVnk5OTg8XhYsWLFIW8XSU9PZ8iQIaSnpwdpwgNfW5Ed3hTZ4lQKbBv6wx9g4UKYNw86dTI9jbSGIlucprKykk8//ZQdO3a0+DiPx0NNTQ0ejydIkx1IkS2KbHEiBbbN5OfD/ffDgw/6DpUR51Bki5OkpqYyYcIEOnbsCEB9/cFDoKSkhEceeYSSkpJgjncARbYossVpFNg28v77vt1Crr0W7r3X9DRyJBTZ4iRRUVEArF27lhkzZhz0/ZqWlsYVV1xBWlpakKc7kCJbFNniJApsm9i+3beo8ayzYPp07RjiZIpscZoTTzyRM888k+jo6J/9Xnx8PKeeeirx8fEGJjuQIlsU2eIUCmwb2LfPtx1fdLTv3uu4ONMTydFSZIuTWJbF+eefj8vlYsuWLQcsfNy3bx/r1q1j3759Bif8kSJbFNniBApswzweGDUKNm707RgShMPSJEgU2eI0jY2NLFmyhH//+99Nv1ZRUUFhYSEVFRUGJzuQIlsU2WJ3CmzD/vxneOkl33HonTubnkb8TZEtThIZGcnIkSPp3bt306/l5ubyhz/8gdzcXIOT/ZwiWxTZYmcKbINeegn++EffriFDhpieRgLlp5Hd3G4NInaQlpZGZGQkpaWlzJ07V8eqi639NLLLy8tNj9QsRXZ4UWAb8uGHMHIkDB8O991nehoJtP0je9myZabHETmkH056LC8vZ968eZSVlRme6OAU2bJ/ZBcWFpoep0WK7PChwDbgv//17XF9xhkwc6Z2DAkXP0R2aWkp0Py+wyJ2YFkW1157LYmJiQDU1NQYnqh5imz5IbJjY2MBdCVbjFNgB1lNjW/HEJcLFi8GG+x8JUF03HHH0b9/fwCWLVume7LF9tLT04mMjOTVV1/F6/WaHqdZimxJSkpiwIABABQWFuqebDFKgR1EXi+MHg2ffuqLa5utGZIgycnJAaC0tFQLH8X2vF4vF110EX369Gm6bcSuFNmSkJAAQGxsrBY+ilEK7CB64AGYPx/mzIEuXUxPI6b1799fu4uI7RUXF/PMM8/gcrnweDysWrVKCx/F9gYMGKDdRcQoBXaQFBTA5Mm+XUOGDTM9jdhBTk6OtvAT20tLS+Pyyy8nLS2Nqqoq1q9fz3fffWd6rBYpsiUhIUFb+IlRCuwg+OgjuPZaX1j/7nempxE70T7ZYnfx8fF06tSJ+Ph4UlJSmDBhAieffDIADQ0NhqdrniJbtE+2mKTADrDiYhg8GE49FWbPhgj9G5efUGSLndXU1PDJJ5807SISHR0NwIcffsj06dNxu90mx2uRIlsU2WKKci+Aamvh8suhocG3qPH7tRciP6PIFrsqLy+noKDgZ9uetW/fnl/+8pfExMSYGayVFNmiyBYTFNgB4vXCjTfC+vWwaBEce6zpicTuFNliRzk5OUyaNKlp95sfWJbFBRdcgMvlYtu2bVr4KLamyJZgU2AHyCOPwPPPw6xZ0LWr6WnEKRTZYjcRERHExMQQ0cz9bY2NjSxevJg1a9YEebLDo8gWRbYEkwI7AJYsgUmTfLuGDB9uehpxGkW22MmePXt46aWX2LNnz0F/PzIykuuuu45LL700yJMdPkW2KLIlWBTYfrZhA4wY4bv3+n//1/Q04lSKbLELj8eD2+3G4/E0+5i0tDSioqIoKyvj+eef1+0iYmuKbAkGBbYf7dwJgwZBx47w3HPaMUSOjiJb7MCyLK655hosyzrkY71eL42NjbY+Uh0U2aLIlsBTAvqJ2w1Dhvh2DlmyBBITTU8koUCRLU5iWRYjR44kOTkZt9utK9lia4psCSQFth94vXDLLfDBB74dQ44/3vREEkoU2WLSjh07+NOf/sSOHTsO6/OWLFnCiy++aOur2YpsUWRLoCiw/eCJJ3yHyDz7LHTrZnoaCUWKbDElJSWFfv36kZKSclifd/HFF9OnTx9cLleAJvMPRbYosiUQFNhHqagI7rkHJk6Ea64xPY2EMkW2mJCYmMg555xD4mHe92ZZFsceeyxer5fVq1frdhGxNUW2+JsC+yh89plvG75Bg+AvfzE9jYQDRbYEW21tLV988QW1tbVH9PlVVVWsW7eOb7/91s+T+ZciWxTZ4k8K7CNUWgoDB0L79jB3rnYMkeBRZEsw7dmzh/nz5ze7D/ahJCcnM378eE499VQAGhoa/DmeXymyRZEt/qIsPAJ1dTB0KFRVQWEhJCebnkjCjSJbgiU7O5u7776b7OzsI36OmJgYAD766COmT59+xFfDg0GRLYps8QcF9mHyemH8eHjnHVi4ENq1Mz2RhCtFtgRDZGQkiYmJREZGHvVztW3bltNPP53Y2Fg/TBY4imxRZMvRUmAfpief9O0WMn06nH++6Wkk3CmyJdDKy8tZtGgR5eXlR/1clmVx4YUX4nK5+Pbbb7XwUWxNkS1HQ4F9GJYvhzvvhLvvhlGjTE8j4qPIlkBqaGigrKzMr/dOezweFi1axJtvvum35wwERbYosuVIKbBbaeNGuPJK6NsXHnrI9DQiB1JkS6BkZmYyevRoMjMz/facERERXHPNNeTl5fntOQNFkS2KbDkSCuxW2L3bt2PI8cfDvHngh1sRRfxOkS1Okp6eTnR0NOXl5cybN0+3i4itKbLlcCmwD6G+Hq64AsrLYckSOMzDzESCSpEt/lZcXMyDDz5IcXFxQJ6/sbGRuro6PB5PQJ7fXxTZosiWw6HAboHXC7fdBmvWQEEBnHii6YlEDk2RLf6UlJTERRddRFJSUkCe37IsRo4cSUpKCnV1dVRXVwfkdfxBkS2KbGktBXYLpkyBZ56BqVOhRw/T04i0niJb/CUpKYlf//rXAQtsAJfLBUBhYSH5+fl4vd6AvdbRUmSLIltaQ4HdjNdfhzvu8H2MGWN6GpHDp8gWf3C73Xz99de43e6Av9ZFF11EXl5eU3DblSJbFNlyKArsg9i0yXffde/e8OijpqcROXKKbDlaZWVlzJ07l7KysoC/lmVZHH/88Xi9Xt566y0tfBRbU2RLSxTYP7Fnj2/HkDZtYP58iIoyPZHI0VFky9HIysri9ttvJysrK2ivWVVVxdq1a9m2bVvQXvNIKLJFkS3NUWDvp6HBd+W6tBQKCyE11fREIv6hyJYjFRUVRVpaGlFBvNqQnJzMhAkTOP300wHfTiN2pcgWRbYcjAJ7P7/9Lbz5Jrz8MvziF6anEfEvRbYciYqKCoqKiqioqAjq68bExACwYcMGpk2bRm1tbVBf/3AoskWRLT+lwP7eM8/AP/4BTz0FPXuankYkMBTZcrjq6urYvn27sffKscceyymnnEJsbKyR128tRbYosmV/CmzgjTdgwgTfxy23mJ5GJLAU2XI4srKyuPnmm4N6D/b+LMvi4osvxuVy8d1332nho9iaIlt+EPaB/dVX8Jvf+K5a//WvpqcRCQ5FtjiNx+Nh4cKFrFq1yvQoLVJkiyJbIMwDu7zct2NIVhb861/aMUTCiyJbWqOkpITHH3+ckpISo3NERERw9dVXk5eXZ3SO1lBkiyJbwjawGxrgqquguNi3Y0h6uumJRIJPkS2HkpCQwLnnnktCQoLpUUhPTycmJoaKigry8/N1u4jYmiI7vIVtYN9zD6xY4btyfdJJpqcRMUeRLS1JTk6mR48eJCcnmx6lSUNDAzU1NTQ0NJgepUWKbFFkh6+wDOxnn4W//c330bu36WlEzFNkS3Pq6ur49ttvbfWesCyL66+/nrS0NOrr66murjY9UrMU2aLIDk9hF9irV8PYsb7dQsaPNz2NiH0osuVgdu/ezaxZs2wXBS6XC4ClS5cyb948vF6v4Ymap8gWRXb4CavA/vprGDoULrgAnnwSvv/+LCLfU2TLT2VmZjJ27FgyMzNNj3JQPXr04NJLL20KbrtSZIsiO7yETWDv3evbMSQtDV56CaKjTU8kYk+KbNlfdHQ02dnZRNv0m6ZlWbRr1w6v18vbb7+thY9ia4rs8BEWgd3YCCNGwPbtvh1DLMv0RCL2psiWH+zdu5fXXnvN9jFYXV3Ne++9x9dff216lBYpskWRHR7CIrAnToRly+DFF+HUU01PI+IMimwBqK2tZdOmTdTW1poepUVJSUmMHz+eTp06AdDY2Gh4ouYpskWRHfpCPrBnz4bHHoPHH4c+fUxPI+IsimzJzs5mwoQJZGdnmx7lkGJjYwH49NNPmT59OjU1NYYnap4iWxTZoS2kA/vtt+Gmm2DMGLj9dtPTiDiTIlucJjc3l44dOxIXF2d6lBYpskWRHbpCNrC3boXLL4fzzoMpU7RjiMjRUGSHr507d/Lkk0+yc+dO06O0mmVZ9OrVC5fLxX//+18tfBRbU2SHppAM7MpKGDQIkpLg5ZchJsb0RCLOp8gOT3FxcZx22mm2vxp8MB6Ph4ULF7Jy5UrTo7RIkS2K7NATcoHt8cA11/iuYBcWgk23bhVxJEV2+ElJSaFXr16kpKSYHuWwRUREMHz4cPo4YAGOIlsU2aEl5AL7f/7HF9b5+XD66aanEQk9iuzwUl9fT0lJCfX1zvwDNCMjg9jYWCorK3nxxRd1u4jYmiI7dIRUYM+dCw89BI8+Cv37m55GJHQpssNHaWkpzzzzDKWlpaZHOSp1dXVUVlba/r2qyBZFdmgImcB+913fbiHXXw933ml6GpHQp8gOD5ZlMWbMGCyHn9BlWRY33HADGRkZNDQ0UF1dbXqkZimyRZHtfCER2N98A5ddBl27wtSp2jFEJFgU2aEvJiaGY489lpgQWC3u+v4Ph6KiIl544QW8Xq/hiZqnyBZFtrM5PrCrq2HwYIiLgwUL4PtzBkQkSBTZoa2yspI333yTyspK06P4Tffu3endu3dTcNuVIlsU2c7l6MD2eOC66+DLL2HJEnDAQWMiIUmRHbr27dvHunXr2Ldvn+lR/MayLE444QS8Xi/vvPOOFj6KrSmyncnRgf2HP8DChTBvHnTqZHoakfCmyA5NOTk53HnnneTk5Jgexe/27dvHO++8w1dffWV6lBYpskWR7TyODez8fLj/fnjwQd+hMiJiniJbnCQxMZFx48bRuXNnwHcwjV0pskWR7SyODOz33/ftFnLttXDvvaanEZH9KbJDy65du5g6dSq7du0yPUpA/HBC5X/+8x+mTZtGTU2N4Ymap8gWRbZzOC6wv/vOt2PIWWfB9OnaMUTEjhTZoSMmJob27duHxC4iLcnJyeHEE08k1uYr5RXZosh2BkcF9r59vh1DoqJ8915/f+FBRGxIkR0aUlNT6du3L6mpqaZHCSjLssjLyyMiIoLi4mItfBRbU2Tbn2MC2+OBUaNg40bfjiFt2pieSEQORZHtfA0NDZSVldHQ0GB6lKDwer0UFBTw+uuvmx6lRYpsUWTbm2MC+89/hpde8h2H/v16FBFxAEW2s+3atYunnnoqZO/B/imXy8VVV11F3759TY9ySIpsUWTblyMC+6WX4I9/9O0aMmSI6WlE5HApsp0rIyODkSNHkpGRYXqUoMnIyCAuLo6qqir+9a9/6XYRsTVFtj3ZPrA//BBGjoThw+G++0xPIyJHSpHtTLGxsbRv3972i/8Cwe12U1FRgdvtNj1KixTZosi2H1sH9n//69vj+owzYOZM7Rgi4nSKbOepqqri7bfftvVV3ECxLIsxY8ZgWRaNjY22Ps1SkS2KbHuxbWDX1Pi243O5YPFiiI83PZGI+IMi21mqqqr497//HZaBDb57sgFeeeUV5s6di9frNTxR8xTZosi2D1sGttcLo0fDp5/64jo31/REIuJPimznaNOmDf/v//0/2oT51k3nnXcevXr1agpuu1JkiyLbHmwZ2A88APPnw5w50KWL6WlEJBAU2eIklmXRoUMHvF4v7733nq2v6CuyRZFtnu0Cu6AAJk/27RoybJjpaUQkkBTZ9ldaWsrMmTMpLS01PYot1NTU8Pbbb7Np0ybTo7RIkS2KbLNsFdgffQTXXusL69/9zvQ0IhIMimx7i4qKIisri6ioKNOj2EJCQgLjxo3j7LPPBsDj8RieqHmKbFFkm2ObwC4u9h2DfuqpMHs2RNhmMhEJNEW2faWlpTFo0CDS0tJMj2IbcXFxAHz++edMnz5du4uIrSmyzbBFxtbWwuWXQ0ODb1FjQoLpiUQk2BTZ9tTY2EhlZSWNjY2mR7GdrKws2rVr1xTcdqXIFkV28BkPbK8XbrwR1q+HRYvg2GNNTyQipiiy7Wfnzp088cQT7Ny50/QotmNZFn379iUiIoKdO3dq4aPYmiI7uIwH9iOPwPPPw6xZ0LWr6WlExDRFtr2kp6czfPhw0tPTTY9iW16vl4KCAl577TXTo7RIkS2K7OAxGthLlsCkSb5dQ4YPNzmJiNiJIts+4uLiOOmkk2x/G4RJLpeLK664gr59+5oe5ZAU2aLIDg5jgb1hA4wY4Tut8X//19QUImJXimx7qK6u5v3336e6utr0KLaWkZFBfHw8+/bt4+WXX9btImJriuzAMxLYO3fCoEHQsSPMnasdQ0Tk4BTZ5u3du5fXXntNEdZKtbW17N69m5qaGtOjtEiRLYrswAp62rrdMGSIb+eQxYshMTHYE4iIkyiyzcrNzWXy5Mnk5uaaHsURMjIyuOmmm8jKyqKxsVFb+ImtKbIDJ6iB7fXCLbfA2rWwcCG0bRvMVxcRp1Jki5O4XC4Ali9fznPPPafDaMTWFNmBEdTAfuIJ3yEyM2fCr38dzFcWEadTZJuxe/dunnvuOVv/oWtX3bp145JLLiHC5vdBKrJFke1/QfuqLyqCe+6BiRPhmmuC9aoiEkoU2cEXERFBYmKi7SPRjizLomPHjgB88MEHWvgotqbI9q+gfMf87DPfNnwDB8Jf/hKMVxSnqK6upqioiN69e5seRRxCkR1c6enpDB06VPtgH4WamhpWr17N559/bnqUFimyRZHtPwEP7NJSX1i3b+87UEYXQWR/iYmJ9O/fn/p6e31hiL0psoPH4/HgdrttfR+x3cXHxzNu3DjOOeccAFv/u1RkiyLbPwKau3V1MHQoVFVBYSEkJwfy1UQknCiyg6OkpISHHnqIkpIS06M4Wnx8PABffvklM2bM0O4iYmtOjuyUcntEdlSgntjjgYsvhvfeg1WroF27QL2ShKO6urqmoPJ6vXT4popNQGpZHTt27DA73CGUlpYe8E85cpGRkfTt25eioiL++c9/0rdvX6Kjo02PdUhOeg+43W569eqF2+22/deWEzQ0NJCRkcGePXuoqKgwPU6L+vXrR2FhITNnzmTAgAEkJSWZHumQnPS15QR9+vRh6dKlzJw5k4EDB5KWlmZ6pGYN6NOXRYVL6Fm0CzD/N0Uur9frbc0D8/Pz6dq1KwsWLOD222/n0UcfZfLkydx///2MHj2aZcuW0alTJ8rKyqiurqau7hSGD18BjCI5+Ul+85vJVFffz1/+Mo5XX83nggsuYOvWrURGRpKbm8vatWsZMmQI06ZNa3reO++8k6lTpzJgwAA+/vhjLMsiPj6eTZs2cckllzBnzpymx06aNIlHHnmEESNGsGbNGk444QQaGhooLi6mS5cuLFq0iFtvvZXHHnus6XPGjBlDYWEhnTt3bjoYoGPHjqxatYrrrruOp556qumxEyZM4Pnnn+fCCy9k8+bNxMTEkJOTw4cffsjgwYOZMWNG02Pvuusunn76aQYNGsS6devIysoiNjaWzZs3c9FFFzF37lwmTZrEAw88wH333ceDDz7Itddey5tvvkmHDh1wu93s2rWLs88+myVLljBu3Dgef/zxpue/8cYbWbx4MV26dKGkpIS6ujo6dOjA6tWrueaaa/jHP/7R9Nhbb72V5557jp49e/Lll18SHx+PZVmsX7+egQMH8uyzzzY99u677+app57isssu48MPP6RNmzZERUWxZcsWevTowbx587j33nt58MEHmz5n5MiRrFy5kpNOOomamhp2797NmWeeydKlSxk7dixPPPFE02NvvvlmCgoKOPfcc9mxYweNjY20b9+et956i/z8fPr06dP02Ntuu43Zs2fTtm1btmzZQnx8PKmpqWzatInu3bszadIk1q5dC0CbNm24dtQoHn3oISZOnKgjnUVERMLcscceywcffEDnzp359ttviYuLIzk5mS1btnDOOefw+uuv88QTT/DMM89wzz338Pe//52hQ4fy/vvvk5ubS2RkJNu2baN79+7Mnz+fu+++m4ceeojJkye36vVbHdhH4ptv4Isv4NVXfR+ffgouF5x7LuTl+T5+9SuICth1dLE7t9vNggULmn7QGDJkCLGxsU2//8knnxz08/a/gg0wsXQNawZN5ObH/sjkK28gMjIy4LMfqdLSUgoKChgyZAiZmZmmxwkZJSUlFBUVkZmZafsr2U56D9TW1rJt2zbatWunH179yOv1UlBQQGpqKr169TI9Tov27t1LYWEhkZGRtr+S7aSvLSfZt28fS5cuxe122/5K9nfffUdRURGdO3c+5J8DXbt2Ddj7JKBp27at76N3b3jsMfjuO3jtNV9sT5kCf/4zpKbCJZf8GNy6lSS8xMbGMmLECEaMGHFYnxcTE0NMTEzT//9F1QmsAVLLaln91hquuuJKW0c2QGZmpk7H86Pc3FwyMzOZO3cuK1eu5Oqrrz7gPWJHTngP7Nixg9WrV3PTTTfZflanGT58OPHx8SQkJJgepUW5ublkZ2cze/Zsli9fzsiRI0lJSTE9Vouc8LXlNDfccANz5szhlVdeYdSoUViWZXqkFp155pls3brV2HqHoO7pceyxcP31MH8+7Nzpuz/7rruguBjGjfPtNHLqqXDHHbBsGdh4DYjY1MqLUti0+Svm/+tFGhsbTY8jQaaFj/7Xpk0bfve739GmTRvTo4Qcy7JISEigpqaGgoIC7ZMttuakhY/gu4DXrVs3Yz/AGts0LzISunaF3/0O3n7bt53fyy/DBRf4jlHv1w8yMn68+v3JJ76j1iU0uFyuVn106tTpsJ53+7HRzPtNuiI7jCmy/cvlchEREdF0/Lf4X01NDTt37rT1ziKgyBbnRXZcXJyxyLbNrtRpab4t/aZPh61bYeNGePhhiI6G3/8eOnWC446D0aPhxRfB5v9N5RC8Xm+rPjZs2HDYz/1VhzhFdphTZPtPWVkZ+fn5lJWVmR4lZGVkZHDzzTeTnZ2Nx+OxdWgrskWR3Tq2Cez9uVxwyilw++3wyitQVua7d3v4cFi7Fq66CrKyfAskf/973xXwhgbTU8vh+OkJjjt37uT5559n3rx53HXXXTQc5X9QRbYossVJfvgbgldffZXnnnvO+BZjLVFkiyL70GwZ2D8VF3fgrSLbt8PMmXDCCb7Fkt27Q2bmj1fAt20zPbEcyk9PcHzjjTcoLy9nxIgR1NfXs2LFiqN+DUW2KLKPXkZGBsOHDycjI8P0KGGha9eu9OzZkwibH3usyBZFdsvs/RXcDC2WDD1XXXUVEyZMAKC4uJhTTjnFL8+ryBZF9tHxer14PB4CuKOr7MeyLE4++WQA1q1bp4WPYmuK7OY5MrD3p8WSoaWoqIhhw4bRvn17vz2nIlsU2UeuuLiYP//5zxQXF5seJazU1tayatUqPvvsM9OjtEiRLYrsg3N8YP+UFks619q1a8nJyWHYsGH85z//8etzK7JFkX1kUlNTGTx4MKmpqaZHCStxcXGMHTuWrl27Atj6bxAU2eLUyA7k4VkhF9j702JJ+3K73cybN4+tW7eSn5/P6tWrueGGG5g4cSI9evQIyB8mimxRZB++hIQEOnfubPvDUEJRQkICLpeLzZs3M336dO0uIrbmxMgO5KmkIR3YP6XFkvbxwwmOW7duZfjw4Vx44YVs2LCBFStWsGbNGk4//fSAvK4iWxTZh6empobPPvuMmpoa06OErbS0NI455hhiY2NNj9IiRbY4LbIDKawC+6e0WDI8KbJFkd165eXlvPzyy5SXl5seJWxZlsXAgQOJjIxk9+7dWvgotqbI9gnrwN6fFkuGF0W2KLJbJycnh4kTJ5KTk2N6lLDn9XopKCjglVdeMT1KixTZoshWYDdLiyVDnyJbFNmHFhERQWxsrO33ZQ4HLpeLIUOG0K9fP9OjHJIiW8I9svUdsxW0WDJ0KbJFkd2yPXv2sGDBAvbs2WN6FMF3u0hSUhK1tbUsXLhQt4uIrYVzZCuwj8DhLJacMQO++cb0xNISRbYospvn8Xiorq629dHd4Wjfvn0UFxfbOrBBkS3hG9kKbD842GLJO+/0LZa85RZo106LJe1OkS2K7IOzLIvrrrsOy7JMjyL7ycjI4JZbbqFNmzZ4PB5b7/KiyJZwjGwFtp/9sFjyh1tFdu/WYkmnUGSLIlucxOVyAfD6668ze/ZsW/8tgyJbwi2yFdgBpsWSzqLIFkX2gXbs2MH999/Pjh07TI8izTjnnHO48MILbb8QVZEt4RTZ9v5qDDFaLOkMimxRZP8oJSWFSy+9lJSUFNOjSDMsy+K0004DYP369ba+L1uRLeES2Qpsg7RY0r4U2aLI9klMTKRr164kJiaaHkUOoba2ljfeeINPPvnE9CgtUmRLOES2AttGtFjSXhTZosj2RdumTZuora01PYocQlxcHDfffDPdunUDfAfT2JUiW0I9shXYNqXFkvagyJZwj+w9e/aQn5+vfbAdIjExEZfLxZYtW5gxYwbV1dWmR2qWIltCObIV2A6hxZLmKLIlnCM7OzubO++8k+zsbNOjyGFISUkhJyeH2NhY06O0SJEtoRrZCmwH0mLJ4FNkS7hGdmRkJMnJyURGRpoeRQ6DZVkMHjyYqKgo9uzZo4WPYmuhGNkK7BCgxZLBociWcIzs8vJylixZQnl5uelR5Ah4vV4WLFhAUVGR6VFapMiWUItsBXYI0mLJwFFkS7hFdkNDA7t27aJBfw3mSC6Xi8svv5x+/fqZHuWQFNkSSpGtwA5xWizpf4psCafIzszM5IYbbiAzM9P0KHKELMsiOTkZt9vN4sWLdbuI2FqoRLYCO8w0t1gyKkqLJQ+HIlvCKbIlNFRXV7N9+3bbR6siW0IhshXYYWz/xZLLlmmx5OFSZEs4RHZxcTEPP/wwxcXFpkeRo5SRkcHYsWM55phj8Hq91NTUmB6pWYpscXpkK7CliRZLHj5FtoR6ZCclJdG9e3eSkpJMjyJ+EBHh+2N/5cqVzJ4929bfsxTZ4uTIVmBLs7RYsnUU2RLKkZ2UlMT555+vwA4xZ511FhdccIHtt19UZItTI1uBLa2ixZItU2RLqEa22+1m69atuN1u06OIH1mWxRlnnAHAhg0btPBRbM2Jka3AliOixZI/p8iWUIzssrIy5syZQ1lZmelRJADcbjcrVqzg448/Nj1KixTZ4rTIVmDLUdNiyR8psiXUIjsrK4tbb72VrKws06NIAMTGxnLTTTdx3nnnAb6DaexKkS1OimwFtvhduC+WVGRLKEV2VFQUGRkZREVFmR5FAiQpKQmXy8W2bdt49tlnqa6uNj1SsxTZ4pTIVmBLwIXjYklFtoRKZFdUVLBs2TIqKipMjyIBlpSURGZmJjExMaZHaZEiW5wQ2QpsCarDXSy5aVOsYxdLKrIlFCK7rq6OrVu3OnJ2OTyWZXH55ZcTHR1NeXm5Fj6Krdk9shXYYtShFkv+5jcn0bv3Kfz+98eyfHkq5eX23lLqpxTZ4vTIzsrKYuzYsboHO4x4vV4KCgooLCw0PUqLFNli58hWYIttHGyx5LRpW+jTp5xPP03g3nvbcuGFpzJiRAemTMnmo48SHLFYUpEtP43s+vp60yOJNMvlcjF48GD69etnepRD+mlk2/mquwTGTyO7vLzc9EgAuLytWDLs9XqprKwMxjwiB/jss8+a/vfOnVG8/34S77+fyHvvRVNZ2UhiYiOdO1cTOfht1tx7Eycv+yPlbRMNTty8476rp9ebe6nIjCNtZy1r+mVTYdn7Xkfxr/RdbrqtKKUiOQJrTyNF/dLxWPZ8v/4geU8d3d7YzbsXW1Sm6/0abiLrPZz+QQUbz06lPta+1+QSKhs47/VdNOIlqdrjiK8t8a+4mka6vb6LmNpGYt1e3h1+IovbXxmw10tOTsblcjX7+60K7L1795KamurXwUREREREnKiiooKUlJRmf19XsMWR3G73ASfLffjhFi67rAczZz5Hbm6mwckO7aH4zyndu4fItpl4Ypx1T7n4R0NFNZFuD1XpUSRHx5seR+TQvF4aGxux+5pzT7WbaHcjVenR+toKU3FV9dT+dzdxZ53AG+m/Cdjr+OUKtojdbd++neOPP57PPvsMj8dj68MSqqqqOO+889iwYQNnnHFGi1+gEpp++FvBQ10BEbETt9vN119/TYONF7/88P31gw8+oFOnTkRHR5seSYLMLt9f7XtDlcgRSElJ4fjjj3dEtFZVVbFt2zZb/zAgIvKD2NhYTjzxREccOlRXV8fXX3+tBcVijAJbQk5qaqpjIruyslKRLSKOocgWaR0FtoSE2NjYA/5p58iOiYmhe/fuTaelKbLDT2xsLH379m16v4o4iZ0j+6ffXxXZ4ccu3191D7aEhObuuaqoqODbb7+1XbxWVFT8bGee5ORk2rVrZ8sfCsT/ysrKyMjIMD2GyBGz6z3ZB/v+GhMTw4knnqh7ssOEHb6/6gq2hDS7Xsl+8cUXf/ZrupIdXp5++mnTI4gcFbteyT7Y91ddyQ4vdvj+qivYEhIOtWrYrleyD0ZXskXESex6JftgdCVbgkVXsCUs2O1K9vTp05v9PV3JDg/333+/6RFE/MJuV7Jb+v6qK9nhwQ7fX3UFW0JCa/e93Lt3L+Xl5cEbrBmVlZUkJye3+Jjk5GTS09ODNJEE2969e7UHtoQUt9tNSUmJ6TFa9f01JiaGnJwc21x0Ef+yw/dXe/y4KRIkKSkpxr/oAJ588kluu+0202OIQbNnz9Z7QEJKbGwsbdu2NT2Gvr+KLb6/6hYREQN69eplegQxTO8BkcDQ15bY4T2gwBYJkurqaoqKiujduzeff/656XHEAL0HRAJj3759zJo1i8LCQm699VY8Ho/pkcSQqqoqRo8ezTfffGN0DgW2SJAkJibSv39/6uvrSUxMND2OGKD3gEhgbNy4kc2bNzNgwAC2b9+O2+02PZIYMGvWLB599FHee+894z9k6R5sEQNMb4Av5uk9IOI/Xbp0oW3btkyZMoWrr76a+Ph40yOJAaNHjwbgT3/6k+FJdAVbxIgNGzaYHkEM03tAxL+ysrKYMGECL730km7BEuMU2CIG9O3b1/QIYpjeAyL+M2XKFKZNmwZAmzZt2Lx5s+GJJNwpsEWCxO12M2/ePLZu3codd9yhewTDkN4DIoHRs2dPkpOTWbx4MXV1dfTp08f0SBLmdNCMhITWHjQjIiIioc3lcrFlyxbat29vbAZdwRYxwA7HuIpZeg+IBIa+tsQOdAVbQoKdr2AfzlG8+nIMbc29F/TfXeTo6GtLAPLz81mzZg3PPPMMV155JT169GDcuHFGZtEVbJEA83q9P/t4+OGHD/rrEtqaew+IyNHR15YADB8+nKlTp/Lwww8zf/58Y3ENCmyRgNv/9D6AnTt3EhkZybx587jrrrtoaGgwPKEEy/6nza1du9b4QQgioWb79u188cUXpscQw4YOHWp6BAW2SKDtf3ofwBtvvEFsbCwjRoygvr6eFStWGJ5QgmX/0+a2bdumXURE/Mjr9bJ48WIaGxtNjyKGdejQwfQIOslRQkNycjIVFRUkJyebHuWQrrrqqqb/XVxczCmnnGJwGgmm/U+bu+2223TanIgfvf7661x88cWsXbvW9CgiuoItocHlcpGSknJYCwpNKyoqYtiwYUa3EZLg++G0uRdeeEGnzYn4yebNm8nJydEPrWIbCmwRA9auXUtOTg7Dhg3jP//5j+lxJEj2P20uKipKp82J+Mn69evZsmULr732Gt988w0bNmwwPZKEOd0iIhJgbrebBQsWsHXrVvLz8znmmGO49dZbyc7Opq6ujqlTp5oeUYKkZ8+erF+/nsWLF/PLX/5Sp82J+MnQoUOpr6/n6aefxu12awcRMU77YIuIiIiI+JFuERERERER8SMFtoiIiIiIHymwRURERET8SIEtIiIiIuJHCmwRERERET9SYIuIiIiI+JECW0RERETEjxTYIiIiIiJ+pMAWEREREfEjBbaIiIiIiB8psEVERERE/Oj/A2rxD9IZKwM6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "Graphics object consisting of 57 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:55,951 Plotting 2d diagram... done\n", + "INFO: 2023-09-20 09:43:55,957 Plotting...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAALhCAYAAAB2cZOUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADmfUlEQVR4nOzdeXxM59sG8GuSyDKyC5JIGBGRREQWQSKbNaWUUvuWVtUraq+2WorSUopWi2oVoZaqXexUQhZZJcguRIQQ2WRPJPO8f/hlamQnJ2dmcn/7yaedmbNcZ9zP9M5x5jwCxhgDIYQQQgghpEGU+A5ACCGEEEKIPKEGmhBCCCGEkEagBpoQQgghhJBGoAaaEEIIIYSQRqAGmhBCCCGEkEagBpoQQgghhJBGoAaaEEIIIYSQRqAGmigExhjy8/NBtzUnhBBCCNeogSYKoaCgADo6OigoKOA7CiGEEEIUHDXQhPDg4MGDfEcgMoDqgBBu0NgiALd1QA00ITzo3bs33xGIDKA6IIQbNLYIwG0dUANNCA+OHj3KdwQiA6gOCOEGjS0CcFsHAkbfuiIKID8/Hzo6Onj+/Dm0tbX5jlOvsrIyqKmp8R2D8IzqgBBu0NgiALd1QGegCeHBhg0b+I5AZADVASHcoLFFAG7roEnOQJeXl6OioqIp8hDyRgoLC+Hu7o5r165BU1OT7zgtgoqKClRVVfmOQQghhDS7t26gy8vLERsbC7FY3FSZCCFyQElJCd27d6cm+i2sWbMGy5Yt4zsGIQqHxhYBuK2Dt26gi4uLER8fD5FIBA0NjabKRQiRYSUlJUhNTYWVlRWEQiHfceTW48ePYWxszHcMQhQOjS0CcFsHKk21IQ0NDfofKSEtzPPnz1FaWgo1NTW0bt2a7zhy59y5c5gxYwbfMQhRODS2CMBtHTRZA00IaXn8/PxQVFQEbW1tjB8/nproRrK1teU7AiEKicYWAbitA7oLByHkjbVu3RqqqqrIz89HWVkZ33HkTk5ODt8RCFFINLYIwG0dUANNCHljampqdK/Vt1BUVMR3BEIUEo0tAnBbB9RAE0IITywtLfmOQIhCorFFAG7rgBpoQgjhyeXLl/mOQIhCorFFAG7rgBpoQgjhibe3N98RCFFINLYIwG0dUAOtIAQCAU6cOFHnMt7e3hg1alSDt5mamgqBQIDo6Oi3ykYIqdmWLVv4jkCIQqKxRQBu64BuYyeDvL29kZeXV29D/KqMjAzo6ekBeNn4du7cGTdv3oSdnZ1kmZ9//hlNMHM7IaSJ0ExphHCDxhYBuK0DOgOtIAwNDeu9G4KOjg50dXWbJxAhpF5r1qzhOwIhConGFgG4rQNqoOWAp6cn5s2bh88//xz6+vowNDTEypUrpZZ59RKOzp07AwDs7e0hEAjg6ekJoPolHOfPn4erqyt0dXXRpk0bDB8+HCkpKY3KJhKJsGbNGkybNg2ampro1KkTTp48iWfPnmHkyJHQ1NREjx49EBERIbXe0aNH0b17d6ipqUEkEmHjxo2S15YuXYq+fftW25etrS1WrFghebx7925YWVlBXV0dlpaW2LZtm+S18vJyfPrppzAyMoK6ujpEIhHWrl3bqGMjhGs+Pj58RyBEIdHYIgC3dUANtJzw9fVF69atERoaivXr1+Pbb7/FpUuXalw2LCwMwMtvn2ZkZODYsWM1LldUVIRFixYhPDwcV65cgZKSEt5//32IxeJGZdu8eTP69euHmzdv4t1338XUqVMxbdo0TJkyBVFRUTA3N8e0adMkl49ERkZi3LhxmDBhAm7fvo2VK1di+fLl2LNnDwBg8uTJCA0NlWrmY2Njcfv2bUyePBkA8Mcff+Drr7/Gd999h/j4eHz//fdYvnw5fH19Aby87unUqVM4fPgwEhMT8ddff0EkEjXquAjh2sGDB/mOQIhCorFFAG7rgK6BlhOvnn3t2rUrfv31V1y5cgWDBw+utmzbtm0BAG3atIGhoWGt2xwzZozU4z///BPt2rVDXFwcbGxsGpxt2LBhmDVrFgDgm2++wfbt2+Hk5ISxY8cCAL744gs4Ozvj6dOnMDQ0xKZNmzBw4EAsX74cAGBhYYG4uDhs2LAB3t7esLGxga2tLQ4cOCBZZv/+/XBycoKFhQUAYPXq1di4cSNGjx4N4OVZ97i4OOzYsQPTp09HWloaunbtCldXVwgEAnTq1KnBx0NIc3Fzc+M7AiEKicYWAbitAzoDLSden8/dyMgImZmZb7XNlJQUTJo0CWZmZtDW1pZc+pGWlvbG2dq3bw8A6NGjR7XnqvLGx8ejX79+Utvo168fkpOTUVlZCeDlWej9+/cDABhjOHjwoOTs87Nnz/Dw4UPMmDEDmpqakp81a9ZIzlp7e3sjOjoa3bp1w7x583Dx4sVGHRMhzSE1NZXvCIQoJBpbBOC2DugMtJxo1aqV1GOBQNDoSy1eN2LECJiamuKPP/6AsbExxGIxbGxsUF5e/sbZBAJBrc9V5WWMSZ6r8vrdQSZNmoQvv/wSUVFRKCkpwcOHDzFhwgSp7fzxxx/o06eP1HrKysoAAAcHB9y/fx/nzp3D5cuXMW7cOAwaNAhHjhxp1LERwqWqeiWENC0aWwTgtg6ogVZAqqqqACA5m1uT7OxsxMfHY8eOHZK/4ggMDGyWfNbW1tX2FRwcDAsLC0mxm5iYwN3dHfv370dJSQkGDRokOZPdvn17dOjQAffu3ZOcla6JtrY2xo8fj/Hjx+ODDz7AO++8g5ycHOjr63N3cIQ0gpGREd8RCFFINLYIwG0dUAOtgNq1awcNDQ2cP38eJiYmUFdXh46OjtQyenp6aNOmDX7//XcYGRkhLS0NX375ZbPkW7x4MZycnLB69WqMHz8eISEh+PXXX6XuogG8vIxj5cqVKC8vx+bNm6VeW7lyJebNmwdtbW0MHToUZWVliIiIQG5uLhYtWoTNmzfDyMgIdnZ2UFJSwj///ANDQ0O6jR+RKeHh4XBwcOA7BiEKh8YWAbitA7oGWgGpqKhgy5Yt2LFjB4yNjTFy5MhqyygpKeHQoUOIjIyEjY0NFi5ciA0bNjRLPgcHBxw+fBiHDh2CjY0NvvnmG3z77bfVptwcO3YssrOzUVxcXG0GxY8//hg7d+7Enj170KNHD3h4eGDPnj2S67g1NTXxww8/oFevXnByckJqairOnj0LJSUqeSI7qr4ESwhpWjS2CMBtHQjYW05NV1xcjPj4eFhZWUEoFDZVLkKIDKsa96mpqcjLy0NBQQGmTZtGl8c00po1a2jGNEI4QGOLANzWATXQhJBGowaaEEJIS0Z/n00IITyh6YYJ4QaNLQIowlTez5+//CGEECKxaNEiviMQopBobBGA2zrgvoF+/hxYvfrlTwtsoj09PbFgwQK+YxBCZND27dv5jkCIQqKxRQBu64D7Brq4GMjKevlTXFznok+ePMHcuXNhZmYGNTU1mJqaYsSIEbhy5QrnMYnsWrlyJezs7OpdLjY2FmPGjIFIJIJAIMBPP/3EeTZC3sbw4cP5jkCIQqKxRQBu60BmroFOTU2Fo6Mj/v33X6xfvx63b9/G+fPn0b9/f8yZM4fXbI2dmY/wo7i4GGZmZli3bh0MDQ35jkNIvWJiYviOQIhCorFFAG7rQGYaaB8fHwgEAoSFheGDDz6AhYUFunfvjkWLFuHGjRuS5dLS0jBy5EhoampCW1sb48aNw9OnTwEAiYmJEAgESEhIkNr2pk2bIBKJJNNFx8XFYdiwYdDU1ET79u0xdepUZGVlSZb39PTEp59+ikWLFsHAwACDBw9u0HpFRUWYNm0aNDU1YWRkhI0bNzbo2E+dOoVevXpBXV0dBgYGUvctzM3NxbRp06CnpwehUIihQ4ciOTlZ8vqePXugq6sLPz8/dOvWDUKhEB988AGKiorg6+sLkUgEPT09zJ07V2pmQpFIhNWrV2PSpEnQ1NSEsbExfvnlF6lcdb3XwH9nhvft2weRSAQdHR1MmDABBQUFkmUYY1i/fj3MzMygoaGBnj17Sk2n7e/vD4FAgCtXrqBXr14QCoVwcXFBYmKi5PhWrVqFmJgYCAQCCAQC7Nmzp8b30cnJCRs2bMCECROgpqbWoPeeED61adOG7wiEKCQaWwTgtg5kooHOycnB+fPnMWfOHLRu3bra61WzxzHGMGrUKOTk5CAgIACXLl1CSkoKxo8fDwDo1q0bHB0dsX//fqn1Dxw4gEmTJkEgECAjIwMeHh6ws7NDREQEzp8/j6dPn2LcuHFS6/j6+kJFRQVBQUHYsWNHg9ZbsmQJrl69iuPHj+PixYvw9/dHZGRkncd+5swZjB49Gu+++y5u3rwpaSSreHt7IyIiAqdOnUJISAgYYxg2bBhevHghWaa4uBhbtmzBoUOHcP78efj7+2P06NE4e/Yszp49i3379uH333+XalwBYMOGDbC1tUVUVBSWLl2KhQsX4tKlSw16r6ukpKTgxIkT8PPzg5+fHwICArBu3TrJ68uWLcPu3buxfft2xMbGYuHChZgyZQoCAgKktvP1119j48aNiIiIgIqKCj766CMAwPjx47F48WJ0794dGRkZyMjIqJaBEHmloaHBdwRCFBKNLQJwXAfsLRUVFbGIiAhWVFRU8wKPHzM2ffrLn8ePa1wkNDSUAWDHjh2rc18XL15kysrKLC0tTfJcbGwsA8DCwsIYY4xt2rSJmZmZSV5PTExkAFhsbCxjjLHly5ezIUOGSG334cOHDABLTExkjDHm4eHB7OzspJapb72CggKmqqrKDh06JHk9OzubaWhosPnz59d6TM7Ozmzy5Mk1vpaUlMQAsKCgIMlzWVlZTENDgx0+fJgxxtju3bsZAHb37l3JMrNmzWJCoZAVFBRInvPy8mKzZs2SPO7UqRN75513pPY3fvx4NnToUMZYw97rFStWMKFQyPLz8yXLLFmyhPXp04cxxlhhYSFTV1dnwcHBUvuZMWMGmzhxImOMsatXrzIA7PLly5LXz5w5wwCwkpISyX569uxZ43tUm06dOrHNmzc3ah3ScFXj/siRI2znzp1s8+bNLDs7m+9Ycmf37t18RyBEIdHYIoxxWwcycQaa/e/SCoFAUOdy8fHxMDU1hampqeQ5a2tr6OrqIj4+HgAwYcIEPHjwQHLZx/79+2FnZwdra2sAQGRkJK5evQpNTU3Jj6WlJYCXZ1OrvHoWuCHrpaSkoLy8HM7OzpJ19PX10a1btzqPKTo6GgMHDqz1eFVUVNCnTx/Jc23atEG3bt0kxwsAQqEQXbp0kTxu3749RCIRNDU1pZ7LzMyU2v6rWaseV223Ie818PJSEC0tLcljIyMjyX7i4uJQWlqKwYMHS71ve/fulXqvAcDW1lZqGwCq5SVE0dQ29gkhb4fGFgG4rQOZaKC7du0KgUAg1ZjVhDFWY5P96vNGRkbo378/Dhw4AAA4ePAgpkyZIllWLBZjxIgRiI6OlvpJTk6Gu7u7ZLnXLyWpbz32hhM61vXXC7Vt8/X3oVWrVlKvCwSCGp8Ti8X15qnabkPe69r2XbWfqn+fOXNG6j2Li4urdjnJq9up2n5D8hIiz3x9ffmOQIhCorFFAG7rQCYaaH19fXh5eWHr1q0oKiqq9npeXh6Al2dA09LS8PDhQ8lrcXFxeP78OaysrCTPTZ48GX///TdCQkKQkpKCCRMmSF5zcHBAbGwsRCIRzM3NpX5quv66oeuZm5ujVatWUl94zM3NRVJSUp3HbmtrW+tt+qytrVFRUYHQ0FDJc9nZ2UhKSpI63jf1ataqx1Vn1Rv6XtfF2toaampqSEtLq/aevXpmuz6qqqpSX4AkRFEsW7aM7wiEKCQaWwTgtg5kooEGgG3btqGyshK9e/fG0aNHkZycjPj4eGzZskVyqcGgQYNga2uLyZMnIyoqCmFhYZg2bRo8PDykLrkYPXo08vPzMXv2bPTv3x8dOnSQvDZnzhzk5ORg4sSJCAsLw71793Dx4kV89NFHdTZp9a2nqamJGTNmYMmSJbhy5Qru3LkDb29vKCnV/RavWLECBw8exIoVKxAfH4/bt29j/fr1AF6emR85ciRmzpyJwMBAxMTEYMqUKejQoQNGjhz5Nm83ACAoKAjr169HUlIStm7din/++Qfz588H0PD3ui5aWlr47LPPsHDhQvj6+iIlJQU3b97E1q1bG/VboUgkwv379xEdHY2srCyUlZXVuFx5ebnkLHd5eTkePXqE6Oho3L17t8H7IqQ50XTDhHCDxhYB5H0qb6EQMDB4+SMU1rpY586dERUVhf79+2Px4sWwsbHB4MGDceXKFclMMgKBACdOnICenh7c3d0xaNAgmJmZ4e+//5balra2NkaMGIGYmBhMnjxZ6jVjY2MEBQWhsrISXl5esLGxwfz586Gjo1Nns9uQ9TZs2AB3d3e89957GDRoEFxdXeHo6Fjn2+Pp6Yl//vkHp06dgp2dHQYMGCB1xnn37t1wdHTE8OHD4ezsDMYYzp49W+3SiTexePFiREZGwt7eHqtXr8bGjRvh5eUFoOHvdX1Wr16Nb775BmvXroWVlRW8vLxw+vRpdO7cucHbGDNmDN555x30798fbdu2xcGDB2tc7vHjx7C3t4e9vT0yMjLw448/wt7eHh9//HGjMhPSXJYuXcp3BEIUEo0tAnBbBwL2phfv/k9xcTHi4+NhZWUFYW0NctUU3jo6b7Mr0oREIhEWLFhA04yTN1I17lNTU5GXl4eCggJMmzYN+vr6fEeTK2vXrqX/0RPCARpbBOC2DlQ42errqHEmhJBqJk2axHcEQhQSjS0CcFsHzXIN9PP//UMIIeQ/165d4zsCIQqJxhYBuK0Dzs9AP8dzrMZqAMByLIcOWtbZaE9PT9jZ2eGnn37iO4qU1NRUviMQ0uI15rsAhJCGo7FFAG7rgPMz0MUoRtb//ilGcZ3LPnnyBHPnzoWZmRnU1NRgamqKESNG1HqbN9IyrFy5EnZ2dvUu98cff8DNzQ16enrQ09PDoEGDEBYWxn1AQt5QRUUF3xEIUUg0tgjAbR3IzG3sUlNT4ejoiH///Rfr16/H7du3cf78efTv3x9z5szhNVt5eTmv+ycN4+/vj4kTJ+Lq1asICQlBx44dMWTIEDx69IjvaITU6MmTJ3xHIEQh0dgiALd1IDMNtI+PDwQCAcLCwvDBBx/AwsIC3bt3x6JFi6Qm/EhLS8PIkSOhqakJbW1tjBs3Dk+fPgUAJCYmQiAQICEhQWrbmzZtgkgkkszsFxcXh2HDhkFTUxPt27fH1KlTkZWVJVne09MTn376KRYtWgQDAwMMHjy4QesVFRVh2rRp0NTUhJGRETZu3NigYz916hR69eoFdXV1GBgYYPTo0ZLXcnNzMW3aNOjp6UEoFGLo0KFITk6WvL5nzx7o6urCz88P3bp1g1AoxAcffICioiL4+vpCJBJBT08Pc+fOlbrPtUgkwurVqzFp0iRoamrC2NgYv/zyi1Suut5r4L8zw/v27YNIJIKOjg4mTJiAgoICyTKMMaxfvx5mZmbQ0NBAz549pWYh9Pf3h0AgwJUrV9CrVy8IhUK4uLggMTFRcnyrVq1CTEwMBAIBBAIB9uzZU+P7uH//fvj4+MDOzg6Wlpb4448/IBaL6W8wiMyq7zaXhJA3Q2OLANzWgUw00Dk5OTh//jzmzJlT42yAurq6AF42Y6NGjUJOTg4CAgJw6dIlpKSkYPz48QCAbt26wdHREfv375da/8CBA5g0aRIEAgEyMjLg4eEBOzs7RERE4Pz583j69CnGjRsntY6vry9UVFQQFBSEHTt2NGi9JUuW4OrVqzh+/DguXrwIf39/REZG1nnsZ86cwejRo/Huu+/i5s2bkkayire3NyIiInDq1CmEhISAMYZhw4bhxYsXkmWKi4uxZcsWHDp0COfPn4e/vz9Gjx6Ns2fP4uzZs9i3bx9+//33atNnb9iwAba2toiKisLSpUuxcOFCXLp0qUHvdZWUlBScOHECfn5+8PPzQ0BAANatWyd5fdmyZdi9eze2b9+O2NhYLFy4EFOmTEFAQIDUdr7++mts3LgRERERUFFRwUcffQQAGD9+PBYvXozu3bsjIyMDGRkZ1TLUpri4GC9evKBbqxGZdeLECb4jEKKQaGwRgOM6YG+pqKiIRUREsKKiohpff8wes+n/++cxe1zjMqGhoQwAO3bsWJ37unjxIlNWVmZpaWmS52JjYxkAFhYWxhhjbNOmTczMzEzyemJiIgPAYmNjGWOMLV++nA0ZMkRquw8fPmQAWGJiImOMMQ8PD2ZnZye1TH3rFRQUMFVVVXbo0CHJ69nZ2UxDQ4PNnz+/1mNydnZmkydPrvG1pKQkBoAFBQVJnsvKymIaGhrs8OHDjDHGdu/ezQCwu3fvSpaZNWsWEwqFrKCgQPKcl5cXmzVrluRxp06d2DvvvCO1v/Hjx7OhQ4cyxhr2Xq9YsYIJhUKWn58vWWbJkiWsT58+jDHGCgsLmbq6OgsODpbaz4wZM9jEiRMZY4xdvXqVAWCXL1+WvH7mzBkGgJWUlEj207Nnzxrfo7r4+PiwLl26SLZDmk7VuD9y5AjbuXMn27x5M8vOzuY7ltyh2iSEGzS2CGPc1oFMnIFm/7u0QiAQ1LlcfHw8TE1NYWpqKnnO2toaurq6iI+PBwBMmDABDx48kFz2sX//ftjZ2cHa2hoAEBkZiatXr0JTU1PyY2lpCeDl2dQqr09XXd96KSkpKC8vl0w7DgD6+vro1q1bnccUHR2NgQMH1nq8Kioq6NOnj+S5Nm3aoFu3bpLjBQChUIguXbpIHrdv3x4ikQiamppSz2VmZkpt/9WsVY+rttuQ9xp4eSmIlpaW5LGRkZFkP3FxcSgtLcXgwYOl3re9e/dKvdcAYGtrK7UNANXyNsb69etx8OBBHDt2DOrq6m+8HUK49OOPP/IdgRCFRGOLANzWQfNMpFKPrl27QiAQID4+HqNGjap1OcZYjU32q88bGRmhf//+OHDgAPr27YuDBw9i1qxZkmXFYjFGjBiBH374odp2qho3ANUuJalvvVevS24MDQ2NWl9jtUwS+fr78Pq03gKBoMbnxGJxvXmqttuQ97q2fVftp+rfZ86cQYcOHaSWU1NTk3r86naqtt+QvDX58ccf8f333+Py5ctSjTkhsmbZsmV8RyBEIdHYIgC3dSATZ6D19fXh5eWFrVu3oqioqNrreXl5AF6eAU1LS8PDhw8lr8XFxeH58+ewsrKSPDd58mT8/fffCAkJQUpKCiZMmCB5zcHBAbGxsRCJRDA3N5f6qen664auZ25ujlatWkl94TE3NxdJSUl1HrutrW2tX3KztrZGRUUFQkNDJc9lZ2cjKSlJ6njf1KtZqx5XnVVv6HtdF2tra6ipqSEtLa3ae/bqme36qKqqSn0Bsi4bNmzA6tWrcf78+Wp/i0CIrFmzZg3fEQhRSDS2CMBtHchEAw0A27ZtQ2VlJXr37o2jR48iOTkZ8fHx2LJli+RSg0GDBsHW1haTJ09GVFQUwsLCMG3aNHh4eEg1S6NHj0Z+fj5mz56N/v37S539nDNnDnJycjBx4kSEhYXh3r17uHjxIj766KM6m7T61tPU1MSMGTOwZMkSXLlyBXfu3IG3tzeUlOp+i1esWIGDBw9ixYoViI+Px+3bt7F+/XoAL8/Mjxw5EjNnzkRgYCBiYmIwZcoUdOjQASNHjnybtxsAEBQUhPXr1yMpKQlbt27FP//8g/nz5wNo+HtdFy0tLXz22WdYuHAhfH19kZKSgps3b2Lr1q3w9fVtcE6RSIT79+8jOjoaWVlZKCsrq3G59evXY9myZdi1axdEIhGePHmCJ0+eoLCwsMH7Io2TlFv3L4ikbh9//DHfEQhRSDS2CMBtHXDeQAshhMH//hFCWOtynTt3RlRUFPr374/FixfDxsYGgwcPxpUrV7B9+3YAL/9q/8SJE9DT04O7uzsGDRoEMzMz/P3331Lb0tbWxogRIxATE4PJkydLvWZsbIygoCBUVlbCy8sLNjY2mD9/PnR0dOpsdhuy3oYNG+Du7o733nsPgwYNgqura723UPH09MQ///yDU6dOwc7ODgMGDJA647x79244Ojpi+PDhcHZ2BmMMZ8+erXbpxJtYvHgxIiMjYW9vj9WrV2Pjxo3w8vIC0PD3uj6rV6/GN998g7Vr18LKygpeXl44ffp0o2YHGjNmDN555x30798fbdu2xcGDB2tcbtu2bSgvL8cHH3wAIyMjyQ9dC8cdf21//Pv4X75jyK3Tp0/zHYEQhURjiwDc1oGA1XahbQMVFxcjPj4eVlZWEAprbpCf4zkAtLhpvGWZSCTCggULsGDBAr6jEDlUNe7X3ViHWPVYmCabYt9n+9DOoB3f0eRKeHg4nJyc+I5BiMKhsUUAbuugWS7h0PnfP4QQxTLecDw6P+yMzPaZcIp2QmbRm985pSXKzs7mOwIhConGFgG4rQOZuQaaECJ/BBBgtOlo2GTZ4Gm3pxA9FCH0cWj9KxIAQElJCd8RCFFINLYIwG0dNEsD/fz5y5+WyNPTUyYvk0hNTZXJXEQ+ObZ1xO9Pf0e5ZjlcVFyw885OviPJha5du/IdgRCFRGOLANzWAecN9PPnwOrVL3/qa6KfPHmCuXPnwszMDGpqajA1NcWIESNqvc0baRlWrlwJOzu7epc7duwYevXqBV1dXbRu3Rp2dnbYt28f9wEJAGC42XDEqMWg9ZPWmGk+E7ODZvMdSeZdvXqV7wiEKKTNf/7BdwQiA7j8jOV8IpXiYiAr67//1qnlUujU1FT069cPurq6WL9+PWxtbfHixQtcuHABc+bMQUJCAtdRa1VeXg5VVVXe9k8aRl9fH19//TUsLS2hqqoKPz8/fPjhh2jXrp3k7iKEW93bdke6djocwh3wm+tviPaPxnX361BRkok5m2TOtGnT+I5AiEIoLCzHzp1x+PvvPEQmtcGLnG+RYfMpzs74le9ohEdcfsbKzDXQPj4+EAgECAsLwwcffAALCwt0794dixYtkprwIy0tDSNHjoSmpia0tbUxbtw4PH36FACQmJgIgUBQrdnetGkTRCKRZGa/uLg4DBs2DJqammjfvj2mTp2KrKouHy8vu/j000+xaNEiGBgYYPDgwQ1ar6ioCNOmTYOmpiaMjIywcePGBh37qVOn0KtXL6irq8PAwACjR4+WvJabm4tp06ZBT08PQqEQQ4cOlZr1cM+ePdDV1YWfnx+6desGoVCIDz74AEVFRfD19YVIJIKenh7mzp0rdZ9rkUiE1atXY9KkSdDU1ISxsTF++eUXqVx1vdfAf2eG9+3bB5FIBB0dHUyYMAEFBQWSZRhjWL9+PczMzKChoYGePXviyJEjktf9/f0hEAhw5coV9OrVC0KhEC4uLkhMTJQc36pVqxATEwOBQACBQIA9e/bU+D56enri/fffh5WVFbp06YL58+fD1tYWgYGBDfpzIE1DW00bSf2S8K7/u7jhfgOm4aZ4XPCY71gy6fUxRwhpGLGY4dKlVIwdG4D27cOgpVWOhQvtEBraHUbaeVB3eQfnxu5FL/9eKK8s5zsu4QmXn7Ey0UDn5OTg/PnzmDNnTo2zAerq6gJ42YyNGjUKOTk5CAgIwKVLl5CSkoLx48cDALp16wZHR0fs379fav0DBw5g0qRJEAgEyMjIgIeHB+zs7BAREYHz58/j6dOnGDdunNQ6vr6+UFFRQVBQEHbs2NGg9ZYsWYKrV6/i+PHjuHjxIvz9/REZGVnnsZ85cwajR4/Gu+++i5s3b0oaySre3t6IiIjAqVOnEBISAsYYhg0bhhcvXkiWKS4uxpYtW3Do0CGcP38e/v7+GD16NM6ePYuzZ89i3759+P3336UaV+DlfattbW0RFRWFpUuXYuHChbh06VKD3usqKSkpOHHiBPz8/ODn54eAgACsW7dO8vqyZcuwe/dubN++HbGxsVi4cCGmTJmCgIAAqe18/fXX2LhxIyIiIqCiooKPPvoIADB+/HgsXrwY3bt3R0ZGBjIyMqplqAljDFeuXEFiYiLc3d3rXZ40LSWBEvw8/bA8YjmeWD1Bl4wuCEoP4juWzKHphglpuPT0fCxdGoru3a9BTe0hhgwR4cgRF5SVqWLIkAj89Vc8ysvb4MF9NxQFBmH0zcGIdIuESZQJ0vPT+Y5PeMDpZyx7S0VFRSwiIoIVFRXV+Prjx4xNn/7y5/HjmrcRGhrKALBjx47Vua+LFy8yZWVllpaWJnkuNjaWAWBhYWGMMcY2bdrEzMzMJK8nJiYyACw2NpYxxtjy5cvZkCFDpLb78OFDBoAlJiYyxhjz8PBgdnZ2UsvUt15BQQFTVVVlhw4dkryenZ3NNDQ02Pz582s9JmdnZzZ58uQaX0tKSmIAWFBQkOS5rKwspqGhwQ4fPswYY2z37t0MALt7965kmVmzZjGhUMgKCgokz3l5ebFZs2ZJHnfq1Im98847UvsbP348Gzp0KGOsYe/1ihUrmFAoZPn5+ZJllixZwvr06cMYY6ywsJCpq6uz4OBgqf3MmDGDTZw4kTHG2NWrVxkAdvnyZcnrZ86cYQBYSUmJZD89e/as8T16XV5eHmvdujVTUVFhampq7M8//2zQeqRxqsb9kSNH2M6dO9nmzZtZdnZ2jcueSD7BVB6oMEGmgG2L2dbMSWXb6tWr+Y5AiMx68aKS+frGskGDrjJt7WgGlDOAsVat7rMePfzZ11+HskeP8mtct2psfR/xPUMemFqyGrv64GozpieygMvPWJk4A83+d2mFQCCoc7n4+HiYmprC1NRU8py1tTV0dXURHx8PAJgwYQIePHgguexj//79sLOzg7W1NQAgMjISV69ehaampuTH0tISwMuzqVVen666vvVSUlJQXl4umXYceHlNbrdu3eo8pujoaAwcOLDW41VRUUGfPn0kz7Vp0wbdunWTHC8ACIVCdOnSRfK4ffv2EIlE0NTUlHouM1P6Hr2vZq16XLXdhrzXwMtLQbS0tCSPjYyMJPuJi4tDaWkpBg8eLPW+7d27V+q9BgBbW1upbQColrchtLS0EB0djfDwcHz33XdYtGgR/P39G70d0nRGmo/EndZ3oP1IGz6WPvg4kKbYrfLpp5/yHYEQmRIV9QQffxyITp2Coaqai+nTrXH5sgOEwlJMmBCCq1fTUF4uwq1bHlizpjeMjbVq3E7V2FrquBRnss9ArCLGgNYD8HP0z815OIRnXH7GysQ3e7p27QqBQID4+HiMGjWq1uUYYzU22a8+b2RkhP79++PAgQPo27cvDh48iFmzZkmWFYvFGDFiBH744Ydq26lq3ABUu5SkvvVevS65MTQ0NGp9jdUySeTr78Pr03oLBIIanxOLxfXmqdpuQ97r2vZdtZ+qf585cwYdOnSQWk5NTU3q8avbqdp+Q/K+TklJCebm5gAAOzs7xMfHY+3atfD09Gz0tkjT6damG9K10uEY6og/3f5EjH8MgtyCoKrcsr+c+9dff1ETTVq0vLxS/P57HP75Jx937hijtNQCQDsIhQlwdr6NCRP0MGOGNYTCPvVu61Wvjq1hZsMQnxsPp/tOWNBjASKvRWKv+14OjobIGi4/Y2XiDLS+vj68vLywdetWFBUVVXs9Ly8PwMszoGlpaXj48KHktbi4ODx//hxWVlaS5yZPnoy///4bISEhSElJwYQJEySvOTg4IDY2FiKRCObm5lI/NV1/3dD1zM3N0apVK6kvPObm5iIpKanOY7e1ta31Nn3W1taoqKhAaOh/E1NkZ2cjKSlJ6njf1KtZqx5XnVVv6HtdF2tra6ipqSEtLa3ae/bqme36qKqqSn0BsjEYYygrK3ujdUnT0lTVRLxrPEYFjEKEWwRMI01b/HWJHh4efEcgpFmJxQx+fil4/31/tGsXDj09Mb74wgFRUVbo0CETn34ajLi4HBQVWSMoyBNz5/aEUNiq/g2/5vWx1UWvC9J7pMMm2Ab73PfBPsAepRWlTXVYREZx+RkrEw00AGzbtg2VlZXo3bs3jh49iuTkZMTHx2PLli2SSw0GDRoEW1tbTJ48GVFRUQgLC8O0adPg4eEhdcnF6NGjkZ+fj9mzZ6N///5SZz/nzJmDnJwcTJw4EWFhYbh37x4uXryIjz76qM4mrb71NDU1MWPGDCxZsgRXrlzBnTt34O3tDSWlut/iFStW4ODBg1ixYgXi4+Nx+/ZtrF+/HsDLM/MjR47EzJkzERgYiJiYGEyZMgUdOnTAyJEj3+btBgAEBQVh/fr1SEpKwtatW/HPP/9g/vz5ABr+XtdFS0sLn332GRYuXAhfX1+kpKTg5s2b2Lp1K3x9fRucUyQS4f79+4iOjkZWVlatDfHatWtx6dIl3Lt3DwkJCdi0aRP27t2LKVOmNHhfhFtKAiUc9ziOVVGrkNktE+ZPzeGf5s93LN68fikTIYro/v08LF4cAkvLa1BVfYQRI7rgxAlnVFQoY9iwMPzzTxJevGiHu3dd8csvLrCyMnjrfdY0toSthLjtcRvjA8Yjul80TKJNkPY87a33RWQXl5+xnDfQQiFgYPDyRyisfbnOnTsjKioK/fv3x+LFi2FjY4PBgwfjypUr2L59O4CXf7V/4sQJ6Onpwd3dHYMGDYKZmRn+/vtvqW1pa2tjxIgRiImJweTJk6VeMzY2RlBQECorK+Hl5QUbGxvMnz8fOjo6dTa7DVlvw4YNcHd3x3vvvYdBgwbB1dUVjo6Odb4/np6e+Oeff3Dq1CnY2dlhwIABUmecd+/eDUdHRwwfPhzOzs5gjOHs2bPVLp14E4sXL0ZkZCTs7e2xevVqbNy4UXK/5Ia+1/VZvXo1vvnmG6xduxZWVlbw8vLC6dOn0blz5wZvY8yYMXjnnXfQv39/tG3bFgcPHqxxuaKiIvj4+KB79+5wcXHBkSNH8Ndff+Hjj+maW1nzjdM3OJ11GpWqlS36ukS6vzxRROXlldi58w769/eHltZtmJlpYdMmZ9y/b4IePVKwalUEMjMrkZPjgDNnPPHBBxZQUqr7O1CNVdfYOuRxCOtvrUdOlxx0zeqKKw9osjZFxeVnrIDVdqFtAxUXFyM+Ph5WVlYQ1tIhV81AWNskKqT5iUQiLFiwgKbzJm+katynpqYiLy8PBQUFmDZtGvT19Ru1neScZPR+0Bt5NnmYdmMafN0a/jcTiiAyMrLeX7IJkQehoY+xbdtd/PuvCh49sgJjegCeo0OHOAwY8AKzZpmhXz+TZsvTkLF1KfUShouH44XeC2xI3YDF9oubKR1pLlx+xjbLJRw6OtQ8E0Kq66rfFY9sHsE6xBp73fbCIcChRV2XWN994gmRVdnZxVizJgIODgFQU0tB377G2Lu3H/LytOHmFoPffruNkpLWSE93xt697s3aPAMNG1uDRYOR1CYJ+in6+KzHZ5h4bWIzJCPNicvPWJm4CwchpOUSthLittvL6xKP9DsC05umiLSIREedjnxH41xTfJeBkOYgFjOcPHkXu3Y9QnCwFnJyugPoBWXlDHTpchfDhmXi008t0aWLDd9RATR8bHXS6YR0u3T0DeqLQx6HEBsQi7B+YVBXUec4IWkOXH7GysyXCEnzSk1Npcs3iMxQEijhH49/sDZmLbIsslrMdYl//PEH3xEIqVV2djYOHTqEDz/8EHp6qzB6dFf4+fWBQMAwcuQNnDx5F+XlhkhMdMPmzc7o0kWP78gSjRlb6irqiPaIxuRrk3Hb5TY6xHTA/bz7HKYjzYXLz9hmuQaaEKJYmuoa6Jqcu3cOIwUjUaFTgR8f/IhF9ouaIDEhpD4vXrxAaGgoLly4gAsXLiAiIgKMMdjY2MDZeQI6d34Hs2ZZQ1+/9vkL5N1P0T9hUcdFUHmugpPsJIaaDeU7EpFRdAaaECJThpoNRaJeIvTu62GxzWJMujaJ70icWbNmDd8RSAt3//59/Pbbbxg9ejQMDAzg5uaGbdu2wczMDH/++SfS09Nx+/Zt/P7711i61FFumuc3HVsL7BbgcsFlCMQCvKv/LtZFrmviZKQ5cfkZKzMNtKenJ+bOnYsFCxZAT08P7du3x++//46ioiJ8+OGH0NLSQpcuXXDu3DnJOgEBAejduzfU1NRgZGSEL7/8EhUVFQCAHTt2oEOHDtVms3vvvfcwffp0yePTp0/D0dER6urqMDMzw6pVqyTbAICVK1eiY8eOUFNTg7GxMebNm8fxO0EI6azbGQ9tH6JHcA8cdD8I2wBbhfxy4eLF9K1/0rwKCwvh5+eHuXPnwsLCAmZmZvj000+RmZmJzz77DKGhocjMzJRcuvH6LLLy4m3G1oBOA5BskAyDZAMs7bkUYwPGQswaPzMu4R+Xn7Ey00ADgK+vLwwMDBAWFoa5c+di9uzZGDt2LFxcXBAVFQUvLy9MnToVxcXFePToEYYNGwYnJyfExMRg+/bt+PPPPyW/bYwdOxZZWVm4evWqZPu5ubm4cOGC5N7QFy5cwJQpUzBv3jzExcVhx44d2LNnD7777jsAwJEjR7B582bs2LEDycnJOHHiBHr06NH8bwwhLZCwlRC3PG5hwrUJuN1PMa9L3LZtG98RiIITi8W4efMmfvjhBwwYMAD6+voYMWIE/Pz8MGDAABw7dgzZ2dkIDAzE8uXL0bt3bygrK/Md+6297djqqNMR6Q7pcAx0xBGPI7C5boPiF8VNlI40Fy4/Yzm5Brq4GEhIqHs9S0vpiVU8PT1RWVmJ69evAwAqKyuho6OD0aNHY+/el3PWP3nyBEZGRggJCcHp06dx9OhRxMfHQyB4eQP2bdu24YsvvsDz58+hpKSEkSNHwsDAAH/++ScA4Pfff8eKFSuQnp4OZWVluLu7Y+jQoVi6dKkkx19//YXPP/8cjx8/xqZNm7Bjxw7cuXOnSSYuIURRcHkNdE023tyIJaIlUMlTwWmchldnL07209ySk5PRtWtXvmMQBZOZmYmLFy/iwoULuHTpEp4+fQqhUIj+/fvDy8sLXl5e6Nq1q+T/nYqoKceW93Vv+PbxhW6sLsI6haGrPo1ZecHlZywnZ6ATEgBHx7p/amqwbW1tJf+trKyMNm3aSJ3xbd++PYCXHw7x8fFwdnaW+gDo168fCgsLkZ6eDgCYPHkyjh49Kpn6ef/+/ZgwYYLkt+vIyEh8++230NTUlPzMnDkTGRkZKC4uxtixY1FSUgIzMzPMnDkTx48fl7q8gxDSPBbbL8al/EsQiAUYqjcU66PW8x2pSURFRfEdgSiA8vJy+Pv7Y+nSpXBwcED79u0xdepU3LlzB97e3rhy5QpycnKkLt1Q5OYZaNqxtcdtD7bEb8Fz0+ewLrCGX4pfk22bcIvLz1hO7gNtaQnUd+9qS8vqz71+llcgEEg9VzXgxWIxGGPVPgCqTqZXPT9ixAiIxWKcOXMGTk5OuH79OjZt2iRZXiwWY9WqVRg9enS1LOrq6jA1NUViYiIuXbqEy5cvw8fHBxs2bEBAQACdkSakmQ3sNBBJz5PgmOyIL+y+QERABA57HOY71ltp27Yt3xGIHGKM4e7du5KzzFevXkVhYSHatm2LIUOGYOHChRg8eDAMDQ35jsqbph5bc3vORc+HPTGkfAhGtBuB1RGrsazXsibdB2l6XH7GctJAC4WAgwMXW/6PtbU1jh49KtVIBwcHQ0tLS/KlBw0NDYwePRr79+/H3bt3YWFhITWlo4ODAxITE2Fubl7rfjQ0NPDee+/hvffew5w5c2BpaYnbt2/DgesDJIRUUzXpgXOQM/7x+Ac212wQ5hwGYSv5vIWmmpoa3xGInMjPz8e///4rucXc/fv30apVK/Tr1w9fffUVvLy8YGdnByUlmfpqE2+4GFvupu64m38XjgmOWO64HJEBkTjqfhRKAnrPZRWXn7FyOxOhj48PfvrpJ8ydOxeffvopEhMTsWLFCixatEjqA2Ty5MkYMWIEYmNjMWXKFKltfPPNNxg+fDhMTU0xduxYKCkp4datW7h9+zbWrFmDPXv2oLKyEn369IFQKMS+ffugoaGBTp06NffhEkL+R11FHTc9bmLatWnY57wPHe50kNvrElNSUtCvXz++YxAZJBaLERUVJWmYQ0JCUFFRAXNzcwwbNgxeXl7w9PSElpYW31FlEldjy0TbBA8dH8LtuhtOeJ6A9TVrRPSNgKaqZpPvi7w9Lj9j5baB7tChA86ePYslS5agZ8+e0NfXx4wZM7BsmfRfqVR96zgxMRGTJknfT9bLywt+fn749ttvsX79erRq1QqWlpb4+OOPAQC6urpYt24dFi1ahMrKSvTo0QOnT59GmzZtmu04CSE12+u+F47RjljYcSGsC6xxPPc4hncZznesRvH09OQ7ApEhjx8/lvryX3Z2NrS0tDBgwABs2bIFXl5eMDMz4zumXOBybKkqqyLUMxQzA2diZ5+dMIkzQahpKLq16cbZPsmb4bIOaCZCQkijNfddOOrin+aPd8rfQVnbMqxOlq/rEr/77jt8/fXXfMcgPCktLUVgYKDkLPPt27chEAjg6OgouVtG37596Ts3b6C5xtaO2zsw23A2lEuVcbj0MN7v+j7n+yQNx2UdUANNCGk0WWqgASA9Px0OiQ545vAM7we+jyPuR+TiukSxWEzXrLYgjDEkJCRIzjL7+/ujpKQERkZGGDJkCLy8vDBo0CD6cmkTaM6xFZQehEFFg1BqXIrl8cvxbe9vm2W/pH5c1gF9chNC5J6JtsnLSQ+uO+K4x3FYX7dGYXkh37Hq9f333/MdgXAsNzcXR44cwcyZMyESiWBtbY3PP/8c5eXlWLVqFWJiYvDo0SPs2bMHEydOpOa5iTTn2Opn0g/3O9yHUawRVvdajeH+w2nmQhnBZR3QGWhCSKPJ2hnoV310/SPs7rMbOnE6Mn9dIp2BVjyVlZUIDw+XXJYRGhoKsVgMS0tLyWUZHh4e9P9LjvExtirEFXC/5o4QzxCYXzdHZO9IaKtpN2sGIq1FnIFmjOGTTz6Bvr4+BAIBoqOj4enpiQULFnC635UrV8LOzo7TfTSX1NRUyXsnT9t+XXl5OczNzREUFMT5vl7XkOMUiUT46aefmi0TF14/ztu3b8PExARFRUX8BmsCu9x2YWvCVuSb5MOmyAYn757kO1Kt1q5dy3cE0gQePnyInTt3YuzYsTAwMICzszM2b94MY2Nj/Pbbb3jw4AHi4+Px008/YejQodQ8NwM+xpaKkgqCPYMxO2g27jrdhUmiCWKfxTZ7DvIfLutAZhro8+fPY8+ePfDz80NGRgZsbGxw7NgxrF69mu9onGnOprQxvL29MWrUKKnnTE1NJX8uXPv999/RqVMnmb29V3h4OD755JMGL+/v7w+BQIC8vDzuQr2lHj16oHfv3ti8eTPfUZqEj60PrpVeg3KZMka1G4WV4Sv5jlSjqVOn8h2BvIGSkhKcP38eCxcuhLW1NTp27IhZs2YhPT0d8+bNQ1BQELKysiSXbnTs2JHvyC0On2NrW79t2Hl3J4raF6FnWU8cSTrCW5aWjss6kJkGOiUlBUZGRnBxcYGhoSFUVFSgr6+vsPe4LC8vl+ntvU5ZWVny58K1X375RXIrQVnUtm1bXs4gMcY4nUr+ww8/xPbt21FZWcnZPpqTq4kr7hneQ/v49ljluEomr0v09/fnOwJpAMYY7ty5g40bN2LIkCHQ09PD0KFDceTIEbi4uODw4cN49uwZQkJCsGrVKri4uDTLZyWpHd9ja4bNDARXBkO1QBVjjcfiq9CveM3TUnFZBzLRQHt7e2Pu3LlIS0uDQCCASCQCAKlLOBISEiAUCnHgwAHJeseOHYO6ujpu374NAHj+/Dk++eQTtGvXDtra2hgwYABiYmKk9rVu3Tq0b98eWlpamDFjBkpLS+vMVnX28MyZM+jZsyfU1dXRp08fyT6rBAcHw93dHRoaGjA1NcW8efOk/jpcJBJhzZo18Pb2ho6ODmbOnInOnTsDAOzt7SEQCCT3K6zp0pVRo0bB29u7zu1VSUhIgIuLC9TV1dG9e3epAqqsrMSMGTPQuXNnaGhooFu3bvj5558lr69cuRK+vr44efIkBAIBBAIB/P39azxbHhAQgN69e0NNTQ1GRkb48ssvpRo8T09PzJs3D59//jn09fVhaGiIlStX1vl+R0VF4e7du3j33Xclz1Xt+/Dhw3Bzc4OGhgacnJyQlJSE8PBw9OrVC5qamnjnnXfw7NkzyXpisRjffvstTExMoKamBjs7O5w/f15qf2FhYbC3t4e6ujp69eqFmzdv1pmv6r1/9RIOgUCAnTt34v3334dQKETXrl1x6tQpSfb+/fsDAPT09CAQCCR/jowxrF+/HmZmZtDQ0EDPnj1x5Mh/Zyqqau/ChQvo1asX1NTUcP36dcllRzt27ICpqSmEQiHGjh0rdYa7Icf+Oi8vL2RnZyMgIKDe90BeGGsZI61XGvpe64sznmdgGWiJ/LJ8vmNJdOnShe8IpBbZ2dk4dOgQPvzwQ5iYmKBHjx5YtmwZlJSUsHbtWsTGxiItLU1y6YYsXP9P/iMLY6uPcR+kdkxFh9sdsNZpLbz8vWTul3hFx2kdsLdUVFTEIiIiWFFR0StPMsYi6/l5ZfG8vDz27bffMhMTE5aRkcEyMzMZY4x5eHiw+fPnS5bbunUr09HRYampqezRo0dMX1+fbd68mTHGmFgsZv369WMjRoxg4eHhLCkpiS1evJi1adOGZWdnM8YY+/vvv5mqqir7448/WEJCAvv666+ZlpYW69mzZ63Hd/XqVQaAWVlZsYsXL7Jbt26x4cOHM5FIxMrLyxljjN26dYtpamqyzZs3s6SkJBYUFMTs7e2Zt7e3ZDudOnVi2trabMOGDSw5OZklJyezsLAwBoBdvnyZZWRkSHK+ftyMMTZy5Eg2ffr0Ord3//59BoCZmJiwI0eOsLi4OPbxxx8zLS0tlpWVxRhjrLy8nH3zzTcsLCyM3bt3j/31119MKBSyv//+mzHGWEFBARs3bhx75513WEZGBsvIyGBlZWWSbd+8eZMxxlh6ejoTCoXMx8eHxcfHs+PHjzMDAwO2YsUKSUYPDw+mra3NVq5cyZKSkpivry8TCATs4sWLtb7fmzdvZpaWllLPVe3b0tKSnT9/nsXFxbG+ffsyBwcH5unpyQIDA1lUVBQzNzdn//d//ydZb9OmTUxbW5sdPHiQJSQksM8//5y1atWKJSUlMcYYKywsZG3btmXjx49nd+7cYadPn2ZmZmZSx1mTTp06SeqOMSZ5zw8cOMCSk5PZvHnzmKamJsvOzmYVFRXs6NGjDABLTExkGRkZLC8vjzHG2FdffSU5ppSUFLZ7926mpqbG/P39GWP/1Z6trS27ePEiu3v3LsvKymIrVqxgrVu3ZgMGDGA3b95kAQEBzNzcnE2aNKnBx/76n2eV3r17s5UrV9Z67FWqxv2RI0fYzp072ebNmyX1K6tmXZ/FUAqmHa3N7mTe4TsOY4yxK1eu8B2B/E95eTm7fv06W7ZsGXNycmICgYABYDY2Nmzx4sXs4sWLrLi4mO+YpIFkaWy9qHzB3K66MTCwztc7s9ySXL4jtRhc1gE3DXTk/7Zc10+k9HY2b97MOnXqJPVcTY3ku+++y9zc3NjAgQPZ4MGDmVgsZoy9fJO0tbVZaWmp1PJdunRhO3bsYIwx5uzsLNVgMcZYnz59GtRAHzp0SPJcdnY209DQkDSdU6dOZZ988onUetevX2dKSkqspKSEMfay6Ro1apTUMrU1MQ1toGvb3rp16yTPvXjxgpmYmLAffvih1mP08fFhY8aMkTyePn06GzlyZJ1Zv/rqK9atWzfJ+8/Yy19wNDU1WWVlpeQ4XF1dpbbj5OTEvvjii1qzzJ8/nw0YMKDGfe/cuVPy3MGDBxkAqcGxdu1a1q1bN8ljY2Nj9t1331Xbv4+PD2OMsR07djB9fX2p2t2+ffsbNdDLli2TPC4sLGQCgYCdO3eOMfZfDeXm5koto66uzoKDg6W2PWPGDDZx4kSp9U6cOCG1zIoVK5iysjJ7+PCh5Llz584xJSUllpGR0aBjr6323n//falf/Gojjw00Y4ztuLWDCTIFTPmhMjuSeITvOFKfK6T53bt3j/3222/s/fffZ9ra2gwA09fXZ+PHj2e7du1i6enpfEckb0gWx9a8oHkMxWCatzRZzNMYvuO0CFzWATcXaVkCiGzAMm9g165dsLCwgJKSEu7cuQOBQAAAiIyMRGFhYbVptktKSpCSkgIAiI+Px//93/9Jve7s7IyrV6/Wu19nZ2fJf+vr66Nbt26Ij4+X7Pvu3bvYv3+/ZBnGGMRiMe7fvw8rKysAQK9evd7giGtX2/ZezaqiooJevXpJsgLAb7/9hp07d+LBgwcoKSlBeXl5o+9EEh8fD2dnZ8n7DwD9+vVDYWEh0tPTJV+asbW1lVrPyMgImZmZtW63pKQE6urqNb726rbat28P4OWX3159rmrb+fn5ePz4cbUvIvbr109yWU98fDx69uwpdT3zq+9dY7yarXXr1tDS0qrzOOPi4lBaWorBgwdLPV9eXg57e3up52r6c+7YsSNMTEykcovFYiQmJkIoFNZ77LXR0NBAcXFxncvIs096fIIej3pgQNEAfGD8Ab4K/Qrf9fmOtzwODg687bslKiwshL+/v+QWc8nJyVBWVoazszOWLFmCIUOGwNHREcrKynxHJW9JFsfWzy4/wyHOAR+1/QgOLxywL2EfJlpO5DuWQuOyDrhpoIUAOMocExODoqIiKCkp4cmTJzA2Ngbw8ppPIyOjGi8Y19XV5SRLVfMoFosxa9YszJs3r9oyr377unXr1g3arpKSEthrt+d+8eJFteUaur1Xsx4+fBgLFy7Exo0b4ezsDC0tLWzYsAGhoaEN3hbw8heEV5vnqude3ReAalPQCgQCiMW1XwNmYGBQ7frymrZVtY/Xn3t92zVlrHru9ff4bTT2OKteO3PmDDp06CD1mpqamtTjhvw5Vx3Tq8db17HXJicnRyauHeSScwdn3C+8D4c7Dvi+9/eI9I/EWY+zvMxceOrUKSxevLjZ99tSiMVi3Lp1S9IwBwYG4sWLFxCJRPDy8sIPP/yAAQMGQEdHh++opInJ6tiabj0d3TO6w+O5ByZ1moSbN25ifd/1fMdSWFzWgUx8ibChcnJy4O3tja+//hoffvghJk+ejJKSEgAvf8t48uQJVFRUYG5uLvVjYGAAALCyssKNGzektvn649q8ulxubi6SkpJgaWkp2XdsbGy1/Zqbm0NVVbXWbVa99vpdD9q2bYuMjAzJ48rKSty5c6dBOV/PWlFRgcjISEnW69evw8XFBT4+PrC3t4e5ubnkDP2rueq7E4O1tTWCg4OlmtDg4GBoaWlVawgbw97eHgkJCW/d3Gpra8PY2BiBgYFSzwcHB0v+RsDa2hoxMTGSGgIaXg+NUdOfs7W1NdTU1JCWllatZkxNTevdZlpaGh4/fix5HBISAiUlJVhYWDTo2Gtz586damfAFZGhpiHSeqeh37V+uOB5AV2DuiKvNK/Zc/j4+DT7PhVdZmYm/vrrL0ybNg3Gxsawt7fHt99+C6FQiI0bNyIxMRH37t3Db7/9hvfff5+aZwUly2Orl1EvPBA9gGmMKTb03YBB/oPoy4Uc4bIO5KqB/r//+z+Ymppi2bJl2LRpExhj+OyzzwAAgwYNgrOzM0aNGoULFy4gNTUVwcHBWLZsGSIiIgAA8+fPx65du7Br1y4kJSVhxYoViI1t2E3Ov/32W1y5cgV37tyBt7c3DAwMJPdK/uKLLxASEoI5c+YgOjoaycnJOHXqFObOnVvnNtu1awcNDQ2cP38eT58+xfPnzwEAAwYMwJkzZ3DmzBkkJCTAx8enUfcQ3rp1K44fP46EhATMmTMHubm5+OijjwAA5ubmiIiIwIULF5CUlITly5cjPDxcan2RSIRbt24hMTERWVlZNZ799vHxwcOHDzF37lwkJCTg5MmTWLFiBRYtWvRWs/70798fRUVFDf5zqcuSJUvwww8/4O+//0ZiYiK+/PJLREdHY/78+QCASZMmQUlJCTNmzEBcXBzOnj2LH3/88a33+7pOnTpBIBDAz88Pz549Q2FhIbS0tPDZZ59h4cKF8PX1RUpKCm7evImtW7fC19e33m2qq6tj+vTpiImJwfXr1zFv3jyMGzcOhoaGDTr2mqSmpuLRo0cYNGhQkx27LFNRUkGgZyB8gnxwr9c9mCab4lbmrWbNsHHjxmbdnyIqLy+Hv78/li5dCgcHB7Rv3x5Tp07F7du34e3tjX///Rc5OTnw8/PD3LlzYWFhUe/fxBD5J+tjy0BogFTnVAzwH4ArnlfQOaQzckpy+I6lcDitg7e9iLrGLxG+gfq+ROjr68tat24tuYsAY4xFREQwVVVVdubMGcYYY/n5+Wzu3LnM2NiYtWrVipmamrLJkyeztLQ0yTrfffcdMzAwYJqammz69Ons888/b9CXCE+fPs26d+/OVFVVmZOTE4uOjpZaLiwsjA0ePJhpamqy1q1bM1tbW6kvcb3+xbMqf/zxBzM1NWVKSkrMw8ODMfby2+CzZ89m+vr6rF27dmzt2rU1fonw9e1VfTHswIEDrE+fPkxVVZVZWVlJfdGutLSUeXt7Mx0dHaarq8tmz57NvvzyS6n3IDMzU3IsANjVq1dr/NKZv78/c3JyYqqqqszQ0JB98cUX7MWLF5LXG/JlyJpMmDCBffnll9WO69V91/TFvN27dzMdHR3J48rKSrZq1SrWoUMH1qpVK9azZ0/JF/uqhISEsJ49ezJVVVVmZ2cnuWNGY79EePz4calldHR02O7duyWPv/32W2ZoaMgEAoHk+MViMfv5559Zt27dWKtWrVjbtm2Zl5cXCwgIqPUYGXv5JcKePXuybdu2MWNjY6aurs5Gjx7NcnJyGnzsNb2n33//PfPy8qr1uF8lr18irM2uO7uY0hMlppyuzA4lyN6Xj4i05ORk9uuvv7IRI0ZIPqfatm3LJk+ezPbu3Sv5Mi0h8mBR8CKGIrDWd1qzyIzI+lcgMkHA2Nv9XXlxcTHi4+NhZWWlkNOT+vv7o3///sjNzeXsWmoi7fbt2xg0aBDu3r2rsBPpvI2VK1fixIkTTTqDZVlZGbp27YqDBw82aAbIqnGfmpqKvLw8FBQUYNq0aXJ9L9zwjHB45HmgpGMJltxe0izXJa5ZswbLli3jfD/yLj8/H//++y8uXLiAixcv4t69e2jVqhX69esHLy8vDBkyBHZ2dm/1t19Escjb2Nofvx/TdKcBAHbn7sY062k8J1IMXNYBTZVEZE6PHj2wfv16pKamSt1lg3DnwYMH+Prrr2V2+vTm4GTkhDSdNNjH2GOD8wbc9L+JCx4XOP1y4asTIJH/iMViREVFSb78FxISgoqKCpibm2Po0KHw8vKCp6cn/YJNaiVvY2uy1WR0f9odrs9cMd1sOm4G38Rml818x5J7XNYB/bpOZNL06dOpeW5GFhYWmDVrFt8xeGcgNMD9Pvfh4e+By56XYRZsxul1iSdPnuRs2/ImIyMDvr6+mDRpEtq3bw8nJyf88MMP0NfXx5YtW5CSkoLk5GT8+uuvGDFiBDXPpE7yOLbs2tshrUsaOt3shJ9cfoKnvycqxBX1r0hqxWUdUANdD29vb2zevJn3yzeqpm8mZOXKlU16+QaRpqKkAn9PfywIXoAHDg/Q8V5HRD2J4mRfjo6OnGxXHpSWluLy5ctYsmQJbG1tYWxsjA8//BDJycmYNWsWrl27huzsbJw4cQKzZ8+GmZkZ35GJHJHXsaWvoY97LvcwxH8IAjwD0Dm0M7KKs/iOJbe4rAOZaaC9vb0hEAiq/dy9e7dZ9r9nz54am+Tw8HB88sknzZKhLp999hmuXLnCdwxCWozNLpvhe98XJfolcGJO+Cv+rybfx9OnT5t8m7KKMYaEhAT8/PPPGDZsGPT19TF48GDs378fDg4OOHDgAJ4+fYrw8HCsWbMGbm5u1e6vTkhDyfPYUhIo4YLnBXwZ+iXSe6Sj44OOCM8Ir39FUg2XdSBT10C/88472L17t9Rzbdu25SmNbOy/iqamJjQ1NfmOQUiLMs16Gmye2MA92x1TO09FVEgUNjlvarLtl5eXN9m2ZFFeXh4uX76Mixcv4sKFC0hLS4Oqqirc3NywatUqeHl5oUePHnRbOdLkFGFsre2zFvaJ9pikPQl9BX2xM3YnPuz+Id+x5AqXdSAzZ6CBlzOwGRoaSv0oKyvD29tbcs/lKgsWLICnp6fksaenJ+bNm4fPP/8c+vr6MDQ0xMqVK6XWycvLwyeffIL27dtDXV0dNjY28PPzg7+/Pz788EM8f/5ccua7al2RSISffvpJso20tDSMHDkSmpqa0NbWxrhx46R+w6m61GLfvn0QiUTQ0dHBhAkTUFBQUOtxV539PnHiBCwsLKCuro7Bgwfj4cOH1bZLCGleDoYOSDNLQ8fojtjsvBn9/fs32aQHijbrY2VlJW7cuIFVq1bBxcUFbdq0wdixY3H9+nW8//77OHv2LHJzc6Uu3aDmmXBBUcbWuG7jEK0aDeEzIT7q8hHmBM3hO5Jc4bIOODkDXVxcjISEhDqXsbS0bPLb3vn6+mLRokUIDQ1FSEgIvL290a9fPwwePBhisRhDhw5FQUEB/vrrL3Tp0gVxcXFQVlaGi4sLfvrpJ3zzzTdITEwEgBrP9jLGMGrUKLRu3RoBAQGoqKiAj48Pxo8fLzWFeEpKCk6cOAE/Pz/k5uZi3LhxWLduHb777rtasxcXF+O7776Dr68vVFVV4ePjgwkTJiAoKKhJ3yNCSOPpa+jjvvN9DPEfgiueVyAKFiHKLgoGQoO32m5AQIDcf1k2PT1dcreMy5cvIzc3Fzo6Ohg0aBB+++03eHl5oWPHjnzHJC2MIoytKjZtbfBI+xHsw+2xzXUbYvxj4O/uDxUlmbqIQCZxWQecvPsJCQn1XrgdGRkJBwcHqef8/PykGtehQ4fin3/+afB+bW1tsWLFCgBA165d8euvv+LKlSsYPHgwLl++jLCwMMTHx8PCwgIApL6UoqOjA4FAIJnJrSaXL1/GrVu3cP/+fcl0y/v27UP37t0RHh4OJycnAC9vwbRnzx7Jt8SnTp2KK1eu1NlAv3jxAr/++iv69OkD4OUvA1ZWVggLC0Pv3r0b/B4QQrihJFDCZc/LWBKyBD/2/BGdUjshQC8AvYx6vfE2p0yZ0oQJm0dJSQkCAgIk92SOi4uDkpISevfujXnz5sHLywtOTk5QUaH/uRP+yOPYqou2mjaS+yVjuP9wnHM/h45hHRFlEwVDzdp7FsJtHXDyCWdpaYnIyMh6l3ld//79sX37dsnj1q1bN2q/tra2Uo+NjIyQmZkJAIiOjoaJiYmkeX4T8fHxMDU1lTTPAGBtbQ1dXV3Ex8dLGmiRSCR1i6VXc9RGRUUFvXr99z9iS0tLyXapgSZEdmxw3gCHBAdM1Z2KPoI+b3Vd4q+//irzkz2IxQwnT97FzZv/4saNo7h27RrKyspgYmICLy8vrFy5EgMHDpTrSXSI4pGHsdVYSgIlnPU8i+Vhy7Gm+xp0ftQZ/2r+C+cOznxHk1lc1gEnDbRQKKx2drkhWrduDXNz82rPKykp4fUJE1+8eFFtude/sS0QCCAWv7xWUUNDo9F5XscYq/F6vdefrytHXWraNl0fSIjsmWg5Ed0zu8Ml0wUfdfkIUcFR+MXll0ZvR1b/B5+cnINff03AuXOVSEkxh1jcFSoq+zFokDLWrl0LLy8vWFlZ0ecTkVmyOraawureq2GXZIcJwglwbeWK7be345Me/N8tTBZxWQcy9SXC2rRt2xYZGRlSzzX2Pri2trZIT09HUlJSja+rqqqisrKyzm1YW1sjLS1N6st9cXFxeP78OaysrBqV53UVFRWIiIiQPE5MTEReXl6NZ+oJIfyzbWeLdPN0iKJE+NXlV7j5uzV60oM1a9ZwlK5xSksrsG3bLbi5+UNTMxYWFrrYssUFaWmGsLdPwvffRyIz80ucO3cOCxcuhLW1NTXPRKbJytjiyhiLMbilcQuaGZqYZTEL/xf4f3xHkklc1oFcNNADBgxAREQE9u7di+TkZKxYsQJ37txp1DY8PDzg7u6OMWPG4NKlS7h//z7OnTuH8+fPA3h52UVhYSGuXLmCrKwsFBcXV9vGoEGDYGtri8mTJyMqKgphYWGYNm0aPDw8pC6/eBOtWrXC3LlzERoaiqioKHz44Yfo27cvXb5BiAzTVddFiksKvPy9EOgeiE5hnZBZVPflWq+aO3cuh+nqFhiYjsmTr8HY+AY0NIowZ44tgoJsoa//HB9+GITw8AyUlnZFRIQHli51hJ6eOm9ZCWksPsdWc7EysMIjq0foGtYVO1x3oK9/X5q58DVc1oFcNNBeXl5Yvnw5Pv/8czg5OaGgoADTpk1r9HaOHj0KJycnTJw4EdbW1vj8888lZ51dXFzwf//3fxg/fjzatm2L9evXV1tfIBDgxIkT0NPTg7u7OwYNGgQzMzP8/fffb32MQqEQX3zxBSZNmgRnZ2doaGjg0KFDb71dQgi3lARKOO95HkvDl+KxzWOIHooQ+ji0Qevu3buX43T/efKkEN98E4aePQOgqnofbm4mOHDABUVFQgwYcBO7d8ehtFQHaWku2LXLDb16GTVbNkKaWnOOLT5pqmoiwTUB7/m/h1C3UJiEm+BxwWO+Y8kMLutAwF6/uLiRiouLER8fDysrqya/LV1LsWfPHixYsAB5eXl8RyGkQarGfWpqKvLy8iS/1Lb0L5IdSTqCCcIJYKoM25/Wf13inTt3YGNjw0kWsZjhn3+SsGdPBm7c0EFeXncAqlBReYiuXe9jxAhVzJljhY4ddTjZPyF84nJsyapV4auwsttKqD9RxyXhJbiauPIdiXdc1oFcnIEmhBB58IHFB4hRi0HrJ60bdF1icnJyk+4/NvYZfHyC0KVLIFq1eoYJE7rh/HknqKpWYMyYEJw/fx9lZSaIi3PHDz/0peaZKKymHlvyYIXTCpzMPIkKtQq4q7lj261tfEfiHZd1QDfqJISQJtS9bXeka6fDIdwBO1x3INo/GoHugTVOevC2dwcqLCzHzp1x+PvvPMTEtEdJiRWAttDQSICTUxzGjn2EmTOtoa3t9Fb7IUTeNMWdt+TRe+bv4U72HfR52AdzrOcgKjAKO1138h2LN1zWAZ2BlgHe3t50+QYhCkRbTRtJ/ZLwrv+7CHUPhWm4aY3XJbZp06bR275y5QHGjQuAoWEotLTKsHChHUJDu6N9+xzMmhWImJhMFBdb4sYNTyxebA9tbbWmOCRC5MqbjC1F0a1NN6Rbp8PyhiX+dP0Tvfx7obyynO9YvOCyDqiBJoQQDigJlODn6YflEcvxxPoJumR0QVB6kNQyDbkdZ3p6PpYuDYWNzTW0avUAgwZ1wj//OKOsTBVeXpH46694lJe3wf37/fDbb66wtW3H0RERIj8ae6tbRaOpqolYt1iMDhiNSLdImEaaIj0/ne9YzY7LOqAGmhBCOPRt729x7MkxVGhUwE3NDdtv/Tfb6ogRI6otX1Ehxt69cRg82B86OjEwNdXAunV9kJTUEVZWqVi2LAyPHpUhN9ce5897YvJkK6io0Ec5Ia+qaWy1NEoCJRz1OIrvo79HZrdMmGeawz/Nn+9YzYrLOqBPXUII4dj7Xd/HLY1b0H6kDR9LH3wc+DEAYOfOl9cmRkc/xcyZgRCJgqCqmoPp061x+bIDhMJSTJgQgqtX01BeLsKtWx5Yvbo3jI21+DwcQmRe1dgiwFLHpTiTfQZiFTEGtB6An6N/5jtSs+GyDug2doSQRqPb2L2ZwvJCOIY6IqnPfXRYNwmGftMQe7sDSku7ARBDKEyAvX0mJkzQw0cfWUMobMV3ZEKIgkjJTYHTfSfk9sjF1JCp2OveMu6VzRU6A00IIc1EU1UT8a7xcDswHo9W7EHkzQvo0OEZPv00GAkJuSgqskZgoCc+/bQnNc+EvAVFn8r7TXTR64L0HunoHtId+9z3wT7AHqUVpXzH4hSXdUBnoAkhjUZnoN/e0t178fW4MdBs3ZrvKIQonNLSUqir0/TztZkQMAF/9/sbbaLbIKprFDrqdOQ7Eie4rIMmuw90SUlJU22KECLjaLy/vbUfTsOGDRuwZMkSvqMQonB++eUXGlt1OORxCI5RjviiyxfomtUVZ/POYmCngXzHanJc1sFbN9AqKipQUlJCampqE8QhhMgLxhgqKyv5jiHXRo0axXcEQhQSja36LXFYArtUOwwXDMdg7cHYcHMDFtsv5jtWk+KyDt66gVZVVUX37t1RUVGB58+fw8/PD61atYKqqmpT5COkQV68eIFDhw5hwoQJaNWq/mtHs44ehXJFBfTGj2+GdNWlpqZCJBLxsu+mUlFRgRcvXqCsrIzvKHIrMjISXbt25TsGIQqHxlbDDBYNRtLzJDgmO+Kznp8h8lokDrgf4DtWk+GyDprkEg5VVVWoqqqCMQZlZWWaVY80u/Lycjx58gRPnz6t95c3cWUlKu7dQ46hIV5kZjZTQmn5+fnI5GnfXNDW1oaaGs1411iGhoZ8RyBEIdHYarhOOp2QbpeOvkF9cdDjIO4E3EFYvzCoq8j/NeRc1kGTXQMNAK1bt8b48ePpjBRpdgUFBfjmm28wfvx4aGnVfY/ceF9fWMXHI+Hjj2E5cWIzJZQWFhaG3r1787JvLqipqaE1fRmu0VRUmvQjmBDyPzS2GkddRR3RHtGYcm0K9rvsR4eYDojoEoHOup35jvZWuKyDJt9y69at6X+kpNmpqKigrKwMenp60NbWrnPZF8ePA+Xl6DNzJpR5utTo2bNndMcKgvv378PV1ZXvGIQoHBpbb+Yv97/gcNMBn3X+DN1yu+FkzkkMNRvKd6w3xmUd0H2gSYtjEBWFBBMT3ppnAHB3d+dt30R2UB0Qwg0aW29ukf0iXC64DIFYgHf138W6yHV8R3pjXNYBNdCkRclOTIR1UREqB/J7u54DBxTnSxrkzVEdEMINGltvZ0CnAUg2SIZBsgGW9lyKsQFjIWZivmM1Gpd18NYTqRAiC/Lz86Gjo4Pnz5/XeQlH8Lx5cPnlF2SEhcHIyakZE0qrrKyEsrIyb/snsoHqgBBu0NhqGuWV5XC57oJIz0hYX7NGuHM4hK3kZ9I8LuuAzkCTFqXy3Dkkq6nx2jwDwNq1a3ndP5ENVAeEcIPGVtNQVVZFhGcEpl+fjri+cehwpwOSc5L5jtVgXNYBnYEmCqEhZ6CZWIwnrVoh0d4enhERzZyQEEIIkV+/xPyC+R3mQ7lIGccrjmN4l+F8R+IVnYEmLUby8eMwEouh9cEHfEfBmjVr+I5AZADVASHcoLHV9Ob2nAv/En8olytjhMEIrImQ/feYyzqgM9BEITTkDLT/8OHofeYMlHJzoa6r27wBX/Pw4UOYmprymoHwj+qAEG7Q2OJOen46HBMckemYiVGBo3DU/SiUBLJ5PpbLOpDNIyaEA1ohIYg1MOC9eQaAK1eu8B2ByACqA0K4QWOLOybaJnjo+BC9r/fGCY8TsL5ujcLyQr5j1YjLOqAGmrQIxVlZ6J6Tg2IZubG+hYUF3xGIDKA6IIQbNLa4paqsilDPUHwc+DES+yTCJM4EidmJfMeqhss6oAaatAix27ZBHYDJjBl8RwEAlJSU8B2ByACqA0K4QWOrefzh+gd+S/oN+R3yYVNkg5N3T/IdSQqXdUANNGkRio8fxyNlZZgNG8Z3FABAdnY23xGIDKA6IIQbNLaaz6wes3C97DpUSlQwqt0ofBP2Dd+RJLisA2qgSYtgGheHFHNzCJRko+R79uzJdwQiA6gOCOEGja3m1c+kH+53uA+jOCOs7rUaw/2Hy8TMhVzWgWx0E4RwKD0oCGbl5Wj17rt8R5Hw8/PjOwKRAVQHhHCDxlbzM9Q0RFrvNDhfc8YZzzPoFtgN+WX5vGbisg7oNnZEIdR1G7trU6bAZf9+FKWmQqdTJ54SSisuLoZQKD/ToRJuUB0Qwg0aW/zyCfLBdsft0ErSQohRCLq37c5LDi7rgM5AE4WnevUq4rS0ZKZ5BoBNmzbxHYHIAKoDQrhBY4tf2/ptwx93/0CRYRF6lvXEkaQjvOTgsg7oDDRRCLWdga4oLUWRhgZu9u8Pz3//5TEhIYQQ0rKEPg5F/+f9UWJagqWxS/F9n+/5jtRk6Aw0UWhxu3dDB4DB5Ml8R5FC08wSgOqAEK7Q2JINfYz7ILVjKjrc7oC1Tmvxjv87zfrlQprKm5B61HYG2t/dHbaBgdApLYWyqiqPCaU9e/YMbdu25TsG4RnVASHcoLElWyrEFRhwbQCue15H58DOiOoVBV11Xc73y2Ud0BlootAMoqKQYGIiU80zABw7dozvCEQGUB0Qwg0aW7JFRUkF1zyvYV7wPNx3vA/TZFPcyrzF+X65rANqoInCyklOhnVRESoHDuQ7SjVOTk58RyAygOqAEG7Q2JJNP7v8jD3396C4bTEcXjjgYMJBTvfHZR1QA00UVsIvv0AJgLmPD99RqsnIyOA7ApEBVAeEcIPGluyabj0doSwUas/VMMl0Ej6/8Tln++KyDqiBJgqr8tw5JKupwUgGz0RUVlbyHYHIAKoDQrhBY0u29TLqhQeiBzCNMcWGvhswyH8QJ18u5LIOqIEmComJxTC/dw+PbGz4jlIjkUjEdwQiA6gOCOEGjS3ZZyA0QKpzKgb4D8AVzyswCzZDTklOk+6DyzqgBpoopOTjx2EkFkPrgw/4jlKj69ev8x2ByACqA0K4QWNLPigJlHDF8woWhSzCA/sH6HivI6KeRDXZ9rmsA7qNHVEIr9/Gzn/4cPQ+cwZKublQ19XlO141OTk50NfX5zsG4RnVASHcoLElf/bH78c03WkAAN88X0yxmvLW2+SyDugMNFFIWiEhiDUwkMnmGQC2bdvGdwQiA6gOCOEGjS35M9lqMiKVIqGRrYGpnaZiYfDCt94ml3VAZ6CJQnj1DLRKeTmU2rZF6KhR8Dh+nO9ohBBCCGmgnJIcOEQ54EG/B/Dw98Bl98tQUVLhO1Y1dAaaKJzYbdugDsBkxgy+o9SKppklANUBIVyhsSW/9DX0cc/lHgb7D0aAZwA6h3ZGVnHWG22LpvImpB6vnoG+6eEB89u3YVxeDoGSbP6OmJ+fLzXlOGmZqA4I4QaNLcXwxY0vsN5mPTQeaiBANwBORo27LS2XdSCb3QUhb8E0Lg4p5uYy2zwDwJ49e/iOQGQA1QEh3KCxpRh+6PsD/n70N8q1y9FX0Be7Y3c3an0u60B2OwxC3sCjGzdgVl6OVu++y3eUOg0aNIjvCEQGUB0Qwg0aW4pjXLdxiFaNhvCZEB+ZfYS5wXMbvC6XdUANNFEoqX/+iUoAVp9+yneUOiUkJPAdgcgAqgNCuEFjS7HYtLXBI4tHMIs0w68uv8LN3w0V4op61+OyDqiBJgpF9do1xGppQbdzZ76j1Kl169Z8RyAygOqAEG7Q2FI82mraSO6XjKH+QxHoHoiOYR3xpPBJnetwWQfUQBOFYvHkCXJ69eI7Rr3oBv8EoDoghCs0thSTkkAJZz3P4qvwr5DRPQOdH3VGyKOQWpfnsg6ogSYKRQeAweTJfMeo161bt/iOQGQA1QEh3KCxpdi+6/MdjmQcQYWwAq6tXPH77d9rXI7LOqDb2BGFUHUbu/sATMvKoKyqynekOj1+/BjGxsZ8xyA8ozoghBs0tlqG+Kx49H3UF/mW+ZgVPgu/uf4m9TqXdUBnoIlCSe7QQeabZ5SVYdeOHXynIDJg165dfEcgDcEA5P/v30Qu0NhqGawMrPDI6hG6hnXFDtcd6OvfV/LlwpIS4PffuasDOgNNZEphYSGmT5+OzZs3o2PHjvWvUAEgGUiNu4nOHzjg3LuT8M6f+2XzV8O8XGDpXOD0P0BFBTBwKLBuK2Daie9khDRcG8jm+OLKPgArANwH0BHAcgAf85qoeYkBZPMdgpC6iZkY70e/j1MDT6HtGTs4/BqMy/9qQCAARr8L/LoDaNu+afcpe5OLkxZr165dePDgAY4dO4aNGzc2bKVkANZAMl6e0TU78zFgyF3GtzMeGFAJxMRgzR9/YNnTp4CjF4BYAMp8hyM8WIM1WIZlfMdonEwAbfkO0UwuAJj2yuM0ADMBGAAYxUcgHmQDaMd3iMaTy7FF3pgSlHASJ7HynVVYlT4Kmt00kJQE/PLLGiQlLcP77wGBoU27TzoDTWSOQCDA/fv3IRKJal2mrKwMZWVlQCKA3sCXw02w3a8Aie0ToaWk1WxZG+4B0Go8cPkyoKmJtJw0lJUXAytXAjkTAVjzHZDwQC1PDR2zG/A3LbLkMgA9vkM0kwUArtfwvBOA32p4XhHlApDDOUnS2qShTLeM7xikmSUD2KUNrF4NqLQCdDR0YG7UE8bGQEAAYGfXdPtqcAN98OBB9O7dG0ePHsX8+fOxYcMGLFu2DGvWrMFHH32Ec+fOwdbWFjk5OSgqKoKlpSUuX74Mb29vbNmyRbKsj48PDh48CDc3N6SmpkJZWRlGRkYIDw/H6NGjsWPHDsmyixYtwvbt2zF8+HDExMSgTZs20NDQQFJSEgYOHAhfX1/JskuXLsX69esxadIkXLt2DZ07d0ZFRQWePHkCR0dHnDhxAnPnzsWPP/4oWefjjz/G6dOnYWdnh+zsbJSUlKBr1664evUqpk2bhl9++UWy7Keffoq//voLHh4eSElJgaqqKtq3b4/IyEiMHDkSf/zxh2TZxYsXY9u2bXjvvfcQFRWFtm3bQk1NDSkpKfD09MS+ffuwdOlSfP/99/jqq6+wdu1aTJ06Ff7+/ujSpQvKysrw7NkzODg44NSpU/Dx8cHGjRsl2585cyZOnjwJR0dHPH36FOXl5ejSpQsCAgIwZcoU/Prrr5Jl586di71796J///5ITk6GhoYG2rRpg+joaIwYMQI7d+6ULPvZZ5/hl19+wahRoxAZGQlDQ0OoqKjg/v37cHd3x4EDB/D5559j7dq1knWmT5+OK1euwMLCAiUlJcjOzkbPnj3h5+eH2bNnY9OmTZJlZ82ahWPHjsHJyQkZGRmorKyESCTC9evXMXHiRGzbtg3Lli2DQCDArVu3cPXqVQwaNAgJCQlo3bo19PX1cevWLQwdOhRTpkzB1atXq9Xpe++9Bz09PSgpKSEvLw8dO3bEnTt34OLigsDAQHh4eCAgIAB2dna4d+8eDAwMUF5ejtLSUrRr1w53796Fg4MDbty4IVm2V69eiIuLg4mJCfLz8wEA2traSE9PR/fu3REeHi5Ztm/fvoiKikKXLl2QlZUFVVVVqKurIzMzE+bm5rh58yY8PDywd+9eTJ48GSEhIbC2tkZ6ejq0tbUBvPxCpImJCeLi4uDs7CyV297eHnfv3kW7du1QWlqK8vJyGBgYICUlpVpuJycnxMbG1pjb2toaERER1XKbm5sjMzMT6urqUFVVRVZWFszMzBAdHS1Z1tXVFcHBwbCxsUFaWhp0dXUhFotRWFiIDh06IC4uDn379kVQUFC13O3bt0dJSYkk971792BnZ4fQ0FCp3Hfu3EHHjh2Rl5cHJSUlaGpq4vHjx7CyspLK7ezsjIiICFhYWODJkycQCoVQUVFBdnZ2tdxubm4ICgpCjx498ODBA6ncxsbGSEhIQO/evREcHCxZx8HBAUlJSTA0NERxcTEqKiqgr6+P1NRU9OzZUyp37969cevWLYhEIuTk5EBZWVmS29LSEpGRkZJlXVxcEB4eLtl3Ve6cnByIRCLcunULrq6uuH79Otzc3BAYGAhbW1ukpqZCX18fFRUVKC4uhpGRERITE+Hk5CSV29HREQkJCTA2NkZhYSEqKysluW1tbREWFiZZtk+fPoiJiZHkVlFRgVAoxJMnT2BhYYGoqCip3GFhYbC0tMTjx4+hqakpGWudOnXC7du30a9fP1y/fr3aWGvTpo0kt6GhIZKSktCrVy+EhIRIjbX4+HhJbrFYDF1dXaSlpcHGxkZqrPXp0wfR0dEwMzOTjDUNDQ08ffpUaqwFBASgX79+uHHjBqytrfHo0SOp3LL6GVE11ugz4s0+I5SVlVFZWSn3nxHdunVDRkYGfUa84WfEsWPH8OO2HzFj4gvMn98aQ4b810fs2rVL0p8sWbIEP//8M8aMGYMuXbo0bQNNSHNpzBnooOAgDLMYBpG/CKkzUhFkHYTOubI4iUopAC/gpzVItjLE0Z1H0eqdcijfDgYqPQBo8B2QNLPKVpV48fAFxkSNQdeUrnzHabiWdAb6FwB7anh+IoDPmjcKb+TwDHRyl2QcdTiKVqatoPyCLo9rScoA/KsE9O0L6BYylF0sQ3fXMVj8oTvSHwE6Ok23L7oGmsglNTU1ZJdn432z96EiVsGfa//EQAyEQbYBjK4avbxGUdYc+hqYOhVZs8fi0aNSdI4LhUZJOjDSCuhqyXc60syKMovwaMkj6P2uByMDI77jNFxL+hLhYgAnAcS98pw5gM8BNPEXkmRWewAxfIdonKysLDxa/gidF3SGRjs6OdGSpN8H7hwD4gOBQZ1K0PrRI1zbDmxY37TNM0ANNJFT5ZXlcIhzQJllGU73PQ2TApP/XjSAbH7Jae50YKATcGInNPNygIEDgeRw4NRhYNw4wJKa6BZFHdDU1AR0IZv1Sl7+shAO4CBeNpHdAUwGoMlnqGamBPmrz4r/jS11ADSjd4uRnAwcOg507Qq4ugJZIS/r4PMZwMShTb+/lnIegSgYt+tueNrrKVZFr8LwhOF8x2k4a2vgww+hpKQEtG8LjBkDWFkBhw8DCQl8pyPNTEmJPoJlnhDADABbAMxCy2qe5RiNrZYlORk4dAgwN395PsrUFLC0elkHHUzqX/9NUIURmXHw4EHMnj0bAPDll19i27ZtNS73SeAnCPMMw8jrI/GN9TfNGbHJ5OXlvfwPJSVqolswSR0QQpoUja2W4/XmWfmVy965rAO6hIPIjIkTJ2LixInYvn17rcvsuL0Dfzj9AYvrFjjmcQzIasaATUhqkpiqJvro0ZdNNF3O0WI0aLIgQkij0dhqGepqngFu64DOQBO5EZQehNmGs6GdoI3IPpFQEshv+d65c0f6CToT3SJVqwNCSJOgsaX46mueAW7rQH47ENKiPCl8gkFFg6BcqowbHW5AU1W+L0R0cXGp/iQ10S1OjXVACHlrNLYUW0OaZ4DbOqAGmsi8CnEFHO44oNS4FIdLD8PKwIrvSG8tMDCw5heoiW5Raq0DQshbobGluBraPAPc1gE10ETmeVzzQEbvDCyPX473u77Pd5wm4eHhUfuL1ES3GHXWASHkjdHYUkyNaZ4BbuuAGmgi03yCfBDsGYxh14bh297f8h2nyQQEBNS9ADXRLUK9dUAIeSM0thRPY5tngNs6oAaayKw/7/yJ7Y7b0SWwC057nOY7TpOys7OrfyFqohVeg+qAENJoNLYUy5s0zwC3dUANNJFJoY9D8UnbT6CVpIUopyi5vuNGTe7du9ewBamJVmgNrgNCSKPQ2FIcb9o8A9zWgWJ1JUQhZBZlov/z/hC8ECDEKATaatp8R2pyBgYGDV+YmmiF1ag6IIQ0GI0txfA2zTPAbR1QA01kSoW4Ag63HFBiWoJDxYfQvW13viNxory8vHErUBOtkBpdB4SQBqGxJf/etnkGuK0DaqCJTBl4bSAe9XmEpbFL8YHFB3zH4UxpaWnjV6ImWuG8UR0QQupFY0u+NUXzDHBbB9RAE5kxP3g+rnlew5BrQ/B9n+/5jsOpdu3avdmK1EQrlDeuA0JInWhsya+map4BbuuAGmgiE/bG7cUW+y3oHNgZ5zzO8R2Hc3fv3n3zlamJVhhvVQeEkFrR2JJPTdk8A9zWATXQhHcRGRH4UO9DtE5pjaheinfHjZo4ODi83QaoiVYIb10HhJAa0diSP03dPAPc1oHidypEpmUVZ8Ej1wMCJkBwu2DoquvyHalZ3Lhx4+03Qk203GuSOiCEVENjS75w0TwD3NYBNdCEN2ImhkO0A4o7FWNf/j7YtrPlO1KzabLpRamJlms03TAh3KCxJT+4ap4BmsqbKKjBAYPx0OUhPrv1GSZaTuQ7TrNq0ulFqYmWWzTdMCHcoLElH7hsngGaypsooCUhS/Cv578Y4D8AG5w38B2n2fXq1atpN0hNtFxq8joghACgsSUPuG6eAW7rgBpo0uwOJhzEjz1/RMfgjrjkcYnvOLyIi4tr+o1SEy13OKkDQgiNLRnXHM0zwG0dUANNmlX002hM1Z4KYaoQN+1vtog7btTExMSEmw1TEy1XOKsDQlo4Gluyq7maZ4DbOmiZ3QvhRV5pHlyfuYIJGK7rX4e+hj7fkXiTn5/P3capiZYbnNYBIS0YjS3Z1JzNM8BtHVADTZqFmIlhH2mPIrMi7M7dDQdDukcnp6iJJoQQIkOau3nmGjXQpFkMDRiK1H6pWBC9ANOsp/Edh3fa2trc74SaaJnXLHVASAtEY0u28NU8c1kH1EATzi0NXYqLnhfh7u+OzS6b+Y4jE9LT05tnR9REy7RmqwNCWhgaW7KDzzPPXNYBNdCEU4cTD2Nd93XoENIBV9yv8B1HZnTv3r35dkZNtMxq1jogpAWhsSUb+L5sg8s6oAaacObOszuY1HoSNB5qILpnNFSUVPiOJDPCw8Obd4fURMukZq8DQloIGlv847t5BritA2qgCSfyy/LhkuEC1oohQDcABkIDviPJFF6mmaUmWubQdMOEcIPGFr9koXkGaCpvImfETAz7cHsUWBTg92e/w8nIie9IMoe3aWapiZYpNN0wIdygscUfWWmeAZrKm8iZEQEjcM/1HnwifTDDZgbfcWRS3759+ds5NdEyg9c6IESB0djihyw1zwC3dUANNGlSy8OW46z7Wbj4u2Brv618x5FZUVFR/AagJlom8F4HhCgoGlvNT9aaZ4DbOqAGmjSZo0lHscZqDYzCjBDgTn99VpcuXbrwHYGaaBkgE3VAiAKisdW8ZLF5BritA2qgSZOIz4rHBI0JUH+sjiibKLrjRj2ysrL4jvASNdG8kpk6IETB0NhqPrLaPAPc1gE10OStFZYXou+jvqhUr8S/mv/CUNOQ70gyT1VVle8I/6EmmjcyVQeEKBAaW81DlptngNs6oAaavBUxE8Mh1AH5lvn47clvcO7gzHckuaCurs53BGnURPNC5uqAEAVBY4t7st48A9zWATXQ5K2MDhiNZLdkzAyfiU96fMJ3HLmRmZnJd4TqqIludjJZB4QoABpb3JKH5hngtg6ogSZv7Nvwb3HS7SR6+/fG766/8x1Hrpibm/MdoWbURDcrma0DQuQcjS3uyEvzDHBbB9RAkzdy6u4prLBYgfYR7XHd7TrfceTOzZs3+Y5QO2qim41M1wEhcozGFjfkqXkGuK0DaqBJoyXnJGNMqzFQy1RDlHUUVJXpyxqNJfPTzFIT3Sxkvg4IkVM0tpqevDXPAE3lTWRIYXkhej/ojcrWlbiscRnGWsZ8R5JLcjHNLDXRnJOLOiBEDtHYalry2DwDNJU3kRFiJobTDSfkdc/Dr49/hauJK9+R5Jarq5y8d9REc0pu6oAQOUNjq+nIa/MMcFsH1ECTBht3bRwS3BPgHeoNH1sfvuPItZCQEL4jNBw10ZyRqzogRI7Q2Goa8tw8A9zWATXQpEHWRq7FUdejcPR3xG633XzHkXvW1tZ8R2gcaqI5IXd1QIicoLH19uS9eQa4rQNqoEm9zt47i6/Mv0LbqLYIdgvmO45CSE9P5ztC41ET3eTksg4IkQM0tt6OIjTPALd1QA00qVNKbgpGKY2C2jM1RHWjO240FW1tbb4jvBlqopuU3NYBITKOxtabU5TmGeC2DqiBJrUqflEMp/tOqNCuwNlWZ2GibcJ3JCILqIkmhBCFpEjNM9eogSa16hPcB7k9crEpbRMGdBrAdxyFkp+fz3eEt0NNdJOQ+zogREbR2Go8RWyeuawDaqBJjSYETMAdjzuYGjIVC+wW8B1H4ZiYKMDZfGqi35pC1AEhMojGVuMoYvMMcFsH1ECTajZEbcDf/f5Gz4Ce2Ou+l+84CikuLo7vCE2Dmui3ojB1QIiMobHVcIraPAPc1gE10ETKpdRL+KLzF2gT3QY3+t3gO47CcnZ25jtC06Em+o0pVB0QIkNobDWMIjfPALd1QA00kXjw/AGGi4ejVW4rRHaNhLqKOt+RFFZgYCDfEZoWNdFvROHqgBAZQWOrforePAPc1gE10AQAUFpRCsdkR7zQewE/JT900unEdySF5uHhwXeEpkdNdKMpZB0QIgNobNWtJTTPALd1QA00AQD0DeqLbLtsbEjdgMGiwXzHUXgBAQF8R+AGNdGNorB1QAjPaGzVrqU0zwC3dUANNMGUa1MQ4xGDCcETsNh+Md9xWgR7e3u+I3CHmugGU+g6IIRHNLZq1pKaZ4DbOqAGuoX7Kfon7Hfejx4BPXDQ/SDfcVqMu3fv8h2BW9REN4jC1wEhPKGxVV1La54BbuuAGugW7N8H/2JRx0XQu62HGy50x43m1K5dO74jcI+a6Hq1iDoghAc0tqS1xOYZ4LYOqIFuodKep2FoxVCoPFdBpFkkhK2EfEdqUUpLS/mO0Dyoia5Ti6kDQpoZja3/tNTmGeC2DqiBboHKK8vRK6kXyg3KcZKdRGfdznxHanHKy8v5jtB8qImuVYuqA0KaEY2tl1py8wxwWwfUQLdALtdd8Mz+Gb6/+z2Gmg3lO06LZGBgwHeE5kVNdI1aXB0Q0kxobFHzDHBbB9RAtzDe170R6RmJMUFjsNRxKd9xWqyUlBS+IzQ/aqKraZF1QEgzaOlji5rnl7isA2qgW5BfY36Fbx9fWF2zwmH3w3zHadEcHBz4jsAPaqKltNg6IIRjLXlsUfP8Hy7rgBroFuLaw2uY12EedGN1EeEcASUB/dHz6caNFnzXE2qiJVp0HRDCoZY6tqh5lsZlHVAX1QI8LniMIaVDoFykjLBOYXTHDRnQ4qeZpSYaANUBIVxpiWOLmufqaCpv8sbKK8thH2+PsnZlOF5xHF31u/IdiYCmmQVATTSoDgjhSksbW9Q814ym8iZvzO26GzIdM7EqaRWGdxnOdxzyP05OTnxHkA0tvImmOiCEGy1pbFHzXDsu64AaaAU2M3AmwjzDMPL6SHzj9A3fccgrYmNj+Y4gO1pwE011QAg3WsrYoua5blzWATXQCmrH7R3Y6bQTFtctcMzjGN9xyGtMTEz4jiBbWmgTTXVACDdawtii5rl+XNYBNdAKKCg9CLMNZ0M7QRuRfSLpjhsyKD8/n+8IsqcFNtFUB4RwQ9HHFjXPDcNlHVBnpWCeFD7BoKJBUC5Vxo0ON6Cpqsl3JEIargU20YQQ0hjUPMsGaqAVSIW4Ag53HFBqXIrDpYdhZWDFdyRSC21tbb4jyK4W1ERTHRDCDUUdW9Q8Nw6XdUANtALxuOaBjN4ZWB6/HO93fZ/vOKQO6enpfEeQbS2kiaY6IIQbiji2qHluPC7rgBpoBeET5INgz2AMuzYM3/b+lu84pB7W1tZ8R5B9LaCJpjoghBuKNraoeX4zXNYBNdAK4M87f2K743Z0CeyC0x6n+Y5DGiAiIoLvCPJBwZtoqgNCuKFIY4ua5zfHZR1QAy3nQh+H4pO2n0ArSQtRTlF0xw050RKnmX1jCtxEUx0Qwg1FGVvUPL8dmsqb1CizKBP9n/eH4IUAIUYh0FZTzC9NKKKWNs3sW1PQJprqgBBuKMLYoub57dFU3qSaCnEFHG45oMS0BAeKDqB72+58RyKN0LdvX74jyB8FbKKpDgjhhryPLWqemwaXdUANtJwaeG0gHjk/wpexX2Jct3F8xyGNFBUVxXcE+aRgTTTVASHckOexRc1z0+GyDqiBlkPzg+fjmuc1DPEfgrV91vIdh7wBc3NzviPILwVqoqkOCOGGvI4tap6bFpd1QA20nNkbtxdb7LdAFCTCOY9zfMchbygzM5PvCPJNQZpoqgNCuCGPY4ua56bHZR1QAy1HIjIi8KHeh2id0ho3HW/SHTfkmLq6Ot8R5J8CNNFUB4RwQ97GFjXP3OCyDqgDkxNZxVnwyPWAgAkQ3C4Yuuq6fEcib0FVVZXvCIpBzptoqgNCuCFPY4uaZ+5wWQfUQMsBMRPDIdoBxZ2KsS9/H2zb2fIdibylrKwsviMoDjluoqkOCOGGvIwtap65xWUdUAMtBwYHDMZDl4f47NZnmGg5ke84pAmYmZnxHUGxyGkTTXVACDfkYWxR88w9LuuAGmgZtyRkCf71/BcD/Adgg/MGvuOQJhIdHc13BMUjh0001QEh3JD1sUXNc/Pgsg6ogZZh++P348eeP6JjcEdc8rjEdxzShBRlmlmZI2dNNNUBIdyQ5bFFzXPzoam8W6Dop9GYrjMdwlQhbtrTHTcUjSJMMyuz5KiJpjoghBuyOraoeW5eNJV3C5NXmgfXZ65gAobr+tehr6HPdyTSxFxdXfmOoNjkpImmOiCEG7I4tqh5bn5c1gE10DJGzMSwi7RDUZci7M7dDQdDB74jEQ4EBwfzHUHxyUETTXVACDdkbWxR88wPLuuAGmgZMzRgKB70e4B5N+dhmvU0vuMQjtjY2PAdoWWQ8Saa6oAQbsjS2KLmmT9c1gE10DJkaehSXPS8CHd/d/zs8jPfcQiH0tLS+I7QcshwE011QAg3ZGVsUfPMLy7rgBpoGXE48TDWdV+HDiEdcMX9Ct9xCMd0dXX5jtCyyGgTTXVACDdkYWxR88w/LuuAGmgZcOfZHUzSnASNhxqIso2CipIK35EIx8RiMd8RWh4ZbKKpDgjhBt9ji5pn2cBlHVADzbP8sny4ZLiAqTAE6AagXet2fEcizaCwsJDvCC2TjDXRVAeEcIPPsUXNs+zgsg6ogeaRmIlhH26PAosC/P7sdzgZOfEdiTSTDh068B2h5ZKhJprqgBBu8DW2qHmWLVzWATXQPBoRMAL3XO/BJ9IHM2xm8B2HNKO4uDi+I7RsMtJEUx0Qwg0+xhY1z7KHyzqgBpony8OW46z7Wbj4u2Brv618xyHNrG/fvnxHIDLQRFMdEMKN5h5b1DzLJi7rgBpoHhxNOoo1VmtgFGaEAHfZnG6UcCsoKIjvCATgvYmmOiCEG805tqh5ll1c1gE10M0sPiseEzQmQP2xOqJs6I4bLZWHhwffEUgVHptoqgNCuNFcY4uaZ9nGZR1QA92MCssL0fdRX1SqV+JfzX9hqGnIdyTCk4AA+psHmcJTE011QAg3mmNsUfMs+7isA2qgm4mYieEQ6oB8y3xsf7Idzh2c+Y5EeGRvb893BPI6HppoqgNCuMH12KLmWT5wWQfUQDeT0QGjkeyWjJnhMzGrxyy+4xCe3b17l+8IpCbN3ERTHRDCDS7HFjXP8oPLOqAGuhl8G/4tTrqdRG//3vjd9Xe+4xAZ0L59e74jkNo0YxNNdUAIN7gaW9Q8yxcuP2OpgebYqbunsMJiBdpHtMd1t+t8xyEyoqSkhO8IpC7N1ERTHRDCDS7GFjXP8ofLz1hqoDmUnJOMMa3GQC1TDVHWUVBVVuU7EpER5eXlfEcg9WmGJprqgBBuNPXYouZZPnH5GUsNNEcKywvR+0FvVLauxGWNyzDWMuY7EpEhBgYGfEcgDcFxE011QAg3mnJsUfMsv7j8jKUGmgNiJobTDSfkdc/Dr49/hauJK9+RiIy5d+8e3xFIQ3HYRFMdEMKNphpb1DzLNy4/Y6mB5sDYa2OR4J4A71Bv+Nj68B2HyCA7Ozu+I5DG4KiJpjoghBtNMbaoeZZ/XH7GUgPdxNZGrsUx12Nw9HfEbrfdfMchMio0NJTvCKSxOGiiqQ4I4cbbji1qnhUDl5+x1EA3obP3zuIr86/QNqotgt2C+Y5DZBhN4SynmriJpjoghBtvM7aoeVYcNJW3HEjJTcEopVFQe6aGqG50xw1SN5rCWY41YRNNdUAIN950bFHzrFhoKm8ZV/yiGE73nVChXYGzrc7CRNuE70hExjk5OfEdgbyNJmqiqQ4I4cabjC1qnhUPl5+x1EA3gT7BfZDbIxeb0jZhQKcBfMchcuDOnTt8RyBvqwmaaKoDQrjR2LFFzbNi4vIzlhrotzQhYALueNzB1JCpWGC3gO84RE507NiR7wikKbxlE011QAg3GjO2qHlWXFx+xlID/RY2RG3A3/3+Rs+AntjrvpfvOESO5OXl8R2BNJW3aKKpDgjhRkPHFjXPio3Lz1hqoN/QpdRL+KLzF2gT3QY3+t3gOw6RM0pKNPQUyhs20VQHhHCjIWOLmmfFx+VnLH16v4EHzx9guHg4WuW2QmTXSKirqPMdicgZTU1NviOQpvYGTTTVASHcqG9sUfPcMnD5GUsNdCOVVpTCMdkRL/RewE/JD510OvEdicihx48f8x2BcKGRTTTVASHcqGtsUfPccnD5GUsNdCP1DeqLbLtsbEjdgMGiwXzHIXLKysqK7wiEK41ooqkOCOFGbWOLmueWhcvPWGqgG2HKtSmI8YjBhOAJWGy/mO84RI5FRETwHYFwqYFNNNUBIdyoaWxR89zycPkZSw10A/0U/RP2O++HTYANDrof5DsOkXM0hXML0IAmmuqAEG68PraoeW6ZaCpvnv374F8s6rgIerf1EOoSyncchVVcXIxdu3bh9OnTmDFjBsRiMd+ROENTOLcQ9TTRVAeEcOPVsUXNc8tFU3nzKO15GoZWDIXKcxVEmkVC2ErIdySFFR8fj5SUFAwfPhy3b99GWVkZ35E44+zszHcE0lzqaKKpDgjhRtXYoua5ZePyM5Ya6DqUV5ajV1IvlBuU4wQ7gc66nfmOpNAcHR2xYMECbN26FfPmzYOGhgbfkThD1762MLU00VQHhHAjIiICj9OpeW7p6BponvS96opn9s/w/d3vMcxsGN9xWoS2bdvi008/xf79+5HQyGmR5YmFhQXfEUhze72JTntIdUAIRywsLHA1gJrnlo7Lz1gVzrYs5yw/WofEC8fx/t4FWDpwKd9xWoStW7dCRUUFs2bNgoqKClJSUmBpaVnjsmVlZS8v8Sh4+bhQXNiMSd/ekydPYPLMBEUo4jsKaW4uQwGxJiqC4/DwYXfcTywAsjL4TlUvXV0hTE11+I5BePTw4XPk5RXzHaNe54IL8PBhFix7G8LerQilmXwnInxguQxPnjzhbPsNbqAPHjyI3r174+jRo5g/fz42bNiAZcuWYc2aNfjoo49w7tw52NraIicnB0VFRbC0tMTly5fh7e2NLVu2SJb18fHBwYMH4ebmhtTUVCgrK8PIyAjh4eEYPXo0duzYIVl20aJF2L59O4YPH46YmBi0adMGGhoaSEpKwsCBA+Hr6ytZdunSpVi/fj0mTZqEa9euoXPnzqioqMCTJ0/g6OiIEydOYO7cufjxxx8l63z88cc4ffo07OzskJ2djZKSEnTt2hVXr17FkM6mSHy8G8NSv8GaNWvw6aef4q+//oKHhwdSUlKgqqqK9u3bIzIyEiNHjsQff/wh2e7ixYuxbds2vPfee4iKikLbtm2hpqaGlJQUeHp6Yt++fVi6dCm+//57fPXVV1i7di2mTp0Kf39/dOnSBWVlZXj27BkcHBxw6tQp+Pj4YOPGjZLtz5w5EydPnoSjoyOePn2K8vJydOnSBQEBAZgyZQp+/fVXybJz587F3r170b9/fyQnJ0NDQwNt2rRBdHQ0RowYgZ07d0qW/eyzz/DLL79g1KhRiIyMhKGhIVRUVHD//n24u7vjwIED+Pzzz7F27VrJOtOnT8eVK1dgYWGBkpISZGdno2fPnvDz88Ps2bOxadMmybKzZs3CsWPH4OTkhIyMDFRWVkIkEuH69euYOHEiEhMT0bdvX0yePBkWFhZITk5GXFwcEhIS0Lp1a+jr6+PWrVsYOnQopkyZgqtXr/5XoM9e/ut06Wk4BjlCuY0yHjx4AFdXVxw6dAifffYZ1q1bJ8ni7e2NS5cuwcrKCgUFBcjLy0OPHj1w7tw5zJw5Ez/99JNk2f/7v//DkSNH0LdvX6Snp4MxBlNTU4SEhGDcuHHYvn27ZNn58+fjzz//xJAhQxAfHw8tLS3o6OggNjYW77zzDnbt2oXpc6cj+V4yrI5YISQkBNbW1khPT4e2tjYAID8/HyYmJoiLi4OzszMCAwPh4eGBgIAA2Nvb4+7du2jXrh1KS0tRXl4OAwMDpKSkwMHBATdu3JAs6+TkhNjYWJiYmCA/Px8AoK2tjfT0dFhbWyMiIkKybN++fREVFQVzc3NkZmZCXV0dqqqqyMrKgpmZGaKjoyXLurq6Ijg4GDY2NkhLS4Ouri7EYjEKCwvRoUMHxMXFoW/fvggKCqqWu3379igpKZHkvnfvHuzs7BAaGiqV+86dO+jYsSPy8vKgpKQETU1NPH78GFZWVlK5nZ2dERERAQsLCzx58gRCoRAqKirIzs6ultvNzQ1BQUHo0aMHHjx4IJXb2NgYCQkJ6N27N4KDgyXrODg4ICkpCYaGhiguLkZFRQX09fWRmpqKnj17SuXu3bs3bt26BZFIhJycHCgrK0tyW1paIjIyUrKsi8tgRAZHQVOzDPu2bpbkzsnJgUgkwq1bt+Dq6orr16/Dzc0NgYGBsLW1RWpqKvT19VFRUYHi4mIYGRkhMTERTk5OUrkdHR2RkJAAY2NjFBYWorKyUpLb1tYWYWFhkmX79OmDmJgYSW4VFRUIhUI8efIEFhYWiIqK+t+ygdix4y+cOLGXt8+Ibdu2SZadN28e9uzZg0GDBtX4GbFr1y7JskuWLMHPP/+MMWPGICwsDEZGRlBWlt3PiKplv/jiC2zatAljx45FSEgITE1NAQAPHz6Es7Mz/vnnHyxatAg//PCD1P+Pz58/j+7du+P58+coKCiAlZUVLl68iBkzZuDnn3+WLDt79mwcPnwYzs7OePjwIQQCAUxMTHDjxg188MEH+O233yTLfvDBh5g//xN07dpZLj4jjDt0RM4fd6Ce0FtOPyNcEB4ejm7duiEjI0NOPiNe5g4LC4OlpSUeP34MTU1NKCkpIS8vD506dcLt27fRr18/XL9+XbKOnZ0d7t27hzZt2khyGxoaIikpCb169UJISIhk2V69eiE+Pl6SWywWQ1dXF2lpabCxsUF4eLhU7gcPHuBZ+jMcSz7W4M+ILl26NKgvFjDGWEOb6JaktLQCGhpF6N//Jv7915PvOOQ1kjPQWQC6AHfb3oXjM0cktk+ExW0LoC3fCet2/OJxmPcw5zsG4dH9uFycPOAL7XAbqFi7AKYd+Y5Uq4qKZ9DVPY7Roz9Bjx5GfMchPLh9OwPHjv2OvLz3oaIimx+wjx8DV68ClpbP0Lnzzxg5dQY6d9PiOxbhSW5WLnx/8sWaNWtgZNT0n1t0CUct1NVVYGQUj4gIfb6jkBqoqalBTU0N+N+NOjSVuJvvngvPHz9HjyE9+I5B+JSVgezsbOhrGKP14QsvL9Ss5ZIlvhXRlUbkf1RU2qJ1a9n7JerVu23Y2wMpKdno3KYzenDQOBH5kIGXn7FcoS8R1qF//3IUFFjjwYPnfEdpEQQCQY0/imjgwIF8RyAywMzMDHBzbdC034SQmr1+qzolpf+NLdLicVkH1EDXYfZsMwAq2Lo1nu8oLQJjrMYfReTr68t3BCIDoqOjAUHDpv0mhFRX232eo6Ojec1FZAOXdUANdB1cXU3QqtV9nD5dzneUFiU9PR2LFy/mOwanli1bxncEIgMk08w2YNpvQoi0uiZJ4XIKZyI/aCpvHllZpSE52QxisWKeCZU1jDGcPHmS0+uWZMGaNWv4jkBkgNQ0s9REE9Jg9c0wyOUUzkR+0FTePHr/fSEqK01w4cJ9vqO0CJcuXcKAAQP4jsG5pUvp3uIEcHNzk36CmmhC6tWQ6bmrjS3SInFZB9RA18PHxxpAGXbufMh3FIWXkpKC9u3bK/QU3lXWr1/PdwQiA4KCgqo/SU00IbVqSPMM1DK2SIvDZR1QA12Pdu1aQ08vFtevC/mOovCio6Nx//59XLx4EWlpabh16xbfkTgzadIkviMQGdCjRy23MqQmmpBqGto8A3WMLdKicFkH1EA3QN+++Xj2zBr5+WV8R1FoY8aMwbvvvouSkhKUlZUp7B04AODatWt8RyAy4MGDB7W/SE00IRKNaZ6BesYWaTG4rANqoBtg+nRDAK3x+/+3d+dhVdZ5/8DfLAIKIuEGruSCuCGCoCCLpnJqprIym7R1SscsraZtpi5/M8/1jL+sqZxsod2xTZv2xX4m5oIiKAgqJiqKKwKpECq7B/j9YTJZLhw43/P53vf9fl1XV4/O4T7v6+nzOeft8ZzzfXOndBTTa9euHR566CFs3LgRI0aMkI6jzJVXXikdgTQQEBBw6RuwRBM5XJ6BFuwWWYLKOWCBboEpU0Lh7n4Mn3zCA1XIOex2u3QE0kBjY+Plb8QSTRbWmvIMtHC3yPRUzgELdAt4erojJKQAeXk9pKOQSZSWlkpHIA1UVla27IYs0WRBrS3PgAO7Raamcg5YoFvIZnNDbe0g5OUdk45CJhAVFSUdgTTQo4cDfyhniSYLaUt5BhzcLTItlXPAAt1CDzwQCgB45ZUC4SRkBl9++aV0BNLAbkdLMEs0WUBbyzPQit0iU1I5ByzQLTR0aFe0b78Lqalu0lHIBObOnSsdgTQQExPj+A+xRJOJOaM8A63cLTIdlXPAAu2AiIgfcfjwINjt/HACtc3zzz8vHYE0kJGR0bofZIkmE3JWeQbasFtkKirngAXaAX/4QwCamrrgo4/2SEchg5s3b550BNJAUlJS63+YJZpMxJnlGWjjbpFpqJwDFmgH3HvvEACn8d57P0pHIYObP3++dATSQFpaWtsuwBJNJuDs8gw4YbfIFFTOAQu0A/z8vNC9ez6ysjpJRyGDmzFjhnQE0kBkZGTbL8ISTQamojwDTtotMjyVc8AC7aCkpFqcPDkMR4+eko5CBvbNN99IRyANFBQ46Vt9WKLJgFSVZ8CJu0WGpnIOWKAd9Kc/hQBoh5SUXdJRyMAiIiKkI5AGgoKCnHcxlmgyEJXlGXDybpFhqZwDFmgHTZjQF56eh/D117XSUcjAysrKpCOQBqqrq517QZZoMgDV5RlQsFtkSCrngAW6FQYNOoTdu0OkY5CB1dTUSEcgDdjtdudflCWaNOaK8gwo2i0yHJVzwALdCtdf7w27vS/WrDkkHYUMauDAgdIRSAOBgYFqLswSTRpyVXkGFO4WGYrKOWCBboX77x8M4AzefPOgdBQyqLVr10pHIA0cPHhQ3cVZokkjrizPgOLdIsNQOQcs0K3Qq5c/OnXaibQ0H+koZFB33nmndATSwIgRI9TeAUs0acDV5RlwwW6RIaicAxboVoqJqUBp6RBUVdVLRyEDevnll6UjkAY2b96s/k5YokmQRHkGXLRbpD2Vc8AC3Up33NENQEe8806+dBQyIB7lTYALjxtmiSYBUuUZ4FHedBaP8tbQtGlhcHM7jv/85yfpKGRAPMqbABcfN8wSTS4kWZ4BHuVNZ/Eobw15erqjT58CbNvWXToKGdCcOXOkI5AGYmJiXHuHLNHkAtLlGRDYLdKSyjlggW6D5ORGVFeHYdeuE9JRyGA++OAD6Qikgby8PNffKUs0KaRDeQaEdou0o3IOWKDb4P77QwG445VX9khHIYPh+/MIAEJCQmTumCWaFNClPAOCu0VaUTkHLNBtEBHRHT4+e/Ddd03SUchgCgsLpSOQBsrLy+XunCWanEin8gwI7xZpQ+UcsEC30fDhJTh4cCAaG1miqeW8vLykI5AGPKRbBks0OYFu5RnQYLdICyrngAW6jaZO9UdjY3d89lmBdBQykO7d+eFTAvz8/KQjsERTm+hYngFNdovEqZwDFug2mjVrKIAqLFlSIh2FDCQnJ0c6AmmguLhYOsJZLNHUCrqWZ0Cj3SJRKueABbqN/P290bXrTmRmdpSOQgYyefJk6QikgbCwMOkI/8USTQ7QuTwDmu0WiVE5ByzQThAfX42ffhqGY8eqpKOQQbz11lvSEUgD2v1NBEs0tYDu5RnQcLdIhMo5YIF2gpkz+wDwxmuv8Vhvahke5U2Apl9nyBJNl1BcrH95BjTdLXI5HuWtOZvtSnh4HMEXX1RLRyGD4FHeBGh83PCvS/SRw9KJSBNr1+pfngGNd4tcSuUceCq7soW4u7th4MAD2LWrt3QUMohHH31UOgJpIC4uDlVVx1Gl67u/rokD/Bphz88ABkuHIUlZWWf/HRZ2HCNHArW1snkuxW4/jri4OOkYpAGVc8AC7SQ33+yG+fO/x969Ngwc2Fc6DmkuJSWFJdriAgI6ICsrF2PHtpOOcmm/O/uvpnogICcTGH6TbB5yuRUrgL/8pQPuu68dkpK+kI7TIhs35mLWrA7SMUhYdna2smuzQDvJo48Ox4IF47F2bQoGDvyTdBzS3PXXXy8dgYT17t0J8+bNxxVXBEtHuTy7HQEL/ge9/zkfCPgEuOEG6UTkIitWnP3PbbN1wj33PICqKmO8VXH8+OvQu3cn6RgkbNCgQcquzQLtJAEBARg9ejRWrlyJP/2JBdplOgM4BpQuLwXuAUoXlCK0c6h0qsvKzc3FwIEDpWOQsJKSvUhMjJSO0TJL3wBuqwSmTgU+YYm2gv+WZ+DTTwEvr04AjFFK//Of9QAMslukTEmJujM6+CFCJ7LZbFi9ejXsdrt0FOtwB9AVaOzYCODnfxtgqrt27SodgTRgqDnw9AQ+/BC46aazJfrLL6UTkUK/Lc/SiRxjqN0iZTp0UPc2HgNUDeNITk7GyZMnsXnzZukopDlvb2/pCKQBw80BS7QlGL08AwbcLVLC01PdGy1YoJ0oOjoaV1xxBVauXCkdhTRXWFgoHYE0YMg5YIk2NTOUZ8Cgu0VOV15eruzaLNBO5OHhgYkTJyI1NVU6Cmlu3Lhx0hFIA4adA5ZoUzJLeQYMvFvkVCEhIcquzQLtZDabDdnZ2Ur/1EPG9/7770tHIA0Yeg5Yok3FTOUZMPhukdPk5eUpuzYLtJPZbDY0Njbi+++/l45CGnvyySelI5AGDD8HLNGmYLbyDJhgt8gp4uPjlV2bBdrJevXqhSFDhvB90HRJTz/9tHQE0oAp5oAl2tDMWJ4Bk+wWtdmGDRuUXZsFWgGbzYaVK1eiqalJOgpp6qmnnpKOQBowzRywRBuSWcszYKLdojZJSEhQdm0WaAVsNhuOHj2K/Px86SikqQULFkhHIA2Yag5Yog3FzOUZMNluUaulp6cruzYLtAKJiYnw8fHh2zjoou644w7pCKQB080BS7QhmL08AybcLWqV8PBwZddmgVagffv2SExMZIGmi1q3bp10BNKAKeeAJVprVijPgEl3ixx28OBBZddmgVYkOTkZ69evR01NjXQU0lD//v2lI5AGTDsHLNFaskp5Bky8W+SQwMBAZddmgVbEZrOhtrZW6SdAybjq6uqkI5AGTD0HLNFasVJ5Bky+W9Ridrtd2bVZoBUZOnQoevbsybdx0AUdP35cOgJpwPRzwBKtBauVZ8ACu0UtUl1drezaLNCKuLm5ITk5mQWaLigyMlI6AmnAEnPAEi3KiuUZsMhu0WUFBwcruzYLtEI2mw07d+5EUVGRdBTSzNdffy0dgTRgmTlgiRZh1fIMWGi36JL27Nmj7Nos0ApNnDgRbm5uSE1NlY5Cmrn//vulI5AGLDUHLNEuZeXyDFhst+iioqOjlV2bBVqhzp07Izo6mm/joN944YUXpCOQBiw3ByzRLmH18gxYcLfogjIyMpRdmwVaMZvNhlWrVqGhoUE6Cmlk3rx50hFIA5acA5ZopViez7LkbtFvJCUlKbs2C7RiNpsNP/30E7Zs2SIdhTQyf/586QikAcvOAUu0EizP/2XZ3aLzpKWlKbs2C7RiMTEx8Pf359s46DwzZ86UjkAasPQcsEQ7Fcvz+Sy9W9QsKipK2bVZoBVr164dJkyYwAJN5/nqq6+kI5AGLD8HLNFOwfL8W5bfLQIA7N69W9m1WaBdwGazYfPmzaioqJCOQppQ+adiMg7OAVii24jl+cK4WwQAPXr0UHZtFmgXsNlsaGhowJo1a6SjkCZ+/PFH6QikAc7Bz1iiW4Xl+eK4WwQAlZWVyq7NAu0CISEhCA0N5ds4qFl9fb10BNIA5+AXWKIdwvJ8adwtAqD0G9BYoF3EZrNh5cqVaGpqko5CGujfv790BNIA5+BXWKJbhOX58rhbBACBgYHKrs0C7SI2mw2HDh1CQUGBdBTSgMqv1iHj4BxcAEv0JbE8twx3iwDg4MGDyq7NAu0i48aNg5eXF9/GQQCA22+/XToCaYBzcBEs0RfE8txy3C0CgPDwcGXXZoF2EV9fX8THx7NAEwDglVdekY5AGuAcXAJL9HlYnh3D3SIAyMrKUnZtFmgXSk5Oxrp161BXVycdhYTxmFkCOAeXxRINgOW5NbhbBPAob9Ow2Wyorq5Genq6dBQSxmNmCeActIjFSzTLc+twtwjgUd6mER4eju7duyM1NVU6CgmbO3eudATSAOeghSxaolmeW4+7RQAwevRoZddmgXYhd3d3JCcn833QhPfee086AmmAc+AAi5Volue24W4RAGzfvl3ZtVmgXcxms2H79u0oLS2VjkKCxo8fLx2BNMA5cJBFSjTLc9txtwg4e5CdKizQLjZp0iQA4Ns4LG7v3r3SEUgDnINWMHmJZnl2Du4WAUB5ebmya7NAu1i3bt0QGRnJt3FYXPv27aUjkAY4B61k0hLN8uw83C0CAE9PT2XXZoEWYLPZkJqaisbGRukoJKRz587SEUgDnIM2MFmJZnl2Lu4WAUCHDh2UXZsFWoDNZsOJEyewdetW6SgkZNu2bdIRSAOcgzYySYlmeXY+7hYBUPp5MxZoAbGxsfDz8+PbOCzsuuuuk45AGuAcOIHBSzTLsxrcLQKA0NBQZddmgRbg5eWF8ePHs0Bb2Ntvvy0dgTTAOXASg5Zolmd1uFsEALm5ucquzQItxGazISMjA6dPn5aOQgJ4zCwBnAOnMliJZnlWi7tFAI/yNiWbzQa73Y61a9dKRyEBPGaWAM6B0xmkRLM8q8fdIoBHeZvSgAED0K9fP76Nw6Iee+wx6QikAc6BApqXaJZn1+BuEQDExcUpuzYLtCCbzcYCbVEvv/yydATSAOdAEU1LNMuz63C3CACysrKUXZsFWpDNZkNhYSEKCwulo5CL3XDDDdIRSAOcA4U0K9Esz67F3SIACAsLU3ZtFmhB48ePh6enJ1+FtqCcnBzpCKQBzoFimpRolmfX424RABQXFyu7Ngu0IH9/f8TFxbFAW1BQUJB0BNIA58AFhEs0y7MM7hYBgJ+fn7Jrs0ALS05Oxpo1a1BfXy8dhVzI09NTOgJpgHPgIkIlmuVZDneLAMDdXV3NZYEWZrPZUFlZiczMTOko5EIHDhyQjkAa4By4kItLNMuzLO4WAUBFRYWya7NAC4uMjESXLl2QmpoqHYVcKDExUToCaYBz4GIuKtEsz/K4WwQAffv2VXZtFmhh7u7umDRpEt8HbTFLly6VjkAa4BwIUFyiWZ71wN0iANixY4eya7NAa8BmsyE3NxfHjx+XjkIu8sQTT0hHIA1wDoQoKtEsz/rgbhEAjB07Vtm1WaA1kJycjKamJqxatUo6CrnIggULpCOQBjgHgpxcolme9cLdIgDYsGGDsmuzQGsgODgY4eHhfBuHhcybN086AmmAcyDMSSWa5Vk/3C0CgKSkJGXXZoHWhM1mQ2pqKpqamqSjkAvMnz9fOgJpgHOggTaWaJZnPXG3CADS0tKUXZsFWhM2mw2lpaXIy8uTjkIucNddd0lHIA1wDjTRyhLN8qwv7hYBQEREhLJrs0BrYuzYsWjfvj3fxmERq1evlo5AGuAcaMTBEs3yrDfuFgHA/v37lV2bBVoTPj4+GDduHAu0RYSGhkpHIA1wDjTTwhLN8qw/7hYBQOfOnZVdmwVaIzabDenp6aiqqpKOYiyrgE4fdwIAeBYZ4/jWmpoa6QikAc6Bhi5TolmejYG7RQBgt9uVXZsFWiM2mw319fVK3/RuOg8DSAZ81/sCALo+2xV4XzRRi5SVlUlHIA1wDjR1kRLN8mwc3C0CgOrqamXXZoHWyKBBg9CnTx++jaOldgJYdP5vuTW5AY8AqJMI1HIjRoyQjkAa4Bxo7FclOuf/fMnybCDcLQKAoKAgZddmgdaIm5sbbDYbC3RLrbvI758A8IMLc7TC8uXLpSOQBjgHmvu5RJfE3oTw+VPxt/AvWZ4NgrtFAFBQUKDs2izQmrHZbNizZw8OHTokHUV/PS7y++4A1P2h0ylmz54tHYE0wDnQ34pVnui/6UNs6nETnto2FV7/70vpSNQC3C0CgFGjRim7Ngu0ZiZMmAAPDw++Ct0S1wLof4HfvwlATxdncdDChQulI5AGOAd6O/ee54lXe2L03g/h5qRjv0k97hYBQGZmprJruzXx6DvtjB07FkFBQfjss8+ko+jvIICHgD3ZexBWEobcm3MxcslIwFc6GBEZ2QU/MGi3A7fdBnz+OfDJJ2dvQERaKikpwZtvvok//elPCA4Odvr1+Qq0hmw2G1avXq3061dMIwTAV0DJv0oAACf/cNIQ5ZnHzBLAOdDVRb9to43HfpPrcLcI4FHelpOcnIyTJ09i8+bN0lGMw0M6gGNmzZolHYE0wDnQz2W/qo4l2hC4WwTwPdCWEx0djSuuuAKpqanSUUiRzz//XDoCaYBzoJcWf88zS7T2uFsEALt27VJ2bRZoDXl4eGDixIn8IKGJRUdHS0cgDXAO9OHwISks0VrjbhEA9Ohxsa/rajsWaE3ZbDZkZ2ejvLxcOgopUFJSIh2BNMA50EOrTxhkidYWd4sAoLKyUtm1WaA1ZbPZ0NjYiO+//146CinQ0NAgHYE0wDmQ1+bjuVmitcTdIgBobGxUdm0WaE316tULQ4YM4ds4TCokJEQ6AmmAcyCrzeX5HJZo7XC3CAACAgKUXZsFWmPnjvXmV3Wbz4YNG6QjkAY4B3KcVp7PYYnWCneLAODw4cPKrs0CrTGbzYajR48iPz9fOgo52bRp06QjkAY4BzKcXp7PYYnWBneLAGDYsGHKrs0CrbHExER4e3vzbRwmlJKSIh2BNMA5cD1l5fkclmgtcLcIALKzs5VdmwVaY+3bt0diYiILtAnNmzdPOgJpgHPgWsrL8zks0eK4WwQASUlJyq7NAq05m82G9evXo6amRjoKORGPmSWAc+BKLivP57BEi+JuEcCjvC3NZrOhtraWH4gwmQcffFA6AmmAc+AaLi/P57BEi+FuEQCMHj1a2bVZoDU3dOhQ9OzZk2/jMJklS5ZIRyANcA7UEyvP57BEi+BuEQBs27ZN2bVZoDXn5uaG5ORkFmiTmThxonQE0gDnQC3x8nwOS7TLcbcIAPr166fs2izQBmCz2bBz504UFRVJRyEn2b17t3QE0gDnQB1tyvM5LNEuxd0iADhx4oSya7NAG8DEiRPh5uaG1NRU6SjkJL6+vtIRSAOcAzW0K8/nsES7DHeLAMBL4fKzQBtA586dER0dzbdxmEhgYKB0BNIA58D5tC3P57BEuwR3i4CzXwesCgu0QdhsNqxatQoNDQ3SUcgJ8vLypCOQBjgHzqV9eT6HJVo57hYBwI8//qjs2izQBpGcnIyffvoJW7ZskY5CTnDNNddIRyANcA6cxzDl+RyWaKW4WwQAAwYMUHZtFmiDGD16NPz9/fk2DpNYvHixdATSAOfAOQxXns9hiVaGu0UAsHXrVmXXZoE2iHbt2mHChAn8IKFJ8JhZAjgHzmDY8nwOS7QS3C0CeJQ3/cxms2HTpk04efKkdBRqIx4zSwDnoK0MX57PYYl2Ou4WATzKm35ms9nQ0NCA1atXS0ehNnr88celI5AGOAetZ5ryfA5LtFNxtwgAxo4dq+zaLNAGEhISgtDQUL4P2gQWLVokHYE0wDloHdOV53NYop2Gu0UAsGnTJmXXZoE2GJvNhpUrV6KpqUk6CrXBlClTpCOQBjgHjjNteT6HJdopuFsEAEOGDFF2bRZog7HZbDh06BAKCgqko1AbZGVlSUcgDXAOHGP68nwOS3SbcbcIAI4ePars2izQBjNu3Di0a9eOb+MwuODgYOkIpAHOQctZpjyfwxLdJtwtAgA/Pz9l12aBNhhfX1/Ex8ezQBuch4eHdATSAOegZSxXns9hiW417hYBgLu7uprLAm1ANpsN69atQ11dnXQUaqVDhw5JRyANcA4uz7Ll+RyW6FbhbhEAVFRUKLs2C7QB2Ww2VFdXY+PGjdJRqJXi4+OlI5AGOAeXZvnyfA5LtMO4WwQAffr0UXZtFmgDCg8PR/fu3fk2DgP76KOPpCOQBjgHF8fy/Css0Q7hbhEA/PDDD8quzQJtQO7u7khOTmaBNrDHHntMOgJpgHNwYSzPF8ES3WLcLQKAuLg4ZddmgTYom82G7du3o7S0VDoKtcIzzzwjHYE0wDn4LZbny2CJbhHuFgFAenq6smuzQBvUpEmTAACpqanCSag15s2bJx2BNMA5OB/LcwuxRF8Wd4sAICkpSdm1WaANqlu3boiMjOTbOAxq/vz50hFIA5yD/2J5dhBL9CVxtwgA0tLSlF2bBdrAbDYbUlNT0djYKB2FHHT33XdLRyANcA7OYnluJZboi+JuEQBEREQouzYLtIElJyfjxIkT2Lp1q3QUctCqVaukI5AGOAcsz23GEn1B3C0CgP379yu7Ngu0gcXFxcHPz49v4zCgwYMHS0cgDVh9DlienYQl+jesvlt0VpcuXZRdmwXawLy8vDB+/Hh+kNCATp8+LR2BNGDlOWB5djKW6PNYebfov+rr65VdmwXa4Gw2GzZu3MgHC4NRebwoGYdV54DlWRGW6GZW3S06X21trbJrs0AbnM1mg91ux9q1a6WjkAOGDx8uHYE0YMU5YHlWjCUagDV3i36rW7duyq7NAm1wAwYMQL9+/fg+aINZsWKFdATSgNXmgOXZRViiLbdbdGH79u1Tdm0WaBOw2Wws0AYzc+ZM6QikASvNAcuzi1m8RFtpt+jiIiMjlV2bBdoEbDYbCgsLUVhYKB2FWujFF1+UjkAasMocsDwLsXCJtspu0aVt2rRJ2bVZoE1g/Pjx8PT05KvQBsJjZgmwxhywPAuzaIm2wm7R5fEob7okf39/xMbGskAbCI+ZJcD8c8DyrAkLlmiz7xa1DI/ypsuy2WxYs2aN0u88JOe57777pCOQBsw8ByzPmrFYiTbzblHLjRo1Stm1WaBNwmazobKyUun7fch5Pv30U+kIpAGzzgHLs6YsVKLNulvkmPz8fGXXZoE2icjISHTp0oVv4zCIMWPGSEcgDZhxDlieNWeREm3G3SLH9erVS9m1WaBNwt3dHZMmTWKBNoiioiLpCKQBs80By7NBWKBEm223qHVOnTql7Nos0CZis9mQm5uL48ePS0ehy2hqapKOQBow0xywPBuMyUu0mXaL9MQCbSLJycloamrCqlWrpKPQZfTu3Vs6AmnALHPA8mxQJi7RZtktaht/f39l12aBNpHg4GCEh4fzbRwGkJmZKR2BNGCGOWB5NjiTlmgz7Ba1ncq38rBAm4zNZkNqair/+kpzt9xyi3QE0oDR54Dl2SRMWKKNvlvkHEOHDlV2bRZok7HZbCgtLUVeXp50FLqE1157TToCacDIc8DybDImK9FG3i1ynuzsbGXXZoE2mbFjx6J9+/Z8G4fmeMwsAcadA5ZnkzJRiTbqbpFz8ShvajEfHx+MGzcOqamp0lHoEnjMLAHGnAOWZ5MzSYk24m6R8/Eob3KIzWbDhg0bUFVVJR1FvUYAxwH302dH2f20+9nf09xDDz0kHYE0YLQ5YHm2CBOUaKPtFqmh8kAdFmgTstlsqK+vV/onL22UAegGBD0ZBODnf5fJRmqJd955RzoCacBIc8DybDEGL9FG2i1SJzc3V9m1PZVdmcQMGjQIPXuOxHvv5eN3v/uddBy6gOTkZOkIpIHhw2OxY0eJdIzLysoC/vKXDrDZOrE8W8m5En3bbcDUqTjy1n9QERUrnapFhg83Rk5Sq3///squzQJtQm5ubujY8UV88YW6M+CpbXbt2oUhQ4ZIxyBBR46cxBtvLMLQoYOko7TIffe1wz33PAAvr07SUciVfi7RR6bPwjt7d8Dt0A7pRC2yc+cehIa+ht69Oa9WduLECWXXZoE2qWuvbYfnn++HjRuLMHYsi7RuOnbsKB2BhFVUVMPb2wMVFTfC07OrdJwLKi4G1q4FwsKOIynpC1RVVQNgIbEcT09UPPk/cPt6MSo+84fnkDigdx/pVBdltx+Ht/dzqKioZoG2OC+Ff13GAm1Sc+YMwfPP2/H66/tZoDXUqRMf1Onst+Z4enaFr2+wdJTf2LsX+OgjYMAAYORI6TQkzvNsXfBs3wO+H68EbrkFCAsTDnVhVVVnd4tI5RzwQ4Qm1bdvJ3TsmI81a9pJR6EL2Llzp3QE0sCxY8ekI1zQL8vzLbcA7nymoHMS4oHBg4GPPwZ275ZOc1G67ha5lso54MOiiUVFlaG4eAhqa+3SUehXrr76aukIpIEBAwZIR/iNX5dnDw/pRKQVN3dgyhTtS7SOu0Wup3IOWKBN7PbbuwLohCVL8qWj0K8sXrxYOgJpYOvWrdIRzsPyTC3irn+J1m23SIbKOWCBNrE77hgMN7efsGxZuXQU+hUeM0uA2mNmHcXyTA7RvETrtFskh0d5U6t4eXmgZ8/dyMnpIh2FfoXHzBKg9phZR7A8U6toXKJ12S2SxaO8qdUmTLCjqmowCgt/ko5Cv/CXv/xFOgJpID4+XjoCyzO1jaYlWofdInkq54AF2uQeeGAAAA+88sou6Sj0CwsXLpSOQBrIzMwUvX+WZ3IKDUu09G6RHlTOAQu0yUVHB8Pbex++/bZBOgr9wtSpU6UjkAYkT6NkeSan0qxE86RXAtTOAQu0BQwdWoT9+/ujsbFJOgr9jK+OEAAUFRWJ3C/LMymhUYmW2i3Si8o5YIG2gJtu8kNDQw8sX14oHYV+1rt3b+kIpAF/f3+X3yfLMymlSYmW2C3Sj8o5YIG2gPvuGwKgBu+8wz+RE1kZyzO5hCYlmkglFmgL6Ny5Azp33omNG/2ko9DPjhw5Ih2BNHDq1CmX3RfLM7mUcIl25W6RvlTOAQu0RcTFVaKsbCjKy2ukoxCA2NhY6QikgV69ernkflieSYRgiXbVbpHeVM4BC7RF/PGPPQG0xxtv8FhvHXzyySfSEUgD+fnq95HlmUQJlWhX7BbpT+UcsEBbxOTJA+DuXoLPPjstHYUAPPLII9IRSAOq/yaC5Zm0IFCi+bd8BKidAxZoi3B3d0P//vvwww89paMQgGeffVY6AmkgPT1d2bVZnkkrLi7RKneLjEPlHLBAW8g113igrm4gsrNLpKNY3rx586QjkAaSkpKUXJflmbTkwhKtarfIWFTOAQu0hcyZEwagESkp+6SjWN78+fOlI5AG0tLSnH5NlmfSmotKtIrdIuNROQcs0BYycGAgfH3zsXo1n1Gl3XPPPdIRSAMjR4506vVYnskQXFCinb1bZEwq54AF2mJGjjyOoqIw1Nc3SEextO+++046Amlg3z7n/W0QyzMZiuIS7czdIuNSOQcs0BYzbVogmpoC8cEHu6SjWNrQoUOlI5AGunXr5pTrsDyTISks0c7aLTI2lXPAAm0xd989BMBJfPjhCekolnby5EnpCKSB2traNl+D5ZkMTVGJdsZukfGpnAMWaIvp0KEdgoN3ITs7UDqKpZ0+ze/jJqC+vr5NP8/yTKagoES3dbfIHFTOAQu0BY0fX4/Tp4fg8GG+Cipl8ODB0hFIA126dGn1z7I8k6k4uUS3ZbfIPFTOAQu0Bc2e3Q+AJ155he+DlpKamiodgTRQWFjYqp9jeSZTcmKJbu1ukbmonAMWaAuKj++Fdu0O4Jtv+FdcUu69917pCKSByMhIh3+G5ZlMzUklujW7Reajcg5YoC1q8ODD2Lu3Hxobm6SjWNKiRYukI5AGNm3a5NDtWZ7JEpxQoh3dLTInlXPAAm1RN97YAQ0NvbBy5QHpKJbEo7wJcOyYWZZnspQ2lmge5U0Aj/ImBWbPHgygHm+/fUQ6iiXxKG8CWn7MLMszWVIbSjSP8iaAR3mTAt27+yEgYCc2bGgvHcWSZs+eLR2BNBAdHX3Z27A8k6W1skS3ZLfI/FTOAQu0hY0ZcxLHjw/FqVN10lEs5+OPP5aOQBrYuXPnJf93lmcitKpEX263yBpUzgELtIXdfXcwAF+89Va+dBTLiY2NlY5AGujVq9dF/zeWZ6JfcLBEX2q3yDpUzgELtIVNmTIQ7u7H8PHHPFDF1Y4c4XvPCTh16tQFf5/lmegCHCjRF9stshaVc8ACbWGenu4ICSlAXl6wdBTLcXNzk45AmmJ5JroEBcd+E7UGC7TF2WxuqK0dhLy8Y9JRLIV/vUgA4O/vf96vWZ6JWqAFJfrXu0XWpHIOWKAt7oEHQgEAr7xSIJzEWvgl/wQARUVFzf83yzORAy5Ton+5W2RdKueABdrihg7tivbtdyE1Vf4tBVVVVfj2228xadIk6SjK3XzzzdIRSANDhgwBwPJM1CqXKNHndousTeUcsEATIiJKcfjwINjtjaI5fH198fvf/x5nzpwRzeEKr7/+unQE0sCWLVtQXMzyTNRqFynRW7ZsEQ5GOlA5ByzQhFtuuQJNTV3w0Ud7pKNYBo/yJuDsMbNr17I8E7XJr0v0kcM8ypsA8ChvUmzGjCGA22m8+f5B6SiWwaO8KSvr7DGzPXuyPBO12S9L9Pr1PMqbAKg9yttT2ZXJMLzaA26j07DhhB8amxrh7qb/n6vq6upQV1cHnD7768rGStlADrr5jzdjR8kO6RgkJCsbWLTkNK5NGIOqquOorZVOdGl2+3HpCKQJu/04qqqkU1zCNXGwb6vHmJgxOLB+OdBljHQiEvLTiZ8wZoy6//4tLtDLli1DTEwMPvvsMzz00EN47rnnMG/ePMyfPx/33HMPVqxYgfDwcJSXl6OqqgphYWH4/vvvcffdd+Oll15qvu3999+PZcuWISEhAQcPHoSHhweCg4ORnZ2Nm266CW+88UbzbR955BG89tpruPbaa7F9+3Z07twZ7du3R0FBASZMmIB33323+bZPPvkk/vnPf2L69OlYv349rrzyStjtdpSWliIqKgpffvkl5s6di+eff775Z2bMmIFvvvkGERERKCsrQ01NDQYOHIi1a9fizjvvxMsvv9x82zlz5uCDDz5AUlISCgsL4eXlhe7duyMnJweTJ0/GW2+91XzbRx99FCkpKbj++uuRm5uLrl27wtvbG4WFhRg3bhzef/99PPnkk3j66afx1FNPYcGCBbjjjjuwbt069O/fH3V1dTh+/DgiIyPx9ddf4/7778cLL7zQfP2ZM2fiq6++QlRUFH788UfU19ejf//+SEtLw+23345XXnml+bZz587Fe++9h/Hjx2Pv3r1o3749OnfujG3btuG6667D22+/ja/iv0LTsFJcHfwnvPB8Nm644Qbk5OQgKCgInp6eOHDgABITE7F06VI88cQTWLBgQfP177rrLqxevRqhoaGoqalBWVkZRowYgeXLl2P27NlYuHBh821nzZqFzz//HNHR0SgpKUFDQwNCQkKwYcMGTJs2DS+99BJCQ0Oxfft2LF68GBUVFbj66quxe/du+Pr6IjAwEHl5ebjmmmtw++23Y+3atf8d0J+f37+p/QZRG6Pg0dkDhw4dQnx8PD766CM89thjeOaZZ5qz3H333Vi1ahUGDx6M06dPo6KiAsOHD8eKFSswc+ZMvPjii823ve+++/Dpp59izJgxKCoqQlNTE3r37o3MzEzccssteO2115pv+9BDD+Gdd95BcnIydu3ahY4dO6JTp07YuXMnrr76aixevBh3zb0L1111Hab9YRoyMzMxZMgQFBUVNX/dzqlTp9CrVy/k5+cjNjYW6enpSEpKQlpaGkaOHIl9+/ahW7duqK2tRX19Pbp06YLCwkJERkZi06ZNzbeNjo7Gzp070atXr+Yvk/f390dRURGGDBmCLVu2NN92zJgxyM3NxYABA3Ds2DH4+PjAy8sLJ06cQL9+/bBt27bm28bHxyMjIwPDhg3D4cOHERAQgMbGRlRWVqJnz57Iz8/HmDFjsHHjxt/k7t69O2pqappz79+/HxEREdi8efN5uX/44Qf06dMHFRUVcHd3h5+fH4qLizF48ODzcsfGxmLLli0IDQ1FaWkpOnToAE9PT5SVlf0md0JCAjZu3Ijhw4fj0KFD5+Xu0aMHdu/ejZiYGGRkZDT/TGRkJAoKChAUFITq6mrY7XYEBgbi4MGDGDFixHm5Y2JikJeXh5CQEJSXl8PDw6M5d1hYGHJycppvGxcXhy7tcpGWVokePfY25y4vL0dISAjy8vIQHx+PDRs2ICEhAenp6QgPD8fBgwcRGBgIu92O6upqBAcHY8+ePYiOjj4vd1RUFHbv3o0ePXqgsrISDQ0NzbnDw8ORlZXVfNvRo0dj+/btzbk9PT3RoUMHlJaWIjQ0FLm5uT/fNh3Tp9+H5557TuwxIiUlpfm2Dz74IJYsWYKJEyde8DFi8eLFzbd9/PHHsWjRIkyZMgVZWVkIDg6Gh4e+jxHnbvuXv/wFCxcuxNSpU5GZmYnevXsDOHsQU2xsLD755BM88sgjePbZZ897Pv7uu+8wdOhQnDx5EqdPn8bgwYORmpqKe++9F4sWLWq+7ezZs/Hxxx8jNjYWR44cgZubG3r16oVNmzbh5ptvxuuvv95825tv/iMyMrIwcOBxHD2q92PE9sYt8NzijfT0bCQUHzTsY0R2djYGDRqEkpISgzxGnM2dlZWFsLAwFBcXw8/PD+7u7qioqEDfvn2xY8cOjB07Fhs2bGj+mYiICOzfvx+dO3duzh0UFISCggKMGjUKmZmZzbcdNWoUdu3a1Zy7sbERAQEBOHz4MIYNG4bs7Ozzcn/55ZeISoiCW6Zbix8j+vfv36Je7NbU1NTU0hJN5jMjfQbeiX8HN6bdiM+TPpeO02LNr0CfANAf2Nd1H6KOR2FP9z0I3REKdJVOeHE7Snbgjf/7Btr9qR08u/IvgaykuAhYmwb0DAbihtpRkwJcO30qrux8pXS0ywoI6IDevTtJxyBBR46cREVFtXSMyzpQdgDLl34C36Qd8CzOBxITgT69pWORizXtbULtx7W4ZdYtSBye6PTr89nbwlLyUvBOzDsIWx+GTxM/lY7jEG9vb3h7ewN1Z3/t5+4nG8hBx44dQ9+ufeEb7CsdhVxk717go+/OfmDw6luA2mNVKKk4hCsHdcTwYJ4GSvrr3buTMf4QVXICFRVH0WlcBHwzSoCVH5/9oEFYmHQycqGaEzU4dkzdIXH6v9mVlEgvSsecHnPQKb8Tssdka/G+Zzc3twv+Y0Y+Pj7SEciFLvY9z5wDIjV8fHwAdzce+21xKh9j5VsTuVzx6WJMqp4EjyoPbO69GX5eerx629TUdMF/zMjLy0s6ArnIpQ5J4RwQqdG8Wy049pvMS+VjLAu0xdgb7YjKj0JtUC0+PfMpBnUeJB2pWXV1NRYvXoxvvvkG9957LxobZQ92UenEiRPSEcgFLnfCIOeASI3zdosl2rJUPsayQFtM/Pp4lEaX4u97/o7JAyZLxznPrl27UFhYiGuvvRY7duw4+yFBk+rXr590BFKsJcdzcw6I1PjNbrFEW5LKx1gWaAu5L/0+bB63Gdeuvxb/E/0/0nF+IyoqCg8//DBeffVVPPjgg2jfvr10JGW2bdsmHYEUakl5BjgHRKpccLdYoi1H5WMsC7RFvLnjTbwR/QYGbhiIr5K+ko5zUV27dsWcOXPw4YcfYreJH9x4zKx5tbQ8A5wDIlUuulss0ZbCo7ypTTKPZuK+oPvgv9sfW2K2aPGNGxfy6quv4o033gAAeHp6orCwUDiROjxm1pwcKc8A54BIlUvuFku0Zah8jNWzSZHTlFaW4qrKq+Be546MHhnw9/aXjnRR48ePR8eOHfHVV19h+PDhuPrqq6UjKRMfHy8dgZzM0fIMcA6IVLnsbrFEW4LKx1gWaBOzN9oR+UMkanvU4j/V/8HQrkOlI13SkCFDMH36dEyePBlPP/00PFrSQAwqIyNDOgI5UWvKM8A5IFKlRbvFEm16Kh9jWaBNbNz6cSiJKcFT+U9hSugU6Tj0C8OGDZOOQE7S2vIMcA6IVGnxbrFEm5rKx1gWaJN6YOMD2DhuI65efzX+7+j/Kx2HfuXw4cPSEcgJ2lKeAc4BkSoO7RZLtGmpfIxlgTahf+/8N1KiUtAvvR++TfpWOg5dQEBAgHQEaqO2lmeAc0CkisO7xRJtSiofY1mgTSa7JBszusyA314/5IzK0fYbN6zOzKcsWoEzyjPAOSBSpVW7xRJtOiofY9muTORE9QkkVSTBze6GzKBMBPgESEeii6isrJSOQK3krPIMcA6IVGn1brFEm4rKx1gWaJOwN9oxcvtI1PSpwYeVH2JYV344SWc9e/aUjkCt4MzyDHAOiFRp026xRJuGysdYFmiTmLh+Iopii/DEjifwh0F/kI5Dl5Gfny8dgRzk7PIMcA6IVGnzbrFEm4LKx1gWaBP4c8afkTYuDRPXTcSzY56VjkMtMGbMGOkI5AAV5RngHBCp4pTdYok2PJWPsSzQBvfBrg/wYsSL6LuxL1YmrZSOQy20ceNG6QjUQqrKM8A5IFLFabvFEm1oKh9jWaANLLc0F3cF3AXf/b7IjczlN24YSFJSknQEagGV5RngHBCp4tTdYok2LJWPsWxcBlVeU47EskQAQHrXdAS2DxRORI5IS0uTjkCXobo8A5wDIlWcvlss0Yak8jGWBdqAGpsaMXLrSFRdWYX3Kt5DRPcI6UjkoJEjR0pHoEtwRXkGOAdEqijZLZZow1H5GMsCbUDJack4HHcYf97+Z9w2+DbpONQK+/btk45AF+Gq8gxwDohUUbZbLNGGovIxlgXaYJ7Y9ARWj1uNcevGYWHsQuk41Erdu3eXjkAX4MryDHAOiFRRulss0Yahcg5YoA1k2e5leG74c+id0Rurk1ZLx6E2qKmpkY5Av+Lq8gxwDohUUb5bLNGGoHIOWKANIu9YHu7wvwMdDnVAbgS/ccPo6uvrpSPQL0iUZ4BzQKSKS3aLJVp7KueALcwAKmorEHcsDk3uTUi7Ig1dOnSRjkRt1KUL/xvqQqo8A5wDIlVctlss0VpTOQcs0JprbGpE5JZIVPWvwuLyxRgVPEo6EjnB/v37pSMQZMszwDkgUsWlu8USrS2Vc8ACrbnfpf0OB+IPYO7WubhryF3ScchJIiIipCNYnnR5BjgHRKq4fLdYorWkcg5YoDX21OansDJxJRLWJeCluJek45ATbd68WTqCpelQngHOAZEqIrvFEq0dlXPAAq2pTws+xYKhC9Bzc0+sSVwjHYecjEc4y9GlPAOcAyJVxHaLJVorPMrbYnYe34lbO9yK9kfaIzc8F57untKRyMl4hLMMncozwDkgUkV0t1iitcGjvC3kVN0pxJbEosmrCWs7rUU3327SkUiB6Oho6QiWo1t5BjgHRKqI7xZLtBZUzgELtEYamxoRlRWF06Gn8caxNzC6x2jpSKTIDz/8IB3BUnQszwDngEgVLXaLJVqcyjlggdbI9WnXY1/CPszOmY0Zw2ZIxyGF+vTpIx3BMnQtzwDngEgVbXaLJVqUyjlggdbE37L+hm8Tv0XsulikjE2RjkOKVVRUSEewBJ3LM8A5IFJFq91iiRajcg5YoDXwxd4v8I/B/0BQdhDWJ66XjkMu4O7O1VNN9/IMcA6IVNFut1iiRaicA80mzHr2lO3BLd63wKfYB1uHbuU3bliEn5+fdARTM0J5BjgHRKpouVss0S6ncg5YoAVV1ldi9JHRaGjfgO99v0eQX5B0JHKR4uJi6QimZZTyDHAOiFTRdrdYol1K5RywQAtpbGpE1OYonBx8Eq+WvIqxvcZKRyIXGjx4sHQEUzJSeQY4B0SqaL1bLNEuo3IOWKCFTFk/BQUJBZiRPQOzw2dLxyEX27Jli3QE0zFaeQY4B0SqaL9bLNEuoXIOWKAF/G/2/+LL+C8RvS4ab8W/JR2HBPAIZ+cyYnkGOAdEqhhit1iileNR3iayvHA5/h76d3TL6Yb0hHTpOCSERzg7j1HLM8A5IFLFMLvFEq0Uj/I2ib3le3Gj543wPuaNnLAceHl4SUciIbGxsdIRTMHI5RngHBCpYqjdYolWRuUcsEC7SPWZasQcikGDbwNSfVLRy7+XdCQSpP378wzA6OUZ4BwQqWK43WKJVoLvgTa4xqZGjMochYqhFVh0dBESeydKRyJhoaGh0hEMzQzlGeAcEKliyN1iiXY6lXPAAu0Cf1j/B+xK3IW7Nt+FuSPmSschDZSWlkpHMCyzlGeAc0CkimF3iyXaqVTOAQu0Ys/kPINPx36KyHWRWJKwRDoOaaJDhw7SEQzJTOUZ4BwQqWLo3WKJdhqVc8ACrdCK/Svw5IAn0WVrF2QmZErHIY14evLIdkeZrTwDnAMiVQy/WyzRTqFyDligFTlQcQCT3SbD64QXckL5jRt0vrKyMukIhmLG8gxwDohUMcVusUS3mco5YIFWoPpMNUYVjoK9kx0rPFegT6c+0pFIM/369ZOOYBhmLc8A54BIFdPsFkt0m6icAxZoBcZkjEF5eDmeP/Q8rup7lXQc0tC2bdukIxiCmcszwDkgUsVUu8US3Woq54AF2smmrZ+GHUk7MD1zOh4Z+Yh0HNKUIY6ZFWb28gxwDohUMd1usUS3Co/yNogXtr6Aj+I+QnhaOD5M/FA6DmnMMMfMCrFCeQY4B0SqmHK3WKIdxqO8DWDVwVV4PORxBG4PxOaxm6XjkOYSEhKkI2jLKuUZ4BwQqWLa3WKJdojKOWCBdoJDJw/h2sZr4VnhiS39t8DH00c6Emlu48aN0hG0ZKXyDHAOiFQx9W6xRLeYyjlggW6jWnstovZG4UzgGXyDb3BlwJXSkcgAhg8fLh1BO1YrzwDngEgV0+8WS3SLqJwDFug2it0Yi7KIMjyz/xnYrrRJxyGDOHTokHQErVixPAOcAyJVLLFbLNGXpXIOWKDb4M71d2Jb0jZM3TgVT0Q+IR2HDCQgIEA6gjasWp4BzgGRKpbZLZboS1I5ByzQrbRo2yK8H/s+hq4fio+TPpaOQwbT2NgoHUELVi7PAOeASBVL7RZL9EWpnAMW6FZYd3gd/tz7z7hixxXIis2SjkMGVFlZKR1BnNXLM8A5IFLFcrvFEn1BKueABdpBRaeKcHX91fA87YnsK7PRoV0H6UhkQD169JCOIIrl+SyrzwGRKpbcLZbo31A5ByzQDqhvqEfknkjUda3Dl41fov8V/aUjkUHttvADG8vzf1l5DohUsuxusUSfR+UcsEA7IG5DHI5HHsfT+57G7/r9TjoOGVhMTIx0BBEsz+ez6hwQqWbp3WKJbqZyDligW+ieDfcgZ1wObkq/CU9GPSkdhwwuIyNDOoLLsTz/lhXngMgVLL9bLNEA1M4BC3QLpOSl4N+j/42w9WH4JPET6ThkAklJSdIRXIrl+cKsNgdErsLdAks01M4BC/RlpBelY06POeiU3wnZY7Lh7sb/l1HbpaWlSUdwGZbni7PSHBC5EnfrZxYv0SrngG3wEopPF2NS9SR4VHkgu082/Lz8pCORSURGRkpHcAmW50uzyhwQuRp36xcsXKJVzgEL9EXYG+2Iyo9CbVAtPj3zKQYGDpSORCZSUFAgHUE5lufLs8IcEEngbv2KRUu0yjlggb6I+PXxKB1Viv/Z8z+YPGCydBwymaCgIOkISrE8t4zZ54BICnfrAixYolXOAQv0BdyXfh82j9uM6zdcj79H/106DplQdXW1dARlWJ5bzsxzQCSJu3URFivRKueABfpX3tzxJt6IfgMDNwzEF0lfSMchk7Lb7dIRlGB5doxZ54BIGnfrEixUolXOAQv0L2QezcR9QffBf7c/tsRs4TdukDKBgYHSEZyO5dlxZpwDIh1wty7DIiVa5RywIf6stLIUV1VeBfc6d2zquQn+3v7SkcjEDh48KB3BqVieW8dsc0CkC+5WC1igRKucAxZonP3GjcgfIlHboxb/qf4PBncZLB2JTG7EiBHSEZyG5bn1zDQHRDrhbrWQyUu0yjlggQYwbv04lMSUYN6ueZgSOkU6DlnA5s2bpSM4Bctz25hlDoh0w91ygIlLtMo5sHyBfmDjA9g4biOuWX8N/hHzD+k4ZBFmOGaW5bntzDAHRDribjnIpCWaR3kr8u+d/0ZKVAr6pffD8qTl0nHIQox+zCzLs3MYfQ6IdMXdagUTlmge5a1Adkk2ZnSZAb+9fsgZlcNv3CCXiomJkY7QaizPzmPkOSDSGXerlUxWolXOgSVb47GqY0iqSILbGTdkBmUiwCdAOhJZTF5ennSEVmF5di6jzgGR7rhbbWCiEq1yDixXoO2NdkTmRaKmTw2WVi3FsK7DpCORBYWEhEhHcBjLs/MZcQ6IjIC71UYmKdEq58ByBXri+ok4GnsUT+x4ArcMukU6DllUeXm5dASHsDyrYbQ5IDIK7pYTmKBEq5wDSxXoP2f8GWnj0jBp3SQ8O+ZZ6ThkYR4GaqAsz+oYaQ6IjIS75SQGL9Eq58AyBfq9/Pfw4sgX0XdjX3yX9J10HLI4Pz8/6QgtwvKsllHmgMhouFtOZOASrXIOLFGgc0tz8ccr/gjfQl/kRubyGzdIXHFxsXSEy2J5Vs8Ic0BkRNwtJzNoiVY5B6ZvkuU15UgsS4RbkxvSu6YjsH2gdCQihIWFSUe4JJZn19B9DoiMirulgAFLtMo5MHWBbmxqxMitI1F1ZRXePfkuIrpHSEciAgDk5ORIR7golmfX0XkOiIyMu6WIwUq0yjkwdYFOTkvG4bjDeGT7I7ht8G3ScYia6XrMLMuza+k6B0RGx91SyEAlmkd5t8LjmY9j9bjVGL9uPF6IfUE6DtF5dDxmluXZ9XScAyIz4G4pZpASzaO8HbRs9zI8H/48emf0xvdJ30vHIfqNuLg46QjnYXmWodscEJkFd8sFDFCiVc6B6Qp03rE83OF/Bzoc6oDcCH7jBukpOztbOkIzlmc5Os0BkZlwt1xE8xKtcg5M1S4raisQdywOTe5NSLsiDV06dJGORHRBgwYNko4AgOVZmi5zQGQ23C0X0rhEq5wD0xToxqZGRG6JRFX/KiwuX4xRwaOkIxFdVElJiXQElmcN6DAHRGbE3XIxTUu0yjkwTYH+XdrvcCD+AB7c+iDuGnKXdByiS+rQoYPo/bM860F6DojMirslQMMSrXIOTFGgn9r8FFYmrkTCugQsilskHYfosjw9PcXum+VZH5JzQGRm3C0hmpVolXNg+AL9acGnWDB0AXpu7ok1iWuk4xC1SHl5ucj9sjzrRWoOiMyOuyVIoxKtcg4MXaB3Ht+JWzvcivZH2iM3PBee7vwTJxlDSEiIy++T5Vk/EnNAZAXcLWGalGiVc2DYAn2q7hRiS2LR5NWEtZ3WoptvN+lIRC2Wl5fn0vtjedaTq+eAyCq4WxrQoESrnANDFujGpkZEZUXhdOhpvHnsTYzuMVo6EpFD4uPjXXZfLM/6cuUcEFkJd0sTwiVa5RwYskBfn3Y99iXsw+yc2bh32L3ScYgctmHDBpfcD8uz3lw1B0RWw93SiGCJVjkHhivQf8v6G75N/Bax62KRMjZFOg5RqyQkJCi/D5Zn/bliDoisiLulGaESrXIODFWgv9j7Bf4x+B8IzgrG+sT10nGIWi09PV3p9VmejUH1HBBZFXdLQwIlWuUcGKZA7zqxC7f43AKfYh/kDuM3bpCxhYeHK7s2y7NxqJwDIivjbmnKxSVa5RwYokBX1lcitigWDT4N+N73ewT5BUlHImqTgwcPKrkuy7OxqJoDIqvjbmnMhSVa5RxoX6AbmxoRtTkKJwefxGulr2Fsr7HSkYjaLDAw0OnXZHk2HhVzQETcLe25qESrnAPtC/SU9VNQkFCAGdkzMGv4LOk4RE5ht9udej2WZ2Ny9hwQ0VncLQNwQYlWOQdaF+j/zf5ffBn/JaLXReOt+Lek4xA5TXV1tdOuxfJsXM6cAyL6L+6WQSgu0SrnQNsCvbxwOf4e+nd0y+mG9AR+mpbMJTg42CnXYXk2NmfNARGdj7tlIApLtMo50LJA7y3fixs9b4T3MW9sHbwVXh5e0pGInGrPnj1tvgbLs/E5Yw6I6Le4WwajqESrnAPtCnT1mWrEHIpBg28DUn1S0aNjD+lIRE4XHR3dpp9neTaHts4BEV0Yd8uAFJRolXOgVYFubGrEqMxRqBhagZeOvoTE3onSkYiUyMjIaPXPsjybR1vmgIgujrtlUE4u0SrnQKsC/Yf1f8CuxF24e/PdmDNijnQcImWSkpJa9XMsz+bS2jkgokvjbhmYE0u0yjnQpkA/k/MMPh37KaLWReHfCf+WjkOkVFpamsM/w/JsPq2ZAyK6PO6WwTmpRKucAy0K9Ir9K/DkgCfRdWtXZCTwr13I/KKiohy6PcuzOTk6B0TUMtwtE3BCiVY5B+IF+kDFAUx2mwyvE17YErqF37hBlrDbgQcClmfzcmQOiKjluFsm0cYSrXIORAt09ZlqjCocBXsnO1Z4rkCfTn0k4xC5TI8eLft2GZZnc2vpHBCRY7hbJtKGEq1yDkQL9JiMMSgPL8fCwwtxVd+rJKMQuVRlZeVlb8PybH4tmQMichx3y2RaWaJVzoFYgZ62fhp2JO3AbZm34eGIh6ViEIloaGi45P/O8mwNl5sDImod7pYJtaJEq5wDkQL9wtYX8FHcRxiRNgIfJH4gEYFIVGBg4EX/N5Zn67jUHBBR63G3TMrBEq1yDlxeoFcdXIXHQx5H522dsWnsJlffPZEWDh48eMHfZ3m2lovNARG1DXfLxBwo0SrnwKUF+tDJQ7i28Vq0+6kdcgbmwMfTx5V3T6SN8PDw3/wey7P1XGgOiKjtuFsm18ISrXIOXFaga+21iNobhTNXnMFy9+Xo26mvq+6aSDtZWVnn/Zrl2Zp+PQdE5BzcLQtoQYlWOQcuK9CxG2NRFlGGZw48g0khk1x1t0Ra+uXxoizP1sXjhonU4G5ZxGVKtOGP8r5z/Z3YlrQNf9j4BzwR+YQr7pIMoqqqCt9++y0mTbLWH6rOHS/K8mxtPG6YSA3uloVcrERX1xr7KO9F2xbh/dj3MSxtGD5K+kj13ZHB+Pr64ve//z3OnDkjHcWlRo8ejeIilmerGz16tHQEIlPiblnMr0v0yy8Da9aenYOF/wIUfJhQaYFed3gd/tz7z7hixxXYHLdZ5V0RGcr27duxNo3l2eq2b98uHYHIlLhbFuTuDtx4I+DpCVx5JWBLPjsHgYHA5MlOvztPp1/xZz9sTcM076vge8YN6wNS0aFdB1V3RRZUV1eHuro64PTZX1c2nj1tqKxzIUp21wGlguEuIyP7AEJCQlDb3Y6RCVWoPSadiCTYj9sREhIiHYPIlEJCQmA/bkcVqqSjkCuVlAD+vYCR49BUeHYOcNvNwL+/ADZvBpz4NxMtLtDLli1DTEwMPvvsMzz00EN47rnnMG/ePMyfPx/33HMPVqxYgfDwcJSXl6OqqgqZ295HjVsT1i5twif7olHbuTNe69oVs+fNw6affkJiYiIOHjwIDw8PBAcHIzs7GzfddBPeeOON5us+8sgjeO2113Dttddi+/bt6Ny5M9q3b4+CggJMmDAB7777bvNtn3zySfzzn//E9OnTsX79elx55ZWw2+0oLS1FVFQUvvzyS8ydOxfPP/9888/MmDED33zzDSIiIlBWVoaamhoMHDgQa9euxZ133omXX365+bZz5szBBx98gKSkJBQWFsLLywvdu3dHTk4OJk+ejLfeeqv5to8++ihSUlJw/fXXIzc3F127doW3tzcKCwsxbtw4vP/++3jyySfx9NNP46mnnsKCBQtwxx13YN26dejfvz/q6upw/PhxREZG4uuvv8b999+PF154ofn6M2fOxFdffYWoqCj8+OOPqK+vR//+/ZGWlobbb78dr7zySvNt586di/feew/jx4/H3r170b59e3Tu3Bnbtm3Dddddh7fffrv5to899hhefvll3HDDDcjJyUFQUBA8PT1x4MABJCYmYunSpXjiiSewYMGC5p+56667sHr1aoSGhqKmpgZlZWUYMWIEli9fjtmzZ2PhwoXNt501axY+//xzREdHo6SkBA0NDQgJCcGGDRtgt9sxf/785ts++OCDWLJkCSZOnIjdu3fD19cXgYGByMvLwzXXXIPbb78da9eu/e+AHj/7r2cGvI4r3rkC7u7uqKioQJ8+ffDDDz8gLi4O6enpSEpKQlpaGiIiIrB//3506dIF9fX1qK2tRbdu3bBv3z5ERkZi06ZNzbcdNWoU8vPz0atXL5w6dQoA4O/vj6KiIgwdOhTZ2dnNtx0zZgxyc3PRv39/nDhxAl5eXvDx8cGxY8cwYMAAbN26FaMnjcb69PW4qctNyHwvE0OGDEFRURH8/f0BAKdOnUKvXr2Qn5+P2NjY83KPHDkS+/btQ7du3VBbW4v6+np06dIFhYWFv8kdHR2NnTt3XjD3kCFDsGXLlt/kHjBgAI4dOwYfHx94eXnhxIkT6NevH7Zt29Z82/j4eGRkZGDYsGE4fPgwAgIC0NjYiMrKSvTs2RP5+fkYM2YMNm7c+Jvc3bt3R01NTXPu/fv3IyIiAps3bz4v9w8//IA+ffqgoqIC7u7u8PPzQ3FxMQYPHnxe7tjYWGzZsgWhoaEoLS1Fhw4d4OnpibKyst/kTkhIwMaNGzF8+HAcOnTovNw9evTA7t27ERMTg4yMjOafiYyMREFBAYKCglBdXQ273Y7AwEAcPHgQI0aMOC93TEwM8vLyEBISgvLycnh4eDTnDgsLQ05OTvNt4+LikJedBw8vD6z/bj2O9z3Ox4jLPEZMmzYNKSkpLX6MWLx4cfNtH3/8cSxatAhTpkxBVlYWgoOD4eHhgUOHDiE+Ph4fffQRHnvsMTzzzDPNP3P33Xdj1apVGDx4ME6fPo2KigoMHz4cK1aswMyZM/Hiiy823/a+++7Dp59+ijFjxqCoqAhNTU3o3bs3MjMzccstt+C1115rvu1DDz2Ed955B8nJydi1axc6duyITp06YefOnbj66qvPy/2Xv/wFCxcuxNSpU5GZmYnevXsDAI4cOYLY2Fh88skneOSRR/Dss8+e93z83XffYejQoTh58iROnz6NwYMHIzU1Fffeey8WLVrUfNvZs2fj448/RmxsLI4cOQI3Nzf06tULmzZtws0334zXX3+9+bYPP/ww3nrrLVxzzTXYsWMHAgIC0LFjR+zatQuTJk3CkiVLmm/717/+Fc8//zxuvfVWpKeno2/fvmhoaEBJSYlDPSIsLAzff/897r77brz00kvNt73//vuxbNkyJCQkXLBHvPfqeyg7WYbjDx839GNEdnY2Bg0ahJKSkubc5eXlCAkJQV5eHuLj47FhwwYkJCQgPT0d4eHhOHjwIAIDA2G321FdXY3g4GDs2bMH0dHR5+WOiorC7t270aNHD1RWVqKhoaE5d3h4OLKysppvO3r0aGzfvr05t6enJzp06IDS0lKEhoYiNzf3vNxZWVkICwtDcXEx/Pz8mp+P+/btix07dmDs2LHYsGHDb56PO3fu3Jw7KCgIBQUFGDVqFDIzM897Pt61a1dz7sbGRgQEBODw4cMYNmwYsrOLkZR0F9LuOJt706ZNmHDdBHzu7g7f1asR6O5+2ceI/v37t6gXuzU1NTW1tEQ76nTtKZSuWI2jixejY0YGhpaXwwfAUQ8P7O/fH56//z0Gz52LgCuvVBWBNFdXV4fPPvusuSTcdNNN8Pb2btHP1dXVAScA9AeyBq3CpD034//FzkFElA+g4VeMFxUDaWuB7mF2LO9bjNkzb0Nnzr6lbcvYhjum3CEdg8h03v/sfUTERUjHIFc7dQq4/XZg3jz81G8g3nz2TTyXnIzghx4Cjh4FOjjv3RDK3sIBAB19/NHxxhsx8MYbAQDVJ04gOyUF1V98gV75+ej/r3+h4V//wg4/P5SNGoUut92GwXfeCQ8vL5WxSCPe3t6YPn06pk+f7vDPeXt7A3Vnf+3rcXYpAk56INjHF/B1dtK22bsX+O7nDwwmjKzChtOdMKjjlQgOHi4djQTV9qmVjkBkSmF9wjCcj6/WEwzg/r8Bt9yHkuuuQ4fAQGDePODNN51angEXn0TYoUsXRP/tb0jauhX96+pwNCMDG++4A5WdOmHkunUYNnMmTvn4ILN3b2y4+26UZGe7Mh6REr/5qjp3oLRU4zdpk8ts27ZNOgKRKXG3LOyPfwQKCoAxY84+1y5fDkyd6vS7UfoK9OX0jI1Fz9hYAIC9thY73n0XZUuXoktODoa8+y7c330Xe729cXTYMHScMgVDZs1C+8BAycjkJG5ubi2+rcJ3GSl3se95Dg0NlQ1GWrjuuuukIxCZEnfL4vr2BW67DaGlpUDXrkruwqWvQF+Kp48Phs+ahXFpaRhWWYmKggJkPPggSvv0waCtWxH11FNA587Y0qUL1t1wA/Z9/TWaGhulY1MrNTU1tfgfo7rUISm5ublywUgbb7/9tnQEIlPibhGg9rlWmwL9a4EDByJu0SIkFBQg6MwZ7P38c2y+9lq4NTVhzFdfYcDkySj28sKGQYOQ+cgjqDhwQDoyOeDXJxAeO3YMH3zwAZYuXYpHH30UdrtdOGHbXO6EQR4zSwAwb9486QhEpsTdIsAER3m3lZu7OwbeeCPGffMNosrK0Hj8OLb84x/YN3w4ehw8iNh//Qsd+/XDjo4dsW78ePzw9ttoqK+Xjk2X8OsTCNesWYOKigpMnz4dZ86cwffffy+csPVacjw3j5klAJg/f750BCJT4m4RoPa51hAF+tc6dOmCUfPm8cOIJnLrrbdizpw5AM5+wC4sLEw4Ueu0pDwDQFxcnGuDkZYee+wx6QhEpsTdIkDtc60hC/Sv9YyNReJ77yG2qAi+NTXY8frr2J6QgI4//YSx776L4JgY7PXxwbpRo5CzYAFqysulI9NFfPvtt5g6daohT2hraXkGgKysLNcFI229/PLL0hGITIm7RYDa51pTFOhf4ocRjSs7Oxvdu3fH1KlTkZ+fLx3HIY6UZwCGfYWdnOuGG26QjkBkStwtAtQ+15quQP9aSz+MuD4sDJmPPsoPI7pIXV0dli5dioMHD2LZsmVIS0vDvffei7/+9a9ITEw01LdvOFqeAaC4uFh9MNJeTk6OdAQiU+JuEaD2uVb0e6Bd7dyHEX95MuKW119H1WefnT0ZceFCNCxcyJMRXeBCJxDm5eUJJmqd1pRnAPDz81MbjAwhKChIOgKRKXG3CFD7XGv6V6AvxaEPI/7xj/wwIp2nteUZANzdLb169DNPT0u9hkHkMtwtAtQ+1/JZ/Bcu+WHEJUv4YURq1pbyDAAVFRVKcpGxHOBbxoiU4G4RoPa5lgX6IvhhRLqYtpZnAOjbt6/zg5HhJCYmSkcgMiXuFgFqn2tZoFuIH0YkwDnlGQB27Njh3GBkSEuXLpWOQGRK3C0C1D7XskC3wqVORux54ABiFy7kyYgm5KzyDABjx451XjAyrCeeeEI6ApEpcbcIUPtcywLtBPwwovk5szwDwIYNG5wTjAxtwYIF0hGITIm7RYDa51p+TFWBnrGx6BkbCwCw19Zix7vvomzpUnTJycGQJUvgvmQJ9np74+iwYeg4ZQqGzJqF9oGBwqnpYpxdngEgKSmp7Rchw5s3b550BCJT4m4RoPa5lq9AK8YPIxqbivIMAGlpac65EBna/PnzpSMQmRJ3iwC1z7Us0C7GDyMah6ryDAARERHOuxgZ1l133SUdgciUuFsEqH2uZYEWxA8j6ktleQaA/fv3O/eCZEirV6+WjkBkStwtAtQ+17JAa4QfRtSD6vIMAJ07d3b+RclwQkNDpSMQmRJ3iwC1z7X8EKHG+GFE13NFeQYAu92u5sJkKDU1NdIRiEyJu0WA2udavgJtEPwwonquKs8AUF1dre7iZBhlZWXSEYhMibtFgNrnWhZog+KHEZ3LleUZAIKCgtTeARnCiBEjpCMQmRJ3iwC1z7Us0CZw0Q8jhofzw4gt4OryDAAFBQXq74S0t3z5cukIRKbE3SJA7XMtC7QJNX8YMTf3kh9GzOjTx/IfRpQozwAwatQo19wRaW327NnSEYhMibtFgNrnWhZoC+gZG4vE995DbFERfGtqsOP117E9IQH+5eUYu2QJgmNisNfHB+tGjULOggWoraiQjuwSUuUZADIzM113Z6SthQsXSkcgMiXuFgFqn2tZoC3m1x9GPLlvHzIefvi8DyM2XXFF84cRC5cvN+WHESXLM8CjvOksHjdMpAZ3iwAe5U0KXdG/P+L+9a+Lfhix/3XXme7DiNLlGeBR3nQWjxsmUoO7RQCP8iYXscKHEXUozwDfA01nzZo1SzoCkSlxtwjge6BJiNk+jKhLeQaAXbt2yd05aePzzz+XjkBkStwtAtQ+1/IkQmoxR09GHDp7NnwCAmRD/0yn8gwAPXr0kA1AWoiOjpaOQGRK3C0C1D7X8hVoahUjfRhRt/IMAJWVldIRSAMlJSXSEYhMibtFgNrnWhZocgpdP4yoY3kGgEYTfrMJOa6hoUE6ApEpcbcIUPtcywJNTqfLhxF1Lc8AEKDJW1tIVkhIiHQEIlPibhGg9rmWBZqUu9CHETPuvPPiH0bcsqXN96lzeQaAw4cPS0cgDWzYsEE6ApEpcbcIUPtcyw8Rksup/jDi3gPAR1/oW54BYNiwYdIRSAPTpk2TjkBkStwtAtQ+1/IVaBLV1g8jFpcCtwH468+/3gb9yzMAZGv+lX/kGikpKdIRiEyJu0WA2udaFmjSiiMfRkz/82OYMLketTcBDzx89uer/ADfDnqXZ4BHedNZPG6YSA3uFgFqn2tb9BaOpqYmnD59WlkIoovpPmECuk+YAACoKCvD7nfeQfU336BLfj52vrgN1X2O4fnngbz0EwCAgOG1OFpZgbQTQHtvyeQXV9HQgNWbNyM5JganvTUNSS6RkpKC+++/XzoGkelwt+jEiRNYvXo1pk2bBl9fX4d+tmPHjnBzc7vkbdyampqaLnehU6dOoVOnTg7dORERERGR0Zw8eRL+/v6XvE2LCjRfgSbd1NXVYevWOtx8M7ByJeDpWYKYmBg8//f38P+Wd8H/+T+At5d0ygurqq7GpJtvRk5ODvz8/KTjkJDKykpERUVxDoicjLtFwH/n4MiRI5ctw7/mtFegiXQ1cwaw/FtgypQivPpqb3h5HcHLi3rhT/dJJ7u4c3+j05I/4ZJ5cQ6I1OBuEaB+DvghQjK0N98CUlKA0tKzv/7kE2hdnomIiMj4WKDJ0NzcgBtvBF588eyvIyNF4xAREZEFsECTKXj//G0W3gb4Vgtvb2/MmDHDEFlJHc4BkRrcLQLUzwELNJmC0Qr0mDFjDJGV1OEcEKnB3SJA/RzwQ4RkCkb70EhxcTF69OghHYOEcQ6I1OBuEaB2DvgKNJGAxYsXS0cgDXAOiNTgbhGgdg74CjSZgtFegSYiIiLj4ivQRALmz58vHYE0wDkgUoO7RYDaOeAr0GQKRnsFuq6ujh9wIc4BkSLcLQLUzgFfgSYSsGjRIukIpAHOAZEa3C0C1M4BCzSRi1RVVeHbb7/FpEmTMGXKFOk4JIRzQKROdXU1Fi9ejICAANx7771obGyUjkRCKisrsWbNGhw+fFjJ9VmgiVzE19cXv//973HmzBn0799fOg4J4RwQqbNr1y4UFhZi5syZ2LFjB+rq6qQjkYDFixfjueeew8qVK5X9IYrvgSZTaGpqwunTp9GxY0e4ublJx7mkcePGYd26ddIxSBjngEiN48eP4z//+Q8CAgJw++23S8chQW5ubjhw4ABCQkKcfm2+Ak2m4ObmBn9/f+3LMxERqdW1a1fMmTMHH374IXbv3i0dh0yKBZqIiIhM4dVXX8Ubb7wBAPD09ERhYaFwIjIrFmgiF6mrq8PSpUtx8OBBLFu2jO/NsyjOAZE648ePR8eOHfHVV19h+PDhuPrqq6UjkUnxPdBEREREZDp8DzQRERERkSZYoIkUc3Nza/E/ZH78b0+kDveLAGDZsmWYPXs2AOCvf/0rUlJSnH4ffAsHEREREZED+Ao0kWK/PHkOAI4dO4YPPvgAS5cuxaOPPgq73S6ckFzp3Elp33zzDU9KI1KkqKgIjz76qHQMMjEWaCLFfnnyHACsWbMGFRUVmD59Os6cOYPvv/9eOCG50rmT0q699lqelEakQFNTE7766iuUlZVJRyET85QOQGQ1t956a/P/XVpairCwMME05GpRUVHo06cPXn31VTz44INo3769dCQiU1m1ahWuuuoqZGdnS0chE+Mr0ERCvv32W0ydOlXJ1+uQ3nhSGpEahYWF6N69O/9gSsqxQBMJyM7ORvfu3TF16lTk5+dLxyEX4klpROps27YNBw4cQGpqKg4fPoy8vDzpSGRSfAsHkWJ1dXX47LPPmk+e69GjB+bOnYtu3bqhvr4er732mnREcqHx48dj27ZtPCmNSIEpU6bgzJkzSElJQV1dHfhFY6QKv8aOiIiIiMgBfAsHEREREZEDWKCJiIiIiBzAAk1ERERE5AAWaCIiIiIiB7BAExERERE5gAWaiIiIiMgBLNBERERERA5ggSYiIiIicgALNBERERGRA1igiYiIiIgcwAJNREREROSA/w/CPSihaq350AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "Graphics object consisting of 56 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:56,160 Plotting... done\n", + "INFO: 2023-09-20 09:43:56,163 Plotting...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAALhCAYAAAB2cZOUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADvPUlEQVR4nOzde1yO9/8H8Ndd6aSzQimSdEI6CEUHRBhjbEQkzGw5M9tsNoyNMWw2zGaIOc5p5CyKDjoqdJaSiFSSTlL35/eHX/fXrbO6uu777v3co8d2X8f3dXm/7727XNf1ETDGGAghhBBCCCENIsd3AIQQQgghhEgTaqAJIYQQQghpBGqgCSGEEEIIaQRqoAkhhBBCCGkEaqAJIYQQQghpBGqgCSGEEEIIaQRqoAkhhBBCCGkEaqCJTGCMobCwEPRac0IIIYRwjRpoIhNevHgBTU1NvHjxgu9QCCGEECLjqIEmhAcHDx7kOwQiASgPCOEG1RYBuM0DaqAJ4UHfvn35DoFIAMoDQrhBtUUAbvOAGmhCeHDs2DG+QyASgPKAEG5QbRGA2zwQMHrqisiAwsJCaGpq4vnz59DQ0OA7nHq9fPkSSkpKfIdBeEZ5QAg3qLYIwG0e0BVoQniwYcMGvkMgEoDygBBuUG0RgNs8aJYr0OXl5aioqGiOeAh5J0VFRXBxccG1a9egpqbGdzitgoKCAhQVFfkOgxBCCGlxTW6gy8vLER8fD6FQ2FwxEUKkgJycHHr06EFNdBOsWbMGy5cv5zsMQmQO1RYBuM2DJjfQJSUlSExMhLGxMVRUVJorLkKIBCstLUVGRgYsLS2hqqrKdzhS69GjRzAwMOA7DEJkDtUWAbjNA4Xm2pCKigr9j5SQVub58+coKyuDkpIS2rZty3c4UufcuXOYOXMm32EQInOotgjAbR40WwNNCGl9/P39UVxcDA0NDUycOJGa6EaytrbmOwRCZBLVFgG4zQN6Cwch5J21bdsWioqKKCwsxMuXL/kOR+rk5+fzHQIhMolqiwDc5gE10ISQd6akpETvWm2C4uJivkMgRCZRbRGA2zygBpoQQnhiYWHBdwiEyCSqLQJwmwfUQBNCCE8uX77MdwiEyCSqLQJwmwfUQBNCCE98fHz4DoEQmUS1RQBu84Aa6BZ28uRJmJqaQl5eHgsXLuQ7HKnj5ubWLOfN2NgYv/zyS5O3I21a63FLqi1btvAdAiEyiWqLANzmgcQ00D4+PhAIBPj000+rzfP19YVAIJCJ3yhnz56NDz/8EA8ePMDq1avh4+ODsWPHcrrPoKAg2NvbQ1lZGSYmJvjjjz843Z8k2bNnD7S0tKpNj4yMxCeffNLyARHyBhopjRBuUG0RgNs8kJgGGgCMjIxw6NAhlJaWiqaVlZXh4MGD6Ny5M4+RNY+ioiLk5OTAw8MDBgYGUFdXb7Ztl5eX1zg9PT0dI0eOhLOzM27evImvv/4a8+fPx7Fjx5pt39JIT0+vxQf+qayspCHviZg1a9bwHQIhMolqiwDc5oFENdB2dnbo3Lkzjh8/Lpp2/PhxGBkZwdbWVmzZly9fYv78+Wjfvj2UlZUxcOBAREZGAgCEQiEMDQ2rXWmNiYmBQCDAvXv3ALweRe2TTz5B+/btoaGhgcGDByMuLk60fFxcHAYNGgR1dXVoaGjA3t4eUVFRtca/adMm9OrVC23btoWRkRF8fX1RVFQEAAgMDBQ1zIMHD4ZAIICbmxv8/Pzw33//QSAQQCAQIDAwEADw8OFDTJw4Edra2mjXrh3GjBmDjIwM0b6qrlyvXbsWBgYGMDMzqzGmP/74A507d8Yvv/wCS0tLfPzxx5gxYwZ+/vnnuv4oEB8fj/feew8aGhpQV1eHs7Mz0tLSROf3+++/h6GhIZSUlGBjY4Pz58+L1s3IyIBAIMCRI0fg7OwMFRUVODg4ICUlBZGRkejTpw/U1NQwfPhwPH36tNoxrVq1SvRnMnv27Fp/OQBe/+LwxRdfoFOnTmjbti369esnOoeBgYGYPn06nj9/Ljq/K1euBFD9VobMzEyMGTMGampq0NDQwIQJE/DkyRPR/JUrV8LGxgb79u2DsbExNDU14enpiRcvXtQaW9XVb39/f1hZWUFJSQn379/Hs2fP4O3tDW1tbaiqqmLEiBFITU2ttq83/fLLLzA2Nq52rn7++Wfo6+ujXbt2mDNnDl69eiVaJicnB6NHj4aKigq6du2K/fv31xor4Yevry/fIRAik6i2CMBtHkhUAw0A06dPx+7du0Wfd+3ahRkzZlRb7osvvsCxY8fg5+eHmJgYmJqawsPDA/n5+ZCTk4Onp2e1huHAgQNwdHSEiYkJGGN477338PjxY5w9exbR0dGws7PDkCFDRC/e9vLygqGhISIjIxEdHY2vvvoKbdq0qTV2OTk5bNmyBXfu3IGfnx+uXLmCL774AgDg5OSE5ORkAMCxY8eQnZ2NU6dOYcKECRg+fDiys7ORnZ0NJycnlJSUYNCgQVBTU8O1a9cQHBwsajjfbCYDAgKQmJiIS5cuwd/fv8aYwsLCMGzYMLFpHh4eiIqKEmu23vTw4UO4uLhAWVkZV65cQXR0NGbMmIGKigoAwK+//oqNGzfi559/xq1bt+Dh4YH3339frAkEgBUrVmD58uWIiYmBgoICJk2ahC+++AK//vorrl+/jrS0NHz33Xdi61Qd09WrV3Hw4EGcOHECq1atqvWcT58+HSEhITh06BBu3bqFjz76CMOHD0dqaiqcnJzwyy+/QENDQ3R+P//882rbYIxh7NixyM/PR1BQEC5duoS0tDRMnDhRbLm0tDScPHkS/v7+8Pf3R1BQENatW1drbABQUlKCtWvXYufOnYiPj0f79u3h4+ODqKgonDp1CmFhYWCMYeTIkbX+edTm6tWrSEtLw9WrV+Hn54c9e/Zgz549ovk+Pj7IyMjAlStXcPToUWzbtg05OTmN2gfh1sGDB/kOgRCZRLVFAI7zgDVRcXExi4qKYsXFxU3azrRp09iYMWPY06dPmZKSEktPT2cZGRlMWVmZPX36lI0ZM4ZNmzaNMcZYUVERa9OmDdu/f79o/fLycmZgYMDWr1/PGGMsJiaGCQQClpGRwRhjrLKyknXq1Ilt3bqVMcZYQEAA09DQYGVlZWJxdOvWje3YsYMxxpi6ujrbs2fPOx/TkSNHWLt27USfnz17xgCwq1evVjvuN/3999/M3NycCYVC0bSXL18yFRUVduHCBdF6HTp0YC9fvqwzhu7du7MffvhBbFpISAgDwB49elTjOsuWLWNdu3Zl5eXlNc43MDCotk0HBwfm6+vLGGMsPT2dAWA7d+4UzT948CADwAICAkTT1q5dy8zNzUWfp02bxnR0dMRyafv27UxNTY1VVlYyxhhzdXVlCxYsYIwxdvfuXSYQCNjDhw/FYhkyZAhbtmwZY4yx3bt3M01NzWrH0KVLF7Z582bGGGMXL15k8vLyLDMzUzQ/Pj6eAWARERGMMcZWrFjBVFVVWWFhoWiZpUuXsn79+tV4jqr2DYDFxsaKpqWkpDAALCQkRDQtNzeXqaiosCNHjoj21bt3b7Ftbd68mXXp0kXsXHXp0oVVVFSIpn300Uds4sSJjDHGkpOTGQB248YN0fzExEQGQHTcTVFV90ePHmU7d+5kmzdvZnl5eU3ebmsTFxfHdwiEyCSqLcIYt3kgcVegdXV18d5778HPzw+7d+/Ge++9B11dXbFl0tLS8OrVKwwYMEA0rU2bNujbty8SExMBALa2trCwsBD99hEUFIScnBxMmDABABAdHY2ioiK0a9cOampqop/09HTRrQqLFy/Gxx9/DHd3d6xbt040vTZXr17F0KFD0alTJ6irq8Pb2xt5eXmNHgknOjoad+/ehbq6uiguHR0dlJWVicXQq1cvKCoq1rs9gUAg9pkxVuP0KrGxsXB2dq7xanthYSEePXokdu4BYMCAAaJzX+XNMeg7dOggivnNaW9fEe3du7fYvcmOjo4oKirCgwcPqsUSExMDxhjMzMzE/gyDgoLq/bN6U2JiIoyMjGBkZCSaZmVlBS0tLbFjMjY2FrtvXV9fv94ruoqKimLnITExEQoKCujXr59oWrt27WBubl7t/NWnR48ekJeXrzGeqv306dNHNN/CwqLGByoJf968LYsQ0nyotgjAbR4ocLblJpgxYwbmzp0LANi6dWu1+bU1gIwxsWleXl44cOAAvvrqKxw4cAAeHh6iZlwoFEJfX190v+ybqpqMlStXYvLkyThz5gzOnTuHFStW4NChQ/jggw+qrXP//n2MHDkSn376KVavXg0dHR0EBwdj5syZjf6reaFQCHt7+xrvWdXT0xP9d9u2bevdVseOHfH48WOxaTk5OVBQUEC7du1qXEdFRaXe7dZ37gGINeBV896e1tCH6mpq9oVCIeTl5REdHS3WSAKAmppag7ZbW+w1TX/7F4qGxK+ioiK2jarcrWtfcnJy1ZarKYfqiqe+X5KIZHg7bwkhzYNqiwDc5oHEXYEGILrXt7y8HB4eHtXmm5qaQlFREcHBwaJpr169QlRUFCwtLUXTJk+ejNu3byM6OhpHjx6Fl5eXaJ6dnR0eP34MBQUFmJqaiv28ecXbzMwMixYtwsWLFzFu3Dix+7PfFBUVhYqKCmzcuBH9+/eHmZkZHj16VO+xKioqorKyUmyanZ0dUlNT0b59+2qxaWpq1rvNNzk6OuLSpUti0y5evIg+ffrUej+3tbU1rl+/XmPTpqGhAQMDA7FzDwChoaFi5/5dxcXFib2F5caNG1BTU4OhoWG1ZW1tbVFZWYmcnJxq56ljx44Aaj6/b7OyskJmZqbYVe6EhAQ8f/68WY7p7X1VVFQgPDxcNC0vLw8pKSmifenp6eHx48diTXRsbGyj9mNpaYmKigqxh16Tk5NRUFDQpPhJ89LX1+c7BEJkEtUWAbjNA4lsoOXl5ZGYmIjExMQaf3to27YtPvvsMyxduhTnz59HQkICZs2ahZKSEsycOVO0XNeuXeHk5ISZM2eioqICY8aMEc1zd3eHo6Mjxo4diwsXLiAjIwOhoaFYvnw5oqKiUFpairlz5yIwMBD3799HSEgIIiMja22ounXrhoqKCvz222+4d+8e9u3b16D3LRsbG+PWrVtITk5Gbm4uXr16BS8vL+jq6mLMmDG4fv060tPTERQUhAULFiArK6tR5/LTTz/F/fv3sXjxYiQmJmLXrl34+++/a3yYrsrcuXNRWFgIT09PREVFITU1Ffv27RM9BLl06VL89NNPOHz4MJKTk/HVV18hNjYWCxYsaFRsNSkvL8fMmTORkJAguuo/d+5cyMlVT1UzMzN4eXnB29sbx48fR3p6OiIjI/HTTz/h7NmzAF6f36KiIgQEBCA3NxclJSXVtuPu7g5ra2t4eXkhJiYGERER8Pb2hqurq9gtEM2he/fuGDNmDGbNmoXg4GDExcVhypQp6NSpkyg/3dzc8PTpU6xfvx5paWnYunUrzp0716j9mJubY/jw4Zg1axbCw8MRHR2Njz/+uEF/u0BaTtWbgwghzYtqiwDc5oFENtDA6yudGhoatc5ft24dxo8fj6lTp8LOzg53797FhQsXoK2tLbacl5cX4uLiMG7cOLHmQSAQ4OzZs3BxccGMGTNgZmYGT09PZGRkoEOHDpCXl0deXh68vb1hZmaGCRMmYMSIEbW+EcLGxgabNm3CTz/9hJ49e2L//v1Yu3Ztvcc5a9YsmJubo0+fPtDT00NISAhUVVVx7do1dO7cGePGjYOlpSVmzJiB0tLSOs9JTbp27YqzZ88iMDAQNjY2WL16NbZs2YLx48fXuk67du1w5coVFBUVwdXVFfb29vjrr79EV6znz5+PJUuWYMmSJejVqxfOnz+PU6dOoXv37o2KrSZDhgxB9+7d4eLiggkTJmD06NGiV8/VZPfu3fD29saSJUtgbm6O999/H+Hh4aL7mZ2cnPDpp59i4sSJ0NPTw/r166ttQyAQ4OTJk9DW1oaLiwvc3d1hYmKCw4cPN/l4aovZ3t4eo0aNgqOjIxhjOHv2rOj8WlpaYtu2bdi6dSt69+6NiIiIOn/hqWs/RkZGcHV1xbhx40SvbCSSY9y4cXyHQIhMotoiALd5IGC13ZTZQCUlJUhMTISlpWWLD0xBZIuPjw8KCgpw8uRJvkMh9aiq+4yMDBQUFODFixfw9vaGjo4O36FJlTVr1tCIaYRwgGqLANzmgcRegSaEEFlH/4MnhBtUWwRoRUN5E0JIa0LDDRPCDaotAnCbBy1zC8fz56//3cg3SBBCJBPdwtE8SkpK6NY3QjhAtUUAbvOA+yvQz58Dq1e//qlqpFsRNzc3LFy4kO8wCCESaPv27XyHQIhMotoiALd5wH0DXVIC5Oa+/qnhFWJvevz4MebNmwcTExMoKSnByMgIo0ePRkBAAOdhEsm1cuVK2NjY1LtcfHw8xo8fD2NjYwgEAvzyyy+cx0ZIU4waNYrvEAiRSVRbBOA2DyTmHuiMjAzY29vjypUrWL9+PW7fvo3z589j0KBBmDNnDq+xlZeX87p/0jAlJSUwMTHBunXrRAOpECLJ4uLi+A6BEJlEtUUAbvNAYhpoX19fCAQCRERE4MMPP4SZmRl69OiBxYsX48aNG6LlMjMzMWbMGKipqUFDQwMTJkzAkydPALweaU0gECApKUls25s2bYKxsbFoZLeEhASMHDkSampq6NChA6ZOnYrc3FzR8m5ubpg7dy4WL14MXV1dDB06tEHrFRcXw9vbG2pqatDX18fGjRsbdOynTp1Cnz59oKysDF1dXbH3Fj579gze3t7Q1taGqqoqRowYgdTUVNH8PXv2QEtLC/7+/jA3N4eqqio+/PBDFBcXw8/PD8bGxtDW1sa8efPERuQzNjbG6tWrMXnyZKipqcHAwAC//fabWFx1nWvgf1eG9+3bB2NjY2hqasLT0xMvXrwQLcMYw/r162FiYgIVFRX07t0bR48eFc0PDAyEQCBAQEAA+vTpA1VVVTg5OYkGbdmzZw9WrVqFuLg4CAQCCAQC7Nmzp8bz6ODggA0bNsDT0xNKSkoNOveE8Kldu3Z8h0CITKLaIgC3eSARDXR+fj7Onz+POXPmoG3bttXma2lpAXjdjI0dOxb5+fkICgrCpUuXkJaWhokTJwJ4Pfqavb099u/fL7b+gQMHMHnyZAgEAmRnZ8PV1RU2NjaIiorC+fPn8eTJE0yYMEFsHT8/PygoKCAkJAQ7duxo0HpLly7F1atXceLECVy8eBGBgYGIjo6u89jPnDmDcePG4b333sPNmzdFjWQVHx8fREVF4dSpUwgLCwNjDCNHjhQbZrukpARbtmzBoUOHcP78eQQGBmLcuHE4e/Yszp49i3379uHPP/8Ua1wBYMOGDbC2tkZMTAyWLVuGRYsWiYb9ru9cV0lLS8PJkyfh7+8Pf39/BAUFYd26daL5y5cvx+7du7F9+3bEx8dj0aJFmDJlCoKCgsS2880332Djxo2IioqCgoICZsyYAQCYOHEilixZgh49eiA7OxvZ2dnVYiBEWtHIkIRwg2qLABznAWui4uJiFhUVxYqLi2te4NEjxqZNe/3z6FGNi4SHhzMA7Pjx43Xu6+LFi0xeXp5lZmaKpsXHxzMALCIigjHG2KZNm5iJiYlofnJyMgPA4uPjGWOMffvtt2zYsGFi233w4AEDwJKTkxljjLm6ujIbGxuxZepb78WLF0xRUZEdOnRIND8vL4+pqKiwBQsW1HpMjo6OzMvLq8Z5KSkpDAALCQkRTcvNzWUqKirsyJEjjDHGdu/ezQCwu3fvipaZPXs2U1VVZS9evBBN8/DwYLNnzxZ97tKlCxs+fLjY/iZOnMhGjBjBGGvYuV6xYgVTVVVlhYWFomWWLl3K+vXrxxhjrKioiCkrK7PQ0FCx/cycOZNNmjSJMcbY1atXGQB2+fJl0fwzZ84wAKy0tFS0n969e9d4jmrTpUsXtnnz5katQxququ6PHj3Kdu7cyTZv3szy8vL4Dkvq7N69m+8QCJFJVFuEMW7zQCKuQLP/v7VCIBDUuVxiYiKMjIxEwzQDgJWVFbS0tJCYmAgA8PT0xP3790W3fezfvx82NjawsrICAERHR+Pq1atQU1MT/VhYWAB4fTW1yptXgRuyXlpaGsrLy+Ho6ChaR0dHB+bm5nUeU2xsLIYMGVLr8SooKKBfv36iae3atYO5ubnoeAFAVVUV3bp1E33u0KEDjI2NoaamJjYtJydHbPtvxlr1uWq7DTnXwOtbQdTV1UWf9fX1RftJSEhAWVkZhg4dKnbe9u7dK3auAcDa2lpsGwCqxUuIrKmt9gkhTUO1RQBu80AiGuju3btDIBCINWY1YYzV2GS/OV1fXx+DBg3CgQMHAAAHDx7ElClTRMsKhUKMHj0asbGxYj+pqalwcXERLff2rST1rcfe8XXadf31Qm3bfPs8tGnTRmy+QCCocZpQKKw3nqrtNuRc17bvqv1U/fvMmTNi5ywhIaHa7SRvbqdq+w2JlxBp5ufnx3cIhMgkqi0CcJsHEtFA6+jowMPDA1u3bkVxcXG1+QUFBQBeXwHNzMzEgwcPRPMSEhLw/PlzWFpaiqZ5eXnh8OHDCAsLQ1paGjw9PUXz7OzsEB8fD2NjY5iamor91HT/dUPXMzU1RZs2bcQeeHz27BlSUlLqPHZra+taX9NnZWWFiooKhIeHi6bl5eUhJSVF7Hjf1ZuxVn2uuqre0HNdFysrKygpKSEzM7PaOXvzynZ9FBUVxR6AJERW0HDDhHCDaosArWQo723btqGyshJ9+/bFsWPHkJqaisTERGzZskV0q4G7uzusra3h5eWFmJgYREREwNvbG66urmK3XIwbNw6FhYX47LPPMGjQIHTq1Ek0b86cOcjPz8ekSZMQERGBe/fu4eLFi5gxY0adTVp966mpqWHmzJlYunQpAgICcOfOHfj4+EBOru5TvGLFChw8eBArVqxAYmIibt++jfXr1wN4fWV+zJgxmDVrFoKDgxEXF4cpU6agU6dOGDNmTFNONwAgJCQE69evR0pKCrZu3Yp///0XCxYsANDwc10XdXV1fP7551i0aBH8/PyQlpaGmzdvYuvWrY36rdDY2Bjp6emIjY1Fbm4uXr58WeNy5eXloqvc5eXlePjwIWJjY3H37t0G74uQlkTDDRPCDaotAnCbB9w30KqqgK7u6586hlPs2rUrYmJiMGjQICxZsgQ9e/bE0KFDERAQIBpJRiAQ4OTJk9DW1oaLiwvc3d1hYmKCw4cPi21LQ0MDo0ePRlxcHLy8vMTmGRgYICQkBJWVlfDw8EDPnj2xYMECaGpq1tnsNmS9DRs2wMXFBe+//z7c3d0xcOBA2Nvb13l63Nzc8O+//+LUqVOwsbHB4MGDxa447969G/b29hg1ahQcHR3BGMPZs2er3TrxLpYsWYLo6GjY2tpi9erV2LhxIzw8PAA0/FzXZ/Xq1fjuu++wdu1aWFpawsPDA6dPn0bXrl0bvI3x48dj+PDhGDRoEPT09HDw4MEal3v06BFsbW1ha2uL7Oxs/Pzzz7C1tcXHH3/cqJgJaSnLli3jOwRCZBLVFgG4zQMBe9ebd/9fSUkJEhMTYWlpWft441VDeGtqNmVXpBkZGxtj4cKFNMw4eSdVdZ+RkYGCggK8ePEC3t7e0NHR4Ts0qbJ27Vr6Hz0hHKDaIgC3eaDAyVbfRo0zIYRUM3nyZL5DIEQmUW0RgNs8aJF7oJ///z+EEEL+59q1a3yHQIhMotoiALd5wPkV6Od4jtVYDQD4Ft9CE63rarSbmxtsbGzwyy+/8B2KmIyMDL5DIKTVa8yzAISQhqPaIgC3ecD5FegSlCD3//8pQUmdyz5+/Bjz5s2DiYkJlJSUYGRkhNGjR9f6mjfSOqxcuRI2Njb1LvfXX3/B2dkZ2tra0NbWhru7OyIiIrgPkJB3VFFRwXcIhMgkqi0CcJsHEvMau4yMDNjb2+PKlStYv349bt++jfPnz2PQoEGYM2cOr7GVl5fzun/SMIGBgZg0aRKuXr2KsLAwdO7cGcOGDcPDhw/5Do2QGj1+/JjvEAiRSVRbBOA2DySmgfb19YVAIEBERAQ+/PBDmJmZoUePHli8eLHYgB+ZmZkYM2YM1NTUoKGhgQkTJuDJkycAgOTkZAgEAiQlJYlte9OmTTA2NhaN7JeQkICRI0dCTU0NHTp0wNSpU5Gbmyta3s3NDXPnzsXixYuhq6uLoUOHNmi94uJieHt7Q01NDfr6+ti4cWODjv3UqVPo06cPlJWVoauri3HjxonmPXv2DN7e3tDW1oaqqipGjBiB1NRU0fw9e/ZAS0sL/v7+MDc3h6qqKj788EMUFxfDz88PxsbG0NbWxrx588Tec21sbIzVq1dj8uTJUFNTg4GBAX777TexuOo618D/rgzv27cPxsbG0NTUhKenJ168eCFahjGG9evXw8TEBCoqKujdu7fYKISBgYEQCAQICAhAnz59oKqqCicnJyQnJ4uOb9WqVYiLi4NAIIBAIMCePXtqPI/79++Hr68vbGxsYGFhgb/++gtCoZD+BoNIrPpec0kIeTdUWwTgNg8kooHOz8/H+fPnMWfOnBpHA9TS0gLwuhkbO3Ys8vPzERQUhEuXLiEtLQ0TJ04EAJibm8Pe3h779+8XW//AgQOYPHkyBAIBsrOz4erqChsbG0RFReH8+fN48uQJJkyYILaOn58fFBQUEBISgh07djRovaVLl+Lq1as4ceIELl68iMDAQERHR9d57GfOnMG4cePw3nvv4ebNm6JGsoqPjw+ioqJw6tQphIWFgTGGkSNH4tWrV6JlSkpKsGXLFhw6dAjnz59HYGAgxo0bh7Nnz+Ls2bPYt28f/vzzz2rDZ2/YsAHW1taIiYnBsmXLsGjRIly6dKlB57pKWloaTp48CX9/f/j7+yMoKAjr1q0TzV++fDl2796N7du3Iz4+HosWLcKUKVMQFBQktp1vvvkGGzduRFRUFBQUFDBjxgwAwMSJE7FkyRL06NED2dnZyM7OrhZDbUpKSvDq1St6tRqRWCdPnuQ7BEJkEtUWATjOA9ZExcXFLCoqihUXF9c4/xF7xKb9/z+P2KMalwkPD2cA2PHjx+vc18WLF5m8vDzLzMwUTYuPj2cAWEREBGOMsU2bNjETExPR/OTkZAaAxcfHM8YY+/bbb9mwYcPEtvvgwQMGgCUnJzPGGHN1dWU2NjZiy9S33osXL5iioiI7dOiQaH5eXh5TUVFhCxYsqPWYHB0dmZeXV43zUlJSGAAWEhIimpabm8tUVFTYkSNHGGOM7d69mwFgd+/eFS0ze/Zspqqqyl68eCGa5uHhwWbPni363KVLFzZ8+HCx/U2cOJGNGDGCMdawc71ixQqmqqrKCgsLRcssXbqU9evXjzHGWFFREVNWVmahoaFi+5k5cyabNGkSY4yxq1evMgDs8uXLovlnzpxhAFhpaaloP717967xHNXF19eXdevWTbQd0nyq6v7o0aNs586dbPPmzSwvL4/vsKQO5SYh3KDaIoxxmwcScQWa/f+tFQKBoM7lEhMTYWRkBCMjI9E0KysraGlpITExEQDg6emJ+/fvi2772L9/P2xsbGBlZQUAiI6OxtWrV6Gmpib6sbCwAPD6amqVt4errm+9tLQ0lJeXi4YdBwAdHR2Ym5vXeUyxsbEYMmRIrceroKCAfv36iaa1a9cO5ubmouMFAFVVVXTr1k30uUOHDjA2NoaamprYtJycHLHtvxlr1eeq7TbkXAOvbwVRV1cXfdbX1xftJyEhAWVlZRg6dKjYedu7d6/YuQYAa2trsW0AqBZvY6xfvx4HDx7E8ePHoays/M7bIYRLP//8M98hECKTqLYIwG0etMxAKvXo3r07BAIBEhMTMXbs2FqXY4zV2GS/OV1fXx+DBg3CgQMH0L9/fxw8eBCzZ88WLSsUCjF69Gj89NNP1bZT1bgBqHYrSX3rvXlfcmOoqKjUOo/VMkjk2+fh7WG9BQJBjdOEQmG98VRttyHnurZ9V+2n6t9nzpxBp06dxJZTUlIS+/zmdqq235B4a/Lzzz/jxx9/xOXLl8Uac0IkzfLly/kOgRCZRLVFAG7zQCKuQOvo6MDDwwNbt25FcXFxtfkFBQUAXl8BzczMxIMHD0TzEhIS8Pz5c1haWoqmeXl54fDhwwgLC0NaWho8PT1F8+zs7BAfHw9jY2OYmpqK/dR0/3VD1zM1NUWbNm3EHnh89uwZUlJS6jx2a2vrWh9ys7KyQkVFBcLDw0XT8vLykJKSIna87+rNWKs+V11Vb+i5rouVlRWUlJSQmZlZ7Zy9eWW7PoqKimIPQNZlw4YNWL16Nc6fP1/tbxEIkTRr1qzhOwRCZBLVFgG4zQOJaKABYNu2baisrETfvn1x7NgxpKamIjExEVu2bBHdauDu7g5ra2t4eXkhJiYGERER8Pb2hqurq1izNG7cOBQWFuKzzz7DoEGDxK5+zpkzB/n5+Zg0aRIiIiJw7949XLx4ETNmzKizSatvPTU1NcycORNLly5FQEAA7ty5Ax8fH8jJ1X2KV6xYgYMHD2LFihVITEzE7du3sX79egCvr8yPGTMGs2bNQnBwMOLi4jBlyhR06tQJY8aMacrpBgCEhIRg/fr1SElJwdatW/Hvv/9iwYIFABp+ruuirq6Ozz//HIsWLYKfnx/S0tJw8+ZNbN26FX5+fg2O09jYGOnp6YiNjUVubi5evnxZ43Lr16/H8uXLsWvXLhgbG+Px48d4/PgxioqKGrwv0jgpz+r+BZHU7eOPP+Y7BEJkEtUWAbjNA84baFWoQvf//1GFaq3Lde3aFTExMRg0aBCWLFmCnj17YujQoQgICMD27dsBvP6r/ZMnT0JbWxsuLi5wd3eHiYkJDh8+LLYtDQ0NjB49GnFxcfDy8hKbZ2BggJCQEFRWVsLDwwM9e/bEggULoKmpWWez25D1NmzYABcXF7z//vtwd3fHwIED632FipubG/7991+cOnUKNjY2GDx4sNgV5927d8Pe3h6jRo2Co6MjGGM4e/ZstVsn3sWSJUsQHR0NW1tbrF69Ghs3boSHhweAhp/r+qxevRrfffcd1q5dC0tLS3h4eOD06dONGh1o/PjxGD58OAYNGgQ9PT0cPHiwxuW2bduG8vJyfPjhh9DX1xf90L1w3AnUCMSVR1f4DkNqnT59mu8QCJFJVFsE4DYPBKy2G20bqKSkBImJibC0tISqas0N8nM8B4BWN4y3JDM2NsbChQuxcOFCvkMhUqiq7tfdWId45XgYpRph3+f70F63Pd+hSZXIyEg4ODjwHQYhModqiwDc5kGL3MKh+f//EEJky8SOE9H1QVfkdMiBQ6wDcorf/c0prVFeXh7fIRAik6i2CMBtHkjMPdCEEOkjgADjjMahZ25PPDF/AuMHxgh/FF7/igQAUFpayncIhMgkqi0CcJsHLdJAP3/++qc1cnNzk8jbJDIyMiQyLiKd7PXs8eeTP1GuVg4nBSfsvLOT75CkQvfu3fkOgRCZRLVFAG7zgPMG+vlzYPXq1z/1NdGPHz/GvHnzYGJiAiUlJRgZGWH06NG1vuaNtA4rV66EjY1NvcsdP34cffr0gZaWFtq2bQsbGxvs27eP+wAJAGCUySjEKcWh7eO2mGU6C5+FfMZ3SBLv6tWrfIdAiEza/PdffIdAJACX37GcD6RSUgLk5v7vvzVruRU6IyMDAwYMgJaWFtavXw9ra2u8evUKFy5cwJw5c5CUlMR1qLUqLy+HoqIib/snDaOjo4NvvvkGFhYWUFRUhL+/P6ZPn4727duL3i5CuNVDrweyNLJgF2mHPwb+gdjAWFx3uQ4FOYkYs0nieHt78x0CITKhqKgcO3cm4PDhAkSntMOr/O+R3XMuzs78ne/QCI+4/I6VmHugfX19IRAIEBERgQ8//BBmZmbo0aMHFi9eLDbgR2ZmJsaMGQM1NTVoaGhgwoQJePLkCQAgOTkZAoGgWrO9adMmGBsbi0b2S0hIwMiRI6GmpoYOHTpg6tSpyK3q8vH6tou5c+di8eLF0NXVxdChQxu0XnFxMby9vaGmpgZ9fX1s3LixQcd+6tQp9OnTB8rKytDV1cW4ceNE8549ewZvb29oa2tDVVUVI0aMEBv1cM+ePdDS0oK/vz/Mzc2hqqqKDz/8EMXFxfDz84OxsTG0tbUxb948sfdcGxsbY/Xq1Zg8eTLU1NRgYGCA3377TSyuus418L8rw/v27YOxsTE0NTXh6emJFy9eiJZhjGH9+vUwMTGBiooKevfujaNHj4rmBwYGQiAQICAgAH369IGqqiqcnJyQnJwsOr5Vq1YhLi4OAoEAAoEAe/bsqfE8urm54YMPPoClpSW6deuGBQsWwNraGsHBwQ36cyDNQ0NJAykDUvBe4Hu44XIDRpFGePTiEd9hSaS3a44Q0jBCIcOlSxn46KMgdOgQAXX1cixaZIPw8B7Q1yiAstNwnPtoL/oE9kF5ZTnf4RKecPkdKxENdH5+Ps6fP485c+bUOBqglpYWgNfN2NixY5Gfn4+goCBcunQJaWlpmDhxIgDA3Nwc9vb22L9/v9j6Bw4cwOTJkyEQCJCdnQ1XV1fY2NggKioK58+fx5MnTzBhwgSxdfz8/KCgoICQkBDs2LGjQestXboUV69exYkTJ3Dx4kUEBgYiOjq6zmM/c+YMxo0bh/feew83b94UNZJVfHx8EBUVhVOnTiEsLAyMMYwcORKvXr0SLVNSUoItW7bg0KFDOH/+PAIDAzFu3DicPXsWZ8+exb59+/Dnn3+KNa7A6/dWW1tbIyYmBsuWLcOiRYtw6dKlBp3rKmlpaTh58iT8/f3h7++PoKAgrFu3TjR/+fLl2L17N7Zv3474+HgsWrQIU6ZMQVBQkNh2vvnmG2zcuBFRUVFQUFDAjBkzAAATJ07EkiVL0KNHD2RnZyM7O7taDDVhjCEgIADJyclwcXGpd3nSvOQEcvB388e3Ud/iseVjdMvuhpCsEL7Dkjg03DAhDZeVVYhly8LRo8c1KCk9wLBhxjh61AkvXypi2LAo/PNPIsrL2+F+ujOKg0Mw7uZQRDtHwzDGEFmFWXyHT3jA6Xcsa6Li4mIWFRXFiouLa5z/6BFj06a9/nn0qOZthIeHMwDs+PHjde7r4sWLTF5enmVmZoqmxcfHMwAsIiKCMcbYpk2bmImJiWh+cnIyA8Di4+MZY4x9++23bNiwYWLbffDgAQPAkpOTGWOMubq6MhsbG7Fl6lvvxYsXTFFRkR06dEg0Py8vj6moqLAFCxbUekyOjo7My8urxnkpKSkMAAsJCRFNy83NZSoqKuzIkSOMMcZ2797NALC7d++Klpk9ezZTVVVlL168EE3z8PBgs2fPFn3u0qULGz58uNj+Jk6cyEaMGMEYa9i5XrFiBVNVVWWFhYWiZZYuXcr69evHGGOsqKiIKSsrs9DQULH9zJw5k02aNIkxxtjVq1cZAHb58mXR/DNnzjAArLS0VLSf3r1713iO3lZQUMDatm3LFBQUmJKSEvv7778btB5pnKq6P3r0KNu5cyfbvHkzy8vLq3HZk6knmcJ9BSbIEbBtcdtaOFLJtnr1ar5DIERivXpVyfz84pm7+1WmoRHLgHIGMNamTTrr1SuQffNNOHv4sLDGdatq68eoHxkKwJRSldjV+1dbMHoiCbj8jpWIK9Ds/2+tEAgEdS6XmJgIIyMjGBkZiaZZWVlBS0sLiYmJAABPT0/cv39fdNvH/v37YWNjAysrKwBAdHQ0rl69CjU1NdGPhYUFgNdXU6u8PVx1feulpaWhvLxcNOw48PqeXHNz8zqPKTY2FkOGDKn1eBUUFNCvXz/RtHbt2sHc3Fx0vACgqqqKbt26iT536NABxsbGUFNTE5uWkyP+jt43Y636XLXdhpxr4PWtIOrq6qLP+vr6ov0kJCSgrKwMQ4cOFTtve/fuFTvXAGBtbS22DQDV4m0IdXV1xMbGIjIyEj/88AMWL16MwMDARm+HNJ8xpmNwp+0daDzUgK+FLz4OpiF2q8ydO5fvEAiRKDExj/Hxx8Ho0iUUiorPMG2aFS5ftoOqahk8PcNw9WomysuNceuWK9as6QsDA/Uat1NVW8vsl+FM3hkIFYQY3HYwfo39tSUPh/CMy+9YiXiyp3v37hAIBEhMTMTYsWNrXY4xVmOT/eZ0fX19DBo0CAcOHED//v1x8OBBzJ49W7SsUCjE6NGj8dNPP1XbTlXjBqDarST1rffmfcmNoaKiUus8VssgkW+fh7eH9RYIBDVOEwqF9cZTtd2GnOva9l21n6p/nzlzBp06dRJbTklJSezzm9up2n5D4n2bnJwcTE1NAQA2NjZITEzE2rVr4ebm1uhtkeZj3s4cWepZsA+3x9/OfyMuMA4hziFQlG/dD+f+888/1ESTVq2goAx//pmAf/8txJ07BigrMwPQHqqqSXB0vA1PT23MnGkFVdV+9W7rTW/W1kiTkUh8lgiHdAcs7LUQ0deisddlLwdHQyQNl9+xEnEFWkdHBx4eHti6dSuKi4urzS8oKADw+gpoZmYmHjx4IJqXkJCA58+fw9LSUjTNy8sLhw8fRlhYGNLS0uDp6SmaZ2dnh/j4eBgbG8PU1FTsp6b7rxu6nqmpKdq0aSP2wOOzZ8+QkpJS57FbW1vX+po+KysrVFRUIDz8fwNT5OXlISUlRex439WbsVZ9rrqq3tBzXRcrKysoKSkhMzOz2jl788p2fRQVFcUegGwMxhhevnz5TuuS5qWmqIbEgYkYGzQWUc5RMIo2avX3Jbq6uvIdAiEtSihk8PdPwwcfBKJ9+0hoawvx5Zd2iImxRKdOOZg7NxQJCfkoLrZCSIgb5s3rDVXVNvVv+C1v11Y37W7I6pWFnqE9sc9lH2yDbFFWUdZch0UkFJffsRLRQAPAtm3bUFlZib59++LYsWNITU1FYmIitmzZIrrVwN3dHdbW1vDy8kJMTAwiIiLg7e0NV1dXsVsuxo0bh8LCQnz22WcYNGiQ2NXPOXPmID8/H5MmTUJERATu3buHixcvYsaMGXU2afWtp6amhpkzZ2Lp0qUICAjAnTt34OPjAzm5uk/xihUrcPDgQaxYsQKJiYm4ffs21q9fD+D1lfkxY8Zg1qxZCA4ORlxcHKZMmYJOnTphzJgxTTndAICQkBCsX78eKSkp2Lp1K/79918sWLAAQMPPdV3U1dXx+eefY9GiRfDz80NaWhpu3ryJrVu3ws/Pr8FxGhsbIz09HbGxscjNza21IV67di0uXbqEe/fuISkpCZs2bcLevXsxZcqUBu+LcEtOIIcTriewKmYVcsxzYPrEFIGZgXyHxZu3b2UiRBalpxdgyZIwWFhcg6LiQ4we3Q0nTzqiokIeI0dG4N9/U/DqVXvcvTsQv/3mBEtL3Sbvs6baUm2jituutzExaCJiB8TCMNYQmc8zm7wvIrm4/I7lvIFWVQV0dV//qKrWvlzXrl0RExODQYMGYcmSJejZsyeGDh2KgIAAbN++HcDrv9o/efIktLW14eLiAnd3d5iYmODw4cNi29LQ0MDo0aMRFxcHLy8vsXkGBgYICQlBZWUlPDw80LNnTyxYsACampp1NrsNWW/Dhg1wcXHB+++/D3d3dwwcOBD29vZ1nh83Nzf8+++/OHXqFGxsbDB48GCxK867d++Gvb09Ro0aBUdHRzDGcPbs2Wq3TryLJUuWIDo6Gra2tli9ejU2btwoel9yQ891fVavXo3vvvsOa9euhaWlJTw8PHD69Gl07dq1wdsYP348hg8fjkGDBkFPTw8HDx6scbni4mL4+vqiR48ecHJywtGjR/HPP//g44/pnltJ853DdzidexqVipWt+r5Eer88kUXl5ZXYufMOBg0KhLr6bZiYqGPTJkekpxuiV680rFoVhZycSuTn2+HMGTd8+KEZ5OTqfgaqseqqrUOuh7D+1nrkd8tH99zuCLhPg7XJKi6/YwWsthttG6ikpASJiYmwtLSEai0dctUIhLUNokJanrGxMRYuXEjDeZN3UlX3GRkZKCgowIsXL+Dt7Q0dHZ1GbSc1PxV97/dFQc8CeN/whp9zw/9mQhZER0fX+0s2IdIgPPwRtm27iytXFPDwoSUY0wbwHJ06JWDw4FeYPdsEAwYYtlg8DamtSxmXMEo4Cq+0X2FDxgYssV3SQtGRlsLld2yL3MKhqUnNMyGkuu463fGw50NYhVlhr/Ne2AXZtar7Eut7TzwhkiovrwRr1kTBzi4ISkpp6N/fAHv3DkBBgQacnePwxx+3UVraFllZjti716VFm2egYbU11HgoUtqlQCdNB5/3+hyTrk1qgchIS+LyO1Yi3sJBCGm9VNuo4rbz6/sSjw44CqObRog2i0Znzc58h8a55niWgZCWIBQy/PffXeza9RChoerIz+8BoA/k5bPRrdtdjByZg7lzLdCtW0++QwXQ8NrqotkFWTZZ6B/SH4dcDyE+KB4RAyKgrKDMcYSkJXD5HSsxDxGSlpWRkUG3bxCJISeQw7+u/2Jt3FrkmuW2mvsS//rrL75DIKRWeXl5OHToEKZPnw5t7VUYN647/P37QSBgGDPmBv777y7KyzsiOdkZmzc7ols3bb5DFmlMbSkrKCPWNRZe17xw2+k2OsV1QnpBOofRkZbC5Xdsi9wDTQiRLc11D3RNzt07hzGCMajQrMDP93/GYtvFzRAxIaQ+r169Qnh4OC5cuIALFy4gKioKjDH07NkTjo6e6Np1OGbPtoKOTu3jF0i7X2J/weLOi6HwXAH/sf8wwmQE3yERCUVXoAkhEmWEyQgkaydDO10bS3ouweRrk/kOiTNr1qzhOwTSyqWnp+OPP/7AuHHjoKurC2dnZ2zbtg0mJib4+++/kZWVhdu3b+PPP7/BsmX2UtM8v2ttLbRZiMsvLkMgFOA9nfewLnpdM0dGWhKX37ES00C7ublh3rx5WLhwIbS1tdGhQwf8+eefKC4uxvTp06Guro5u3brh3LlzonWCgoLQt29fKCkpQV9fH1999RUqKioAADt27ECnTp2qjWb3/vvvY9q0aaLPp0+fhr29PZSVlWFiYoJVq1aJtgEAK1euROfOnaGkpAQDAwPMnz+f4zNBCOmq1RUPrB+gV2gvHHQ5COsga5l8uHDJEnrqn7SsoqIi+Pv7Y968eTAzM4OJiQnmzp2LnJwcfP755wgPD0dOTo7o1o23R5GVFk2prcFdBiNVNxW6qbpY1nsZPgr6CELW+JFxCf+4/I6VmAYaAPz8/KCrq4uIiAjMmzcPn332GT766CM4OTkhJiYGHh4emDp1KkpKSvDw4UOMHDkSDg4OiIuLw/bt2/H333+Lftv46KOPkJubi6tXr4q2/+zZM1y4cEH0bugLFy5gypQpmD9/PhISErBjxw7s2bMHP/zwAwDg6NGj2Lx5M3bs2IHU1FScPHkSvXr1avkTQ0grpNpGFbdcb8HzmiduD5DN+xK3bdvGdwhExgmFQty8eRM//fQTBg8eDB0dHYwePRr+/v4YPHgwjh8/jry8PAQHB+Pbb79F3759IS8vz3fYTdbU2uqs2RlZdlmwD7bHUdej6Hm9J0pelTRTdKSlcPkdy8k90CUlQFJS3etZWIgPrOLm5obKykpcv34dAFBZWQlNTU2MGzcOe/e+HrP+8ePH0NfXR1hYGE6fPo1jx44hMTERAsHrF7Bv27YNX375JZ4/fw45OTmMGTMGurq6+PvvvwEAf/75J1asWIGsrCzIy8vDxcUFI0aMwLJly0Rx/PPPP/jiiy/w6NEjbNq0CTt27MCdO3eaZeASQmQFl/dA12TjzY1YarwUCgUKOI3T8Ojqwcl+Wlpqaiq6d+/OdxhExuTk5ODixYu4cOECLl26hCdPnkBVVRWDBg2Ch4cHPDw80L17d9H/O2VRc9aWz3Uf+PXzg1a8FiK6RKC7DtWstODyO5aTK9BJSYC9fd0/NTXY1tbWov+Wl5dHu3btxK74dujQAcDrL4fExEQ4OjqKfQEMGDAARUVFyMrKAgB4eXnh2LFjoqGf9+/fD09PT9Fv19HR0fj++++hpqYm+pk1axays7NRUlKCjz76CKWlpTAxMcGsWbNw4sQJsds7CCEtY4ntElwqvASBUIAR2iOwPmY93yE1i5iYGL5DIDKgvLwcgYGBWLZsGezs7NChQwdMnToVd+7cgY+PDwICApCfny9264YsN89A89bWHuc92JK4Bc+NnsPqhRX80/ybbduEW1x+x3LyHmgLC6C+d1dbWFSf9vZVXoFAIDatquCFQiEYY9W+AKoupldNHz16NIRCIc6cOQMHBwdcv34dmzZtEi0vFAqxatUqjBs3rlosysrKMDIyQnJyMi5duoTLly/D19cXGzZsQFBQEF2RJqSFDekyBCnPU2Cfao8vbb5EVFAUjrge4TusJtHT0+M7BCKFGGO4e/eu6Crz1atXUVRUBD09PQwbNgyLFi3C0KFD0bFjR75D5U1z19a83vPQ+0FvDCsfhtHtR2N11Gos77O8WfdBmh+X37GcNNCqqoCdHRdb/h8rKyscO3ZMrJEODQ2Furq66KEHFRUVjBs3Dvv378fdu3dhZmYmNqSjnZ0dkpOTYWpqWut+VFRU8P777+P999/HnDlzYGFhgdu3b8OO6wMkhFRTNeiBY4gj/nX9Fz2v9USEYwRU20jnKzSVlJT4DoFIicLCQly5ckX0irn09HS0adMGAwYMwNdffw0PDw/Y2NhATk6iHm3iDRe15WLkgruFd2GfZI9v7b9FdFA0jrkcg5yAzrmk4vI7VmpHIvT19cUvv/yCefPmYe7cuUhOTsaKFSuwePFisS8QLy8vjB49GvHx8ZgyZYrYNr777juMGjUKRkZG+OijjyAnJ4dbt27h9u3bWLNmDfbs2YPKykr069cPqqqq2LdvH1RUVNClS5eWPlxCyP9TVlDGTdeb8L7mjX2O+9DpTiepvS8xLS0NAwYM4DsMIoGEQiFiYmJEDXNYWBgqKipgamqKkSNHwsPDA25ublBXV+c7VInEVW0Zahjigf0DOF93xkm3k7C6ZoWo/lFQU1Rr9n2RpuPyO1ZqG+hOnTrh7NmzWLp0KXr37g0dHR3MnDkTy5eL/5VK1VPHycnJmDxZ/H2yHh4e8Pf3x/fff4/169ejTZs2sLCwwMcffwwA0NLSwrp167B48WJUVlaiV69eOH36NNq1a9dix0kIqdlel72wj7XHos6LYPXCCieencCobqP4DqtR3Nzc+A6BSJBHjx6JPfyXl5cHdXV1DB48GFu2bIGHhwdMTEz4DlMqcFlbivKKCHcLx6zgWdjZbycMEwwRbhQO83bmnO2TvBsu84BGIiSENFpLv4WjLoGZgRhePhwv9V5idap03Zf4ww8/4JtvvuE7DMKTsrIyBAcHi64y3759GwKBAPb29qK3ZfTv35+euXkHLVVbO27vwGcdP4N8mTyOlB3BB90/4HyfpOG4zANqoAkhjSZJDTQAZBVmwS7ZDk/tnuKD4A9w1OWoVNyXKBQK6Z7VVoQxhqSkJNFV5sDAQJSWlkJfXx/Dhg2Dh4cH3N3d6eHSZtCStRWSFQL3YneUGZTh28Rv8X3f71tkv6R+XOYBfXMTQqSeoYbh60EPrtvjhOsJWF23QlF5Ed9h1evHH3/kOwTCsWfPnuHo0aOYNWsWjI2NYWVlhS+++ALl5eVYtWoV4uLi8PDhQ+zZsweTJk2i5rmZtGRtDTAcgPRO6dCP18fqPqsxKnAUjVwoIbjMA7oCTQhpNEm7Av2mGddnYHe/3dBM0JT4+xLpCrTsqaysRGRkpOi2jPDwcAiFQlhYWIhuy3B1daX/X3KMj9qqEFbA5ZoLwtzCYHrdFNF9o6GhpNGiMRBxreIKNGMMn3zyCXR0dCAQCBAbGws3NzcsXLiQ0/2uXLkSNjY2nO6jpWRkZIjOnTRt+23l5eUwNTVFSEgI5/t6W0OO09jYGL/88kuLxcSFt4/z9u3bMDQ0RHFxMb+BNYNdzruwNWkrCg0L0bO4J/67+x/fIdVq7dq1fIdAmsGDBw+wc+dOfPTRR9DV1YWjoyM2b94MAwMD/PHHH7h//z4SExPxyy+/YMSIEdQ8twA+aktBTgGhbqH4LOQz3HW4C8NkQ8Q/jW/xOMj/cJkHEtNAnz9/Hnv27IG/vz+ys7PRs2dPHD9+HKtXr+Y7NM60ZFPaGD4+Phg7dqzYNCMjI9GfC9f+/PNPdOnSRWJf7xUZGYlPPvmkwcsHBgZCIBCgoKCAu6CaqFevXujbty82b97MdyjNwtfaF9fKrkH+pTzGth+LlZEr+Q6pRlOnTuU7BPIOSktLcf78eSxatAhWVlbo3LkzZs+ejaysLMyfPx8hISHIzc0V3brRuXNnvkNudfisrW0DtmHn3Z0o7lCM3i9742jKUd5iae24zAOJaaDT0tKgr68PJycndOzYEQoKCtDR0ZHZd1yWl5dL9PbeJi8vL/pz4dpvv/0mepWgJNLT0+PlChJjjNOh5KdPn47t27ejsrKSs320pIGGA3Gv4z10SOyAVfarJPK+xMDAQL5DIA3AGMOdO3ewceNGDBs2DNra2hgxYgSOHj0KJycnHDlyBE+fPkVYWBhWrVoFJyenFvmuJLXju7Zm9pyJ0MpQKL5QxEcGH+Hr8K95jae14jIPJKKB9vHxwbx585CZmQmBQABjY2MAELuFIykpCaqqqjhw4IBovePHj0NZWRm3b98GADx//hyffPIJ2rdvDw0NDQwePBhxcXFi+1q3bh06dOgAdXV1zJw5E2VlZXXGVnX18MyZM+jduzeUlZXRr18/0T6rhIaGwsXFBSoqKjAyMsL8+fPF/jrc2NgYa9asgY+PDzQ1NTFr1ix07doVAGBrawuBQCB6X2FNt66MHTsWPj4+dW6vSlJSEpycnKCsrIwePXqIJVBlZSVmzpyJrl27QkVFBebm5vj1119F81euXAk/Pz/8999/EAgEEAgECAwMrPFqeVBQEPr27QslJSXo6+vjq6++Emvw3NzcMH/+fHzxxRfQ0dFBx44dsXLlyjrPd0xMDO7evYv33ntPNK1q30eOHIGzszNUVFTg4OCAlJQUREZGok+fPlBTU8Pw4cPx9OlT0XpCoRDff/89DA0NoaSkBBsbG5w/f15sfxEREbC1tYWysjL69OmDmzdv1hlf1bl/8xYOgUCAnTt34oMPPoCqqiq6d++OU6dOiWIfNGgQAEBbWxsCgUD058gYw/r162FiYgIVFRX07t0bR4/+70pFVe5duHABffr0gZKSEq5fvy667WjHjh0wMjKCqqoqPvroI7Er3A059rd5eHggLy8PQUFB9Z4DaWGgboDMPpnof60/zridgUWwBQpfFvIdlki3bt34DoHUIi8vD4cOHcL06dNhaGiIXr16Yfny5ZCTk8PatWsRHx+PzMxM0a0bknD/P/kfSaitfgb9kNE5A51ud8Jah7XwCPSQuF/iZR2necCaqLi4mEVFRbHi4uI3JjLGouv5eWPxgoIC9v333zNDQ0OWnZ3NcnJyGGOMubq6sgULFoiW27p1K9PU1GQZGRns4cOHTEdHh23evJkxxphQKGQDBgxgo0ePZpGRkSwlJYUtWbKEtWvXjuXl5THGGDt8+DBTVFRkf/31F0tKSmLffPMNU1dXZ7179671+K5evcoAMEtLS3bx4kV269YtNmrUKGZsbMzKy8sZY4zdunWLqampsc2bN7OUlBQWEhLCbG1tmY+Pj2g7Xbp0YRoaGmzDhg0sNTWVpaamsoiICAaAXb58mWVnZ4vifPu4GWNszJgxbNq0aXVuLz09nQFghoaG7OjRoywhIYF9/PHHTF1dneXm5jLGGCsvL2ffffcdi4iIYPfu3WP//PMPU1VVZYcPH2aMMfbixQs2YcIENnz4cJadnc2ys7PZy5cvRdu+efMmY4yxrKwspqqqynx9fVliYiI7ceIE09XVZStWrBDF6OrqyjQ0NNjKlStZSkoK8/PzYwKBgF28eLHW871582ZmYWEhNq1q3xYWFuz8+fMsISGB9e/fn9nZ2TE3NzcWHBzMYmJimKmpKfv0009F623atIlpaGiwgwcPsqSkJPbFF1+wNm3asJSUFMYYY0VFRUxPT49NnDiR3blzh50+fZqZmJiIHWdNunTpIso7xpjonB84cIClpqay+fPnMzU1NZaXl8cqKirYsWPHGACWnJzMsrOzWUFBAWOMsa+//lp0TGlpaWz37t1MSUmJBQYGMsb+l3vW1tbs4sWL7O7duyw3N5etWLGCtW3blg0ePJjdvHmTBQUFMVNTUzZ58uQGH/vbf55V+vbty1auXFnrsVepqvujR4+ynTt3ss2bN4vyV1LNvj6boQxMI1aD3cm5w3c4jDHGAgIC+A6B/L/y8nJ2/fp1tnz5cubg4MAEAgEDwHr27MmWLFnCLl68yEpKSvgOkzSQJNXWq8pXzPmqMwMD63q9K3tW+ozvkFoNLvOAmwY6+v+3XNdPtPh2Nm/ezLp06SI2raZG8r333mPOzs5syJAhbOjQoUwoFDLGXp8kDQ0NVlZWJrZ8t27d2I4dOxhjjDk6Ooo1WIwx1q9fvwY10IcOHRJNy8vLYyoqKqKmc+rUqeyTTz4RW+/69etMTk6OlZaWMsZeN11jx44VW6a2JqahDXRt21u3bp1o2qtXr5ihoSH76aefaj1GX19fNn78eNHnadOmsTFjxtQZ69dff83Mzc1F55+x17/gqKmpscrKStFxDBw4UGw7Dg4O7Msvv6w1lgULFrDBgwfXuO+dO3eKph08eJABECuOtWvXMnNzc9FnAwMD9sMPP1Tbv6+vL2OMsR07djAdHR2x3N2+ffs7NdDLly8XfS4qKmICgYCdO3eOMfa/HHr27JnYMsrKyiw0NFRs2zNnzmSTJk0SW+/kyZNiy6xYsYLJy8uzBw8eiKadO3eOycnJsezs7AYde22598EHH4j94lcbaWygGWNsx60dTJAjYPIP5NnR5KN8hyP2vUJa3r1799gff/zBPvjgA6ahocEAMB0dHTZx4kS2a9culpWVxXeI5B1JYm3ND5nPUAKmdkuNxT2J4zucVoHLPODmJi0LANENWOYd7Nq1C2ZmZpCTk8OdO3cgEAgAANHR0SgqKqo2zHZpaSnS0tIAAImJifj000/F5js6OuLq1av17tfR0VH03zo6OjA3N0diYqJo33fv3sX+/ftFyzDGIBQKkZ6eDktLSwBAnz593uGIa1fb9t6MVUFBAX369BHFCgB//PEHdu7cifv376O0tBTl5eWNfhNJYmIiHB0dRecfAAYMGICioiJkZWWJHpqxtrYWW09fXx85OTm1bre0tBTKyso1zntzWx06dADw+uG3N6dVbbuwsBCPHj2q9iDigAEDRLf1JCYmonfv3mL3M7957hrjzdjatm0LdXX1Oo8zISEBZWVlGDp0qNj08vJy2Nraik2r6c+5c+fOMDQ0FItbKBQiOTkZqqqq9R57bVRUVFBSUlLnMtLsk16foNfDXhhcPBgfGnyIr8O/xg/9fuAtHjs7O9723RoVFRUhMDBQ9Iq51NRUyMvLw9HREUuXLsWwYcNgb28PeXl5vkMlTSSJtfWr06+wS7DDDL0ZsHtlh31J+zDJYhLfYck0LvOAmwZaFQBHMcfFxaG4uBhycnJ4/PgxDAwMALy+51NfX7/GG8a1tLQ4iaWqeRQKhZg9ezbmz59fbZk3n75u27Ztg7YrJycH9tbruV+9elVtuYZu781Yjxw5gkWLFmHjxo1wdHSEuro6NmzYgPDw8AZvC3j9C8KbzXPVtDf3BaDaELQCgQBCYe33gOnq6la7v7ymbVXt4+1pb2+7phirpr19jpuiscdZNe/MmTPo1KmT2DwlJSWxzw35c646pjePt65jr01+fr5E3DvIJcdOjkgvSofdHTv82PdHRAdG46zrWV5GLjx16hSWLFnS4vttLYRCIW7duiVqmIODg/Hq1SsYGxvDw8MDP/30EwYPHgxNTU2+QyXNTFJra5rVNPTI7gHX566Y3GUybt64ifX91/MdlsziMg8k4iHChsrPz4ePjw+++eYbTJ8+HV5eXigtLQXw+reMx48fQ0FBAaampmI/urq6AABLS0vcuHFDbJtvf67Nm8s9e/YMKSkpsLCwEO07Pj6+2n5NTU2hqKhY6zar5r391gM9PT1kZ2eLPldWVuLOnTsNivPtWCsqKhAdHS2K9fr163BycoKvry9sbW1hamoqukL/Zlz1vYnBysoKoaGhYk1oaGgo1NXVqzWEjWFra4ukpKQmN7caGhowMDBAcHCw2PTQ0FDR3whYWVkhLi5OlENAw/OhMWr6c7aysoKSkhIyMzOr5YyRkVG928zMzMSjR49En8PCwiAnJwczM7MGHXtt7ty5U+0KuCzqqNYRmX0zMeDaAFxwu4DuId1RUFbQ4nH4+vq2+D5lXU5ODv755x94e3vDwMAAtra2+P7776GqqoqNGzciOTkZ9+7dwx9//IEPPviAmmcZJcm11Ue/D+4b34dRnBE29N8A90B3eriQI1zmgVQ10J9++imMjIywfPlybNq0CYwxfP755wAAd3d3ODo6YuzYsbhw4QIyMjIQGhqK5cuXIyoqCgCwYMEC7Nq1C7t27UJKSgpWrFiB+PiGveT8+++/R0BAAO7cuQMfHx/o6uqK3pX85ZdfIiwsDHPmzEFsbCxSU1Nx6tQpzJs3r85ttm/fHioqKjh//jyePHmC58+fAwAGDx6MM2fO4MyZM0hKSoKvr2+j3iG8detWnDhxAklJSZgzZw6ePXuGGTNmAABMTU0RFRWFCxcuICUlBd9++y0iIyPF1jc2NsatW7eQnJyM3NzcGq9++/r64sGDB5g3bx6SkpLw33//YcWKFVi8eHGTRv0ZNGgQiouLG/znUpelS5fip59+wuHDh5GcnIyvvvoKsbGxWLBgAQBg8uTJkJOTw8yZM5GQkICzZ8/i559/bvJ+39alSxcIBAL4+/vj6dOnKCoqgrq6Oj7//HMsWrQIfn5+SEtLw82bN7F161b4+fnVu01lZWVMmzYNcXFxuH79OubPn48JEyagY8eODTr2mmRkZODhw4dwd3dvtmOXZApyCgh2C4ZviC/u9bkHo1Qj3Mq51aIxbNy4sUX3J4vKy8sRGBiIZcuWwc7ODh06dMDUqVNx+/Zt+Pj44MqVK8jPz4e/vz/mzZsHMzOzev8mhkg/Sa8tXVVdZDhmYHDgYAS4BaBrWFfkl+bzHZbM4TQPmnoTdY0PEb6D+h4i9PPzY23bthW9RYAxxqKiopiioiI7c+YMY4yxwsJCNm/ePGZgYMDatGnDjIyMmJeXF8vMzBSt88MPPzBdXV2mpqbGpk2bxr744osGPUR4+vRp1qNHD6aoqMgcHBxYbGys2HIRERFs6NChTE1NjbVt25ZZW1uLPcT19oNnVf766y9mZGTE5OTkmKurK2Ps9dPgn332GdPR0WHt27dna9eurfEhwre3V/Vg2IEDB1i/fv2YoqIis7S0FHvQrqysjPn4+DBNTU2mpaXFPvvsM/bVV1+JnYOcnBzRsQBgV69erfGhs8DAQObg4MAUFRVZx44d2ZdffslevXolmt+QhyFr4unpyb766qtqx/Xmvmt6MG/37t1MU1NT9LmyspKtWrWKderUibVp04b17t1b9GBflbCwMNa7d2+mqKjIbGxsRG/MaOxDhCdOnBBbRlNTk+3evVv0+fvvv2cdO3ZkAoFAdPxCoZD9+uuvzNzcnLVp04bp6ekxDw8PFhQUVOsxMvb6IcLevXuzbdu2MQMDA6asrMzGjRvH8vPzG3zsNZ3TH3/8kXl4eNR63G+S1ocIa7Przi4m91iOyWfJs0NJkvfwERGXmprKfv/9dzZ69GjR95Senh7z8vJie/fuFT1MS4g0WBy6mKEYrO2dtiw6O7r+FYhEEDDWtL8rLykpQWJiIiwtLWVyeNLAwEAMGjQIz5494+xeaiLu9u3bcHd3x927d2V2IJ2mWLlyJU6ePNmsI1i+fPkS3bt3x8GDBxs0AmRV3WdkZKCgoAAvXryAt7e3VL8LNzI7Eq4FrijtXIqlt5e2yH2Ja9aswfLlyznfj7QrLCzElStXcOHCBVy8eBH37t1DmzZtMGDAAHh4eGDYsGGwsbFp0t9+EdkibbW1P3E/vLW8AQC7n+2Gt5U3zxHJBi7zgIZKIhKnV69eWL9+PTIyMsTeskG4c//+fXzzzTcSO3x6S3DQd0CmZiZs42yxwXEDbgbexAXXC5w+XPjmAEjkf4RCIWJiYkQP/4WFhaGiogKmpqYYMWIEPDw84ObmRr9gk1pJW215WXqhx5MeGPh0IKaZTMPN0JvY7LSZ77CkHpd5QL+uE4k0bdo0ap5bkJmZGWbPns13GLzTVdVFer90uAa64rLbZZiEmnB6X+J///3H2balTXZ2Nvz8/DB58mR06NABDg4O+Omnn6Cjo4MtW7YgLS0Nqamp+P333zF69GhqnkmdpLG2bDrYILNbJrrc7IJfnH6BW6AbKoQV9a9IasVlHlADXQ8fHx9s3ryZ99s3qoZvJmTlypXNevsGEacgp4BAt0AsDF2I+3b30fleZ8Q8juFkX/b29pxsVxqUlZXh8uXLWLp0KaytrWFgYIDp06cjNTUVs2fPxrVr15CXl4eTJ0/is88+g4mJCd8hEykirbWlo6KDe073MCxwGILcgtA1vCtyS3L5DktqcZkHEtNA+/j4QCAQVPu5e/dui+x/z549NTbJkZGR+OSTT1okhrp8/vnnCAgI4DsMQlqNzU6b4Zfuh1KdUjgwB/yT+E+z7+PJkyfNvk1JxRhDUlISfv31V4wcORI6OjoYOnQo9u/fDzs7Oxw4cABPnjxBZGQk1qxZA2dn52rvVyekoaS5tuQEcrjgdgFfhX+FrF5Z6Hy/MyKzI+tfkVTDZR5I1D3Qw4cPx+7du8Wm6enp8RSNZOy/ipqaGtTU1PgOg5BWxdvKGz0f94RLngumdp2KmLAYbHLc1GzbLy8vb7ZtSaKCggJcvnwZFy9exIULF5CZmQlFRUU4Oztj1apV8PDwQK9evei1cqTZyUJtre23FrbJtpisMRn9Bf2xM34npveYzndYUoXLPJCYK9DA6xHYOnbsKPYjLy8PHx8f0TuXqyxcuBBubm6iz25ubpg/fz6++OIL6OjooGPHjli5cqXYOgUFBfjkk0/QoUMHKCsro2fPnvD390dgYCCmT5+O58+fi658V61rbGyMX375RbSNzMxMjBkzBmpqatDQ0MCECRPEfsOputVi3759MDY2hqamJjw9PfHixYtaj7vq6vfJkydhZmYGZWVlDB06FA8ePKi2XUJIy7LraIdMk0x0ju2MzY6bMShwULMNeiBroz5WVlbixo0bWLVqFZycnNCuXTt89NFHuH79Oj744AOcPXsWz549E7t1g5pnwgVZqa0J5hMQqxgL1aeqmNFtBuaEzOE7JKnCZR5wcgW6pKQESUlJdS5jYWHR7K+98/Pzw+LFixEeHo6wsDD4+PhgwIABGDp0KIRCIUaMGIEXL17gn3/+Qbdu3ZCQkAB5eXk4OTnhl19+wXfffYfk5GQAqPFqL2MMY8eORdu2bREUFISKigr4+vpi4sSJYkOIp6Wl4eTJk/D398ezZ88wYcIErFu3Dj/88EOtsZeUlOCHH36An58fFBUV4evrC09PT4SEhDTrOSKENJ6Oig7SHdMxLHAYAtwCYBxqjBibGOiq6jZpu0FBQVL/sGxWVpbobRmXL1/Gs2fPoKmpCXd3d/zxxx/w8PBA586d+Q6TtDKyUFtVeur1xEONh7CNtMW2gdsQFxiHQJdAKMhJ1E0EEonLPODk7CclJdV743Z0dDTs7OzEpvn7+4s1riNGjMC///7b4P1aW1tjxYoVAIDu3bvj999/R0BAAIYOHYrLly8jIiICiYmJMDMzAwCxh1I0NTUhEAhEI7nV5PLly7h16xbS09NFwy3v27cPPXr0QGRkJBwcHAC8fgXTnj17RE+JT506FQEBAXU20K9evcLvv/+Ofv36AXj9y4ClpSUiIiLQt2/fBp8DQgg35ARyuOx2GUvDluLn3j+jS0YXBGkHoY9+n3fe5pQpU5oxwpZRWlqKoKAg0TuZExISICcnh759+2L+/Pnw8PCAg4MDFBTof+6EP9JYW3XRUNJA6oBUjAochXMu59A5ojNiesago1rtPQvhNg84+YazsLBAdHR0vcu8bdCgQdi+fbvoc9u2bRu1X2tra7HP+vr6yMnJAQDExsbC0NBQ1Dy/i8TERBgZGYmaZwCwsrKClpYWEhMTRQ20sbGx2CuW3oyjNgoKCujT53//I7awsBBtlxpoQiTHBscNsEuyw1Stqegn6Nek+xJ///13iR/sQShk+O+/u7h58wpu3DiGa9eu4eXLlzA0NISHhwdWrlyJIUOGSPUgOkT2SENtNZacQA5n3c7i24hvsabHGnR92BVX1K7AsZMj36FJLC7zgJMGWlVVtdrV5YZo27YtTE1Nq02Xk5PD2wMmvnr1qtpybz+xLRAIIBS+vldRRUWl0fG8jTFW4/16b0+vK4661LRtuj+QEMkzyWISeuT0gFOOE2Z0m4GY0Bj85vRbo7cjqf+DT03Nx++/J+HcuUqkpZlCKOwOBYX9cHeXx9q1a+Hh4QFLS0v6fiISS1Jrqzms7rsaNik28FT1xMA2A7H99nZ80ov/t4VJIi7zQKIeIqyNnp4esrOzxaY19j241tbWyMrKQkpKSo3zFRUVUVlZWec2rKyskJmZKfZwX0JCAp4/fw5LS8tGxfO2iooKREVFiT4nJyejoKCgxiv1hBD+Wbe3RpZpFoxjjPG70+9wDnRu9KAHa9as4Si6xikrq8C2bbfg7BwINbV4mJlpYcsWJ2RmdoStbQp+/DEaOTlf4dy5c1i0aBGsrKyoeSYSTVJqiyvjzcbjlsotqGWrYbbZbHwa/CnfIUkkLvNAKhrowYMHIyoqCnv37kVqaipWrFiBO3fuNGobrq6ucHFxwfjx43Hp0iWkp6fj3LlzOH/+PIDXt10UFRUhICAAubm5KCkpqbYNd3d3WFtbw8vLCzExMYiIiIC3tzdcXV3Fbr94F23atMG8efMQHh6OmJgYTJ8+Hf3796fbNwiRYFrKWkhzSoNHoAeCXYLRJaILcorrvl3rTfPmzeMwuroFB2fBy+saDAxuQEWlGHPmWCMkxBo6Os8xfXoIIiOzUVbWHVFRrli2zB7a2sq8xUpIY/FZWy3FUtcSDy0fontEd+wYuAP9A/vTyIVv4TIPpKKB9vDwwLfffosvvvgCDg4OePHiBby9vRu9nWPHjsHBwQGTJk2ClZUVvvjiC9FVZycnJ3z66aeYOHEi9PT0sH79+mrrCwQCnDx5Etra2nBxcYG7uztMTExw+PDhJh+jqqoqvvzyS0yePBmOjo5QUVHBoUOHmrxdQgi35ARyOO92Hssil+FRz0cwfmCM8EfhDVp37969HEf3P48fF+G77yLQu3cQFBXT4exsiAMHnFBcrIrBg29i9+4ElJVpIjPTCbt2OaNPH/0Wi42Q5taStcUnNUU1JA1MwvuB7yPcORyGkYZ49OIR32FJDC7zQMDevrm4kUpKSpCYmAhLS8tmfy1da7Fnzx4sXLgQBQUFfIdCSINU1X1GRgYKCgpEv9S29gfJjqYchaeqJ5giw/Yn9d+XeOfOHfTs2ZOTWIRChn//TcGePdm4cUMTBQU9AChCQeEBundPx+jRipgzxxKdO2tysn9C+MRlbUmqVZGrsNJ8JZQfK+OS6iUMNBzId0i84zIPpOIKNCGESIMPzT5EnFIc2j5u26D7ElNTU5t1//HxT+HrG4Ju3YLRps1TeHqa4/x5BygqVmD8+DCcP5+Oly8NkZDggp9+6k/NM5FZzV1b0mCFwwr8l/MfKpQq4KLkgm23tvEdEu+4zAN6USchhDSjHno9kKWRBbtIO+wYuAOxgbEIdgmucdCDpr4dqKioHDt3JuDw4QLExXVAaaklAD2oqCTBwSEBH330ELNmWUFDw6FJ+yFE2jTHm7ek0fum7+NO3h30e9APc6zmICY4BjsH7uQ7LN5wmQd0BVoC+Pj40O0bhMgQDSUNpAxIwXuB7yHcJRxGkUY13pfYrl27Rm87IOA+JkwIQseO4VBXf4lFi2wQHt4DHTrkY/bsYMTF5aCkxAI3brhhyRJbaGgoNcchESJV3qW2ZIV5O3NkWWXB4oYF/h74N/oE9kF5ZTnfYfGCyzygBpoQQjggJ5CDv5s/vo36Fo+tHqNbdjeEZIWILdOQ13FmZRVi2bJw9Ox5DW3a3Ie7exf8+68jXr5UhIdHNP75JxHl5e2Qnj4Af/wxENbW7Tk6IkKkR2NfdStr1BTVEO8cj3FB4xDtHA2jaCNkFWbxHVaL4zIPqIEmhBAOfd/3exx/fBwVKhVwVnLG9lv/G2119OjR1ZavqBBi794EDB0aCE3NOBgZqWDdun5ISekMS8sMLF8egYcPX+LZM1ucP+8GLy9LKCjQVzkhb6qptlobOYEcjrkew4+xPyLHPAemOaYIzAzkO6wWxWUe0LcuIYRw7IPuH+CWyi1oPNSAr4UvPg7+GACwc+frexNjY59g1qxgGBuHQFExH9OmWeHyZTuoqpbB0zMMV69morzcGLduuWL16r4wMFDn83AIkXhVtUWAZfbLcCbvDIQKQgxuOxi/xv7Kd0gthss8oNfYEUIajV5j926KyotgH26PlH7p6LRuMjr6eyP+dieUlZkDEEJVNQm2tjnw9NTGjBlWUFVtw3fIhBAZkfYsDQ7pDnjW6xmmhk3FXpfW8a5srtAVaEIIaSFqimpIHJgI5wMT8XDFHkTfvIBOnZ5i7txQJCU9Q3GxFYKD3TB3bm9qnglpAlkfyvtddNPuhqxeWegR1gP7XPbBNsgWZRVlfIfFKS7zgK5AE0Iaja5AN92y3XvxzYTxUGvblu9QCJE5ZWVlUFam4edr4xnkicMDDqNdbDvEdI9BZ83OfIfECS7zoNneA11aWtpcmyKESDiq96ZbO90bGzZswNKlS/kOhRCZ89tvv1Ft1eGQ6yHYx9jjy25fontud5wtOIshXYbwHVaz4zIPmtxAKygoQE5ODhkZGc0QDiFEWjDGUFlZyXcYUm3s2LF8h0CITKLaqt9Su6WwybDBKMEoDNUYig03N2CJ7RK+w2pWXOZBkxtoRUVF9OjRAxUVFXj+/Dn8/f3Rpk0bKCoqNkd8hDTIq1evcOjQIXh6eqJNm/rvHc09dgzyFRXQnjixBaKrLiMjA8bGxrzsu7lUVFTg1atXePnyJd+hSK3o6Gh0796d7zAIkTlUWw0z1HgoUp6nwD7VHp/3/hzR16JxwOUA32E1Gy7zoFlu4VBUVISioiIYY5CXl6dR9UiLKy8vx+PHj/HkyZN6f3kTVlai4t495HfsiFc5OS0UobjCwkLk8LRvLmhoaEBJiUa8a6yOHTvyHQIhMolqq+G6aHZBlk0W+of0x0HXg7gTdAcRAyKgrCD995BzmQfNdg80ALRt2xYTJ06kK1Kkxb148QLfffcdJk6cCHX1ut+Rm+jnB8vERCR9/DEsJk1qoQjFRUREoG/fvrzsmwtKSkpoSw/DNZqCQrN+BRNC/h/VVuMoKygj1jUWU65NwX6n/egU1wlR3aLQVasr36E1CZd50Oxbbtu2Lf2PlLQ4BQUFvHz5Etra2tDQ0Khz2VcnTgDl5eg3axbkebrV6OnTp/TGCoL09HQMHDiQ7zAIkTlUW+/mH5d/YHfTDp93/Rzmz8zxX/5/GGEygu+w3hmXeUDvgSatjm5MDJIMDXlrngHAxcWFt30TyUF5QAg3qLbe3WLbxbj84jIEQgHe03kP66LX8R3SO+MyD6iBJq1KXnIyrIqLUTmE39f1HDggOw9pkHdHeUAIN6i2mmZwl8FI1U2FbqoulvVeho+CPoKQCfkOq9G4zIMmD6RCiCQoLCyEpqYmnj9/XuctHKHz58Ppt9+QHREBfQeHFoxQXGVlJeTl5XnbP5EMlAeEcINqq3mUV5bD6boTot2iYXXNCpGOkVBtIz2D5nGZB3QFmrQqlefOIVVJidfmGQDWrl3L6/6JZKA8IIQbVFvNQ1FeEVFuUZh2fRoS+ieg051OSM1P5TusBuMyD+gKNJEJDbkCzYRCPG7TBsm2tnCLimrhCAkhhBDp9Vvcb1jQaQHki+VxouIERnUbxXdIvKIr0KTVSD1xAvpCIdQ//JDvULBmzRq+QyASgPKAEG5QbTW/eb3nIbA0EPLl8hitOxproiT/HHOZB3QFmsiEhlyBDhw1Cn3PnIHcs2dQ1tJq2QDf8uDBAxgZGfEaA+Ef5QEh3KDa4k5WYRbsk+yRY5+DscFjcczlGOQEknk9lss8kMwjJoQD6mFhiNfV5b15BoCAgAC+QyASgPKAEG5QbXHHUMMQD+wfoO/1vjjpehJW161QVF7Ed1g14jIPqIEmrUJJbi565OejREJerG9mZsZ3CEQCUB4Qwg2qLW4pyisi3C0cHwd/jOR+yTBMMERyXjLfYVXDZR5QA01ahfht26AMwHDmTL5DAQCUlpbyHQKRAJQHhHCDaqtl/DXwL/yR8gcKOxWiZ3FP/Hf3P75DEsNlHlADTVqFkhMn8FBeHiYjR/IdCgAgLy+P7xCIBKA8IIQbVFstZ3av2bj+8joUShUwtv1YfBfxHd8hiXCZB9RAk1bBKCEBaaamEMhJRsr37t2b7xCIBKA8IIQbVFsta4DhAKR3Sod+gj5W91mNUYGjJGLkQi7zQDK6CUI4lBUSApPycrR57z2+QxHx9/fnOwQiASgPCOEG1VbL66jWEZl9M+F4zRFn3M7APNgchS8LeY2Jyzyg19gRmVDXa+yuTZkCp/37UZyRAc0uXXiKUFxJSQlUVaVnOFTCDcoDQrhBtcUv3xBfbLffDvUUdYTph6GHXg9e4uAyD+gKNJF5ilevIkFdXWKaZwDYtGkT3yEQCUB5QAg3qLb4tW3ANvx19y8UdyxG75e9cTTlKC9xcJkHdAWayITarkBXlJWhWEUFNwcNgtuVKzxGSAghhLQu4Y/CMej5IJQalWJZ/DL82O9HvkNqNnQFmsi0hN27oQlA18uL71DE0DCzBKA8IIQrVFuSoZ9BP2R0zkCn252w1mEthgcOb9GHC2kob0LqUdsV6EAXF1gHB0OzrAzyioo8Riju6dOn0NPT4zsMwjPKA0K4QbUlWSqEFRh8bTCuu11H1+CuiOkTAy1lLc73y2Ue0BVoItN0Y2KQZGgoUc0zABw/fpzvEIgEoDwghBtUW5JFQU4B19yuYX7ofKTbp8Mo1Qi3cm5xvl8u84AaaCKz8lNTYVVcjMohQ/gOpRoHBwe+QyASgPKAEG5QbUmmX51+xZ70PSjRK4HdKzscTDrI6f64zANqoInMSvrtN8gBMPX15TuUarKzs/kOgUgAygNCuEG1JbmmWU1DOAuH0nMlTDaajC9ufMHZvrjMA2qgicyqPHcOqUpK0JfAKxGVlZV8h0AkAOUBIdyg2pJsffT74L7xfRjFGWFD/w1wD3Tn5OFCLvOAGmgik5hQCNN79/CwZ0++Q6mRsbEx3yEQCUB5QAg3qLYkn66qLjIcMzA4cDAC3AJgEmqC/NL8Zt0Hl3lADTSRSaknTkBfKIT6hx/yHUqNrl+/zncIRAJQHhDCDaot6SAnkEOAWwAWhy3Gfdv76HyvM2IexzTb9rnMA3qNHZEJb7/GLnDUKPQ9cwZyz55BWUuL7/Cqyc/Ph46ODt9hEJ5RHhDCDaot6bM/cT+8tbwBAH4FfphiOaXJ2+QyD+gKNJFJ6mFhiNfVlcjmGQC2bdvGdwhEAlAeEMINqi3p42XphWi5aKjkqWBql6lYFLqoydvkMg/oCjSRCW9egVYoL4ecnh7Cx46F64kTfIdGCCGEkAbKL82HXYwd7g+4D9dAV1x2uQwFOQW+w6qGrkATmRO/bRuUARjOnMl3KLWiYWYJQHlACFeotqSXjooO7jndw9DAoQhyC0LX8K7ILcl9p23RUN6E1OPNK9A3XV1hevs2DMrLIZCTzN8RCwsLxYYcJ60T5QEh3KDakg1f3vgS63uuh8oDFQRpBcFBv3GvpeUyDySzuyCkCYwSEpBmaiqxzTMA7Nmzh+8QiASgPCCEG1RbsuGn/j/h8MPDKNcoR39Bf+yO392o9bnMA8ntMAh5Bw9v3IBJeTnavPce36HUyd3dne8QiASgPCCEG1RbsmOC+QTEKsZC9akqZpjMwLzQeQ1el8s8oAaayJSMv/9GJQDLuXP5DqVOSUlJfIdAJADlASHcoNqSLT31euKh2UOYRJvgd6ff4RzojAphRb3rcZkH1EATmaJ47Rri1dWh1bUr36HUqW3btnyHQCQA5QEh3KDakj0aShpIHZCKEYEjEOwSjM4RnfG46HGd63CZB9RAE5li9vgx8vv04TuMetEL/glAeUAIV6i2ZJOcQA5n3c7i68ivkd0jG10fdkXYw7Bal+cyD6iBJjJFE4CulxffYdTr1q1bfIdAJADlASHcoNqSbT/0+wFHs4+iQrUCA9sMxJ+3/6xxOS7zgF5jR2RC1Wvs0gEYvXwJeUVFvkOq06NHj2BgYMB3GIRnlAeEcINqq3VIzE1E/4f9UWhRiNmRs/HHwD/E5nOZB3QFmsiU1E6dJL55xsuX2LVjB99REAmwa9cuvkMgDcEAFP7/v4lUoNpqHSx1LfHQ8iG6R3THjoE70D+wv+jhwtJS4M8/ucsDugJNJEpRURGmTZuGzZs3o3PnzvWvUAEgFchIuImuH9rh3HuTMfzv/ZL5q2HBM2DZPOD0v0BFBTBkBLBuK2DUhe/ICGm4dpDM+uLKPgArAKQD6AzgWwAf8xpRyxICyOM7CELqJmRCfBD7AU4NOQW9Mzaw+z0Ul6+oQCAAxr0H/L4D0OvQvPuUvMHFSau1a9cu3L9/H8ePH8fGjRsbtlIqACsgFa+v6Jqc+RjoyF2MTTMRGFwJxMVhzV9/YfmTJ4C9B4B4APJ8B0d4sAZrsBzL+Q6jcXIA6PEdRAu5AMD7jc+ZAGYB0AUwlo+AeJAHoD3fQTSeVNYWeWdykMN/+A8rh6/CqqyxUDNXQUoK8Ntva5CSshwfvA8EhzfvPukKNJE4AoEA6enpMDY2rnWZly9f4uXLl0AygL7AV6MMsd3/BZI7JENdTr3FYm24+0CbicDly4CaGjLzM/GyvARYuRLInwTAiu8ACQ+UCpTQOa8Bf9MiSS4D0OY7iBayEMD1GqY7APijhumy6BkAKRyTJLNdJl5qveQ7DNLCUgHs0gBWrwYU2gCaKpow1e8NAwMgKAiwsWm+fTW4gT548CD69u2LY8eOYcGCBdiwYQOWL1+ONWvWYMaMGTh37hysra2Rn5+P4uJiWFhY4PLly/Dx8cGWLVtEy/r6+uLgwYNwdnZGRkYG5OXloa+vj8jISIwbNw47duwQLbt48WJs374do0aNQlxcHNq1awcVFRWkpKRgyJAh8PPzEy27bNkyrF+/HpMnT8a1a9fQtWtXVFRU4PHjx7C3t8fJkycxb948/Pzzz6J1Pv74Y5w+fRo2NjbIy8tDaWkpunfvjqtXr8Lb2xu//fabaNm5c+fin3/+gaurK9LS0qCoqIgOHTogOjoaY8aMwV9//SVadsmSJdi2bRvef/99xMTEQE9PD0pKSkhLS4Obmxv27duHZcuW4ccff8TXX3+NtWvXYurUqQgMDES3bt3w8uVLPH36FHZ2djh16hR8fX2xceNG0fZnzZqF//77D/b29njy5AnKy8vRrVs3BAUFYcqUKfj9999Fy86bNw979+7FoEGDkJqaChUVFbRr1w6xsbEYPXo0du7cKVr2888/x2+//YaxY8ciOjoaHTt2hIKCAtLT0+Hi4oIDBw7giy++wNq1a0XrTJs2DQEBATAzM0NpaSny8vLQu3dv+Pv747PPPsOmTZtEy86ePRvHjx+Hg4MDsrOzUVlZCWNjY1y/fh2TJk3Ctm3bsHz5cggEAty6dQtXr16Fu7s7kpKS0LZtW+jo6ODWrVsYMWIEpkyZgqtXr1bL0/fffx/a2tqQk5NDQUEBOnfujDt37sDJyQnBwcFwdXVFUFAQbGxscO/ePejq6qK8vBxlZWVo37497t69Czs7O9y4cUO0bJ8+fZCQkABDQ0MUFhYCADQ0NJCVlYUePXogMjJStGz//v0RExODbt26ITc3F4qKilBWVkZOTg5MTU1x8+ZNuLq6Yu/evfDy8kJYWBisrKyQlZUFDQ0NAK8fiDQ0NERCQgIcHR3F4ra1tcXdu3fRvn17lJWVoby8HLq6ukhLS6sWt4ODA+Lj42uM28rKClFRUdXiNjU1RU5ODpSVlaGoqIjc3FyYmJggNjZWtOzAgQMRGhqKnj17IjMzE1paWhAKhSgqKkKnTp2QkJCA/v37IyQkpFrcHTp0QGlpqSjue/fuwcbGBuHh4WJx37lzB507d0ZBQQHk5OSgpqaGR48ewdLSUixuR0dHREVFwczMDI8fP4aqqioUFBSQl5dXLW5nZ2eEhISgV69euH//vljcBgYGSEpKQt++fREaGipax87ODikpKejYsSNKSkpQUVEBHR0dZGRkoHfv3mJx9+3bF7du3YKxsTHy8/MhLy8vitvCwgLR0dGiZZ2cnBAZGSnad1Xc+fn5MDY2xq1btzBw4EBcv34dzs7OCA4OhrW1NTIyMqCjo4OKigqUlJRAX18fycnJcHBwEIvb3t4eSUlJMDAwQFFRESorK0VxW1tbIyIiQrRsv379EBcXJ4pbQUEBqqqqePz4MczMzBATEyMWd0REBCwsLPDo0SOoqamJaq1Lly64ffs2BgwYgOvXr1ertXbt2oni7tixI1JSUtCnTx+EhYWJ1VpiYqIobqFQCC0tLWRmZqJnz55itdavXz/ExsbCxMREVGsqKip48uSJWK0FBQVhwIABuHHjBqysrPDw4UOxuCX1O6Kq1ug74t2+I+Tl5VFZWSn13xHm5ubIzs6m74h3/I44fvw4ft72M2ZOeoUFC9pi2LD/9RG7du0S9SdLly7Fr7/+ivHjx6Nbt27N20AT0lIacwU6JDQEI81GwjjQGBkzMxBiFYKuzyRxEJUyAB7AL2uQatkRx3YeQ5vh5ZC/HQpUugJQ4TtA0sIq21Ti1YNXGB8zHt3TuvMdTsO1pivQvwHYU8P0SQA+b9lQeCOFV6BTu6XimN0xtDFqA/lXdHtca/ISwBU5oH9/QKuI4eXFl+gxcDyWTHdB1kNAU7P59kX3QBOppKSkhLzyPHxg8gEUhAr4e+3fGIIh0M3Thf5V/df3KEqaQ98AU6ci97OP8PBhGbomhEOlNAsYYwl0t+A7OtLCinOK8XDpQ2j/qQ19XX2+w2m41vQQ4RIA/wFIeGOaKYAvADTzA0kSqwOAOL6DaJzc3Fw8/PYhui7sCpX2dHGiNclKB+4cBxKDAfcupWj78CGubQc2rG/e5hmgBppIqfLKctgl2OGlxUuc7n8ahi8M/zdTF5L5kNO8acAQB+DkTqgV5ANDhgCpkcCpI8CECYAFNdGtijKgpqYGaEEy85W8/mUhEsBBvG4iewDwAqDGZ1AtTA7Sl58V/19bygBoRO9WIzUVOHQC6N4dGDgQyA17nQdfzAQmjWj+/bWW6whExjhfd8aTPk+wKnYVRiWN4juchrOyAqZPh5ycHNBBDxg/HrC0BI4cAZKS+I6OtDA5OfoKlniqAGYC2AJgNlpX8yzFqLZal9RU4NAhwNT09fUoIyPAwvJ1HnQyrH/9d0EZRiTGwYMH8dlnnwEAvvrqK2zbtq3G5T4J/gQRbhEYc30MvrP6riVDbDYFBQWv/0NOjproVkyUB4SQZkW11Xq83TzLv3HbO5d5QLdwEIkxadIkTJo0Cdu3b691mR23d+Avh79gdt0Mx12PA7ktGGAzEhskpqqJPnbsdRNNt3O0Gg0aLIgQ0mhUW61DXc0zwG0e0BVoIjVCskLwWcfPoJGkgeh+0ZATSG/63rlzR3wCXYlularlASGkWVBtyb76mmeA2zyQ3g6EtCqPix7Dvdgd8mXyuNHpBtQUpftGRCcnp+oTqYludWrMA0JIk1FtybaGNM8At3lADTSReBXCCtjdsUOZQRmOlB2Bpa4l3yE1WXBwcM0zqIluVWrNA0JIk1Btya6GNs8At3lADTSReK7XXJHdNxvfJn6LD7p/wHc4zcLV1bX2mdREtxp15gEh5J1RbcmmxjTPALd5QA00kWi+Ib4IdQvFyGsj8X3f7/kOp9kEBQXVvQA10a1CvXlACHknVFuyp7HNM8BtHlADTSTW33f+xnb77egW3A2nXU/zHU6zsrGxqX8haqJlXoPygBDSaFRbsuVdmmeA2zygBppIpPBH4fhE7xOop6gjxiFGqt+4UZN79+41bEFqomVag/OAENIoVFuy412bZ4DbPJCtroTIhJziHAx6PgiCVwKE6YdBQ0mD75Cana6ubsMXpiZaZjUqDwghDUa1JRua0jwD3OYBNdBEolQIK2B3yw6lRqU4VHIIPfR68B0SJ8rLyxu3AjXRMqnReUAIaRCqLenX1OYZ4DYPqIEmEmXItSF42O8hlsUvw4dmH/IdDmfKysoavxI10TLnnfKAEFIvqi3p1hzNM8BtHlADTSTGgtAFuOZ2DcOuDcOP/X7kOxxOtW/f/t1WpCZaprxzHhBC6kS1Jb2aq3kGuM0DaqCJRNibsBdbbLega3BXnHM9x3c4nLt79+67r0xNtMxoUh4QQmpFtSWdmrN5BrjNA2qgCe+isqMwXXs62qa1RUwf2XvjRk3s7OyatgFqomVCk/OAEFIjqi3p09zNM8BtHsh+p0IkWm5JLlyfuULABAhtHwotZS2+Q2oRN27caPpGqImWes2SB4SQaqi2pAsXzTPAbR5QA014I2RC2MXaoaRLCfYV7oN1e2u+Q2oxzTa8KDXRUo2GGyaEG1Rb0oOr5hmgobyJjBoaNBQPnB7g81ufY5LFJL7DaVHNOrwoNdFSi4YbJoQbVFvSgcvmGaChvIkMWhq2FFfcrmBw4GBscNzAdzgtrk+fPs27QWqipVKz5wEhBADVljTgunkGuM0DaqBJizuYdBA/9/4ZnUM745LrJb7D4UVCQkLzb5SaaKnDSR4QQqi2JFxLNM8At3lADTRpUbFPYjFVYypUM1Rx0/Zmq3jjRk0MDQ252TA10VKFszwgpJWj2pJcLdU8A9zmQevsXggvCsoKMPDpQDABw3Wd69BR0eE7JN4UFhZyt3FqoqUGp3lASCtGtSWZWrJ5BrjNA2qgSYsQMiFso21RbFKM3c92w64jvaOTU9REE0IIkSAt3TxzjRpo0iJGBI1AxoAMLIxdCG8rb77D4Z2Ghgb3O6EmWuK1SB4Q0gpRbUkWvppnLvOAGmjCuWXhy3DR7SJcAl2w2Wkz3+FIhKysrJbZETXREq3F8oCQVoZqS3LweeWZyzygBppw6kjyEazrsQ6dwjohwCWA73AkRo8ePVpuZ9RES6wWzQNCWhGqLcnA920bXOYBNdCEM3ee3sHktpOh8kAFsb1joSCnwHdIEiMyMrJld0hNtERq8TwgpJWg2uIf380zwG0eUANNOFH4shBO2U5gbRiCtIKgq6rLd0gShZdhZqmJljg03DAh3KDa4pckNM8ADeVNpIyQCWEbaYsXZi/w59M/4aDvwHdIEoe3YWapiZYoNNwwIdyg2uKPpDTPAA3lTaTM6KDRuDfwHnyjfTGz50y+w5FI/fv352/n1ERLDF7zgBAZRrXFD0lqngFu84AaaNKsvo34FmddzsIp0AlbB2zlOxyJFRMTw28A1ERLBN7zgBAZRbXV8iSteQa4zQNqoEmzOZZyDGss10A/Qh9BLvTXZ3Xp1q0b3yFQEy0BJCIPCJFBVFstSxKbZ4DbPKAGmjSLxNxEeKp4QvmRMmJ6xtAbN+qRm5vLdwivURPNK4nJA0JkDNVWy5HU5hngNg+ogSZNVlRehP4P+6NSuRJX1K6go1pHvkOSeIqKinyH8D/URPNGovKAEBlCtdUyJLl5BrjNA2qgSZMImRB24XYotCjEH4//gGMnR75DkgrKysp8hyCOmmheSFweECIjqLa4J+nNM8BtHlADTZpkXNA4pDqnYlbkLHzS6xO+w5EaOTk5fIdQHTXRLU4i84AQGUC1xS1paJ4BbvOAGmjyzr6P/B7/Of+HvoF98efAP/kOR6qYmpryHULNqIluURKbB4RIOaot7khL8wxwmwfUQJN3curuKawwW4EOUR1w3fk63+FInZs3b/IdQu2oiW4xEp0HhEgxqi1uSFPzDHCbB9RAk0ZLzU/F+DbjoZSjhBirGCjK08MajSXxw8xSE90iJD4PCJFSVFvNT9qaZ4CG8iYSpKi8CH3v90Vl20pcVrkMA3UDvkOSSlIxzCw10ZyTijwgRApRbTUvaWyeARrKm0gIIRPC4YYDCnoU4PdHv2Og4UC+Q5JaAwdKybmjJppTUpMHhEgZqq3mI63NM8BtHlADTRpswrUJSHJJgk+4D3ytffkOR6qFhYXxHULDURPNGanKA0KkCNVW85Dm5hngNg+ogSYNsjZ6LY4NPAb7QHvsdt7NdzhSz8rKiu8QGoeaaE5IXR4QIiWotppO2ptngNs8oAaa1OvsvbP42vRr6MXoIdQ5lO9wZEJWVhbfITQeNdHNTirzgBApQLXVNLLQPAPc5gE10KROac/SMFZuLJSeKiHGnN640Vw0NDT4DuHdUBPdrKQ2DwiRcFRb705WmmeA2zygBprUquRVCRzSHVChUYGzbc7CUMOQ75CIJKAmmhBCZJIsNc9cowaa1KpfaD886/UMmzI3YXCXwXyHI1MKCwv5DqFpqIluFlKfB4RIKKqtxpPF5pnLPKAGmtTIM8gTd1zvYGrYVCy0Wch3ODLH0FAGruZTE91kMpEHhEggqq3GkcXmGeA2D6iBJtVsiNmAwwMOo3dQb+x12ct3ODIpISGB7xCaBzXRTSIzeUCIhKHaajhZbZ4BbvOAGmgi5lLGJXzZ9Uu0i22HGwNu8B2OzHJ0dOQ7hOZDTfQ7k6k8IESCUG01jCw3zwC3eUANNBG5//w+RglHoc2zNojuHg1lBWW+Q5JZwcHBfIfQvKiJficylweESAiqrfrJevMMcJsH1EATAEBZRRnsU+3xSvsV/OX80UWzC98hyTRXV1e+Q2h+1EQ3mkzmASESgGqrbq2heQa4zQNqoAkAoH9If+TZ5GFDxgYMNR7KdzgyLygoiO8QuEFNdKPIbB4QwjOqrdq1luYZ4DYPqIEmmHJtCuJc4+AZ6okltkv4DqdVsLW15TsE7lAT3WAynQeE8Ihqq2atqXkGuM0DaqBbuV9if8F+x/3oFdQLB10O8h1Oq3H37l2+Q+AWNdENIvN5QAhPqLaqa23NM8BtHlAD3YpduX8FizsvhvZtbdxwojdutKT27dvzHQL3qImuV6vIA0J4QLUlrjU2zwC3eUANdCuV+TwTIypGQOG5AqJNoqHaRpXvkFqVsrIyvkNoGdRE16nV5AEhLYxq639aa/MMcJsH1EC3QuWV5eiT0gfluuX4j/2Hrlpd+Q6p1SkvL+c7hJZDTXStWlUeENKCqLZea83NM8BtHlAD3Qo5XXfCU9un+PHujxhhMoLvcFolXV1dvkNoWdRE16jV5QEhLYRqi5pngNs8oAa6lfG57oNot2iMDxmPZfbL+A6n1UpLS+M7hJZHTXQ1rTIPCGkBrb22qHl+jcs8oAa6Ffk97nf49fOD5TVLHHE5wnc4rZqdnR3fIfCDmmgxrTYPCOFYa64tap7/h8s8oAa6lbj24Brmd5oPrXgtRDlGQU5Af/R8unGjFb/1hJpokVadB4RwqLXWFjXP4rjMA+qiWoFHLx5hWNkwyBfLI6JLBL1xQwK0+mFmqYkGQHlACFdaY21R81wdDeVN3ll5ZTlsE23xsv1LnKg4ge463fkOiYCGmQVATTQoDwjhSmurLWqea0ZDeZN35nzdGTn2OViVsgqjuo3iOxzy/xwcHPgOQTK08iaa8oAQbrSm2qLmuXZc5gE10DJsVvAsRLhFYMz1MfjO4Tu+wyFviI+P5zsEydGKm2jKA0K40Vpqi5rnunGZB9RAy6gdt3dgp8NOmF03w3HX43yHQ95iaGjIdwiSpZU20ZQHhHCjNdQWNc/14zIPqIGWQSFZIfis42fQSNJAdL9oeuOGBCosLOQ7BMnTCptoygNCuCHrtUXNc8NwmQfUWcmYx0WP4V7sDvkyedzodANqimp8h0RIw7XCJpoQQhqDmmfJQA20DKkQVsDujh3KDMpwpOwILHUt+Q6J1EJDQ4PvECRXK2qiKQ8I4Yas1hY1z43DZR5QAy1DXK+5IrtvNr5N/BYfdP+A73BIHbKysvgOQbK1kiaa8oAQbshibVHz3Hhc5gE10DLCN8QXoW6hGHltJL7v+z3f4ZB6WFlZ8R2C5GsFTTTlASHckLXaoub53XCZB9RAy4C/7/yN7fbb0S24G067nuY7HNIAUVFRfIcgHWS8iaY8IIQbslRb1Dy/Oy7zgBpoKRf+KByf6H0C9RR1xDjE0Bs3pERrHGb2nclwE015QAg3ZKW2qHluGhrKm9QopzgHg54PguCVAGH6YdBQks2HJmRRaxtmtslktImmPCCEG7JQW9Q8Nx0N5U2qqRBWwO6WHUqNSnGg+AB66PXgOyTSCP379+c7BOkjg0005QEh3JD22qLmuXlwmQfUQEupIdeG4KHjQ3wV/xUmmE/gOxzSSDExMXyHIJ1krImmPCCEG9JcW9Q8Nx8u84AaaCm0IHQBrrldw7DAYVjbby3f4ZB3YGpqyncI0kuGmmjKA0K4Ia21Rc1z8+IyD6iBljJ7E/Zii+0WGIcY45zrOb7DIe8oJyeH7xCkm4w00ZQHhHBDGmuLmufmx2UeUAMtRaKyozBdezraprXFTfub9MYNKaasrMx3CNJPBppoygNCuCFttUXNMze4zAPqwKREbkkuXJ+5QsAECG0fCi1lLb5DIk2gqKjIdwiyQcqbaMoDQrghTbVFzTN3uMwDaqClgJAJYRdrh5IuJdhXuA/W7a35Dok0UW5uLt8hyA4pbqIpDwjhhrTUFjXP3OIyD6iBlgJDg4bigdMDfH7rc0yymMR3OKQZmJiY8B2CbJHSJprygBBuSENtUfPMPS7zgBpoCbc0bCmuuF3B4MDB2OC4ge9wSDOJjY3lOwTZI4VNNOUBIdyQ9Nqi5rllcJkH1EBLsP2J+/Fz75/RObQzLrle4jsc0oxkZZhZiSNlTTTlASHckOTaoua55dBQ3q1Q7JNYTNOcBtUMVdy0pTduyBpZGGZWYklRE015QAg3JLW2qHluWTSUdytTUFaAgU8HggkYrutch46KDt8hkWY2cOBAvkOQbVLSRFMeEMINSawtap5bHpd5QA20hBEyIWyibVDcrRi7n+2GXUc7vkMiHAgNDeU7BNknBU005QEh3JC02qLmmR9c5gE10BJmRNAI3B9wH/Nvzoe3lTff4RCO9OzZk+8QWgcJb6IpDwjhhiTVFjXP/OEyD6iBliDLwpfhottFuAS64FenX/kOh3AoMzOT7xBaDwluoikPCOGGpNQWNc/84jIPqIGWEEeSj2Bdj3XoFNYJAS4BfIdDOKalpcV3CK2LhDbRlAeEcEMSaouaZ/5xmQfUQEuAO0/vYLLaZKg8UEGMdQwU5BT4DolwTCgU8h1C6yOBTTTlASHc4Lu2qHmWDFzmATXQPCt8WQinbCcwBYYgrSC0b9ue75BICygqKuI7hNZJwppoygNCuMFnbVHzLDm4zANqoHkkZELYRtrihdkL/Pn0TzjoO/AdEmkhnTp14juE1kuCmmjKA0K4wVdtUfMsWbjMA2qgeTQ6aDTuDbwH32hfzOw5k+9wSAtKSEjgO4TWTUKaaMoDQrjBR21R8yx5uMwDaqB58m3EtzjrchZOgU7YOmAr3+GQFta/f3++QyAS0ERTHhDCjZauLWqeJROXeUANNA+OpRzDGss10I/QR5CLZA43SrgVEhLCdwgE4L2JpjwghBstWVvUPEsuLvOAGugWlpibCE8VTyg/UkZMT3rjRmvl6urKdwikCo9NNOUBIdxoqdqi5lmycZkH1EC3oKLyIvR/2B+VypW4onYFHdU68h0S4UlQEP3Ng0ThqYmmPCCEGy1RW9Q8Sz4u84Aa6BYiZELYhduh0KIQ2x9vh2MnR75DIjyytbXlOwTyNh6aaMoDQrjBdW1R8ywduMwDaqBbyLigcUh1TsWsyFmY3Ws23+EQnt29e5fvEEhNWriJpjwghBtc1hY1z9KDyzygBroFfB/5Pf5z/g99A/viz4F/8h0OkQAdOnTgOwRSmxZsoikPCOEGV7VFzbN04fI7lhpojp26eworzFagQ1QHXHe+znc4REKUlpbyHQKpSws10ZQHhHCDi9qi5ln6cPkdSw00h1LzUzG+zXgo5SghxioGivKKfIdEJER5eTnfIZD6tEATTXlACDeau7aoeZZOXH7HUgPNkaLyIvS93xeVbStxWeUyDNQN+A6JSBBdXV2+QyANwXETTXlACDeas7aoeZZeXH7HUgPNASETwuGGAwp6FOD3R79joOFAvkMiEubevXt8h0AaisMmmvKAEG40V21R8yzduPyOpQaaAx9d+whJLknwCfeBr7Uv3+EQCWRjY8N3CKQxOGqiKQ8I4UZz1BY1z9KPy+9YaqCb2drotTg+8DjsA+2x23k33+EQCRUeHs53CKSxOGiiKQ8I4UZTa4uaZ9nA5XcsNdDN6Oy9s/ja9Gvoxegh1DmU73CIBKMhnKVUMzfRlAeEcKMptUXNs+ygobylQNqzNIyVGwulp0qIMac3bpC60RDOUqwZm2jKA0K48a61Rc2zbKGhvCVcyasSOKQ7oEKjAmfbnIWhhiHfIREJ5+DgwHcIpCmaqYmmPCCEG+9SW9Q8yx4uv2OpgW4G/UL74VmvZ9iUuQmDuwzmOxwiBe7cucN3CKSpmqGJpjwghBuNrS1qnmUTl9+x1EA3kWeQJ+643sHUsKlYaLOQ73CIlOjcuTPfIZDm0MQmmvKAEG40praoeZZdXH7HUgPdBBtiNuDwgMPoHdQbe1328h0OkSIFBQV8h0CaSxOaaMoDQrjR0Nqi5lm2cfkdSw30O7qUcQlfdv0S7WLb4caAG3yHQ6SMnByVnkx5xyaa8oAQbjSktqh5ln1cfsfSt/c7uP/8PkYJR6HNszaI7h4NZQVlvkMiUkZNTY3vEEhze4cmmvKAEG7UV1vUPLcOXH7HUgPdSGUVZbBPtccr7Vfwl/NHF80ufIdEpNCjR4/4DoFwoZFNNOUBIdyoq7aoeW49uPyOpQa6kfqH9EeeTR42ZGzAUOOhfIdDpJSlpSXfIRCuNKKJpjwghBu11RY1z60Ll9+x1EA3wpRrUxDnGgfPUE8ssV3CdzhEikVFRfEdAuFSA5toygNCuFFTbVHz3Ppw+R1LDXQD/RL7C/Y77kfPoJ446HKQ73CIlKMhnFuBBjTRlAeEcOPt2qLmuXWiobx5duX+FSzuvBjat7UR7hTOdzgyq6SkBLt27cLp06cxc+ZMCIVCvkPiDA3h3ErU00RTHhDCjTdri5rn1ouG8uZR5vNMjKgYAYXnCog2iYZqG1W+Q5JZiYmJSEtLw6hRo3D79m28fPmS75A44+joyHcIpKXU0URTHhDCjaraoua5dePyO5Ya6DqUV5ajT0oflOuW4yQ7ia5aXfkOSabZ29tj4cKF2Lp1K+bPnw8VFRW+Q+IM3fvaytTSRFMeEMKNqKgoPMqi5rm1o3ugedL/6kA8tX2KH+/+iJEmI/kOp1XQ09PD3LlzsX//fiQ1clhkaWJmZsZ3CKSlvd1EZz6gPCCEI2ZmZrgaRM1za8fld6wCZ1uWchYz1iH5wgl8sHchlg1Zxnc4rcLWrVuhoKCA2bNnQ0FBAWlpabCwsKhx2ZcvX76+xePF689FwqIWjLTpHj9+DMOnhihGMd+hkJbmNAIQqqEiNAEPHvRAevILIDeb76jqpaWlCiMjTb7DIDx68OA5CgpK+A6jXudCX+DBg1xY9O0IW+dilOXwHRHhA3vG8PjxY8623+AG+uDBg+jbty+OHTuGBQsWYMOGDVi+fDnWrFmDGTNm4Ny5c7C2tkZ+fj6Ki4thYWGBy5cvw8fHB1u2bBEt6+vri4MHD8LZ2RkZGRmQl5eHvr4+Iv+vvTsPq7LM/wf+ZpFdJHAB3FAUwQURBAFZNJVT02JlNqMtNqWjNlozrWOXv5nv9R1/WVM5ORVmi2NW1pQtpv1MzAXZFAQRExVFUQlIhFDZPcDvD/NM5sZy7nPfz/O8X9fV1Vd7eHhf3/l8znmL55w7Jwf33HMPVq5cabn2ySefxIoVK3D77bdj37598PHxgaurK4qKijBp0iS8//77lmsXLVqEf/zjH5g5cyZ27tyJQYMGwWw2o6KiAhEREfjqq6+wcOFCvPLKK5avmT17NjZs2ICwsDBUVVWhoaEBQ4cOxfbt25E0qD8Ol/0bvyn5K5YsWYIFCxbgww8/RGJiIoqLi+Hk5IQ+ffogNzcXU6dOxTvvvGO571NPPYXk5GTceeedyMvLQ69eveDs7Izi4mJMmDABH3zwARYtWoQXXngBzz//PJYuXYoHH3wQO3bsQGBgIJqamlBZWYnw8HB8/fXXeOyxx/Dqq69a7j9nzhysX78eERER+PHHH9Hc3IzAwECkpqbigQcewBtvvGG5duHChVizZg0mTpyII0eOwNXVFT4+PsjPz8cdd9yBd99913Lt008/jddffx133XUXcnNz4evrC0dHRxw/fhwJCQlYu3Ytnn32WSxdutTyNbNmzcLWrVsRFBSEhoYGVFVVYfTo0di4cSPmz5+PZcuWWa6dO3cuvvjiC0RGRqK8vBwtLS0ICAhAWloaZsyYgcOHDyM6Ohr3338/goKCcOTIERQWFuLQoUNwd3eHt7c3CgoKcOutt+KBBx7A9u3b/zuglRf/taFxAyIyIuDg44ATJ04gLi4On3zyCZ5++mm8+OKLliwPP/wwtmzZgpCQEJw/fx41NTUYNWoUNm3ahDlz5uC1116zXDtv3jysW7cO0dHRKC0tRVtbG/r374+srCzcd999WLFiheXaJ554Au+99x6SkpJw8OBBdO/eHT169MCBAwdwyy23YNWqVZi1cBaOHDuCkHUhyMrKwvDhw1FaWgpPT08AwLlz59CvXz8UFhYiJiYG6enpSExMRGpqKsaMGYOjR4+id+/eaGxsRHNzM3r27Ini4mKEh4dj165dlmsjIyNx4MAB9OvXD+fOnQMAeHp6orS0FMOHD8eePXss10ZHRyMvLw9DhgzB6dOn4eLiAicnJ5w5cwaDBw9Gfn6+5dq4uDhkZmZi5MiROHnyJLy8vNDa2ora2lr07dsXhYWFiI6ORkZGxhW5+/Tpg4aGBkvuY8eOISwsDLt3774s9/fff48BAwagpqYG9vb28PDwQFlZGUJCQi7LHRMTgz179iAoKAgVFRVwc3ODo6MjqqqqrsgdHx+PjIwMjBo1CidOnLgst7+/Pw4dOoSoqChkZmZaviY8PBxFRUXw9fVFfX09zGYzvL29UVJSgtGjR1+WOyoqCgUFBQgICEB1dTUcHBwsuYODg5Gbm2u5NjZ2CnIz8+Dh0YQP3vynJXd1dTUCAgJQUFCAuLg4pKWlIT4+Hunp6QgNDUVJSQm8vb1hNptRX18PPz8/HD58GJGRkZfljoiIwKFDh+Dv74/a2lq0tLRYcoeGhiI7O9ty7bhx47Bv3z5LbkdHR7i5uaGiogJBQUHIy8v7+dp0rFz5Ib76ao20x4jk5GTLtY8//jhWr16NyZMnX/UxYtWqVZZrn3nmGSxfvhzTpk1DdnY2/Pz84OCg7mPEpWufe+45LFu2DNOnT0dWVhb69+8PADh16hRiYmLw2Wef4cknn8RLL7102fPxt99+ixEjRuDs2bM4f/48QkJCkJKSgkcffRTLly+3XDt//nx8+umniImJwalTp2BnZ4d+/fph165duPfee/HWW29Zrr333t/jiSf+gKFDB2niMcK/7wBUv/M9XA5FafQxIhY5OTkYNmwYysvLNfIYcTF3dnY2goODUVZWBg8PD9jb26OmpgYDBw7E/v37MX78eKSlpVm+JiwsDMeOHYOPj48lt6+vL4qKijB27FhkZWVZrh07diwOHjxoyd3a2govLy+cPHkSI0eORE5OzmW5T5w4gcrSSnxx5It2P0YEBga2qxfbtbW1tbW3RBtJY6MZrq51mDhxL7ZtmyA7Dv2K5SfQZwAEAkd7HUVEZQQO9zmMoP1BQC/ZCa/vy5QvMWTUENkxSKLjhT9h/dr34ZkzEo7DY4H+A2RHuiazuRJeXl/innv+gFGj/GTHIQn27y/HF1+8jZqau+HoqOYDbFkZsH07EBxciUGDlmPqg49i0LDusmORJD+d+Qnvv/Y+lixZAj8/6z9u8SUc1+Di4gg/v4PYs8dbdhS6CmdnZzg7OwM/f1CHh7248+5FOFt2FqOSRsmOQTKdKUdVVRW8Xf3h/unmiy/UvMZLlmSr4yuN6GeOjr3g7q7eH6J++WkbY8YAxcVVGOQzCKMEFCfShnJcfIwVhW8ivI6JE5tx/vxwnDhxVnYUQ7Czs7vqP3o0adIk2RFIAYMHDwbi49p17DcRXd2vP6rO3v7n3SLDEzkHLNDXMX/+YACOePPNg7KjGEJbW9tV/9Gj999/X3YEUkB+fj5g175jv4noStf6nOf8/HypuUgNIueABfo64uL6oVu349iwoVl2FEMpLS3FU089JTuGUIsXL5YdgRRgOWa2Hcd+E9HlrndIisgjnEk7eJS3RCEhJ3HkyGC0turzJ6GqaWtrw/r164W+bkkFS5YskR2BFHDZMbMs0UTtdqMTBkUe4UzawaO8Jbr7bje0tPTD5s3HZUcxhC1btuDmm2+WHUO4RYv42eIExMfHX/4bLNFEN9Se47mv2C0yJJFzwAJ9A489NhxAE95995TsKLpXXFyMPn366PoI70v+8Y9/yI5ACsjIyLjyN1miia6pPeUZuMZukeGInAMW6Bvo3dsdN910AGlpbrKj6F5+fj6OHz+OlJQUnDx5EgUFBbIjCTNz5kzZEUgBo0Zd46MMWaKJrtDe8gxcZ7fIUETOAQt0O0RHn0Nl5XCcO9ckO4quTZs2DbfddhsaGhrQ1NSk20/gAICdO3fKjkAKOHHixLX/I0s0kUVHyjNwg90iwxA5ByzQ7TBrli8Ad7z99gHZUXSvW7dueOKJJ5CRkYHRo0fLjiPMoEGDZEcgBXh5eV3/ApZoog6XZ6Adu0WGIHIOWKDbYdq0INjbn8Znn/FAFbIOs9ksOwIpoLW19cYXsUSTgXWmPAPt3C3SPZFzwALdDo6O9ggIKEJBgb/sKKQTFRUVsiOQAmpra9t3IUs0GVBnyzPQgd0iXRM5ByzQ7WQy2aGxcRgKCk7LjkI6EBERITsCKcDfvwN/KGeJJgPpSnkGOrhbpFsi54AFup3++McgAMAbbxRJTkJ68NVXX8mOQAo41NESzBJNBtDV8gx0YrdIl0TOAQt0O40Y0QuurgeRkmInOwrpwMKFC2VHIAVERUV1/ItYoknHrFGegU7uFumOyDlgge6AsLAfcfLkMJjNfHMCdc0rr7wiOwIpIDMzs3NfyBJNOmSt8gx0YbdIV0TOAQt0B/z2t15oa+uJTz45LDsKadzixYtlRyAFJCYmdv6LWaJJR6xZnoEu7hbphsg5YIHugEcfHQ7gPNas+VF2FNK4JUuWyI5ACkhNTe3aDViiSQesXZ4BK+wW6YLIOWCB7gAPDyf06VOI7OwesqOQxs2ePVt2BFJAeHh412/CEk0aJqI8A1baLdI8kXPAAt1BiYmNOHt2JH744ZzsKKRhGzZskB2BFFBUZKVP9WGJJg0SVZ4BK+4WaZrIOWCB7qA//CEAQDckJx+UHYU0LCwsTHYEUoCvr6/1bsYSTRoisjwDVt4t0iyRc8AC3UGTJg2Eo+MJfP11o+wopGFVVVWyI5AC6uvrrXtDlmjSANHlGRCwW6RJIueABboThg07gUOHAmTHIA1raGiQHYEUYDabrX9TlmhSmC3KMyBot0hzRM4BC3Qn3HmnM8zmgdi27YTsKKRRQ4cOlR2BFODt7S3mxizRpCBblWdA4G6RpoicAxboTnjssRAAF/D22yWyo5BGbd++XXYEUkBJSYm4m7NEk0JsWZ4BwbtFmiFyDligO6FfP0/06HEAqakusqOQRj300EOyI5ACRo8eLfYbsESTAmxdngEb7BZpgsg5YIHupKioGlRUDEddXbPsKKRBr7/+uuwIpIDdu3eL/yYs0SSRjPIM2Gi3SHki54AFupMefLA3gO54771C2VFIg3iUNwE2PG6YJZokkFWeAR7lTRfxKG8FzZgRDDu7SvznPz/JjkIaxKO8CbDxccMs0WRDMsszwKO86SIe5a0gR0d7DBhQhPz8PrKjkAYtWLBAdgRSQFRUlG2/IUs02YDs8gxI2C1Sksg5YIHugqSkVtTXB+PgwTOyo5DGfPjhh7IjkAIKCgps/01ZokkgFcozIGm3SDki54AFugseeywIgD3eeOOw7CikMXx9HgFAQECAnG/MEk0CqFKeAYm7RUoROQcs0F0QFtYHLi6H8e23bbKjkMYUFxfLjkAKqK6ulvfNWaLJilQqz4Dk3SJliJwDFuguGjWqHCUlQ9HayhJN7efk5CQ7AinAQXbLYIkmK1CtPAMK7BYpQeQcsEB30fTpnmht7YPPPy+SHYU0pE8fvvmUAA8PD9kRWKKpS1Qsz4Aiu0XSiZwDFugumjt3BIA6rF5dLjsKaUhubq7sCKSAsrIy2REuYommTlC1PAMK7RZJJXIOWKC7yNPTGb16HUBWVnfZUUhDpk6dKjsCKSA4OFh2hP9iiaYOULk8A4rtFkkjcg5YoK0gLq4eP/00EqdP18mOQhrxzjvvyI5AClDubyJYoqkdVC/PgIK7RVKInAMWaCuYM2cAAGesWMFjval9eJQ3AYp+nCFLNF1HWZn65RlQdLfI5niUt+JMpkFwcDiFL7+slx2FNIJHeROg8HHDvy7Rp07KTkSK2L5d/fIMKLxbZFMi58BR2J0NxN7eDkOHHsfBg/1lRyGNeOqpp2RHIAXExsairq4Sdaq++uvWWMCjFebCTCBEdhiSKTv74r+DgysxZgzQ2Cg3z/WYzZWIjY2VHYMUIHIOWKCt5N577bBkyXc4csSEoUMHyo5DiktOTmaJNjgvLzdkZ+dh/PhusqNc328u/qutGfDKzQJG3SM3D9ncpk3Ac8+5Yd68bkhM/FJ2nHbJyMjD3LlusmOQZDk5OcLuzQJtJU89NQpLl07E9u3JGDr0D7LjkOLuvPNO2RFIsv79e2Dx4iW46SY/2VFuzGyG19L/Qf9/LAG8PgPuukt2IrKRTZsu/s9tMvXAI4/8EXV12nip4sSJd6B//x6yY5Bkw4YNE3ZvFmgr8fLywrhx47B582b84Q8s0DbjA+A0ULGxAngEqFhagSCfINmpbigvLw9Dhw6VHYMkKy8/goSEcNkx2mftSuD+WmD6dOAzlmgj+G95BtatA5ycegDQRin9z392AtDIbpEw5eXizujgmwityGQyYevWrTCbzbKjGIc9gF5Aa/dWAD//WwNT3atXL9kRSAGamgNHR+Cjj4B77rlYor/6SnYiEujK8iw7UcdoardIGDc3cS/j0UDV0I6kpCScPXsWu3fvlh2FFOfs7Cw7AilAc3PAEm0IWi/PgAZ3i4RwdBT3QgsWaCuKjIzETTfdhM2bN8uOQoorLi6WHYEUoMk5YInWNT2UZ0Cju0VWV11dLezeLNBW5ODggMmTJyMlJUV2FFLchAkTZEcgBWh2DliidUkv5RnQ8G6RVQUEBAi7Nwu0lZlMJuTk5Aj9Uw9p3wcffCA7AilA03PAEq0reirPgMZ3i6ymoKBA2L1ZoK3MZDKhtbUV3333newopLBFixbJjkAK0PwcsETrgt7KM6CD3SKriIuLE3ZvFmgr69evH4YPH87XQdN1vfDCC7IjkAJ0MQcs0Zqmx/IM6GS3qMvS0tKE3ZsFWgCTyYTNmzejra1NdhRS1PPPPy87AilAN3PAEq1Jei3PgI52i7okPj5e2L1ZoAUwmUz44YcfUFhYKDsKKWrp0qWyI5ACdDUHLNGaoufyDOhst6jT0tPThd2bBVqAhIQEuLi48GUcdE0PPvig7AikAN3NAUu0Jui9PAM63C3qlNDQUGH3ZoEWwNXVFQkJCSzQdE07duyQHYEUoMs5YIlWmhHKM6DT3aIOKykpEXZvFmhBkpKSsHPnTjQ0NMiOQgoKDAyUHYEUoNs5YIlWklHKM6Dj3aIO8fb2FnZvFmhBTCYTGhsbhb4DlLSrqalJdgRSgK7ngCVaKUYqz4DOd4vazWw2C7s3C7QgI0aMQN++ffkyDrqqyspK2RFIAbqfA5ZoJRitPAMG2C1ql/r6emH3ZoEWxM7ODklJSSzQdFXh4eGyI5ACDDEHLNFSGbE8AwbZLbohPz8/YfdmgRbIZDLhwIEDKC0tlR2FFPP111/LjkAKMMwcsERLYdTyDBhot+i6Dh8+LOzeLNACTZ48GXZ2dkhJSZEdhRTz2GOPyY5ACjDUHLBE25SRyzNgsN2ia4qMjBR2bxZogXx8fBAZGcmXcdAVXn31VdkRSAGGmwOWaJswenkGDLhbdFWZmZnC7s0CLZjJZMKWLVvQ0tIiOwopZPHixbIjkAIMOQcs0UKxPF9kyN2iKyQmJgq7Nwu0YCaTCT/99BP27NkjOwopZMmSJbIjkAIMOwcs0UKwPP+XYXeLLpOamirs3izQgkVFRcHT05Mv46DLzJkzR3YEUoCh54Al2qpYni9n6N0ii4iICGH3ZoEWrFu3bpg0aRILNF1m/fr1siOQAgw/ByzRVsHyfCXD7xYBAA4dOiTs3izQNmAymbB7927U1NTIjkKKEPmnYtIOzgFYoruI5fnquFsEAP7+/sLuzQJtAyaTCS0tLdi2bZvsKKSIH3/8UXYEUgDn4Gcs0Z3C8nxt3C0CgNraWmH3ZoG2gYCAAAQFBfFlHGTR3NwsOwIpgHPwCyzRHcLyfH3cLQIg9BPQWKBtxGQyYfPmzWhra5MdhRQQGBgoOwIpgHPwKyzR7cLyfGPcLQIAb29vYfdmgbYRk8mEEydOoKioSHYUUoDIj9Yh7eAcXAVL9HWxPLcPd4sAoKSkRNi9WaBtZMKECXBycuLLOAgA8MADD8iOQArgHFwDS/RVsTy3H3eLACA0NFTYvVmgbcTd3R1xcXEs0AQAeOONN2RHIAVwDq6DJfoyLM8dw90iAMjOzhZ2bxZoG0pKSsKOHTvQ1NQkOwpJxmNmCeAc3BBLNACW587gbhHAo7x1w2Qyob6+Hunp6bKjkGQ8ZpYAzkG7GLxEszx3DneLAB7lrRuhoaHo06cPUlJSZEchyRYuXCg7AimAc9BOBi3RLM+dx90iABg3bpywe7NA25C9vT2SkpL4OmjCmjVrZEcgBXAOOsBgJZrluWu4WwQA+/btE3ZvFmgbM5lM2LdvHyoqKmRHIYkmTpwoOwIpgHPQQQYp0SzPXcfdIuDiQXaisEDb2JQpUwCAL+MwuCNHjsiOQArgHHSCzks0y7N1cLcIAKqrq4XdmwXaxnr37o3w8HC+jMPgXF1dZUcgBXAOOkmnJZrl2Xq4WwQAjo6Owu7NAi2ByWRCSkoKWltbZUchSXx8fGRHIAVwDrpAZyWa5dm6uFsEAG5ubsLuzQItgclkwpkzZ7B3717ZUUiS/Px82RFIAZyDLtJJiWZ5tj7uFgEQ+n4zFmgJYmJi4OHhwZdxGNgdd9whOwIpgHNgBRov0SzPYnC3CACCgoKE3ZsFWgInJydMnDiRBdrA3n33XdkRSAGcAyvRaIlmeRaHu0UAkJeXJ+zeLNCSmEwmZGZm4vz587KjkAQ8ZpYAzoFVaaxEszyLxd0igEd565LJZILZbMb27dtlRyEJeMwsAZwDq9NIiWZ5Fo+7RQCP8talIUOGYPDgwXwZh0E9/fTTsiOQAjgHAiheolmebYO7RQAQGxsr7N4s0BKZTCYWaIN6/fXXZUcgBXAOBFG0RLM82w53iwAgOztb2L1ZoCUymUwoLi5GcXGx7ChkY3fddZfsCKQAzoFAipVolmfb4m4RAAQHBwu7Nwu0RBMnToSjoyN/Cm1Aubm5siOQAjgHgilSolmebY+7RQBQVlYm7N4s0BJ5enoiNjaWBdqAfH19ZUcgBXAObEByiWZ5loO7RQDg4eEh7N4s0JIlJSVh27ZtaG5ulh2FbMjR0VF2BFIA58BGJJVolmd5uFsEAPb24mouC7RkJpMJtbW1yMrKkh2FbOj48eOyI5ACOAc2ZOMSzfIsF3eLAKCmpkbYvVmgJQsPD0fPnj2RkpIiOwrZUEJCguwIpADOgY3ZqESzPMvH3SIAGDhwoLB7s0BLZm9vjylTpvB10Aazdu1a2RFIAZwDCQSXaJZnNXC3CAD2798v7N4s0AowmUzIy8tDZWWl7ChkI88++6zsCKQAzoEkgko0y7M6uFsEAOPHjxd2bxZoBSQlJaGtrQ1btmyRHYVsZOnSpbIjkAI4BxJZuUSzPKuFu0UAkJaWJuzeLNAK8PPzQ2hoKF/GYSCLFy+WHYEUwDmQzEolmuVZPdwtAoDExERh92aBVoTJZEJKSgra2tpkRyEbWLJkiewIpADOgQK6WKJZntXE3SIASE1NFXZvFmhFmEwmVFRUoKCgQHYUsoFZs2bJjkAK4BwoopMlmuVZXdwtAoCwsDBh92aBVsT48ePh6urKl3EYxNatW2VHIAVwDhTSwRLN8qw27hYBwLFjx4TdmwVaES4uLpgwYQILtEEEBQXJjkAK4Bwopp0lmuVZfdwtAgAfHx9h92aBVojJZEJ6ejrq6upkR9GWLUCPT3sAABxLtXF8a0NDg+wIpADOgYJuUKJZnrWBu0UAYDabhd2bBVohJpMJzc3NQl/0rjt/ApAEuO90BwD0eqkX8IHURO1SVVUlOwIpgHOgqGuUaJZn7eBuEQDU19cLuzcLtEKGDRuGAQMG8GUc7XUAwPLLf8uuzQ54EkCTjEDtN3r0aNkRSAGcA4X9qkTn/p+vWJ41hLtFAODr6yvs3izQCrGzs4PJZGKBbq8d1/j9MwC+t2GOTti4caPsCKQAzoHifi7R5TH3IHTJdPw19CuWZ43gbhEAFBUVCbs3C7RiTCYTDh8+jBMnTsiOoj7/a/y+PQBxf+i0ivnz58uOQArgHKhv0xZHBO76CLv878Hz+dPh9P++kh2J2oG7RQAwduxYYfdmgVbMpEmT4ODgwJ9Ct8ftAAKv8vv3AOhr4ywdtGzZMtkRSAGcA7Vdes3z5FscMe7IR7Cz0rHfJB53iwAgKytL2L3t2nj0nXLGjx8PX19ffP7557KjqK8EwBPA4ZzDCC4PRt69eRizegzgLjsYEWnZVd8waDYD998PfPEF8NlnFy8gIiWVl5fj7bffxh/+8Af4+flZ/f78CbSCTCYTtm7dKvTjV3QjAMB6oPyf5QCAs789q4nyzGNmCeAcqOqan7bRxWO/yXa4WwTwKG/DSUpKwtmzZ7F7927ZUbTDQXaAjpk7d67sCKQAzoF6bvhRdSzRmsDdIoCvgTacyMhI3HTTTUhJSZEdhQT54osvZEcgBXAO1NLuz3lmiVYed4sA4ODBg8LuzQKtIAcHB0yePJlvJNSxyMhI2RFIAZwDdXT4kBSWaKVxtwgA/P2v9XFdXccCrSiTyYScnBxUV1fLjkIClJeXy45ACuAcqKHTJwyyRCuLu0UAUFtbK+zeLNCKMplMaG1txXfffSc7CgnQ0tIiOwIpgHMgX5eP52aJVhJ3iwCgtbVV2L1ZoBXVr18/DB8+nC/j0KmAgADZEUgBnAO5ulyeL2GJVg53iwDAy8tL2L1ZoBV26VhvflS3/qSlpcmOQArgHMhjtfJ8CUu0UrhbBAAnT54Udm8WaIWZTCb88MMPKCwslB2FrGzGjBmyI5ACOAdyWL08X8ISrQzuFgHAyJEjhd2bBVphCQkJcHZ25ss4dCg5OVl2BFIA58D2hJXnS1iilcDdIgDIyckRdm8WaIW5uroiISGBBVqHFi9eLDsCKYBzYFvCy/MlLNHScbcIABITE4XdmwVacSaTCTt37kRDQ4PsKGRFPGaWAM6BLdmsPF/CEi0Vd4sAHuVtaCaTCY2NjXxDhM48/vjjsiOQAjgHtmHz8nwJS7Q03C0CgHHjxgm7Nwu04kaMGIG+ffvyZRw6s3r1atkRSAGcA/GkledLWKKl4G4RAOTn5wu7Nwu04uzs7JCUlMQCrTOTJ0+WHYEUwDkQS3p5voQl2ua4WwQAgwcPFnZvFmgNMJlMOHDgAEpLS2VHISs5dOiQ7AikAM6BOMqU50tYom2Ku0UAcObMGWH3ZoHWgMmTJ8POzg4pKSmyo5CVuLu7y45ACuAciKFceb6EJdpmuFsEAE4Cl58FWgN8fHwQGRnJl3HoiLe3t+wIpADOgfUpW54vYYm2Ce4WARc/DlgUFmiNMJlM2LJlC1paWmRHISsoKCiQHYEUwDmwLuXL8yUs0cJxtwgAfvzxR2H3ZoHWiKSkJPz000/Ys2eP7ChkBbfeeqvsCKQAzoH1aKY8X8ISLRR3iwBgyJAhwu7NAq0R48aNg6enJ1/GoROrVq2SHYEUwDmwDs2V50tYooXhbhEA7N27V9i9WaA1olu3bpg0aRLfSKgTPGaWAM6BNWi2PF/CEi0Ed4sAHuVNPzOZTNi1axfOnj0rOwp1EY+ZJYBz0FWaL8+XsERbHXeLAB7lTT8zmUxoaWnB1q1bZUehLnrmmWdkRyAFcA46Tzfl+RKWaKvibhEAjB8/Xti9WaA1JCAgAEFBQXwdtA4sX75cdgRSAOegc3RXni9hibYa7hYBwK5du4TdmwVaY0wmEzZv3oy2tjbZUagLpk2bJjsCKYBz0HG6Lc+XsERbBXeLAGD48OHC7s0CrTEmkwknTpxAUVGR7CjUBdnZ2bIjkAI4Bx2j+/J8CUt0l3G3CAB++OEHYfdmgdaYCRMmoFu3bnwZh8b5+fnJjkAK4By0n2HK8yUs0V3C3SIA8PDwEHZvFmiNcXd3R1xcHAu0xjk4OMiOQArgHLSP4crzJSzRncbdIgCwtxdXc1mgNchkMmHHjh1oamqSHYU66cSJE7IjkAI4Bzdm2PJ8CUt0p3C3CABqamqE3ZsFWoNMJhPq6+uRkZEhOwp1UlxcnOwIpADOwfUZvjxfwhLdYdwtAoABAwYIuzcLtAaFhoaiT58+fBmHhn3yySeyI5ACOAfXxvL8KyzRHcLdIgD4/vvvhd2bBVqD7O3tkZSUxAKtYU8//bTsCKQAzsHVsTxfA0t0u3G3CABiY2OF3ZsFWqNMJhP27duHiooK2VGoE1588UXZEUgBnIMrsTzfAEt0u3C3CADS09OF3ZsFWqOmTJkCAEhJSZGchDpj8eLFsiOQAjgHl2N5bieW6BvibhEAJCYmCrs3C7RG9e7dG+Hh4XwZh0YtWbJEdgRSAOfgv1ieO4gl+rq4WwQAqampwu7NAq1hJpMJKSkpaG1tlR2FOujhhx+WHYEUwDm4iOW5k1iir4m7RQAQFhYm7N4s0BqWlJSEM2fOYO/evbKjUAdt2bJFdgRSAOeA5bnLWKKvirtFAHDs2DFh92aB1rDY2Fh4eHjwZRwaFBISIjsCKcDoc8DybCUs0Vcw+m7RRT179hR2bxZoDXNycsLEiRP5RkINOn/+vOwIpAAjzwHLs5WxRF/GyLtF/9Xc3Czs3izQGmcymZCRkcEHC40RebwoaYdR54DlWRCWaAuj7hZdrrGxUdi9WaA1zmQywWw2Y/v27bKjUAeMGjVKdgRSgBHngOVZMJZoAMbcLbpS7969hd2bBVrjhgwZgsGDB/N10BqzadMm2RFIAUabA5ZnG2GJNtxu0dUdPXpU2L1ZoHXAZDKxQGvMnDlzZEcgBRhpDliebczgJdpIu0XXFh4eLuzeLNA6YDKZUFxcjOLiYtlRqJ1ee+012RFIAUaZA5ZnSQxcoo2yW3R9u3btEnZvFmgdmDhxIhwdHflTaA3hMbMEGGMOWJ4lM2iJNsJu0Y3xKG+6Lk9PT8TExLBAawiPmSVA/3PA8qwIA5Zove8WtQ+P8qYbMplM2LZtm9DPPCTrmTdvnuwIpAA9zwHLs2IMVqL1vFvUfmPHjhV2bxZonTCZTKitrRX6eh+ynnXr1smOQArQ6xywPCvKQCVar7tFHVNYWCjs3izQOhEeHo6ePXvyZRwaER0dLTsCKUCPc8DyrDiDlGg97hZ1XL9+/YTdmwVaJ+zt7TFlyhQWaI0oLS2VHYEUoLc5YHnWCAOUaL3tFnXOuXPnhN2bBVpHTCYT8vLyUFlZKTsK3UBbW5vsCKQAPc0By7PG6LxE62m3SE0s0DqSlJSEtrY2bNmyRXYUuoH+/fvLjkAK0MscsDxrlI5LtF52i7rG09NT2L1ZoHXEz88PoaGhfBmHBmRlZcmOQArQwxywPGucTku0HnaLuk7kS3lYoHXGZDIhJSWFf32luPvuu092BFKA1ueA5VkndFiitb5bZB0jRowQdm8WaJ0xmUyoqKhAQUGB7Ch0HStWrJAdgRSg5TlgedYZnZVoLe8WWU9OTo6we7NA68z48ePh6urKl3EojsfMEqDdOWB51ikdlWit7hZZF4/ypnZzcXHBhAkTkJKSIjsKXQePmSVAm3PA8qxzOinRWtwtsj4e5U0dYjKZkJaWhrq6OtlRxGsFUAnYn784yvbn7S/+nuKeeOIJ2RFIAVqbA5Zng9BBidbabpEYIg/UYYHWIZPJhObmZqF/8lJGFYDegO8iXwA//7tKbqT2eO+992RHIAVoaQ5Yng1G4yVaS7tF4uTl5Qm7t6OwO5M0w4YNQ9++Y7BmTSF+85vfyI5DV5GUlCQ7Ailg1KgY7N9fLjvGDWVnA8895waTqQfLs5FcKtH33w9Mn45T7/wHNRExslO1y6hR2shJYgUGBgq7Nwu0DtnZ2aF799fw5ZfizoCnrjl48CCGDx8uOwZJdOrUWaxcuRwjRgyTHaVd5s3rhkce+SOcnHrIjkK29HOJPjVzLt47sh92J/bLTtQuBw4cRlDQCvTvz3k1sjNnzgi7Nwu0Tt1+eze88spgZGSUYvx4FmnVdO/eXXYEkqymph7Ozg6oqbkbjo69ZMe5qrIyYPt2IDi4EomJX6Kurh4AC4nhODqiZtH/wO7rVaj53BOOw2OB/gNkp7oms7kSzs4vo6amngXa4JwE/nUZC7ROLVgwHK+8YsZbbx1jgVZQjx58UKeLn5rj6NgL7u5+sqNc4cgR4JNPgCFDgDFjZKch6Rwv1gVHV3+4f7oZuO8+IDhYcqirq6u7uFtEIueAbyLUqYEDe6B790Js29ZNdhS6igMHDsiOQAo4ffq07AhX9cvyfN99gD2fKeiS+DggJAT49FPg0CHZaa5J1d0i2xI5B3xY1LGIiCqUlQ1HY6NZdhT6lVtuuUV2BFLAkCFDZEe4wq/Ls4OD7ESkFDt7YNo05Uu0irtFtidyDligdeyBB3oB6IHVqwtlR6FfWbVqlewIpIC9e/fKjnAZlmdqF3v1S7Rqu0VyiJwDFmgde/DBENjZ/YSPP66WHYV+hcfMEiD2mNmOYnmmDlG8RKu0WyQPj/KmTnFyckDfvoeQm9tTdhT6FR4zS4DYY2Y7guWZOkXhEq3KbpFcPMqbOm3SJDPq6kJQXPyT7Cj0C88995zsCKSAuLg42RFYnqlrFC3RKuwWySdyDligde6PfxwCwAFvvHFQdhT6hWXLlsmOQArIysqS+v1ZnskqFCzRsneL1CByDligdS4y0g/OzkfxzTctsqPQL0yfPl12BFKAzNMoWZ7JqhQr0TzplQCxc8ACbQAjRpTi2LFAtLa2yY5CP+NPRwgASktLpXxflmcSQqESLWu3SC0i54AF2gDuuccDLS3+2LixWHYU+ln//v1lRyAFeHp62vx7sjyTUIqUaBm7ReoROQcs0AYwb95wAA147z3+iZzIyFieySYUKdFEIrFAG4CPjxt8fA4gI8NDdhT62alTp2RHIAWcO3fOZt+L5ZlsSnKJtuVukbpEzgELtEHExtaiqmoEqqsbZEchADExMbIjkAL69etnk+/D8kxSSCzRttotUpvIOWCBNojf/74vAFesXMljvVXw2WefyY5ACigsFL+PLM8klaQSbYvdIvWJnAMWaIOYOnUI7O3L8fnn52VHIQBPPvmk7AikANF/E8HyTEqQUKL5t3wEiJ0DFmiDsLe3Q2DgUXz/fV/ZUQjASy+9JDsCKSA9PV3YvVmeSSk2LtEid4u0Q+QcsEAbyK23OqCpaShycsplRzG8xYsXy45ACkhMTBRyX5ZnUpINS7So3SJtETkHLNAGsmBBMIBWJCcflR3F8JYsWSI7AikgNTXV6vdkeSal2ahEi9gt0h6Rc8ACbSBDh3rD3b0QW7fyGVW2Rx55RHYEUsCYMWOsej+WZ9IEG5Roa+8WaZPIOWCBNpgxYypRWhqM5uYW2VEM7dtvv5UdgRRw9Kj1/jaI5Zk0RXCJtuZukXaJnAMWaIOZMcMbbW3e+PDDg7KjGNqIESNkRyAF9O7d2yr3YXkmTRJYoq21W6RtIueABdpgHn54OICz+OijM7KjGNrZs2dlRyAFNDY2dvkeLM+kaYJKtDV2i7RP5BywQBuMm1s3+PkdRE6Ot+wohnb+PD+Pm4Dm5uYufT3LM+mCgBLd1d0ifRA5ByzQBjRxYjPOnx+Okyf5U1BZQkJCZEcgBfTs2bPTX8vyTLpi5RLdld0i/RA5ByzQBjR//mAAjnjjDb4OWpaUlBTZEUgBxcXFnfo6lmfSJSuW6M7uFumLyDlggTaguLh+6NbtODZs4F9xyfLoo4/KjkAKCA8P7/DXsDyTrlmpRHdmt0h/RM4BC7RBhYScxJEjg9Ha2iY7iiEtX75cdgRSwK5duzp0PcszGYIVSnRHd4v0SeQcsEAb1N13u6GlpR82bz4uO4oh8ShvAjp2zCzLMxlKF0s0j/ImgEd5kwDz54cAaMa7756SHcWQeJQ3Ae0/ZpblmQypCyWaR3kTwKO8SYA+fTzg5XUAaWmusqMY0vz582VHIAVERkbe8BqWZzK0Tpbo9uwW6Z/IOWCBNrDo6LOorByBc+eaZEcxnE8//VR2BFLAgQMHrvvfWZ6J0KkSfaPdImMQOQcs0Ab28MN+ANzxzjuFsqMYTkxMjOwIpIB+/fpd87+xPBP9QgdL9PV2i4xD5BywQBvYtGlDYW9/Gp9+ygNVbO3UKb72nIBz585d9fdZnomuogMl+lq7RcYicg5YoA3M0dEeAQFFKCjwkx3FcOzs7GRHIEWxPBNdh4Bjv4k6gwXa4EwmOzQ2DkNBwWnZUQyFf71IAODp6XnZr1meidqhHSX617tFxiRyDligDe6PfwwCALzxRpHkJMbCD/knACgtLbX83yzPRB1wgxL9y90i4xI5ByzQBjdiRC+4uh5ESor8lxTU1dXhm2++wZQpU2RHEe7ee++VHYEUMHz4cAAsz0Sdcp0SfWm3yNhEzgELNCEsrAInTw6D2dwqNYe7uztuu+02XLhwQWoOW3jrrbdkRyAF7NmzB2VlLM9EnXaNEr1nzx7JwUgFIueABZpw3303oa2tJz755LDsKIbBo7wJuHjM7PbtLM9EXfLrEn3qJI/yJgA8ypsEmz17OGB3Hm9/UCI7imHwKG/Kzr54zGzfvizPRF32yxK9cyeP8iYAYo/ydhR2Z9IMJ1fAblwq0s54oLWtFfZ26v+5qqmpCU1NTcD5i7+uba2VG6iD7v39vdhfvl92DJIkOwdYvvo8bo+PRl1dJRobZSe6PrO5UnYEUoTZXIm6OtkpruPWWJjzmxEdFY3jOzcCPaNlJyJJfjrzE6Kjxf3v3+4C/fHHHyMqKgqff/45nnjiCbz88stYvHgxlixZgkceeQSbNm1CaGgoqqurUVdXh+DgYHz33Xd4+OGH8a9//cty7WOPPYaPP/4Y8fHxKCkpgYODA/z8/JCTk4N77rkHK1eutFz75JNPYsWKFbj99tuxb98++Pj4wNXVFUVFRZg0aRLef/99y7WLFi3CP/7xD8ycORM7d+7EoEGDYDabUVFRgYiICHz11VdYuHAhXnnlFcvXzJ49Gxs2bEBYWBiqqqrQ0NCAoUOHYvv27XjooYfw+uuvW65dsGABPvzwQyQmJqK4uBhOTk7o06cPcnNzMXXqVLzzzjuWa5966ikkJyfjzjvvRF5eHnr16gVnZ2cUFxdjwoQJ+OCDD7Bo0SK88MILeP7557F06VI8+OCD2LFjBwIDA9HU1ITKykqEh4fj66+/xmOPPYZXX33Vcv85c+Zg/fr1iIiIwI8//ojm5mYEBgYiNTUVDzzwAN544w3LtQsXLsSaNWswceJEHDlyBK6urvDx8UF+fj7uuOMOvPvuu1gftx5tIytwi98f8OorObjrrruQm5sLX19fODo64vjx40hISMDatWvx7LPPYunSpZb7z5o1C1u3bkVQUBAaGhpQVVWF0aNHY+PGjZg/fz6WLVtmuXbu3Ln44osvEBkZifLycrS0tCAgIABpaWmYMWMG/vWvfyEoKAj79u3DqlWrUFNTg1tuuQWHDh2Cu7s7vL29UVBQgFtvvRUPPPAAtm/f/t8B/fn5fUPjBkRkRMDBxwEnTpxAXFwcPvnkEzz99NN48cUXLVkefvhhbNmyBSEhITh//jxqamowatQobNq0CXPmzMFrr71muXbevHlYt24doqOjUVpaira2NvTv3x9ZWVm47777sGLFCsu1TzzxBN577z0kJSXh4MGD6N69O3r06IEDBw7glltuwapVqzBr4SzccfMdmPHbGcjKysLw4cNRWlpq+bidc+fOoV+/figsLERMTAzS09ORmJiI1NRUjBkzBkePHkXv3r3R2NiI5uZm9OzZE8XFxQgPD8euXbss10ZGRuLAgQPo16+f5cPkPT09UVpaiuHDh2PPnj2Wa6Ojo5GXl4chQ4bg9OnTcHFxgZOTE86cOYPBgwcjPz/fcm1cXBwyMzMxcuRInDx5El5eXmhtbUVtbS369u2LwsJCREdHIyMj44rcffr0QUNDgyX3sWPHEBYWht27d1+W+/vvv8eAAQNQU1MDe3t7eHh4oKysDCEhIZfljomJwZ49exAUFISKigq4ubnB0dERVVVVV+SOj49HRkYGRo0ahRMnTlyW29/fH4cOHUJUVBQyMzMtXxMeHo6ioiL4+vqivr4eZrMZ3t7eKCkpwejRoy/LHRUVhYKCAgQEBKC6uhoODg6W3MHBwcjNzbVcGxsbi57d8pCaWgt//yOW3NXV1QgICEBBQQHi4uKQlpaG+Ph4pKenIzQ0FCUlJfD29obZbEZ9fT38/Pxw+PBhREZGXpY7IiIChw4dgr+/P2pra9HS0mLJHRoaiuzsbMu148aNw759+yy5HR0d4ebmhoqKCgQFBSEvL+/na9Mxc+Y8vPzyy9IeI5KTky3XPv7441i9ejUmT5581ceIVatWWa595plnsHz5ckybNg3Z2dnw8/ODg4O6jxGXrn3uueewbNkyTJ8+HVlZWejfvz+AiwcxxcTE4LPPPsOTTz6Jl1566bLn42+//RYjRozA2bNncf78eYSEhCAlJQWPPvooli9fbrl2/vz5+PTTTxETE4NTp07Bzs4O/fr1w65du3Dvvffirbfeslx7772/R2ZmNoYOrcQPP6j9GLGvdQ8c9zgjPT0H8WUlmn2MyMnJwbBhw1BeXq6Rx4iLubOzsxEcHIyysjJ4eHjA3t4eNTU1GDhwIPbv34/x48cjLS3N8jVhYWE4duwYfHx8LLl9fX1RVFSEsWPHIisry3Lt2LFjcfDgQUvu1tZWeHl54eTJkxg5ciRycnIuy/3VV18hIj4Cdll27X6MCAwMbFcvtmtra2trb4km/ZmdPhvvxb2Hu1PvxheJX8iO026Wn0CfARAIHO11FBGVETjc5zCC9gcBvWQnvLb95fux8v+uRLc/dINjL/4lkJGUlQLbU4G+fkDsCDMakoHbZ07HIJ9BsqPdkJeXG/r37yE7Bkl06tRZ1NTUy45xQ8erjmPj2s/gnrgfjmWFQEICMKC/7FhkY21H2tD4aSPum3sfEkYlWP3+fPY2sOSCZLwX9R6CdwZjXcI62XE6xNnZGc7OzkDTxV972HvIDdRBp0+fxsBeA+Hu5y47CtnIkSPAJ99efMPgLfcBjafrUF5zAoOGdccoP54GSurr37+HNv4QVX4GNTU/oMeEMLhnlgObP734RoPgYNnJyIYazjTg9Glxh8Sp/2JXEiK9NB0L/BegR2EP5ETnKPG6Zzs7u6v+o0cuLi6yI5ANXetznjkHRGK4uLgA9nY89tvgRD7Gym9NZHNl58swpX4KHOocsLv/bng4qfHT27a2tqv+o0dOTk6yI5CNXO+QFM4BkRiW3WrHsd+kXyIfY1mgDcbcakZEYQQafRux7sI6DPMZJjuSRX19PVatWoUNGzbg0UcfRWur3INdRDpz5ozsCGQDNzphkHNAJMZlu8USbVgiH2NZoA0mbmccKiIr8LfDf8PUIVNlx7nMwYMHUVxcjNtvvx379++/+CZBnRo8eLDsCCRYe47n5hwQiXHFbrFEG5LIx1gWaAOZlz4Puyfsxu07b8f/RP6P7DhXiIiIwJ/+9Ce8+eabePzxx+Hq6io7kjD5+fmyI5BA7SnPAOeASJSr7hZLtOGIfIxlgTaIt/e/jZWRKzE0bSjWJ66XHeeaevXqhQULFuCjjz7CIR0/uPGYWf1qb3kGOAdEolxzt1iiDYVHeVOXZP2QhXm+8+B5yBN7ovYo8YkbV/Pmm29i5cqVAABHR0cUFxdLTiQOj5nVp46UZ4BzQCTKdXeLJdowRD7GqtmkyGoqaitwc+3NsG+yR6Z/JjydPWVHuqaJEyeie/fuWL9+PUaNGoVbbrlFdiRh4uLiZEcgK+toeQY4B0Si3HC3WKINQeRjLAu0jplbzQj/PhyN/o34T/1/MKLXCNmRrmv48OGYOXMmpk6dihdeeAEO7WkgGpWZmSk7AllRZ8ozwDkgEqVdu8USrXsiH2NZoHVsws4JKI8qx/OFz2Na0DTZcegXRo4cKTsCWUlnyzPAOSASpd27xRKtayIfY1mgdeqPGX9ExoQM3LLzFvzfcf9Xdhz6lZMnT8qOQFbQlfIMcA6IROnQbrFE65bIx1gWaB3694F/IzkiGYPTB+ObxG9kx6Gr8PLykh2Buqir5RngHBCJ0uHdYonWJZGPsSzQOpNTnoPZPWfD44gHcsfmKvuJG0an51MWjcAa5RngHBCJ0qndYonWHZGPsWxXOnKm/gwSaxJhZ7ZDlm8WvFy8ZEeia6itrZUdgTrJWuUZ4BwQidLp3WKJ1hWRj7Es0DphbjVjzL4xaBjQgI9qP8LIXnxzksr69u0rOwJ1gjXLM8A5IBKlS7vFEq0bIh9jWaB1YvLOySiNKcWz+5/Fb4f9VnYcuoHCwkLZEaiDrF2eAc4BkShd3i2WaF0Q+RjLAq0Df878M1InpGLyjsl4Kfol2XGoHaKjo2VHoA4QUZ4BzgGRKFbZLZZozRP5GMsCrXEfHvwQr4W9hoEZA7E5cbPsONROGRkZsiNQO4kqzwDngEgUq+0WS7SmiXyMZYHWsLyKPMzymgX3Y+7IC8/jJ25oSGJiouwI1A4iyzPAOSASxaq7xRKtWSIfY9m4NKq6oRoJVQkAgPRe6fB29ZaciDoiNTVVdgS6AdHlGeAcEIli9d1iidYkkY+xLNAa1NrWijF7x6BuUB3W1KxBWJ8w2ZGog8aMGSM7Al2HLcozwDkgEkXIbrFEa47Ix1gWaA1KSk3CydiT+PO+P+P+kPtlx6FOOHr0qOwIdA22Ks8A54BIFGG7xRKtKSIfY1mgNebZXc9i64StmLBjApbFLJMdhzqpT58+siPQVdiyPAOcAyJRhO4WS7RmiJwDFmgN+fjQx3h51Mvon9kfWxO3yo5DXdDQ0CA7Av2KrcszwDkgEkX4brFEa4LIOWCB1oiC0wV40PNBuJ1wQ14YP3FD65qbm2VHoF+QUZ4BzgGRKDbZLZZo5YmcA7YwDahprEHs6Vi02bch9aZU9HTrKTsSdVHPnvzfUBWyyjPAOSASxWa7xRKtNJFzwAKtuNa2VoTvCUddYB1WVa/CWL+xsiORFRw7dkx2BILc8gxwDohEselusUQrS+QcsEAr7jepv8HxuONYuHchZg2fJTsOWUlYWJjsCIYnuzwDnAMiUWy+WyzRShI5ByzQCnt+9/PYnLAZ8Tvi8a/Yf8mOQ1a0e/du2REMTYXyDHAOiESRslss0coROQcs0IpaV7QOS0csRd/dfbEtYZvsOGRlPMJZHlXKM8A5IBJF2m6xRCuFR3kbzIHKA/id2+/gesoVeaF5cLR3lB2JrIxHOMuhUnkGOAdEokjdLZZoZfAobwM513QOMeUxaHNqw/Ye29HbvbfsSCRAZGSk7AiGo1p5BjgHRKJI3y2WaCWInAMWaIW0trUiIjsC54POY+XplRjnP052JBLk+++/lx3BUFQszwDngEgUJXaLJVo6kXPAAq2QO1PvxNH4o5ifOx+zR86WHYcEGjBggOwIhqFqeQY4B0SiKLNbLNFSiZwDFmhF/DX7r/gm4RvE7IhB8vhk2XFIsJqaGtkRDEHl8gxwDohEUWq3WKKlETkHLNAK+PLIl/h7yN/hm+OLnQk7ZcchG7C35+qJpnp5BjgHRKIot1ss0VKInAPFJsx4Dlcdxn3O98GlzAV7R+zlJ24YhIeHh+wIuqaF8gxwDohEUXK3WKJtTuQcsEBLVNtci3GnxqHFtQXfuX8HXw9f2ZHIRsrKymRH0C2tlGeAc0AkirK7xRJtUyLngAVakta2VkTsjsDZkLN4s/xNjO83XnYksqGQkBDZEXRJS+UZ4BwQiaL0brFE24zIOWCBlmTazmkoii/C7JzZmB86X3YcsrE9e/bIjqA7WivPAOeASBTld4sl2iZEzgELtAT/m/O/+CruK0TuiMQ7ce/IjkMS8Ahn69JieQY4B0SiaGK3WKKF41HeOrKxeCP+FvQ39M7tjfT4dNlxSBIe4Ww9Wi3PAOeASBTN7BZLtFA8ylsnjlQfwd2Od8P5tDNyg3Ph5OAkOxJJEhMTIzuCLmi5PAOcAyJRNLVbLNHCiJwDFmgbqb9Qj6gTUWhxb0GKSwr6efaTHYkkUv71eRqg9fIMcA6IRNHcbrFEC8HXQGtca1srxmaNRc2IGiz/YTkS+ifIjkSSBQUFyY6gaXoozwDngEgUTe4WS7TViZwDFmgb+O3O3+JgwkHM2j0LC0cvlB2HFFBRUSE7gmbppTwDnAMiUTS7WyzRViVyDligBXsx90WsG78O4TvCsTp+tew4pAg3NzfZETRJT+UZ4BwQiaLp3WKJthqRc8ACLdCmY5uwaMgi9NzbE1nxWbLjkEIcHXlke0fprTwDnAMiUTS/WyzRViFyDligBTlecxxT7abC6YwTcoP4iRt0uaqqKtkRNEWP5RngHBCJoovdYonuMpFzwAItQP2FeowtHgtzDzM2OW7CgB4DZEcixQwePFh2BM3Qa3kGOAdEouhmt1iiu0TkHLBACxCdGY3q0Gq8cuIV3DzwZtlxSEH5+fmyI2iCnsszwDkgEkVXu8US3Wki54AF2spm7JyB/Yn7MTNrJp4c86TsOKQoTRwzK5neyzPAOSASRXe7xRLdKTzKWyNe3fsqPon9BKGpofgo4SPZcUhhmjlmVhIjlGeAc0Akii53iyW6w3iUtwZsKdmCZwKegfc+b+wev1t2HFJcfHy87AjKMkp5BjgHRKLodrdYojtE5BywQFvBibMncHvr7XCsccSewD1wcXSRHYkUl5GRITuCkoxUngHOAZEout4tluh2EzkHLNBd1GhuRMSRCFzwvoAN2IBBXoNkRyINGDVqlOwIyjFaeQY4B0Si6H63WKLbReQcsEB3UUxGDKrCqvDisRdhGmSSHYc04sSJE7IjKMWI5RngHBCJYojdYom+IZFzwALdBQ/tfAj5ifmYnjEdz4Y/KzsOaYiXl5fsCMowankGOAdEohhmt1iir0vkHLBAd9Ly/OX4IOYDjNg5Ap8mfio7DmlMa2ur7AhKMHJ5BjgHRKIYardYoq9J5BywQHfCjpM78Of+f8ZN+29Cdky27DikQbW1tbIjSGf08gxwDohEMdxusURflcg5YIHuoNJzpbil+RY4nndEzqAcuHVzkx2JNMjf3192BKlYni8y+hwQiWLI3WKJvoLIOWCB7oDmlmaEHw5HU68mfNX6FQJvCpQdiTTqkIEf2Fie/8vIc0AkkmF3iyX6MiLngAW6A2LTYlEZXokXjr6A3wz+jew4pGFRUVGyI0jB8nw5o84BkWiG3i2WaAuRc8AC3U6PpD2C3Am5uCf9HiyKWCQ7DmlcZmam7Ag2x/J8JSPOAZEtGH63WKIBiJ0DFuh2SC5Ixr/H/RvBO4PxWcJnsuOQDiQmJsqOYFMsz1dntDkgshXuFliiIXYOWKBvIL00HQv8F6BHYQ/kROfA3o7/L6OuS01NlR3BZlier81Ic0BkS9ytnxm8RIucA7bB6yg7X4Yp9VPgUOeAnAE58HDykB2JdCI8PFx2BJtgeb4+o8wBka1xt37BwCVa5BywQF+DudWMiMIINPo2Yt2FdRjqPVR2JNKRoqIi2RGEY3m+MSPMAZEM3K1fMWiJFjkHLNDXELczDhVjK/A/h/8HU4dMlR2HdMbX11d2BKFYnttH73NAJAt36yoMWKJFzgEL9FXMS5+H3RN24860O/G3yL/JjkM6VF9fLzuCMCzP7afnOSCSibt1DQYr0SLngAX6V97e/zZWRq7E0LSh+DLxS9lxSKfMZrPsCEKwPHeMXueASDbu1nUYqESLnAMW6F/I+iEL83znwfOQJ/ZE7eEnbpAw3t7esiNYHctzx+lxDohUwN26AYOUaJFzwIb4s4raCtxcezPsm+yxq+8ueDp7yo5EOlZSUiI7glWxPHeO3uaASBXcrXYwQIkWOQcs0Lj4iRvh34ej0b8R/6n/D0J6hsiORDo3evRo2RGshuW58/Q0B0Qq4W61k85LtMg5YIEGMGHnBJRHlWPxwcWYFjRNdhwygN27d8uOYBUsz12jlzkgUg13qwN0XKJFzoHhC/QfM/6IjAkZuHXnrfh71N9lxyGD0MMxsyzPXaeHOSBSEXerg3RaonmUtyD/PvBvJEckY3D6YGxM3Cg7DhmI1o+ZZXm2Dq3PAZGquFudoMMSzaO8Bcgpz8HsnrPhccQDuWNz+YkbZFNRUVGyI3Qay7P1aHkOiFTG3eoknZVokXNgyNZ4uu40EmsSYXfBDlm+WfBy8ZIdiQymoKBAdoROYXm2Lq3OAZHquFtdoKMSLXIODFegza1mhBeEo2FAA9bWrcXIXiNlRyIDCggIkB2hw1ierU+Lc0CkBdytLtJJiRY5B4Yr0JN3TsYPMT/g2f3P4r5h98mOQwZVXV0tO0KHsDyLobU5INIK7pYV6KBEi5wDQxXoP2f+GakTUjFlxxS8FP2S7DhkYA4aaqAsz+JoaQ6ItIS7ZSUaL9Ei58AwBXpN4Rq8NuY1DMwYiG8Tv5UdhwzOw8NDdoR2YXkWSytzQKQ13C0r0nCJFjkHhijQeRV5+P1Nv4d7sTvywvP4iRskXVlZmewIN8TyLJ4W5oBIi7hbVqbREi1yDnTfJKsbqpFQlQC7Njuk90qHt6u37EhECA4Olh3huliebUP1OSDSKu6WABos0SLnQNcFurWtFWP2jkHdoDq8f/Z9hPUJkx2JCACQm5srO8I1sTzbjspzQKRl3C1BNFaiRc6Brgt0UmoSTsaexJP7nsT9IffLjkNkoeoxsyzPtqXqHBBpHXdLIA2VaB7l3QnPZD2DrRO2YuKOiXg15lXZcYguo+IxsyzPtqfiHBDpAXdLMI2UaB7l3UEfH/oYr4S+gv6Z/fFd4ney4xBdITY2VnaEy7A8y6HaHBDpBXfLBjRQokXOge4KdMHpAjzo+SDcTrghL4yfuEFqysnJkR3BguVZHpXmgEhPuFs2oniJFjkHumqXNY01iD0dizb7NqTelIqebj1lRyK6qmHDhsmOAIDlWTZV5oBIb7hbNqRwiRY5B7op0K1trQjfE466wDqsql6FsX5jZUciuqby8nLZEVieFaDCHBDpEXfLxhQt0SLnQDcF+jepv8HxuON4fO/jmDV8luw4RNfl5uYm9fuzPKtB9hwQ6RV3SwIFS7TIOdBFgX5+9/PYnLAZ8TvisTx2uew4RDfk6Ogo7XuzPKtD5hwQ6Rl3SxLFSrTIOdB8gV5XtA5LRyxF3919sS1hm+w4RO1SXV0t5fuyPKtF1hwQ6R13SyKFSrTIOdB0gT5QeQC/c/sdXE+5Ii80D472/BMnaUNAQIDNvyfLs3pkzAGREXC3JFOkRIucA80W6HNN5xBTHoM2pzZs77Edvd17y45E1G4FBQU2/X4sz2qy9RwQGQV3SwEKlGiRc6DJAt3a1oqI7AicDzqPt0+/jXH+42RHIuqQuLg4m30vlmd12XIOiIyEu6UIySVa5BxoskDfmXonjsYfxfzc+Xh05KOy4xB1WFpamk2+D8uz2mw1B0RGw91SiMQSLXIONFeg/5r9V3yT8A1idsQgeXyy7DhEnRIfHy/8e7A8q88Wc0BkRNwtxUgq0SLnQFMF+ssjX+LvIX+HX7YfdibslB2HqNPS09OF3p/lWRtEzwGRUXG3FCShRIucA80U6INnDuI+l/vgUuaCvJH8xA3SttDQUGH3ZnnWDpFzQGRk3C1F2bhEi5wDTRTo2uZaxJTGoMWlBd+5fwdfD1/ZkYi6pKSkRMh9WZ61RdQcEBkdd0thNizRIudA+QLd2taKiN0ROBtyFisqVmB8v/GyIxF1mbe3t9XvyfKsPSLmgIi4W8qzUYkWOQfKF+hpO6ehKL4Is3NmY+6oubLjEFmF2Wy26v1YnrXJ2nNARBdxtzTABiVa5BwoXaD/N+d/8VXcV4jcEYl34t6RHYfIaurr6612L5Zn7bLmHBDRf3G3NEJwiRY5B8oW6I3FG/G3oL+hd25vpMfz3bSkL35+fla5D8uztllrDojoctwtDRFYokXOgZIF+kj1EdzteDecTztjb8heODk4yY5EZFWHDx/u8j1YnrXPGnNARFfibmmMoBItcg6UK9D1F+oRdSIKLe4tSHFJgX93f9mRiKwuMjKyS1/P8qwPXZ0DIro67pYGCSjRIudAqQLd2taKsVljUTOiBv/64V9I6J8gOxKREJmZmZ3+WpZn/ejKHBDRtXG3NMrKJVrkHChVoH+787c4mHAQD+9+GAtGL5Adh0iYxMTETn0dy7O+dHYOiOj6uFsaZsUSLXIOlCnQL+a+iHXj1yFiRwT+Hf9v2XGIhEpNTe3w17A8609n5oCIboy7pXFWKtEi50CJAr3p2CYsGrIIvfb2QmY8/9qF9C8iIqJD17M861NH54CI2oe7pQNWKNEi50B6gT5ecxxT7abC6YwT9gTt4SdukCEc6sADAcuzfnVkDoio/bhbOtHFEi1yDqQW6PoL9RhbPBbmHmZsctyEAT0GyIxDZDP+/u37dBmWZ31r7xwQUcdwt3SkCyVa5BxILdDRmdGoDq3GspPLcPPAm2VGIbKp2traG17D8qx/7ZkDIuo47pbOdLJEi5wDaQV6xs4Z2J+4H/dn3Y8/hf1JVgwiKVpaWq7731mejeFGc0BEncPd0qFOlGiRcyClQL+691V8EvsJRqeOxocJH8qIQCSVt7f3Nf8by7NxXG8OiKjzuFs61cESLXIObF6gt5RswTMBz8An3we7xu+y9bcnUkJJSclVf5/l2ViuNQdE1DXcLR3rQIkWOQc2LdAnzp7A7a23o9tP3ZA7NBcuji62/PZEyggNDb3i91iejedqc0BEXcfd0rl2lmiRc2CzAt1obkTEkQhcuOkCNtpvxMAeA231rYmUk52dfdmvWZ6N6ddzQETWwd0ygHaUaJFzYLMCHZMRg6qwKrx4/EVMCZhiq29LpKRfHi/K8mxcPG6YSAzulkHcoERr/ijvh3Y+hPzEfPw247d4NvxZW3xL0oi6ujp88803mDLFWH+ounS8KMuzsfG4YSIxuFsGcq0SXd+o7aO8l+cvxwcxH2Bk6kh8kviJ6G9HGuPu7o7bbrsNFy5ckB3FpsaNG4eyUpZnoxs3bpzsCES6xN0ymF+X6NdfB7ZtvzgHy/4JCHgzodACvePkDvy5/59x0/6bsDt2t8hvRaQp+/btw/ZUlmej27dvn+wIRLrE3TIge3vg7rsBR0dg0CDAlHRxDry9galTrf7tHK1+x599vzcVM5xvhvsFO+z0SoFbNzdR34oMqKmpCU1NTcD5i7+ubb142lCVTzHKDzUBFRLD3UBmznEEBASgsY8ZY+Lr0HhadiKSwVxpRkBAgOwYRLoUEBAAc6UZdaiTHYVsqbwc8OwHjJmAtuKLc4D77wX+/SWwezdgxb+ZaHeB/vjjjxEVFYXPP/8cTzzxBF5++WUsXrwYS5YswSOPPIJNmzYhNDQU1dXVqKurQ1b+B2iwa8P2tW347GgkGn18sKJXL8xfvBi7fvoJCQkJKCkpgYODA/z8/JCTk4N77rkHK1eutNz3ySefxIoVK3D77bdj37598PHxgaurK4qKijBp0iS8//77lmsXLVqEf/zjH5g5cyZ27tyJQYMGwWw2o6KiAhEREfjqq6+wcOFCvPLKK5avmT17NjZs2ICwsDBUVVWhoaEBQ4cOxfbt2/HQQw/h9ddft1y7YMECfPjhh0hMTERxcTGcnJzQp08f5ObmYurUqXjnnXcs1z711FNITk7GnXfeiby8PPTq1QvOzs4oLi7GhAkT8MEHH2DRokV44YUX8Pzzz2Pp0qV48MEHsWPHDgQGBqKpqQmVlZUIDw/H119/jcceewyvvvqq5f5z5szB+vXrERERgR9//BHNzc0IDAxEamoqHnjgAbzxxhuWaxcuXIg1a9Zg4sSJOHLkCFxdXeHj44P8/HzccccdePfddy3XPv3003j99ddx1113ITc3F76+vnB0dMTx48eRkJCAtWvX4tlnn8XSpUstXzNr1ixs3boVQUFBaGhoQFVVFUaPHo2NGzdi/vz5WLZsmeXauXPn4osvvkBkZCTKy8vR0tKCgIAApKWlwWw2Y8mSJZZrH3/8caxevRqTJ0/GoUOH4O7uDm9vbxQUFODWW2/FAw88gO3bt/93QCsv/uvFIW/hpvdugr29PWpqajBgwAB8//33iI2NRXp6OhITE5GamoqwsDAcO3YMPXv2RHNzMxobG9G7d28cPXoU4eHh2LVrl+XasWPHorCwEP369cO5c+cAAJ6enigtLcWIESOQk5NjuTY6Ohp5eXkIDAzEmTNn4OTkBBcXF5w+fRpDhgzB3r17MW7KOOxM34l7et6DrDVZGD58OEpLS+Hp6QkAOHfuHPr164fCwkLExMRclnvMmDE4evQoevfujcbGRjQ3N6Nnz54oLi6+IndkZCQOHDhw1dzDhw/Hnj17rsg9ZMgQnD59Gi4uLnBycsKZM2cwePBg5OfnW66Ni4tDZmYmRo4ciZMnT8LLywutra2ora1F3759UVhYiOjoaGRkZFyRu0+fPmhoaLDkPnbsGMLCwrB79+7Lcn///fcYMGAAampqYG9vDw8PD5SVlSEkJOSy3DExMdizZw+CgoJQUVEBNzc3ODo6oqqq6orc8fHxyMjIwKhRo3DixInLcvv7++PQoUOIiopCZmam5WvCw8NRVFQEX19f1NfXw2w2w9vbGyUlJRg9evRluaOiolBQUICAgABUV1fDwcHBkjs4OBi5ubmWa2NjY1GQUwAHJwfs/HYnKgdW8jHiBo8RM2bMQHJycrsfI1atWmW59plnnsHy5csxbdo0ZGdnw8/PDw4ODjhx4gTi4uLwySef4Omnn8aLL75o+ZqHH34YW7ZsQUhICM6fP4+amhqMGjUKmzZtwpw5c/Daa69Zrp03bx7WrVuH6OholJaWoq2tDf3790dWVhbuu+8+rFixwnLtE088gffeew9JSUk4ePAgunfvjh49euDAgQO45ZZbLsv93HPPYdmyZZg+fTqysrLQv39/AMCpU6cQExODzz77DE8++SReeumly56Pv/32W4wYMQJnz57F+fPnERISgpSUFDz66KNYvny55dr58+fj008/RUxMDE6dOgU7Ozv069cPu3btwr333ou33nrLcu2f/vQnvPPOO7j11luxf/9+eHl5oXv37jh48CCmTJmC1atXW679y1/+gldeeQW/+93vkJ6ejoEDB6KlpQXl5eUd6hHBwcH47rvv8PDDD+Nf//qX5drHHnsMH3/8MeLj46/aI9a8uQZVZ6tQ+adKTT9G5OTkYNiwYSgvL7fkrq6uRkBAAAoKChAXF4e0tDTEx8cjPT0doaGhKCkpgbe3N8xmM+rr6+Hn54fDhw8jMjLystwRERE4dOgQ/P39UVtbi5aWFkvu0NBQZGdnW64dN24c9u3bZ8nt6OgINzc3VFRUICgoCHl5eZflzs7ORnBwMMrKyuDh4WF5Ph44cCD279+P8ePHIy0t7YrnYx8fH0tuX19fFBUVYezYscjKyrrs+fjgwYOW3K2trfDy8sLJkycxcuRI5OSUITFxFlIfvJh7165dmHTHJHxhbw/3rVvhbW9/w8eIwMDAdvViu7a2trb2luiOOt94DhWbtuKHVavQPTMTI6qr4QLgBwcHHAsMhONttyFk4UJ4DRokKgIprqmpCZ9//rmlJNxzzz1wdnZu19c1NTUBZwAEAtnDtmDK4Xvx/2IWICzCBVDwI8ZLy4DU7UCfYDM2DizD/Dn3w4ezb2j5mfl4cNqDsmMQ6c4Hn3+AsNgw2THI1s6dAx54AFi8GD8NHoq3X3obLyclwe+JJ4AffgDcrPdqCGEv4QCA7i6e6H733Rh6990AgPozZ5CTnIz6L79Ev8JCBP7zn2j55z+x38MDVWPHouf99yPkoYfg4OQkMhYpxNnZGTNnzsTMmTM7/HXOzs5A08VfuztcXAqvsw7wc3EH3K2dtGuOHAG+/fkNg/Fj6pB2vgeGdR8EP79RsqORRI0DGmVHINKl4AHBGMXHV+PxA/DYX4H75qH8jjvg5u0NLF4MvP22VcszYOOTCN169kTkX/+KxL17EdjUhB8yM5Hx4IOo7dEDY3bswMg5c3DOxQVZ/fsj7eGHUZ6TY8t4REJc8VF19kBFhcIv0iabyc/Plx2BSJe4Wwb2+98DRUVAdPTF59qNG4Hp063+bYT+BPpG+sbEoG9MDADA3NiI/e+/j6q1a9EzNxfD338f9u+/jyPOzvhh5Eh0nzYNw+fOhau3t8zIZCV2dnbtvlbgq4yEu9bnPAcFBckNRkq44447ZEcg0iXulsENHAjcfz+CKiqAXr2EfAub/gT6ehxdXDBq7lxMSE3FyNpa1BQVIfPxx1ExYACG7d2LiOefB3x8sKdnT+y46y4c/fprtLW2yo5NndTW1tbuf7Tqeoek5OXlyQtGynj33XdlRyDSJe4WAWKfa5Up0L/mPXQoYpcvR3xREXwvXMCRL77A7ttvh11bG6LXr8eQqVNR5uSEtGHDkPXkk6g5flx2ZOqAX59AePr0aXz44YdYu3YtnnrqKZjNZskJu+ZGJwzymFkCgMWLF8uOQKRL3C0CdHCUd1fZ2dtj6N13Y8KGDYioqkJrZSX2/P3vODpqFPxLShDzz3+i++DB2N+9O3ZMnIjv330XLc3NsmPTdfz6BMJt27ahpqYGM2fOxIULF/Ddd99JTth57Tmem8fMEgAsWbJEdgQiXeJuESD2uVYTBfrX3Hr2xNjFi/lmRB353e9+hwULFgC4+Aa74OBgyYk6pz3lGQBiY2NtG4yU9PTTT8uOQKRL3C0CxD7XarJA/1rfmBgkrFmDmNJSuDc0YP9bb2FffDy6//QTxr//PvyionDExQU7xo5F7tKlaKiulh2ZruGbb77B9OnTNXlCW3vLMwBkZ2fbLhgp6/XXX5cdgUiXuFsEiH2u1UWB/iW+GVG7cnJy0KdPH0yfPh2FhYWy43RIR8ozAM3+hJ2s66677pIdgUiXuFsEiH2u1V2B/rX2vhlxZ3Awsp56im9GtJGmpiasXbsWJSUl+Pjjj5GamopHH30Uf/nLX5CQkKCpT9/oaHkGgLKyMvHBSHm5ubmyIxDpEneLALHPtVI/B9rWLr0Z8ZcnI+556y3Uff75xZMRly1Dy7JlPBnRBq52AmFBQYHERJ3TmfIMAB4eHmKDkSb4+vrKjkCkS9wtAsQ+1+r+J9DX06E3I/7+93wzIl2ms+UZAOztDb169DNHR0P9DIPIZrhbBIh9ruWz+C9c982Iq1fzzYhk0ZXyDAA1NTVCcpG2HOdLxoiE4G4RIPa5lgX6GvhmRLqWrpZnABg4cKD1g5HmJCQkyI5ApEvcLQLEPteyQLcT34xIgHXKMwDs37/fusFIk9auXSs7ApEucbcIEPtcywLdCdc7GbHv8eOIWbaMJyPqkLXKMwCMHz/eesFIs5599lnZEYh0ibtFgNjnWhZoK+CbEfXPmuUZANLS0qwTjDRt6dKlsiMQ6RJ3iwCxz7V8m6oAfWNi0DcmBgBgbmzE/vffR9XateiZm4vhq1fDfvVqHHF2xg8jR6L7tGkYPncuXL29Jaema7F2eQaAxMTErt+ENG/x4sWyIxDpEneLALHPtfwJtGB8M6K2iSjPAJCammqdG5GmLVmyRHYEIl3ibhEg9rmWBdrG+GZE7RBVngEgLCzMejcjzZo1a5bsCES6xN0iQOxzLQu0RHwzorpElmcAOHbsmHVvSJq0detW2RGIdIm7RYDY51oWaIXwzYhqEF2eAcDHx8f6NyXNCQoKkh2BSJe4WwSIfa7lmwgVxjcj2p4tyjMAmM1mMTcmTWloaJAdgUiXuFsEiH2u5U+gNYJvRhTPVuUZAOrr68XdnDSjqqpKdgQiXeJuESD2uZYFWqP4ZkTrsmV5BgBfX1+x34A0YfTo0bIjEOkSd4sAsc+1LNA6cM03I4aG8s2I7WDr8gwARUVF4r8JKW/jxo2yIxDpEneLALHPtSzQOmR5M2Je3nXfjJg5YIDh34woozwDwNixY23zjUhp8+fPlx2BSJe4WwSIfa5lgTaAvjExSFizBjGlpXBvaMD+t97Cvvh4eFZXY/zq1fCLisIRFxfsGDsWuUuXorGmRnZkm5BVngEgKyvLdt+MlLVs2TLZEYh0ibtFgNjnWhZog/n1mxHPHj2KzD/96bI3I7bddJPlzYjFGzfq8s2IMsszwKO86SIeN0wkBneLAB7lTQLdFBiI2H/+85pvRgy84w7dvRlRdnkGeJQ3XcTjhonE4G4RwKO8yUaM8GZEFcozwNdA00Vz586VHYFIl7hbBPA10CSJ3t6MqEp5BoCDBw/K++akjC+++EJ2BCJd4m4RIPa5licRUrt19GTEEfPnw8XLS27on6lUngHA399fbgBSQmRkpOwIRLrE3SJA7HMtfwJNnaKlNyOqVp4BoLa2VnYEUkB5ebnsCES6xN0iQOxzLQs0WYWqb0ZUsTwDQKsOP9mEOq6lpUV2BCJd4m4RIPa5lgWarE6VNyOqWp4BwEuRl7aQXAEBAbIjEOkSd4sAsc+1LNAk3NXejJj50EPXfjPinj1d/p4ql2cAOHnypOwIpIC0tDTZEYh0ibtFgNjnWr6JkGxO9JsRjxwHPvlS3fIMACNHjpQdgRQwY8YM2RGIdIm7RYDY51r+BJqk6uqbEcsqgPsB/OXnX+dD/fIMADmKf+Qf2UZycrLsCES6xN0iQOxzLQs0KaUjb0ZM//PTmDS1GY33AH/808Wvr/MA3N3ULs8Aj/Kmi3jcMJEY3C0CxD7XtuslHG1tbTh//rywEETX0mfSJPSZNAkAUFNVhUPvvYf6DRvQs7AQB17LR/2A03jlFaAg/QwAwGtUI36orUHqGcDVWWbya6tpacHW3buRFBWF886KhiSbSE5OxmOPPSY7BpHucLfozJkz2Lp1K2bMmAF3d/cOfW337t1hZ2d33Wvs2tra2m50o3PnzqFHjx4d+uZERERERFpz9uxZeHp6XveadhVo/gSaVNPU1IS9e5tw773A5s2Ao2M5oqKi8Mrf1uD/beyJ//N/AGcn2Smvrq6+HlPuvRe5ubnw8PCQHYckqa2tRUREBOeAyMq4WwT8dw5OnTp1wzL8a1b7CTSRqubMBjZ+A0ybVoo33+wPJ6dTeH15P/xhnuxk13bpb3Ta8ydc0i/OAZEY3C0CxM8B30RImvb2O0ByMlBRcfHXn30GpcszERERaR8LNGmanR1w993Aa69d/HV4uNQ4REREZAAs0KQLzj9/moWzBj7VwtnZGbNnz9ZEVhKHc0AkBneLAPFzwAJNuqC1Ah0dHa2JrCQO54BIDO4WAeLngG8iJF3Q2ptGysrK4O/vLzsGScY5IBKDu0WA2DngT6CJJFi1apXsCKQAzgGRGNwtAsTOAX8CTbqgtZ9AExERkXbxJ9BEEixZskR2BFIA54BIDO4WAWLngD+BJl3Q2k+gm5qa+AYX4hwQCcLdIkDsHPAn0EQSLF++XHYEUgDngEgM7hYBYueABZrIRurq6vDNN99gypQpmDZtmuw4JAnngEic+vp6rFq1Cl5eXnj00UfR2toqOxJJUltbi23btuHkyZNC7s8CTWQj7u7uuO2223DhwgUEBgbKjkOScA6IxDl48CCKi4sxZ84c7N+/H01NTbIjkQSrVq3Cyy+/jM2bNwv7QxRfA0260NbWhvPnz6N79+6ws7OTHee6JkyYgB07dsiOQZJxDojEqKysxH/+8x94eXnhgQcekB2HJLKzs8Px48cREBBg9XvzJ9CkC3Z2dvD09FS+PBMRkVi9evXCggUL8NFHH+HQoUOy45BOsUATERGRLrz55ptYuXIlAMDR0RHFxcWSE5FesUAT2UhTUxPWrl2LkpISfPzxx3xtnkFxDojEmThxIrp3747169dj1KhRuOWWW2RHIp3ia6CJiIiISHf4GmgiIiIiIkWwQBMJZmdn1+5/SP/4vz2RONwvAoCPP/4Y8+fPBwD85S9/QXJystW/B1/CQURERETUAfwJNJFgvzx5DgBOnz6NDz/8EGvXrsVTTz0Fs9ksOSHZ0qWT0jZs2MCT0ogEKS0txVNPPSU7BukYCzSRYL88eQ4Atm3bhpqaGsycORMXLlzAd999Jzkh2dKlk9Juv/12npRGJEBbWxvWr1+Pqqoq2VFIxxxlByAymt/97neW/7uiogLBwcES05CtRUREYMCAAXjzzTfx+OOPw9XVVXYkIl3ZsmULbr75ZuTk5MiOQjrGn0ATSfLNN99g+vTpQj5eh9TGk9KIxCguLkafPn34B1MSjgWaSIKcnBz06dMH06dPR2Fhoew4ZEM8KY1InPz8fBw/fhwpKSk4efIkCgoKZEcineJLOIgEa2pqwueff245ec7f3x8LFy5E79690dzcjBUrVsiOSDY0ceJE5Ofn86Q0IgGmTZuGCxcuIDk5GU1NTeAHjZEo/Bg7IiIiIqIO4Es4iIiIiIg6gAWaiIiIiKgDWKCJiIiIiDqABZqIiIiIqANYoImIiIiIOoAFmoiIiIioA1igiYiIiIg6gAWaiIiIiKgDWKCJiIiIiDqABZqIiIiIqANYoImIiIiIOuD/A6ntic/fyGNdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "Graphics object consisting of 56 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:56,363 Plotting... done\n", + "INFO: 2023-09-20 09:43:56,365 Completing 2 functional directed moves and 3 covered components...\n", + "INFO: 2023-09-20 09:43:56,370 Completion finished. Found 2 directed moves and 3 covered components.\n", + "INFO: 2023-09-20 09:43:56,371 Plotting covered intervals...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAALhCAYAAACg3dydAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADnIklEQVR4nOzdeVhUZf8G8HsGZJdVRVxxRURxXyi30tIs07fNX1luuWSm7fVaWtaLmVtabqkJWJqapWVWLqm4gwgiKAiIIm7sMsOOMOf3hzpJIuvMec4w9+e9vK5X5pznuZn88p2HZ+YclSRJEoiIiIiIiIjIINSiAxARERERERHVJVxoExERERERERkQF9pEREREREREBsSFNhEREREREZEBcaFNREREREREZEBcaBMREREREREZEBfaRERERERERAYkbKEtSRK0Wi14G28iIiIiIiKqS4QttHNycuDk5IScnBxREYiIiIiIiIgMjm8dN0GbN28WHYGIysHaJCIyb+wDRMold31yoW2CevfuLToCEZWDtUlEZN7YB4iUS+765ELbBP3yyy+iIxBROVibRETmjX2ASLnkrk+VJOhqZFqtFk5OTtBoNHB0dBQRwWQVFRXB2tpadAwi+hfWJhGReWMfIFIuueuTO9omaNGiRaIjEFE5WJtEROaNfYBIueSuT+5oExERERGRQRUXF6OkpER0DKIasbS0hJWVVe3GMFAWkpG/vz9mz54tOgYR/Qtrk4jIvLEP3FZcXIxz585Bp9OJjkJUI2q1Gj4+PrVabHOhbYImTpwoOgIRlYO1SURk3tgHbispKYFOp4OnpydsbW1FxyGqloKCAiQlJaGkpIQLbXPz119/4dVXXxUdg4j+hbVJRGTe2AfKsrW1hZ2dnegYRDWi0WhQWFgIa2tr2NvbV/t8LrRNkK+vr+gIRFQO1iYRkXljHyCqO3bt2oW8vDw4Ojpi9OjR1V5sG+Sq47m5uXj22WeRnJxsiOGoEllZWaIjEFE5WJtEROaNfYCo7rC3t4eVlRW0Wi2KioqqfX6tF9oBAQFYtGgRtm/fzgseyKCwpBA5uTmiYxBROfLy8kRHICIigdgHiOoOa2vrWt13u9YL7YkTJ+Kzzz6r9LiioiJotdoyf6h6Qi4cRockW+w/skR0FCIqR4cOHURHICIigdgHiOiuGi20N2/ejMTERCxcuBBFRUXw9/cHACxfvhzXr1/H+vXrERYWhj179mD79u2IiYnBqFGj4OTkpP/TvHlzAMDatWsRFRWFnTt34o8//kBERATWrFmD9PR0/bj+/v7Iz8/HkiVLEBcXh59++gn79+/H8ePHERQUhCtXrpQ5trS0FPPnz8fly5fxww8/4OjRowgODsaWLVuQkJCARYsWobCwsMw5KSkpWLduHcLCwrB7927s2LEDZ8+exfLly6HRaMocm52djRUrViA6Ohq//vor/vzzT4SHh2Pt2rVITU0tc2xBQQGWLFmChIQEbN26FQcOHMCxY8fw/fffIzk5GfPmzYNOp4O/vz90Oh3mzZuH5ORkfP/99zh27BgOHDiArVu3IiEhAb8v+RGuKUBg2En9+KmpqVi7di3Cw8Px559/4tdff0V0dDRWrFiB7OzsMlk0Gg2WL1+Os2fPYseOHdi9ezfCwsKwbt06pKSklDm2sLAQixYtQkJCArZs2YLg4GAcPXoUP/zwAy5fvoz58+ejtLS0zDlXrlxBUFAQjh8/jv379+Onn35CXFwclixZgvz8/DLHpqenY82aNYiIiMAff/yBnTt3IioqCitXrkRWVlaZY7VaLb755hvExMRg+/bt2LNnD8LCwrB+/Xpcv369zLFFRUVYuHAhEhMTsXnzZgQHB+PIkSPYuHEjkpKS8OWXX6KkpKTMOVevXkVgYCBCQkKwb98+bNu2DefPn8fSpUuRm5tb5tiMjAx8++23iIyMxK5du/D7778jMjISq1evRmZmZpljc3JysGzZMsTExOCXX37B3r17ERoaioCAgPty37p1CwsWLMDFixexadMmHD58GIcPH8amTZtw8eJFLFiwALdu3SpzzvXr1xEQEIDQ0FDs3bsXv/zyC2JiYrBs2TLk5OSUOTYzMxOrV69GZGQkfv/9d+zatQuRkZH49ttvkZGRUebY3NxcLF26FOfPn8e2bduwb98+hISEIDAwEFevXi1zbElJCb788kskJSVh48aNOHLkCIKDgx/4M+Ju7vJ+RnzzzTfQarVljs3KysLKlStN5mfE33//LfRnxJIlS1BQUFBmfP6M4M8I/oxQzs+Iu8fyZ0Td/RmxYsUK/ozIzcWmTZtAZOri4uKQm5uLM2fOAPjnZ0RVqSRJkgwRRKVS4dKlS/D09Cz38aKiojLBtFotmjdvDo1GA0dHR0NEqPMiv/4ayfvfwsiNwLKLy/Bm1zdFRyKie2i1Wv48IyIyY+wDt+Xn5yM2Nhbe3t686jiZnLv/fpOSkpCdnY2cnByMHTsWrq6u1RrHIBdDqwpra2s4OjqW+UPVkxsbixG/A/XmWGKuNFd0HCL6l2+++UZ0BCIiEoh9gJRi0KBBeOutt0THMGuyLbSp9kouXkSWSoV3X3oP2d2ysfzMctGRiOges2fPFh2BiIgEYh9Qnrlz56Jr166iY5AZ4kLbhKivXUO6jQ3s9trBJs4Gn5Z+KjoSEd3j7mfUiIjIPLEPkCEVFxeLjkC1UOuF9ubNmzFt2jQAwH//+1+sWrWq1qGofLbp6dA4OmL69OmYeXMmbna/iVVRfL6JlOL1118XHYGIiARiHzCsQYMGYebMmfjggw/g6uqKxo0bY+7cuWWOSU5OxsiRI+Hg4ABHR0e88MILSE1NBQAEBQXhs88+w5kzZ6BSqaBSqRAUFPTA+QICAuDj4wNra2t4eHjgjTfeqNI8cXFxUKlUOH/+fJnxvvrqK3h6euLuJbFiYmIwfPhwODg4wN3dHa+88goyMjLKfL9vvPEG3nnnHTRo0ACPPfZYlc7Ly8vD2LFj4eDgAA8PDyxZwjsUKUGtF9ovvvgiVq9eDUmSsGXLFv6AMSKnnBwUNmqEzZs3Y17vebCJs8GcW3NExyKiOzZv3iw6AhERCcQ+YHgbNmyAvb09QkNDsXDhQnz++efYt28fAECSJIwaNQpZWVk4dOgQ9u3bh8TERIwePRoAMHr0aLz77rvw8fHBjRs3cOPGDf1j/7Z69WpMnz4dU6ZMQXR0NHbu3Im2bdtWaR4vLy/06NHjvqut//jjj3jppZegUqlw48YNDBw4EF27dsWpU6ewe/dupKam4oUXXrjv+7W0tMSxY8ewZs2aKp33/vvv4+DBg9ixYwf27t2L4OBghIeHG+Y/ANWYpegAVHWNiopwvWlT9O/fH5ZqS7yR9QYW+y3Gmug1mNp5quh4RGavf//+oiMQEZFA7AMPlp+ff9+Ob3k6dOhQ5krlvr6++PTT2x+XbNeuHVasWIH9+/fjsccew99//42oqChcunRJf+vgH374AT4+PggLC0OvXr3g4OAAS0tLNG7cuMJ5/f398e677+LNN/+5q0+vXr0AoErzjBkzBitWrMD//vc/AEB8fDzCw8Px/fffA7i9kO/evTu++OIL/fgBAQFo3rw54uPj0b59ewBA27ZtsXDhQv0xn3zySYXnNWnSBOvXr8f333+v3wHfsGEDmjVrVulzTcbFz2ibiJzr1+EsSajXujWSkpIAAPP7zId1gjU+LvpYbDgiAgB9bRIRkXliH3iw8+fPo0ePHpX++fdi3NfXt8zfPTw8kJaWBgCIjY1F8+bN9YtfAOjYsSOcnZ0RGxtb5WxpaWm4fv06Bg8eXO7jVZnn//7v/3D58mWEhIQAADZt2oSuXbuiY8eOAIDw8HAcPHgQDg4O+j8dOnQAACQmJurH7dmzZ5m5KzsvMTERxcXF8PPz05/j6uoKLy+vKn//ZBzc0TYRqadOoT6A+j4+yLawAABYqi3xesbrWOq3FGuj12JK5yliQxKZOYs7tUlEROaJfeDBOnToUKW3M99dRN5Vr169Mn9XqVTQ6XQAbr+lW6VS3TfGg77+ILa2thU+XpV5PDw88Mgjj+DHH39E3759sXnzZkyd+s87TnU6HUaMGIEFCxbcN46Hh4f+/9vb25d5rLLzEhISKv7mSBgutE1EdnQ0AMC1SxeU3PPDYGGfhViVsAofFX2EKeBCm0ikexslERGZH/aBB7Ozs0P37t0NOmbHjh2RnJyMK1eu6HebY2JioNFo4O3tDQCwsrJCaWlphePUr18fnp6e2L9/Px555JEazQMAY8aMwYcffogXX3wRiYmJ+L//+z/9Y927d8cvv/wCT09PWFpWfQlW2Xlt27ZFvXr1EBISghYtWgAAbt68ifj4eAwcOLDK85Dh8a3jJiI/Lg46AO7duiEsLEz/dUu1JaamT0Vmz0ysP7teXEAiKlObRERkftgH5DVkyBD4+vpizJgxiIiIwMmTJzF27FgMHDhQ/xZsT09PXLp0CZGRkcjIyEBRUVG5Y82dOxdLlizBN998g4SEBERERGD58uVVngcAnnnmGWi1WkybNg2PPPIImjZtqn9s+vTpyMrKwosvvoiTJ0/i4sWL2Lt3LyZOnFjhLwIqO8/BwQGvvvoq3n//fezfvx9nz57F+PHjoVZzmSca/wuYCF1SElLVatSzs8MzzzxT5rFFfRbB+oI1ZhXMEpSOiADcV5tERGRe2AfkpVKp8Ouvv8LFxQUDBgzAkCFD0Lp1a2zdulV/zLPPPothw4bhkUceQcOGDR94Zfhx48Zh2bJlWLVqFXx8fPDUU0/p35ZdlXkAwNHRESNGjMCZM2cwZsyYMo81adIEx44dQ2lpKYYOHYpOnTrhzTffhJOTU4WL4qqct2jRIgwYMABPP/00hgwZgn79+qFHjx41ek7JcFTS3Ru7yUyr1cLJyQkajQaOjo4iIpiUI+3awTklBZ1zcuDv74/Zs2eXeXzm8ZlY/tByBJwLwASfCYJSEpm38mqTiIjMB/vAbfn5+YiNjYW3t3eZK4gTmYK7/36TkpKQnZ2NnJwcjB07Fq6urtUahwttExHh6ooie3v4XblS7uPFpcWon1QfzpnOSO2dKnM6IiIiIqLbuNAmU2aohTbfOm4iXHJzUeTuDuD2b0v/zcrCCpNSJiGtdxq+j/le7nhEhPJrk4iIzAf7ABHdxYW2CZB0OjS+dQuqO1cSfOedd8o9bmnfpbC6aIX3c9+XMx4R3fGg2iQiIvPAPkBEd3GhbQIy4+JgC8C6XTsAwOrVq8s9zsrCChNvTERa7zRsjN0oY0IiAh5cm0REZB7YB6ginp6eWLZsmegYJBMutE1AekQEAMDRxwcA8NRTTz3w2KV9lqLepXp4X8tdbSK5VVSbRERU97EPEBnX+PHjMWrUqEqPO3z4MEaMGIEmTZrorxovNy60TYD23DkAQMPu3QEAZ86ceeCxNpY2mHhtIlL6pGDz+fJvX0BExlFRbRIRUd3HPlD3FRcXi45AVZCXl4cuXbpgxYoVwjJwoW0CCuPjUQjArUMHAICbm1uFxy/ruwz1kurh3ex3ZUhHRHdVVptERFS3sQ8Ylk6nw4IFC9C2bVtYW1ujRYsWmDdvnv7x6OhoPProo7C1tYWbmxumTJmC3NxcAMCePXtgY2OD7OzsMmPOnDkTAwcO1P/9+PHjGDBgAGxtbdG8eXPMnDkTeXl5+sc9PT3h7++P8ePHw8nJCZMnT67SeWlpaRgxYgRsbW3RqlUrbNq0qUrfc0BAAHx8fGBtbQ0PDw+88cYb+seSk5MxcuRIODg4wNHRES+88AJSU/+529DcuXPRtWtXBAQEoEWLFnBwcMC0adNQWlqKhQsXonHjxmjUqFGZ5xC4fZ/w1atX44knntDn3bZtW5ljKnqugX92mhcvXgwPDw+4ublh+vTpuHXrlv6Y4uJifPDBB2jatCns7e3Rp08fBAcH6x8PCgqCs7Mz9uzZA29vbzg4OGDYsGG4ceOG/vvbsGEDfvvtN6hUKqhUqjLn3+uJJ56Av7+/0Hvbc6FtAqTkZKRaWkJtaQkAsLW1rfB4G0sbjLs6Djf63sDWuK1yRCQiVF6bRERUt7EPVCA/H4iIqPxPfr7+lFmzZmHBggWYM2cOYmJi8OOPP8L9zl148vPzMWzYMLi4uCAsLAzbtm3D33//rV+YDhkyBM7Ozvjll1/045WWluKnn37CmDFjANxePA4dOhTPPPMMoqKisHXrVhw9erTM4hYAFi1ahE6dOiE8PBxz5syp0nnjx49HUlISDhw4gJ9//hmrVq1CWlpahU/R6tWrMX36dEyZMgXR0dHYuXMn2rZtCwCQJAmjRo1CVlYWDh06hH379iExMRGjR48uM0ZiYiL++usv7N69G5s3b0ZAQACefPJJXL16FYcOHcKCBQswe/ZshISElDlvzpw5ePbZZ3HmzBm8/PLLePHFFxEbG1ul5/qugwcPIjExEQcPHsSGDRsQFBSEoKAg/eMTJkzAsWPHsGXLFkRFReH555/HsGHDkJCQcM8/k3wsXrwYP/zwAw4fPozk5GS89957AID33nsPL7zwgn7xfePGDTz00EMVPqdCSYJoNBoJgKTRaERFMBnHWrSQIpyd9X8PDAys9JyCWwWSZZKl5HHCw4jJiOheValNIiKqu9gHbsvLy5NOnTol5eXl/fPF8HBJAir/Ex4uSZIkabVaydraWlq3bl25c6xdu1ZycXGRcnNz9V/7448/JLVaLaWkpEiSJEkzZ86UHn30Uf3je/bskaysrKSsrCxJkiTplVdekaZMmVJm3CNHjkhqtVoqKCiQJEmSWrZsKY0aNarMMZWdFxcXJwGQQkJC9I/HxsZKAKSlS5c+8Hlr0qSJ9PHHH5f72N69eyULCwspOTlZ/7Vz585JAKSTJ09KkiRJn376qWRnZydptVr9MUOHDpU8PT2l0tJS/de8vLyk+fPn6/8OQHrttdfKzNenTx9p2rRpkiRV7bkeN26c1LJlS6mkpER/zPPPPy+NHj1akiRJunDhgqRSqaRr166VmWfw4MHSrFmzJEm6XT8ApAsXLugfX7lypeTu7q7/+7hx46SRI0eW+xw9CABpx44dVT7+7r/fn3/+Wfruu++kpUuXSpmZmdWaU5IkyVLgGp+qyOHmTWgbNtT/ffDgwZWeY2Npg1eSX0Fg/0D8HP8znmv/nDEjEhGqVptERFR3sQ9UoEMHIDy8ascBiI2NRVFR0QOf09jYWHTp0gX29vb6rz388MPQ6XSIi4uDu7s7xowZAz8/P1y/fh1NmjTBpk2bMHz4cLi4uAAAwsPDceHChTJv65YkCTqdDpcuXYK3tzcAoGfPnmXmruy8+Ph4WFpaljmvQ4cOcHZ2fuC3nZaWhuvXr1f4/TZv3hzNmzfXf61jx45wdnZGbGwsevXqBeD2W93r16+vP8bd3R0WFhZQq9Vlvvbv3XU/P7/7/h4ZGamfu7LnGgB8fHxgYWGhP8bDwwPR0dEAgIiICEiShPbt25eZp6ioqMxHLuzs7NCmTZsyY1T2TgCl4kLbBLjl5yPLw0P/9w0bNmD27NmVnrei7wr8cPkHvJX5Fp4DF9pExlbV2iQiorqJfaACdnbAnQv7VkVlb8OXJAkqlarcx+5+vXfv3mjTpg22bNmCadOmYceOHQgMDNQfp9PpMHXqVMycOfO+MVq0aKH///cuMKtyXlxcXJkcVVHT7/ffX69Xr16Zx1UqVblf0+l0lWa6O25VnusHzX13Hp1OBwsLC4SHh5dZjAOAg4NDhWPc3pQ2PfyMtsKVFBaicWkp1C1b6r9W1R/gdvXs8HLyy7jmdw2/xP9S+QlEVCt8cUVEZN7YBwynXbt2sLW1xf79+8t9vGPHjoiMjCxzAbJjx45BrVaX2TV96aWXsGnTJvz+++9Qq9V48skn9Y91794d586dQ9u2be/7Y2Vl9cBslZ3n7e2NkpISnDp1Sn9OXFzcfRdmu1f9+vXh6elZ4febnJyMK1eu6L8WExMDjUaj33mvjX9/ZjskJAQd7ry7oKrPdUW6deuG0tJSpKWl3fecNW7cuMo5raysUFpaWuXjReJCW+HSzpyBBQBbLy/91/z9/at8/sq+K2GZbIm3Mt8yfDgiKqM6tUlERHUP+4Dh2NjY4MMPP8QHH3yA77//HomJiQgJCcH69esBAGPGjIGNjQ3GjRuHs2fP4uDBg5gxYwZeeeUV/VuZ7x4XERGBefPm4bnnnoONjY3+sQ8//BAnTpzA9OnTERkZiYSEBOzcuRMzZsyoMFtl53l5eWHYsGGYPHkyQkNDER4ejkmTJlW6az137lwsWbIE33zzDRISEhAREYHly5cDuH1xN19fX/33c/LkSYwdOxYDBw68763tNbFt2zYEBAQgPj4en376KU6ePKm/2FlVn+uKtG/fHmPGjMHYsWOxfft2XLp0CWFhYViwYAH+/PPPKuf09PREVFQU4uLikJGRUeaq5vfKzc1FZGSk/u3vly5dQmRkJJKTk6s8V21xoa1wmXf+cTh37qz/2qxZs6p8vl09O7x0+SVc7XMVv134zdDxiOge1alNIiKqe9gHDGvOnDl499138cknn8Db2xujR4/Wf17Xzs4Oe/bsQVZWFnr16oXnnnsOgwcPvu++ye3atUOvXr0QFRWlv9r4Xb6+vjh06BASEhLQv39/dOvWDXPmzIHHPR/ZLE9VzgsMDETz5s0xcOBAPPPMM5gyZQoaNWpU4bjjxo3DsmXLsGrVKvj4+OCpp57SX5FbpVLh119/hYuLCwYMGIAhQ4agdevW2LrVMHcY+uyzz7Blyxb4+vpiw4YN2LRpEzp27Aig6s91ZQIDAzF27Fi8++678PLywtNPP43Q0NAynzuvzOTJk+Hl5YWePXuiYcOGOHbsWLnHnTp1Ct26dUO3bt0AAO+88w66deuGTz75pFqZa0MlCXrTu1arhZOTEzQaDRwdHUVEMAnHZ87EQ8uXQ3P5MpzufFZk/vz51fpBnlucC+c0ZzRJboLkh+T7LQ6RualubRIRUd3CPnBbfn4+YmNj4e3tDTs7O9FxqBIqlQo7duzAqFGjREdRhLv/fpOSkpCdnY2cnByMHTsWrq6u1RqHO9oKV5yYCA2gX2QDtz9rUh0OVg74v4v/hyt9r2DnhZ0GTkhEd1W3NomIqG5hHyCiu7jQVjjV1atIs7Yu87XDhw9Xe5xv+34Li+sWmJFW8WdOiKjmalKbRERUd7APENFdXGgrnE1aGrLvuRceALRq1ara4zhYOWD0xdFI7puMXYm7DBWPiO5Rk9okIqK6g32AKuLp6Ylly5aJjnEfSZL4tnEj4EJb4Rw1GhQ0aFDmayUlJTUaa03fNbC4YYE3Ut4wRDQi+pea1iYREdUN7ANExjV+/Pgq/VJg/vz56NWrF+rXr49GjRph1KhR+vuby4ULbYVrUFgIXdOmZb6WkpJSo7EcrBzwfOLzuNz3Mv66+Jch4hHRPWpam0REVDewD9R9xcXFoiNQFRw6dAjTp09HSEgI9u3bh5KSEjz++ONl7gVubFxoK1hBVhYaShIs//U2pB49etR4zDV91sAi1QLTr0+vbTwi+pfa1CYREZk+9gHD0ul0WLBgAdq2bQtra2u0aNEC8+bN0z8eHR2NRx99FLa2tnBzc8OUKVOQm5sLANizZw9sbGyQnZ1dZsyZM2di4MCB+r8fP34cAwYMgK2tLZo3b46ZM2eWWYx5enrC398f48ePh5OTEyZPnlyl89LS0jBixAjY2tqiVatW2LRpU5W+54CAAPj4+MDa2hoeHh76e1kDQHJyMkaOHAkHBwc4OjrihRdeQGpqqv7xuXPnomvXrggICECLFi3g4OCAadOmobS0FAsXLkTjxo3RqFGjMs8hcPuq46tXr8YTTzyhz7tt27Yyx1T0XAP/7DQvXrwYHh4ecHNzw/Tp08vc57q4uBgffPABmjZtCnt7e/Tp0wfBwcH6x4OCguDs7Iw9e/bA29sbDg4OGDZsGG7cuKH//jZs2IDffvsNKpUKKpWqzPn32r17N8aPHw8fHx906dIFgYGBSE5ORnh4eJX+OxgCF9oKlnrnH4K9t3eZr//66681HtPR2hHPJDyDS36XsOfSntrEI6J/qU1tEhGR6WMfeLB85COiCv/LR77+nFmzZmHBggWYM2cOYmJi8OOPP8Ld3f32ePn5GDZsGFxcXBAWFoZt27bh77//1i9MhwwZAmdnZ/zyyy/68UpLS/HTTz/p76cdHR2NoUOH4plnnkFUVBS2bt2Ko0ePllncAsCiRYvQqVMnhIeHY86cOVU6b/z48UhKSsKBAwfw888/Y9WqVfp7gD/I6tWrMX36dEyZMgXR0dHYuXMn2rZtC+Cfz1FnZWXh0KFD2LdvHxITEzF69OgyYyQmJuKvv/7C7t27sXnzZgQEBODJJ5/E1atXcejQISxYsACzZ89GSEhImfPmzJmDZ599FmfOnMHLL7+MF198EbGxsVV6ru86ePAgEhMTcfDgQWzYsAFBQUEICgrSPz5hwgQcO3YMW7ZsQVRUFJ5//nkMGzZMf6/wu3MtXrwYP/zwAw4fPozk5GS89957AID33nsPL7zwgn7xfePGDTz00EMVPqd3aTQaAKj2LbpqRRJEo9FIACSNRiMqguJFLF4sSYCU9PffZb5eUFBQq3FvFtyU1NfVUusjrWs1DhGVVdvaJCIi08Y+cFteXp506tQpKS8vT/+1cClcQhX+Fy6FS5IkSVqtVrK2tpbWrVtX7hxr166VXFxcpNzcXP3X/vjjD0mtVkspKSmSJEnSzJkzpUcffVT/+J49eyQrKyspKytLkiRJeuWVV6QpU6aUGffIkSOSWq3W/7ds2bKlNGrUqDLHVHZeXFycBEAKCQnRPx4bGysBkJYuXfrA561JkybSxx9/XO5je/fulSwsLKTk5GT9186dOycBkE6ePClJkiR9+umnkp2dnaTVavXHDB06VPL09JRKS0v1X/Py8pLmz5+v/zsA6bXXXiszX58+faRp06ZJklS153rcuHFSy5YtpZKSEv0xzz//vDR69GhJkiTpwoULkkqlkq5du1ZmnsGDB0uzZs2SJEmSAgMDJQDShQsX9I+vXLlScnd31/993Lhx0siRI8t9jh5Ep9NJI0aMkPr161el4+/++/3555+l7777Tlq6dKmUmZlZrTklSZK4o61geXd+i+T+r7chLV68uFbjOts445n4Z3DR7yL2Je2r1VhE9I/a1iYREZk29oEH64AOCK/C/zqgAwAgNjYWRUVFGDx4cLnjxcbGokuXLrC3t9d/7eGHH4ZOp9Nf9GrMmDEIDg7G9evXAQCbNm3C8OHD4eLiAgAIDw9HUFAQHBwc9H+GDh0KnU6HS5cu6cft2bNnmbkrOy82NhaWlpZlzuvQoQOcnZ0f+PykpaXh+vXrFX6/zZs3R/PmzfVf69ixI5ydnfU7z8Dtt7rXv+eORe7u7ujYsSPUanWZr/17d93Pz+++v98dtyrPNQD4+PjAwsJC/3cPDw/9PBEREZAkCe3bty/zvB06dAiJiYn6c+zs7NCmTZtyx6ipN954A1FRUdi8eXOtxqkuS1lno2opuXQJ6SoVGv6rKGfPnl3rsdf1WYftadsx7eo0XPC8UOvxiMgwtUlERKaLfeDB7GCH7uhe5eNtbW0rfFySJKhUqnIfu/v13r17o02bNtiyZQumTZuGHTt2IDAwUH+cTqfD1KlTMXPmzPvGaNGihf7/37vArMp5dxefD8pXnpp+v//+er169co8rlKpyv2aTqerNNPdcavyXD9o7rvz6HQ6WFhYIDw8vMxiHAAcHBwqHEOSpEqzPsiMGTOwc+dOHD58GM2aNavxODXBHW0FU1+/jvRyis7f37/WYzvbOGNU/Cgk9k3EgcsHaj0eERmmNomIyHSxDxhOu3btYGtri/3795f7eMeOHREZGVnmAmTHjh2DWq1G+/bt9V976aWXsGnTJvz+++9Qq9V48skn9Y91794d586dQ9u2be/7Y2Vl9cBslZ3n7e2NkpISnDp1Sn9OXFzcfRdmu1f9+vXh6elZ4febnJyMK1eu6L8WExMDjUYD739dz6km/v2Z7ZCQEHTo0EE/d1We64p069YNpaWlSEtLu+85a9y4cZVzWllZobS0tNLjJEnCG2+8ge3bt+PAgQNC7nHPhbaC2aWnQ+vkdN/XJ02aZJDx1/VeB3WmGq8lv2aQ8YjMnaFqk4iITBP7gOHY2Njgww8/xAcffIDvv/8eiYmJCAkJwfr16wHcflu4jY0Nxo0bh7Nnz+LgwYOYMWMGXnnlFf0F0+4eFxERgXnz5uG5556DjY2N/rEPP/wQJ06cwPTp0xEZGYmEhATs3LkTM2bMqDBbZed5eXlh2LBhmDx5MkJDQxEeHo5JkyZVums9d+5cLFmyBN988w0SEhIQERGB5cuXA7h9cTdfX1/993Py5EmMHTsWAwcOvO+t7TWxbds2BAQEID4+Hp9++ilOnjypv9hZVZ/rirRv3x5jxozB2LFjsX37dly6dAlhYWFYsGAB/vzzzyrn9PT0RFRUFOLi4pCRkVHmqub3mj59OjZu3Igff/wR9evXR0pKClJSUlBQUFDluWqLC20Fc87NRVGjRvd9/ffffzfI+K62rnj6/NNI8EvgrjaRARiqNomIyDSxDxjWnDlz8O677+KTTz6Bt7c3Ro8erf+8rp2dHfbs2YOsrCz06tULzz33HAYPHowVK1aUGaNdu3bo1asXoqKi9Fcbv8vX1xeHDh1CQkIC+vfvj27dumHOnDnw8PCoMFdVzgsMDETz5s0xcOBAPPPMM5gyZQoalfO6/l7jxo3DsmXLsGrVKvj4+OCpp57SX5FbpVLh119/hYuLCwYMGIAhQ4agdevW2Lp1a5Wfz4p89tln2LJlC3x9fbFhwwZs2rQJHTt2BFD157oygYGBGDt2LN599114eXnh6aefRmhoaJnPnVdm8uTJ8PLyQs+ePdGwYUMcO3as3ONWr14NjUaDQYMGwcPDQ//HUM9XVaik2rzpvRa0Wi2cnJyg0Wjg6OgoIoKiSTodci0sEP7kkxi0a1eZx8LCwtCrVy+DzJNVkIWGOQ3RJq4N4vvHG2RMInNlyNokIiLTwz5wW35+PmJjY+Ht7Q07OzvRcagSKpUKO3bswKhRo0RHUYS7/36TkpKQnZ2NnJwcjB07ttq3BuOOtkJpr1xBfQBW91x1767MzEyDzeNq64oRMSOQ0DcBh68cNti4RObIkLVJRESmh32AiO7iQluhUu9cPKG+j899jxn6swXf9f4O6ptqTLk0xaDjEpkbOT/3Q0REysM+QER3caGtUJqzZwEADbp1u++xdu3aGXSuBnYNMDxmOOL84nD06lGDjk1kTgxdm0REZFrYB6ginp6eWLZsmegY95EkiW8bNwIutBWqIC4OJQAadely32MHDx40+Hzre62HKluFyRcnG3xsInNhjNokIiLTwT5AZFzjx4+v0i8FVq9eDV9fXzg6OsLR0RF+fn7466+/jB/wHlxoK5Tu8mWkWFjAopx7+I0dO9bg8zWyb4Qnzj2B833P49jV8q/eR0QVM0ZtEhGR6WAfqPuKi4tFR6AqaNasGb788kucOnUKp06dwqOPPoqRI0fi3LlzsmXgQluhLFNSkPWAqzTevZ+eoQX2CoRKy11topoyVm0SEZFpYB8wLJ1OhwULFqBt27awtrZGixYtMG/ePP3j0dHRePTRR2Fraws3NzdMmTIFubm5AIA9e/bAxsYG2dnZZcacOXMmBg4cqP/78ePHMWDAANja2qJ58+aYOXMm8vLy9I97enrC398f48ePh5OTEyZPnlyl89LS0jBixAjY2tqiVatW2LRpU5W+54CAAPj4+MDa2hoeHh76e1kDQHJyMkaOHAkHBwc4OjrihRdeQGpqqv7xuXPnomvXrggICECLFi3g4OCAadOmobS0FAsXLkTjxo3RqFGjMs8hcPuq46tXr8YTTzyhz7tt27Yyx1T0XAP/7DQvXrwYHh4ecHNzw/Tp08vc57q4uBgffPABmjZtCnt7e/Tp0wfBwcH6x4OCguDs7Iw9e/bA29sbDg4OGDZsGG7cuKH//jZs2IDffvsNKpUKKpWqzPn3GjFiBIYPH4727dujffv2mDdvHhwcHBASElKl/w6GwIW2QjlkZiLnAZeQnz17tlHmbGTfCEPPDkVs31icuHbCKHMQ1WXGqk0iIjIN7AOGNWvWLCxYsABz5sxBTEwMfvzxR7i7uwO4fQumYcOGwcXFBWFhYdi2bRv+/vtv/cJ0yJAhcHZ2xi+//KIfr7S0FD/99JP+ftrR0dEYOnQonnnmGURFRWHr1q04evRomcUtACxatAidOnVCeHg45syZU6Xzxo8fj6SkJBw4cAA///wzVq1apb8H+IOsXr0a06dPx5QpUxAdHY2dO3eibdu2AP75HHVWVhYOHTqEffv2ITExEaNHjy4zRmJiIv766y/s3r0bmzdvRkBAAJ588klcvXoVhw4dwoIFCzB79uz7Fpxz5szBs88+izNnzuDll1/Giy++iNjY2Co913cdPHgQiYmJOHjwIDZs2ICgoCAEBQXpH58wYQKOHTuGLVu2ICoqCs8//zyGDRumv1f43bkWL16MH374AYcPH0ZycjLee+89AMB7772HF154Qb/4vnHjBh566KEKn1Pg9n/3LVu2IC8vD35+fpUebzCSIBqNRgIgaTQaUREULcnSUjrYu3e5j/3vf/8z2rw3cm5IqgyV5HPIx2hzENVVxqxNIiJSPvaB2/Ly8qRTp05JeXl593xNksLDK/9z9xStVitZW1tL69atK3eOtWvXSi4uLlJubq7+a3/88YekVqullJQUSZIkaebMmdKjjz6qf3zPnj2SlZWVlJWVJUmSJL3yyivSlClTyox75MgRSa1WSwUFBZIkSVLLli2lUaNGlTmmsvPi4uIkAFJISIj+8djYWAmAtHTp0gc+b02aNJE+/vjjch/bu3evZGFhISUnJ+u/du7cOQmAdPLkSUmSJOnTTz+V7OzsJK1Wqz9m6NChkqenp1RaWqr/mpeXlzR//nz93wFIr732Wpn5+vTpI02bNk2SpKo91+PGjZNatmwplZSU6I95/vnnpdGjR0uSJEkXLlyQVCqVdO3atTLzDB48WJo1a5YkSZIUGBgoAZAuXLigf3zlypWSu7u7/u/jxo2TRo4cWe5z9G9RUVGSvb29ZGFhITk5OUl//PFHlc67++/3559/lr777jtp6dKlUmZmZpXOvZelfEt6qipdSQkal5QgqUWLch//92+PDKmxQ2M8fupx7PHbg7AbYejl0ctocxHVNcasTSIiUj72gQc7fx7o0aPy48LDge7dgdjYWBQVFWHw4MHlHhcbG4suXbrA3t5e/7WHH34YOp0OcXFxcHd3x5gxY+Dn54fr16+jSZMm2LRpE4YPHw4XF5c7c4XjwoULZd7WLUkSdDodLl26BG9vbwBAz549/5Wx4vPi4+NhaWlZ5rwOHTrA2dn5gd93Wloarl+/XuH327x5czRv3lz/tY4dO8LZ2RmxsbHo1ev2a3ZPT0/Ur19ff4y7uzssLCygVqvLfO3fu+v/3un18/NDZGSkfu7KnmsA8PHxgYWFhf4YDw8PREdHAwAiIiIgSRLat29fZp6ioiK4ubnp/25nZ4c2bdqUGaOydwI8iJeXFyIjI5GdnY1ffvkF48aNw6FDh9CxY8cajVddXGgrUEZMDBoBsPnXP8S7Nm7caNQf5AE9AtAsrxlejX8VUR5RRpuHqK4xdm0SEZGysQ88WIcOtxfRVTkOAGxtbSs8TpIkqFSqch+7+/XevXujTZs22LJlC6ZNm4YdO3YgMDBQf5xOp8PUqVMxc+bM+8Zocc+G170LzKqcFxcXVyZHVdT0+/331+vVq1fmcZVKVe7XdDpdpZnujluV5/pBc9+dR6fTwcLCAuHh4WUW4wDg4OBQ4RiSJFWatTxWVlb6t9737NkTYWFh+Prrr7FmzZoajVddXGgrUMbp02gEwKlTp3Ifv/cCDsbQpH4TDAkegn1++3Dqxin09OhZ+UlEZPTaJCIiZWMfeDA7u9s71VXVrl072NraYv/+/Zg0adJ9j3fs2BEbNmxAXl6efiF87NgxqNXqMrumL730EjZt2oRmzZpBrVbjySef1D/WvXt3nDt3Tr8Yq6rKzvP29kZJSQlOnTqF3r17AwDi4uLuuzDbverXrw9PT0/s378fjzzySLnfb3JyMq5cuaLf1Y6JiYFGo9HvvNdGSEhImavmh4SEoFu3bvq5q/JcV6Rbt24oLS1FWloa+vfvX+OcVlZWKC0trdG5kiShqKioxnNXFy+GpkDaO5edb/iAn0aJiYlGzxDQPQCqfBUmxk80+lxEdYUctUlERMrFPmA4NjY2+PDDD/HBBx/g+++/R2JiIkJCQrB+/XoAwJgxY2BjY4Nx48bh7NmzOHjwIGbMmIFXXnlF/1bmu8dFRERg3rx5eO6552BjY6N/7MMPP8SJEycwffp0REZGIiEhATt37sSMGTMqzFbZeV5eXhg2bBgmT56M0NBQhIeHY9KkSZXuWs+dOxdLlizBN998g4SEBEREROivZD9kyBD4+vrqv5+TJ09i7NixGDhw4H1vba+Jbdu2ISAgAPHx8fj0009x8uRJ/bszqvpcV6R9+/YYM2YMxo4di+3bt+PSpUsICwvDggUL8Oeff1Y5p6enJ6KiohAXF4eMjIwyVzW/10cffYQjR44gKSkJ0dHR+PjjjxEcHKy/EJ4cuNBWoKKEBOQDcG3XrtzHrcq5t7ahNXNshkfPPIroPtGISIkw+nxEdYEctUlERMrFPmBYc+bMwbvvvotPPvkE3t7eGD16tP7zunZ2dtizZw+ysrLQq1cvPPfccxg8eDBWrFhRZox27dqhV69eiIqKum+R5evri0OHDiEhIQH9+/dHt27dMGfOHHh4eFSYqyrnBQYGonnz5hg4cCCeeeYZTJkyBY0aNapw3HHjxmHZsmVYtWoVfHx88NRTT+mvyK1SqfDrr7/CxcUFAwYMwJAhQ9C6dWts3bq1ys9nRT777DNs2bIFvr6+2LBhAzZt2qT/LHNVn+vKBAYGYuzYsXj33Xfh5eWFp59+GqGhoWU+d16ZyZMnw8vLCz179kTDhg1x7Nixco9LTU3FK6+8Ai8vLwwePBihoaHYvXs3HnvssWplrg2VVNM3vdeSVquFk5MTNBoNHB0dRURQrOCePdEyKgqtiovLfTw8PBw9qnI1iVpK1iTDU+cJ3yhfRA6MNPp8RKZOrtokIiJlYh+4LT8/H7GxsfD29oadnZ3oOFQJlUqFHTt2YNSoUaKjKMLdf79JSUnIzs5GTk4Oxo4dC9cH3Hr5QbijrUDWKSm4ec9FAf4tvCpXkjCAFk4t8MiZR3Cm9xlEpkbKMieRKZOrNomISJnYB4joLi60Fah+djbyGjR44OMjR46ULUtgt0CoilSYeJ6f1SaqjJy1SUREysM+QER3caGtQG4FBSit4LMh69atky1LC6cWGBg5EKd7n0ZUGm/1RVQROWuTiIiUh32ATJEkSXzbuBFwoa0wxbm5cNfpYOHp+cBjZs+eLV8gAEHdgoBiYELMBFnnJTI1ctcmEREpC/sAEd3FhbbCpEVGQg3ArkOHBx7j7+8vXyAALZ1aYsDpAYjoHYGz6WdlnZvIlMhdm0REpCzsA0R0FxfaCpMZGQkAcO7c+YHHvPvuuzKl+UdQ1yDgFjD+3HjZ5yYyFSJqk4iIlIN9gIju4kJbYXJjYgAA7hXceH7VqlVyxdFr5dwK/U/3R3jvcJxLPyf7/ESmQERtEhGRcrAPENFdXGgrzK2LF3FTpYJD48YPPObpp5+WMdE/ArsEAiXAhHP8rDZReUTVJhERKQP7ABHdxYW2wqiuXUOatXWFx0RERMiUpqw2Lm3wcMTDCOsVhtiMWCEZiJRMVG0SEZEysA8Q0V2WogNQWbZpadA4OlZ4TMOGDWVKc79A30C017XHhLMTEDIoRFgOIiUSWZtERCQe+0BZBQUFoiMQVZuh/t1yoa0wTlotUtu0qfAY60p2vI2pnWs7+AX74UTPE4jLjIOXm5ewLERKI7I2iYhIPPaB2ywtLaFWq5GUlCQ6ClGNSJKE0tLSWo3BhbbCNCwqwo2mTSs8JjExEQ8//LBMie4X2DkQHdAB46PH48SgE8JyECmN6NokIiKx2Adus7Kygo+PD0pKSqDRaLBr1y7Y29vzFxEkVHx8PNq3b1+lY0tLS1FSUlKr+bjQVpC8tDS4ShLqtW5d4XGDBg2SJ9ADeLl5oW9wX4T0CEFCVgLaubYTmodIKUTXJhERicU+8A8rKytYWVmhsLAQeXl5uHXrFhfaJJSNjQ2ys7OrdU5RUVGN5+NCW0FST51CawAOHTtWeNwPP/yAjz/+WJ5QDxDUOQgdVB0wPmo8jg06JjQLkVIooTaJiEgc9oH7WVtbw9HREVqtFsXFxaLjkBmLjo6Gr69vtc9zdHSs0S+JVJIkSdU+ywC0Wi2cnJyg0WjgWMnFv8xF+JdfosesWbhy6BCaDxjwwON0Oh3UavEXjO8T3Acnu5/EhdILaONS8efKicyBUmqTiIjEYB8oX15eXq12BokMoab1aW1tDXt7+2qfxx1tBck/fx46AO7du1d43BdffIHZs2fLE6oCQZ2C0NGiI8ZHjMeRQUdExyESTim1SUREYrAPlM/e3r5GCxUiQ/L395e1PrmjrSDBgwahw5EjaFzJFe6U9NvSXsG9cKr7Ke5qE0FZtUlERPJjHyBSLrnrkz8JFMTi+nVk2NpWetz8+fNlSFM1gT6BgCUw4cwE0VGIhFNSbRIRkfzYB4iUS+765I62goS7uaHY1hZ+V69WeFxycjJatGghU6rK9QzuifBu4bgoXUQr51ai4xAJo7TaJCIiebEPECmX3PXJHW0FccnNRZG7e6XHBQcHGz9MNQT5BAH1gAmR3NUm86a02iQiInmxDxApl9z1yYW2Qkg6HdyLi4HmzSs9tk0bZX0WulPDTuh+sjsOdTuEy5rLouMQCaO02iQiInmxDxApl9z1yYW2QtxMTIQ9AOt27So9Vom3RwjsGAhYARNOc1ebzJcSa5OIiOTDPkCkXHLXJxfaCpEeEQEAcOzYsfJj09ONHafafBv5ouvJrgjuGoxkTbLoOERCKLE2iYhIPuwDRMold31yoa0QmrNnAQANunWr9NjuldxnW5T1Xush2Ujc1SazpdTaJCIiebAPECmX3PXJhbZCFMTFoRhAw06dKj12586dxg9UA90bd4dvqC8OdjmIq9qKr5xOVBcptTaJiEge7ANEyiV3ffL2XgoR3LcvWoeHo8WtW5UeW1BQANsq3G9bhFM3TqGXSy8MCRmCfYP2iY5DJCsl1yYRERkf+wCRcsldn9zRVoh6KSnIsrev0rFLliwxcpqa6+nRE51DO2O/735cz7kuOg6RrJRcm0REZHzsA0TKJXd9ckdbIc44OSHHzQ39Ll4UHaXWwm6Eobdrbzx+4nHsGbRHdBwiIiIiIiJZcUdbIdzy8lDSuHGVjvX39zdymtrp5dELnUI6YV/nfdzVJrOi9NokIiLjYh8gUi6565MLbQUoLS5G49JSqFu2rNLxkydPNnKi2vuu3XeQ6kuYGD5RdBQi2ZhCbRIRkfGwDxApl9z1yYW2AqRFRcESgK2XV5WO/+2334wbyAD6NOmDjiEdsbfzXqTkpoiOQyQLU6hNIiIyHvYBIuWSuz650FaAzMhIAIBTFW7tBQA9evQwYhrD+a7NnV3tU9zVJvNgKrVJRETGwT5ApFxy1ycX2gqgPXcOANCoiv/xU1NTjRnHYPya+sE7xBu7fXYjLS9NdBwiozOV2iQiIuNgHyBSLrnrkwttBSi+cAE5AJyq+Bnt4uJi4wYyoHWt10FykjAxjLvaVPeZUm0SEZHhsQ8QKZfc9cmFtgKorl5FmpUVVOqq/edo06aNkRMZzsPNHkaHkA740+dP7mpTnWdKtUlERIbHPkCkXHLXJxfaCmCdmoqb9etX+fhDhw4ZMY3hrWu9DpKzhFfDXhUdhcioTK02iYjIsNgHiJRL7vpUSZIkyTrjHVqtFk5OTtBoNHB0dBQRQTFi7O2R0bw5Bpw/X6Xjs7Oz4ezsbNxQBuZ1xAsJHRKQZp+GBnYNRMchMgpTrE0iIjIc9gEi5ZK7PrmjrQANCguha9KkysevWLHCiGmMY03LNZCcJUw6OUl0FCKjMcXaJCIiw2EfIFIuueuTO9qCFWm1sHZywpEJE9A/IEB0HKNqf6Q9EtsnIt0xHa62rqLjEBERERERGQV3tAVLOXUKAGDv7V3lc/z9/Y0Vx6jWtlwLnZuOu9pUZ5lqbRIRkWGwDxApl9z1yR1twSKXLUPXt9/Gpd270Wro0Cqdo9Fo4OTkZORkxtHuSDtcbHcRmc6ZcLZxFh2HyKBMuTaJiKj22AeIlEvu+uSOtmC5MTEAAPcePap8zvfff2+sOEb3bYtvoWugw6RQ7mpT3WPKtUlERLXHPkCkXHLXJxfagpVcuoQMlQp2Dap+Je5HHnnEiImMa3DLwWgd0ho72u9AdmG26DhEBmXKtUlERLXHPkCkXHLXJxfagqmvXUO6jU21zklISDBSGnl82+xb6BrpMDl0sugoRAZl6rVJRES1wz5ApFxy1ycX2oLZZmRAW83PCtja2hopjTwe83wMrU+0xvb226Et0oqOQ2Qwpl6bRERUO+wDRMold31yoS2Ys1aLwoYNq3WOm5ubkdLIZ1XTVdA10mFKyBTRUYgMpi7UJhER1Rz7AJFyyV2fXGgL1qioCFKzZtU6JzIy0jhhZDS01VB4hnji53Y/c1eb6oy6UJtERFRz7ANEyiV3fXKhLZD26lU4AbBq06Za540YMcI4gWS20mMlShuX4rXQ10RHITKIulKbRERUM+wDRMold31yoS1QWng4AMChY8dqnffdd98ZI47shrcejpYnWuKnNj9xV5vqhLpSm0REVDPsA0TKJXd9qiRJkmSd8Q6tVgsnJydoNBo4OjqKiCDcKX9/9JwzB9eOH0dTPz/RcYTYlbgLI1qNwEtHX8KmAZtExyEiIiIiIqo17mgLlH/+PEoBuHfrVq3z/P39jRNIgKfaPIUWIS2wtfVW5Bbnio5DVCt1qTaJiKj62AeIlEvu+uSOtkDB/fuj/YkTaFJSUq3zCgsLYVPNe28r2c4LOzGy9Ui8cvQVfD/ge9FxiGqsrtUmERFVD/sAkXLJXZ/c0RbI8sYNZNbgfm7Lly83Qhpxnm77NJqHNMfmVpuRfytfdByiGqtrtUlERNXDPkCkXHLXJxfaAtlnZiLHxaXa540aNcrwYQT7uuHXKGlegtdDXhcdhajG6mJtEhFR1bEPECmX3PXJhbZALnl5KHZ3r/Z54XeuVl6X/Kfdf9D0RFNs8tzEXW0yWXWxNomIqOrYB4iUS+765EJbEEmnQ+Nbt6Bq0aLa5zZu3NgIicT72u32rvb0kOmioxDVSF2tTSIiqhr2ASLlkrs+udAWJCM2FjYAbNq3r/a5lpaWhg+kAM+2fxZNTzTFxhYbuatNJqmu1iYREVUN+wCRcsldn1xoC5Jx+jQAwNHHp9rnXrp0ydBxFGOZ2zKUtCzBzNCZoqMQVVtdrk0iIqoc+wCRcsldn1xoC6I9dw4A0KCa99AGgAEDBhg6jmI81/45eIR4YEPzDSgsKRQdh6ha6nJtEhFR5dgHiJRL7vrkQluQwvh4FAJo4O1d7XN//PFHwwdSkKUuS2/vaodwV5tMS12vTSIiqhj7AJFyyV2fKkmSJFlnvEOr1cLJyQkajQaOjo4iIggV3KsXPM+cgWdxcbXPLS0thYWFhRFSKYdHqAcyG2VC21wLG0v5bixPVBvmUJtERPRg7ANEyiV3fXJHWxCr1FTctLev0bnz5883cBrlWey4GLda3cJbIW+JjkJUZeZQm0RE9GDsA0TKJXd9ckdbkOj69aFxd0e/CxdER1GsxqGNkdUoC7ktcmFlYSU6DhERERERUZVwR1sQt4IClHh41Ohcf39/A6dRJu5qk6kxl9okIqLysQ8QKZfc9ckdbQFKCguhsrXFsTFjMGDjxmqff+XKFTRv3twIyZTH/aQ7shtkI6dlDne1SfHMqTaJiOh+7ANEyiV3fXJHW4DU06dhAcCuQ4canb9//37DBlKwRQ6LUNy6GO+Gvis6ClGlzKk2iYjofuwDRMold31yoS1AZmQkAMC5c+cand++fXsDplG2sR3HomFYQ6x1X4vi0upfoZ1ITuZUm0REdD/2ASLlkrs+udAWIDcmBgDQqEePGp1fUFBgyDiKt8BuAYrbFOO90PdERyGqkLnVJhERlcU+QKRcctcnF9oCFCcmQgPAsVmzGp2fmZlp2EAKN8FnAhqENcDaRmtRoisRHYfogcytNomIqCz2ASLlkrs+udAWQHX1KtKsrWt8fpcuXQyYxjTMt52PorZFeD/kfdFRiB7IHGuTiIj+wT5ApFxy1ycX2gLYpKcjuxZXWt+1a5cB05iGSZ0mwe2UG1Y3XM1dbVIsc6xNIiL6B/sAkXLJXZ+8vZcAsXZ2SPf0xIA7n9Wurvz8fNjZ2Rk4lfKtjV6LqZ2n4p0T72CJ3xLRcYjuY661SUREt7EPECmX3PXJHW0BGhYWQte0aY3P/+qrrwyYxnRM6TwFruGuWOW2irvapEjmWptERHQb+wCRcsldn9zRlll+RgbsGjbE0cmT0W/tWtFxTM7qqNV43fd1vHfiPSzyWyQ6DhERERER0X24oy2z1PBwAIBDx441HsPf399QcUzONN9pcIlwwQrXFdzVJsUx59okIiL2ASIlk7s+udCW2c2oKACAi69vjceYOnWqoeKYpM8tPkehVyE+Pvmx6ChEZZh7bRIRmTv2ASLlkrs+udCWWV5sLACgcc+eNR5j+/bthopjkt7o8gZcIlyw3Hk5dJJOdBwiPXOvTSIic8c+QKRcctcnF9oyK01KQppaDetafC69V69eBkxkmj6z+AwFHQow++Rs0VGI9FibRETmjX2ASLnkrk8utGWmvn4dGTY2tRrjxo0bBkpjumZ0mQHn085Y5riMu9qkGKxNIiLzxj5ApFxy1ycX2jKzy8iA1smpVmOUlpYaKI1p+1T1KQq8C/Bp2KeioxABYG0SEZk79gEi5ZK7PrnQlplLTg6K3N1rNYanp6dhwpi4t7q+BadIJyypv4S72qQIrE0iIvPGPkCkXHLXJxfaMpJ0OjQqLobUrFmtxjly5IiBEpm+OdIcFHgXYG7YXNFRiFibRERmjn2ASLnkrk+VJEmSrDPeodVq4eTkBI1GA8daXBjMlGRfugTn1q1x4u234ffVVzUeJysrC66urgZMZrp0kg4uUS4oqVeCHO8cqFX83RGJw9okIjJv7ANEyiV3fXJVIqO08HAAQP2OHWs1zqpVqwwRp05Qq9SYXTob+R3z8b9T/xMdh8wca5OIyLyxDxApl9z1yR1tGYXNnYten32GG2Fh8KjFfbSpLJ2kg3O0M3RqHbQ+Wu5qExERERGRUFyRyKggLg63ADTy9a3VOP7+/oYJVEeoVWp8dOsj5HXKwxfhX4iOQ2aMtUlEZN7YB4iUS+765I62jIIfeghtT55Es5KSWo2j1WrN5jmrKp2kg9NZJ0gqibvaJAxrk4jIvLEPECmX3PXJ1YiMLFNSkGlvX+txgoKCah+mjlGr1Phv0X+R1ykP88Pni45DZoq1SURk3tgHiJRL7vrkQltGDllZyHVxqfU4Q4YMMUCaumdWj1lwiHbAl9Zf8r7aJARrk4jIvLEPECmX3PXJhbaMXPPycKtx41qPc/78eQOkqXvUKjU+LPoQuZ1zsTBioeg4ZIZYm0RE5o19gEi55K5PLrRloispQeOSEqhatKj1WPYGePt5XfVRj49gf9YeX9T7grvaJDvWJhGReWMfIFIuueuTC22ZpJ89CysAtl5etR5Lzhutmxq1So33C95Hjm8OlpxeIjoOmRnWJhGReWMfIFIuueuTC22ZZJw+DQBw6tSp1mNFRUXVeoy6bE7PObCLsYO/hT93tUlWrE0iIvPGPkCkXHLXJxfaMtGePQsAaNi9e63HeuKJJ2o9Rl2mVqnxbu670HbRYmnkUtFxyIywNomIzBv7AJFyyV2fXGjLpCgxEXkAXNq0qfVYAQEBtQ9Ux83tNRd2MXb4n+p/oqOQGWFtEhGZN/YBIuWSuz5VkiRJss54h1arhZOTEzQajaw3DhcluEcPtDh7Fq2LikRHMRtzTs6Bf29/LI1cire6viU6DhERERERmQnuaMvEOjUVNx0cDDKWv7+/Qcap6z7r9RlsY23xmfSZ6ChkJlibRETmjX2ASLnkrk/uaMvkrIMDbjZpgv7x8bUeq6ioCNbW1gZIVfd9FPoR5veZj2/OfIMZXWaIjkN1HGuTiMi8sQ8QKZfc9ckdbZk0KChAaZMmBhnr66+/Nsg45sC/tz9sz9vi09JPRUchM8DaJCIyb+wDRMold31yoS2D4txcNNLpYOHpaZDxnn32WYOMYw7UKjVmZM/Aze43seLMCtFxqI5jbRIRmTf2ASLlkrs+udCWQWpEBNQA7Dp0MMh4J0+eNMg45mJe73mwibPBJ6WfiI5CdRxrk4jIvLEPECmX3PXJhbYMss6cAQC4+PoaZDwPDw+DjGMuLNWWmHHz9q726qjVouNQHcbaJCIyb+wDRMold31yoS2D3JgYAIB7z54GGc/CwsIg45iTL3p/AZt4G8y+NVt0FKrDWJtEROaNfYBIueSuTy60ZXDr4kVkqVSwb9TIIONdvnzZIOOYE0u1JV7PfB1ZPbKwNnqt6DhUR7E2iYjMG/sAkXLJXZ9caMtAfe0a0g14Kfl+/foZbCxzsqDPAlgnWOOjoo9ER6E6irVJRGTe2AeIlEvu+uRCWwY26enQGPBe4Vu2bDHYWObEUm2JaenTkNkzE9+d/U50HKqDWJtEROaNfYBIueSuT5UkSZKsM96h1Wrh5OQEjUYDRwMuQpUoztYWKW3bYmB0tEHGKykpgaWlpUHGMjcluhI4XHRA/Zv1kd4rXXQcqmNYm0RE5o19gEi55K5P7mjLoFFREaSmTQ023pdffmmwscyNpdoSU9OmIqNXBgLPBYqOQ3UMa5OIyLyxDxApl9z1yR1tI8tNSYGDhweOTZuGh1etEh2HABSXFqN+Un04ZTkhrVea6DhERERERFTHcEfbyFJPnQIAOHTsaLAx/f39DTaWObKysMKU1ClI75WODTEbRMehOoS1SURk3tgHiJRL7vrkQtvIsu98Ltuta1eDjTl+/HiDjWWulvRZAqtEK3yQ+4HoKFSHsDaJiMwb+wCRcsldn1xoG1n++fPQAXDv3t1gY+7bt89gY5krKwsrvJryKtJ6p2Fj7EbRcaiOYG0SEZk39gEi5ZK7PrnQNrLSpCSkqtWoZ2dnsDG9vb0NNpY5W9Z3Gepdqof3tO+JjkJ1BGuTiMi8sQ8QKZfc9cmFtpFZ3LiBTFtbg46Zk5Nj0PHMlZWFFSZem4jUPqnYFLtJdByqA1ibRETmjX2ASLnkrk8utI3MPiMDOS4uBh0zOzvboOOZM+5qkyGxNomIzBv7AJFyyV2fXGgbmUtuLorc3Q06ZufOnQ06njmzsbTB+GvjkdInBVvjtoqOQyaOtUlEZN7YB4iUS+765ELbiCSdDu63bkHVvLlBx/3rr78MOp65+6bvN6iXVA9v33xbdBQycaxNIiLzxj5ApFxy1ycX2kaUlZAAOwDW7doZdNzJkycbdDxzZ2Npg7FXx+JG3xv4Ke4n0XHIhLE2iYjMG/sAkXLJXZ9caBtRekQEAMDRx8eg4y5btsyg4xGwou8KWF625K421Qprk4jIvLEPECmX3PWpkiRJknXGO7RaLZycnKDRaODo6CgigtGFfvQR+syfj7QzZ9DI11d0HKrEhCMTENQ/CNvit+G59s+JjkNERERERCaKO9pGVJiQgCIADTp2NOi4/v7+Bh2PblvZdyUsky3xVuZboqOQiWJtEhGZN/YBIuWSuz650DYiKTkZKZaWUFtaGnTc1157zaDj0W129eww5vIYXPO7hh0JO0THIRPE2iQiMm/sA0TKJXd9cqFtRFYpKbhpb2/wcX/++WeDj0m3req7CpZXLPFm+puio5AJYm0SEZk39gEi5ZK7PrnQNiKHmzeR6+Zm8HH79u1r8DHpNrt6dnjx0ou40vcKfrvwm+g4ZGJYm0RE5o19gEi55K5PLrSNyDU/HyWNGxt83KtXrxp8TPrHqr6rYHHdAjPSZoiOQiaGtUlEZN7YB4iUS+765ELbSEqLi9G4tBTqli0NPragC8WbDQcrB4y+OBpX+l7Bzgs7RcchE8LaJCIyb+wDRMold31yoW0kaWfOwBKArZeXwcdu3ry5wcekstb0XQOLGxaYmTpTdBQyIaxNIiLzxj5ApFxy1ycX2kaScfo0AMCpUyeDj33ixAmDj0llOVg54IXEF3DZ7zL+vPin6DhkIlibRETmjX2ASLnkrk+VJOg9LlqtFk5OTtBoNHB0dBQRwaiOv/kmHvrmG2iSkuBk4LePZ2Zmws0IF1mjsrRFWrhmuqL5pea49PAl0XHIBLA2iYjMG/sAkXLJXZ/c0TaS4sREaAE4GuEtCqtXrzb4mHQ/R2tHPJfwHJL6JmHPpT2i45AJYG0SEZk39gEi5ZK7PrmjbSSHunZF0/Pn0bawUHQUqgVtkRYuWS7wTPREYr9E0XGIiIiIiMgEcEfbSKzT0pDt4GCUsf39/Y0yLt3P0doRz8Q/g4t+F7mrTZVibRIRmTf2ASLlkrs+uaNtJDH29sho0QIDYmMNPnZOTg7q169v8HGpfNmF2XC76cZdbaoUa5OIyLyxDxApl9z1yR1tI2lYUABdkyZGGXv9+vVGGZfK52zjjP/E/wcX+17E/sv7RcchBWNtEhGZN/YBIuWSuz650DaCwuxsNJQkWLZqZZTxH3/8caOMSw/2XZ/voM5Q47Xk10RHIQVjbRIRmTf2ASLlkrs+udA2gtTwcACAvbe3UcaPNcLb0alizjbOGBk3Ehf8LuDA5QOi45BCsTaJiMwb+wCRcsldn1xoG0HWmTMAABdfX6OMz8/+iPFd7++gzuSuNj0Ya5OIyLyxDxApl9z1yYW2EeTd+W2Je48eRhnfycnJKONSxVxtXTEidgQS/BIQnBwsOg4pEGuTiMi8sQ8QKZfc9cmFthGUXLqEdJUKtq6uRhn/3LlzRhmXKvdd7++gzlJj6uWpoqOQArE2iYjMG/sAkXLJXZ9caBuB+to1ZNjYGG38YcOGGW1sqlgDuwZ4KuYpxPeNx9GrR0XHIYVhbRIRmTf2ASLlkrs+udA2AtuMDGiN+NaEgIAAo41NlVvfez1U2SpMvjhZdBRSGNYmEZF5Yx8gUi6561MlSZIk64x3aLVaODk5QaPRwNHRUUQEo0mwscF1Ly8MvHNRNKp7ngp+Cn88/AeOph7Fw80eFh2HiIiIiIgUhDvaRtCoqAhSs2ZGG9/f399oY1PVBPQK4K423Ye1SURk3tgHiJRL7vrkjraBaZKT4dSyJY7PnImHvv7aKHPcunUL9erVM8rYVHXDg4fjr4f+wvH04/Br6ic6DikAa5OIyLyxDxApl9z1yR1tA0sLDwcA1O/Y0WhzfPXVV0Ybm6ouoGcAVFoVJiVOEh2FFIK1SURk3tgHiJRL7vrkQtvAsqOjAQBuXbsabY7nn3/eaGNT1TV2aIyhZ4cipm8MQq+Hio5DCsDaJCIyb+wDRMold33WaKGdlpaGb775Bvv378d3331n6EwmrSAuDiUAGnXpYrQ5Tpw4YbSxqXoCewZClaPCpATuahNrk4jI3LEPECmX3PVZo4X2ggUL0KVLFwwePBjx8fFISEgwdC6Tpbt8GakWFrA04n20mzdvbrSxqXoaOzTGY9GP4Wzfswi7ESY6DgnG2iQiMm/sA0TKJXd91mih3a5dO2RnZwMANBoNTp8+bchMJs3yxg1k2tmJjkEyCuwRCFWeCq/Gvyo6ChERERERKUCNFtqvvfYabGxscOzYMVhaWsLa2rrSc4qKiqDVasv8qYvss7KQ6+Ji1DmuXLli1PGpeprUb4LBUYMR3Scap26cEh2HBGJtEhGZr6GzluDRaZug0wm5oQ8RVULu12k1Wmh/8MEHSEpKwrFjx3Dz5k2Ehd1+y6y/vz+uX7+O9evXIywsDHv27MH27dsRExODUaNGwcnJSf/n7tb92rVrERUVhZ07d+KPP/5AREQE1qxZg/T0dP29zvz9/ZGfn48lS5YgLi4OP/30E/bv34/jx48jKCgIV65cKXNsaWkp5s+fj8uXL+OHH37A0aNHERwcjC1btiAhIQGLFi1CYWFhmXNSUlKwbt06hIWFYffu3dixYwfOnj2L5cuXQ6PRlDk2OzsbK1asQHR0NH799Vf8+eefCA8Px9q1a1Gak4P1paX6YwsKCrBkyRIkJCRg69atOHDgAI4dO4bvv/8eycnJmDdvHnQ6Hfz9/aHT6TBv3jwkJyfj+++/x7Fjx3DgwAFs3boVCQkJWLJkCQoKChB+58rm/v7+SE1Nxdq1axEeHo4///wTv/76K6Kjo7FixQpkZ2eXya3RaLB8+XKcPXsWO3bswO7duxEWFoZ169YhJSWlzLGFhYVYtGgREhISsGXLFgQHB+Po0aP44YcfcPnyZcyfPx+lpaVlzrly5QqCgoJw/Phx7N+/Hz/99BPi4uKwZMkS5Ofnlzk2PT0da9asQUREBP744w/s3LkTUVFRWLlyJbKyssocq9Vq8c033yAmJgbbt2/Hnj17EBYWhvXr1+P69etlji0qKsLChQuRmJiIzZs3Izg4GEeOHMHGjRuRlJSEL7/8EiUlJWXOuXr1KgIDAxESEoJ9+/Zh27ZtOH/+PJYuXYrc3Nwyx2ZkZODbb79FZGQkdu3ahd9//x2RkZF4JOIR4Brw1Oyn9Mfm5ORg2bJliImJwS+//IK9e/ciNDQUAQEB9+W+desWFixYgIsXL2LTpk04fPgwDh8+jE2bNuHixYtYsGABbt26Veac69evIyAgAKGhodi7dy9++eUXxMTEYNmyZcjJySlzbGZmJlavXo3IyEj8/vvv2LVrFyIjI/Htt98iIyOjzLG5ublYunQpzp8/j23btmHfvn0ICQlBYGAgrl69WubYkpISfPnll0hKSsLGjRtx5MgRBAcHY/PmzUhMTMTChQtRVFR0X+7yfkZ888030Gq1ZY7NysrCypUrTeZnhJ+fX6U/I1JTU8uMa4yfEfeOz58RyvgZsXr1amRmZpY5lj8jzO9nxN1j+TOibv2MCAuLhYfHf7H3y4dRCie8/Pmr/BnBnxH8GaHAnxEuLi4G+RlRVTW6j3Z8fDz++usv2NjYoFmzZnjyyScrPaeoqKhMMK1Wi+bNm9ep+2jrSkpwq149hDz7LAb+/LPR5lmwYAE+/PBDo41PNTM4eDAO9D2A8OxwdG/cXXQcEoC1SURkXhYujMBHHzVCaakTXnwpHD81fgxOLzkis0em6GhE9C9yv06r0ULbELRaLZycnOrUQjv97Fk07NwZobNmoc8XXxhtHrlvtk5Vk6xJhqfkiS5nuuD0QF63wByxNomIzMP16zl47LHTiIkZABeXCOzc2Qj9+jXDO0fewdL+S7EqahWm+U4THZOI7iH36zTeR9uA0iMiAACOPj5GnWfBggVGHZ9qpoVTCwyKHITI3pGITI0UHYcEYG0SEdV9X311Gi1bZiMmpjtGjz6EtLSu6NevGQDAOdgZ1gnWmH1rtuCURPRvcr9Oq9aOtkqlqvLAlQ1bF3e0Qz74AH0XLUJGTAwaeHuLjkMCXNZchic80f10d4QPChcdh4iIiAwkLS0PQ4acQnT0QDg5ReLXX10xaFCL+45798S7+MrvK6yJXoMpnacISEpESlCtHW1Jkqr8xxwVXbiAAgBuXl5GnefuB/JJeVo6tcTA0wMR0TsCUWlRouOQzFibRER10/LlZ9C0aQaio3vh2WcPISPDt9xFtr+/Pxb0WQDrBGt8VPSRgKRE9CByv06r1kI7Ly8Pf/zxBx577DEAQH5+PgICAvD777/j1VdfhU6nM0pIUyElJyOlXj2o1MZ9R/7EiRONOj7VTmDXQOAWMDGG/53MDWuTiKhuycjIR7duhzBzZmfY2WXj77/T8fPPA2FpWf5rvYkTJ8JSbYlp6dOQ2TMT68+ulzkxET2I3K/TqrUitLe3x5NPPolbt24BAGJjY5GYmIinnnoK0dHR1brceV1knZqKmw4ORp9n9+7dRp+Daq6Vcyv0P90f4b3DcTb9rOg4JCPWJhFR3bF6dRSaNElDZGRvjBp1BOnpnTB4cMsKz7nbBxb1XQTrC9aYVTBLjqhEVAVyv06r1dZrjx498NZbb2HlypWYOXMmbG1tDZXLJDlkZyPPzc3o8/gY+WJrVHuBXW7vak84N0F0FJIRa5OIyPRlZRWgZ89DeP31TrC2zsGff97Ajh0DYWVlUem5d/uApdoSU9KmIL1XOgLPBRo7MhFVgdyv02r9HueGDRvijTfewKZNm3D+/HlDZDJZDfLzUerhYfR5NBqN0eeg2mnj0gb9TvfDqV6ncC79nOg4JBPWJhGRafvuu7No3DgF4eF98OSTh5GZ2RFPPNG6yuff2wcW91kMq0QrfJgv3317iejB5H6dVquF9sqVK7FmzRoAgKWlJRITEw0SyhTdys+Hu04Htaen0efKyckx+hxUe0FdgoBSYOI5fm7XXLA2iYhMU3Z2Ifr0Ccbkyd6wssrD779fw65dg6q0i32ve/uAlYUVpqTe3tXeELPB0JGJqJrkfp1WrYV2UVERfvzxRyQlJWHz5s3o168f6tevj99++w2dO3fGsGHDjJVT8VJPn4YagJ2RrzgOAN68dZhJaOPSBg9FPISTPU8iNiNWdBySAWuTiMj0BAXFwN39Gk6e9MOwYUeQkdEBTz3VpkZj/bsPLOmzBFaJVvgg9wNDRCWiWpD7dVq1FtrW1tZ46aWXkJSUhBdffBFdunTBSy+9hJEjR+KLL76AhUX1futXl2SdOQMAcO7c2ehz7d271+hzkGEE+QYBEjDhLD+rbQ5Ym0REpkOrLcJDDwVjwgQvWFoW4ddfr+CvvwbBxsayxmP+uw9YWVjh1ZRXkdY7DRtjN9Y2MhHVgtyv01SSoJtea7VaODk5QaPRwNHRUUQEgzo2fToeXrUKOdeuoX6TJkadKycnB/Xr1zfqHGQ4fsF+COkZgvNF5+HlZvx3PJA4rE0iItOwcWMsJk2yRFFRSzz22HHs3NmvVgvsu8rrA8WlxXBIdoBbmhtu9LlR6zmIqGbkfp1m3Bs+m5FbFy8iW6Uy+iIbAL7++mujz0GGE9Q5CAAwIZq72nUda5OISNlyc4sxYEAwXnmlHdTqEmzbloS9e2u3i32v8vqAlYUVJl6biJQ+Kdh8frNB5iGi6pP7dRp3tA3kkK8vPBIS0L6gQHQUUqC+wX0R2iMU8bfi0c61neg4REREZmfr1jiMHw8UFrbGI48cw65dD8POrp4scxeWFMLxqiPcUrmrTWQuuKNtIDZpadDI9FYEf39/WeYhwwnsFAiogQlR3NWuy1ibRETKk59/C488Eoz/+7/bt+nasuUiDhwYZJRF9oP6gI2lDcZdHYeUPinYGrfV4PMSUeXkfp3GHW0DOW9nh7RWrTDgnPHvmZyZmQk3Nzejz0OG1Tu4N8K6h+FC6QW0canZ1UxJ2VibRETK8vPP8Rg7thQFBe0wYMBR/PHHQ3BwsDLafBX1gcKSQtS/Vh8NbzTE9b7XjZaBiMon9+s07mgbSMPCQuiaNpVlrp9++kmWeciwAn0CAQtgwhnuatdVrE0iImUoLCzBY48F4/nnPaHTWeKHHxJw6NAgoy6ygYr7gI2lDcZdGYcbfW/g5/ifjZqDiO4n9+s0LrQNID8jA26SBMvWrWWZz8/PT5Z5yLB8GvqgR1gPHOl2BJeyL4mOQ0bA2iQiEm/HjgS4ucXj77/746GHjiMtrQVeflme++dW1gdW9F0By8uWeCvzLVnyENE/5H6dxoW2AaSEhQEAHGS6CfqVK1dkmYcML8gnCKgHjI8cLzoKGQFrk4hInMLCEgwbFoxnnmmBkhIrBAXF4dixQXB0tJYtQ2V9wMbSBi8nv4xrftfwS/wvMqUiIkD+12lcaBtAdnQ0AMC1SxdZ5lOpVLLMQ4bXqWEn9DjZA4e7HcZlzWXRccjAWJtERGLs2pWIBg3OY8+e/ujT5wRSU5th3LiOsueoSh9Y2XclLJMt8WbmmzIkIqK75H6dxoW2AeTFxkIHwL17d1nma9asmSzzkHEEdAwArIDxp8eLjkIGxtokIpJXcXEpnnwyGCNGNMWtW3ZYty4WISGD4OxsIyRPVfqAXT07vHT5JVzzu4YdCTtkSEVEgPyv07jQNoDSpCSkq9Wwlunq6SEhIbLMQ8bh28gX3U52w6Guh5CsSRYdhwyItUlEJJ+//roIN7cY/PnnAPTsGYIbNzwwaVInoZmq2gdW9lkJyyuWeDOdu9pEcpH7dRoX2gZgcf06MmxtZZvvueeek20uMo6ADgGQrCVMOM0rkNclrE0iIuMrLi7FqFHBGD7cA0VFDli16izCwgbB1VW+12IPUtU+4GDlgBcvvYgrfa9g54WdRk5FRID8r9O40DYAu4wMaJ2dZZvv22+/lW0uMo6u7l3R5WQXHOx6kLvadQhrk4jIuP7++zIaNjyH334bgG7dTuL6dXdMm+YrOpZedfrAqr6rYHHdAjPSZhgxERHdJffrNJUkSZKsM96h1Wrh5OQEjUYDR5necm0sidbWuOrjg4EREaKjkAmJSIlAD+ceGBwyGH8P+lt0HCIiIsUqKdFh9Ogj2L69Fywt0/HVVzcxY0ZX0bFqbczhMfix34/4/dLveKrNU6LjEJEBcUe7liSdDu7FxZCaN5dtTn9/f9nmIuPp3rg7fEN9caDLAVzVXhUdhwyAtUlEZHjBwclo0CAK27cPhK9vGK5da6DYRXZ1+8CavmtgccMCb6S8YaRERHSX3K/TuNCupexLl+AAwLptW9nmfOutt2Sbi4xrffv1kOwkTIyYKDoKGQBrk4jIcEpKdHjhhUN45BE35OW5YenSSJw5MxCNGtmLjvZA1e0DDlYOeD7xeVz2u4w/L/5pnFBEBED+12lcaNdSWng4AKB+R/nu1bhu3TrZ5iLj6unRE51DOuNv379xPee66DhUS6xNIiLDOHr0Kho2PINt2wbCx+cUrlxxwVtvdRUdq1I16QNr+qyBRYoFpt+YboRERHSX3K/TuNCuJU10NACgQbduss35xBNPyDYXGd/69ush2UuYGM5dbVPH2iQiqh2dTsKYMYfRv78TcnIaYuHCCJw9OxCNGzuIjlYlNekDjtaOeC7hOST1TcKeS3uMkIqIAPlfp3GhXUsFCQkoBtDIV74rXkbfWdxT3dDLoxd8Qn2wt/NepOSmiI5DtcDaJCKquePHr6Fhwwj8+OMAdOhwGklJjnj//e6iY1VLTfvA2r5roU5T4/Vrrxs4ERHdJffrNC60a0m6fBmplpZQW1rKNqezjLcSI3msa7MOUn0JE07xvtqmjLVJRFR9Op2EceOO4OGH60Oj8cAXX4QjNnYAmjUzvbvS1LQPOFo74pn4Z3DR7yL2Je0zbCgiAiD/6zQutGup3o0byLKzk3XO+vXryzofGZ9fUz94h3hjT6c93NU2YaxNIqLqCQu7gUaNwvH99/3Rrt0ZXLxoj1mzeoiOVWO16QPr+qyDOk2NaVenGTAREd0l9+s0LrRryeHmTeS6uso6Z2xsrKzzkTzWtV4HyVHCq6deFR2Faoi1SURUNTqdhIkTj6B3bzvcvNkUn30Whvj4/mjRwkl0tFqpTR9wtnHGqPhRSOybiP2X9xswFREB8r9OU0mSJMk64x1arRZOTk7QaDRwdDS9twbddaVePST27IlBJ07INufVq1fRrFkz2eYj+Xgf9kacdxxS7FLQyL6R6DhUTaxNIqLKhYen4IknriA9vRfatDmKffs6oVUrZ9GxDKK2fSCrIAsNtQ3ROr41EvonGDAZEcn9Oo072rVQWlyMxiUlULVsKeu8QUFBss5H8lnXeh0kZwmvhnFX2xSxNomIHkynk/Daa0fRq5cNMjNbYM6ck7hwoV+dWWQDte8DrrauGHl+JC74XcCBywcME4qIAMj/Oo072rWQEhGBxj164OScOej9+eei41Ad0eFwB8R7xyPNPg0N7BqIjkNERFRrUVFpGDr0ElJS+qBVq6PYt88Hbdq4iI6lSHd3tdvEt0F8/3jRcYiohrijXQsZp08DAJw6dZJ1Xn9/f1nnI3mtbbX29q72Se5qmxrWJhFRWTqdhOnTj6FrV0ukprbGf/8biosX+9XZRbYh+oCrrStGxI5AQt8EHL5y2ACpiAiQ/3Uad7Rr4cQ778Bv6VLcvHABLm3ayDZvSUkJLGW8nRjJr/2R9kj0SkSqQyp3tU0Ia5OI6B9nz6bj8ccTceNGX7RocRx793rBy8tNdCyjMlQfyMjPgHuuO9qdb4fzA84bIBkRyf06jTvatVCUmIhcAM6tWsk67+LFi2Wdj+S3tuVa6Fx1mBw2WXQUqgbWJhHRbW+/fRy+vmqkpLTBe++dwOXLD9X5RTZguD7QwK4BhscMR5xfHI5ePWqQMYnMndyv07ijXQuHundHs3Pn0KaoSNZ5k5KS4OnpKeucJL/2R9ojsX0i0h3T4Wor7y3kqGZYm0Rk7mJjM/D44wm4etUPzZodx9697eHtbT7vzDJkH0jLS0Pj/MbwivVC7ADePpKotuR+ncYd7VqwTk1FtoOD7PMePcrfbJqDb1t8C52bDpNPclfbVLA2icicvf/+Cfj4SLh2rT3eeus4rlx5yKwW2YBh+0Aj+0YYfm44zvudx7Grxww2LpG5kvt1GhfatVBfo0F+A/kbSEuZbydGYjza8lG0CWmDX71+RXZhtug4VAWsTSIyRwkJWWjZ8jgWL/ZD48aJiIrSYenSh0THEsLQfSCgVwBU2SpMvshfuhPVltyv07jQroUGBQUobdJE9nlLS0tln5PEWN1sNXQNdZgUOkl0FKoC1iYRmZtZs0LRoUMJrlzxxvTpx3D1ah906tRQdCxhDN0HGtk3wrBzwxDbNxYnrp0w6NhE5kbu12lcaNdQkVYLd50OFgI+j3njxg3Z5yQxHvN8DK1PtMaO9ju4q20CWJtEZC4SE2+iVatj+PLLPmjY8BIiIoqxYsXDUKtVoqMJZYw+ENAzACqtCpMTuatNVBtyv07jQruGUiMiAAD23t6yz927d2/Z5yRxVjVdBV0jHaaEThEdhSrB2iQic/DJJyfRvn0xLl/2wdSpR3H9em907eouOpYiGKMPNHZojMfPPo5zfc8h9HqowccnMhdyv07jQruGss6cAQA4d+4s+9y//PKL7HOSOENbDUWrE62wvd12aIu0ouNQBVibRFSXXb6sQdu2R/G///WGm9tlnDpViG+/7Wf2u9j3MlYfCOgRAFWuCpMS+FEyopqS+3Uab+9VQ0dfew391qxBfno67GS+IFpRURGsra1lnZPE+uviXxjecjj+79j/YfOAzaLj0AOwNomorvr881P47LOm0Ons8Oqr0Vi7lm8TL48x+8DjwY9jn98+nMw6iV4evYwyB1FdJvfrNO5o11DJxYvIVKlkX2QDwKJFi2Sfk8R6ovUTaBnSEtvabOOutoKxNomorklO1qB9+yP49NOecHW9ipMn8/Hdd9zFfhBj9oGA7gFQ5anwavyrRpuDqC6T+3Uad7Rr6LCPDxpduoQO+fmio5CZ2JW4CyNajcBLR1/CpgGbRMchIqI6bv78cMyZ44HSUgeMHRuJwMD+XGAL9ljwY/i7798Izw5H98bdRcchogpwR7uGbNPToRH0CwJ/f38h85JYT7V5Ci1CWmBr663ILc4VHYfKwdokorpAq9WiS5c9+OijHnByuoHjx3OwYcMALrKrwNh9ILB7IFQFKkyMm2jUeYjqIrlfp3GhXUNOOTkobNRIyNwTJ/KHq7la3mg5SpuU4rWQ10RHoXKwNonI1O3fvx+dO3dGXNxWvPTSYaSnd4efX1PRsUyGsftAM8dmeOTMIzjT+wwiUyONOhdRXSP36zQutGuoUVERpKZiGs9ff/0lZF4S7+m2T6N5SHNsab2Fu9oKxNokIlOVm5uL119/HUOGDEGbNm1w/vwn2LSJu9jVJUcfCOwWCFWRChPOTzD6XER1idyv07jQroGc69fhLEmwattWyPy+vr5C5iVluLurPT10uugo9C+sTSIyRcHBwejcuTM2bNiAlStX4u+//4anp6foWCZJjj7QwqkFBkYORGTvSO5qE1WD3K/TuNCugdRTpwAADt7eQubPysoSMi8pw8i2I9EstBl+9PwR+bd4MT4lYW0SkSnJy8vDjBkz8Mgjj6BFixaIiorC66+/DrWaLw9rSq4+ENQtCCgGXo3lFciJqkru12n8SVoD2dHRAADXLl2EzJ+XlydkXlKOZW7LUNK8BNNDuKutJKxNIjIVR44cga+vL9avX4+vv/4aBw8eRJs2bUTHMnly9YGWTi0x8PRARPSOwNn0s7LMSWTq5H6dxoV2DeTHxaEUgHu3bkLm79Chg5B5STmebf8smp5oio0tN3JXW0FYm0SkdPn5+Xj77bcxcOBAeHh44MyZM5g5cyZ3sQ1Ezj4Q2DUQuAWMPzdetjmJTJncr9P4U7UGdElJSFOrUc/OTsj8f//9t5B5SVmWuS1DSYsSvBHyhugodAdrk4iU7Pjx4+jatSu+/fZbLFmyBIcOHUK7du1Ex6pT5OwDrZxbof/p/gjvHY5z6edkm5fIVMn9Ok0lSZIk64x3aLVaODk5QaPRwFHQ/ahr6ki7dnBOSUHnnBwh82u1WpN7zsg4moY0RZpHGnKa5sDG0kZ0HLPH2iQiJSooKMCcOXPw1VdfoU+fPggKCoKXl5foWHWS3H0g8WYi2lq0Rc+InggbFCbbvESmSO765I52DdhnZiLHxUXY/N98842wuUlZlrosRUnLEswImSE6CoG1SUTKExISgm7dumHFihVYuHAhjh49ykW2EcndB9q4tMHDEQ/jVK9T3NUmqoTc9ckd7Rq4ZGWFy76+GHTn6uNEIjUJaYKMxhnQNtNyV5uIiAAAhYWFmDt3LhYtWoSePXsiKCgI3oLulkLGlZCVgPaW7dE7ojdCB4WKjkNEd3BHu5oknQ6Nb92CqkULYRn8/f2FzU3Ks8R5CW553sJbIW+JjmL2WJtEpARhYWHo0aMHli5dinnz5uHYsWNcZMtERB9o59oOD0U8hJM9TyIuM072+YlMhdz1yR3tasqIjUWDjh0R8sEH6LtggZAMWVlZcHV1FTI3KZNHqAcyG2VC25y72iKxNolIpKKiInz++edYsGABunbtiqCgIHTq1El0LLMiqg8kZCWgfb326BveFycGnZB9fiJTIHd9cke7mtIjIgAAjj4+wjJs3rxZ2NykTIscF+FWq1t4O/Rt0VHMGmuTiESJiIhAz549sWjRInz22Wc4ceIEF9kCiOoD7VzboW94X4T0CEFCVoKQDERKJ3d9cqFdTdqzZwEADbt3F5ahf//+wuYmZXrZ+2W4h7ojwCMAxaXFouOYLdYmEcmtuLgYn3zyCXr37g1LS0ucOnUKH3/8MerVqyc6mlkS2QeCOgcBKmB81HhhGYiUTO765EK7mgoTElAIwE3mG57fKykpSdjcpFyLHRejuHUx3g7hrrYorE0iklNkZCR69+6N+fPn45NPPsHJkyfh6+srOpZZE9kHvNy80PtUbxzvcZy72kTlkLs+udCuJik5GamWllBbWgrLYGFhIWxuUq6XvV9Go5ON8F3j77irLQhrk4jkcOvWLXz++efo1asXJElCWFgYPvnkE+5iK4DoPhDUKQhQAxOiJgjNQaREctcnF9rVZJWSgiwHB6EZPDw8hM5PyrXQYSGK2xTjvdD3REcxS6xNIjK26Oho9OnTB59//jlmzZqFsLAwdO3aVXQsukN0H/Bu4I1eYb1wrPsxJN5MFJqFSGnkrk8utKvJITsbeYKvKhwWFiZ0flKucR3HoWFYQ6xttJa72gKwNonIWEpKSjBv3jz06NEDxcXFCA0Nxeeffw4rKyvR0egeSugDgT6BgAUw4Qx3tYnuJXd9cqFdTW75+SgR/NvKZ555Ruj8pGzzbeejqG0R3g99X3QUs8PaJCJjOHfuHPz8/PDJJ5/gvffeQ3h4OHr06CE6FpVDCX3Ap6EPeoT1wJFuR3Ap+5LoOESKIXd9cqFdDSWFhWhcWgp1y5ZCc6xZs0bo/KRsr3Z6FW6n3LCm4RqU6EpExzErrE0iMqSSkhIsWLAA3bt3R15eHk6cOIEvvvgC1tbWoqPRAyilDwT5BAH1gAmR3NUmukvu+lRJkiTJOuMdWq0WTk5O0Gg0cHR0FBGh2q6HhqJJ374I++wz9PrkE9FxiB5obfRaTO08FW+feBtf+X0lOg4REVXT+fPnMX78eISFheG9997DZ599BhsbG9GxyIT0CO6BiG4RSEISWjqJ3SQiMkfc0a6GzMhIAIBz585Cc/j7+wudn5RvSucpcDvlhlUNVnFXW0asTSKqrdLSUixevBhdu3bFzZs3cfToUSxYsICLbBOhpD4Q2DEQsALGnx4vOgqRIshdn9zRrobjM2fioeXLobl8GU4tWgjLkZ+fDzs7O2Hzk2lYE70Gr3V+De+deA+L/BaJjmMWWJtEVBvx8fEYP348QkJC8M477+B///sfbG1tRceialBaH+h+qDsiu0QiSZWEFk7iXrsSKYHc9ckd7WooTkyEBhC6yAaA1atXC52fTMPUzlPhGu6KFa4ruKstE9YmEdVEaWkpli5dii5duiA9PR1HjhzB4sWLucg2QUrrAwEdAiBZS5hwmp/VJpK7PrnQrgbV1atIU8AFSJ566inREchE/K/e/1DoVYiPTn4kOopZYG0SUXVduHABgwYNwrvvvoupU6fizJkzePjhh0XHohpSWh/o6t4VXU52wcEuB3FVe1V0HCKh5K5PLrSrwSYtDdn164uOgTNnzoiOQCbidd/X4RLhguUuy7mrLQPWJhFVlU6nw/Lly+Hr64vr168jODgYy5YtU9Tbjqn6lNgHArwCINlKmBDBXW0yb3LXJxfa1eCo0aCgQQPRMeDm5iY6ApmQzyw+Q6FXIeaEzREdpc5jbRJRVVy8eBGPPvooZs6ciVdffRVRUVEYMGCA6FhkAErsA90bd0fn0M7Y32U/d7XJrMldn1xoV0ODwkLomjYVHYOf2aJqmdFlBpxPO+Nrx6+hk3Si49RprE0iqohOp8OqVavg6+uLy5cv48CBA1i+fDns7e1FRyMDUWofWN9+PSQ7CRMjJoqOQiSM3PXJhXYVFWRloaEkwbJVK9FREB8fLzoCmZi5qrko8C7AnJPc1TYm1iYRPUhSUhIee+wxTJ8+Ha+88gqioqLwyCOPiI5FBqbUPtDLoxc6h3TG375/43rOddFxiISQuz650K6i1PBwAIC9t7fgJMDgwYNFRyAT82bXN+EU6YSljku5q21ErE0i+jdJkrBmzRp07twZFy5cwL59+7B69WrUV8A1X8jwlNwH1rdfD8lewsRw7mqTeZK7PrnQrqKbUVEAANcuXQQnATZs2CA6ApmgT6RPUOBdgE/DPhUdpc5ibRLRvZKTkzF06FC89tprePHFFxEdHY0hQ4aIjkVGpOQ+0MujF3xCfbC3816k5KaIjkMkO7nrUyVJkiTrjHdotVo4OTlBo9HA0dFRRIRqOTppEvqtX4/Cmzdh4+wsOg5RtekkHVyiXFBSrwQ53jlQq/h7NiIiY5AkCQEBAXj77bfh5OSE7777DkOHDhUdiwgnrp3AQw0fwhPHn8Cfg/4UHYeoTuMr7SoquXQJ6SqVIhbZ/v7+oiOQCVKr1PhE9wnyO+bj81Ofi45TJ7E2iejq1asYPnw4Jk2ahOeffx5nz57lItuMKL0P+DX1g3eIN3Z32o20vDTRcYhkJXd9cke7ig57e6NBcjI65uWJjoLS0lJYWFiIjkEm6O6udqllKbQdtdzVNjDWJpH5kiQJGzZswFtvvQV7e3usW7cOw4cPFx2LZGYKfeDY1WPo16gfhh8fjj8G/SE6DpFs5K5PvsquIrv0dGidnETHAAAsXLhQdAQyUWqVGh+Xfow8nzz4n1L2b91NEWuTyDxdv34dI0aMwIQJEzBy5EicPXuWi2wzZQp94OFmD6NDSAf85fMXd7XJrMhdn9zRrqILNja41qEDBkZGio6Cy5cvo2XLlqJjkInSSTo4RztDp9ZB68NdbUNibRKZF0mSsHHjRsycORM2NjZYu3YtRowYIToWCWQqfeDo1aPo794fTx17Cr8P+l10HCJZyF2ffIVdBZJOB/eiIkjNmomOAgA4fPiw6AhkwtQqNWbdmoW8TnmYHz5fdJw6hbVJZD5SUlIwatQojB07Fk8++STOnTvHRTaZTB/o16wfvE544Q+fP5CRnyE6DpEs5K5PLrSrQHvlCuoDsGrXTnQUAECrVq1ERyAT92H3D+EQ7YAvrb/kfbUNiLVJVPdJkoTNmzfDx8cHISEh2L59OzZu3AhXV1fR0UgBTKkPrG21FpKzhEknJ4mOQiQLueuTC+0qSD11CgBQ39tbcJLbSkpKREcgE6dWqfFh0YfI7ZyLBRELRMepM1ibRHVbWloannvuObz00kt4/PHHce7cOfznP/8RHYsUxJT6wIDmA9AupB1+9/4dWQVZouMQGZ3c9cmFdhVooqMBAA26dROc5LaUlBTREagO+KjHR7A/a4/59eZzV9tAWJtEdde2bdvg4+ODw4cPY9u2bdi8eTMaNGggOhYpjKn1gbUt10LnpsOrJ18VHYXI6OSuTy60q6AgPh4lABp16SI6CgCgR48eoiNQHaBWqfFBwQfI8c3B4tOLRcepE1ibRHVPeno6XnjhBbzwwgsYOHAgzp07h+eee050LFIoU+sDg1oMQtsTbbGzw07ualOdJ3d9cqFdBbrLl5FiYQELKyvRUQAAv/76q+gIVEfM7jkb9ufsMc9iHne1DYC1SVS3bN++HT4+Pjhw4AC2bNmCbdu2oVGjRqJjkYKZYh/4tsW30LnpMPnkZNFRiIxK7vrk7b2q4Gjr1nDMyICvVis6CgCgsLAQNjY2omNQHTE3bC4+6/UZFp9ejHe7vSs6jkljbRLVDZmZmZgxYwY2b96MUaNG4dtvv4W7u7voWGQCTLUPtD3aFpfaXEKmSyacbZxFxyEyCrnrkzvaVeCQlYUcBV1NdPFivs2XDOeTnp/ALsYOn6s/5652LbE2iUzfb7/9Bh8fH+zevRubNm3C9u3bucimKjPVPrC62WroGukwOZS72lR3yV2f3NGugsv16uFS9+4YFBoqOgqRUcw5OQf+vf2x5PQSvNPtHdFxiIhkl5WVhTfffBMbN27EiBEjsGbNGnh4eIiORSSbNkfbIKlNEne1iQyEO9qV0JWUwKOkBKoWLURH0fP39xcdgeqYz3p9BttYW3yu+lx0FJPG2iQyTbt27UKnTp2wa9cubNiwAb/99hsX2VQjptwHVjVdBV0jHaaEThEdhcgo5K5PLrQrkRETAysANu3bi46iN2nSJNERqI5Rq9R4W/s2NF01+Drya9FxTBZrk8i0ZGdnY/z48RgxYgS6deuGs2fPYuzYsVCpVKKjkYky5T4wtNVQeIZ4Ynu77dAWKeO6RESGJHd9cqFdiYzTpwEATp06CU7yj99//110BKqD/tf7f7CNtcVcaa7oKCaLtUlkOv766y906tQJO3bsQEBAAHbt2oWmTZuKjkUmztT7wEqPlSh1L8XU0KmioxAZnNz1yYV2JTRnzwIAGnbvLjjJP7p27So6AtVBapUab2rfRHa3bCw/s1x0HJPE2iRSPo1Gg0mTJmH48OHo1KkTzp49iwkTJnAXmwzC1PvA8NbD0TKkJba12cZdbapz5K5PLrQrUXzhAvIBuLZrJzqKXmZmpugIVEfN6z0PNnE2+LT0U9FRTBJrk0jZ9u3bh86dO+Onn37CunXr8Ndff6F58+aiY1EdUhf6wIrGK1DqUYppodNERyEyKLnrkwvtSkhXriC1Xj2o1Mp5qgoKCkRHoDpKrVJjxs0ZuNn9JlZFrRIdx+SwNomUKScnB1OnTsXjjz+O9u3bIzo6GpMmTeIuNhlcXegDT7V5Ci1CWmBr663ILc4VHYfIYOSuT+WsHhXKOiUFNx0cRMcoo52Cdtep7vmi9xewibfBnFtzREcxOaxNIuXZv38/OnfujE2bNmH16tXYt28fWrZsKToW1VF1pQ8sb7QcpU1K8XrI66KjEBmM3PXJhXYl6mdnI69BA9Exyjh48KDoCFSHWaot8UbmG8jqkYU10WtExzEprE0i5cjNzcX06dMxZMgQtG7dGtHR0Xjttde4i01GVVf6wNNtn0bzkOb4sfWP3NWmOkPu+lRJkiTJOuMdWq0WTk5O0Gg0cHR0FBGhSm5YWCCuXz8MOnRIdBQ9jUYDJycn0TGoDivRlcAh0QEOGgdk9MwQHcdksDaJlCE4OBgTJ05EamoqFi5ciGnTpkGtoI+AUd1Vl/rAjoQdeKbdMxh7ZCw29N8gOg5Rrcldn+w6FSjOzYW7TgcLT0/RUcpYvpxXhCbjslRb4vWM15HZMxPfnf1OdByTwdokEisvLw8zZ87EI488gmbNmiEqKgrTp0/nIptkU5f6wH/a/QfNTjTDj54/Iv9Wvug4RLUmd31yR7sCV48eRbP+/RH+xRfoMWuW6DhEsrq7q10/uz7Se6WLjkNEVKEjR45gwoQJuH79Or788ku88cYbXGAT1dIv8b/gufbPYfyR8QjsHyg6DpFJYQeqQGZkJADAuXNnsUH+xd/fX3QEMgOWaktMTZ+KjF4ZWH92veg4JoG1SSS//Px8vPPOOxg4cCAaN26MM2fOYObMmVxkkxB1rQ882/5ZND3RFBtbbOSuNpk8ueuTO9oVOPb663h49Wrk3rgBh8aNRcfRy87OhrOzs+gYZAaKS4tRP6k+nLKckNYrTXQcxWNtEsnr+PHjGD9+PK5cuYJ58+bhzTffhIWFhehYZMbqYh/4Of5nPN/+ebx69FV8148fJyPTJXd98te9Fbh18SJuqlSKWmQDwMaNG0VHIDNhZWGFqalTkd4rHYHn+JaxyrA2ieRRUFCA999/H/369YObmxsiIyPxzjvvcJFNwtXFPvBc++fgEeKBDc03oLCkUHQcohqTuz650K6A6to1pFlbi45xn4EDB4qOQGZkcZ/FsEq0wn/z/is6iuKxNomMLzQ0FN27d8fy5cuxYMECHD16FF5eXqJjEQGou31gqctSlLQswYyQGaKjENWY3PXJhXYFbNPSoFHg29oTExNFRyAzYmVhhUkpk5DWOw3fx3wvOo6isTaJjKewsBD//e9/8dBDD6F+/fqIiIjA+++/z11sUpS62gdGe42+vavdjLvaZLrkrk8utCvgpNWisGFD0THuY2VlJToCmZmlfZfC6qIVPsj5QHQURWNtEhlHWFgYevTogaVLl2LevHk4fvw4OnbsKDoW0X3qch9Y4rwEtzxv4a2Qt0RHIaoRueuTC+0KNCwqgq5pU9Ex7uPu7i46ApkZKwsrTLwxEal9UrExtu59/sxQWJtEhlVUVITZs2fDz88Ptra2CA8Px3//+19YWlqKjkZUrrrcB17s8CIahzZGQNMAFJcWi45DVG1y1ycX2g+Ql5YGV0lCvTZtREe5T3h4uOgIZIaW9lmKepfq4X3t+6KjKBZrk8hwIiIi0LNnTyxcuBBz587FiRMn0KlTJ9GxiCpU1/vAIsdFuNWKu9pkmuSuTy60HyD11CkAgIO3t+Ak9xs5cqToCGSGbCxtMPHaRKT0ScHm85tFx1Ek1iZR7RUXF+PTTz9F7969YWlpiVOnTmH27NmoV6+e6GhElarrfeBl75fR6GQjrPdYz11tMjly1ycX2g9wMyoKAODapYvgJPdbt26d6Ahkppb1XYZ6SfXwbva7oqMoEmuTqHbOnDmD3r1744svvsCcOXNw8uRJ+Pr6io5FVGXm0AcWOSxCcetivB3ytugoRNUid32qJEmSZJ3xDq1WCycnJ2g0Gjgq8MreR8aPx8MbNqAkJwdWDg6i4xApxuSjk/Fdv++wNW4rXvB6QXQcIqoDbt26hS+//BKff/45vL29sWHDBnTr1k10LCJ6APeT7sh2y0aOZw6sLOruBeCIaoM72g9QmpSENLVakYtsf39/0RHIjC3vuxyWly3x9k3+JvvfWJtE1RcdHY2+ffvis88+w3//+1+cOnWKi2wyWebSBxY6LERxm2K8F/qe6ChEVSZ3fXJH+wGOtG8Pl+vX0Sk3V3SU+xQUFMDW1lZ0DDJjE49MRGD/QGyL34bn2j8nOo5isDaJqq6kpER/obN27dphw4YN6Nmzp+hYRLViTn2gUVgjaF20yG2dC0s17wRAyid3fXJH+wHsMjOR4+wsOka5Vq1aJToCmbkVfVfAMtkSb2W+JTqKorA2iaomJiYGfn5+mDNnDt577z39FcaJTJ059YH5tvNR1LYI74fwbiRkGuSuTy60H8AlNxdFCr0X4tNPPy06Apk5u3p2GHN5DK75XcMv8b+IjqMYrE2iipWUlGDBggXo1q0bcnNzceLECXzxxRewtrYWHY3IIMypD7za6VW4nXLD6oarUaIrER2HqFJy1ycX2uWQdDo0Li4GmjcXHaVcERERoiMQYVXfVbC8wl3te7E2iR7s/Pnz6NevHz766CO8+eabOH36NHr37i06FpFBmVsf+ML6CxS1K8IHoR+IjkJUKbnrkwvtctxMTIQdAOt27URHKVfDhg1FRyCCXT07vJT0Eq72uYrfLvwmOo4isDaJ7ldaWoolS5aga9euuHnzJo4ePYqFCxfCxsZGdDQigzO3PjCl8xS4hrtiVYNV3NUmxZO7PrnQLkf6nd92OHbsKDhJ+fgWO1KKlX1WwuK6BWakzRAdRRFYm0RlxcfHY8CAAXj//fcxffp0REZGws/PT3QsIqMxxz7gX88fRe2KMCt0lugoRBWSuz650C5HdlQUAKCBQm8vkpiYKDoCEQDAwcoB/3fx/3Cl7xXsvLBTdBzhWJtEt+l0OixbtgxdunRBWloaDh8+jCVLlpjN1ZjJfJljH5jmOw2u4a5Y4bqCu9qkaHLXJxfa5ShMSEAxgIadOomOUq5BgwaJjkCk923fb7mrfQdrkwi4cOECBg0ahLfffhtTp07FmTNn0K9fP9GxiGRhrn3gf/X+h0KvQnx88mPRUYgeSO765EK7HFJyMlIsLaG2VOY9AX/44QfREYj0HKwc8MLFF5DcNxm7EneJjiMUa5PMmU6nw/Lly9GlSxdcu3YNwcHBWLZsGezs7ERHI5KNufaB131fh0uEC5Y7L4dO0omOQ1QuuetTJUmSJOuMd2i1Wjg5OUGj0cDR0VFEhAc65ukJ++xsdM3OFh2lXDqdDmo1f0dCyqEt0sI1wxXNkpoh6eEk0XGEYW2Subp48SImTpyIQ4cOYfr06fjyyy/h4OAgOhaR7My5Dyw/sxwzu8zEf0P/i/l95ouOQ3QfuevTPH8SVMLh5k3kurqKjvFAX3zxhegIRGU4Wjvi+cTncbnvZfx18S/RcYRhbZK50el0WL16NXx9fXH58mUcOHAAK1as4CKbzJY594EZXWbA+bQzvnb8mrvapEhy1yd3tMtx1dISF3r3xqDjx0VHKZc5/7aUlEtbpIVrpitaXGyBi/0uio4jBGuTzMnly5fx6quvYv/+/XjttdewcOFC1K9fX3QsIqHMvQ8si1yGt7u+jY9CP8K8PvNExyEqgzvagpUWF6NxaSnULVuKjvJA8+fz7TikPI7Wjngm4Rlc8ruEPZf2iI4jBGuTzIEkSVi7di06deqE+Ph47N27F6tXr+YimwjsA291fQtOkU5Y6riUu9qkOHLXJxfa/5IWFQVLALZeXqKjPNArr7wiOgJRudb2WQt1mhqvX3tddBQhWJtU1125cgVDhw7F1KlT8X//9384e/YsHnvsMdGxiBSDfQD4RPoEBd4FmBs2V3QUojLkrk8utP8lMzISAOCk0Ft7AUBwcLDoCETlcrZxxn/i/4OLfhexL2mf6DiyY21SXSVJEtavX49OnTohJiYGu3fvxrp16xT30S8i0dgHbu9qO55xxBKHJdzVJkWRuz650P4X7blzAIBGPXoITvJgbdq0ER2B6IG+6/Md1OlqTLs6TXQU2bE2qS66evUqhg8fjkmTJuHZZ5/F2bNnMXToUNGxiBSJfQBQq9SYXTob+R3z8fmpz0XHIdKTuz650P6X4gsXkAPAScGf0S4qKhIdgeiBnG2cMSpuFBL7JuLA5QOi48iKtUl1iSRJ2LBhAzp16oQzZ85g165dCAgIgLOzs+hoRIrFPnDbu93eRf2o+lhst5i72qQYctcnF9r/orp6FWlWVlAp+IqR6enpoiMQVWhd73VQZ6rxWvJroqPIirVJdcX169fx9NNPY/z48Rg5ciTOnTuHJ598UnQsIsVjH7hNrVLjo1sfIc8nD/6n/EXHIQIgf30qdzUpiHVqKm4q/Mqp3bt3Fx2BqEKutq54+vzTSPBLQHBysOg4smFtkqmTJAmbNm1Cp06dcOrUKfz222/YsGEDXFxcREcjMgnsA//4oPsHqB9VHwttF3JXmxRB7vrkQvtfHDUa5DdoIDpGhXbu3Ck6AlGl1vdeD3WWGlMvTxUdRTasTTJlKSkp+M9//oOXX34ZTzzxBM6ePYunn35adCwik8I+8A+1So1Zt2Yhr1Me5oeb923PSBnkrk+VJEmSrDPeodVq4eTkBI1Go6irlqZZWCBm4EAMOqDcz5YWFBTA1tZWdAyiSo0MHomdD+/EoZRDGNB8gOg4RsfaJFMkSRK2bt2K6dOnw9LSEt9++y3+85//iI5FZJLYB8rSSTo4nXUCAGg6aaBWcY+PxJG7Pvmv/R5FWi0a6XSw8PQUHaVCS5YsER2BqErW914PVbYKUy5NER1FFqxNMjVpaWl4/vnn8eKLL+Kxxx7DuXPnuMgmqgX2gbLUKjU+LPoQuZ1zsTBioeg4ZObkrk/uaN/j8oEDaDl4MCIWLkT3998XHYeoThgRPAK7Ht6FI6lH0K9ZP9FxiOiObdu24fXXXwcArFq1Cs8//7zgRERUF+kkHRzPOUKtUyO7czZ3tcls8F/6PW5GRQEAXHx9BSepmL8/r95IpmN9r9u72pMvThYdxehYm2QKMjIyMHr0aLzwwgsYOHAgzp07x0U2kYGwD9xPrVLj/YL3keObg8WnF4uOQ2ZM7vrkjvY9jk6Zgn7r1qEgMxO2rq6i4zxQamoq3N3dRccgqrIng5/Enw/9iePpx+HX1E90HKNhbZLS7dixA6+99hpKSkqwcuVKjB49GiqVSnQsojqDfaB8OkkHxxhHWJRY4KbvTe5qkxBy1yf/ld+j5NIlZKhUil5kA8Bvv/0mOgJRtQT2CoRKq8KkxEmioxgVa5OUKjMzEy+99BKeeeaZ/2/vzsOjLMy1gd8zCWSBZLIn7HsAgQAhgUARUYqiUrVaq22tsqpwQGmp+4Y1iqIWkB2EUAURF1AUFREaBSELgSwkBGJYQ8hOZrJvM98fUr+Co2SZeZ/3nff+XZfX6dFk5j713Hny5CEzGD16NDIzM3HvvfdyySZyMM4B+4wGI/5R/Q9YhlqwOHWxdBzSKaX7yUX7fxjPn0exp6d0jKsaMWKEdASiFgnpEIKbjt6ErJgsHDx/UDqO07CbpEY7duzAoEGD8NVXX2HTpk3Yvn07wsLCpGMRuSTOgV/2fNTz8M7yxkuGl6SjkE4p3U8u2v/Dq6QEFpNJOsZVFRYWSkcgarG4qDgYKgyYmeu6v6vNbpKaXLx4Effffz9uv/12REdHIzMzE3/5y194xSZyIs6BX2Y0GPH3yr/DPMyMJalLpOOQDindTy7a/8PPYkFtcLB0jKuqr6+XjkDUYmEdw3Bjxo3IHJWJ5AvJ0nGcgt0ktdi5cycGDRqEHTt24N///jd27NiBTp06SccicnmcA7/uxegX4XXMCwuwQDoK6ZDS/eSi/T9C6upg69pVOsZV9enTRzoCUatsGLEBhioDpp+YLh3FKdhNklZeXo6pU6di8uTJGDZsGDIzM3H//ffzik2kEM6BX2c0GDHPMg/mYWYsTV0qHYd0Rul+ctG+xJKXBxOA9n37Ske5qm+//VY6AlGrdPbpjN+m/xYZMRk4dOGQdByHYzdJ0ldffYXBgwdj27ZtWL9+PXbu3IkuXbpIxyLSFc6Bq4sdGQuvbC8ssC2QjkI6o3Q/uWhfUpSSAgDoOHCgcJKru++++6QjELXahsgNMFS75lWb3SQJZrMZM2bMwM0334xBgwbh6NGjmDZtGq/YRAI4B67OaDDiUfOjKB9ejuVpy6XjkI4o3U8u2pdcTEsDAAQOGyYbpBmWL+cXJdKurr5dcUPaDUgflY7DBYel4zgUu0lK2717N4YMGYKtW7di7dq1+Oqrr9CtWzfpWES6xTnQPC+PfBmexz3xfNPz0lFIR5Tup8Fms9kUfcZLLBYLTCYTzGYzfH19JSJc5rv77sNvNm+GraYG7hp4iy8iLTtrPouetp6ISItA6nWp0nGINKeiogKPPfYY1qxZgwkTJmD9+vXo0aOHdCwiomZ7POFxvB7zOlamr8SsiFnScYgcjhftS6xnzqDQzU0TS3ZsbKx0BKI26W7qjutTr0fayDSkFqZKx3EYdpOUsHfvXgwZMgSbNm3CqlWrsHv3bi7ZRCrBOdB8r4x8BZ4nPPFsw7PSUUgnlO4nF+1L3PPzUerlJR2jWebOnSsdgajN4obHwVBnwLTsadJRHIbdJGeqrKzEnDlzMGHCBPTq1QsZGRl4+OGH+bvYRCrCOdB87kZ3zC6djbIRZViTsUY6DumA0v3kon1Jh7IyVPj7S8dolnfeeUc6AlGbdTd1x3Wp1+HIyCNIL0qXjuMQ7CY5y7fffouIiAjExcVh2bJl2LNnD3r16iUdi4iuwDnQMq+Neg0eOR54pu4Z6SikA0r3k4v2Jf5VVagPDZWO0SzXX3+9dAQih9g4fCNQD0zLco2rNrtJjlZVVYVHH30U48ePR9euXZGeno45c+bAaOT4JlIjzoGWcTe6Y3bJbJRGleLto29LxyEXp3Q/OakB2KxWhDU0wNC9u3SUZsnJyZGOQOQQPUw9MO7IOKSMTMHR4qPScdqM3SRH2r9/P4YNG4Z169ZhyZIliI+PR58+faRjEdGv4BxouUWjFsEjxwNP1TwlHYVcnNL95KINoOTYMXgC8AwPl47SLF4a+V1youbYOGwj0ABMyZwiHaXN2E1yhJqaGvz973/HuHHjEBISgtTUVDz66KO8YhNpAOdAy7kb3fFQ8UMoiS5BXGacdBxyYUr3k1MbQMmRIwAA30GDhJM0T2BgoHQEIofp5dcLY4+MRcrIFGQWZ0rHaRN2k9rq4MGDGDZsGFauXIk33ngD3333HcI18kNgIuIcaK3XR72O9rnt8UT1E9JRyIUp3U8u2gDMGRkAgKDhw4WTNE9qaqp0BCKH2jh0I9AITM2cKh2lTdhNaq3a2lo8/vjjGDt2LPz9/ZGamoq///3vcHNzk45GRC3AOdA67d3a48HCB1EcXcyrNjmN0v002Gw2m6LPeInFYoHJZILZbIavr69EhJ98e9ddGLVtGzyammDQwB/NKygoQFhYmHQMIocaGz8W30d/j6yaLAwMGigdp1XYTWqNxMRETJkyBSdPnsRLL72E+fPnc8Em0ijOgdarb6qHz2kf+JX6oXBkoXQcckFK91P9W6UCbGfPoqBdO00s2QDw9tt8VUZyPXERcYAVmHpUu1dtdpNaoq6uDk899RTGjBkDHx8fHDlyBI8//jiXbCIN4xxovfZu7TGjYAaKRhbhnSy+TRo5ntL95EUbwIHu3eFVUYHhFy+K5iDSuzHxY3Aw6iCy67LRP7C/dBwipzl06BCmTJmCEydO4MUXX8Rjjz0Gd3d36VhERKLqm+rhc8YH/sX+KBhVIB2HqE20ccJ1Mp+LF1GloReviI2NlY5A5BRxQ378vawpGVNkg7QSu0lXU1dXh2effRYxMTHw8PBASkoKnnrqKS7ZRC6Cc6Bt2ru1x7QL01A4qhCbj22WjkMuRul+8qININ/dHSdGj8b4fftEczRXbW0tPD09pWMQOUVMfAwSRyTiRMMJ9AvoJx2nRdhN+jWHDx/GlClTkJ2djeeffx5PPPEE2rVrJx2LiByIc6Dtahtr4XvOF4FFgbgw6oJ0HHIhSvdT9xftxtpahDY1wdijh3SUZlu2bJl0BCKniRscBxiAKelTpKO0GLtJ9tTX12PBggUYNWoUjEYjkpOT8eyzz3LJJnJBnANt5+nuiSnnp6BgVAG2ZG+RjkMuROl+6n7RLjxyBG4AvAcMkI7SbHfccYd0BCKnGRg0ECMPjcSByAPIvZgrHadF2E26UlpaGkaNGoWXX34ZzzzzDJKSkjB06FDpWETkJJwDjvFWzFtod7od5pfPl45CLkTpfup+0S699H5qfkOGyAZpgZSUFOkIRE61cfBGwA2YkjZFOkqLsJv0Xw0NDXjppZcQFRWFpqYmJCYmYsGCBWjfvr10NCJyIs4Bx/B098QDeQ/gQswFfHD8A+k45CKU7qfuF+3KrCwAQMiIEcJJmo/vz0iubmDQQEQlR2H/8P2aumqzmwQAR48eRUxMDF588UU88cQTSE5ORmRkpHQsIlIA54DjLItZBvcz7vjbxb9JRyEXoXQ/db9o1+fmwgzAt2tX6SjNxlenJT2IGxQHtAOmpmnnfbXZTX1rbGzEwoULMWLECNTW1iIhIQGxsbHw8PCQjkZECuEccBxPd0/89exfkR+Tj49OfCQdh1yA0v3U/aJtyMtDkca+CTp16pR0BCKnGxw8GCOSRmDf8H04Va6N/59nN/UrKysLY8aMwbPPPou///3vSElJQVRUlHQsIlIY54BjLY9ZDvez7phXOk86CrkApfup+0Xbs7gY5cJvL9ZS48aNk45ApIgN12z48aqdqo2rNrupP01NTVi0aBEiIyNRUVGBAwcOYOHChXx7HyKd4hxwLO923vjLmb/g/Ojz2J6zXToOaZzS/dT9ou1rNqMmKEg6Rou899570hGIFBEREoHIpEh8O/xbnDGfkY5zVeymvhw/fhxjx47Fk08+iUceeQSHDx/GqFGjpGMRkSDOAcdbGbMS7ufc8UjJI9JRSOOU7qfBZrPZFH3GSywWC0wmE8xmM3wFL8olRiOOTpiA8bt3i2VoqaamJri5uUnHIFJEelE6hvoMxfWJ12Pv+L3ScX4Vu6kPTU1NWLJkCZ599ll069YNGzduxJgxY6RjEZEKcA44x/3f3Y93x76LT05+gtv73i4dhzRK6X7q+qJdXVKCIJsN7n36SEdpkYULF0pHIFJMREgEhiUNQ/yweJw1n5WO86vYTdeXk5ODcePG4bHHHsOsWbOQmprKJZuIfsI54BwrY1bCLd8Nc4vmSkchDVO6n7q+aJ/atQu9Jk1C6uLFGDZvnkgGIrq6wwWHMcJvBCYkTMA347+RjkM6ZLVasWzZMjz11FPo3LkzNm7ciLFjx0rHIiLSjfu+uw+bx27Gpyc/xW19b5OOQ3RVur5oX0xPBwD4R0QIJ2mZ2NhY6QhEiooMi0REYgT2Dt2LPEuedJxfxG66ptzcXIwfPx7z5s3DzJkzkZaWxiWbiOziHHCe1TGr4ZbvhkcK+bva1DpK91PXi3bVsWMAgDCNvQXLAw88IB2BSHHrw9fD5m3D1MPqfQVydtO1WK1WLF++HBEREcjLy0N8fDyWLl2KDh06SEcjIpXiHHCeju074o8n/4gzo8/gi5NfSMchDVK6n7petJtOn0aR0QgPjb291549e6QjECkuqlMUhiQMwZ6IPcivyJeOYxe76TpOnTqFCRMmYO7cuZg6dSrS09Nx3XXXScciIpXjHHCu1aNWw63ADbMvzJaOQhqkdD91vWi7nT+PEg2+12l4eLh0BCIR68PXw9bBhqkp6rxqs5vaZ7VasWrVKgwZMgSnTp3Cnj17sHz5cnTs2FE6GhFpAOeAc/l6+OIPOX/AmZgz+PLkl9JxSGOU7qeuF22v0lJY/PykY7RYTU2NdAQiEdGdojE4YTB2D9mNgsoC6Tg/w25q25kzZ3DjjTdi9uzZuO+++5CRkYEbbrhBOhYRaQjngPOtjVkLY5ER/5f/f9JRSGOU7qeuF23/igrUhYRIx2ix0tJS6QhEYt7u9zZsPjZMPaS+qza7qU02mw3r1q3DkCFDcOLECXz99ddYvXo1fHx8pKMRkcZwDjifr4cv7jpxF06NPoVdp3ZJxyENUbqful20bVYrQuvrYevaVTpKiw0dOlQ6ApGYUZ1H4ZqEa7BryC7VXbXZTe05d+4cJk2ahAcffBD33HMPMjIyMHHiROlYRKRRnAPKWDvqx6v27PP8XW1qPqX7qdtF23zmDDoC8OjXTzpKi33++efSEYhEvd3nx6v2tEPTpKNcht3UDpvNhg0bNmDw4MHIzMzEF198gXXr1sFkMklHIyIN4xxQhp+nH35/4vc4GXMSe87wBeioeZTup8Fms9kUfcZLLBYLTCYTzGYzfAVe9fvERx8h/O67cXTdOgyeMUPx52+L6upqeHt7S8cgEnXNd9cge2A2CrwLENJBHb8Cwm5qw/nz5zFz5kx8+eWXmDJlChYvXgw/Db5eBxGpD+eAcspryxFYHoheP/TCD2N/kI5DGqB0P3V70S5PTwcABA4bJhukFf71r39JRyASt673OthMNkxLVs9Vm91UN5vNhnfeeQeDBg1CamoqPv/8c8TFxXHJJiKH4RxQjp+nH24/fjtyY3Kx98xe6TikAUr3U7cX7e/+9CeMfv99GOvq4Na+veLPT0RtN/C7gTg+8DiKOhQhyDtIOg6p2IULF/DQQw/hs88+w1//+lcsXboU/v7+0rGIiKgNymrKEGwJRp8TfXDi2hPScYguo9uLtvXMGRS6uWlyyY6NjZWOQKQK63qvg83PhulJ06WjAGA31chms2Hz5s0YNGgQkpKS8Mknn+Cdd97hkk1ETsE5oKwArwDcln0bckbnIP5svHQcUjml+6nbi/b3vXqhY1kZhprNij93WxUXFyM4OFg6BpEq9N/XHzkDclRx1WY31aWwsBAPP/wwPvnkE/z5z3/GW2+9hcDAQOlYROTCOAeUV1ZThuCKYPQ93hfHrz0uHYdUTOl+6vai3eHiRVRq9KKxbds26QhEqrGmxxrY/G2YkST/oobspjrYbDZs3boVgwYNwvfff4+PP/4Ymzdv5pJNRE7HOaC8AK8ATM6ajBMxJ7A/b790HFIxpfup20U7oKoKDWFh0jFaJTo6WjoCkWqM7z4e/Q72w2cDP0NZTZloFnZTXlFREe6++27ce++9mDBhAjIzM3HnnXdKxyIineAckLF+5HoYyg2YeXKmdBRSMaX7qctF29rYiLDGRhi6d5eO0ioXLlyQjkCkKqu7r4Y10Cp+1WY3ZX300UcYNGgQvv32W3zwwQfYunUr/wgnESmKc0BGkHcQbsm8Bdmjs3nVpl+kdD91uWgXHz2K9gC8+veXjtIqTU1N0hGIVOWGHjeg78G++LT/pyivLRfLwW7KKCkpwb333ou7774b48aNQ2ZmJu6++27pWESkQ5wDcjZEb+BVm36V0v3U5aJdcuQIAMA0eLBwktbp2bOndAQi1VndfTWsQVbMSJS7arObytu+fTsGDRqE3bt3Y8uWLfjoo48QEhIiHYuIdIpzQE5IhxDcnHkzsmOycfD8Qek4pEJK91OXi7bl6FEAQHBkpHCS1tm3b590BCLVmdBjAnon9Mb28O1iV212UzmlpaX4y1/+gjvvvBOjR49GZmYm7r33XhgMBuloRKRjnAOy4qLjYLAYMCNX/gVSSX2U7qcuF+263FxUAfDv00c6Sqv86U9/ko5ApEqru66GNcSKmYkyf2yM3VTGjh07MHjwYHz55Zd49913sX37doRp9MUtici1cA7ICukQgpuO3oSsmCwk5idKxyGVUbqfuly0ce4cCtu3h8Gozf/zV65cKR2BSJUm9pyIXgd7YVv4NljqLIo/P7vpXBcvXsT999+P22+/HVFRUTh69Cjuu+8+XrGJSDU4B+TFRcXBUGHAjBxetelySvfTYLPZbIo+4yUWiwUmkwlmsxm+vr6KPvfBrl3RvqYGI0pLFX1eInK+L09+iVt63IJ79t+D9697XzoOOcjOnTvx4IMPoqqqCkuXLsX999/PBZuIiOy6Kf4mfD36aySVJSG6E99yjWRo86TbRj7l5agODJSO0WqxsbHSEYhU6+beN6NnQk981O8jxa/a7KbjlZeXY9q0aZg8eTKGDh2KzMxMPPDAA1yyiUiVOAfUIW5EHAxVBkw/MV06CqmI0v3U5UW7wM0N2ddei/Hx8Yo+r6NYLBbF/zsj0pIvTn6BW3veij/t/xPeG/eeYs/LbjrWrl27MGPGDJjNZixZsgRTp07lgk1EqsY5oB43xt+I3aN3I7ksGVGdoqTjkAoo3U/dXbTrKysRYrXCTcNvv7Bx40bpCESqdkvvW9DjYA980OcDVNZXKva87KZjWCwWzJw5E5MmTcLAgQNx9OhRTJs2jUs2Eake54B6bIjcAEM1r9r0/yndT90t2oWHD8MIwHvAAOkorfbb3/5WOgKR6i0PW46mTk14KOEhxZ6T3Wy7b775BoMHD8b777+PNWvWYNeuXejevbt0LCKiZuEcUI+uvl1xQ9oNSB+VjsMFh6XjkAoo3U/dLdplaWkAAP+ICOEkrZednS0dgUj1JveZjG4J3bC191bFrtrsZutVVFRg1qxZmDhxIvr164eMjAw8+OCDvGITkaZwDqjLhuEbYKg1YPpxXrVJ+X7qbtGuzMoCAIRGafd3NTp06CAdgUgTloUsQ1PnJsxOmK3I87GbrfOf//wHERERePfdd7Fy5Urs3r0bPTX86z1EpF+cA+rS3dQd41PHI3VkKlILU6XjkDCl+6m7Rbvh5EmUGQzoEBIiHaXVAgICpCMQacLtfW9Ht4Ru2NJrC6obqp3+fOxmyxQWVuLaaz/CDTdMQI8ePZCeno5Zs2bBaNTdaCIiF8E5oD5xw+OAemBa9jTpKCRM6X7q7rsZ4/nzKPbwkI7RJunp6dIRiDRjafBSNHZrVOSqzW4237JlaejatRT799+CJ5/cjL1796J3797SsYiI2oRzQH16mHpg/JHxODLyCNKL+O9Hz5Tup+7e3ispNBQ2gwGjCgoUe05Hy8/PR+fOnaVjEGlG14NdUdilEOZOZni383ba87CbV1dSUo2JE5ORmnotfH0zsG2bHyZM6CEdi4jIITgH1OmM+Qx6oidGHBmBQ+MPScchIUr3U3cXbZPFgtrgYOkYbbJhwwbpCESasjRwKRq7N2JOwhynPg+7+etWrkxD585FSE0diTvu2IeSkiFcsonIpXAOqFMPUw+MOzIOKSNTcLT4qHQcEqJ0P3V30b5oNCLtxhsx/quvFHtOIpLXJaELijoVwdzZuVdt+rmyshrceGMiUlLGwccnEx9+2BE33dRLOhYREenIqfJT6G3ojagjUUgenywdh3RAVxftyoIC+NtsaNenj3SUNomNjZWOQKQ5i/0Xo7FHIx5JfMRpz8Fu/ty6dRkICytASkoMJk/eh5KSa7hkE5HL4hxQr15+vTD2yFgcij6EzOJM6TgkQOl+6uqinfv55+jzu98hbdkyDJ3j3D9C6kx1dXXw0PgLuhFJ6JzQGcWdilHRpQKe7p4Of3x28/8rL6/FTTcdRFLSOHTokI0PPvDCLbfwxc6IyLVxDqhb7sVc9HXri+jD0UganyQdhxSmdD91ddG+mJYGAAgcNkw2SBstXbpUOgKRJv101U5wzlWb3fxRXFwmQkPPIylpDG6+eR9KSvpzySYiXeAcULc+/n0w5vAYJEcn41jJMek4pDCl+6mrRbvmxAlYAYRGRkpHaZO77rpLOgKRJt3T/x6EJYZhY5eNqG2sdfjj672bFksdxoyJx7RpA+DuXodPPjmHL74YD09Pd+loRESK0Psc0IKNERsBKzD16FTpKKQwpfupq0W76fRpFBqNaOet7RdCSkriH3Uhaq03fN9AQ68G/C3xbw5/bD138913sxASchYHD47BxIn7UFoajttv7ysdi4hIUXqeA1rRL6AfRqeMRmJUIo6XHpeOQwpSup+6WrTd8vNR6uUlHaPNOnXqJB2BSLP+MvAvCE0MxfrO61HfVO/Qx9ZjNysr63HttfG4//5wGI2N+Oij0/j6a16xiUif9DgHtChuSBwAYGoGr9p6onQ/dbVodygtRYW/v3SMNnNzc5OOQKRp/71qz0uY59DH1Vs3t2zJRnDwKezf/xtcf/1+lJT0xV13hUvHIiISo7c5oFX9A/tj1KFRODjiIHLKcqTjkEKU7qeuFm3/ykrUhYZKx2izM2fOSEcg0rT7Bt6HkKQQrO/k2Ku2XrpZXd2A66+Px5///ONbJb7//kns3Tse3t7thJMREcnSyxxwBXGD4wAjMCV9inQUUojS/dTNom2zWhHW0ABDt27SUdps7Nix0hGINO/1jq+jvnc95ifOd9hj6qGbH310AkFBuYiPH4tx475HcXEv3HNPf+lYRESqoIc54CoGBg1EdHI0DkQeQO7FXOk4pACl+6mbRbssJwdeADz69ZOO0mbvv/++dAQizbv/mvsRnByMtaFrHXbVduVuVlc34Le/jcfdd/eE1eqGTZty8O2349GxY3vpaEREquHKc8AVxQ2KA9yAKWlTpKOQApTup8Fms9kUfcZLLBYLTCYTzGYzfH19nf582Vu2YMCf/4ysjRtxzQMPOP35nKmxsRHu7nyhIaK2isuMw7RB0/DIgUewdEzb31vRVbu5fXsO7ruvAdXV/TFmzD58+eVo+Pp6SMciIlIdV50Driw6PhqHhh/CSdtJ9PLrJR2HnEjpfurmom3OyAAABA0fLpyk7V599VXpCEQuYeqgqQhKDsKakDVotDa2+fFcrZu1tY246aZ43HlndzQ1tcfGjcfx/ffjuWQTEf0CV5sDehA3KA5oB0xJnSIdhZxM6X7q5qL97d13I+ajj9CuoQFG/qSRiC55++jbmDl4JuYdmIfFYxZLx1GNzz/Pxb331qKqagBGjdqHr76KgZ+fp3QsIiIih4uKj0LK8BScxmn0MPWQjkMuQjcXbdvZsyhwd3eJJTs2NlY6ApHLmDF4BgIPBWJV8Ko2X7VdoZv19U249dZ4/O53XdDQ4IW3385GQsJ4LtlERM3gCnNAjzZcswFoD0w5MkU6CjmR0v3UzaLdvqAAFzt0kI7hEFOmTJGOQORSXvF4BXX96vBE4hNtehytd/PLL08iMDALX3wxDlFRCbhwoROmTx8kHYuISDO0Pgf0KiIkAsOThiN+eDzOmPkWba5K6X7qZtHuePEiKgMDpWM4xO7du6UjELmUB4c8iICUAKwMXNmmq7ZWu1lf34Tbb4/HLbd0Ql1dR6xalYnk5PEICPCSjkZEpClanQMEbBjw41V76pGp0lHISZTup24W7YDqajSGhUnHcIiBAwdKRyByObHtYlEbXounk55u9WNosZu7d59GUFAmduwYh+HDk5CfH4qHHx4iHYuISJO0OAfoR8NCh2FY0jDED4vHWfNZ6TjkBEr3UxeLdlN9PcKammDs4RovblBRUSEdgcjlzIqYBf/D/ljmv6zVV20tdbOx0Yo774zHjTeGoKbGhGXLMnD48HUICvKWjkZEpFlamgP0c+v7r4fN04ZpR6ZJRyEnULqfuli0i9LS4A7Aq39/6SgOUV5eLh2ByCX90+2fqO1fi2eSnmnV52ulm//5zxkEBaVj+/bxiIhIxvnzQZgzZ6h0LCIizdPKHCD7IsMiEZEYgb1D9yLPkicdhxxM6X7qYtEuOXIEAGAaPFg4iWMMGcI/1knkDHOGzoHfET8s81sGq83a4s9XezcbG6344x+/xQ03BKGqKhCLF6ciLe06hIS4xgtFEhFJU/scoKtbH74eNm8bph3mVdvVKN1PXSzaFZmZAIDQqCjhJI7x5ZdfSkcgclkLDAtQM6AGzyY92+LPVXM39+/PQ3BwGj788DoMHnwI5875Y968YdKxiIhciprnADVPVKcoDEkYgm8ivkF+Rb50HHIgpftpsNlsNkWf8RKLxQKTyQSz2QxfX1+nPlf85MmI3LkTPk1NMBi1/7OFyspKdOzYUToGkcvyP+KPOs86VA6ohNHQ/K8Zauym1WrDX//6Hd57LxJubmYsXFiExx6LlI5FROSS1DgHqOWSLyRjZMBI3HjwRuwav0s6DjmI0v3U/tbZDIa8PBR5eLjEkg0AS5YskY5A5NJeMLyAmoE1eCH5hRZ9ntq6+f33eQgOPoz33rsOAwYcwenTvlyyiYicSG1zgFonulM0BicMxu4hu1FQWSAdhxxE6X7q4qKd0Lkz3BoaEF1c7NTnISLX4Zfqh4b2DagYWNGiq7YaWK02TJmyD+++OwxubhV46aUCPPXUCOlYREREmpGYn4iYoBhMOjAJX47nrwRQy2nru8dW8jWbURMUJB3DYWJjY6UjELm852zPofqaaixIXtDsz1FDN5OS8hESkoJ33x2H8PA0nDzZkUs2EZFC1DAHyDFGdR6FaxKuwa7Bu3jVdhFK91MXF+1ioxGZ11+P8Xv2OPV5lFJSUoIgF/rBAZEaWW1W+Kf7o7FdY7Ov2pLdtFptmDFjP+LiImA0VuOFF/Lw/PPRIlmIiPSK36O5loPnD2JM8BjccuAW7By/UzoOtZHS/XT5i3ZteTmCbTa49+4tHcVhPvroI+kIRC7PaDDi2aZnUX1NNV469FKzPkeqm4cOXUBY2CHExV2Lvn3TcfKkN5dsIiIB/B7NtYzuMhoDEgbgy0FfoqiqSDoOtZHS/XT5RbswJQUA0GHAAOEkjhMTEyMdgUgX5g+fD590H7zu9Xqz3ldb6W5arTY8/PB+jBzphdLSbnjuuSTk5FyLHj1MiuYgIqIf8Xs017Ou9zrY/GyYlsz31dY6pfvp8ot2WVoaAMA/IkI4iePk5eVJRyDSBaPBiKcbnkbV4Cq8kvLKVT9eyW6mphaic+ckrFkzFj17HsWJEx745z9HKvb8RET0c/wezfWM7ToWAw4OwBeDvkBJdYl0HGoDpfvp8ot21bFjAIDQEa7zYkBCv1ZPpEuPRz6Ojhkd8ZrHa1e9aivRTavVhv/7v+8RGdkexcW98NRTiTh5ciz69PF3+nMTEdGv4/dorum/V+3pSdOlo1AbKN1Pl1+0G0+dQrHBAK+AAOkoDtOtWzfpCES6YTQY8WTdk6gcUomFKQt/9WOd3c2jR4vRtWsiVq78Dbp3z0J2tjteeWWUU5+TiIiaj9+juaaxXcciPCEcn1/zOa/aGqZ0P11+0TaeP48ST0/pGA518OBB6QhEuvLUiKfQ4WgHvOrx6q9etZ3ZzUcfPYCICCMKCvrgH/84iNOnf4N+/VznB4hERK6A36O5rjU91sAaYMXM5JnSUaiVlO6ny7+9V3JwMJratUNMfr7TnkNppaWlCAwMlI5BpCuxh2LxXNRzWJiyEE+OeNLuxzijm8eOlWDixBycPz8aXbsexNdf98PAgXzrGCIiNeL3aK4tfF84csNzUexbjAAv/rBba5Tup8tftP0qKlAXHCwdw6FWrVolHYFId54e8TQ6HO2AV9q98otXbUd387HHDmLQIBvy88Mxb94BnDs3mks2EZGK8Xs017a6+2pYA62YkTRDOgq1gtL9dPmLtsVgwOFbbsH4nXyTeSJqmxeTX8SC6AVYdHgRHot8zGnPc/x4KSZOPI5z58agU6cEfP11Hwwe7Fo/MCQiItKivvv74lTfUyj1K4Wfp590HFIxl75om8+ehS+A9n37SkdxqNjYWOkIRLr0XNRz8M7yRqxbrN2rtiO6+dRTiRg40Iq8vIGYM+cA8vJGcckmItIIfo/m+tZ0WwNrkBUzEnnV1hql++nSi3ZRSgoAwOeaa4STONajjz4qHYFIl4wGI+ZXzodlqAVLUpf87J+3pZu5uRfRq9f3ePXVUQgNPYkjRxqwbNkYGI2GNiQmIiIl8Xs01zehxwT0TuiN7eHbUV5bLh2HWkDpfrr0ol2eng4ACBw2TDaIg61fv146ApFuLYheAO8sb/zT8M+f/bPWdvO555IQHl6PM2cG4eGHv8f58yMxdGhIW6MSEZHC+D2aPqzuuhrWECseTHxQOgq1gNL9dOlFu+bECTQCCBk6VDqKQ914443SEYh0y2gwYl7FPJiHmX921W5pN0+fLkffvvsQGzsSQUFncOhQLVat+g2v2EREGsXv0fRhYs+J6HWwFz4O/xiWOot0HGompfvp0ou29cwZFLq5wd3F3kf72LFj0hGIdO2lkS/B65gXXrS9eNnfb0k3X3wxGX361CA3NwLTp+/HhQvRiIwMc3RUIiJSEL9H048VnVf8eNVO4FVbK5Tup0sv2u4XLqDU21s6hsP5+PhIRyDSNaPBiHmWeSgfXo5lact++vvN6ebZs2aEh+/DggXRCAjIQ1JSNd5+eyyv2ERELoDfo+nHzb1vRo+EHvio30e8amuE0v106UW7Q1kZKv39pWM4nMlkko5ApHuxI2Phle2FF5pe+OnvXa2br7xyCL17VyEnZygeeGAfCgujEB3dydlRiYhIIfweTV9WdlqJprAmPJz4sHQUagal++nSi3ZAZSXqQ0OlYzhcZmamdAQi3TMajJhbPhcXIy9iedpyAL/czbw8CwYO/A7PPBMFk+kCDhyowMaN1/KKTUTkYvg9mr7c0vsW9DjYAx/0/gCV9ZXScegqlO6nyy7a1sZGhDU2wtC9u3QUh5s0aZJ0BCIC8PLIl+F53BPPNz0PwH43Fy06jJ49LcjOHo6//OU7FBdHYvToLkpHJSIiBfB7NP1ZHrYcTZ2b8HACr9pqp3Q/27Ro5+XlYf78+Y7K4lCl2dnwAOAZHi4dxeE2bNggHYGIALgb3TGnbA4uRl7EqvRVl3WzoKASgwd/hyeeiISvbxH27TNj06ZxvGITEbkwfo+mP5P7TEa3hG54v/f7vGqrnNL9NNhsNltrPtFms2HlypVITk7Gxo0bW/z5FosFJpMJZrMZvr6+rYnwq7LeeQfXPPAAjm3ahIF/+YvDH5+ICAAarY3w+cEH3hXeKB1RCgD417+O4IkngtDYGIB77jmETZuuhbu7y/4BIiIiIl379IdPcUfvO/DX/X/FO+PekY5DKtHq7/x2796NG264wZFZHMpy9CgAIDgyUjiJ48XGxkpHIKJL3I3umF06G2UjyjBpxm2IiPgW8+cPR4cOpfjPf0rx/vvXcckmItIJfo+mT7f3vR1dE7tiS68tqG6olo5Dv0Dpfrbqop2bm4vKykqYTCYsWLCgWRfturo61NXV/fS/WywWdOvWzWkX7W/vvBMjt2+HZ1MTDEbX+ia3oaEB7dq1k45BRJc0Whvh+f5v0TR/NVDQHXfdlYz33+cVm4hIb/g9mn5tz9mOO/vdiQf2PYCN126UjkN2KN3PVn0XuHz5chw8eBDz58/H6dOnMWfOHAA//pQgPz8f69evR3JyMnbt2oVt27YhKysLd9xxB0wm009/devWDQCwdu1apKenY8eOHdi5cycOHz6MNWvWoLi4+KefOsTGxqK6uhpvvvkmjh8/jg8++AB79uzBgQMHsHHjRpw7d+6yj21qasKmxESkuLtj0+bN2L9/P+Lj4/H+++8jJycHr7/+Ompray/7nIKCAqxbtw7Jycn46quvsH37dhw9ehTLli2D2Wy+7GPLy8uxfPlyZGRk4JNPPsEXX3yBlJQUrF27FoWFhZd9bE1NDd58803k5ORg69at2Lt3L77//nu88847OHv2LF5++WVYrVbExsbCarXi5ZdfxtmzZ/HOO+/g+++/x969e7F161bk5OTgzTffRE1NDW699dafHr+wsBBr165FSkoKvvjiC3zyySfIyMjA8uXLUV5eflkWs9mMZcuW4ejRo9i+fTu++uorJCcnY926dSgoKLjsY2tra/H6668jJycH77//PuLj47F//368++67OHPmDBYuXIimpqbLPufcuXPYuHEjDhw4gD179uCDDz7A8ePH8eabb6K6uvqyjy0uLsaaNWtw+PBh7Ny5Ezt27EB6ejpWrFiBsrKyyz7WYrHgrbfeQlZWFrZt24Zdu3YhOTkZ69evR35+/mUfW1dXh0WLFiE3NxdbtmxBfHw89u3bh02bNuH06dN49dVX0djYeNnn5OXlIS4uDgkJCdi9ezc+/PBDZGdnY/HixaisrLzsY0tKSrB69Wqkpqbi888/x2effYbU1FSsWrUKpaWll31sRUUFlixZgqysLHz88cf4+uuvkZiYiA0bNvwsd0NDA1577TWcPHkSmzdvxnfffYfvvvsOmzdvxsmTJ/Haa6+hoaHhss/Jz8/Hhg0bkJiYiK+//hoff/wxsrKysGTJElRUVFz2saWlpVi1ahVSU1Px2Wef4fPPP0dqaipWr16NkpKSyz62srISixcvRnZ2Nj788EPs3r0bCQkJiIuLQ15e3mUf29jYiFdffRWnT5/Gpk2bsG/fPsTHx2PLli3Izc3FokWLUFdX97Pc9r5GvPXWW7BYLJd9bFlZGVasWOGUrxELFy7EmTNn8O6777b5a0RVRRVClrYDsBT3/vVxvP32UKxevVLsa8T/Pj6/RvBrBL9GyH+NUNv3Efwa4byvEbNmzeLXCJ1+jfA/7w//f/pjk3UTXn71ZX6NUOHXiMcee8whXyOaq9W/o93Q0ICVK1figw8+wMqVKzF06NBf/XilL9oHu3WDR1UVIsvKHP7Y0k6ePInevXtLxyCi/2G1WfFDzkmEh/eVjkJEREL4PZq+fXziY/wh/A+Yum8qNlzLF8ZTG6X72eo/19iuXTs8+uij+P7776+6ZAOAh4cHfH19L/vLmTqWl6MqMNCpzyHl4MGD0hGI6ApGgxHJyYnSMYiISBC/R9O3u8LvQueEzni3+7uobayVjkNXULqfLvsLhEHV1Wjq1Ek6hlP894/dE5G6sJtERPrGOUCL/RejsUcj5ibMlY5CV1C6ny1atA0GQ7P/ktRQXY1QqxVuvXqJ5iAiIiIiIv34Y/8/olNCJ2zstpFXbZ1r0aJts9ma/ZekwiNHYATgFR4umsNZzp07Jx2BiOxgN4mI9I1zgADgTb830dijEY8kPCIdhf6H0v1s0aJdVVWFnTt3YuLEiQCA6upqbNiwAZ999hmmT58Oq9XqlJAtVZaWBgDwGzJEOIlzjB49WjoCEdnBbhIR6RvnAAHAnwb8CWGJYdjYhVdtNVG6ny1atDt06IBbb70VDQ0NAIBjx44hNzcXkydPRkZGRote7tyZKjIzAQChUVHCSZzjww8/lI5ARHawm0RE+sY5QP/1hu8baOjVgL8l/k06Cl2idD9b9fZe48ePR3x8PACguLgYW7duhZ+fH+67775mP4bFYoHJZHLK23vF33wzhu3aBT+VXNgdTek3Wyei5mE3iYj0jXOA/ldYYhguBl9ERY8KtHdrLx1H95TuZ5tfdTw4OBhz5szB5s2bkZ2d7YhMbWY4fx5FHh7SMZzmtddek45ARHawm0RE+sY5QP/rDd83UN+7Hn9L4FVbDZTuZ5su2itWrIC7uzseeugh/O53v8PDDz+MW2+9tVmP4cyLdmJYGAw2G0YWFjr0cYmIiIiIiJorNCkU5UHlvGrrUIsu2nV1dXjvvfdw+vRpbNmyBWPHjoWPjw8+/fRTDBkyBJMmTXJWzhYxWSyoDQqSjuE0sbGx0hGIyA52k4hI3zgH6EqLOi5Cfe96zE+cLx1F95TuZ6su2o7gzIt2qdGIjN/+FuO//tqhj6sW+fn56Ny5s3QMIroCu0lEpG+cA2RPSHIIzAFmVPTkVVuS0v1s8+9oq011SQkCbTa069NHOorTfPXVV9IRiMgOdpOISN84B8ie17xfQ32fejyW+Jh0FF1Tup8ut2gXJCcDADoMGCCcxHkGDRokHYGI7GA3iYj0jXOA7Jk6aCqCkoOwJngNGq2N0nF0S+l+utyifTEtDQAQMHSocBLnMZvN0hGIyA52k4hI3zgH6Jcs9FqIun51eDzxcekouqV0P11u0a4+fhxWAKGRkdJRnKaiokI6AhHZwW4SEekb5wD9khmDZyDwUCBWBq3kVVuI0v10uUW76fRpFBuN8HDwC6ypycCBA6UjEJEd7CYRkb5xDtCvednjZdT1q8MTiU9IR9Elpfvpcou22/nzKPHyko7hVF+76KupE2kdu0lEpG+cA/RrHhryEAJSArAykFdtCUr30+Xe3islMBD1Xl4YnZfnsMdUm4qKCvj4+EjHIKIrsJtERPrGOUBXsyp9FWZHzMZjCY9hUcwi6Ti6onQ/Xe6i7VdZifqQEOkYTrV06VLpCERkB7tJRKRvnAN0NbMiZsH/sD+W+S/jVVthSvfTpS7aNqsV1W5uSL7tNoz/9FOHPCYREREREZGjLE9bjrlD5+LJxCexcNRC6TjkJC510S4/dQodAHj07SsdxaliY2OlIxCRHewmEZG+cQ5Qc8wZOgd+R/yw1LQUVptVOo5uKN1Pl1q0i1JSAAA+11wjnMS5Zs2aJR2BiOxgN4mI9I1zgJprgWEBagbU4NmkZ6Wj6IbS/XSpRduckQEACBo+XDiJc33wwQfSEYjIDnaTiEjfOAeouR4d9ihMqSYs8V3Cq7ZClO6nSy3aNTk5qAcQEhEhHcWpRo8eLR2BiOxgN4mI9I1zgFpiARagZmANXkh+QTqKLijdT5datG1nzqDQ3R1Gd3fpKE517tw56QhEZAe7SUSkb5wD1BLzhs2DKdWEf3X8F6/aClC6ny61aLe7cAFl3t7SMZzOYDBIRyAiO9hNIiJ94xyglnrO9hyqr6nGPw/9UzqKy1O6ny61aHe8eBGVAQHSMZyua9eu0hGIyA52k4hI3zgHqKX+Nuxv8E3zxRveb/Cq7WRK99OlFu2A6mo0hIVJx3C6hIQE6QhEZAe7SUSkb5wD1FJGgxHPND2DqkFVeOnQS9JxXJrS/TTYbDabos94icVigclkgtlshq+vb5sfr6m+HlYPDxy45x5c9/77DkioXiUlJQgKCpKOQURXYDeJiPSNc4Baw2qzwi/DD1ajFZZBFhgNLnULVQ2l++ky/xaLjx5FOwBe4eHSUZxu9erV0hGIyA52k4hI3zgHqDWMBiOebngaVYOr8ErKK9JxXJbS/XSZi/bR9esxeMYMHN+6Ff3/+EcHJCQiIiIiInI+q80K01ETAMA82MyrtgtwmX+DFZmZAICQESOEkzhfbGysdAQisoPdJCLSN84Bai2jwYgn655E5ZBKvHb4Nek4LknpfrrMRTv+9tsRtWMHOjQ1wWB0mZ8f2FVZWYmOHTtKxyCiK7CbRET6xjlAbWG1WeGb6Quj1YjyIeW8ajuY0v10mX97hnPnUNi+vcsv2QCwbt066QhEZAe7SUSkb5wD1BZGgxGP1zyOiogKLDq8SDqOy1G6ny5z0U7o0gXudXWIKilxQDp1y87OxoABA6RjENEV2E0iIn3jHKC2stqs8M3yhbGJV21HU7qfLvNvzsdsRk1goHQMRWRkZEhHICI72E0iIn3jHKC2MhqM+Ef1P1ARUYE3j7wpHcelKN1Pl1m0g2pq0NS5s3QMRfj5+UlHICI72E0iIn3jHCBHeD7qeXhneSPWLRZWm1U6jstQup8usWjXWSwItVrh1quXdBRF+Pj4SEcgIjvYTSIifeMcIEcwGoyYXzkflqEWLEldIh3HZSjdT5dYtAsPHwYAdNDJ78QcO3ZMOgIR2cFuEhHpG+cAOcqC6AXwzvLGPw3/lI7iMpTup0ss2mVpaQAAvyFDhJMoY+LEidIRiMgOdpOISN84B8hRjAYj5lXMg3mYmVdtB1G6ny6xaFde+ulEWHS0cBJlbNy4UToCEdnBbhIR6RvnADnSSyNfgtcxL7xoe1E6iktQup8u8fZe8TfeiCHffINAK18sgIiIiIiIXMNTiU/h1VGv4q20tzB36FzpONQCLnHRNublodjTUzqGYmJjY6UjEJEd7CYRkb5xDpCjvTzyZXhle+GFpheko2ie0v10iYt2ckgIrG5uGHXhgoPSqVtjYyPc3d2lYxDRFdhNIiJ94xwgZ3gi4QksilmEFekrMDtitnQczVK6ny5x0TZVVKA2OFg6hmLeeOMN6QhEZAe7SUSkb5wD5Awvj3wZnsc98VzDc9JRNE3pfrrEoh1aWwtbly7SMRRz7733SkcgIjvYTSIifeMcIGdwN7pjTtkclI0ow6r0VdJxNEvpfmp+0a7Iz4cJQPu+faWjKGb//v3SEYjIDnaTiEjfOAfIWRaOWgiPHA882/CsdBTNUrqfml+0Cw8dAgB0HDhQOIlyevToIR2BiOxgN4mI9I1zgJzF3eiO2SWzUTaiDGsz1krH0SSl+6n5Rbs8PR0AEDB0qHAS5TQ1NUlHICI72E0iIn3jHCBnWjRqETxyPPB03dPSUTRJ6X5qftGuPnECTQBChw+XjqKYCzp5dXUirWE3iYj0jXOAnMnd6I5ZxbNQGlWK9UfXS8fRHKX7qflF23r6NIqMRrTz9paOopiRI0dKRyAiO9hNIiJ94xwgZ3s95nV4/OCBp2qeko6iOUr3U/OLtnt+Pkp0tGQDwMcffywdgYjsYDeJiPSNc4Cczd3ojgeLHkRxdDHiMuOk42iK0v002Gw2m6LPeInFYoHJZILZbIavr2+rH+dwQABqO3bEmLNnHZhO3erq6uDh4SEdg4iuwG4SEekb5wApob6pHj6nfeBX6ofCkYXScTRD6X5q/qLtX1mJ+pAQ6RiKev3116UjEJEd7CYRkb5xDpAS2ru1x4yCGSgaWYR/Z/1bOo5mKN1PTV+0bVYrat3ckPT73+O6bdscnJCIiIiIiEh96pvq4XPGB34lvGqrlaYv2qXHj8MLgEe/ftJRFBUbGysdgYjsYDeJiPSNc4CU0t6tPaZfmI6ikUXYdGyTdBxNULqfmr5oH9u8GQPvuw9Z//43rrn/fgcnVK/8/Hx07txZOgYRXYHdJCLSN84BUlJ9Uz06nu2IwKJAXBjFt5a7GqX7qemLtuXoUQBAcGSkcBJlffnll9IRiMgOdpOISN84B0hJ7d3aY9r5aSgYVYAt2Vuk46ie0v3U9KJdm5ODWgCBAwZIR1FURESEdAQisoPdJCLSN84BUtqSmCVod7od5pfPl46iekr3U9OLtu3sWRS6u8Po7i4dRVFlZWXSEYjIDnaTiEjfOAdIaZ7unngg7wFciLmArce3SsdRNaX7qelFu31BAco6dpSOobiqqirpCERkB7tJRKRvnAMkYVnMMrifccffLv5NOoqqKd1PTS/aHcvLURUQIB1DcQN09kflibSC3SQi0jfOAZLg6e6JB879eNX+6MRH0nFUS+l+anrRDqyuRmOnTtIxFPfNN99IRyAiO9hNIiJ94xwgKctjlsP9jDvmlc6TjqJaSvdTs4t2Y20twpqaYOzZUzqK4qZMmSIdgYjsYDeJiPSNc4CkeLp74r6z9+H86PP4+MTH0nFUSel+anbRLkpLgxsAr/Bw6SiKe+utt6QjEJEd7CYRkb5xDpCkFTEr4H6WV+1fonQ/DTabzaboM15isVhgMplgNpvh6+vb4s/PWLMGQx5+GDnbtqHf73/vhIRERERERETa8cC+B/DOte9gW842/L4fdyRJmr1oV2RmAgBCo6OFkygvNjZWOgIR2cFuEhHpG+cASVsxagXc8tzwaPGj0lFUR+l+avaiHX/rrRj+xRcwycQXVVZWhgAdvto6kdqxm0RE+sY5QGpw/3f3492x7+LTk5/itr63ScdRDaX7qdmLtiEvD0UeHtIxRGzZskU6AhHZwW4SEekb5wCpwcqYlXDLd8PcornSUVRF6X5qdtH2LCpCeSsu4a7g2muvlY5ARHawm0RE+sY5QGrQsX1H3HPyHpyNOYvPcz+XjqMaSvdTs4u2r9mMmsBA6RgiTp8+LR2BiOxgN4mI9I1zgNRiTcwauF1ww5yCOdJRVEPpfmp20Q6urYW1SxfpGCLc3NykIxCRHewmEZG+cQ6QWnRs3xF3596NMzFn8MXJL6TjqILS/dTkol1TVoYgmw3uvXtLRxHRqVMn6QhEZAe7SUSkb5wDpCZrRq2BW6Eb/u/C/0lHUQWl+6nJRbswJQUA0GHAAOEkMpKTk6UjEJEd7CYRkb5xDpCa+Hr44s6cO3E65jR2ndolHUec0v3U5KJdlpoKAAgYOlQ2iJA777xTOgIR2cFuEhHpG+cAqc3aUWthLDJi9vnZ0lHEKd1PTS7a1cePAwBCR4wQTiJjzZo10hGIyA52k4hI3zgHSG38PP1w54k7cXL0Sew+vVs6jiil+2mw2Ww2RZ/xEovFApPJBLPZDN8Wvk1X/IQJGPSf/yDYanVSOiIiIiIiIu0rry1H4MVA9MrthR/G/iAdRzc0edE2nj+PYi8v6RhiYmNjpSMQkR3sJhGRvnEOkBr5efrhjhN3IDcmF3vO7JGOI0bpfmryon0oKAiN7dsjJj/fSenUrbq6Gt7e3tIxiOgK7CYRkb5xDpBaldWUIdgSjN4neiPn2hzpOCKU7qcmL9p+lZWoCwmRjiFm1apV0hGIyA52k4hI3zgHSK0CvAJwW/Zt+GH0D9h7Zq90HBFK91Nzi7bNakVoXR1sXbtKRxEzefJk6QhEZAe7SUSkb5wDpGbrR66HsdSIh88+LB1FhNL91NyibTl3Dj4A2vfrJx1FTFpamnQEIrKD3SQi0jfOAVKzAK8A/O7Y75ATk4Pvzn0nHUdxSvdTc4t24aFDAACfgQOFk8gJDAyUjkBEdrCbRET6xjlAavf2yLdhvGjEg6celI6iOKX7qblF25yRAQAIGj5cOIkcLx2/4jqRmrGbRET6xjlAahfkHYRbsm7B8dHHsT9vv3QcRSndT80t2jUnTqARQMjQodJRxJw4cUI6AhHZwW4SEekb5wBpwfro9TCUGzDz5EzpKIpSup+aW7StZ86gwM0Nbu3bS0cRM2HCBOkIRGQHu0lEpG+cA6QFIR1CcHPmzcgenY3v876XjqMYpfupuUXb/cIFlOn8/Qn//e9/S0cgIjvYTSIifeMcIK2Ii46Dwayvq7bS/TTYbDabos94icVigclkgtlshq+vb7M/L9XPD1V+fvjN6dPOC0dEREREROTCbom/BV+O+RIHig9gdJfR0nFcjuYu2v5VVWgIDZWOISo2NlY6AhHZwW4SEekb5wBpyYaoDTBYDJiZq4+rttL91NRF29rYiMZ27XDwD3/AdR9+6OSE6tXU1AQ3NzfpGER0BXaTiEjfOAdIaybFT8Ku0buQVJaE6E7R0nGcSul+auqiXZKVhfYAPMPDpaOIWrRokXQEIrKD3SQi0jfOAdKaDSM2wFBlwPQT06WjOJ3S/dTWon3kCADANHiwcBJZf/7zn6UjEJEd7CYRkb5xDpDWdPbpjN+m/xYZMRlIvpAsHceplO6nphZt89GjAIDgyEjhJLK+++476QhEZAe7SUSkb5wDpEUbIjfAUO36V22l+6mpRbv+hx9QDSCgXz/pKKJ69eolHYGI7GA3iYj0jXOAtKirb1dMSJuAjFEZOFxwWDqO0yjdT00t2rZz51DYrh0MRk3FdrjGxkbpCERkB7tJRKRvnAOkVXGRcTDUGDDt+DTpKE6jdD81tbF6FBSgzMdHOoa4goIC6QhEZAe7SUSkb5wDpFVdfbvi+rTrkTYyDamFqdJxnELpfmpq0fYpL0d1YKB0DHEjRoyQjkBEdrCbRET6xjlAWhY3PA6GOgOmZbvmVVvpfmpq0Q6sqUFTp07SMcR98skn0hGIyA52k4hI3zgHSMu6m7rjutTrcGTkEZe8aivdT4PNZrMp+oyXWCwWmEwmmM1m+Pr6XvXj6ysr4e7jg+8feADXbtzo/IAqVltbC09PT+kYRHQFdpOISN84B0jrzpjPoCd6IvJIJFLGp0jHcSil+6mZi3ZRaiqMALz795eOIu6NN96QjkBEdrCbRET6xjlAWtfD1APXHbkOh0cextHio9JxHErpfmrmop22fDmGzp2L3M8+Q5/JkxVISEREREREpC+nyk+ht6E3RhwZgUPjD0nH0SzNXLQrs7IAAKFRUcJJ5MXGxkpHICI72E0iIn3jHCBX0MuvF649ci1SRqYgszhTOo7DKN1PzVy04ydNwtCvv4a/1apAOnUrKChAWFiYdAwiugK7SUSkb5wD5CpyL+air1tfRB+ORtL4JOk4DqF0PzVz0Tbm5aHIw0M6hip89tln0hGIyA52k4hI3zgHyFX08e+D3xz+DZKjk13mqq10PzWzaHsWF8PcjMu3HgwbNkw6AhHZwW4SEekb5wC5kriIOMAKTMt0jffVVrqfmlm0TRYLaoODpWOoQmlpqXQEIrKD3SQi0jfOAXIl/QL6YUzKGCRFJeF46XHpOG2mdD81s2iH1NXB2qWLdAxVqKmpkY5ARHawm0RE+sY5QK5mY8RGwAZMyZgiHaXNlO6nJhbtqqIi+NtsaNenj3QUVejXr590BCKyg90kItI3zgFyNf0C+iEmJQYJIxKQU5YjHadNlO6nJhbtwkM/vn9bx4EDhZOow3/+8x/pCERkB7tJRKRvnAPkijYO2QgYgCnpU6SjtInS/dTEon0xLQ0AEDB0qHASdbj//vulIxCRHewmEZG+cQ6QK+of2B8jD43EgcgDmr5qK91PTSza1cePwwogNDJSOooqLFu2TDoCEdnBbhIR6RvnALmqjYM3Am7A1PSp0lFaTel+Gmw2m03RZ7zEYrHAZDLBbDbD9ypv2xU/fjwG7NuHsKYmhdIRERERERHRf0XHR+NQ5CH80PQD+vjztbOuRhMXbbf8fJR4eUnHUI3Y2FjpCERkB7tJRKRvnAPkyjYO2gi4A1PTtHnVVrqfmrhopwQGot7LC6Pz8hRKp27l5eXw8/OTjkFEV2A3iYj0jXOAXF1UfBRShqfgpO0kevn1ko7TIkr3UxMXbf/KStSFhkrHUI1NmzZJRyAiO9hNIiJ94xwgV7dx0EagHTA1VXtXbaX7qfpF22a1Iqy+HujWTTqKalx33XXSEYjIDnaTiEjfOAfI1Q0OHozIpEh8O/xbnDGfkY7TIkr3U/WL9sXcXHgD8FD4DcbVLDc3VzoCEdnBbhIR6RvnAOlB3DVxQHtgypEp0lFaROl+qn7RLj58GADge801wknUo3379tIRiMgOdpOISN84B0gPIkIiMCxpGL4d9i3Oms9Kx2k2pfup+kW7PD0dABA0fLhwEvUI5e+rE6kSu0lEpG+cA6QXcQPiYPOwYeoR7fyuttL9VP2iXZuTg3oAwYMHS0dRjZSUFOkIRGQHu0lEpG+cA6QXw0KHYWjSUPxn6H+QZ9HGO0Mp3U/VL9q2s2dR4O4Oo7u7dBTVuP3226UjEJEd7CYRkb5xDpCebOi/ATYvG6Ye1sZVW+l+qn7RbldQgLIOHaRjqMq6deukIxCRHewmEZG+cQ6QnkSGRWJI4hDsidiD/Ip86ThXpXQ/DTabzaboM15isVhgMplgNpvh6+v7ix+XZjKhIjAQY0+eVDAdERERERER/ZrkC8kYGTASNx68EbvG75KOoyqqv2gHVlWhMSxMOoaqxMbGSkcgIjvYTSIifeMcIL2J7hSNwQmDsTtit+qv2kr3U9UX7ab6etg8PHDgT3/CuPfeUzihetXU1MDLy0s6BhFdgd0kItI3zgHSo8T8RMQExeCmAzfhq/FfScf5RUr3U9UX7aL0dLgD8AoPl46iKitXrpSOQER2sJtERPrGOUB6NKrzKAxKGISvh3yNgsoC6Ti/SOl+qnrRLk1NBQCY+NZel7ntttukIxCRHewmEZG+cQ6QXq3rsw42HxumHZomHeUXKd1PVS/alsxMAEBodLRwEnU5fPiwdAQisoPdJCLSN84B0qvRXUZjYMJAfDXoKxRVFUnHsUvpfqp60a7/4QdUAPDt1k06iqoEBwdLRyAiO9hNIiJ94xwgPVvXex1sJhumJavzqq10P1W9aBvy8lDUvj0MRlXHVJyHh4d0BCKyg90kItI3zgHSs990/Q0GJAzAF4O+UOVVW+l+qnqD9SgsxEUfH+kYqpObmysdgYjsYDeJiPSNc4D0bl3vdbD52TA9ebp0lJ9Rup+qXrR9zWZUBwVJx1Cd8ePHS0cgIjvYTSIifeMcIL0b23Us+h/sj52DdqKkukQ6zmWU7qeqF+3gmhpYO3eWjqE67777rnQEIrKD3SQi0jfOASJgba+1sPnZMCNphnSUyyjdT4PNZrMp+oyXWCwWmEwmmM1m+Pr6/uyf11ks8DCZsH/6dIx9+22BhOpltVph5O+tE6kOu0lEpG+cA0Q/Ct8XjtzwXBT7FiPAK0A6DgDl+6narwQFhw4BALz79xdOoj6vvPKKdAQisoPdJCLSN84Boh+t7bEW1kCrqq7aSvdTtRftI//6F4bPn49TX32FXjfdJJBQvfjTUiJ1YjeJiPSNc4Do/+u3rx9Ohp9UzVWbF+1LqrKzAQBh0dHCSdRn4cKF0hGIyA52k4hI3zgHiP6/1d1XwxpoxcykmdJRACjfT9VetOMnTsTgPXsQZLUKpFO3s2fPonv37tIxiOgK7CYRkb5xDhBdru/+vjjV5xRK/Uvh5+knmkXpfqr2om3My0Oxp6d0DFWKj4+XjkBEdrCbRET6xjlAdLlVXVfBGmLFzET5q7bS/VTtou1VWgqLySQdQ5X69OkjHYGI7GA3iYj0jXOA6HITe05E74O9sS18Gyx1FtEsSvdTtYu2n8WC2uBg6RiqVFdXJx2BiOxgN4mI9I1zgOjnVnZZCWuIFQ8mPCiaQ+l+qnbRDqmrg61rV+kYqlRcXCwdgYjsYDeJiPSNc4Do527qdRN6JvTER/0+Er1qK91PVS7alrw8mAC079tXOooqRUZGSkcgIjvYTSIifeMcILJvRacVaAprwkOJD4llULqfqly0i1JSAAAdBw4UTqJOO3bskI5ARHawm0RE+sY5QGTfLb1vQY+DPfBhnw/FrtpK91OVi/bFtDQAQOCwYbJBVGr27NnSEYjIDnaTiEjfOAeIftnysOVo6tSEWYmzRJ5f6X6qctGuOXECTQBChw+XjqJKb775pnQEIrKD3SQi0jfOAaJfNrnPZHRP6I6tvbeisr5S8edXup8Gm81mU/QZL7FYLDCZTDCbzfD19b3sn8Vfey3CDx5E58ZGiWhERERERETkYDt+2IHbe9+Ov+7/K94Z9450HKdS5UXbPT8fpV5e0jFUKzY2VjoCEdnBbhIR6RvnANGvu63vbeiW0A1bem1R/KqtdD9VuWh3KCtDhb+/dAzVmjlzpnQEIrKD3SQi0jfOAaKrWxq8FI3dGvF/if+n6PMq3U9VLtr+VVWoDw2VjqFan376qXQEIrKD3SQi0jfOAaKr+32/36PLwS54r+d7qG6oVux5le6n6hZtm9WKsIYGGLp3l46iWiNGjJCOQER2sJtERPrGOUDUPEsDL121E5S7aivdT9Ut2iXHjsETgGd4uHQU1SosLJSOQER2sJtERPrGOUDUPHeF34UuB7tgU/dNil21le6n+hbtI0cAAL6DBgknUa/6+nrpCERkB7tJRKRvnANEzbckcAkaezTikcRHFHk+pfupukXbnJEBAAjie2j/oj59+khHICI72E0iIn3jHCBqvj+E/wGdEjrh393+jdrGWqc/n9L9VN2iXffDD6gFEDRwoHQU1fr222+lIxCRHewmEZG+cQ4Qtcxi/8Vo7NGIuQlznf5cSvfTYLPZbIo+4yUWiwUmkwlmsxm+vr4//f346Gj0TEtDT/7Rm19UXl4OPz8/6RhEdAV2k4hI3zgHiFquU2InlIaWwtLVAk93T6c9j9L9VN1Fu31hIco6dpSOoWrLly+XjkBEdrCbRET6xjlA1HL/Mv0LDT0bMC9hnlOfR+l+qu6ineHjA3NoKMb+8INELCIiIiIiIlJQp8ROKA0pRWX3SrR3ay8dxyFUd9EOrKlBY6dO0jFULTY2VjoCEdnBbhIR6RvnAFHrvO77Ohp6OfeqrXQ/VXXRbqythcHLC9//9a8Y9847ErE0wWw2w2QySccgoiuwm0RE+sY5QNR6oUmhKA8qR0WPCqdctZXup6ou2oVHjsANgHd4uHQUVXuHP4QgUiV2k4hI3zgHiFrv9Y6vo753PeYnznfK4yvdT1Ut2qWpqQAAvyFDZIOo3PXXXy8dgYjsYDeJiPSNc4Co9e6/5n4EJwdjbeha1Dc5/h2olO6nqhbtyqwsAEDIiBHCSdQtJydHOgIR2cFuEhHpG+cAUdu85v0a6vvU4x+J/3D4YyvdT1Ut2vW5uTAD8O3aVTqKqnl5eUlHICI72E0iIn3jHCBqm6mDpv541Q5Zi0Zro0MfW+l+qmrRNuTlocjDQzqG6gUGBkpHICI72E0iIn3jHCBqu4VeC1HXtw6PJTzm0MdVup+qWrQ9i4tR/j/vqU32pV76XXYiUhd2k4hI3zgHiNpu+uDpCDwUiFXBqxx61Va6n6patH3NZtQEBUnHUL3f/e530hGIyA52k4hI3zgHiBzjFY9XUNevDk8kPuGwx1S6n6patENqa2Ht0kU6huq9/fbb0hGIyA52k4hI3zgHiBzjwSEPIiAlACuCVjjsqq10Pw02m82m6DNeYrFYYDKZYDab4evri+qSEngHB2P/Qw9h7OrVEpGIiIiIiIhIBValr8LsiNn4x8F/4PXRr0vHaTHVXLQLU1IAAB0HDBBOon6xsbHSEYjIDnaTiEjfOAeIHGdWxCwEpARgecByh1y1le6nahbti2lpAAD/iAjhJOr3j384/n3liKjt2E0iIn3jHCByrJfavYTa/rV4JumZNj+W0v1UzaJdlZ0NAAiLihJOon7Lli2TjkBEdrCbRET6xjlA5FizI2bD/7A/lvktg9VmbdNjKd1P1SzaTadPo8hohAff3uuq7rjjDukIRGQHu0lEpG+cA0SO96Lbi6gZUINnk55t0+Mo3U/VLNpu58+jxNNTOoYmpFz6fXYiUhd2k4hI3zgHiBxv7tC58DvihyW+S9p01Va6n6pZtL1KS2Hx85OOoQlhYWHSEYjIDnaTiEjfOAeInOMFwwuoGViD55Kea/VjKN1P1Sza/hUVqAsJkY6hCe7u7tIRiMgOdpOISN84B4icY96weTClmrDYd3Grr9pK91MVi7bNakVofT1sXbtKR9GEU6dOSUcgIjvYTSIifeMcIHKe523Po2ZgDRYkL2jV5yvdT1Us2uYzZ9ARgEe/ftJRNGHcuHHSEYjIDnaTiEjfOAeInGfesHnwTfPFmx3fbNVVW+l+qmLRLrr0i+k+11wjnEQb3nvvPekIRGQHu0lEpG+cA0TOYzQY8WzTs6i+phovHXqpxZ+vdD8NNpvNpugzXmKxWGAymWA2m5H9xhsY+dJLuJCcjE58H+2rampqgpubm3QMIroCu0lEpG+cA0TOZbVZ4ZfhB6vRCssgC4yG5t+Nle6nKi7atTk5aAAQEhEhHUUTFi5cKB2BiOxgN4mI9I1zgMi5jAYjnm54GlWDqxB7KLZFn6t0P1Vx0T48aRL6JiWha2OjRBQiIiIiIiLSAKvNCtNRE2wGW4uv2kpSRap2Fy6gtEMH6RiaERvbsp/eEJEy2E0iIn3jHCByPqPBiKfrf7xqL0xp/pVa6X6q4qJ9snt3VPn54TenT0tE0Zxz586hW7du0jGI6ArsJhGRvnEOECnjv1dtADAPNjfrqq10P1Vx0Q6oqkJDWJh0DM3Ys2ePdAQisoPdJCLSN84BImUYDUY8UfcEKodUYtHhRc36HKX7Kb5oWxsbEdbYCEPPntJRNCM8PFw6AhHZwW4SEekb5wCRcp4e8TQ6HO2AV9q90qz31Va6n+KLdklWFtoD8OrXTzqKZtTU1EhHICI72E0iIn3jHCBSjtFgxGM1j6EiogJvHHnjqh+vdD/FF+3S9HQAgGnwYOEk2lFaWiodgYjsYDeJiPSNc4BIWc9FPQfvLG+87PbyVa/aSvdTfNGuyMoCAIRERQkn0Y6hQ4dKRyAiO9hNIiJ94xwgUpbRYMRjVY/BMtSCxamLf/Vjle6n+KJdd+oUqgD49eolHUUzPv/8c+kIRGQHu0lEpG+cA0TKez7qeXhneeMlw0u/+nFK91P87b0+HzoUA48dQ++6OokYmlRdXQ1vb2/pGER0BXaTiEjfOAeIZDyX9BxiR8ZicepizBs2z+7HKN1P8Yu2R1ERLnbsKB1DU/71r39JRyAiO9hNIiJ94xwgkvFi9IvwOuaFF20v/uLHKN1P8Yv2QW9vNHTpgmtPnJCIQURERERERBr3dOLTWDhqIZakLsGjwx6VjiN/0Q6qqUFT587SMTQlNjZWOgIR2cFuEhHpG+cAkZzYkbHwyvbCAtsC+/9c4X7KL9o2G9z4Qmgt8tBDD0lHICI72E0iIn3jHCCSYzQYMbd8LsqHl2N52vKf/XOl+ym+aBsBePfvLx1DU7Zt2yYdgYjsYDeJiPSNc4BI1ssjX4bncU883/T8z/6Z0v0UX7QBwD8iQjqCpkRHR0tHICI72E0iIn3jHCCS5W50x9yLc3Ex8iJWpa+67J8p3U9VLNqhUVHSETTlwoUL0hGIyA52k4hI3zgHiOS9MvIVeJ7wxLMNz17295Xup/iiXQagQ0iIdAxNaWpqko5ARHawm0RE+sY5QCTP3eiO2aWzUTaiDGsy1vz095Xup/iiXerhIR1Bc3r27CkdgYjsYDeJiPSNc4BIHV4b9Ro8cjzwTN0zP/09pfspvmibfX2lI2jOvn37pCMQkR3sJhGRvnEOEKmDu9Eds4pnoTSqFG8ffRuA8v002Gw2m6LPeInFYoHJZMLOgQNxS1aWRATNKisrQ0BAgHQMIroCu0lEpG+cA0Tq0WhtRMeTHeFz0QfF0cWK91P8om3r3Fk6guasXLlSOgIR2cFuEhHpG+cAkXq4G93xUNFDKIkuQVxmnOL9FLto5+fkoEt4OHbNmIEb162TiEBEREREREQuqr6pHj6nfWAqM6EoukjR53Zv6SfYbDZUVFS0+Inq6upQV1f30/+e+c03P/6H7t1hsVha/Hh6tmjRIjz++OPSMYjoCuwmEZG+cQ4Qqc+Uk1OwdtRa3Pbwbdi0aJNDHtPHxwcGg+FXP6bFF+3//m41ERERERERkd6YzWb4XuVFvVu8aDvqon3hwgWMHDkSR9PT0a1HjxY/nl5ZLBZ069YN586du+q/XCJSDrtJRKRvnANE6pV8Khm/HfZbh/WzORftFv/RcYPB4NAvHiZ/f34xagVfX1/+90akQuwmEZG+cQ4QqU90r2gAyvZT/FXHiYiIiIiIiFwJF20iIiIiIiIiBxJbtD08PC77n9Q8Hh4emDFjBv97I1IZdpOISN84B4jUS6KfXLQ1xsPDAzExMfzvjUhl2E0iIn3jHCBSL4l+tvhVxx3lv28T1pyXRqfL5efno3PnztIxiOgK7CYRkb5xDhCpl9L95O9oa9CGDRukIxCRHewmEZG+cQ4QqZfS/eRFm4iIiIiIiMiBeNHWoNjYWOkIRGQHu0lEpG+cA0TqpXQ/edHWoLq6Or7QBpEKsZtERPrGOUCkXkr3kxdtDVq6dKl0BCKyg90kItI3zgEi9VK6n1y0NaKqqgo7d+7ExIkTcdddd0nHIaL/8d9+7tixQzoKEREJqK6uxoYNG+Dn54fp06fDarVKRyKi/1FZWYm9e/fi7Nmzij0nF22N6NChA2699VY0NDSgT58+0nGI6H/8t5/u7u7SUYiISMCxY8eQm5uLmTNnIiMjA3V1ddKRiOiSDRs24PXXX8euXbsU/SGY2O9o22w2VFRUwMfHBwaDQSKCJo0fPx7x8fHSMYjIDvaTiEi/iouLsXXrVvj5+eG+++6TjkNEVzAYDDh16hR69uypyPOJXbQNBgN8fX25ZBMRERGR5gUHB2POnDnYvHkzsrOzpeMQkTD+0XEiIiIiojZYsWIF1qxZAwBwd3dHbm6ucCIiksZFWyPq6urw3nvv4fTp09iyZQt/94dIRdhPIiJ9u/766+Hj44NPP/0UQ4YMwaRJk6QjEZEwsd/RJiIiIiIiIlKCbn5Hm4iIiIiIiMgVcdFWOYPB0Oy/iEgGO0lEpG+cA0TqtWXLFsyaNQsA8OSTT2LlypWKPC//6DgRERERERGRA/GirXJVVVXYuXMnJk6cCAAoKirCpk2b8N5772H+/PlobGwUTkhE1dXV2LBhAz777DNMnz4dVqtVOhIREQnIy8vD/PnzpWMQkQpw0Va5Dh064NZbb0VDQwMAYO/evSgvL8ef//xnNDQ04JtvvhFOSETHjh1Dbm4uJk+ejIyMDL7qOBGRDtlsNnz66acoLS2VjkJEKuAuHYBa5t577/3pPxcUFGDAgAGCaYgIAEaMGIHu3btjxYoVeOSRR+Dl5SUdiYiIFLZ7927ccMMNSE5Olo5CRCrAi7ZG7dy5E3fffbdiL09PRL8uODgYc+bMwebNm5GdnS0dh4iIFJSbm4vQ0FD+oJWIfsJFW4OSk5MRGhqKu+++G1lZWdJxiHRvxYoVWLNmDQDA3d0dubm5womIiEhJqampOHXqFL7++mucPXsW6enp0pGISBj/6LjK1dXV4eOPP8bp06exZcsWdO7cGXPnzkVISAjq6+uxatUq6YhEunf99dcjNTUVn376KYYMGYJJkyZJRyIiIgXdddddaGhowMqVK1FXVwe+qQ8R8e29iIiIiIiIiByIf3SciIiIiIiIyIG4aBMRERERERE5EBdtIiIiIiIiIgfiok1ERERERETkQFy0iYiIiIiIiByIizYRERERERGRA3HRJiIiIiIiInIgLtpEREREREREDsRFm4iIiIiIiMiBuGgTERERERERORAXbSIiIiIiIiIH+n/qPeSpNh27iwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "Graphics object consisting of 9 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:56,546 Plotting covered intervals... done\n", + "INFO: 2023-09-20 09:43:56,547 Uncovered intervals: ([],)\n", + "INFO: 2023-09-20 09:43:56,549 Total: 1 stability orbits, lengths: ['2']\n", + "INFO: 2023-09-20 09:43:56,549 Rational case.\n", + "INFO: 2023-09-20 09:43:56,550 Plotting completion diagram with perturbation...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAALhCAYAAAB2cZOUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1yP5//A8den0kkHklNEEil0EpZTMYTNWJtjk8bM5jiMfX3HMDanmc3GZrNhm9McZxjGFGKlyKGzlBxyKtGJVNfvj37dXx8dhD59kuv5fXwe3933fd3X9b7vruvj6uq670slhBBIkiRJkiRJklQmOtoOQJIkSZIkSZKeJ7IDLUmSJEmSJElPQHagJUmSJEmSJOkJyA60JEmSJEmSJD0B2YGWJEmSJEmSpCcgO9CSJEmSJEmS9ARkB1qSJEmSJEmSnoDsQEtVghCCu3fvIl9rLkmSJEmSpskOtFQlpKenY25uTnp6urZDkSRJkiSpipMdaEnSgg0bNmg7BKkSkPVAkjRDti0JNFsPZAdakrSgXbt22g5BqgRkPZAkzZBtSwLN1gPZgZYkLdi6dau2Q5AqAVkPJEkzZNuSQLP1QCXkU1dSFXD37l3Mzc25c+cOZmZm2g7nse7fv4+BgYG2w5C0TNYDSdIM2bYk0Gw9kCPQkqQFixcv1nYIUiUg64EkaYZsWxJoth6Uywh0Tk4Oubm55RGPJD2VjIwMunTpwuHDhzExMdF2OC80PT099PX1tR2GJEmSJGnMM3egc3JyiIiIID8/v7xikiTpOaajo0PLli1lJ7oM5s2bx4wZM7QdhiRVObJtSaDZevDMHeisrCyioqKwsbHByMiovOKSJOk5lJ2dTWJiIg4ODhgbG2s7nErv6tWrWFlZaTsMSapyZNuSQLP1QK+8MjIyMpL/YEqSBMCdO3e4d+8eBgYGVK9eXdvhVFp//fUXI0eO1HYYklTlyLYlgWbrQbl1oCVJkgrt2rWLzMxMzMzMGDRokOxEl8DJyUnbIUhSlSTblgSarQfyLRySJJW76tWro6+vz927d7l//762w6m0UlNTtR2CJFVJsm1JoNl6IDvQkiSVOwMDA/kO1jLIzMzUdgiSVCXJtiWBZuuB7EBLkiRpSYsWLbQdgiRVSbJtSaDZeiA70JIkSVpy4MABbYcgSVWSbFsSaLYeyA60JEmSlvj7+2s7BEmqkmTbkkCz9UB2oP9fYmIiKpWK8PDwZ8onICAAlUpFWlpaucT1LIKCgmjdujXVqlWjf//+2g5HKkF51b2Kzlt6dsuWLdN2CJJUJcm2JYFm60GFdqCvXbvG+PHjsbW1xcDAAGtra/r27cvBgwcrMoxy4+XlxQcffKC2r0OHDiQnJ2Nubq6doB4yefJkXFxcSEhIYM2aNdoOp8qorJ1Sf3//Ir8oWVtbk5ycTKtWrbQTlFQquVKaJGmGbFsSaLYeVFgHOjExkTZt2vDPP/+waNEizp49y969e+natStjx46tqDA0Tl9fn3r16qFSqbQdCvHx8XTr1o2GDRtSo0YNbYdTJeTk5FTq/B6lq6tLvXr10NOTr3yvjObNm6ftECSpSpJtSwLN1oMK60CPGTMGlUpFSEgIb775Js2bN6dly5ZMnjyZf//9V0mXlJREv379MDExwczMjIEDB3L9+nXl+OzZs3FxceHnn3+mUaNGmJiY8P7775OXl8eiRYuoV68ederU4bPPPlMrX6VS8d1339G7d2+MjIxo0qQJmzdvLjXmyMhI+vTpg4mJCXXr1mXYsGHcunULKBjtCwwM5Ouvv0alUqFSqUhMTCx2CsfWrVtp2bIlBgYG2NjYsGTJErVybGxs+PzzzxkxYgSmpqY0atSIH374odTY7t+/z4QJE6hTpw6GhoZ06tSJEydOAP8bIU1JSWHEiBGoVKoSR6BtbGyYN28efn5+mJiY0LhxY/744w9u3ryp/Bxat25NaGio2nmlXdP06dN56aWXipTl5OTErFmzlO3Vq1fj4OCAoaEhLVq0YMWKFcqxnJwcxo0bR/369TE0NMTGxob58+eXek8eVvhz2L17N87OzhgaGtK+fXvOnj2rlu7YsWN06dIFIyMjrK2tmTBhgtprbwrvj7+/P+bm5owaNYomTZoA4OrqikqlwsvLCyj+LxL9+/dXm4NVXH6FoqOj6dChA4aGhrRs2ZKAgADlWF5eHiNHjqRJkyYYGRlhb2/P119/rRyfPXs2a9eu5Y8//lDqY0BAQLGj5YGBgbRr1w4DAwPq16/Pf/7zH3Jzc5XjXl5eTJgwgWnTpmFhYUG9evWYPXt2me+9VHZjxozRdgiSVCXJtiWBhuuBeEaZmZkiNDRUZGZmlpgmJSVFqFQq8fnnn5eaV35+vnB1dRWdOnUSoaGh4t9//xVubm7C09NTSTNr1ixhYmIi3nzzTRERESF27twp9PX1hbe3txg/fryIjo4WP//8swDE8ePHlfMAUatWLfHjjz+KmJgYMWPGDKGrqysiIyOFEEIkJCQIQJw6dUoIIcTVq1eFpaWlmD59uoiKihInT54UPXr0EF27dhVCCJGWliY8PDzEqFGjRHJyskhOTha5ubni0KFDAhC3b98WQggRGhoqdHR0xKeffipiYmLE6tWrhZGRkVi9erUSW+PGjYWFhYVYvny5iIuLE/Pnzxc6OjoiKiqqxHs1YcIEYWVlJfbs2SMiIiLE8OHDRc2aNUVKSorIzc0VycnJwszMTHz11VciOTlZZGVlFZtPYdnff/+9iI2NFe+//74wNTUVvXr1Er///ruIiYkR/fv3Fw4ODiI/P79M13T27FkBiPPnzyvlnDt3TgAiJiZGCCHEDz/8IOrXry+2bt0qLly4ILZu3SosLCzEmjVrhBBCLF68WFhbW4vDhw+LxMREceTIEbF+/fpS68/DCn8ODg4OYv/+/eLMmTPi1VdfFTY2NiInJ0cIIcSZM2eEiYmJWLp0qYiNjRVBQUHC1dVV+Pv7q90fMzMzsXjxYhEXFyfi4uJESEiIAMSBAwdEcnKySElJEUII4enpKSZOnKgWR79+/cTw4cNLza+w7jVs2FBs2bJFREZGinfeeUeYmpqKW7duCSGEyMnJEZ988okICQkRFy5cEL/99pswNjYWmzZtEkIIkZ6eLgYOHCh69eql1Mf79+8XqdeXL18WxsbGYsyYMSIqKkps375dWFpailmzZikxenp6CjMzMzF79mwRGxsr1q5dK1Qqldi/f/9j73vh98GWLVvEqlWrxNKlS5X7IxX17bffajsESaqSZNuShNBsPaiQDnRwcLAAxLZt20rNa//+/UJXV1ckJSUp+yIiIgQgQkJChBAFHWhjY2Nx9+5dJY23t7ewsbEReXl5yj57e3sxf/58ZRsQ7733nlp57du3F++//74QomgHeubMmaJnz55q6S9duqTWCSyuw/RoB3ro0KGiR48eammmTp0qHB0dle3GjRuLt956S9nOz88XderUEd99912x9ykjI0NUq1ZNrFu3TtmXk5MjrKysxKJFi5R95ubmah314jxadnJysgDEzJkzlX3Hjx8XgEhOTi7zNTk5OYlPP/1U2Z4+fbpo27atsm1tbV2kQzx37lzh4eEhhBBi/Pjxolu3bkqn/UkV/hw2btyo7EtJSRFGRkZKp3PYsGHi3XffVTvvyJEjQkdHR2RnZwshCu5P//791dI8WlcKlbUDXVJ+CxYsUPY9ePBANGzYUCxcuLDEaxwzZox44403lO3hw4eLfv36lRrrf//7X2Fvb692X5cvXy5MTEyU9uPp6Sk6deqklk/btm3FRx99VGIshWQH+smcPn1a2yFIUpUk25YkhGbrQYVM4RBCADx2XnBUVBTW1tZYW1sr+xwdHalRowZRUVHKPhsbG0xNTZXtunXr4ujoiI6Ojtq+GzduqOXv4eFRZPvhfB8WFhbGoUOHMDExUT6FL+SOj48v9ToevaaOHTuq7evYsSNxcXHk5eUp+x5er12lUlGvXr0i8ReKj4/nwYMHavlWq1aNdu3alXg9pXm47Lp16wLQunXrIvsK4ynLNfn6+rJu3Tqg4Oe/YcMGfH19Abh58yaXLl1i5MiRavd33rx5yr319/cnPDwce3t7JkyYwP79+5/4ukD9Z25hYYG9vb1yj8LCwlizZo1aDN7e3uTn55OQkKCc5+7u/lRll6Sk/B6OVU9PD3d3d7Wf5/fff4+7uzu1a9fGxMSEH3/8kaSkpCcqOyoqCg8PD7W22LFjRzIyMrh8+bKy7+E6AVC/fv0S66P09BITE7UdgiRVSbJtSaDZelAhTxY1a9YMlUpFVFRUqa9TE0IU28l+dH+1atXUjqtUqmL35efnPza2kjr1+fn59O3bl4ULFxY5Vr9+/cfmW6i4ayr8heJhTxJ/Sb+QlHT/HufhsgvPL25fYTxluaahQ4fyn//8h5MnT5Kdnc2lS5cYPHiwWj4//vgj7du3VztPV1cXADc3NxISEvjrr784cOAAAwcOpHv37mzZsuWJr+9RD1/P6NGjmTBhQpE0jRo1Uv67evXqZcpXR0enyH148OBBkXRlze/hWH///XcmTZrEkiVL8PDwwNTUlMWLFxMcHFzmvKD0n93j2lhZ2pP0ZArruyRJ5Uu2LQk0Ww8qZATawsICb29vli9fXuy65IUP3Dk6OpKUlMSlS5eUY5GRkdy5cwcHB4dnjuPhhxULt0ta5tHNzY2IiAhsbGyws7NT+xR2gPT19dVGkYvj6OjI0aNH1fYdO3aM5s2bP/UP1s7ODn19fbV8Hzx4QGhoaLncp8cpyzU1bNiQLl26sG7dOtatW0f37t2Vkey6devSoEEDLly4UOTeFj6gB2BmZsagQYP48ccf2bRpE1u3biU1NfWJYn34Z3779m1iY2OVn3nhz/jRGArvb0kKjz36s69duzbJycnKdl5eHufOnXuqWHNzcwkLC1NiPXLkCB06dGDMmDG4urpiZ2dX5C8hZa2Px44dU+voHzt2DFNTUxo0aFDmWKXy8SS/jEuSVHaybUmg2XpQYW/hWLFiBXl5ebRr146tW7cSFxdHVFQUy5YtU/503b17d5ycnPD19eXkyZOEhITg5+eHp6dnufwZffPmzfz888/ExsYya9YsQkJCGDduXLFpx44dS2pqKkOGDCEkJIQLFy6wf/9+RowYoXRSbGxsCA4OJjExkVu3bhU7QjdlyhQOHjzI3LlziY2NZe3atXz77bd8+OGHT30d1atX5/3332fq1Kns3buXyMhIRo0aRVZWFiNHjnzqfMuqrNfk6+vLxo0b2bx5M2+99ZbasdmzZzN//ny+/vprYmNjOXv2LKtXr+bLL78EYOnSpWzcuJHo6GhiY2PZvHkz9erVe+LX8X366accPHiQc+fO4e/vj6WlpfJXkI8++ojjx48zduxYwsPDiYuLY+fOnYwfP77UPOvUqYORkRF79+7l+vXr3LlzB4Bu3bqxe/dudu/eTXR0NGPGjHmiBXWWL1/O9u3biY6OZuzYsdy+fZsRI0YABb80hYaGsm/fPmJjY5k5c6by1pVCNjY2nDlzhpiYGG7dulXs6PeYMWO4dOkS48ePJzo6mj/++INZs2YxefJktSlQUsV49GcoSVL5kG1LAs3Wgwr7F7NJkyacPHmSrl27MmXKFFq1akWPHj04ePAg3333HVDwZ+IdO3ZQs2ZNunTpQvfu3bG1tWXTpk3lEsOcOXPYuHEjTk5OrF27lnXr1uHo6FhsWisrK4KCgsjLy8Pb25tWrVoxceJEzM3NlY7Ghx9+iK6uLo6OjtSuXbvY+ahubm78/vvvbNy4kVatWvHJJ5/w6aefPvPykgsWLOCNN95g2LBhuLm5cf78efbt20fNmjWfKd+yKOs1DRgwgJSUFLKysopM3XnnnXdYtWoVa9asoXXr1nh6erJmzRplBNrExISFCxfi7u5O27ZtSUxMZM+ePcq99/f3V14fV5oFCxYwceJE2rRpQ3JyMjt37lRGkJ2cnAgMDCQuLo7OnTvj6urKzJkzH/sbq56eHsuWLWPlypVYWVnRr18/AEaMGMHw4cOVX/qaNGlC165dy3BH/xfrwoULcXZ25siRI/zxxx9YWloC8N577+Hj48OgQYNo3749KSkpRV7PM2rUKOzt7ZV50kFBQUXKaNCgAXv27CEkJARnZ2fee+89Ro4cKRcd0BIfHx9thyBJVZJsWxJoth6oRHETcp9AVlYWUVFRODg4YGxsXF5xlTuVSsX27dvlktZVhJeXF15eXiW+nzggIICuXbty+/ZtuYhMBSr8PkhMTCQtLY309HT8/PywsLDQdmiV0rx58+QvL5KkAbJtSaDZeiCXJ5OeO+np6cTHx7Nr1y5thyJJz0T+Ay9JmiHblgRVZClvSSovpqamXLp0CRMTE22HIknPRC43LEmaIduWBJqtBxU/heP/H7jC3PxZipUkqRKSUzieTFZWVqWe+iZJzyvZtiTQbD2o2BHoO3dg7tyCT2FH+gXi5eXFBx98oO0wJEmqJAofoJYkqXzJtiWBZutBxXags7Lg1q2CT1ZWqUmvXbvG+PHjsbW1xcDAAGtra/r27cvBgwcrKFipMpo9ezYuLi6PTRcREcEbb7yBjY0NKpWKr776SuOxSdKTevXVV7UdgiRVSbJtSaDZelAp50AnJibSpk0b/vnnHxYtWsTZs2fZu3cvXbt2ZezYsVqNLScnR6vlS2WTlZWFra0tCxYsoF69etoOR5KKdfr0aW2HIElVkmxbEmi2HlTKDvSYMWNQqVSEhITw5ptv0rx5c1q2bMnkyZPVVmtLSkqiX79+mJiYYGZmxsCBA7l+/ToAMTExqFQqoqOj1fL+8ssvsbGxUVZii4yMpE+fPpiYmFC3bl2GDRvGrVu3lPReXl6MGzeOyZMnY2lpSY8ePcp0XmZmJn5+fpiYmFC/fn2WLFlSpmvfuXMn7u7uGBoaYmlpqfYOw9u3b+Pn50fNmjUxNjamd+/exMXFKcfXrFlDjRo12LVrF/b29hgbG/Pmm2+SmZnJ2rVrsbGxoWbNmowfP15txTobGxvmzp3L0KFDMTExwcrKim+++UYtrtLuNfxvZPjXX3/FxsYGc3NzBg8eTHp6upJGCMGiRYuwtbXFyMgIZ2dntaW5AwICUKlUHDx4EHd3d4yNjenQoQMxMTHK9c2ZM4fTp0+jUqlQqVSsWbOm2PvYtm1bFi9ezODBgzEwMCjTvZekilarVi1thyBJVZJsWxJoth5Uug50amoqe/fuZezYscqS2Q8rfKevEIL+/fuTmppKYGAgf//9N/Hx8QwaNAgAe3t72rRpw7p169TOX79+PUOHDkWlUpGcnIynpycuLi6EhoYqK8sNHDhQ7Zy1a9eip6dHUFAQK1euLNN5U6dO5dChQ2zfvp39+/cTEBBAWFhYqde+e/dufHx8eOWVVzh16pTSkSzk7+9PaGgoO3fu5Pjx4wgh6NOnj9qKc1lZWSxbtoyNGzeyd+9eAgIC8PHxYc+ePezZs4dff/2VH374Qa3jCrB48WKcnJw4efIk06dPZ9KkSfz9999luteF4uPj2bFjB7t27WLXrl0EBgayYMEC5fiMGTNYvXo13333HREREUyaNIm33nqLwMBAtXw+/vhjlixZQmhoKHp6espqfIMGDWLKlCm0bNmS5ORkkpOTi8QgSc8TIyMjbYcgSVWSbFsSaLgeiGeUmZkpQkNDRWZm5uMTX70qxPDhBZ+rV4tNEhwcLACxbdu2UrPav3+/0NXVFUlJScq+iIgIAYiQkBAhhBBffvmlsLW1VY7HxMQIQERERAghhJg5c6bo2bOnWr6XLl0SgIiJiRFCCOHp6SlcXFzU0jzuvPT0dKGvry82btyoHE9JSRFGRkZi4sSJJV6Th4eH8PX1LfZYbGysAERQUJCy79atW8LIyEj8/vvvQgghVq9eLQBx/vx5Jc3o0aOFsbGxSE9PV/Z5e3uL0aNHK9uNGzcWvXr1Uitv0KBBonfv3kKIst3rWbNmCWNjY3H37l0lzdSpU0X79u2FEEJkZGQIQ0NDcezYMbVyRo4cKYYMGSKEEOLQoUMCEAcOHFCO7969WwAiOztbKcfZ2bnYe1SSxo0bi6VLlz7ROdLTKfw+2LJli1i1apVYunSpSElJ0XZYldbq1au1HYIkVUmybUlCaLYeVLoRaPH/UytUKlWp6aKiorC2tsba2lrZ5+joSI0aNYiKigJg8ODBXLx4UZn2sW7dOlxcXJTlu8PCwjh06BAmJibKp0WLFkDBaGqhh0eBy3JefHw8OTk5eHh4KOdYWFhgb29f6jWFh4fz8ssvl3i9enp6tG/fXtlXq1Yt7O3tlesFMDY2pmnTpsp23bp1sbGxUXtnct26dblx44Za/g/HWrhdmG9Z7jUUTAUxNTVVtuvXr6+UExkZyb179+jRo4faffvll1/U7jUULLH9cB5AkXglqSooqb1LkvRsZNuSQLP1oNJ1oJs1a4ZKpVLrmBVHCFFsJ/vh/fXr16dr166sX78egA0bNvDWW28pafPz8+nbty/h4eFqn7i4OLp06aKke3QqyePOE0/5au3S/tRQUp6P3odq1aqpHVepVMXuy8/Pf2w8hfmW5V6XVHZhOYX/v3v3brV7FhkZWWQ6ycP5FOZflngl6Xmzdu1abYcgSVWSbFsSaLYeVLoOtIWFBd7e3ixfvpzMzMwix9PS0oCCEdCkpCQuXbqkHIuMjOTOnTs4ODgo+3x9fdm0aRPHjx8nPj6ewYMHK8fc3NyIiIjAxsYGOzs7tU9x86/Lep6dnR3VqlVTe+Dx9u3bxMbGlnrtTk5OJb6mz9HRkdzcXIKDg5V9KSkpxMbGql3v03o41sLtwlH1st7r0jg6OmJgYEBSUlKRe/bwyPbj6Ovrqz0AKUnPM7ncsCRphmxbEryAS3mvWLGCvLw82rVrx9atW4mLiyMqKoply5YpUw26d++Ok5MTvr6+nDx5kpCQEPz8/PD09FSbcuHj48Pdu3d5//336dq1Kw0aNFCOjR07ltTUVIYMGUJISAgXLlxg//79jBgxotRO2uPOMzExYeTIkUydOpWDBw9y7tw5/P390dEp/XbPmjWLDRs2MGvWLKKiojh79iyLFi0CCkbm+/Xrx6hRozh69CinT5/mrbfeokGDBvTr1+9ZbjcAQUFBLFq0iNjYWJYvX87mzZuZOHEiUPZ7XRpTU1M+/PBDJk2axNq1a4mPj+fUqVMsX778iX5DtLGxISEhgfDwcG7dusX9+/eLTZeTk6OMcufk5HDlyhXCw8M5f/58mcuSJE2Tyw1LkmbItiWBZutBxXagjY3B0rLgU8rSik2aNOHkyZN07dqVKVOm0KpVK3r06MHBgweVVWVUKhU7duygZs2adOnShe7du2Nra8umTZvU8jIzM6Nv376cPn0aX19ftWNWVlYEBQWRl5eHt7c3rVq1YuLEiZibm5fa2S3LeYsXL6ZLly689tprdO/enU6dOtGmTZtSb4+XlxebN29m586duLi40K1bN7UR59WrV9OmTRteffVVPDw8EEKwZ8+eIlMnnsaUKVMICwvD1dWVuXPnsmTJEry9vYGy3+vHmTt3Lp988gnz58/HwcEBb29v/vzzT5o0aVLmPN544w169epF165dqV27Nhs2bCg23dWrV3F1dcXV1ZXk5GS++OILXF1deeedd54oZknSpOnTp2s7BEmqkmTbkkCz9UAlnnbC7v/LysoiKioKBweHsq03XriEt7n5sxQrlSMbGxs++OADucy49MwKvw8SExNJS0sjPT0dPz8/LCwstB1apTR//nz5D70kaYBsWxJoth7oaSTX0siOsyRJEgBDhw7VdgiSVCXJtiWBZutBhc+BvvP//5MkSXrRHT58WNshSFKVJNuWBJqtBxU6An2HO8xlLgAzmYk5L9ZotJeXFy4uLnz11VfaDkVNYmKitkOQpBfSk8z/lySp7GTbkkCz9aBCR6CzyOLW//8vi6xS0167do3x48dja2uLgYEB1tbW9O3bt8TXvEkvhtmzZ+Pi4vLYdD/++COdO3emZs2a1KxZk+7duxMSEqL5ACXpCeTm5mo7BEmqkmTbkkCz9aBSvsYuMTGRNm3a8M8//7Bo0SLOnj3L3r176dq1K2PHjtVqbDk5OVotXyqbgIAAhgwZwqFDhzh+/DiNGjWiZ8+eXLlyRduhSZLi2rVr2g5Bkqok2bYk0Gw9qJQd6DFjxqBSqQgJCeHNN9+kefPmtGzZksmTJ6st+JGUlES/fv0wMTHBzMyMgQMHcv36dQBiYmJQqVRER0er5f3ll19iY2OjrOwXGRlJnz59MDExoW7dugwbNoxbt24p6b28vBg3bhyTJ0/G0tKSHj16lOm8zMxM/Pz8MDExoX79+ixZsqRM175z507c3d0xNDTE0tISHx8f5djt27fx8/OjZs2aGBsb07t3b+Li4pTja9asoUaNGuzatQt7e3uMjY158803yczMZO3atdjY2FCzZk3Gjx+v9p5rGxsb5s6dy9ChQzExMcHKyopvvvlGLa7S7jX8b2T4119/xcbGBnNzcwYPHkx6erqSRgjBokWLsLW1xcjICGdnZ7VVCAMCAlCpVBw8eBB3d3eMjY3p0KEDMTExyvXNmTOH06dPo1KpUKlUrFmzptj7uG7dOsaMGYOLiwstWrTgxx9/JD8/X/4FQ6pUHvdqS0mSno5sWxJoth5Uug50amoqe/fuZezYscWuBlijRg2goDPWv39/UlNTCQwM5O+//yY+Pp5BgwYBYG9vT5s2bVi3bp3a+evXr2fo0KGoVCqSk5Px9PTExcWF0NBQ9u7dy/Xr1xk4cKDaOWvXrkVPT4+goCBWrlxZpvOmTp3KoUOH2L59O/v37ycgIICwsLBSr3337t34+PjwyiuvcOrUKaUjWcjf35/Q0FB27tzJ8ePHEULQp08fHjx4oKTJyspi2bJlbNy4kb179xIQEICPjw979uxhz549/Prrr/zwww9Fls9evHgxTk5OnDx5kunTpzNp0iT+/vvvMt3rQvHx8ezYsYNdu3axa9cuAgMDWbBggXJ8xowZrF69mu+++46IiAgmTZrEW2+9RWBgoFo+H3/8MUuWLCE0NBQ9PT1GjBgBwKBBg5gyZQotW7YkOTmZ5OTkIjGUJCsriwcPHsjXqUmVyo4dO7QdgiRVSbJtSaDheiCeUWZmpggNDRWZmZmPTXtVXBXD//9/V8XVYtMEBwcLQGzbtq3UvPbv3y90dXVFUlKSsi8iIkIAIiQkRAghxJdffilsbW2V4zExMQIQERERQgghZs6cKXr27KmW76VLlwQgYmJihBBCeHp6ChcXF7U0jzsvPT1d6Ovri40bNyrHU1JShJGRkZg4cWKJ1+Th4SF8fX2LPRYbGysAERQUpOy7deuWMDIyEr///rsQQojVq1cLQJw/f15JM3r0aGFsbCzS09OVfd7e3mL06NHKduPGjUWvXr3Uyhs0aJDo3bu3EKJs93rWrFnC2NhY3L17V0kzdepU0b59eyGEEBkZGcLQ0FAcO3ZMrZyRI0eKIUOGCCGEOHTokADEgQMHlOO7d+8WgMjOzlbKcXZ2LvYelWbMmDGiadOmSj6SZhR+H2zZskWsWrVKLF26VKSkpGg7rEpL1kdJ0gzZtiQhNFsPKt0ItPj/qRUqlarUdFFRUVhbW2Ntba3sc3R0pEaNGkRFRQEwePBgLl68qEz7WLduHS4uLjg6OgIQFhbGoUOHMDExUT4tWrQACkZTCz26XPXjzouPjycnJ0dZdhzAwsICe3v7Uq8pPDycl19+ucTr1dPTo3379sq+WrVqYW9vr1wvgLGxMU2bNlW269ati42NDSYmJmr7bty4oZb/w7EWbhfmW5Z7DQVTQUxNTZXt+vXrK+VERkZy7949evTooXbffvnlF7V7DeDk5KSWB1Ak3iexaNEiNmzYwLZt2zA0NHzqfCSpvH3xxRfaDkGSqiTZtiTQbD2o+IVUHqNZs2aoVCqioqLo379/iemEEMV2sh/eX79+fbp27cr69et56aWX2LBhA6NHj1bS5ufn07dvXxYuXFgkn8KOG1BkKsnjznt4XvKTMDIyKvGYKGHByEfvw6PLeqtUqmL35efnPzaewnzLcq9LKruwnML/3717Nw0aNFBLZ2BgoLb9cD6F+Zcl3uJ88cUXfP755xw4cECtYy5JlcGMGTO0HYIkVUmybUmg2XpQ6UagLSws8Pb2Zvny5WRmZhY5npaWBhSMgCYlJXHp0iXlWGRkJHfu3MHBwUHZ5+vry6ZNmzh+/Djx8fEMHjxYOebm5kZERAQ2NjbY2dmpfYqbf13W8+zs7KhWrZraA4+3b98mNja21Gt3cnIq8SE3R0dHcnNzCQ4OVvalpKQQGxurdr1P6+FYC7cLR9XLeq9L4+joiIGBAUlJSUXu2cMj24+jr6+v9gBkaRYvXszcuXPZu3dvkb8iSFJlMG/ePG2HIElVkmxbEmi2HlS6DjTAihUryMvLo127dmzdupW4uDiioqJYtmyZMtWge/fuODk54evry8mTJwkJCcHPzw9PT0+1zpKPjw93797l/fffp2vXrmqjn2PHjiU1NZUhQ4YQEhLChQsX2L9/PyNGjCi1k/a480xMTBg5ciRTp07l4MGDnDt3Dn9/f3R0Sr/ds2bNYsOGDcyaNYuoqCjOnj3LokWLgIKR+X79+jFq1CiOHj3K6dOneeutt2jQoAH9+vV7ltsNQFBQEIsWLSI2Npbly5ezefNmJk6cCJT9XpfG1NSUDz/8kEmTJrF27Vri4+M5deoUy5cvZ+3atWWO08bGhoSEBMLDw7l16xb3798vNt2iRYuYMWMGP//8MzY2Nly7do1r166RkZFR5rIkSdPeeecdbYcgSVWSbFsSaLYeVGgH2hhjLP//f8YYl5iuSZMmnDx5kq5duzJlyhRatWpFjx49OHjwIN999x1Q8Kf9HTt2ULNmTbp06UL37t2xtbVl06ZNanmZmZnRt29fTp8+ja+vr9oxKysrgoKCyMvLw9vbm1atWjFx4kTMzc1L7eyW5bzFixfTpUsXXnvtNbp3706nTp0e+zoVLy8vNm/ezM6dO3FxcaFbt25qI86rV6+mTZs2vPrqq3h4eCCEYM+ePUWmTjyNKVOmEBYWhqurK3PnzmXJkiV4e3sDZb/XjzN37lw++eQT5s+fj4ODA97e3vz5559PtFLQG2+8Qa9evejatSu1a9dmw4YNxaZbsWIFOTk5vPnmm9SvX1/5yHlxUmXy559/ajsESaqSZNuSQLP1QCVKmlxbRllZWURFReHg4ICxccmd4kJ3uAPwwi3jXZnZ2NjwwQcf8MEHH2g7FOk5V/h9kJiYSFpaGunp6fj5+cnXB5bgxIkTtG3bVtthSFKVI9uWBJqtBxX+EKHsOEuSJBVISUnRdgiSVCXJtiWBZutBpZwDLUmS9CLIzs7WdgiSVCXJtiWBZutBhY9A3ymYwYH5CzgQ7eXlhYuLC1999ZW2Q1GTmJio7RCkKiY6NZp6OvW0HUal16xZM22HIElVkmxbEmi2HlToCPSdOzB3bsGnsCNdkmvXrjF+/HhsbW0xMDDA2tqavn37lviaN+nFMHv2bFxcXB6bbtu2bbi7u1OjRg2qV6+Oi4sLv/76q+YDlAA4bH6YA1cPaDuMSu/QoUPaDkGSqqSlP/2o7RCkSkCT37EVOgKdlQW3bv3vv0sahU5MTKRjx47UqFGDRYsW4eTkxIMHD9i3bx9jx44lOjq64oJ+RE5ODvr6+lorXyobCwsLPv74Y1q0aIG+vj67du3i7bffpk6dOsrbRSTNMbtpxmmr06TEpTA0f6i2w6m0/Pz8tB2CJFUJGRk5rFoVyaZNaYTF1uJB6qcktxrHnpHfajs0SYs0+R1bKedAjxkzBpVKRUhICG+++SbNmzenZcuWTJ48WW3Bj6SkJPr164eJiQlmZmYMHDiQ69evAxATE4NKpSrS2f7yyy+xsbFRVvaLjIykT58+mJiYULduXYYNG8atwl4+BdMuxo0bx+TJk7G0tKRHjx5lOi8zMxM/Pz9MTEyoX78+S5YsKdO179y5E3d3dwwNDbG0tMTHx0c5dvv2bfz8/KhZsybGxsb07t1bbdXDNWvWUKNGDXbt2oW9vT3Gxsa8+eabZGZmsnbtWmxsbKhZsybjx49Xe8+1jY0Nc+fOZejQoZiYmGBlZcU333yjFldp9xr+NzL866+/YmNjg7m5OYMHDyY9PV1JI4Rg0aJF2NraYmRkhLOzM1u2bFGOBwQEoFKpOHjwIO7u7hgbG9OhQwdiYmKU65szZw6nT59GpVKhUqlYs2ZNsffRy8uL119/HQcHB5o2bcrEiRNxcnLi6NGjZfo5SM9mUL1BNL3UlJt1b+Ie7s7V9KvaDqlSerSdSZJUNvn5gr//TmTAgEDq1g3B1DSHSZNcCA5uSX2zNAw79OKvAb/gHuBOTl6OtsOVtEST37GVrgOdmprK3r17GTt2bLGrAdaoUQMo6Iz179+f1NRUAgMD+fvvv4mPj2fQoEEA2Nvb06ZNG9atW6d2/vr16xk6dCgqlYrk5GQ8PT1xcXEhNDSUvXv3cv36dQYOHKh2ztq1a9HT0yMoKIiVK1eW6bypU6dy6NAhtm/fzv79+wkICCAsLKzUa9+9ezc+Pj688sornDp1SulIFvL39yc0NJSdO3dy/PhxhBD06dOHBw8eKGmysrJYtmwZGzduZO/evQQEBODj48OePXvYs2cPv/76Kz/88INaxxUK3lvt5OTEyZMnmT59OpMmTeLvv/8u070uFB8fz44dO9i1axe7du0iMDCQBQsWKMdnzJjB6tWr+e6774iIiGDSpEm89dZbBAYGquXz8ccfs2TJEkJDQ9HT02PEiBEADBo0iClTptCyZUuSk5NJTk4uEkNxhBAcPHiQmJgYunTp8tj00rNToaK/dX+cbjlxo9kNmiY3JehykLbDqnTkcsOSVHaXL99l+vRgWrY8jIHBJXr2tGHLlg7cv69Pz56h/PZbFDk5tbiY0JnMo0H4nOpBWOcwGp5syOW7l7UdvqQFGv2OFc8oMzNThIaGiszMzMemvXpViOHDCz5XrxafJjg4WABi27Ztpea1f/9+oaurK5KSkpR9ERERAhAhISFCCCG+/PJLYWtrqxyPiYkRgIiIiBBCCDFz5kzRs2dPtXwvXbokABETEyOEEMLT01O4uLiopXnceenp6UJfX19s3LhROZ6SkiKMjIzExIkTS7wmDw8P4evrW+yx2NhYAYigoCBl361bt4SRkZH4/fffhRBCrF69WgDi/PnzSprRo0cLY2NjkZ6eruzz9vYWo0ePVrYbN24sevXqpVbeoEGDRO/evYUQZbvXs2bNEsbGxuLu3btKmqlTp4r27dsLIYTIyMgQhoaG4tixY2rljBw5UgwZMkQIIcShQ4cEIA4cOKAc3717twBEdna2Uo6zs3Ox9+hRaWlponr16kJPT08YGBiIn376qUznSU+v8Ptgy5YtYtWqVWLp0qVifdh6oXdRT6huqMSK0yu0HWKlMnfuXG2HIEmV1oMHeWLt2gjRvfshYWYWLiBHgBDVqiWI1q0DxMcfB4srV+4We25h2/o89HNBGsIgzkAcunioAqOXKgNNfsdWuhFo8f9TK1QqVanpoqKisLa2xtraWtnn6OhIjRo1iIqKAmDw4MFcvHhRmfaxbt06XFxccHR0BCAsLIxDhw5hYmKifFq0aAEUjKYWenS56sedFx8fT05OjrLsOBTMybW3ty/1msLDw3n55ZdLvF49PT3at2+v7KtVqxb29vbK9QIYGxvTtGlTZbtu3brY2NhgYmKitu/GjRtq+T8ca+F2Yb5luddQMBXE1NRU2a5fv75STmRkJPfu3aNHjx5q9+2XX35Ru9cATk5OankAReItC1NTU8LDwzlx4gSfffYZkydPJiAg4InzkZ6Nt40356qfw+yKGWNajOGdo3KJ3ULjxo3TdgiSVKmcPHmNd945SuPGx9DXv83w4Y4cOOCGsfE9Bg8+zqFDSeTk2HDmjCfz5rXDysq02HwK29b0NtPZnbKbfL18ulXvxtfhX1fk5Uhapsnv2Ap/jd3jNGvWDJVKRVRUFP379y8xnRCi2E72w/vr169P165dWb9+PS+99BIbNmxg9OjRStr8/Hz69u3LwoULi+RT2HEDikwledx5D89LfhJGRkYlHhMlLBj56H14dFlvlUpV7L78/PzHxlOYb1nudUllF5ZT+P+7d++mQYMGaukMDAzUth/OpzD/ssT7KB0dHezs7ABwcXEhKiqK+fPn4+Xl9cR5Sc/GvpY9l00v0ya4DT91/onTAacJ6hyEvu6L/UDub7/9JjvR0gstLe0eP/wQyebNdzl3zop795oDdTA2jsbD4yyDB9dk5EhHjI3bPzavhz3ctvrY9iHqdhRtE9ryQesPCDscxi9dftHA1UiVjSa/YyvdCLSFhQXe3t4sX76czMzMIsfT0tKAghHQpKQkLl26pByLjIzkzp07ODg4KPt8fX3ZtGkTx48fJz4+nsGDByvH3NzciIiIwMbGBjs7O7VPcfOvy3qenZ0d1apVU3vg8fbt28TGxpZ67U5OTiW+ps/R0ZHc3FyCg4OVfSkpKcTGxqpd79N6ONbC7cJR9bLe69I4OjpiYGBAUlJSkXv28Mj24+jr66s9APkkhBDcv3//qc6Vnp2JvglRnaLoH9if0M6hWIdZv/DzEj09PbUdgiRVqPx8wa5d8bz+egB16pygZs18PvrIjZMnHWjQ4Abjxh0jMjKVzExHgoK8GD/eGWPjao/P+BGPtq2mNZtyufVlWh1rxa9dfsU10JV7uffK67KkSkqT37GVrgMNsGLFCvLy8mjXrh1bt24lLi6OqKgoli1bpkw16N69O05OTvj6+nLy5ElCQkLw8/PD09NTbcqFj48Pd+/e5f3336dr165qo59jx44lNTWVIUOGEBISwoULF9i/fz8jRowotZP2uPNMTEwYOXIkU6dO5eDBg5w7dw5/f390dEq/3bNmzWLDhg3MmjWLqKgozp49y6JFi4CCkfl+/foxatQojh49yunTp3nrrbdo0KAB/fr1e5bbDUBQUBCLFi0iNjaW5cuXs3nzZiZOnAiU/V6XxtTUlA8//JBJkyaxdu1a4uPjOXXqFMuXL2ft2rVljtPGxoaEhATCw8O5detWiR3i+fPn8/fff3PhwgWio6P58ssv+eWXX3jrrbfKXJZU/nRUOmz33M6ck3O4YX8Du+t2BCQFaDssrXl0+pIkVUUJCWlMmXKcFi0Oo69/hb59m7Jjhwe5ubr06RPC5s2xPHhQh/PnO/HNNx1wcLB85jKLa1vG1Yw563mWQYGDCO8YTsPwhiTdSXrmsqTKS5PfsRXagTY2BkvLgo+xccnpmjRpwsmTJ+natStTpkyhVatW9OjRg4MHD/Ldd98BBX/a37FjBzVr1qRLly50794dW1tbNm3apJaXmZkZffv25fTp0/j6+qods7KyIigoiLy8PLy9vWnVqhUTJ07E3Ny81M5uWc5bvHgxXbp04bXXXqN79+506tSJNm3alHp/vLy82Lx5Mzt37sTFxYVu3bqpjTivXr2aNm3a8Oqrr+Lh4YEQgj179hSZOvE0pkyZQlhYGK6ursydO5clS5Yo70su671+nLlz5/LJJ58wf/58HBwc8Pb25s8//6RJkyZlzuONN96gV69edO3aldq1a7Nhw4Zi02VmZjJmzBhatmxJhw4d2LJlC7/99hvvvCPn31YGn7T9hD9v/Umeft4LPS9RvlNeqopycvJYteocXbsGYGp6FltbU7780oOEhIa0bh3PnDmh3LiRR2qqG7t3e/Hmm83R0Sn9uacnVVrb2ui5kUVnFpHaNJVmt5px8KJcoK2q0uR3rEqUNLm2jLKysoiKisLBwQHj0nrF/+9FXsq7srKxseGDDz7ggw8+0HYo0nOu8PsgMTGRtLQ00tPT8fPzw8LCotj0calxtLvYjrRWafj968fazmX/a0RVEBYW9thfrCXpeRAcfJUVK87zzz96XLnigBA1gTs0aBBJt24PGD3alo4dG1ZYPGVpW38n/s2r+a/yoOYDFicuZorrlAqKTqoomvyOrfApHObmsvMsSVKBZhbNuNLqCo7HHfml8y+4Bbq9UPMSH/dueEmqrFJSspg3LxQ3t0AMDOJ56SUrfvmlI2lpZnTufJrvvz9LdnZ1Ll/24JdfulRo5xnK1rZ62PQgtlYsFvEWfNj6Q4YcHlIBkUkVSZPfsZXuLRySJL1YjKsZc7ZzwbzELR23YH3KmrDmYTQyb6Tt0DSuPJ5fkKSKkJ8v+OOP8/z88xWOHTMlNbUl4I6ubjJNm56nT58bjBvXgqZNW2k7VKDsbauxeWMuu1zmpaCX2Oi5kYjACEI6hmCoZ6jhCKWKoMnv2Er5EKFUsRITE+X0DUmrdFQ6bPbczPzT87nV/NYLMy/xxx9/1HYIklSilJQUNm7cyNtvv03NmnPw8WnGrl3tUakE/fr9yx9/nCcnpx4xMZ1ZutSDpk1rajtkxZO0LUM9Q8I9w/E97MvZDmdpcLoBCWkJGoxOqiia/I6t8DnQkiRVXU86B7o4f134i36qfuSa5/LFxS+Y7DpZgxFLklTowYMHBAcHs2/fPvbt20doaChCCFq1aoWHx2CaNOnF6NGOWFiUvGbB8+6r8K+Y3Ggyenf0+EP8QW/b3toOSaqk5Ai0JEmVSm/b3sTUjKFmQk2mtJrC0MNDtR2SxsybN0/bIUgvuISEBL7//nt8fHywtLSkc+fOrFixAltbW3766ScuX77M2bNn+eGHj5k+vc1z03l+2rb1gcsHHEg/gCpfxSsWr7AgbEE5RyZVJE1+x1bKDrSXlxfjx4/ngw8+oGbNmtStW5cffviBzMxM3n77bUxNTWnatCl//fWXck5gYCDt2rXDwMCA+vXr85///Ifc3FwAVq5cSYMGDYqsZvfaa68xfPhwZfvPP/+kTZs2GBoaYmtry5w5c5Q8AGbPnk2jRo0wMDDAysqKCRMmaPhOSNKLqUmNJlxyukTrY63Z0GUDToFOVfLhwilT5FP/UsXKyMhg165djB8/nubNm2Nra8u4ceO4ceMGH374IcHBwdy4cUOZuvHoyrHPi2dpW90adyPOMg7LOEumO09nQOAA8sWTr4YraZ8mv2MrZQcaYO3atVhaWhISEsL48eN5//33GTBgAB06dODkyZN4e3szbNgwsrKyuHLlCn369KFt27acPn2a7777jp9++kn5zWPAgAHcunWLQ4cOKfnfvn2bffv2Ke+G3rdvH2+99RYTJkwgMjKSlStXsmbNGj777DMAtmzZwtKlS1m5ciVxcXHs2LGD1q1bV/yNkaQXhHE1Y854nmHw4cGc7Vg15yWuWLFC2yFIVVx+fj6nTp1i4cKFdOvWDQsLC/r27cuuXbvo1q0b27ZtIyUlhaNHjzJz5kzatWuHrq6utsN+Zs/athqZN+Ky22XaHG3DFs8ttDrSiqwHWeUUnVRRNPkdq/E50FlZEB39+HxatPjf4ipeXl7k5eVx5MgRAPLy8jA3N8fHx4dffilYv/7atWvUr1+f48eP8+eff7J161aioqJQqQpexr5ixQo++ugj7ty5g46ODv369cPS0pKffvoJgB9++IFZs2Zx+fJldHV16dKlC71792b69OlKTL/99hvTpk3j6tWrfPnll6xcuZJz586Vy8IlklQVlccc6OIsObWEqTZT0UvT40/+xLuJdzlFrF1xcXE0a9ZM22FIVcyNGzfYv38/+/bt4++//+b69esYGxvTtWtXvL298fb2plmzZsq/l1VRebYt/yP+rG2/lhoRNQhpHEIzC9lmnxea/I7V+Ah0dDS0afP4z6OdbCcnJ+W/dXV1qVWrltqIb926dYGCL4qoqCg8PDzUvgw6duxIRkYGly9fBsDX15etW7cqSz+vW7eOwYMHK79ph4WF8emnn2JiYqJ8Ro0aRXJyMllZWQwYMIDs7GxsbW0ZNWoU27dvV5veIUmS5kxxncLfd/9Gla+id83eLDq5SNshlYuTJ09qOwSpCsjJySEgIIDp06fj5uZG3bp1GTZsGOfOncPf35+DBw+SmpqqNnWjKneeoXzb1prOa1gWtYw71ndwTHdkV/yucstb0ixNfsdq/D3QLVpAWd5j3aKF+vajo7wqlUptX2Hjz8/PRwhR5MugcGC9cH/fvn3Jz89n9+7dtG3bliNHjvDll18q6fPz85kzZw4+Pj5FYjM0NMTa2pqYmBj+/vtvDhw4wJgxY1i8eDGBgYFyRFqSKsDLjV8m9k4sbeLa8JHLR4QGhvK75+/aDuuZ1K5dW9shSM8hIQTnz59XRpkPHTpERkYGtWvXpmfPnkyaNIkePXpQr149bYeqNeXdtsY7j8f5kjM9c3rSt05f5obOZYb7jHItQyp/mvyO1XgH2tgY3Nw0W4ajoyNbt25V60gfO3YMU1NT5QEIIyMjfHx8WLduHefPn6d58+Zqyzu6ubkRExODnZ1dieUYGRnx2muv8dprrzF27FhatGjB2bNncdP0BUqSBPxv0QOPIA82e26m1eFWhHiEYFzt+XyFpoGBgbZDkJ4Td+/e5Z9//lFeMZeQkEC1atXo2LEj//3vf/H29sbFxQUdnUr7aFOF0kTb6mLdhfN3z9Mmug0z28wkLDCMrV22oqOS97yy0uR3bJVYiXDMmDF89dVXjB8/nnHjxhETE8OsWbOYPHmy2peJr68vffv2JSIigrfeekstj08++YRXX30Va2trBgwYgI6ODmfOnOHs2bPMmzePNWvWkJeXR/v27TE2NubXX3/FyMiIxo0bV/TlStILzVDPkFOep/A77MevHr/S4FyD53ZeYnx8PB07dtR2GFIllJ+fz8mTJ5UO8/Hjx8nNzcXOzo4+ffrg7e2Nl5cXpqam2g61UtJU22po1pBLbS7R+UhndnjtwPGwI6EvhWKib1LuZUnPTpPfsVWiA92gQQP27NnD1KlTcXZ2xsLCgpEjRzJjhvqfVwqfQI6JiWHoUPV3y3p7e7Nr1y4+/fRTFi1aRLVq1WjRogXvvPMOADVq1GDBggVMnjyZvLw8WrduzZ9//kmtWrUq7DolSfqfX7r8QpvwNkxqNAnHdEe2397Oq01f1XZYT8TLy0vbIUiVyNWrV9Ue/ktJScHU1JRu3bqxbNkyvL29sbW11XaYzwVNti19XX2CvYIZdXQUq9qvomFkQ4Ktg7GvZa+xMqWno8l6IFcilCSp3GjqLRylCUgKoFdOL+7Xvs/cuOdrXuJnn33Gxx9/rO0wJC25d+8eR48eVUaZz549i0qlok2bNsrbMl566SX5nM1TqKi2tfLsSt6v9z6693T5/d7vvN7sdY2XKZWdJuuB7EBLklRutNGBBrh89zJuMW7cdLvJ60dfZ0uXLc/FvMT8/Hw5Z/UFIoQgOjpaGWUOCAggOzub+vXr07NnT7y9venevbt8uLQcVGTbCrocRPfM7tyzusfMqJl82u7TCilXejxN1gP5zS1J0nOvoVnDgkUPjrRhu+d2HI84kpGToe2wHuvzzz/XdgiSht2+fZstW7YwatQobGxscHR0ZNq0aeTk5DBnzhxOnz7NlStXWLNmDUOGDJGd53JSkW2rY8OOJDRIoH5Efea6z+XVgFflyoWVhCbrgRyBliSp3GhrBPphI46MYHX71ZhHmlf6eYlyBLrqycvL48SJE8q0jODgYPLz82nRooUyLcPT01P+e6lh2mhbufm5dDncheNex7E7YkdYuzDMDMwqNAZJ3Qs3Ai2E4N1338XCwgKVSkV4eDheXl588MEHGi139uzZuLi4aLSMipKYmKjcu+cp70fl5ORgZ2dHUFCQxst6VFmu08bGhq+++qrCYtKER6/z7NmzNGzYkMzMTO0G9pR+7vwzy6OXc7fhXVpltuKP839oO6QSzZ8/X9shSOXg0qVLrFq1igEDBmBpaYmHhwdLly7FysqK77//nosXLxIVFcVXX31F7969Zee5Amijbenp6HHM6xjvB73P+bbnaRjTkIibERUeh/Q/mqwHlbIDvXfvXtasWcOuXbtITk6mVatWbNu2jblz52o7NI2pyE7pk/D396d///5q+6ytrZWfi6b98MMPNG7cuNK+6uvEiRO8++67ZU4fEBCASqUiLS1Nc0E9o9atW9OuXTuWLl2q7VCe2hinMRy+dxjd+7r0r9Of2SdmazukYg0bNkzbIUhPITs7m7179zJp0iQcHR1p1KgRo0eP5vLly0yYMIGgoCBu3bqlTN1o1KiRtkN+4Wizba3ouIJV51eRWTcT5/vObIndorVYXnSarAeVsgMdHx9P/fr16dChA/Xq1UNPTw8LC4sq+77LnJycSp3fo3R1dZWfi6Z98803yqsEK6PatWtrZTRJCKHRpeTffvttvvvuO/Ly8jRWhqZ1atiJC/UuUDeqLnPazKmU8xIDAgK0HYJUBkIIzp07x5IlS+jZsyc1a9akd+/ebNmyhQ4dOvD7779z8+ZNjh8/zpw5c+jQoUOFfD9KJdN22xrZaiTH8o6hn67PAKsB/Df4v1qN50WlyXpQ6TrQ/v7+jB8/nqSkJFQqFTY2NgBqUziio6MxNjZm/fr1ynnbtm3D0NCQs2fPAnDnzh3effdd6tSpg5mZGd26deP06dNqZS1YsIC6detiamrKyJEjuXfvXqmxFY4e7t69G2dnZwwNDWnfvr1SZqFjx47RpUsXjIyMsLa2ZsKECWp/DrexsWHevHn4+/tjbm7OqFGjaNKkCQCurq6oVCrl3YXFTV3p378//v7+peZXKDo6mg4dOmBoaEjLli3VKlNeXh4jR46kSZMmGBkZYW9vz9dff60cnz17NmvXruWPP/5ApVKhUqkICAgodrQ8MDCQdu3aYWBgQP369fnPf/6j1sHz8vJiwoQJTJs2DQsLC+rVq8fs2bNLvd8nT57k/PnzvPLKK8q+wrJ///13OnfujJGREW3btiU2NpYTJ07g7u6OiYkJvXr14ubNm8p5+fn5fPrppzRs2BADAwNcXFzYu3evWnkhISG4urpiaGiIu7s7p06dKjW+wnv/8BQOlUrFqlWreP311zE2NqZZs2bs3LlTib1r164A1KxZE5VKpfwchRAsWrQIW1tbjIyMcHZ2ZsuW/41aFNa9ffv24e7ujoGBAUeOHFGmHa1cuRJra2uMjY0ZMGCA2gh3Wa79Ud7e3qSkpBAYGPjYe1CZWZlakeSexEuHX2K3125aHG3B3ft3tR2WomnTptoOQSpBSkoKGzdu5O2336Zhw4a0bt2aGTNmoKOjw/z584mIiCApKUmZulGR8/ylx6sMbau9VXsSGyXS4GwD5redj3eAd6X7Jb6q02g9EM8oMzNThIaGiszMzBISCCHCyvD5/9PT0tLEp59+Kho2bCiSk5PFjRs3hBBCeHp6iokTJyrZLl++XJibm4vExERx5coVYWFhIZYuXSqEECI/P1907NhR9O3bV5w4cULExsaKKVOmiFq1aomUlBQhhBCbNm0S+vr64scffxTR0dHi448/FqampsLZ2bnEaz106JAAhIODg9i/f784c+aMePXVV4WNjY3IyckRQghx5swZYWJiIpYuXSpiY2NFUFCQcHV1Ff7+/ko+jRs3FmZmZmLx4sUiLi5OxMXFiZCQEAGIAwcOiOTkZCXOR69bCCH69esnhg8fXmp+CQkJAhANGzYUW7ZsEZGRkeKdd94Rpqam4tatW0IIIXJycsQnn3wiQkJCxIULF8Rvv/0mjI2NxaZNm4QQQqSnp4uBAweKXr16ieTkZJGcnCzu37+v5H3q1CkhhBCXL18WxsbGYsyYMSIqKkps375dWFpailmzZikxenp6CjMzMzF79mwRGxsr1q5dK1Qqldi/f3+J93vp0qWiRYsWavsKy27RooXYu3eviIyMFC+99JJwc3MTXl5e4ujRo+LkyZPCzs5OvPfee8p5X375pTAzMxMbNmwQ0dHRYtq0aaJatWoiNjZWCCFERkaGqF27thg0aJA4d+6c+PPPP4Wtra3adRancePGSr0TQij3fP369SIuLk5MmDBBmJiYiJSUFJGbmyu2bt0qABETEyOSk5NFWlqaEEKI//73v8o1xcfHi9WrVwsDAwMREBAghPhf3XNychL79+8X58+fF7du3RKzZs0S1atXF926dROnTp0SgYGBws7OTgwdOrTM1/7oz7NQu3btxOzZs0u89uIUfh9s2bJFrFq1SixdulSpy9o2+showT2EWbiZOHfjnLbDEUIIcfDgQW2HIP2/nJwcceTIETFjxgzRtm1boVKpBCBatWolpkyZIvbv3y+ysrK0HaZURpWpbT3IeyA6H+osEIgmR5qI29m3tR3SC0OT9UDzHeiw/y/lcZ+w/52ydOlS0bhxY7VsiutIvvLKK6Jz587i5ZdfFj169BD5+flCiIIbZmZmJu7du6eWvmnTpmLlypVCCCE8PDzUOlhCCNG+ffsydaA3btyo7EtJSRFGRkZKp3PYsGHi3XffVTvvyJEjQkdHR2RnZwshCjpd/fv3V0tTUiemrB3okvJbsGCBsu/BgweiYcOGYuHChSVe45gxY8Qbb7yhbA8fPlz069ev1Fj/+9//Cnt7e+X+C1HwC46JiYnIy8tTrqNTp05q+bRt21Z89NFHJcYyceJE0a1bt2LLXrVqlbJvw4YNAlBrKPPnzxf29vbKtpWVlfjss8+KlD9mzBghhBArV64UFhYWavX4u+++e6oO9IwZM5TtjIwMoVKpxF9//SWE+F8dun37tloaQ0NDcezYMbW8R44cKYYMGaJ23o4dO9TSzJo1S+jq6opLly4p+/766y+ho6MjkpOTy3TtJdW9119/Xe0Xv7KozB1oIYRYeWalUN1QCd1LumJLzBZth6P2XSJVvAsXLojvv/9evP7668LMzEwAwsLCQgwaNEj8/PPP4vLly9oOUXpKlbFtTQiaIMhCmJwxEaevn9Z2OC8ETdYDzU/SagGElTHdE/r5559p3rw5Ojo6nDt3DpVKBUBYWBgZGRlFltnOzs4mPj4egKioKN577z214x4eHhw6dOix5Xp4eCj/bWFhgb29PVFRUUrZ58+fZ926dUoaIQT5+fkkJCTg4OAAgLu7+5NfcClKyu/hWPX09HB3d1diBfj+++9ZtWoVFy9eJDs7m5ycnCd+E0lUVBQeHh7K/Qfo2LEjGRkZXL58WXmAxsnJSe28+vXrc+PGjRLzzc7OxtDQsNhjD+dVt25doODht4f3FeZ99+5drl69WuRBxI4dOyrTeqKionB2dlabz/zwvXsSD8dWvXp1TE1NS73OyMhI7t27R48ePdT25+Tk4OrqqravuJ9zo0aNaNiwoVrc+fn5xMTEYGxs/NhrL4mRkRFZWVmlpnnevNv6XVpfaU23zG68afUm/w3+L5+1/0xr8bi5uWmt7BdRRkYGAQEByivm4uLi0NXVxcPDg6lTp9KzZ0/atGmDrq6utkOVnlFlbFtfd/gat0g3RtQegdsDN36N/pUhLYZoO6wqTZP1QPMdaGNAQ/GfPn2azMxMdHR0uHbtGlZWVkDBnM/69esXO3m8Ro0aGomlsPOYn5/P6NGjmTBhQpE0Dz+JXb169TLlq6Ojg3jkVd0PHjwokq6s+T0c6++//86kSZNYsmQJHh4emJqasnjxYoKDg8ucFxT8gvBw57lw38NlAUWWo1WpVOTnlzwfzNLSssj88uLyKizj0X2P5l1cjIX7Hr3Hz+JJr7Pw2O7du2nQoIHaMQMDA7XtsvycC6/p4est7dpLkpqaWinmEZY3jwYeJGQk4HbOjc/bfU5YQBh7PPdoZeXCnTt3MmXKlAov90WRn5/PmTNnlA7z0aNHefDgATY2Nnh7e7Nw4UK6deuGubm5tkOVylllbVvDHYfTMrklnnc8Gdp4KKf+PcWilxZpO6wqS5P1oNI9RFhWqamp+Pv78/HHH/P222/j6+tLdnY2UPAbx7Vr19DT08POzk7tY2lpCYCDgwP//vuvWp6Pbpfk4XS3b98mNjaWFi1aKGVHREQUKdfOzg59ff0S8yw89uhbD2rXrk1ycrKynZeXx7lz58oU56Ox5ubmEhYWpsR65MgROnTowJgxY3B1dcXOzk4ZoX84rse9icHR0ZFjx46pdUKPHTuGqalpkQ7hk3B1dSU6OvqZO7dmZmZYWVlx9OhRtf3Hjh1T/iLg6OjI6dOnlToEZa8PT6K4n7OjoyMGBgYkJSUVqTPW1taPzTMpKYmrV68q28ePH0dHR4fmzZuX6dpLcu7cuSIj4FVFPZN6JLVLouPhjuzz2kezoGak3Uur8DjGjBlT4WVWdTdu3OC3337Dz88PKysrXF1d+fTTTzE2NmbJkiXExMRw4cIFvv/+e15//XXZea6iKnPbcq/vzkWbi1iftmbxS4vpHtBdPlyoIZqsB89tB/q9997D2tqaGTNm8OWXXyKE4MMPPwSge/fueHh40L9/f/bt20diYiLHjh1jxowZhIaGAjBx4kR+/vlnfv75Z2JjY5k1axYREWV74fmnn37KwYMHOXfuHP7+/lhaWirvSv7oo484fvw4Y8eOJTw8nLi4OHbu3Mn48eNLzbNOnToYGRmxd+9erl+/zp07dwDo1q0bu3fvZvfu3URHRzNmzJgneofw8uXL2b59O9HR0YwdO5bbt28zYsQIAOzs7AgNDWXfvn3ExsYyc+ZMTpw4oXa+jY0NZ86cISYmhlu3bhU7+j1mzBguXbrE+PHjiY6O5o8//mDWrFlMnjz5mVYA6tq1K5mZmWX+uZRm6tSpLFy4kE2bNhETE8N//vMfwsPDmThxIgBDhw5FR0eHkSNHEhkZyZ49e/jiiy+eudxHNW7cGJVKxa5du7h58yYZGRmYmpry4YcfMmnSJNauXUt8fDynTp1i+fLlrF279rF5GhoaMnz4cE6fPs2RI0eYMGECAwcOpF69emW69uIkJiZy5coVunfvXm7XXtno6ehx1OsoY4LGcMH9AtZx1py5caZCY1iyZEmFllcV5eTkEBAQwPTp03Fzc6Nu3boMGzaMs2fP4u/vzz///ENqaiq7du1i/PjxNG/e/LF/fZGef5W9bVkaW5LokUi3gG4c9DpIk+NNSM1O1XZYVY5G68GzTqJ+7EOET+FxDxGuXbtWVK9eXXmLgBBChIaGCn19fbF7924hhBB3794V48ePF1ZWVqJatWrC2tpa+Pr6iqSkJOWczz77TFhaWgoTExMxfPhwMW3atDI9RPjnn3+Kli1bCn19fdG2bVsRHh6uli4kJET06NFDmJiYiOrVqwsnJye1h7geffCs0I8//iisra2Fjo6O8PT0FEIUPBn+/vvvCwsLC1GnTh0xf/78Yh8ifDS/wgfD1q9fL9q3by/09fWFg4OD2oN29+7dE/7+/sLc3FzUqFFDvP/+++I///mP2j24ceOGci2AOHToULEPnQUEBIi2bdsKfX19Ua9ePfHRRx+JBw8eKMfL8jBkcQYPHiz+85//FLmuh8su7sG81atXC3Nzc2U7Ly9PzJkzRzRo0EBUq1ZNODs7Kw/2FTp+/LhwdnYW+vr6wsXFRXljxpM+RLh9+3a1NObm5mL16tXK9qeffirq1asnVCqVcv35+fni66+/Fvb29qJatWqidu3awtvbWwQGBpZ4jUIUPETo7OwsVqxYIaysrIShoaHw8fERqampZb724u7p559/Lry9vUu87pJU9ocIS/LzuZ+FzjUdoXtZV2yMrnwPH0nq4uLixLfffiv69u2rfDfVrl1b+Pr6il9++UV5gFaSngeTj00WZCKqn6suwpLDHn+CVCmohHi2v49nZWURFRWFg4NDlV+eNCAggK5du3L79m2NzaWW1J09e5bu3btz/vz5KruQzrOYPXs2O3bsKNcVLO/fv0+zZs3YsGHDE68AWfh9kJiYSFpaGunp6fj5+T0X78g9kXwCzzRPshtlM/Xs1AqZlzhv3jxmzJih8XKed3fv3uWff/5h37597N+/nwsXLlCtWjU6duyIt7c3PXv2xMXF5Zn+4iVVLc9b21oXtQ6/Gn4ArL69Gj9HPy1HVDVosh7IpZKkSq1169YsWrSIxMREtbdsSJpz8eJFPv7440q7fLqmtK3fliTzJFxPu7LYYzGnAk6xz3OfRh8ufHjRI+l/8vPzOXnypPLw3/Hjx8nNzcXOzo7evXvj7e2Nl5eX/KVaKtHz1rZ8HXxpeb0lnW52YrjtcE4dO8XSDku1HdZzT5P1QP66LlV6w4cPl53nCtS8eXNGjx6t7TC0wtLYkoT2CXgGeHLA6wC2x2w1Oi/xjz/+0Fjez5vk5GTWrl3L0KFDqVu3Lm3btmXhwoVYWFiwbNky4uPjiYuL49tvv6Vv376y8yyV6nlsWy51XUhqmkTjU435qsNXeAV4kZuf+/gTpRJpsh7IDvQT8Pf3Z+nSpVqfvlG4fLMkzZ49u1ynb0gFDxcGeAXwwbEPuOh2kUYXGnHy2kmNlNWmTRuN5Ps8uHfvHgcOHGDq1Kk4OTlhZWXF22+/TVxcHKNHj+bw4cOkpKSwY8cO3n//fWxtbbUdsvQceV7bloWRBRc6XKBnQE8CvQJpEtyEW1m3tB3Wc0uT9aBSdqD9/f1RqVRFPufPn6+Q8tesWVNsJ/nEiRO8++67FRJDaT788EMOHjyo7TAkqUpb2mEpaxPWkm2RTVvRlt+ifiv3Mq5fv17ueVZWQgiio6P5+uuv6dOnDxYWFvTo0YN169bh5ubG+vXruX79OidOnGDevHl07ty5yDvVJamsnue2paPSYZ/XPv4T/B8ut75Mo4uNOJF84vEnSkVosh5U2jnQvXr1YvXq1Wr7ateuraVoKkf5hUxMTDAxMdF2GJJU5fk5+tHqWiu6pHRhWJNhnDx+ki89viy3/HNycsotr8ooLS2NAwcOsH//fvbt20dSUhL6+vp07tyZOXPm4O3tTevWreVr5aRyVxXa1vz283GNcWWo2VBeUr3EqohVvN3ybW2H9VzRZD2olCPQULACW7169dQ+urq6+Pv7K+9cLvTBBx/g5eWlbHt5eTFhwgSmTZuGhYUF9erVY/bs2WrnpKWl8e6771K3bl0MDQ1p1aoVu3btIiAggLfffps7d+4oI9+F59rY2PDVV18peSQlJdGvXz9MTEwwMzNj4MCBar/tFE61+PXXX7GxscHc3JzBgweTnp5e4nUXjn7v2LGD5s2bY2hoSI8ePbh06VKRfCVJ0jy3em4k2SbRKLwRSz2W0jWga7ktelDVVnrMy8vj33//Zc6cOXTo0IFatWoxYMAAjhw5wuuvv86ePXu4ffu22tQN2XmWNKGqtK2B9gMJ1w/H+KYxI5qOYGzQWG2H9FzRZD3Q+Ah0VlYW0dHRj03XokWLcn0N3tq1a5k8eTLBwcEcP34cf39/OnbsSI8ePcjPz6d3796kp6fz22+/0bRpUyIjI9HV1aVDhw589dVXfPLJJ8TExAAUO9orhKB///5Ur16dwMBAcnNzGTNmDIMGDVJbQjw+Pp4dO3awa9cubt++zcCBA1mwYAGfffZZibFnZWXx2WefsXbtWvT19RkzZgyDBw8mKCio3O6PJEllZ2FkQYJHAj0DenLQ6yA2x2w46XISS2PLZ8o3MDDwuX9A9vLly8rbMg4cOMDt27cxNzene/fufP/993h7e9OoUSNthym9YKpC2yrUqnYrrphdwfWEKys6reB0wGkCugSgp1NpJxFUGpqsBxq/+9HR0WWaxB0WFoabm5uyvWvXLrWOa+/evdm8eXOZy3VycmLWrFkANGvWjG+//ZaDBw/So0cPDhw4QEhICFFRUTRv3hxA7QEVc3NzVCqVspJbcQ4cOMCZM2dISEhQllv+9ddfadmyJSdOnKBt27ZAweuY1qxZozwxPmzYMA4ePFhqB/rBgwd8++23tG/fHij4ZcDBwYGQkBDatWtX5nsgSVL50VHpcMDrAFOPT+UL5y9onNiYwJqBuNd3f+o833rrrXKMsGJkZ2cTGBiovJM5MjISHR0d2rVrx4QJE/D29qZt27bo6cl/3CXteR7bVmnMDMyI6xjHqwGv8leXv2gU0oiTrU5Sz6Tkfoqk2Xqg8W+4Fi1aEBYWVqZ0D+vatSvfffedsl29evUnKtfJyUltu379+ty4cQOA8PBwGjZsqHSen0ZUVBTW1tZK5xnA0dGRGjVqEBUVpXSgbWxs1F639HAcJdHT08Pd/X//KLdo0ULJV3agJUm7Fnssxi3ajWE1htFe1f6Z5iV+++23lX6xh/x8wR9/nOfUqX/499+tHD58mPv379OwYUO8vb2ZPXs2L7/88nOxWI704nge2taT0lHpsMdrDzNDZjKv5TyaXGnCPyb/4NHAQ9uhVVqarAca70AbGxurjSyXVfXq1bGzsyuyX0dHh0cXT3zw4EGRdI8+va1SqcjPL5i3aGRk9MTxPEoIUezcvUf3lxZHaYrLW84VlKTKYUiLIbS80ZIONzowoukITh47yTcdvnnifCrrP/Bxcal8+200f/2VR3y8Hfn5zdDTW0f37rrMnz8fb29vHBwc5HeSVGlV1rZVHua2m4tLrAuDjQfTqVonvjv7He+21v4bwiojTdaDSvsQYUlq165NcnKy2r4nfQ+uk5MTly9fJjY2ttjj+vr65OXllZqHo6MjSUlJag/3RUZGcufOHRwcHJ4onkfl5uYSGhqqbMfExJCWllZklF6SJO1xquPEZbvL2Jy04dsO39I5oPMTL3owb948DUX3ZO7dy2XFijN07hyAiUkEzZvXYNmyDiQl1cPVNZbPPw/jxo3/8NdffzFp0iQcHR1l51mq1CpL29KUN5q/wRmjM5gkmzC6+WjeO/qetkOqlDRZD567DnS3bt0IDQ3ll19+IS4ujlmzZnHu3LknysPT05MuXbrwxhtv8Pfff5OQkMBff/3F3r17gYJpFxkZGRw8eJBbt26RlZVVJI/u3bvj5OSEr68vJ0+eJCQkBD8/Pzw9PdWmXzyNatWqMX78eIKDgzl58iRvv/02L730kpy+IUmVTA3DGsR3iMc7wJujXY7SOKQxNzJLn6L1sPHjx2swutIdPXoZX9/DWFn9i5FRJmPHOhEU5ISFxR3efjuIEyeSuXevGaGhnkyf3oaaNQ21FqskPSlttq2K4mDpwBWHKzQLacbKTit5KeAluXLhIzRZD567DrS3tzczZ85k2rRptG3blvT0dPz8/J44n61bt9K2bVuGDBmCo6Mj06ZNU0adO3TowHvvvcegQYOoXbs2ixYtKnK+SqVix44d1KxZky5dutC9e3dsbW3ZtGnTM1+jsbExH330EUOHDsXDwwMjIyM2btz4zPlKklT+dFQ67PXay/QT07na6io2l2wIvhpcpnN/+eUXDUf3P9euZfDJJyE4Oweir59A584NWb++A5mZxnTrdorVqyO5d8+cpKQO/PxzZ9zd61dYbJJU3iqybWmTib4J0Z2ieS3gNYI7B9PwREOupl/VdliVhibrgUo8OqH4CWVlZREVFYWDg0O5vobuRbVmzRo++OAD0tLStB2KJD2xwu+DxMRE0tLSlF9wX5QHzLbEbmGw8WCEvuC764+fl3ju3DlatWqlkVjy8wWbN8eyZk0y//5rTlpaS0AfPb1LNGuWQN+++owd60CjRuYaKV+StEmTbauymnNiDrPtZ2N4zZC/jf+mU8NO2g5J6zRZD567EWhJkqTK6s3mb3La4DTVr1Uv07zEuLi4ci0/IuImY8YE0bTpUapVu8ngwfbs3dsWff1c3njjOHv3JnD/fkMiI7uwcOFLsvMsVVnl3baeB7PazuKPG3+Qa5BLF4MurDizQtshaZ0m64F8UackSVI5alm7JZfNLuN2wo2VnVYSHhDO0S5Hi1304FnfCJSRkcOqVZFs2pTG6dN1yc52AGpjZBRN27aRDBhwhVGjHDEza/tM5UjS86Y83rb1PHrN7jXOpZyj/aX2jHUcy8mjJ1nVaZW2w9IaTdYDOQL9jIpbWvxZ8yucvlHeeZfmp59+omfPnhVS1tMKCAhApVI98/SWh5dkv3//Po0aNSrTu8olqazMDMyI7RjLKwGvENwlGOsT1sXOS6xVq9YT533w4EUGDgykXr1gTE3vM2mSC8HBLalbN5XRo49y+vQNsrJa8O+/XkyZ4oqZmUF5XJIkPVeepm1VFfa17LnseJkW/7bgp04/4R7gTk5ejrbD0gpN1oMXrgNdkZ3SskpMTESlUhV5Hd/XX3/NmjVrNF7+/fv3+eSTT5g5c6bGy6psDAwM+PDDD/noo4+0HYpUxeiodNjltYuZoTO55niNpslNCbocpJamLK/gvHz5LtOnB9Oq1WGqVbtI9+6N2bzZg/v39fH2DuO336LIyalFQkJHvv++E05OdTR0RZL0/HjS19tWNSb6JkR0jsAn0IewzmFYh1lz+e5lbYdV4TRZD16YDnReXl6ZFjDRVn7FMTc3p0aNGhotAwreSGJiYkLnzp1LTJOTU3V/e/X19eXIkSNERUVpOxSpCvq03adsu7aNXKNcOht05rsz/1thtW/fvkXS5+bm88svkfToEYC5+WmsrY1YsKA9sbGNcHBIZMaMEK5cuc/t267s3euFr68DenovzFe5JJVJcW3rRaOj0mGr51Y+D/+cG/Y3sLthR0BSgLbDqlCarAeV8lvXy8uLcePGMW7cOGrUqEGtWrWYMWOG2gqEOTk5TJs2jQYNGlC9enXat29PQECAcnzNmjXUqFGDXbt24ejoiIGBAW+//TZr167ljz/+QKVSoVKpCAgIKHZqQHh4OCqVisTExBLzu3jxopJ+zpw51KlTBzMzM0aPHq3W4dy7dy+dOnVSruXVV18lPj5eOd6kSRMAXF1dUalUeHl5AUVHy+/fv8+ECROoU6cOhoaGdOrUiRMnTijHC6/j4MGDuLu7Y2xsTIcOHYiJiSn1fm/cuJHXXntNbV9h2fPnz8fKykpZ9vzKlSsMGjSImjVrUqtWLfr166fco8IY2rVrR/Xq1alRowYdO3ZUu087d+7E3d0dQ0NDLC0t8fHxUY799ttvuLu7Y2pqSr169Rg6dOhjlz0/duwYXbp0wcjICGtrayZMmEBmZqZy/MaNG/Tt2xcjIyOaNGnCunXriuRRq1YtOnTowIYNG0otS5Ke1uvNXueM0RnMrpgxpsUY3jn6DgCrVhXMTQwPv86oUUexsQlCXz+V4cMdOXDADWPjewwefJxDh5LIybHhzBlP5s5th5WVqTYvR5IqvcK2JcH0NtPZnbKbfL18ulXvxtfhX2s7pAqjyXpQKTvQAGvXrkVPT4/g4GCWLVvG0qVL1W7E22+/TVBQEBs3buTMmTMMGDCAXr16qT1xmZWVxfz581m1ahUREREsW7aMgQMH0qtXL5KTk0lOTqZDhw5ljunR/OrUKfhT6cGDB4mKiuLQoUNs2LCB7du3M2fOHOW8zMxMJk+ezIkTJzh48CA6Ojq8/vrrygh2SEgIAAcOHCA5OZlt27YVW/60adPYunUra9eu5eTJk9jZ2eHt7U1qaqpauo8//pglS5YQGhqKnp4eI0aMKPW6jhw5UuziL4XX9ffff7Nr1y6ysrLo2rUrJiYmHD58mKNHj2JiYkKvXr3IyckhNzeX/v374+npyZkzZzh+/DjvvvuusmLZ7t278fHx4ZVXXuHUqVNKR79QTk4Oc+fO5fTp0+zYsYOEhAT8/f1LjPvs2bN4e3vj4+PDmTNn2LRpE0ePHmXcuHFKGn9/fxITE/nnn3/YsmULK1asKLZT3q5dO44cOVLqfZKkZ+Fg6cBlx8s0D27OT+1+oeGn/uzY2QEjoxhcXeuyalUHbt6sSYcO5/jmm9NkZhqRnNyeDRu64OXVSNvhS9JzpSov5f00+tj2Ico8ihoXa/BByw/wO/zk62c8jzRaD8QzyszMFKGhoSIzM7OEBEKIsDJ8Hjrd09NTODg4iPz8fGXfRx99JBwcHIQQQpw/f16oVCpx5coVtaJefvllMX36dCGEEKtXrxaACA8PV0szfPhw0a9fP7V9hw4dEoC4ffu2su/UqVMCEAkJCY/Nz8LCQu36v/vuO2FiYiLy8vKKvSU3btwQgDh79qwQQoiEhAQBiFOnTpUYa0ZGhqhWrZpYt26dcjwnJ0dYWVmJRYsWqV3HgQMHlDS7d+8WgMjOzi42ltu3bwtAHD58uEjZdevWFffv31f2/fTTT8Le3l7t53L//n1hZGQk9u3bJ1JSUgQgAgICii3Lw8ND+Pr6FnusOCEhIQIQ6enpatdX+HMaNmyYePfdd9XOOXLkiNDR0RHZ2dkiJiZGAOLff/9VjkdFRQlALF26VO28r7/+WtjY2JQ5Nql4hd8HW7ZsEatWrRJLly4VKSkp2g6rUsnLzxOdV78lQAj0pommTY+IceOCRHT0LW2HJklVxty5c7UdQqWUmZMpWga2FAiES4CLyH5QfN+gqtBkPdD8a+yigTZlSBcGuP1v86WXXlJGLgE8PDxYsmQJeXl5nDx5EiGEMq2g0P3799WeuNTX18fJyenZ4n9ISfk5OzurLSLj4eFBRkYGly5donHjxsTHxzNz5kz+/fdfbt26pYw8JyUllfkF3/Hx8Tx48ICOHTsq+6pVq0a7du2KzN19OMb69QtWE7tx4waNGhUdxcrOzgbA0LDoMr2tW7dGX19f2Q4LC+P8+fOYmqr/+fjevXvEx8fTs2dP/P398fb2pkePHnTv3p2BAwcqMYSHhzNq1KgSr/HUqVPMnj2b8PBwUlNT1e6To6NjkfSF8Tw8LUMIQX5+PgkJCcTGxqKnp6c2yt2iRYti55UbGRkVu2S7JJU3HZUOh/1/Zbr4hY8HfoJJ9eraDkmSqpwPP/xQ2yFUSsbVjDnX5RyDAwezqeMmGoY35GSzkzQyr5p/5dJkPdB8B7oFBZ3jsqQro/z8fHR1dQkLC0NXV1ftmImJifLfRkZGap3wkujoFMxkEQ/NsX7w4EGRdGXNr1Bh2r59+2Jtbc2PP/6IlZUV+fn5tGrV6okezCuM7dHyhRBF9lWrVq1IDCU98FirVi1UKhW3b98ucqz6I/+w5+fn06ZNm2LnEdeuXRuA1atXM2HCBPbu3cumTZuYMWMGf//9Ny+99FKp72PMzMykZ8+e9OzZk99++43atWuTlJSEt7d3ifcpPz+f0aNHM2HChCLHGjVqpMz9LsvPLDU1VbkGSaoI89/2Y/HixUydOlXboUhSlfPNN9/ItlWKjZ4baXOyDR81/Yhmt5qxJ20PLzd+WdthlTtN1gPNz4E2pmBk+XGfR1YB//fff4tsN2vWDF1dXVxdXcnLy+PGjRvY2dmpferVq1dqOPr6+uTl5antK+w4JScnK/ue5NUnp0+fVkZyC2M1MTGhYcOGpKSkEBUVxYwZM3j55ZdxcHAo0lktHOV9NK6H2dnZoa+vz9GjR5V9Dx48IDQ0FAcHhzLH+ih9fX0cHR2JjIx8bFo3Nzfi4uKoU6dOkftubv6/Fc1cXV2ZPn06x44do1WrVqxfvx4oGBk/ePBgsXlHR0dz69YtFixYQOfOnWnRosVjHyB0c3MjIiKiSCyF98rBwYHc3FxCQ0OVc2JiYop9j/S5c+dwdXV97D2QpPJU2V6pKUlVhWxbjzfVbSr77uwDFfQw68GSU0u0HVK502Q9qLQPEV66dInJkycTExPDhg0b+Oabb5g4cSIAzZs3x9fXFz8/P7Zt20ZCQgInTpxg4cKF7Nmzp9R8bWxsOHPmDDExMdy6dYsHDx5gZ2eHtbU1s2fPJjY2lt27d7NkSdkrUk5ODiNHjiQyMpK//vqLWbNmMW7cOHR0dJS3Vfzwww+cP3+ef/75h8mTJ6udX6dOHYyMjNi7dy/Xr1/nzp07RcqoXr0677//PlOnTmXv3r1ERkYyatQosrKyGDlyZJljLY63t7dax7wkvr6+WFpa0q9fP44cOUJCQgKBgYFMnDiRy5cvk5CQwPTp0zl+/DgXL15k//79xMbGKh38WbNmsWHDBmbNmkVUVBRnz55l0aJFQMGIsb6+Pt988w0XLlxg586dzJ07t9R4PvroI44fP87YsWMJDw8nLi6OnTt3Mn78eADs7e3p1asXo0aNIjg4mLCwMN55551iR8KPHDlS6ReSkaoeuYCPJGmGbFtl08OmB7G1YrGIt+DDVh8y9PBQbYdUrjRZDyptB9rPz4/s7GzatWvH2LFjGT9+PO+++65yfPXq1fj5+TFlyhTs7e157bXXCA4OxtrautR8R40ahb29Pe7u7tSuXZugoCCqVavGhg0biI6OxtnZmYULFzJv3rwyx/ryyy/TrFkzunTpwsCBA+nbty+zZ88GCqaHbNy4kbCwMFq1asWkSZNYvHix2vl6enosW7aMlStXYmVlRb9+/YotZ8GCBbzxxhsMGzYMNzc3zp8/z759+6hZs2aZYy3OqFGj2LNnT7Ed94cZGxtz+PBhGjVqhI+PDw4ODowYMYLs7GzMzMwwNjYmOjqaN954g+bNm/Puu+8ybtw4Ro8eDRS8nnDz5s3s3LkTFxcXunXrRnBwMFDwV4A1a9awefNmHB0dWbBgAV988UWp8Tg5OREYGEhcXBydO3fG1dWVmTNnKnOuoaCeWFtb4+npiY+PD++++67y9pRCx48f586dO7z55ptPc/sk6ak97i9mkiQ9Hdm2yq6xeWMuu1zG+ZgzG7pswCnQiXu597QdVrnQZD1QiYcn/j6FrKwsoqKicHBwUHuQ7ll4eXnh4uKiLLcsad7AgQOVqRcvmgEDBuDq6sp///tfbYfy3Cv8PkhMTCQtLY309HT8/PywsLDQdmiV0tGjR+nUqZO2w5CkKke2rafz1uG3WOexDoszFoQ2DaVJjSbaDumZaLIeVNoRaKliLV68WO0BzBfF/fv3cXZ2ZtKkSdoORXoBJSQkaDsESaqSZNt6Or91+Y0l55Zwu8lt7G/b89eFv7Qd0jPRZD2QHWgJgMaNGytzh18kBgYGzJgxo9Q3hEiSpnTp0kXbIUhSlSTb1tOb7DqZA+kHUOWreMXiFRaELdB2SE9Nk/WgUnagAwIC5PQNSZKqvMI31EiSVL5k23o23Rp3I84yDss4S6Y7T2dA4ADyRfGvw63MNFkPKmUHWhv8/f01/tqb2bNn4+LiotEyJEl6fkybNk3bIUhSlSTb1rNrZN6Iy26XaXO0DVs8t9D6SGuyHjxfC45psh7IDrQkSZKWzJ8/X9shSFKVJNtW+dDX1SfUK5ThR4YT+VIkDc41IC41TtthlZkm64HsQEuSJGnJjBkztB2CJFVJsm2VrzWd17Asahl3rO/gmO7Irvhd2g6pTDRZDyplB3rLli20bt0aIyMjatWqRffu3cnMzFSOr169GgcHBwwNDWnRogUrVqxQO//KlSsMGjRIWcSkX79+JCYmKsfz8vKYPHkyNWrUoFatWkybNo3S3uZ3584dZaGTh23bto3q1auTkZEBFCzs0bx5c4yNjbG1tWXmzJnFLgleyMvLiw8++EBtX//+/fH391e2c3JymDZtGg0aNKB69eq0b9+egICAEvOUJOn58STvm5ckqexk2yp/453HE5AdgG6OLn0t+zIvtPLfY03WgwrpQN98cJP7+fcBuJZzjQvZF5Rjcdlx3HxwU9lOTk5myJAhjBgxgqioKAICAvDx8VE6uD/++CMff/wxn332GVFRUXz++efMnDmTtWvXAgXvoe3atSsmJiYcPnyYo0ePYmJiQq9evcjJyQFgyZIl/Pzzz/z0008cPXqU1NRUtm/fXmL85ubmvPLKK6xbt05t//r16+nXr5/y+jdTU1PWrFlDZGQkX3/9NT/++CNLly59pnv39ttvExQUxMaNGzlz5gwDBgygV69exMU9P39CkSSpeMOHD9d2CJJUJcm2pRldrLtwvu556sTUYabrTF4PfL1SP1yoyXpQIR3obTe3cSPnBgC/XP+F6Qn/W6xjwvkJbLu5TdlOTk4mNzcXHx8fbGxsaN26NWPGjFE6qXPnzmXJkiX4+PjQpEkTfHx8mDRpEitXrgRg48aN6OjosGrVKlq3bo2DgwOrV68mKSlJGbn96quvmD59Om+88QYODg58//33mJubl3oNvr6+7Nixg6ysggn0d+/eZffu3bz11ltKmhkzZtChQwdsbGzo27cvU6ZM4ffff3/q+xYfH8+GDRvYvHkznTt3pmnTpnz44Yd06tSJ1atXP3W+kiRVDgcPHtR2CJJUJcm2pTkNzRpyqc0l2h1pxw7PHTgecSQjJ0PbYRVLk/VAT2M5P8Sntg9mumYA+NX1403L/y2ZvMxuGTX0aijbzs7OvPzyy7Ru3Rpvb2969uzJm2++Sc2aNbl58yaXLl1i5MiRjBo1SjknNzdX6QCHhYVx/vx5TE1N1WK4d+8e8fHx3Llzh+TkZDw8PJRjenp6uLu7lzqN45VXXkFPT4+dO3cyePBgtm7diqmpKT179lTSbNmyha+++orz58+TkZFBbm4uZmZmT3fTgJMnTyKEoHnz5mr779+/T61atZ46X0mSKodH27YkSeVDti3N0tfVJ9grmFFHR7Gq/SoaRjYk2DoY+1r22g5NjSbrQYV0oGtXq638dz199XXJmxk1U9vW1dXl77//5tixY+zfv59vvvmGjz/+mODgYGWp8B9//JH27dsXOQ8gPz+fNm3aFJluAVC7du0i+8pKX1+fN998k/Xr1zN48GDWr1/PoEGD0NMruIX//vsvgwcPZs6cOXh7e2Nubs7GjRtZsmRJiXnq6OgU6bQ/PGc6Pz8fXV1dwsLClOsr9CKuGihJVU12dra2Q5CkKkm2rYrxY6cfcT/rzvsN3qdVZiu23N5CP7t+2g5Locl6UCkfIlSpVHTs2JE5c+Zw6tQp9PX12b59O3Xr1qVBgwZcuHABOzs7tU+TJgXrtbu5uREXF0edOnWKpDE3N8fc3Jz69evz77//KuXl5uYSFhb22Lh8fX3Zu3cvERERHDp0CF9fX+VYUFAQjRs35uOPP8bd3Z1mzZpx8eLFUvOrXbs2ycnJynZeXh7nzp1Ttl1dXcnLy+PGjRtFrqVevXrFZSlJ0nMkJSVF2yFIUpUk21bFGd16NEfuH0EvW4/+dfrzScgn2g5Jocl6UOk60MHBwXz++eeEhoaSlJTEtm3buHnzJg4ODkDBYiTz58/n66+/JjY2lrNnz7J69Wq+/PJLoKCTa2lpSb9+/Thy5AgJCQkEBgYyceJELl++DMDEiRNZsGAB27dvJzo6mjFjxpCWlvbY2Dw9Palbty6+vr7Y2Njw0ksvKcfs7OxISkpi48aNxMfHs2zZslIfTATo1q0bu3fvZvfu3cXG0bx5c3x9ffHz82Pbtm0kJCRw4sQJFi5cyJ49e57wzkqSVNk4OztrOwRJqpJk26pYHRt2JKFBAvUj6zPXfS6vBrxaKR4u1GQ9qHQdaDMzMw4fPkyfPn1o3rw5M2bMYMmSJfTu3RuAd955h1WrVrFmzRpat26Np6cna9asUUagjY2NOXz4MI0aNcLHxwcHBwdGjBhBdna2Mh95ypQp+Pn54e/vj4eHB6amprz++uuPjU2lUjFkyBBOnz6tNvoM0K9fPyZNmsS4ceNwcXHh2LFjzJw5s9T8RowYwfDhw/Hz88PT05MmTZrQtWtXtTSrV6/Gz8+PKVOmYG9vz2uvvUZwcDDW1tZlvqeSJFVOu3Y9H+9SlaTnjWxbFa+eST2S2iXhcdiD3V67sT9qz937d7UakybrgUqU9uRcGWRlZREVFYWDg4MyR1mSpBdT4fdBYmIiaWlppKen4+fnh4WFhbZDq5SysrLk96YkaYBsW9o1JmgM37X5DtNYU47XP07L2i21Eocm60GlG4GWJEl6URROPZMkqXzJtqVdKzqu4MfzP5JZLxPn+85sid2ilTg0WQ/kCLQkSeVGjkBLkiRJhYKvBtP1TleyrbOZHjGdz9t/ru2Qyo0cgX7I7NmzcXFxeaY8EhMTUalUhIeHl5gmICAAlUpVpgcXy1tZyl6zZg01atSosJgk6UUllxuWJM2QbatyaG/VnsRGiTQ424D5befTK6BXhT5c+Nwv5S09XwYNGkRsbKyyXR6/WEiSVNTo0aO1HYIkVUmybVUedarXIbF9Ip0Pd2af1z7sguxIu5dWIWVrsh48Fx3onJwcbYdQJTy8SEtpjIyMqFOnjoajkSRp27Zt2g5Bkqok2bYqFz0dPQ57HWbCsQkktEnAOs6aMzfOaLxcTdaDStmB9vLyYty4cUyePBlLS0t69OgBQGRkJH369MHExIS6desybNgwbt26pZy3d+9eOnXqRI0aNahVqxavvvoq8fHxanlfvnyZwYMHY2FhQfXq1XF3dyc4OFgtza+//oqNjQ3m5uYMHjyY9PT0JyoDIDo6mg4dOmBoaEjLli0JCAgo9ZqPHTtGly5dMDIywtramgkTJpCZmVnqOd999x1NmzZFX18fe3t7fv31V7XjKpWK77//nn79+lG9enW1P2UEBQXh7OyMoaEh7du35+zZs8qxh6dwrFmzhjlz5nD69GlUKhUqlYo1a9aUGpckSWXTtm1bbYcgSVWSbFuV09cdvmZNwhqyamfh9sCNDdEbNFqeJutBhXSgbz64yf38+wBcy7nGhewLyrG47DhuPrhZ5Jy1a9eip6dHUFAQK1euJDk5GU9PT1xcXAgNDWXv3r1cv36dgQMHKudkZmYyefJkTpw4wcGDB9HR0eH1118nP79gvk1GRgaenp5cvXqVnTt3cvr0aaZNm6YcB4iPj2fHjh3s2rWLXbt2ERgYyIIFC8pcRqGpU6cyZcoUTp06RYcOHXjttddKXBHn7NmzeHt74+Pjw5kzZ9i0aRNHjx5l3LhxJd7T7du3M3HiRKZMmcK5c+cYPXo0b7/9NocOHVJLN2vWLPr168fZs2cZMWKEWnxffPEFJ06coE6dOrz22mvFjlAPGjSIKVOm0LJlS5KTk0lOTmbQoEElxiVJUtk9vBKpJEnlR7atymu443CCRTAGdwwYaj2Uaf9O01hZGq0H4hllZmaK0NBQkZmZWWKa7698L5Kyk4QQQixMWigGRgxUjvU600t8f+V7tfSenp7CxcVFbd/MmTNFz5491fZdunRJACImJqbYcm/cuCEAcfbsWSGEECtXrhSmpqYiJSWl2PSzZs0SxsbG4u7du8q+qVOnivbt25d4bY+WkZCQIACxYMECJc2DBw9Ew4YNxcKFC4UQQhw6dEgA4vbt20IIIYYNGybeffddtXyPHDkidHR0RHZ2drHldujQQYwaNUpt34ABA0SfPn2UbUB88MEHamkKy964caOyLyUlRRgZGYlNmzYJIYRYvXq1MDc3V7svzs7OJd4DSSpU+H2wZcsWsWrVKrF06dIS25skxB9//KHtECSpSpJtq/K7mXlTWAdZCwTi5UMvi7z8vHIvQ5P1oEJGoH1q+1BHv2BOrV9dP+Y3ma8cW2a3DJ/aPkXOcXd3V9sOCwvj0KFDmJiYKJ8WLVoAKFMo4uPjGTp0KLa2tpiZmSmrEyYlJQEQHh6Oq6trqa/UsrGxwdTUVNmuX78+N27cULYfV0YhDw8P5b/19PRwd3cnKiqq2DLDwsJYs2aN2rV5e3uTn59PQkJCsedERUXRsWNHtX0dO3YsUsaj97G4+CwsLLC3ty8xPkmSNMPGxkbbIUhSlSTbVuVnaWxJokci3QK6cdDrILbHbEnNTi3XMjRZD/Q0lvNDalerrfx3Pf16aseaGTUr9pzq1aurbefn59O3b18WLlxYJG39+vUB6Nu3L9bW1vz4449YWVmRn59Pq1atlIcQjYyMHhtrtWrV1LZVKpXa9IzHlVEalUpV7P78/HxGjx7NhAkTihxr1KhRmfMTQhTZ9+h9fJr4JEnSjCNHjuDk5KTtMCq/TCAbsNR2INLzQrat54OOSoeDXgeZcnwKX7p+SaMLjThc6zBu9dzKJX9N1oNK+RBhcdzc3IiIiMDGxgY7Ozu1T/Xq1UlJSSEqKooZM2bw8ssv4+DgwO3bt9XycHJyIjw8nNTUp/sNpyxlFPr333+V/87NzSUsLEwZMS/p2h69Ljs7O/T19Ys9x8HBgaNHj6rtO3bsGA4ODmW6lofju337NrGxsSXGp6+vT15eXpnylSSp7IYMGaLtECo3AewHHIAGwHfAPa1GJD0nZNt6vizxWMJvF38j2yKbtqItv0X9Vi75arIePDcd6LFjx5KamsqQIUMICQnhwoUL7N+/nxEjRpCXl0fNmjWpVasWP/zwA+fPn+eff/5h8uTJankMGTKEevXq0b9/f4KCgrhw4QJbt27l+PHjZYqhLGUUWr58Odu3byc6OpqxY8dy+/ZttYf4HvbRRx9x/Phxxo4dS3h4OHFxcezcuZPx48eXGMvUqVNZs2YN33//PXFxcXz55Zds27aNDz/8sEzX8umnn3Lw4EHOnTuHv78/lpaW9O/fv9i0NjY2JCQkEB4ezq1bt7h//36ZypAkqXQrVqzQdgiVUz6wA2gPeAOmQFtgLGALfEnBqLQklUC2reePr4MvYTphGKUYMazxMCYdm/TMeWqyHjw3HWgrKyuCgoLIy8vD29ubVq1aMXHiRMzNzdHR0UFHR4eNGzcSFhZGq1atmDRpEosXL1bLQ19fn/3791OnTh369OlD69atWbBgAbq6umWKoSxlFFqwYAELFy7E2dmZI0eO8Mcff2BpWfzfH52cnAgMDCQuLo7OnTvj6urKzJkzlakpxenfvz9ff/01ixcvpmXLlqxcuZLVq1fj5eVVpmtZsGABEydOpE2bNiQnJ7Nz584SR7vfeOMNevXqRdeuXalduzYbNmj2tTOS9KKYMWOGtkOoXHKB9YAT8DpgBOwDzgFHgSgKOtQfAY2BeUCaNgKVKjvZtp5PLnVdSGqaRONTjfmqw1d4BXiRm5/71Plpsh6ohBDiWTLIysoiKioKBwcHjI2NyysuSZKeQ4XfB4mJiaSlpZGeno6fn1+pD+6+yObNmyf/oQfIAX4BFgDxQC/gY6BTCekvAouBVYA+BSPTkwC5/pP0/2Tber7li3x6Bfbib6+/aXi8IaecT2Fp/OQPQWiyHjw3I9CSJElVTXEPDr9QsoCvgabAu4ALEAb8RcmdZygYff4WSATe+///tgEmApc1Faz0PHnh29ZzTkelw36v/Uz7dxqXW1+m0cVGnEg+8cT5aLIeyA60JEmSlrywq3reAeZT0OmdAnSlYJrGFuBJHr6vByyiYER6GvArBXOkRwHnyy9c6fnzwratKmbhSwvZdGUTOWY5vKR6idURq5/ofE3WA9mBliRJ0pLu3btrO4SKdQuYScEI8mzAB4ilYPqG4zPka/H/+V2kYF70n4A94EtBx1x64bxwbasKG2g/kHD9cIxvGjPCdgTjj5X8goVHabIeyA60JEmSlkRHR2s7hIpxlYKR5sYUvEFjJHAB+J6CEePyYkrBSHQCBVNDjgCtKXggMbQcy5EqvRembb0gWtVuxZXmV7ANs+XbDt/SOaBzmR4u1GQ9kB1oSZIkLXmShY6eSwnA+0AT4CdgMgWjxEsoeK+zphgB4yiYxvEzEEHBa/C8gUAK3i8tVWlVvm29gMwMzIjrGEfvgN4c7XKURiGNuJZxrdRzNFkPZAdakiRJS6rs20miAD+gGbCV/02vmEvFriaoD7z9//FsBK4BXkBnCh5UlB3pKqvKtq0XnI5Khz1ee/jvif+S3DKZJleacPxKyWt5aLIeyA60JEmSlpw5c0bbIZSvU8CbQEvgEAXTNRKB6YC59sJCFxgEhAM7KXjfdB/AnYIOfr7WIpM0pMq1LUnNZ+0/Y0vyFnKNc+lUrRM/nP2h2HSarAeyAy1JkqQlvXv31nYI5SOIgg6pGwWd1B8omD4xAahMywOogL7AceAAUIOCDn8rCt7g8UBrkUnlrMq0LalEbzR/gzNGZzBJNmF089G8d/S9Imk0WQ/0yiuj7Ozs8spKkqTnlPweeDI///zz87vYgwD+Bj4DDlMw6rwOGEg5/suiISrg5f///EvBNfgBn1CwyqE/YPhQegGkU/CQoqoiA5We1nPdtqQyc7B04IrZFdyC3VjZeSXhAeEc7XIUPR09srPhhx9+ZvZszdSDZ16JMCcnh4iICPLz5d/AJEkCkS+4EHmB9PR00jPS8XvDD4sacj5ilVET2AV8DpygYBrEx8BrPN9/0zxNwTVtpuD90h8Co4FtwCwKHohsRMFr+N7RUozakA+kaDsISSpdvsjn9fDX2fnyTmrvdsHt22Mc+McIlQp8XoFvV0LtuuVb5jN3oKGgE52bm8udO3fYtWsX1atXx8DAoDzik14gMTExZGRkEBYWxpAhQzA1NX38SWnA73CFI+wmikG8ijlWmg71Ke2BBgI6duRkdDRuWVlw/hYwgKo0rJWXnkduSi7ZutmkG6TjF+WHxX3ZgS7OPOYxg+dslMyBgofyPCnoOHenKlVfiKFgSfHfKHibR3oxabYD/SswJm26yXO5RPpz2bakZza71xzmXO7PG/bOLFoE33wzj9jYGdy5BUeDy7esculAF0pNTeWXX35BX19fdqClp7ZkyRLeeecdzM1LfuooLy+PvLw8SAXWwfHGawm9eJcR1Uegr9KvuGDL7C7o7IIBA6BaNdLvpZOb9wCOH4PsFkAtbQdY7h6oHpCryqVLdhdMhIm2w6mUDNIMaJTSSNthPJm2FCyf7aLlODQtmYIVDZOLOdaWgndYvwhuU/BL0nMmqVYS92vc13YYUgWLA342g7lzQa8amBuZY1ffGSsrCAwEF5fyK6vMM9U2bNhAu3bt2Lp1KxMnTmTx4sXMmDGDefPmMWLECP766y+aN29Oamoq6enpmJubc/XqVezs7IiKisLZ2ZnTp0/TokULEhISqFOnDhkZGejo6GBkZMStW7do3LgxMTExStqWLVsSExNDw4YNSU1NxdDQEF1dXe7evUv9+vU5f/68ktbJyYmzZ89ia2vL9evXMTExQQhBdnY2tWrVIikpCQcHB86dO6ec07x5cy5duoSFhQX3798nNzcXMzMzrl27RtOmTdXidnBwID4+nnr16pGenq4Wd6NGjYiNjS0St7W1NSkpKWpx16tXjwsXLtC6dWvOnDmjFve1a9cwMzMjLy+Pe/fuUatWLS5duoS9vT0RERFqcSclJWFpaUl2djb5+fmYmpo+Nu67d++ip6eHgYEBqampWFtbq8XdqlUroqKiaNSoESkpKRgZGaFSqcjIyKBu3bpqcReeY2dnR3JyslrcFhYWXL58uUjc9vb2XLx4US1uExMTbty4QZMmTYiOjsbZ2RkDAwPu3LlDdHQ0VlZW3LlzR4n79u3bNGjQgCNHjnDt2v+//9EAuAYGBgYcrn8Yff2CDnROTg4mJiakpaVRu3Ztbty4Qd26dbl+/To1a9YkIyMDAwMD8vPzycvLw9DQkPT0dCwsLLh165aStlatWty5cwdjY2NycnIA0NfXJysrC3Nzc1JSUpS0lpaWpKamYmpqyr1799DV1UVXV5d79+5hatqU1AMHqFu3LvHx8dja2nIzVw9zy5tkZV2kWrVqADx48ABjY2Pu3LlTJG4LCwvS09MxNDRUfonQVNw6Ojrcv38fExMTbt++raStU6cON2/epEaNGmRkZCj3u7i4GzRowBcXvsDV1ZXz589Tt25dsrOzycnJwdLSkgsXLuDi4kJwcDCenp4EBgbStm1bzp07R6NGjUhLS0NHRwcTExOuXr2Kg4MDoaGhSloPDw9CQ0Np3rw5165dw9jYGD09PVJSUrC1tSU8PFxJ27lzZ4KCgmjdujUXL16kRo0a5Ofnk5GRgZWVFdHR0bRr145jx44p57i5uREbG0u9evXIysoiNzcXCwsLEhMTcXZ2Vou7Xbt2nDlzBhsbG1JTU9HV1VXibtGiBWFhYUraDh06cOLECTLyM7BqYaXEnZqaio2NDWfOnKFTp04cOXKEzp07c/ToUZycnEhMTMTCwoLc3FyysrKoX78+MTExtG3bVi3uNm3aKO0nIyODvLw8JW4nJydCQkKUtO3bt+f06dNK3Hp6ehgbG3Pt2jWaN2/OyZMn1eIOCQmhxV8tuPrTVUxMTNDR0SEtLY3GjRtz9uxZOnbsyJEjR5RzXFxcuHDhArVq1VLirlevHrGxsbi7u3P8+HElrbu7O1FRUUrc+fn51KhRg6SkJFq1asWJEyfU4g4PD8fW1pZbt26hr6+PkZER169fx87OjlOnTilpO3bsyL///oujoyNXrlxRi7tRo0acO3eODh06cPToUfW4rS9g6WpJTk4O9+7do06dOpw/fx63lm786/uvWtz/x959R0dV5/8ff6YXQq+hhhY6QhCkBxtRv3ZW1xJX1951rYvrdhTb8rPioi6u2HuXFRQIvUuRJKQ3kpBACJBMZiYzc39/jAxGKZNk7nzuvfN+nONZxZs7r72+P8Mr4c79ZGZm0rt3bw4dOgRAu3btKCsrY8SIEU1yT5w4ka1btzJw4EBf7tjYWKqqqn6Ve+rUqaxbt47hw4dTVlZGu3btADh06BC9e/cmMzOTSZMmNcl9ZK1169YNu93uW2v5+fmkpKSwfv36Jmtt165dx8w9fPjwo2tt6NHcgwYNoqqqitjYWKKjo9m3b9+v1trUqVNZu3YtI0eOpKSkpMla69WrF5mZmUycOJE1a9b8Kneg3iMiIiJwu92mf48YMmQIFRUV5nuPGDqU8nI17xEzJ6Qy5wFv7k8++YRn5j9DTEwjX3/dhsbGTuzYsYNzzz3Xd5/8nDlzePDBB3nuueeYNWsWAwcO9KsXB/Qn0AD19fU4HPJdn2i5nj17smHDBvr06XPcY5xOJw6Hg02bN5E+IJ0ZH6ayYl4GXyR/Qd+DRvyJnh24Ev7+MAWDu/H1O18TdXoj4dmbwT2Rpp9Yso7w8HAiIiNUxzAkd5SbxtJGZm2dxeD8warj+O87vPdBh4IXgP8e49fDgIvwftjw+G9TAeXQHFS6KukR2YOYsCD8Ce8OvJvfrNb/pQItd2AuH6d8TFSfKCIa5f0nlDiAZeEwcSJ0qNNwLHEwYuos7v/9dMr2wAn+YLvZAv5Z6TZt2sgOQKJVHA4H7du3P+kD0MsPl5M+Kh13uJtH3v8T3zqWkFSVRPLy5OBu1uCv9/4It9xM422XsXevnf7FG2jjLoOLkmHwUNXpRJDVV9Wz58E9dHylI4ldElXH8V9nzP1hwea4H/gcyPzZrw0ArgJeBRYAV+B9zvVIfaNk2bK4I/sO3hr6FknxSfq8iAYsw/tUkuV473d/Ajgb4z9Z5Wf27dvHnj/vof+9/YnrFqc6jgiiskL48RPIWg1n9WugzZ49rHwZnn4qsOUZTLUkhDjK6XaSkpmCY6iDLyd+SY/6Hkf/ZRegq7Jox3fXtXDmePjsNRJqa+DMMyF3E3zxAVx+OQyVEh1SYiEhIcH7LGIjzqvwfrOwCXgX71M6RgBXAwnAI3i3CX8KGIX3Q4V/wvtUEh30i+nH68mv0y+mX+BPruF9sspjwAa8z/P+GO//JzN+s+T6aW3FAvLzvJCRmwvvfQqDB8PUqbBvnXcOHroBrtThcdBmXBpCMG3VNPaeupe/b/s752efrzqO/4YPh9//nvDwcOjeFWbNgmHD4IMPIDtbdToRZOHh8hZsePHADcDzeB9rd+TzsHHAHfz0qSVgF94PF6bhfS52oGNExDM6YTTxEQHcmcYNvI/3A6EXAlF4tzjfDFyKqRuCrK3QkpsL770HgwZ5fx7Vpw8MHeadg1699XlNmTBhGO+++y633XYbAH/84x+ZP3/+MY+7efXNbJyxkYtWXcRfhv8lmBEDpra21vs34eFSokOYbw6EeUUDv8f7aL/3gEq8j/ibhreMBuhTRtWN1bxW8RrVjdWtP5kTb+kfhvcWlES8pX8VcA6WeCyhrK3Q8cvyHPGz2971nAMp0MIwrrzySl5++WU0TeO9997j9ttv/9UxC3Yu4NXxr5K8KplPUj9RkDIw+vb92QcdpUSHrCZzIMwtAvgt3q3Mv8C7Lfh5eG/p+BjvhiStUNtYywfVH1DbWNvykzQALwKD8P5UfSTeW1T+h7fwW4isrdBwovIM+s6BFGhhGmvK1nBbj9tol92OLadtITzMvOP7448/Nv0FKdEh6VdzIMwvDLgAWAd8j/ce99/gLatvAq6WnXZw/GCWjF7C4PgWPLHlMN57tfsD9wDTgR/x7rKo0z3bqsnasr6TlWfQdw7M20BESKmsq+Ss+rOIsEewvtd6EqLNvTHH5MmTf/2LUqJDzjHnQFhDGHAG3hK9DhgI/A5Ixvv0DnsQMuwH/gb0Ax7Fe59zDt5dFkcE4fUVkrVlbf6UZ9B3DqRAC8NzeVyk/JiCvaedD+wfMKzLMNWRWm316uM8XFVKdEg57hwIa5kIfIn39o7xwG14H4c3D6j37xSFDYVclXUVhQ2FJz+4EngQb3F+Cm9xLwBewVvkQ4CsLevytzyDvnMgBVoYXurKVComVPDnrD9zyeBLVMcJiNTU1OP/SynRIeOEcyCs5xS8T73IwvthvYfxltw5QO2JvzQ2IpbRbUYTG3GCTZeK8T4ZJAlvWb4bKAKeBXR6EoFRydqypuaUZ9B3DqRAC0O7fc3trJ2xlvNWnsc/JvxDdZyAycjIOPEBUqJDwknnQFjTELxPwcjD+xSMOXiL9CPAcR6ykRidyB/7/pHE6GNsurMb75NABuEt6H/GW6YfB7oFOrw5yNqynuaWZ9B3DqRAC8P6z4//4eVxLzNw9UC+TP1SdZyAGjNmzMkPkhJteX7NgbCufnifilGE9xnTL/z0a/cCZU0PdXqclDvKcXqcR39xO94nfwwDluC9XaMY74YuHXRNbniytqylJeUZ9J0DKdDCkDaUb+DmrjfTNqctW8dvNfUTN46loKDAvwOlRFua33MgrK0HR8vvQ8AivPdI3wTkew/Jt+dzwa4LyLfnez+UeD7eDVA2AS/jvcf5D8jOez+RtWUdLS3PoO8cWKuVCEuoqq/i9IOnE9YYxrrEdbSLaac6UsB16dLF/4OlRFtWs+ZAWF8nvE/NKMa7rfaXeJ/acTX0ye/D/MPz6TOrD0zGW5jfxPtUjVuAGDWRjUrWljW0pjyDvnMgBVoYisvjImVHCg19GnjP9h4julrzWUtOp/PkB/2clGhLavYciNDQFu9TNArxbiG+ChJGJ3DajNNIqErwbszyI5AORCrMaWCytsyvteUZ9J0DKdDCUM5ceSZ7TtvD7F2z+U3yb1TH0Y3d3oKHwEqJtpwWzYEIHXF4n6qRB/tv3c9bb73F/nX74VLkd++TkLVlboEoz6DvHMgSFIZxz9p7WDljJTNXzuTx0x5XHUdX3bq18KPxUqItpcVzIEJLNOz71z5eGfEK+1z7VKcxBVlb5hWo8gz6zoEUaGEIizIX8fzY5+m/uj+LUxerjqO7vLy8ln+xlGjLaNUciJAyJH4IK8esZEj8ENVRTEHWljkFsjyDvnMgBVoot7liM7/v+Hva5Ldh66nWe+LGsaSkpLTuBFKiLaHVcyCEOCZZW+YT6PIM+s6B9ZuKMLR9tn2kHkglTAtjbbe1dIjtoDpSUKxfv771J5ESbXoBmQMREorsRVy/+3qK7EWqo5iCrC1z0aM8g75zIAVaKOPRPKRsS8HWz8abh95kdLfRqiMFTcC2F5USbWqy3bDwV3RYNH1i+hAdFq06iinI2jIPvcozyFbewqLOzjib0smlPLDjAa4ceqXqOEEV0O1FpUSblmw3LPzVM6Ynf0/6Oz1jeqqOYgqytsxBz/IMspW3sKAH1z3IshnLOGPFGTw96WnVcYLu1FNPDewJpUSbUsDnQFhWo9bIgcYDNGqNqqOYgqwt49O7PIO+cyAFWgTdu9nv8swpz9B3bV+Wpi5VHUeJzMzMwJ9USrTp6DIHwpLyGvI4a+dZ5DXI0yX8IWvL2IJRnkHfOZACLYJq295tXNPuGuKL4vlh7A8h8cSNY+ndu7c+J5YSbSq6zYGwnN7RvZk3YB69o2Vm/CFry7iCVZ5B3zkIzfYilKi11zK1eipamMaqTqvoFNdJdSRlDh06pN/JpUSbhq5zICylbWRbUjuk0jayreoopiBry5iCWZ5B3zmQAi2CwqN5GLtlLPUD6nn9wOuk9JBndOpKSrQQlnKg8QAfV3/MgcYDqqMI0SLBLs96kwItguLcjHMpmlLEvdvu5XfDf6c6jnLt2rXT/0WkRBteUOZAWEJlYyVPlj5JZWOl6iimIGvLWFSVZz3nQAq00N3sDbNZMmMJ01dM5/9N/n+q4xhCWVlZcF5ISrShBW0OhOkNix/GxpSNDIsfpjqKKcjaMg6VP3nWcw6kQAtdfbD7A54Y8QS91vXi++nfq45jGCNGjAjei0mJNqygzoEQIUTWljGovm1DzzmQAi1082P1j1zV5iriSuPYdso2IsMjVUcyjE2bNgX3BaVEG1LQ50CYVom9hDty76DEXqI6iinI2lJPdXkGfedACrTQxSHHISZXTEaL0sjokEGX+C6qIxmKkm1mpUQbjmw3LPwVHhZOm4g2Ifvoz+aStaWWEcozyFbewmQ8moexm8ZyOPkwr1S/wvjE8aojGY6ybWalRBuKbDcs/NU7pjdPDXiK3jHyfGN/yNpSxyjlGWQrb2EyF2RcQMHUAm7fcjs3jLxBdRxDmjhxoroXlxJtGErnQJiKW3PT4G7ArblVRzEFWVtqGKk8g75zIAVaBNSfN/6Zb6Z/w+QVk3lpykuq4xjW1q1b1QaQEm0IyudAmEZOQw5Tt08lpyFHdRRTkLUVfEYrz6DvHEiBFgHzcc7HzBk2h8SNiWRMlz8+O5GBAweqjiAl2gAMMQfCFHpG9+SxpMfoGd1TdRRTkLUVXEYsz6DvHEiBFgGRtS+LK+KuILY8lq0jt8oTN05i3759qiN4SYlWyjBzIAyvfWR7zul0Du0j26uOYgqytoLHqOUZ9J0DKdCi1eqcdUzcMxF3rJtlCcvokdBDdSTDi46OVh3hKCnRyhhqDoShHXQd5Jv933DQdVB1FFOQtRUcRi7PoO8cSIEWreLRPKRsSOHQ0EP8u/LfTOo1SXUkU4iNjVUdoSkp0UoYbg6EYZU7y/lz8Z8pd5arjmIKsrb0Z/TyDPrOgRRo0SqXZlxK7rRcbtp0EzePull1HNOoqqpSHeHXpEQHnSHnQBjSkLghrBuzjiFxQ1RHMQVZW/oyQ3kGfedACrRosX9s+gefT/ucCSsm8MrUV1THMZVBgwapjnBsUqKDyrBzIAwnPCyc6PBo2UjFT7K29GOW8gz6zoGsRNEiX+R9wV+T/0r3zd1ZNW2V6jim88MPP6iOcHxSooPG0HMgDKXMUcYD+Q9Q5ihTHcUUZG3pw0zlGfSdAynQotlya3KZFTWLmKoYtg7fSnSEfFijuQy/zayU6KAw/BwIw9A0DafmRNM01VFMQdZW4JmtPINs5S0MpM5Zx4TiCbjbuPku7jt6tpVnkraEKbaZlRKtO1PMgTCEPrF9eH7Q8/SJ7aM6iinI2gosM5ZnkK28hUF4NA/j14+ndkQtL5a/yNTeU1VHMq2pU01y7aRE68o0cyCEycjaChyzlmfQdw6kQAu/Xb7ycrKnZ3Pdhuu4ffTtquOY2rp161RH8J+UaN2Yag6EUlm2LMZtHUeWLUt1FFOQtRUYZi7PoO8cSIEWfpm7ZS4fT/2YcSvG8fq011XHMb3hw4erjtA8UqJ1Ybo5EMr0iO7Bo30fpUe0bFTlD1lbrWf28gz6zoEUaHFS3xR8wyODHqHr1q6snbZWdRxLKCsz4SfppUQHnCnnQCjRMbIjl3S5hI6RHVVHMQVZW61jhfIM+s6BFGhxQvkH8rk4/GJiqmPYOkSeuBEo7dq1Ux2hZaREB5Rp50AE3SHXIZYdWMYh1yHVUUxB1lbLWaU8g75zIAVaHJet0cb4wvG42rn4JuoberfrrTqSMAIp0UIE3R7nHh4sfJA9zj2qowgLs1J51psUaHFcp609jQOjDjCvZB5n9DtDdRxLOXTI5D9FkhIdEKafAxE0g+MGs2z0MgbHDVYdxRRkbTWfFcuznnMgBVoc0xUZV/Bj6o9cs+4a7h1zr+o4ltO7twV+mi8lutUsMQciKCLDImkf2Z7IsEjVUUxB1lbzWLE8g75zIAVa/MrTW5/m/Snvc0rGKSyavkh1HEvKzMxUHSEwpES3imXmQOhuj2MPjxY+yh6H3MLhD1lb/rNqeQZ950AKtGhiadFSHu7/MJ23dWb9lPWq41jWpEmTVEcIHCnRLWapORC6cmkuqhqrcGku1VFMQdaWf6xcnkHfOZACLXyKDxZzvud8og5EsWXwFmIjY1VHsqzVq1erjhBYUqJbxHJzIHTTL7YfryS/Qr/YfqqjmIKsrZOzenkGfedACrQAwO6yMy53HI0dG/kq/Cv6tZc3aT2lpqaqjhB4UqKbzZJzIIQByNo6sVAoz6DvHEiBFgBMXDOR/WP283TR05yddLbqOJaXkZGhOoI+pEQ3i2XnQATcbttupmybwm7bbtVRTEHW1vGFSnkGfedACrQgfWU621O3c8XaK7h/7P2q44SEsWPHqo6gHynRfrP0HIiA6hrVlTt73knXqK6qo5iCrK1jC6XyDPrOgRToEPfstmd5e9LbjMoYxbvT31UdJ2Tk5eWpjqAvKdF+sfwciIDpFNWJK7tdSaeoTqqjmIKsrV8LtfIM+s6BFOgQtqx4Gff1vY+OOzuyfrI8cSOYunXrpjqC/qREn1RIzIEIiDp3HWsPraXOXac6iinI2moqFMsz6DsHUqBDVMnBEs51nUvkwUi2DNhCfFS86kghxW63q44QHFKiTyhk5kC0WqmjlLvy7qLUUao6iinI2joqVMsz6DsHUqBDkNPt5NScU3F2cfK59jn9O/RXHSnkOJ1O1RGCR0r0cYXUHIhWGRQ7iG9GfsOg2EGqo5iCrC2vUC7PoO8cSIEOQZNXTaZ6bDWP5z3OuQPOVR0nJHXp0kV1hOCSEn1MITcHosWiwqPoHt2dqPAo1VFMQdaWlGfQdw6kQIeY61Zdx5YZW5i1Zhazx81WHSdk5efnq44QfFKifyUk50C0SIWzgsdKHqPCWaE6iimE+tqS8uyl5xxIgQ4hL25/kTdOe4NhK4fxwfQPVMcJaSkpKaojqCEluomQnQPRbHaPnWxbNnaP3Nvrj1BeW1Kej9JzDqRAh4iVpSu5u9fddNjVgc2TNhMeJv/pVVq/PoSfeiIl2iek50A0S//Y/rw59E36x8pnVvwRqmtLynNTes6BtKgQUH64nJn2mUTUR7Cx30Z54oYBhPw2s1KiAZkDIfQSimtLyvOvyVbeosWcbidjs8bi6ObgU9enDO40WHUkgWwzC0iJRuZA+C/XlsuZO84k15arOoophNrakvJ8bLKVt2ixaaumUTWuir/n/J3zB56vOo74yfjx41VHMIYQL9EyB8JfHaM6cnW3q+kY1VF1FFMIpbUl5fn49JwDKdAWdtPqm9g4YyMXrbqIv4z/i+o44md27dqlOoJxhHCJljkQ/uoS1YXre1xPlyh5PJs/QmVtSXk+MT3nQAq0RS3YuYDXxr9G8qpkPkn9RHUc8Qu9e/dWHcFYQrREyxwIf9ncNn6o+wGb26Y6iimEwtqS8nxyes6BFGgLWlO2htt63Ea77HZsOW2LPHHDgA4dOqQ6gvGEYImWORD+KnYUc2POjRQ7ilVHMQWrry0pz/7Rcw6kWVlMZV0lZ9WfRYQ9gvW91pMQnaA6khD+C8ESLYQ/BsQO4OPhHzMgdoDqKEIxKc/GIAXaQlweFyk/pmDvaecD+wcM6zJMdSRxHO3atVMdwbhCqETLHAh/xYTHkBSbREx4jOoopmDVtSXluXn0nAMp0BaSujKVigkV/Dnrz1wy+BLVccQJlJWVqY5gbCFSomUOhL/2Ovcyr2wee517VUcxBSuuLSnPzafnHEiBtojb19zO2hlrOW/lefxjwj9UxxEnMXz4cNURjC8ESrTMgfBXvbuedYfWUe+uVx3FFKy2tqQ8t4yecyAF2gL+8+N/eHncywxcPZAvU79UHUf4YfPmzaojmIPFS7TMgfDXgLgBfDj8QwbEyT3Q/rDS2pLy3HJ6zoEUaJPbUL6Bm7veTNuctmwdv1WeuGESobjNbItZuETLHAihD6usLSnPrSNbeYtjqqqv4vSDpxPWGMa6xHW0i7HmhyasKNS2mW01i5ZomQPhr7yGPM7/8XzyGvJURzEFK6wtKc+tJ1t5i19xeVyk7EihoU8D79S/w4iuI1RHEs0wceJE1RHMx4IlWuZA+Kt9RHvO63Qe7SPaq45iCmZfW1KeA0PPOZACbVJnrjyTPZP28Mddf+TyIZerjiOaaevWraojmJPFSrTMgfBX1+iu3N7zdrpGd1UdxRTMvLakPAeOnnMgBdqE7ll7DytnrGTmipnMPW2u6jiiBQYNGqQ6gnlZqETLHAh/NXgayLJl0eBpUB3FFMy6tqQ8B5aecyAF2mQWZS7i+bHPk7QmicWpi1XHES1UVVWlOoK5WaREyxwIfxXZi0jPTqfIXqQ6iimYcW1JeQ48PedACrSJbK7YzO87/p42+W34YdwP8sQNE4uNjVUdwfwsUKJlDoS/kmKTeGvoWyTFJqmOYgpmW1tSnvWh5xxIAzOJfbZ9pB5IJUwLY223tXSI7aA6kmiF6Oho1RGsweQlWuZA+CsuPI5h8cOIC49THcUUzLS2pDzrR885kAJtAh7NQ8q2FGz9bLx56E1GdxutOpJopX379qmOYB0mLtEyB8Jf1c5q5pfPp9pZrTqKKZhlbUl51peecyAF2gTOzjib0smlPLDjAa4ceqXqOCIABgyQ3cQCyqQlWuZA+Oug+yDf1HzDQfdB1VFMwQxrS8qz/vScAynQBvfgugdZNmMZZ6w4g6cnPa06jgiQbdu2qY5gPSYs0TIHwl+D4gbx1civGBRnzqdLBJvR15aU5+DQcw6kQBvY21lv88wpz9B3bV+Wpi5VHUcEkFW2mTUck5VomQMh9GHktSXlOXhkK+8QtG3vNq5tfy3xRfH8MFaeuGE1Vthm1rBMVKJlDoS/ChoKuCzzMgoaClRHMQWjri0pz8ElW3mHmFp7LVOrp6KFaazqtIpOcZ1URxIBNnXqVNURrM0kJVrmQPirTUQbJrWbRJuINqqjmIIR15aU5+DTcw6kQBuMR/MwZssY6gfW8/qB10npkaI6ktDB2rVrVUewPhOUaJkD4a/u0d25r/d9dI/urjqKKRhtbUl5VkPPOZACbTDnZpxL8ZRi7v7hbn43/Heq4widjBw5UnWE0GDwEi1zIPzl8Dgoshfh8DhURzEFI60tKc/q6DkHUqANZPaG2SyZsYTpK6bz3OTnVMcROiopKVEdIXQYuETLHAh/FdgLmJU5iwK73APtD6OsLSnPauk5B1KgDeKD3R/wxIgn6LWuF99P/151HKGzDh06qI4QWgxaomUOhL/6xfTjteTX6BfTT3UUUzDC2pLyrJ6ecyAF2gB+rP6RqxKuIq40jq2jtxIZHqk6ktCZx+NRHSH0GLBEyxwIf8VHxDM2YSzxEfGqo5iC6rUl5dkY9JwDKdCKHXIcYnLFZLRIjYwOGXRr0011JBEEdXV1qiOEJoOVaJkD4a99jftYWLmQfY3m2KJaNZVrS8qzceg5B1KgFfJoHsZuGsvh5MO8Uv0K4xPHq44kgqRXr16qI4QuA5VomQPhrwONB3i76m0ONB5QHcUUVK0tKc/GouccSIFW6IKMCyiYWsDtW27nhpE3qI4jgigzM1N1hNBmkBItcyD8NTh+MN+P/p7B8YNVRzEFFWtLyrPx6DkHUqAV+fPGP/PN9G+YvGIyL015SXUcEWQTJ05UHUEYoETLHAihj2CvLSnPxqTnHEiBVuDjnI+ZM2wOiRsTyZhuzO1Ghb7WrFmjOoIA5SVa5kD4q9BeyDXZ11BoL1QdxRSCubakPBuXnnMgBTrIsvZlcUXcFcSWx7J1pDxxI1SlpqaqjiCOUFiiZQ6Ev2LDYxkaP5TY8FjVUUwhWGtLyrOx6TkHUqCDqM5Zx8Q9E3HHulmWsIweCT1URxKKZGTInzwYiqISLXMg/JUYncif+v6JxOhE1VFMIRhrS8qz8ek5B1Kgg8SjeUjZkMKhoYd4ufJlJvWapDqSUGjs2LGqI4hfUlCiZQ6Evxo9jex17qXR06g6iinovbakPJuDnnMgBTpILs24lNxpudy06SZuGXWL6jhCsby8PNURxLEEuUTLHAh/5dnzOO/H88izy8z4Q8+1JeXZPPScAynQQfCPTf/g82mfM2HFBF6Z+orqOMIAunfvrjqCOJ4glmiZA+GvPjF9eGHQC/SJ6aM6iinotbakPJuLnu+xUqB19kXeF/w1+a9039ydVdNWqY4jDKKhoUF1BHEiQSrRMgfCXwkRCUxuN5mEiATVUUxBj7Ul5dl89HyPlQKto9yaXGZFzSKmKoatw7cSHRGtOpIwCKfTqTqCOJkglGiZA+GvmsYa3q16l5rGGtVRTCHQa0vKsznp+R4rBVondc46JhRPwN3GzXdx39GzbU/VkYSBdOnSRXUE4Q+dS7TMgfBXdWM1L5a/SHVjteoophDItSXl2bz0fI+VAq0Dj+Zh/Prx1I6o5cXyF5nae6rqSMJgCgoKVEcQ/tKxRMscCH8NiR/CmjFrGBI/RHUUUwjU2pLybG56vsdKgdbBZSsvI3t6NtdtuI7bR9+uOo4woDFjxqiOIJpDpxItcyCEPgKxtqQ8m5+e77FSoANs7pa5fDL1E8atGMfr015XHUcY1IYNG1RHEM2lQ4mWORD+KrYXc3POzRTbi1VHMYXWri0pz9ag53usFOgA+qbgGx4Z9Ahdt3Zl7bS1quMIA5MtnE0qwCVa5kD4KzIskm5R3YgMi1QdxRRas7akPFuHbOVtAvkH8rk4/GJiqmPYOkSeuCFOTLZwNrEAlmiZA+GvXjG9mNN/Dr1ieqmOYgotXVtSnq1FtvI2OFujjfGF43G1c/FN1Df0btdbdSRhcOPHj1cdQbRGgEq0zIHwl0tzcdB1EJfmUh3FFFqytqQ8W4+e77FSoAPgtLWncWDUAeaVzOOMfmeojiNM4Mcff1QdQbRWAEq0zIHwV25DLmfsOIPchlzVUUyhuWtLyrM16fkeKwW6la7IuIIfU3/kmnXXcO+Ye1XHESbRt29f1RFEILSyRMscCH/1iu7F0/2fple03MLhj+asLSnP1qXne6wU6FZ4euvTvD/lfU7JOIVF0xepjiNMpLa2VnUEESitKNEyB8Jf7SLbcUbHM2gX2U51FFPwd21JebY2Pd9jpUC30NKipTzc/2E6b+vM+inrVccRJhMeLkvPUlpYomUOhL8OuA7w6b5POeA6oDqKKfiztqQ8W5+e77Hy7t0CxQeLOd9zPlEHotgyeAuxkbGqIwmTSUhIUB1BBFoLSrTMgfBXpbOSOSVzqHRWqo5iCidbW1KeQ4Oe77FSoJvJ7rIzLnccjR0b+Sr8K/q176c6kjCh8vJy1RGEHppZomUOhL+GxQ9jS8oWhsUPUx3FFE60tqQ8hw4932OlQDfTxDUT2T9mP08XPc3ZSWerjiNMatgw+U3QsppRomUOhNDH8daWlOfQoud7rBToZkhfmc721O1csfYK7h97v+o4wsQ2b96sOoLQk58lWuZA+KvUXsrdeXdTai9VHcUUjrW2pDyHHj3fY6VA++nZbc/y9qS3GZkxknenv6s6jjA52cI5BPhRomUOhL/CwsKIDosmLCxMdRRT+OXakvIcmmQrb8WWFS/jvr730XFnRzZM3qA6jmXZbDYWLlzIl19+yQ033IDH41EdSTeyhXOIOEmJljkQ/uod05tnBj5D7xjZ6dYfP19bUp5Dl2zlrVDJwRLOdZ1L5MFItgzYQnxUvOpIlpWVlUV+fj7nn38+O3fuxOFwqI6km0mTJqmOIILlBCVa5kD4y6N5cHqceDTr/mAhkI6sLSnPoU3P91gp0CfgdDs5NedUnF2cfKZ9Rv8O/VVHsrRx48Zx77338tJLL3H33XcTFxenOpJu5N7XEHOcEi1zIPy1u2E3k7ZNYnfDbtVRTGHz5s2Ul0l5DnVyD7QiE5dPpXpsNY/nPc55A85THSckdO3alTvvvJO3336b7GZui2wmycnJqiOIYPtliS4plTkQfusZ3ZN/9vsnPaN7qo5iCsnJySzPkPIc6vR8j43U7cwmN/T6J9j97adcsuheZp85W3WckPDSSy8RGRnJLbfcQmRkJPn5+QwdOvSYxzocDu8tHoe9/1znqQti0tarrKykd3Vv6qlXHUUE2+RzwZOAa20mpaUjKNx9GPZVqE51Uh06xNOnT3vVMUJW+8j2nNdZ7Q9ySksPUltrU5rBH4vXHqa0dB9DJ/Rg7LR67FWqEwkVtAMalZX6bTzkd4F+9913mTBhAh9//DH33HMPTz/9NI8++ihz5szh+uuvZ/HixYwePZqamhrq6+sZOnQo3333Hddddx3PP/+879jbb7+dd999l2nTplFUVERERASJiYls2rSJSy+9lAULFviOve+++3j55Zc5//zz2b59O507dyYuLo6cnBzOPPNM3njjDd+xs2fP5qmnnuKqq65i5cqV9O/fH5fLRWVlJePGjeOzzz7jrrvu4plnnvF9zY033siXX37JmDFj2L9/Pw0NDQwePJjly5czs38fdpe/znlFf2HOnDnceeedvPXWW6SmppKfn090dDTdu3dny5YtXHTRRbz66qu+895///3Mnz+fCy+8kK1bt9K1a1diYmLIz89nxowZvPnmm8yePZvHH3+cRx55hLlz53LNNdewYsUKBg4ciMPhoLq6mpSUFL744gtuv/12/vWvf/nOf9NNN/H5558zbtw49u7di9PpZODAgWRkZJCens6LL77oO/auu+5i0aJFnH766eTm5hIXF0fnzp3Ztm0bF1xwAa+99prv2AceeIAXXniBiy++mC1bttCjRw8iIyMpLCxk+vTpvPPOOzz00EPMnTvX9zXXXnst33//PcnJyTQ0NLB//35OOeUUvvrqK2677TbmzZvnO/aWW27hk08+Yfz48VRUVOB2u0lKSmLVqlVceeWV7N69m4kTJ3L11VeTnJxMbm4umZmZZGdn06ZNGzp16sSOHTs499xzSU9PZ/ny5UcHtNr7P1/av2TcmnFEdI6guLiYqVOn8t577/HAAw/wxBNP+LJcd911LF26lGHDhnH48GFqa2sZNWoUixcv5qabbuLZZ5/1HXvrrbfy0UcfMXHiRMrKytA0jT59+rBu3Touv/xyXn75Zd+x99xzD//5z3+YOXMmWVlZtG3blvbt27Nr1y7OOeccFi5cyLV3XUtuQS7DPhrGunXrGD58OGVlZbRr1w6AQ4cO0bt3bzIzM5k0aRKrV68mNTWVjIwMxo4dS15eHt26dcNut+N0OunSpQv5+fmkpKSwfv1637Hjx49n165d9O7dm0OHDgHQrl07ysrKGD58OJs3b/YdO3HiRLZu3cqgQYOoqqoiNjaW6Oho9u3bx4ABA9i2bZvv2KlTp7J27VpGjhxJSUkJHTp0wOPxUFdXR69evcjMzGTixImsWbPmV7m7d+9OQ0ODL3dBQQFjxoxhw4YNTXL/+OOP9O3bl9raWsLDw0lISKC8vJxhw4Y1yT1p0iQ2b95McnIylZWVxMfHExkZyf79+3+Ve9q0aaxZs4ZRo0ZRXFzcJHfPnj3Jzs5mwoQJrF271vc1KSkp5OTk0KNHD2w2Gy6Xi06dOlFUVMQpp5zSJPeECRPYsWMHSUlJ1NTUEBER4cs9dOhQtmzZ4jt28uSz2bJ2KwkJDt586f/5ctfU1JCUlMSOHTuYOnUqq1atYtq0aaxevZrRo0dTVFREp06dcLlc2Gw2EhMT2b17N+PHj2+Se9y4cWRnZ9OzZ0/q6upwu92+3KNHj2bjxo2+Y0877TS2b9/uyx0ZGUl8fDyVlZUkJyezdevWn45dzYIFb/HZZ4uUvUfMnz/fd+zdd9/Nf//7X84666xjvkcsXLjQd+yDDz7Ic889x6xZs9i4cSOJiYlERBj3PeLIsQ8//DDz5s3jsssuY9mGZdT1q2OIawg1pTVMmjSJDz/8kPvuu48nn3yyye/H//vf/xgxYgQHDx7k8OHDDBs2jCVLlnDDDTfw3HPP+Y697bbb+OCDD5g0aRKlpaWEhYXRu3dv1q9fz29+8xv+/e9/+479zW9+zz333Mzgwf1N8R7Rs1dfal79kdjsCSZ9j5jMpk2bGDJkCBUVFSZ5j/Dm3rhxI0OHDqW8vJyEhATCw8Opra2lX79+7Ny5kylTprBq1Srf14wZM4aCggI6d+7sy92jRw9ycnI49dRTWbdune/YU089laysLF9uj8dDhw4dKCkpYeTIkWzatKlJ7uLiYqrLqvkk9xO/3yMGDhzoVy8O0zRN87dEhxK73UVcXD2nn/4Dy5bNUB1H/ILvJ9D7gIGQ1zWPcdXj2N19N8k7k6Gr6oQn9umSTxk0apDqGEKhwswDfP7OG7TbNJLI4ZOhT1/VkY7L5aqmQ4dPufTSmxk1KlF1nJCUZcsiPTudt4a+pWQ3wp07K/jkk1eorb2EyEhjvsGWl8Py5TB0aDX9+z/HRdfcQP8hbVXHEooc2HeAN559gzlz5pCYGPj3LbmF4zhiYyNJTMxi8+ZOqqOIY4iJiSEmJgZ+elBHQrh++93r4WD5QUbNHKU6hlBpXwX79++nU1xP2nzwrfdGzePcsqRavdxppFxyXDKrT1lNdHi00hyRkV1p08Z430T9/GkbY8dCfv5++nfuzygdipMwhwq877F6kQ8RnsDppzs5fHg4xcUHVUcJCWFhYcf8y4rOPPNM1RGEAQwYMACmTfVr228R2iLCIoiLiCMiTD4N90u/fFRdePhPa0uEPD3nQAr0Cdx22wAgkpdeylIdJSRomnbMv6zojTfeUB1BGMC2bdsgzL9tv0VoK3OU8VDBQ5Q5ylRHMZTjPed527ZtSnMJY9BzDqRAn8DUqb2Jiirkyy+dqqOElLKyMu6//37VMXT16KOPqo4gDMC3zawf236L0ObRPNS762UjlZ850SYpem7hLMxDtvJWaNiwEnJzB+DxWPMnoUajaRqff/65rvctGcGcOXNURxAG0GSbWSnR4gT6xvblpcEv0TfWuB82DaaT7TCo5xbOwjxkK2+FLrkkHre7N99+W6g6SkhYunQpZ5xxhuoYups9W54tLmDatGlNf0FKtBAn5c/23L9aWyIk6TkHUqBP4vbbhwMOXnutVHUUy8vPz6d79+6W3sL7iKeeekp1BGEAa9as+fUvSokWx5Bly2LC1glk2UL7Mzn+lGc4ztoSIUfPOZACfRLdurWhY8ddrFoVrzqK5W3bto3CwkKWLFlCSUkJO3bsUB1JN1dddZXqCMIARo06zqMMpUSLX+gR1YOH+zxMj6geqqMo4295hhOsLRFS9JwDKdB+mDjxENXVwzl0yKE6iqXNmjWL//u//6OhoQGHw2HZJ3AArFy5UnUEYQDFxcXH/5dSosXPdIzqyKyus+gY1VF1FCWaU57hJGtLhAw950AKtB+uvbYH0IZXXtmlOorlRUVFcc8997BmzRpOOeUU1XF0079/f9URhAF06NDhxAdIiRY/Oew6TEZtBoddh1VHCbrmlmfwY22JkKDnHEiB9sOsWcmEh1fx4YeyoYoIDJfLpTqCMACPx49HkkmJFkCZs4z7Cu6jzBlaz4FuSXkGP9eWsDw950AKtB8iI8NJSsphx46eqqMIi6isrFQdQRhAXV2dfwdKiQ55g+IG8d2o7xgUN0h1lKBpaXmGZqwtYWl6zoEUaD+lpYVhtw9hx44q1VGEBYwbN051BGEAPXs245tyKdEhLSosio5RHYkKi1IdJShaU56hmWtLWJaecyAF2k933JEMwIsv5ihOIqzgs88+Ux1BGEB2c0uwlOiQVe4o569Ff6XcUa46iu5aW56hBWtLWJKecyAF2k8jRnQlLi6LJUvCVEcRFnDXXXepjiAMYMKECc3/IinRIcmpOSl1lOLUnKqj6CoQ5RlauLaE5eg5B1Kgm2HMmL2UlAzB5ZIPJ4jWeeaZZ1RHEAawdu3aln2hlOiQkxSbxMIhC0mKTVIdRTeBKs/QirUlLEXPOZAC3Qy//W0HNK0L7723W3UUYXKPPvqo6gjCAFJTU1v+xVKihYUEsjxDK9eWsAw950AKdDPccMNw4DCLFu1VHUWY3Jw5c1RHEAaQkZHRuhNIiQ4Zu227mb5tOrtt1vsBTqDLMwRgbQlL0HMOpEA3Q0JCNN27Z7JxY3vVUYTJ3XjjjaojCANISUlp/UmkRIeELlFduDnxZrpEdVEdJaD0KM8QoLUlTE/POZAC3UypqXYOHhzJnj2HVEcRJvbll1+qjiAMICcnQE/1kRJteZ2jOpPePZ3OUZ1VRwkYvcozBHBtCVPTcw6kQDfTzTcnAVHMn5+lOoowsTFjxqiOIAygR48egTuZlGhLq3PXseHQBurc1tggRM/yDAFeW8K09JwDKdDNdOaZ/YiMLOaLL+yqowgT279/v+oIwgBsNltgTygl2rJKHaXcnnc7pY5S1VFaTe/yDDqsLWFKes6BFOgWGDKkmOzsJNUxhIk1NDSojiAMwOVyBf6kUqItaWDsQL4c8SUDYweqjtIqwSjPoNPaEqaj5xxIgW6BCy+MweXqx7JlxaqjCJMaPHiw6gjCADp16qTPiaVEW050eDQ9Y3oSHR6tOkqLBas8g45rS5iKnnMgBboFbr99GNDIK68UqY4iTGr58uWqIwgDKCoq0u/kUqItpcJZwRMlT1DhrFAdpUWCWZ5B57UlTEPPOZAC3QK9e7ejfftdZGTEqo4iTOp3v/ud6gjCAE455RR9X0BKtGXY3XZ21O/A7jbf52+CXZ4hCGtLmIKecyAFuoUmTKilsnI49fVO1VGECb3wwguqIwgD2LBhg/4vIiXaEvrH9eedYe/QP66/6ijNoqI8Q5DWljA8PedACnQLXXNNN6At//lPpuoowoRkK28BQdxuWEq0UEBVeQbZylt4yVbeBnTllUMJC6vm/fcPqI4iTEi28hYQ5O2GpUSbWq4tl5k7ZpJry1UdxS8qyzPIVt7CS7byNqDIyHD69s1h27buqqMIE7rzzjtVRxAGMGHChOC+oJRo0+oQ1YHLu15Oh6gOqqOclOryDArWljAkPedACnQrzJzpwWYbSlbWPtVRhMm89dZbqiMIA9ixY0fwX1RKtCl1jerKjYk30jWqq+ooJ2SE8gyK1pYwHD3nQAp0K9x+ezIQzosv7lYdRZiM3J8nAJKSktS8sJRo07G5beyo24HNbdwd9oxSnkHh2hKGouccSIFuhTFjuhMbu5v//U9THUWYTH5+vuoIwgBqamrUvbiUaFMpdhTz+5zfU+ww5gZeRirPoHhtCcPQcw6kQLfSqFEVFBUNxuOREi38Fx1t3t3EROBEqG4ZUqJNo39sfz4Y9gH9Y433GDujlWcwwNoShqDnHEiBbqXLLmuHx9Odjz/OUR1FmEj37vLhUwEJCQmqI0iJNonY8FgGxg0kNtxYG3gZsTyDQdaWUE7POZAC3Uq33DICqOe//zXn9qpCjS1btqiOIAygvLxcdQQvKdGGt9e5l2fLnmWvc6/qKD5GLc9goLUllNJzDqRAt1K7djF07bqLdevaqo4iTOSiiy5SHUEYwNChQ1VHOEpKtKHVuetYeXAlde461VEAY5dnMNjaEsroOQdSoANg6lQbBw6MpKqqXnUUYRKvvvqq6gjCAAz3JxFSog1rYNxAPhnxCQPjBqqOYvjyDAZcW0IJPedACnQA3HRTXyCGl1+Wbb2Ff2QrbwEGfZyhlGhxAuXlxi/PYNC1JYJOtvI2uLS0/kRElPLpp8Z9PqcwFtnKW4CBtxv+ZYkuLVGdKOTlN+Rz0a6LyG9Q+wjM5cuNX57BwGtLBJWecxCp25lDSHh4GIMHF5KV1Ud1FGES999/v+oIwgAmT55MfX019Ua9++vcyZDgwZW5FoapDhPa2ka05awOZ9E2Qs3nbTZu9P7v0KHVjB0LdruSGH5xuaqZPHmy6hjCAPScAynQAfKb34QxZ8535OamMXhwP9VxhMHNnz9fSnSI69Ahno0btzJlSpTqKCd2nvd/NCd02LIORl2qNk+I6hbdjbt63aXktRcvhocfjufWW6NITf1USYbmWrNmK7fcEq86hlBs06ZNup1bCnSA3H//KObOPZ3ly+czePDNquMIg7vwwgtVRxCK9enTnkcfnUPHjomqo5ycy0WHuX+jz1NzoMOHcPHFqhOFHLvHTqm9lD6xfYL6LOjFi73/udPS2nP99XdQX2+OWxVPP/0C+vRprzqGUGzIkCG6nVsKdIB06NCB0047jW+//Zabb5YCHTSdgSqo/awWbgZ3Bze0Ux3q5LZu3crgwYNVxxCKVVTkMn16iuoY/nlnAVxdB5ddBh9KiQ62Qnsh6dnpvDX0LYbFB+d+mqPlGT76CKKj2wPmKKXvv78SMMnaErqpqNBvjw75EGEApaWl8f333+NyuVRHCR3hQFfQ2nq3Uo+ojYD31UbyR9euXVVHEAZgqjmIjIS334ZLL/WW6M8+U50opCTFJLFoyCKSYpKC8nq/Ls9BedmAMdXaErqJj9fvNh4p0AE0c+ZMDh48yIYNG1RHCVnOEU6YC3hUJzmxmJgY1RGEAZhuDqREKxMXEceINiOIi4jT/bXMXp7BhGtL6CIyUr8bLaRAB9D48ePp2LEj3377reooIcs+0w7ZwCeqk5xYfr7aR1EJYzDlHEiJVqK6sZoF5QuobqzW9XWsUJ7BpGtLBFxNTY1u55YCHUARERGcddZZLFmyRHWUkOXu54YzgccBTXWa45sxY4bqCMIATDsHUqKDrtZVy2f7P6PWVavba1ilPIOJ15YIqKSkJN3OLQU6wNLS0ti0aZOu3/WIk/gT8AOwWHWQ43vzzTdVRxAGYOo5kBIdVIPjBrN41GIGx+nz4WMrlWcw+doSAbNjxw7dzi0FOsDS0tLweDx89913qqOErhnAROAxDPtT6NmzZ6uOIAzA9HMgJdoSrFaewQJrSwTE1KlTdTu3FOgA6927N8OHD5f7oFUKw/tT6LXASsVZjuPxxx9XHUEYgCXmQEp0UBQ0FPDbzN9S0FAQ0PNasTyDRdaWaLVVq1bpdm4p0DpIS0vj22+/RdMM+uPPUPB/wCl4fwptQI888ojqCMIALDMHUqJ1Fx8Rz7i244iPCNxjuaxansFCa0u0yrRp03Q7txRoHaSlpbFnzx4yMzNVRwldYcAjwFJAv508W2zu3LmqIwgDsNQcSInWVY/oHjzU5yF6RPcIyPmsXJ7BYmtLtNjq1at1O7cUaB1Mnz6d2NhYuY1DtVnAEAz5U+hrrrlGdQRhAJabAynRunF4HJTaS3F4HK0+l9XLM1hwbYkWGT16tG7nlgKtg7i4OKZPny4FWrUI4I/A58BOxVl+YcWKFaojCAOw5BxIidZFgb2AizMvpsDeunugQ6E8g0XXlmi2oqIi3c4tBVonM2fOZOXKlTQ0NKiOEtquBvri3Z3QQAYOHKg6gjAAy86BlOiA6xvTlwWDF9A3pm+LzxEq5RksvLZEs3Tq1Em3c0uB1klaWhp2u13XT4AKP0QBDwHvA3mKs/yMw9H6P4YV5mfpOZASHVBtItpwattTaRPRpkVfH0rlGSy+toTfXC6XbueWAq2TESNG0KtXL7mNwwiuB7oCT6gOclR1tb7b8QpzsPwcSIkOmP2N+1m0dxH7G/c3+2tDrTxDCKwt4RebzabbuaVA6yQsLIyZM2dKgTaCOOB+YBFQqjjLT1JSUlRHEAYQEnMgJTog9jfu5/XK15tdoEOxPEOIrC1xUomJibqdWwq0jtLS0ti1axdlZWWqo4hbgQTgGdVBvL744gvVEYQBhMwcSIluteT4ZJafspzk+GS/vyZUyzOE0NoSJ7R7927dzi0FWkdnnXUWYWFhLFmyRHUU0Ra4B3gVqFKcBbj99ttVRxAGEFJzICU6qEK5PEOIrS1xXOPHj9ft3FKgddS5c2fGjx8vt3EYxV14H233/1QHgX/961+qIwgDCLk5kBLdYkX2Iq7bfR1F9qKTHhvq5RlCcG2JY1q7dq1u55YCrbO0tDSWLl2K2+1WHUV0Am4HXgIOqI3y6KOPqg0gDCEk50BKdIvEhMUwIHYAMWExJzxOyrNXSK4t8Supqam6nVsKtM7S0tI4cOAAmzdvVh1FAPwBcAIvqo0xZ84ctQGEIYTsHEiJbrbEmET+0u8vJMYc/0NRUp6PCtm1JZrIyMjQ7dxSoHU2YcIE2rVrJ7dxGEUP4EbgWaBOXYybbrpJ3YsLwwjpOZAS3SyNWiPVjdU0ao3H/PdSnpsK6bUlfMaNG6fbuaVA6ywqKoozzzxTCrSRPAQcAhaoi/D555+re3FhGCE/B1Ki/ZbXkMc5O88hr+HXO0JJef61kF9bAoDs7Gzdzi0FOgjS0tLYsGEDtbW1qqMI8G7tfQ3eR9rZ1UTQ87tiYR4yB0iJ9lPvmN48O/BZesf0bvLrUp6PTdaWAOjZs6du55YCHQRpaWm43W6WLVumOoo44o94H2f3XzUvv3fvXjUvLAxF5uAnUqJPqm1EW6a1n0bbiLa+X5PyfHyytgRAXZ1+92pKgQ6CpKQkkpOT5TYOI0kGLgOeBI59S6GunE5n8F9UGI7Mwc9IiT6hA40H+KD6Aw40eh8hJOX5xGRtCUDXJ6BJgQ6StLQ0vv32WzRNUx1FHPEIUAS8G/yXHjhwYPBfVBiOzMEvSIk+rr2Ne5lXNo+9jXulPPtB1pYA6NSpk27nlgIdJGlpaRQXF5OTk6M6ijhiNHA+MBfwBPel9Xy0jjAPmYNjkBJ9TEPjh7J+7HoKM4ZKefaDrC0BUFRUpNu5pUAHyYwZM4iOjpbbOIzmT0A28ElwXzY9PT24LygMSebgOKREH5P85Nl/srYEwOjRo3U7txToIGnTpg1Tp06VAq2zssgy398XNBRQ6awEwOFxkGXLot5dD8D+xv3k2HJgIjADip4pouJQBeB93mqWLYvD7sOA997DbNvRR+GU2EvY49gDgFtzk2XL4pDrEAC1rlqybFm+W3VKHaWUOkoB0DSNLFsWta5aXnzxRQ65DpFly8Ktee/R2uPYQ4m9xPc62bZs3/2Oh92HybJl+Z4BW+GoaLKlb44th/2N+wGod9eTZcvC4XEAUOmspKChwHdsbkMu1Y3VADS4G8iyZWH3eB9HUuWsIr8h33dsfkM+e53eD+PYPXaybFnY3DYAqhurybXl+o4tbCikwum9hk6PkyxbFnXuOt/13m3b7Tu2yF5EuaO86fV2Hb3eWbasJte7zFHW5HofdB0E4KDrIFm2LDya948QyhxllNpLfV+bZcvigMt7DY9cb5fm8l3vYnux79jdtt3UNNYAUOeu815vz0/X21lBob3w6DW05bKvcR8ANretyfXe69zb5HrnNeRR7fzpenu817vB0wDA068+3eSxZAUNBb7rfWRmj1zvfY37ml5v+9Hr3ehpbHK9axprmlzvYnuxb2ZdmqvJzB5wNb3epfZS3/X2aJ5jXu8jM1vmKGsys1m2rKMz62o6s+WO8iYzu9u22zezR6630+M8er0bS30lOnf2NVR/8WaT631kZvc69/5qZqucVcDRmW1we693dWM1uQ1Hr6Ff7xE/KbIXUeEI3nsE0OQ94s0lJdxbegtnXlki5dkPL76oeLcsYQgbN27U7dxSoINo5syZrFixAofDoTqKZb3Q6QXf388unM2ivYsAbzFMz073FYWva77mltxbvAeOgr/d+jde3fkq4P0NLj07nW112wBYWruU63Zf5zvv3NK5vFT+EuAtROnZ6Ww4vAGAlQdXkp6djhtvwZhXNo95ZfMAcOMmPTudlQdX8uijj7Lh8AbSs9N9Zeql8peYWzrX9zrX7b6OpbVLAdhWt4307HTfb6yvVr7K34r/5jv2ltxb+Lrma8BbYtKz030lYtHeRcwunO079u68u/mk2vsj9wJ7AenZ6b7S+X71+9xXcJ/v2AcLHuTdKu9N4nsce0jPTvcVvs/3fc4deXf4jv1T0Z94o/INwFv20rPT2VW/C4DFNYu5Kefoxgb/KP4HCyq8D+Kuc9WRnp3O1rqtACyrXca12df6jn2y9Eme3/M84C3m6dnprDu0DoA1B9eQnp3uK8XPlj3L02VP+742PTudFbUrANh8eDPp2em+gvRy+cs8VvKY79jrc67n2wPeb3B31O8gPTudGpe3UC+sXMhfiv7iO/bWvFv5Yv8XAOxu2E16drqvzL5d9TYPFz7sO/be/Hv5cN+HgLeEpWen+4pkr6t7cW/+vb5jHy58mLer3ga8JTI9O53dDd4i/MX+L7g171bfsX8p+gsLKxcCUOOqIT07nR31OwD49sC3XJ9zve/Yx0oe4+XylwHvN1jp2elsPuzdHXVF7QrSs4/+tO7psqd5tuxZwFu207PTWXNwDQDrDq0jPTvdV3Sf3/M8T5Y+6fvaa7OvZVmt92lDW+u2kp6dTp3LW+oXVCzgH8X/8B17U85NLK5ZDMCu+l2kZ6f7vil5o/IN/lT0J99Pou9YMIzPv/ojfPYZeQ15pGen+wrqu1Xv8mDBg77z3ldwH+9Xvw94vxlIz06nwO79huaT6k+4O+9u37F+v0cAfyv+G69WBu89AvC9R3zxbQO33RxB57axzH8xQsqzH2QrbwH6buWNJoLmhx9+0ADtu+++Ux3Fcta/u14DtI8+/Mj3a/m2fK3CUaFpmqbZ3XYtsz5Tq3PVaZqmafuc+7Td9bs1zalpWh9NK7yxUCu3l2uapmlOj1PLrM/UDrkOaZqmaTXOGi2rPst33uKGYq3MXqZpmqa5PC4tsz5TO9h4UNM0TTvQeEDLrM/UPB6PpmmaVmIv0UrsJZqmaZrH49Ey6zO1A40HtH/+85/awcaDWmZ9pubyuDRN07Qye5lW3FDse52s+iytxlmjaZqmHXId0jLrMzWnx6lpmqaV28u1woZC37G763dr+5z7NE3TtDpXnZZZn6nZ3XZN0zStwlGh5dvyfcfm2HK0KmeVpmmaZnPZtMz6TK3B3aBpmqbtdezV8mx5vmPzbHlapaNS0zRNa3A3aJn1mVq9q17TNE2rclZpOfU5vmMLbAVaucN7DR1uh5ZZn6kddh32Xe/s+mzfsYUNhdoe+56m17vx6PXOrM9scr1L7aVNrndtY62maZpW21irZdZnam6PW9M0TSu1l2olDSW+r82sz9RqGr3X8Mj1bvQ0+q53UUOR79js+mxtv3O/pmmadth12Hu93T9db0e5VtBQcPQa1udo1c5qTdM0rd5V3+R6Vzoqm1zvXFuuVuX46Xq7vdfb5rZpmqZpjzz1iJZry/Udm2/L913vIzN75HpXO6ubXu+Go9fb6XY2ud77nfubXO+ihiLfzDZ6GpvMbE1j0+td0lDiu95uj/uY1/vIzJbaS5vMbGZ95tGZbWw6s3vse5rMbHZ9tm9mj1xvh9tx9Hrbfna9D2VqVb+/VNMiI7X6z95vMrOVjspfzexex15N047OrM3lvd5Vziotx3b0Gvr1HvGTwobgvkdomndmX1uSqUXHurQLLtC0Qw12Tfjnn//8p+oIQrHy8nLt9NNP18rLy3U5f5imyWMhgsXj8dCzZ0+uvfZannzyyZN/gfDbhvc2MPHKiax/dz2nXXGa/1/4OnA9sBMYqVO4Yzh48CDt27cP3gsKQ5I5aAaXC66+Gj75BD780HszsMX9/J7n9z90445sIC48joiwCNXRDE/WlqioqOD555/n7rvvJjExMeDnl1s4gig8PJyZM2fKfdBG4cb7BI6LCWp5Bli0aFFwX1AYksxBM4TYBwt/+YHBIncOqdtTyWmQJzn5Q9aWANi+fbtu55YCHWRpaWls376dyspK1VHER0Au3udBB9npp58e/BcVhiNz0EwhUqKP9bSNXtG9eKL/E/SK7qU6ninI2hLg3chOL1Kgg+zss88GYMmSJYqThDgNeBw4Gxgf/JfPzc09+UHC8mQOWsDiJfp4j6prF9mOszueTbvIdkrzmYWsLQFQU1Oj27mlQAdZt27dSElJkds4VPsK2IH3OdAKxMXFqXlhYSgyBy1k0RJ9ouc817pq+WL/F74n8YgTk7UlACIjI3U7txRoBdLS0liyZAkeT5C3vxNeGvAYMAWYriZC586d1bywMBSZg1awWIk+2SYpFc4K/l78d9/jEsWJydoSAPHx8bqdWwq0Amlpaezbt48ffvhBdZTQtBzYgPenz2FqImzbtk3NCwtDkTloJYuUaH92GBwaN5QNYzcwNG5o0POZkawtAej6eTMp0ApMmjSJhIQEuY1DlceAFOAcdREuuOACdS8uDEPmIABMXqL93Z47LCyMyLBIwsIUfddvMrK2BEBycrJu55YCrUB0dDSnn366FGgV1gPL8D55Q+HvQ6+99pq6FxeGIXMQICYt0f6WZ/Bu+f2H/D/4tv0WJyZrSwBs3bpVt3NLgVYkLS2NtWvXcvjwYdVRQstjwDDgErUxZJtZATIHAWWyEt2c8iyaT9aWAH238pYCrUhaWhoul4vly5erjhI6tuN9+sZslE/+nDlz1AYQhiBzEGAmKdEtKc99Yvrw/wb+P/rE9NE9nxXI2hIAGRkZup1bCrQigwYNYsCAAXIbRzA9DiQBVyjOATzwwAOqIwgDkDnQgcFLdEt/8qxpGi7NhaZpuuazCllbAmDy5Mm6nVsKtEJpaWlSoINlN/Ah8DAQpTgL8MILL6iOIAxA5kAnBi3RrbltI7shm9N+OI3shmzd8lmJrC0BsHHjRt3OLQVaobS0NPLz88nPz1cdxfqeBHoA1ynO8ZOLL75YdQRhADIHOjJYiW7tPc+J0Yn8td9fSYxO1CWf1cjaEgBDh+r32Ecp0AqdfvrpREZGyk+h9VYMvAk8AMQqzvKTLVu2qI4gDEDmQGcGKdGB+MBgh8gOXNj5QjpEdgh0PEuStSUAysvLdTu3FGiF2rVrx+TJk6VA6+1poD1wi+ogR/Xo0UN1BGEAMgdBoLhEB+ppG4dch1h6YCmHXIcCms+qZG0JgISEBN3OLQVasZkzZ7Js2TKcTqfqKNZUCbwG3Au0URvl5yIjI1VHEAYgcxAkikp0IB9Vt8e5hz8W/pE9zj0By2dlsrYEQHi4fjVXCrRiaWlp1NXVsW7dOtVRrGkeEAPcqTpIU4WFhaojCAOQOQiiIJfoQD/nOTkumYxTMkiO029nNSuRtSUAamtrdTu3FGjFUlJS6NKlC0uWLFEdxXpqgJeBO4AOaqP80vTp01VHEAYgcxBkQSrRemySEhEWQUJEAhFhEa0/WQiQtSUA+vXrp9u5pUArFh4eztlnny33QevhecCN9/YNg3nnnXdURxAGIHOggM4lWq8dBvc49vBI4SPsccgtHP6QtSUAdu7cqdu5pUAbQFpaGlu3bqW6ulp1FOs4jLdA3wR0U5zlGB566CHVEYQByBwoolOJ1nN7brfm5oDrAG7NHbiTWpisLQEwZcoU3c4tBdoAZs6ciaZpLF26VHUU6/g3UAc8qDrIsc2dO1d1BGEAMgcKBbhE61meAfrG9uXlwS/TN7ZvYE9sUbK2BMCqVat0O7cUaANITExk9OjRchtHoDQA/wKuBXorznIcjz76qOoIwgBkDhQLUInWuzyL5pO1JQBSU1N1O7cUaINIS0tjyZIlaJqmOor5LQSq8W7bbVBz5sxRHUEYgMyBAbSyRAerPGfbspn4w0SybbKVtz9kbQmAjIwM3c4tBdog0tLSqKysZMeOHaqjmJsLeAq4AhikOMsJXHvttaojCAOQOTCIFpboYP7kuXtUd+7rfR/do7rr9yIWImtLAIwZM0a3c0uBNogpU6YQFxcnt3G0UvSWaCgBZqtOcmLff/+96gjCAGQODKSZJTrYt210jOrI5V0vp2NUR31fyCJkbQmAgoIC3c4tBdogYmNjmTFjhhToVopZGgMXAyNVJzmx5GTZDEHIHBiOnyVaxT3Ph92HWXVwFYfdh/V/MQuQtSUAOnfurNu5pUAbSFpaGqtXr6a+vl51FHNZCnEfxgEQuS8SHlGcxw8NDQ2qIwgDkDkwoJOUaFUfGCxzlHFv/r2UOcqC84ImJ2tLALhcLt3OLQXaQNLS0nA6nbre9G459wIzIXZNLAAaGpjgMzb79+9XHUEYgMyBQR2nRKt82saguEH8b9T/GBRn4A93GIisLQFgs9l0O7cUaAMZMmQIffv2lds4/LULeK7pL4URBvcBDhWB/HfKKaeojiAMQObAwH5Rorf8+TOlj6qLCouia1RXosKigvvCJiVrSwD06NFDt3NLgTaQsLAw0tLSpED7a8Vxfn0f8GMQc7TAV199pTqCMACZA4P7qURXTLqU0XMu4y+jP1P2nOcKRwX/KP4HFY6K4L+4CcnaEgA5OTm6nVsKtMGkpaWxe/duiouLVUcxvp7H+fVwQL9vOgPitttuUx1BGIDMgfEtXhrJwPVvs77npTyy7TKiv/lMSQ6H5qDAXoBDM/gfrxmErC0BcOqpp+p2binQBnPmmWcSEREhP4X2x/nAwGP8+qVAryBnaaZ58+apjiAMQObA2I7c83zWOZGclvs2YQHa9rslkmKT+O+Q/5IUmxT01zYjWVsCYN26dbqdO0yTre8MZ8qUKfTo0YOPP/5YdRTj+xS4FHZ3383QvUPZful2Ri8aDW1UBxNCmNkxPzDocsHVV8Mnn8CHH3oPEEIYUkVFBa+88go333wziYmJAT+//ATagNLS0vj+++91ffyKZSwEhkHtM7UANFzWYIryLNvMCpA5MKrjPm2jldt+t0aOLYfTt59Ojk2/ezqtRNaWANnKO+TMnDmTgwcPsmHDBtVRjG078BXeXQcjFWdppltuuUV1BGEAMgfGc9JH1Skq0Z2jOvP7Hr+nc5R+G0NYiawtAXIPdMgZP348HTt2ZMmSJaqjGNtcIAm4QnGOFvjkk09URxAGIHNgLH4/51lBie4c1Znfdf+dFGg/ydoSAFlZWbqdWwq0AUVERHDWWWfJBwlPJAf4AHgYMOFjUcePH686gjAAmQPjaPYmKUEu0fXuejYf3ky9W3aq9YesLQHQs+fxHtfVelKgDSotLY1NmzZRU1OjOooxPYH3UXXXKc7RQhUV8ixXIXNgFC3eYTCIJbrEUcItubdQ4ijR7TWsRNaWAKirq9Pt3FKgDSotLQ2Px8N3332nOorxFANvAg8AsYqztJDb7VYdQRiAzIF6rd6eO0glekDsAD4b/hkDYgfocn6rkbUlADwej27nlgJtUL1792b48OFyG8exPA20B0z8GZGkpCTVEYQByByo1eryfEQQSnRMeAx9YvsQEx4T8HNbkawtAdChQwfdzi0F2sCObOstj+r+mUrgNeBeTPG4uuNZtWqV6gjCAGQO1AlYeT5C5xJd6azkqdKnqHRWBvS8ViVrSwCUlOh3y5MUaANLS0tjz549ZGZmqo5iHPOAGOBO1UFa58orr1QdQRiAzIEaAS/PR+hYom1uG1sOb8HmtgXsnFYma0sAjBw5UrdzS4E2sOnTpxMTEyO3cRxRA7wM3AF0UBultebPn686gjAAmYPg0608H6FTiR4QN4D3h7/PgDi5B9ofsrYEwKZNm3Q7txRoA4uLi2P69OlSoI94AXDjvX3D5B599FHVEYQByBwEl+7l+QiFOxYKL1lbAiA1NVW3c0uBNri0tDRWrlxJQ0OD6ihqHQaeA24CuinOEgCyzawAmYNgClp5PiLAJTq3IZdzd55LbkNuYPJZnKwtAbKVd0hLS0vDbrfLByL+DdQBD6oOEhh333236gjCAGQOgiPo5fmIAJboDpEduLjzxXSI7BCweFYma0sAnHbaabqdWwq0wY0YMYJevXqF9m0cDcC/gGuB3oqzBMh///tf1RGEAcgc6E9ZeT4iQCW6a1RXbul5C12jugY2n0XJ2hIA27Zt0+3cUqANLiwsjJkzZ4Z2gV4IVOPdttsizjrrLNURhAHIHOhLeXk+IgAlusHdwK76XTS4Q/x2Pj/J2hIAAwbo96FbKdAmkJaWxq5duygrK1MdJfgagaeAK4BBirMEUHZ2tuoIwgBkDvRjmPJ8RCtLdJGjiN/t/h1FjiJd4lmNrC0BsG/fPt3OLQXaBM466yzCwsJYsmSJ6ijB9xZQAsxWHSSw2rQx8S4wImBkDvRhuPJ8RCtKdP/Y/rw39D36x/bXL5+FyNoSANE6Ln4p0CbQuXNnxo8fH3q3cbiBucDFgH7PQleiU6dOqiMIA5A5CDzDlucjWliiY8NjGRw/mNjwWH3zWYSsLQHexwHrRQq0SaSlpbF06VLcbrfqKMHzMZALPKI6SODt2LFDdQRhADIHgWX48nxEC0p0lbOKF/a8QJWzSv98FiBrSwDs3btXt3NLgTaJmTNncuDAATZv3qw6SnBowOPA2cB4xVl0cO6556qOIAxA5iBwTFOej2hmiT7sPsx3td9x2H04OPlMTtaWABg0SL8PT0mBNonTTjuNdu3ahc5tHF8D24E/qQ6ij4ULF6qOIAxA5iAwTFeej2hGiR4YN5DPR3zOwLiBwctnYrK2BMAPP/yg27mlQJtEVFQUZ555Zmh8kFADHgOmANMVZ9GJbDMrQOYgEExbno+Qbb91IWtLgGzlLX6SlpbG+vXrOXjwoOoo+loOrMf70+cwxVl0ItvMCpA5aC3Tl+cj/CjR+Q35XLrrUvIb8oOfz4RkbQmQrbzFT9LS0nC73Xz//feqo+jrMSAFOEd1EP08+KBF9iQXrSJz0HKWKc9HnKREJ0QkML39dBIiEtTkMxlZWwJgypQpup1bCrSJJCUlkZycbO37oNcDy/A+ecOiP30GeO6551RHEAYgc9AylivPR5ygRHeP7s69ve+le3R3dflMRNaWAFi/fr1u55YCbTJpaWl8++23aJqmOoo+HgOGAZeoDqKvWbNmqY4gDEDmoPksW56POE6Jtnvs5DfkY/fY1eYzCVlbAmD48OG6nVsKtMmkpaVRXFxMTk6O6iiBtx34Cu+ugxafzI0bN6qOIAxA5qB5LF+ejzhGiS60F3J51uUU2gtVpzMFWVsCYM+ePbqd2+I1xXpmzJhBVFSUNW/jmAskAVcozhEEiYmJqiMIA5A58F/IlOcjflGi+y3dyevJr9Mvpp/qZKYga0sAJCTo95kBKdAm06ZNG6ZOnWq9Av0x8D7wIBDV8tOURZb5/r6goYBKZyUADo+DLFsW9e56APY37ifHdvSn+EX2IiocFQA0ao1k2bJ8GxYcaDxAti3bd2yJvYQ9Du93tW7NTZYti0OuQwDUumrJsmX5brEpdZRS6igFQNM0smxZ1LpqiYiI4JDrEFm2LNyad3fJPY49lNhLfK+TbcvmQOMBwLuJQpYti0atEYAKRwVF9iLfsTm2HPY37geg3l1Pli0Lh8cBQKWzkoKGAt+xuQ25VDdWA9DgbiDLluX7Y+EqZ1WTT/nnN+Sz1+ndycnusZNly8LmtgFQ3VhNri3Xd2xhQyEVTu81dHqcZNmyqHPX+a73btvuJte73FHe9Hq7jl7vLFtWk+td5ihrcr0PurxPojnoOkiWLQuP5gGgzFFGqb3U97VZtiwOuLzX8Mj1dmku3/Uuthf7jt1t201NYw0Ade467/X2/HS9nRVNfvKXa8tlX+M+AGxuW5Prvde5t8n1zmvIo9r50/X2eK93g6fB+zqRdeQ15PmOLWgo8F3vIzN75Hrva9zX9Hrbj17vRk9jk+td01jT5HoX24t9M+vSXE1m9oCr6fUutZf6rrdH8xzzeh+Z2TJHWZOZzbJlHZ1ZV9OZLXeUN5nZ3bbdvpk9cr2dHufR691w9Hq/vjSX39xQTVoaLHrfRr7r6Mzude791cwe2a3vyMw2uL3Xu7qxmtyGo9fQyO8RAIewkfXqn3HPuoT431zNkO9yiI+IR5xcRESE6gjCAMLD9au5UqBNKC0tjRUrVuBwOFRHCZwjvwd3bt1pXuj0gu/vZxfOZtHeRYC3GKZnp/uKwtc1X3NL7i2+Y/9W/DderXwV8P4Gl56dzra6bQAsrV3Kdbuv8x07t3QuL5W/BHgLUXp2OhsObwBg5cGVpGen48ZbMOaVzWNe2TwA3LhJz05n5cGVFBcXs+HwBtKz031l6qXyl5hbOtf3Otftvo6ltUsB2Fa3jfTsdN9vrK9Wvsrfiv/mO/aW3Fv4uuZrwFti0rPTfSVi0d5FzC6c7Tv27ry7+aT6EwAK7AWkZ6f7Suf71e9zX8F9vmMfLHiQd6veBbyFMz073Vf4Pt/3OXfk3eE79k9Ff+KNyjcAb9lLz05nV/0uABbXLOamnJt8x/6j+B8sqFgAQJ2rjvTsdLbWbQVgWe0yrs2+1nfsk6VP8vye5wFvMU/PTmfdoXUArDm4hvTsdF8pfrbsWZ4ue9r3tenZ6ayoXQHA5sObSc9O9xWkl8tf5rGSx3zHXp9zPd8e8H5juqN+B+nZ6dS4vIV6YeVC/lL0F9+xt+bdyhf7vwBgd8Nu0rPTfWX27aq3ebjwYd+x9+bfy4f7PgS8JSw9O91XJL+u/5p78+/1Hftw4cO8XfU24C2R6dnp7G7wFuEv9n/BrXm3+o79S9FfWFjp3SyixlVDenY6O+q92xd/e+Bbrs+53nfsYyWP8XL5y4D3G6z07HQ2H/buarqidgXp2em+Y58ue5pny54FvGU7PTudNQfXALDu0DrSs9N9Rff5Pc/zZOmTvq+9NvtaltUuA2Br3VbSs9Opc3lL/YKKBfyj+B++Y2/KuYnFNYsB2FW/i/TsdN83JW9UvsGfiry7KC1eDP9Pu4Px933ORx9BiTuP9Ox0X0F9t+pdHiw4+sSF+wru4/3q9wHvNwPp2ekU2L3f0HxS/Ql3593tO9bI7xGA9z0i71oa3niF6msu5Pk191H9xZuIkysuLj75QcLyamtr9Tu5Jkznhx9+0ADt+++/Vx0lsFI1TRunaZqn+V+6/t31GqB99OFHvl/Lt+VrFY4KTdM0ze62a5n1mVqdq07TNE3b59yn7a7f7Tu2sKFQK7eXa5qmaU6PU8usz9QOuQ5pmqZpNc4aLas+y3dscUOxVmYv0zRN01wel5ZZn6kdbDyoaZqmHWg8oGXWZ2oej/f/RIm9RCuxl2iapmkej0fLrM/UDjQe0AoLC7WDjQe1zPpMzeVxaZqmaWX2Mq24odj3Oln1WVqNs0bTNE075DqkZdZnak6PU9M0TSu3l2uFDYW+Y3fX79b2OfdpmqZpda46LbM+U7O77ZqmaVqFo0LLt+X7js2x5WhVzipN0zTN5rJpmfWZWoO7QdM0Tdvr2Kvl2fJ8x+bZ8rRKR6WmaZrW4G7QMusztXpXvaZpmlblrNJy6nN8xxbYCrRyh/caOtwOLbM+UzvsOuy73tn12U2u9x77nqbXu/Ho9c6sz2xyvUvtpU2ud21jraZpmlbbWKtl1mdqbo9b0zRNK7WXaiUNJb6vzazP1GoavdfwyPVu9DT6rndRQ5Hv2Oz6bG2/c7+maZp22HXYe73dP11vR7lW0FBw9BrW52jVzmpN0zSt3lXf5HpXOiqbXO9cW65W5fjperu919vmtmmapmlb8rdoubZc37H5tnzf9T4ys0eud7Wzuun1bjh6vZ1uZ5Prvd+5v8n1Lmoo8s1so6exyczWNDa93iUNJb7r7fa4j3m9j8xsqb20ycxm1mcendnGpjO7x76nycxm12f7ZvbI9Xa4HUevt61A++YbTYuO1rRzbszR9tRVNbneR2a20lH5q5nd69iradrRmbW5vNe7ylml5diOXkMjv0domtbkPSLnUKZ2VsapWs7QBE379FNNnFhhYaHqCEKx8vJy7Z577tHKy8t1Ob8UaBNyu91a9+7dtYceekh1lMBaqnkn8n/N/9IjBXr9u+sDnUoXc+fOVR1BGIDMwfEdKc8XXKBpDofqNAbR2Khpl1+uaZGRUqJPQtaWKC8v184880zdCrTcwmFC4eHhzJw503r3QZ8JTMD7KDuLe+CBB1RHEAYgc3BsIfeBQX/Jtt9+k7UlACZPnqzbuaVAm1RaWhrbt2+nsrJSdZTACcO7ffeqn/6ysCeeeEJ1BGEAMge/JuX52AobCrkq6yoKG0ulRPtB1pYAWL16tW7nlgJtUmeffTYAS5YsUZwkwM4HRmH5n0I/+uijqiMIA5A5aErK8/HFRsQyus1oYiNi5SfRfpC1JQBSU1N1O7cUaJPq1q0bKSkp1ruNIxzvRirfAlsUZ9HRnDlzVEcQBiBzcJSU5xNLjE7kj33/SGL0T883lhJ9QrK2BEBGRoZu55YCbWJpaWksWbIEj8ejOkpgXQ4MAh5XHUQ/1113neoIwgBkDrykPJ+c0+Ok3FHue4QgICX6BGRtCYAxY8bodm4p0CY2c+ZM9u3bxw8//KA6SmBFAH8EPgEyFWfRydKlS1VHEAYgcyDl2V/59nwu2HUB+fb8pv9CSvQxydoSAAUFBSc/qIWkQJvY5MmTSUhIsN5tHADXAH3wbu9tQcOGDVMdQRhAqM+BlGf/9Ynpw/xB8+kT0+fX/1JK9K+E+toSXl26dNHt3FKgTSw6OprTTz/deh8kBIjGu633u4B+30Aqc/jwYdURhAGE8hxIeW6ehIgETmt3GgkRCcc+QEp0E6G8tsRRTqfz5Ae1kBRok0tLS2PNmjXWfLO4Ee/W3k+e7EDz0XV7UWEaoToHUp6bb3/jft7a+xb7G/cf/yAp0T6hurZEU3a7XbdzS4E2ubS0NFwuF8uXL1cdJfDigPuA/wJ71EYJtFGjRqmOIAwgFOdAynPL7GvcxysVr7Cvcd+JD5QSDYTm2hK/1q1bN93OLQXa5AYNGsSAAQOseR80wG1APPCM6iCBtXjxYtURhAGE2hxIeW65IfFDWDlmJUPih5z8YCnRIbe2xLHl5eXpdm4p0BaQlpZm3QLdDrgLWABUK84SQDfddJPqCMIAQmkOpDwHWYiX6FBaW+L4UlJSdDu3FGgLSEtLIz8/n/z8/JMfbEb34J3U51QHCZxnn31WdQRhAKEyB1KeW6/IXsT1u6+nyF7k/xeFcIkOlbUlTmz9+vW6nVsKtAWcfvrpREZGWven0J2BW4EXgYOKswSIbDMrIDTmQMpzYESHRdMnpg/RYc28gCFaokNhbYmTk628xQm1a9eOSZMmWbdAA9wP2IGXVAcJDNlmVoD150DKc+D0jOnJ35P+Ts+Yns3/4hAs0VZfW8I/spW3OKm0tDSWLVum6zMPlUoErgf+H1CvOEsA3HrrraojCAOw8hxIeQ6sRq2RA40HaNQaW3aCECvRVl5bwn+nnnqqbueWAm0RaWlp1NXV6Xq/j3IPAQeAV1UHab2PPvpIdQRhAFadAynPgZfXkMdZO88ir6EVTxUIoRJt1bUlmiczM1O3c0uBtoiUlBS6dOli7ds4koCrgacBh9oorTVx4kTVEYQBWHEOpDzro3d0b+YNmEfv6N6tO1GIlGgrri3RfL17t3K9nIAUaIsIDw/n7LPPtnaBBpgNVABvqA7SOmVlZaojCAOw2hxIedZP28i2pHZIpW1k29afLARKtNXWlmiZQ4cO6XZuKdAWkpaWxtatW6muttADk39pKDAL7/beLsVZWkHTNNURhAFYaQ6kPOvrQOMBPq7+mAONBwJzQouXaCutLWFMUqAtZObMmWiaxtKlS1VH0dcjQAHwvuogLdenTx/VEYQBWGUOpDzrr7KxkidLn6SysTJwJ7VwibbK2hKt065dO93OLQXaQhITExk9erT1b+MYC5wHPA54FGdpoXXr1qmOIAzACnMg5Tk4hsUPY2PKRobFDwvsiS1aoq2wtkTr6XkrjxRoi0lLS2PJkiXW/+OrPwGZwOeqg7TM5ZdfrjqCMACzz4GUZ4uwYIk2+9oSgTFixAjdzi0F2mLS0tKorKxkx44dqqPoazIwA3gMMOH3Ci+//LLqCMIAzDwHUp6Dq8Rewh25d1BiL9HnBSxWos28tkTgbNq0SbdzS4G2mClTphAXF2f92zjAey/0FmCJ6iDNJ9vMCjDvHEh5Dr7wsHDaRLQhPEzH37YtVKLNurZEYMlW3sJvsbGxzJgxgyVLTNgqm+ssYDzen0KbjGwzK8CccyDlWY3eMb15asBT9I7R77m2gGVKtBnXlgg82cpbNEtaWhqrVq2ivt4Ce16fSBje50KvgqidUd5fOhxmig8W3nPPPaojCAMw2xxIeVbHrblpcDfg1tz6v5gFSrTZ1pbQh54b6kiBtqC0tDScTqeu33kZxmTv/yT8JwGADn/uAPvVxfHXf/7zH9URhAGYaQ6kPKuV05DD1O1TyWnICc4LmrxEm2ltCf1s3bpVt3NH6nZmocyQIUPo1WssixZlct5556mOoy+Tfgs4c+ZM1RGEAYwaNYmdOytUxzipjRvh4YfjSUtrL+VZkZ7RPXks6TF6RvcM3oseKdFXXw2XXUbpq+9TO25S8F6/FUaNMkdOoa+BAwfqdm4p0BYUFhZG27bP8umnOt8rJ1osKyuL4cOHq44hFCotPciCBc8xYsQQ1VH8cuutUVx//R1ER7dXHSUktY9szzmdzgn+C/9UokuvuoX/5O4krHhn8DO0wK5du0lOfpk+fWReQ9m+fft0O7cUaIs6//wonnlmAGvWlDFlihRpo2nbtq3qCEKx2lobMTER1NZeQmRkV9Vxjqm8HJYvh6FDq0lN/ZT6ehsghUSFg66DrDm4hintp9A+Msj/DSIjqZ39N8K+WEjtx+2IHD4Z+vQNboZmcLmqiYl5mtpamxToEBet4x+XSYG2qDvvHM4zz7j4978LpEAbUPv28qYuvE/NiYzsSps2iaqj/EpuLrz3HgwaBGPHqk4jyp3l/Ln4z7w19K3gF2jw/iQaiIzrSZsPvoXLL4ehQ4Ofww/19d61JYSec2DSO0jFyfTr1562bTNZtixKdRRxDLt27VIdQRhAVVWV6gjH9PPyfPnlEC6/Uyg3JG4I68asY0ic4lt+pk2FYcPggw8gO1ttlhMw6toSwaXnHMjbooWNG7ef8vLh2O0u1VHEL5xzjoJ7GYXhDBo0SHWEX/lleY6IUJ1IgHcjlejwaH03UvFHWDjMmmX4Em3EtSWCT885kAJtYenpXYH2/Pe/maqjiF9YuHCh6gjCAH744QfVEZqQ8mxcZY4yHsh/gDJHmeoo3j+SMHiJNtraEmroOQdSoC3smmuGERZ2gHffrVEdRfyCbDMrQN9tZptLyrOxaZqGU3OiaZrqKF4GL9FGWltCHdnKW7RIdHQEvXpls2VLF9VRxC/INrMC9N1mtjmkPBtfn9g+PD/oefrE9lEd5SgDl2ijrC2hlmzlLVrszDNd1NcPIz//gOoo4mcefvhh1RGEAUydOlV1BCnPonUMWqKNsLaEenrOgRRoi7vjjkFABC++mKU6iviZefPmqY4gDGDdunVKX1/Ks3lk2bIYt3UcWTYDvpcbsESrXlvCGPScAynQFjd+fCIxMXl8/bVbdRTxM5dddpnqCMIAVO5GKeXZXHpE9+DRvo/SI7qH6ijHZrASLTu9CtB3DqRAh4ARI8ooKBiIx2OQD58I+emIAKCsTM0TFaQ8m0/HyI5c0uUSOkZ2VB3l+AxUolWtLWEses6BFOgQcOmlCbjdPfnqq3zVUcRP+vQx0AeBhDLt2rUL+mtKeTanQ65DLDuwjEOuQ6qjnJhBSrSKtSWMR885kAIdAm69dTjQwH/+I9+RCxHKpDyb1x7nHh4sfJA9zj2qo5ycQUq0EHqSAh0COneOp3PnXaxZk6A6ivhJaWmp6gjCAA4dCt5PE6U8m9vguMEsG72MwXGDVUfxj+ISHcy1JYxLzzmQAh0iJk+uY//+EdTUNKiOIoBJkyapjiAMoHfv3kF5HSnP5hcZFkn7yPZEhkWqjuI/hSU6WGtLGJuecyAFOkT8/ve9gDgWLJBtvY3gww8/VB1BGEBmpv7rUcqzNexx7OHRwkfZ4zDBLRw/p6hEB2NtCePTcw6kQIeIiy4aRHh4BR9/fFh1FAHcd999qiMIA9D7TyKkPFuHS3NR1ViFS3OpjtJ8Ckq0/CmfAH3nQAp0iAgPD2PgwDx+/LGX6igCePLJJ1VHEAawevVq3c4t5dla+sX245XkV+gX2091lJYJconWc20J89BzDqRAh5Bzz43A4RjMpk0VqqOEvEcffVR1BGEAqampupxXyrMwpCCWaL3WljAXPedACnQIufPOoYCH+fPzVEcJeXPmzFEdQRhARkZGwM8p5dmadtt2M2XbFHbbdquO0jpBKtF6rC1hPnrOgRToEDJ4cCfatMnk++/ld1TVrr/+etURhAGMHTs2oOeT8mxdXaO6cmfPO+ka1VV1lNYLQokO9NoS5qTnHEiBDjFjx1ZTVjYUp9OtOkpI+9///qc6gjCAvLzA/WmQlGdr6xTViSu7XUmnqE6qowSGziU6kGtLmJeecyAFOsRceWUnNK0Tb72VpTpKSBsxYoTqCMIAunXrFpDzSHm2vjp3HWsPraXOXac6SuDoWKIDtbaEuek5B1KgQ8x11w0HDvL22/tURwlpBw8eVB1BGIDdbm/1OaQ8h4ZSRyl35d1FqcNiu5jqVKIDsbaE+ek5B1KgQ0x8fBSJiVls2mSRPwY0qcOH5XncApxOZ6u+Xspz6BgUO4hvRn7DoNhBqqMEng4lurVrS1iDnnMgBToEnX66k8OHh1NSIj8FVWXYsGGqIwgD6NKlS4u/VspzaIkKj6J7dHeiwqNUR9FHgEt0a9aWsA4950AKdAi67bYBQCQvvij3QauyZMkS1RGEAeTn57fo66Q8h54KZwWPlTxGhdPCz/EPYIlu6doS1qLnHEiBDkFTp/YmKqqQL7+UP+JS5YYbblAdQRhASkpKs79GynNosnvsZNuysXssfm9vgEp0S9aWsB4950AKdIgaNqyE3NwBeDya6igh6bnnnlMdQRjA+vXrm3W8lOfQ1T+2P28OfZP+sf1VR9FfAEp0c9eWsCY950AKdIi65JJ43O7efPttoeooIUm28hbQvG1mpTyLkNLKEi1beQuQrbyFDm67bRjg5LXXLPZIJJOQrbwF+L/NrJRnkWvL5cwdZ5Jry1UdJXhaUaJlK28BspW30EH37gl06LCLVaviVEcJSbfddpvqCMIAxo8ff9JjpDwLgI5RHbm629V0jOqoOkpwtbBE+7O2hPXpOQdSoEPYxIkHqa4ewaFDDtVRQs4HH3ygOoIwgF27dp3w30t5Fkd0ierC9T2up0tUCD6erQUl+mRrS4QGPedACnQIu+66RKANr76aqTpKyJk0aZLqCMIAevfufdx/J+VZ/JzNbeOHuh+wuW2qo6jRzBJ9orUlQoeecyAFOoTNmjWY8PAqPvhANlQJttJSufdcwKFDh47561KexS8VO4q5MedGih3FqqOo04wSfby1JUKLnnMgBTqERUaGk5SUw44diaqjhJywsDDVEYRBSXkWxzIgdgAfD/+YAbEDVEdRS4dtv4VoCSnQIS4tLQy7fQg7dlSpjhJS5I8XBUC7du2a/LOUZ3E8MeExJMUmERMeozqKen6U6F+uLRGa9JwDKdAh7o47kgF48cUcxUlCizzkXwCUlZX5/l7KsziRvc69zCubx17nXtVRjOEkJfrna0uELj3nQAp0iBsxoitxcVksWaL+loL6+nq+/vprzj77bNVRdPeb3/xGdQRhAMOHDwekPIuTq3fXs+7QOurd9aqjGMcJSvSRtSVCm55zIAVaMGZMJSUlQ3C5PEpztGnThv/7v/+jsbFRaY5g+Pe//606gjCAzZs3U14u5Vmc3IC4AXw4/EMGxIX4PdC/dJwSvXnzZsXBhBHoOQdSoAWXX94RTevCe+/tVh0lZMhW3gK828wuXy7lWYhW+WWJLi2RrbwFIFt5C53deONwCDvMK28WqY4SMmQrb7Fxo3eb2V69pDyLk8tryOP8H88nryFPdRRj+nmJXrlStvIWgL5beUfqdmZhGtFxEHZaBqv2JeDRPISHGf/7KofDgcPhgMPef67z1KkN1Ey/+f1v2FmxU3UMocjGTfDcfw9z/rSJ1NdXY7erTnRiLle16gghr31Ee87rdB7tI9orzeFyVVNv5Nuwz52Ma5uTiRMmUrjyK+gyUXUiociBfQeYOFG///5+F+h3332XCRMm8PHHH3PPPffw9NNP8+ijjzJnzhyuv/56Fi9ezOjRo6mpqaG+vp6hQ4fy3Xffcd111/H888/7jr399tt59913mTZtGkVFRURERJCYmMimTZu49NJLWbBgge/Y++67j5dffpnzzz+f7du307lzZ+Li4sjJyeHMM8/kjTfe8B07e/ZsnnrqKa666ipWrlxJ//79cblcVFZWMm7cOD777DPuuusunnnmGd/X3HjjjXz55ZeMGTOG/fv309DQwODBg1m+fDm/+93veOGFF3zH3nnnnbz11lukpqaSn59PdHQ03bt3Z8uWLVx00UW8+uqrvmPvv/9+5s+fz4UXXsjWrVvp2rUrMTEx5OfnM2PGDN58801mz57N448/ziOPPMLcuXO55pprWLFiBQMHDsThcFBdXU1KSgpffPEFt99+O//6179857/pppv4/PPPGTduHHv37sXpdDJw4EAyMjJIT0/nxRdf9B171113sWjRIk4//XRyc3OJi4ujc+fObNu2jQsuuIDXXnuNz6d+jjayknMSb+Zfz2zi4osvZsuWLfTo0YPIyEgKCwuZPn0677zzDg899BBz5871nf/aa6/l+++/Jzk5mYaGBvbv388pp5zCV199xW233ca8efN8x95yyy188sknjB8/noqKCtxuN0lJSaxatYorr7yS559/nuTkZLZv387ChQupra3lnHPOITs7mzZt2tCpUyd27NjBueeeS3p6OsuXLz86oD/9/v6l/UvGrRlHROcIiouLmTp1Ku+99x4PPPAATzzxhC/Lddddx9KlSxk2bBiHDx+mtraWUaNGsXjxYm666SaeffZZ37G33norH330ERMnTqSsrAxN0+jTpw/r1q3j8ssv5+WXX/Yde8899/Cf//yHmTNnkpWVRdu2bWnfvj27du3inHPOYeHChVx717VccMYFXPnbK1m3bh3Dhw+nrKzM97idQ4cO0bt3bzIzM5k0aRKrV68mNTWVjIwMxo4dS15eHt26dcNut+N0OunSpQv5+fmkpKSwfv1637Hjx49n165d9O7d2/cw+Xbt2lFWVsbw4cPZvHmz79iJEyeydetWBg0aRFVVFbGxsURHR7Nv3z4GDBjAtm3bfMdOnTqVtWvXMnLkSEpKSujQoQMej4e6ujp69epFZmYmEydOZM2aNb/K3b17dxoaGny5CwoKGDNmDBs2bGiS+8cff6Rv377U1tYSHh5OQkIC5eXlDBs2rEnuSZMmsXnzZpKTk6msrCQ+Pp7IyEj279//q9zTpk1jzZo1jBo1iuLi4ia5e/bsSXZ2NhMmTGDt2rW+r0lJSSEnJ4cePXpgs9lwuVx06tSJoqIiTjnllCa5J0yYwI4dO0hKSqKmpoaIiAhf7qFDh7JlyxbfsZMnT6ZL1FYyMuro2TPXl7umpoakpCR27NjB1KlTWbVqFdOmTWP16tWMHj2aoqIiOnXqhMvlwmazkZiYyO7duxk/fnyT3OPGjSM7O5uePXtSV1eH2+325R49ejQbN270HXvaaaexfft2X+7IyEji4+OprKwkOTmZrVu3/nTsaq666laefvppZe8R8+fP9x17991389///pezzjrrmO8RCxcu9B374IMP8txzzzFr1iw2btxIYmIiERHGfY84cuzDDz/MvHnzuOyyy1i3bh0j+4wkKy+LJaVLmDRpEh9++CH33XcfTz75ZJPfj//3v/8xYsQIDh48yOHDhxk2bBhLlizhhhtu4LnnnvMde9ttt/HBBx8wadIkSktLCQsLo3fv3qxfv57f/OY3/Pvf//Yd+5vf/J61azcyeHA1e/YY+z1iu2czkZtjWL16E9PKi0z7HrFp0yaGDBlCRUWFSd4jvLk3btzI0KFDKS8vJyEhgfDwcGpra+nXrx87d+5kypQprFq1yvc1Y8aMoaCggM6dO/ty9+jRg5ycHE499VTWrVvnO/bUU08lKyvLl9vj8dChQwdKSkoYOXIkmzZtapL7s88+Y9y0cYStC/P7PWLgwIF+9eIwTdM0f0u0sJ4bV9/If6b+h0syLuGT1E9Ux/Gb7yfQ+4CBkNc1j3HV49jdfTfJO5Ohq+qEx7ezYicLHltA1M1RRHaVPwQKJeVlsDwDeiXC5BEuGubD+VddRv/O/VVHO6kOHeLp00ftTz9DWYOngSJ7EUmxScSFxynJUFp6kNpa428lXri/kK/e+ZA2qTuJLM+E6dOhbx/VsUSQabka9g/sXH7L5UwfNT3g55ffvUPY/B3z+c+E/zB05VA+mv6R6jjNEhMTQ0xMDDi8/5wQnqA2UDNVVVXRr2s/2iS2UR1FBEluLrz3P+8HBs+5HOxV9VTUFtN/SFtGJcpuoOLEiuxFpGen89bQtxgWP0xJhj592pvjm6iKfdTW7qH9jDG0WVsB337g/aDB0KGqk4kgatjXQFWVfpvEGf9mV6GL1WWrubPnnbTPbM+miZsMcd9zWFjYMf+yotjYWNURRBAd7znPMgfCX0mxSbw19C2SYpNURzGF2NhYCA+Tbb9DnJ7vsepbkwi68sPlnG07m4j6CDb02UBCtDF+eqtp2jH/sqLo6GjVEUSQnGiTFJkD4a+48DiGxQ9TdvuG2fjWlh/bfgvr0vM9Vgp0iHF5XIzLHIe9h52PGj9iSOchqiP52Gw2Fi5cyJdffskNN9yAx6N2Yxc97du3T3UEEQQn22FQ5kD4q9pZzfzy+VQ75Yko/miytqREhyw932OlQIeYqSunUjm+kr/u/isXDbpIdZwmsrKyyM/P5/zzz2fnzp3eDwla1IABspuY1fmzPbfMgfDXQfdBvqn5hoPug6qjmMKv1paU6JCk53usFOgQcuvqW9kwYwPnrzyfv43/m+o4vzJu3DjuvfdeXnrpJe6++27i4qz7R5Xbtm1THUHoyJ/yDDIHwn+D4gbx1civGBQ3SHUUUzjm2pISHXL0fI+VAh0iXtn5CgvGL2DwqsF8nvq56jjH1bVrV+68807efvttsi385ibbzFqXv+UZZA6E0Mtx15aU6JAiW3mLVlm3Zx239riVdtnt2DxhsyGeuHEsL730EgsWLAAgMjKS/Px8xYn0I9vMWlNzyjPIHAj/FTQUcFnmZRQ0FKiOYgonXFtSokOGnu+xxmxSImAq6yo5o+4Mwh3hrO25lnYx7VRHOq7TTz+dtm3b8vnnnzNq1CjOOecc1ZF0M3XqVNURRIA1tzyDzIHwX5uINkxqN4k2EfLseH+cdG1JiQ4Jer7HSoG2MJfHRcqPKdh72nnf9j4juo5QHemEhg8fzlVXXcVFF13E448/ToQ/DcSk1q5dqzqCCKCWlGeQORD+6x7dnft630f36O6qo5iCX2tLSrTl6fkeKwXawmasnEHFhAoeyXyEWcmz+Xv+cAAAMopJREFUVMcRPzNy5EjVEUSAtLQ8g8yB8J/D46DIXoTDY92nEwWS32tLSrSl6fkeKwXaou5YcwdrZqzhnJXn8Nhpj6mOI36hpKREdQQRAK0pzyBzIPxXYC9gVuYsCuxyD7Q/mrW2pERblp7vsVKgLej1Xa8zf9x8BqwewNepX6uOI46hQ4cOqiOIVmpteQaZA+G/fjH9eC35NfrF9FMdxRSavbakRFuSnu+xUqAtZlPFJm7sciMJuQlsOXWLYZ+4EeqsvMtiKAhEeQaZA+G/+Ih4xiaMJT4iXnUUU2jR2pISbTl6vsdKu7KQfbZ9pNamEuYKY12PdXSI7aA6kjiOuro61RFECwWqPIPMgfDfvsZ9LKxcyL5G2f7dHy1eW1KiLUXP91gp0Bbh8rgYu30sDX0beLvubUZ2lQ8nGVmvXr1URxAtEMjyDDIHwn8HGg/wdtXbHGg8oDqKKbRqbUmJtgw932OlQFvEWSvPomxSGQ/tfIjfDvmt6jjiJDIzM1VHEM0U6PIMMgfCf4PjB/P96O8ZHD9YdRRTaPXakhJtCXq+x0qBtoA/rP0DGTMyOGvFWTw58UnVcYQfJk6cqDqCaAY9yjPIHAihl4CsLSnRpqfne6wUaJN7K+stnh3zLP3W9OPb1G9VxxF+WrNmjeoIwk96lWeQORD+K7QXck32NRTaC1VHMYWArS0p0aam53usFGgT21q5lWs7XEubgjZsTdkqT9wwkdTUVNURhB/0LM8gcyD8Fxsey9D4ocSGx6qOYgoBXVtSok1Lz/dYaVwmVdNQw/T90wFY3XU1neI6KU4kmiMjI0N1BHESepdnkDkQ/kuMTuRPff9EYnSi6iimEPC1JSXalPR8j5UCbUIezcPYH8ZS37+eRbWLGNN9jOpIopnGjh2rOoI4gWCUZ5A5EP5r9DSy17mXRk+j6iimoMvakhJtOnq+x0qBNqGZGTMpmVzCH7b/gauHXa06jmiBvLw81RHEcQSrPIPMgfBfnj2P8348jzy7zIw/dFtbUqJNRc/3WCnQJvPQ+of4fsb3zFgxg3mT5qmOI1qoe/fuqiOIYwhmeQaZA+G/PjF9eGHQC/SJ6aM6iinourakRJuGnnMgBdpE3s1+l6dHPU2ftX34PvV71XFEKzQ0NKiOIH4h2OUZZA6E/xIiEpjcbjIJEQmqo5iC7mtLSrQp6DkHUqBNYkfVDq5pdw3xxfFsHSNP3DA7p9OpOoL4GRXlGWQOhP9qGmt4t+pdahprVEcxhaCsLSnRhqfnHEgLM4Faey2TqyajhWtkdMygS3wX1ZFEK3XpIv8NjUJVeQaZA+G/6sZqXix/kerGatVRTCFoa0tKtKHpOQdSoA3Oo3lI2ZxC/cB6FtYs5NTEU1VHEgFQUFCgOoJAbXkGmQPhvyHxQ1gzZg1D4oeojmIKQV1bUqINS885kAJtcOdlnEfh1ELu+uEurh1+reo4IkDGjBmjOkLIU12eQeZACL0EfW1JiTYkPedACrSBPbLhEb6d/i3TVkzj+cnPq44jAmjDhg2qI4Q0I5RnkDkQ/iu2F3Nzzs0U24tVRzEFJWtLSrTh6DkHUqAN6qOcj5g7Yi69NvRi2fRlquOIAJMtnNUxSnkGmQPhv8iwSLpFdSMyLFJ1FFNQtrakRBuKbOUdYnZV7+KK+CuIK41j6+itRIbLG6bVyBbOahipPIPMgfBfr5hezOk/h14xvVRHMQWla0tKtGHIVt4h5JDjEJMqJqFFayxvv5xubbqpjiR0MH78eNURQo7RyjPIHAj/uTQXB10HcWku1VFMQfnakhJtCHrOgRRoA/FoHsZtHMfh5MMsqFrAaT1PUx1J6OTHH39UHSGkGLE8g8yB8F9uQy5n7DiD3IZc1VFMwRBrS0q0cnrOgRRoA7kw40LypuVx25bbuHHkjarjCB317dtXdYSQYdTyDDIHwn+9onvxdP+n6RUtt3D4wzBrS0q0UnrOgRRog/jLxr/w9fSvmbRiEvOnzFcdR+istrZWdYSQYOTyDDIHwn/tIttxRsczaBfZTnUUUzDU2pISrYyecyAF2gA+zf2Ufw77Jz029WDl9JWq44ggCA+Xpac3o5dnkDkQ/jvgOsCn+z7lgOuA6iimYLi1JSVaCT3nwGATFnp279/N5TGXE1seyw8jfpAnboSIhIQE1REszQzlGWQOhP8qnZXMKZlDpbNSdRRTMOTakhIddHrOgRRoheqcdZxWehruODfftfmOHgk9VEcSQVJeXq46gmWZpTyDzIHw37D4YWxJ2cKw+GGqo5iCYdeWlOig0nMOpEAr4tE8jNswjoPDDvJSxUtM6T1FdSQRRMOGyW+CejBTeQaZAyH0Yui1JSU6aPScAynQisxaOYucaTncuOlGbht9m+o4Isg2b96sOoLlmK08g8yB8F+pvZS78+6m1F6qOoopGH5tSYkOCj3nQAq0Av/Y9A8+m/oZ41eM59Wpr6qOIxSQLZwDy4zlGWQOhP/CwsKIDosmLCxMdRRTMMXakhKtO9nK20K+yv+Kvyb/lW5burF62mrVcYQisoVz4Ji1PIPMgfBf75jePDPwGXrH9FYdxRRMs7akROtKtvK2iNyaXC6JvISYqhi2DN1CdES06khCkUmTJqmOYAlmLs8gcyD859E8OD1OPJpHdRRTMNXakhKtGz3nQAp0kNgabUwonoC7jZslsUvo3U5+ihDKDH9/ngmYvTyDzIHw3+6G3UzaNondDbtVRzEF060tKdG6kHugTc6jeTh13anUjqjluT3PMb3PdNWRhGLJycmqI5iaFcozyBwI//WM7sk/+/2TntE9VUcxBVOuLSnRAafnHEiBDoLfrvwtWdOzuHbDtdx1yl2q4wgDqKyUzRBayirlGWQOhP/aR7bnvM7n0T6yveoopmDatSUlOqD0nAMp0Dp7YssTfDTlI1JWpPDfaf9VHUcYRHx8vOoIpmSl8gwyB8J/B10H+V/N/zjoOqg6iimYem1JiQ4YPedACrSOFhcsZvag2XT5oQvrpq1THUcYSGSkbNneXFYrzyBzIPxX7iznT0V/otxp0B32DMb0a0tKdEDoOQdSoHVSWFvIRWEXEb0vmi3J8sQN0dT+/ftVRzAVK5ZnkDkQ/kuOS2b1KatJjjPhvb0KWGJtSYluNT3nQAq0DmyNNk7NPxVXexeLIxfTt31f1ZGEwQwYMEB1BNOwankGmQPhv4iwCOIi4ogIs9AC0JFl1paU6FbRcw6kQOtg4tqJ1Iyu4ZniZzij3xmq4wgD2rZtm+oIpmDl8gwyB8J/ZY4yHip4iDJHmeoopmCptSUlusX0nAMp0AF25cor2Zm6k6vWXcV9Y+9THUcYlCm2mVXM6uUZZA6E/zyah3p3vWyk4ifLrS0p0S0iW3mbxL9++BfvTX6P0RmjeXv626rjCAMzzTazioRCeQaZA+G/vrF9eWnwS/SNlVsC/WHJtSUlutlkK28TWFq0lAeTHqTT9k5smLJBdRxhcNOmTVMdwbBCpTyDzIEQerHs2pIS3Sx6zoEU6AAoPljM+Z7ziayNZPPAzcRGxqqOJAxuzZo1qiMYUiiVZ5A5EP7LsmUxYesEsmxZqqOYgqXXlpRov+k5B1KgW8nusjMudxyNnRr5ki/p36G/6kjCBEaNGqU6guGEWnkGmQPhvx5RPXi4z8P0iOqhOoopWH5tSYn2i55zIAW6lSatmcT+Mft5ouAJ0vqnqY4jTKK4uFh1BEMJxfIMMgfCfx2jOjKr6yw6RnVUHcUUQmJtSYk+KT3nQAp0K/xu5e/YlrqNy9ZcxkMpD6mOI0ykQ4cOqiMYRqiWZ5A5EP477DpMRm0Gh12HVUcxhZBZW1KiT0jPOZAC3ULPbXuONye9yYiVI/gg9QPVcYTJeDzyKCoI7fIMMgfCf2XOMu4ruI8ypzwH2h8htbakRB+XnnMgBboFVpSs4A99/kDHnR3ZOGmj6jjChOrq6lRHUC7UyzPIHAj/DYobxHejvmNQ3CDVUUwh5NaWlOhj0nMOpEA3U9mhMs5xnkPk4Ug29d9EfFS86kjChHr27Kk6glJSnr1CfQ6E/6LCougY1ZGosCjVUUwhJNeWlOhf0XMOpEA3g9PtJGV3Co6uDj7zfMbAjgNVRxImlR3Cb2xSno8K5TkQzVPuKOevRX+l3FGuOoophOzakhLdhJ5zIAW6GSavmkx1SjWP5z3OeQPOUx1HmNiECRNUR1BCynNToToHovmcmpNSRylOzak6iimE9NqSEu2j5xxIgfbT9auuZ8uMLVy6+lJmj5utOo4wubVr16qOEHRSnn8tFOdAtExSbBILhywkKTZJdRRTCPm1JSUa0HcOpED7Yf6O+bx+2usMXTmUD6d/qDqOsIDU1FTVEYJKyvOxhdocCBEssraQEo2+cyAF+iRWl63mzp530j6zPZsmbiI8TC6ZaL2MjAzVEYJGyvPxhdIciNbZbdvN9G3T2W3brTqKKcja+kmIl2g950Da4AmUHy7nbNvZRNRHsKnvJhKiE1RHEhaRkpKiOkJQSHk+sVCZA9F6XaK6cHPizXSJ6qI6iinI2vqZEC7Res6BFOjjcHlcjMsch72HnY8aP2Jwp8GqIwkLycnJUR1Bd1KeTy4U5kAERueozqR3T6dzVGfVUUxB1tYvhGiJ1nMOpEAfx9SVU6k8tZK/7f4bFw26SHUcYTE9evRQHUFXUp79Y/U5EIFT565jw6EN1LlDbIOQFpK1dQwhWKL1nAMp0Mdw6+pb2TBjAxeuupC/jv+r6jjCgmw2m+oIupHy7D8rz4EIrFJHKbfn3U6po1R1FFOQtXUcIVai9ZwDKdC/8MrOV1gwfgGDVw3m09RPVccRFuVyuVRH0IWU5+ax6hyIwBsYO5AvR3zJwFjZwMsfsrZOIIRKtJ5zIAX6Z9btWcetPW6lXXY7Nk/YLE/cELrp1KmT6ggBJ+W5+aw4B0If0eHR9IzpSXR4tOoopiBr6yRCpETrOQfSEH9SWVfJGXVnEO4IZ32v9bSLaac6krCwoqIi1RECSspzy1htDoR+KpwVPFHyBBXOCtVRTEHWlh9CoETrOQdSoPE+cSPlxxTsPe28b3ufYV2GqY4kLO6UU05RHSFgpDy3nJXmQOjL7razo34HdrdddRRTkLXlJ4uXaD3nQAo0MGPlDComVPBo1qPMSp6lOo4IARs2bFAdISCkPLeOVeZA6K9/XH/eGfYO/eP6q45iCrK2msHCJVrPOQj5An3HmjtYM2MN5648l39O+KfqOCJEWGGbWSnPrWeFORDCiGRtNZNFS7Rs5a2T13e9zvxx8xmwegBfpX6lOo4IIWbfZlbKc2CYfQ5E8OTacpm5Yya5tlzVUUxB1lYLWLBEy1beOthUsYkbu9xIQm4CW07dIk/cEEE1YcIE1RFaTMpz4Jh5DkRwdYjqwOVdL6dDVAfVUUxB1lYLWaxE6zkHIdkaq+qrSK1NJawxjHU91tEhtoPqSCLE7NixQ3WEFpHyHFhmnQMRfF2junJj4o10jeqqOoopyNpqBQuVaD3nIOQKtMvjImVHCg19G3in/h1Gdh2pOpIIQUlJSaojNJuU58Az4xwINWxuGzvqdmBzyw57/pC11UoWKdF6zkHIFeizVp7Fnkl7eGjnQ1w+5HLVcUSIqqmpUR2hWaQ868NscyDUKXYU8/uc31PsKFYdxRRkbQWABUq0nnMQUgX6D2v/QMaMDM5ecTZPTnxSdRwRwiJM1EClPOvHTHMg1Oof258Phn1A/1h5jJ0/ZG0FiMlLtJ5zEDIFelHmIp4d+yz91vTjf6n/Ux1HhLiEhATVEfwi5VlfZpkDoV5seCwD4wYSGx6rOoopyNoKIBOXaD3nICQK9NbKrfy+4+9pk9+GrSlb5YkbQrny8nLVEU5KyrP+zDAHwhj2OvfybNmz7HXuVR3FFGRtBZhJS7Sec2D5JlnTUMP0/dMJ08JY3XU1neI6qY4kBEOHDlUd4YSkPAeH0edAGEedu46VB1dS565THcUUZG3pwIQlWs85sHSB9mgexv4wlvr+9bxx8A3GdB+jOpIQAGzZskV1hOOS8hw8Rp4DYSwD4wbyyYhPGBg3UHUUU5C1pROTlWg958DSBXpmxkxKJpdw3/b7uHrY1arjCOFj1G1mpTwHl1HnQAizk7WlIxOVaNnKuwUeXPcg38/4ntNXnM6/Jv1LdRwhmjDiNrNSnoPPiHMgjCm/IZ+Ldl1EfkO+6iimIGtLZyYp0bKVdzO9m/0uz4x+hj5r+/Bd6neq4wjxK5MnT1YdoQkpz2oYbQ6EcbWNaMtZHc6ibURb1VFMQdZWEJigROs5B5Yr0DuqdnBNu2uIL45n6xh54oYwpk2bNqmO4CPlWR0jzYEwtm7R3bir1110i+6mOoopyNoKEoOXaD3nwFLtstZey+SqyWjhGhkdM+gS30V1JCGOaciQIaojAFKeVTPKHAjjs3vs5NpysXvsqqOYgqytIDJwidZzDixToD2ah5TNKdQPrGdhzUJOTTxVdSQhjquiokJ1BCnPBmCEORDmUGgv5IrsKyi0F6qOYgqytoLMoCVazzmwTIE+L+M8CqcWcvcPd3Pt8GtVxxHihOLj45W+vpRnY1A9B8I8kmKSWDRkEUkxSaqjmIKsLQUMWKL1nANLFOhHNjzCt9O/ZdqKaTw3+TnVcYQ4qcjISGWvLeXZOFTOgTCXuIg4RrQZQVxEnOoopiBrSxGDlWg958D0BfqjnI+YO2IuvTb0Ytn0ZarjCOGXmpoaJa8r5dlYVM2BMJ/qxmoWlC+gurFadRRTkLWlkIFKtJ5zYOoCvat6F1fEX0FcaRxbR28lMly+4xTmkJSUFPTXlPJsPCrmQJhTrauWz/Z/Rq2rVnUUU5C1pZhBSrSec2DaAn3IcYhJFZPQojWWt19OtzbyaB9hHjt27Ajq60l5NqZgz4Ewr8Fxg1k8ajGD4warjmIKsrYMwAAlWs85MGWB9mgexm0cx+Hkw7xS9Qqn9TxNdSQhmmXq1KlBey0pz8YVzDkQIpTI2jIIxSVazzkwZYG+MONC8qblcduW27hh5A2q4wjRbKtWrQrK60h5NrZgzYEwv4KGAn6b+VsKGgpURzEFWVsGorBE6zkHpivQf9n4F76e/jWTVkxi/pT5quMI0SLTpk3T/TWkPBtfMOZAWEN8RDzj2o4jPkIez+YPWVsGo6hE6zkHpirQn+Z+yj+H/ZPEjYmsnL5SdRwhWmz16tW6nl/KsznoPQfCOnpE9+ChPg/RI7qH6iimIGvLgBSUaD3nwDQFOmtfFpfHXk5seSxbR8oTN4S5jR49WrdzS3k2Dz3nQFiLw+Og1F6Kw+NQHcUUZG0ZVJBLtJ5zYIoCXeesY1LZJNyxbr5r8x09EuQ7cGFuRUVFupxXyrO56DUHwnoK7AVcnHkxBXa5B9ofsrYMLIglWs85MHyB9mgexm0Yx8FhB3m58mWm9J6iOpIQrdapU6eAn1PKs/noMQfCmvrG9GXB4AX0jemrOoopyNoyuCCVaD3nwPAFetbKWeRMy+HGTTdyy6hbVMcRIiBcLldAzyfl2ZwCPQfCutpEtOHUtqfSJqKN6iimIGvLBIJQovWcA0MX6H9s+gefTf2M8SvG8+rUV1XHESJgbDZbwM4l5dm8AjkHwtr2N+5n0d5F7G/crzqKKcjaMgmdS7Sec2DYAv1V/lf8NfmvdNvSjdXT5NO0wloSExMDch4pz+YWqDkQ1re/cT+vV74uBdpPsrZMRMcSreccGLJA59bkcknkJcRUxfDDsB+IjohWHUmIgNq9e3erzyHl2fwCMQciNCTHJ7P8lOUkxyerjmIKsrZMRqcSreccGK5A2xptTCiegLuNmyWxS+jZtqfqSEIE3Pjx41v19VKeraG1cyCEODZZWyakQ4nWcw4MVaA9modT151K7Yhant/zPNP7TFcdSQhdrF27tsVfK+XZOlozByK0FNmLuG73dRTZi1RHMQVZWyYV4BKt5xwYqkD/duVvyZqexXUbruPOU+5UHUcI3aSmprbo66Q8W0tL50CEnpiwGAbEDiAmLEZ1FFOQtWViASzRes6BYQr0E1ue4KMpHzFuxThen/a66jhC6CojI6PZXyPl2XpaMgciNCXGJPKXfn8hMUY+HOcPWVsmF6ASreccGKJALy5YzOxBs+n6Q1fWTpM/dhHWN27cuGYdL+XZmpo7ByJ0NWqNVDdW06g1qo5iCrK2LCAAJVrPOVBeoAtrC7ko7CKi90WzOXmzPHFDhITsZrwRSHm2rubMgQhteQ15nLPzHPIa8lRHMQVZWxbRyhKt5xwoLdC2Rhun5p+Kq72LxZGL6dtetigVoaFnT/+eLiPl2dr8nQMhesf05tmBz9I7prfqKKYga8tCWlGi9ZwDpQV64tqJ1IyuYV7JPM7od4bKKEIEVV1d3UmPkfJsff7MgRAAbSPaMq39NNpGtFUdxRRkbVlMC0u0nnOgrEBfufJKdqbu5Op1V3PvmHtVxRBCCbfbfcJ/L+U5NJxsDoQ44kDjAT6o/oADjQdURzEFWVsW1IISreccKCnQ//rhX7w3+T1OyTiFt6a/pSKCEEp16tTpuP9OynPoONEcCPFzexv3Mq9sHnsb96qOYgqytiyqmSVazzkIeoFeWrSUB5MepPO2zqyfsj7YLy+EIRQVFR3z16U8h5bjzYEQvzQ0fijrx65naPxQ1VFMQdaWhTWjROs5B0Et0MUHiznfcz5RB6LYMngLsZGxwXx5IQxj9OjRv/o1Kc+h51hzIIRoPVlbFudnidZzDoJWoO0uO+Nyx9HYsZGvwr+iX/t+wXppIQxn48aNTf5ZynNo+uUcCHE8JfYSbsu9jRJ7ieoopiBrKwT4UaL1nIOgFehJayaxf8x+nih8grOTzg7WywphSD/fXlTKc+iS7YaFvyLCIugY2ZGIMHmD8IesrRBxkhJt+q28f7fyd2xL3cZv1/yWh1IeCsZLCpOor6/n66+/5uyzQ+ubqiPbi0p5Dm2y3bDwV6+YXjze/3F6xfRSHcUUZG2FkOOVaJvd3Ft5P7ftOd6c9CYjM0byXup7er+cMJk2bdrwf//3fzQ2htb2tKeddhrlZVKeQ91pp52mOoIwCbfmps5dh1uTx7P5Q9ZWiPlliX7hBVi23DsH8/4f6PBhQl0L9IqSFfyhzx/ouLMjGyZv0POlhDCV7du3szxDynOo2759u+oIwiRyGnJI3Z5KTkOO6iimIGsrBIWHwyWXQGQk9O8PaTO9c9CpE1x0UcBfLjLgZ/zJjz9kcGXMGbRpDGNlhyXER8Xr9VIiBDkcDhwOBxz2/nOdx7vb0P7O+VRkO6BSYbiTWLupkKSkJOzdXYydVo+9SnUioYKr2kVSUpLqGMIkekX34on+T9ArWm7h8EdSUhKuahf11KuOIoKpogLa9YaxM9DyvXPA1b+B1z+FDRsggH8y4XeBfvfdd5kwYQIff/wx99xzD08//TSPPvooc+bM4frrr2fx4sWMHj2ampoa6uvrWbftTRrCNJa/o/Fh3njsnTvzcteu3Pboo6w/cIDp06dTVFREREQEiYmJbNq0iUsvvZQFCxb4znvffffx8ssvc/7557N9+3Y6d+5MXFwcOTk5nHnmmbzxxhu+Y2fPns1TTz3FVVddxcqVK+nfvz8ul4vKykrGjRvHZ599xl133cUzzzzj+5obb7yRL7/8kjFjxrB//34aGhoYPHgwy5cv53e/+x0vvPCC79g777yTt956i9TUVPLz84mOjqZ79+5s2bKFiy66iFdffdV37P3338/8+fO58MIL2bp1K127diUmJob8/HxmzJjBm2++yezZs3n88cd55JFHmDt3Ltdccw0rVqxg4MCBOBwOqqurSUlJ4YsvvuD222/nX//6l+/8N910E59//jnjxo1j7969OJ1OBg4cSEZGBunp6bz44ou+Y++66y4WLVrE6aefTm5uLnFxcXTu3Jlt27ZxwQUX8Nprr/mOfeCBB3jhhRe4+OKL2bJlCz169CAyMpLCwkKmT5/OO++8w0MPPcTcuXN9X3Pttdfy/fffk5ycTENDw/9v7/6DqqrzP44/LyCgAiKgCAqyYoomav4E80dua1NT7mZIo2ZlY67Zt8zNdtdp3N3ZXWerrdHcRnT74WjrYm2ru266/VKTMFERJSgk/I0IjIqhIHIRvN8/LDYt7aKc+7nn+nrMOOnMufe+Zjrv+3lzOO/zoaqqigEDBrB+/XpmzZrFwoULm4+dOXMma9euZejQoVRUVNDU1ERCQgLZ2dk0NjayYMGC5mNnz57NihUr+MlPfkJxcTHt27cnIiKCgoIC7rrrLqZOncrHH3/8vxP0xMX/PN9zGR3f6Iifnx/V1dXEx8fz+eefM2LECLZu3cqYMWPIyspi4MCBHDx4kKioKBoaGqivr6dz587s37+fQYMGsX379uZjhwwZQlFREd26dePMmTMAhIWFUVZWxs0330xubm7zsSkpKezevZvExEROnjxJYGAgwcHBHD9+nJ49e7Jnzx6GjxvOJ1s/4b6o+8h5M4e+fftSVlZGWFgYAGfOnKFbt24UFRWRmpp6Se5bbrmF/fv307lzZ+rr62loaCAqKooDBw58J/fQoUP54osvvjd337592bVr13dy9+zZk+PHjxMcHExgYCAnT56kR48e5OfnNx87cuRItm3bRr9+/SgtLSU8PJwLFy5QW1tL165dKSoqIiUlhU8//fQ7uaOjozl37lxz7oMHDzJw4EB27NhxSe7PP/+c+Ph4qqur8fPzIyQkhPLycvr06XNJ7tTUVHbt2kWvXr2orKykXbt2BAQEUFVV9Z3co0aN4tNPPyU5OZkjR45ckjs2Npbi4mKGDRvGtm3bml8zaNAgSkpK6NKlC3V1dTQ2NhIREcHhw4cZMGDAJbmHDRtGQUEBCQkJnDp1Cn9//+bcSUlJ5OXlNR87YsQICnIL8A/055P3P+FE9xP6jviB74jJkyeTkZHh9nfE8uXLm4/95S9/yeLFi0lLS2Pnzp3ExMTg7+/PkSNHGDlyJG+99RbPPPMMzz//fPNrpk2bxkcffUSfPn2oqamhurqa5ORk3nvvPWbMmMHLL7/cfOxjjz3GP//5T1JSUigrK8PlchEXF0dOTg73338/S5cubT72qaee4o033uCOO+5g7969hIaG0qFDB7744gvuvPPOS3L/+te/ZuHChaSnp5OTk0NcXBz55HP06FFSU1N55513ePrpp3nhhRcuWY/ff/99br75Zk6fPk1NTQ19+vThww8/ZPr06SxevLj52FmzZvGPf/yD1NRUjh49isPhoFu3bmzfvp2JEyeybNmy5mPnzJnDa6+9xl133UVhYSHh4eGEhoayd+9exo0bx4oVK5qPnTdvHi+99BKTJk1i69atdO/enaamJioqKlrURyQlJbFx40amTZvGX/7yl+ZjH3/8cVavXs2oUaO+t494c8mbVJ2u4sScE7b+jsjNzaV3795UVFQ05z516hQJCQkUFBQwcuRIsrOzGTVqFFu3bqV///4cPnyYiIgIGhsbqaurIyYmhi+//JKhQ4deknvw4MEUFxcTGxtLbW0tTU1Nzbn79+/Pzp07m48dPnw4n332WXPugIAA2rVrR2VlJb169WL37t2X5N65cydJSUmUl5cTEhLSvB53796dwsJCbr31VrKzs7+zHkdGRjbn7tKlCyUlJQwZMoScnJxL1uO9e/c2575w4QLh4eGUlpbSr18/cnPLGTPmYbIevJh7+/bt3D7+dtb6+dF+0yYi/Px+8DsiMTHRrb7Y4XK5XO420S1VU3+Gyvc2cWz5ckK3bePmU6cIBo75+3MwMZGAu++mz5NPEv6jH1kVQbyc0+lkzZo1zU3CfffdR1BQkFuvczqdcBJIhJ29P2LclxP5b+oTDBwcDF74iPGycsj6GKKTGlnfvZxZMx4gUuf+DS1/Wz4Ppj1oOobYQHVjNZ+c/oTRHUYTHhBuOo7X+9uavzFwxEDTMcTTzpyBqVNh/ny+6nETr77wKi/ecQcxTz0Fx45Bu9a7G8KyWzgAQoPDCJ0wgZsmTACg7uRJcjMyqPvXv+hWVETiokU0LVpEYUgIVUOGEPXAA/R56CH8AwOtjCVeJCgoiClTpjBlypQWvy4oKAicF//d3v9iUYSf9icmuD20b+2k12ffPnj/64HBUbecJbumA71Df0RMTLLpaGJQfXy96QhiExUNFfz+yO9ZlbRKDbQbkuKTSNb3640nBnj8t3D/Y1SMH0+7iAiYPx9efbVVm2fw8E6E7aKiGPrb3zJmzx4SnU6ObdvGpw8+SG2HDtyyZQv9ZszgTHAwOXFxZE+bRkVurifjiVjiO4+q84PKSi++SVs8Jj8/33QEsYmktknsuGUHSW21lbc7VFs3sEcegZISSEm5uNauXw/p6a3+MZZegf4hXVNT6ZqaCkBjfT2FK1dSlZlJVF4efVeuxG/lSvYFBXGsXz9C09LoO3MmbSMiTEaWVuJwONw+1sK7jCx3pec89+rVy2ww8Qrjx483HUFswuFwEGB2ybYV1dYNrnt3eOABelVWQqdOlnyER69AX01AcDDJM2dyW1YW/WprqS4pYdvs2VTGx9N7zx4GP/ssREayKyqKLffey/7//AfXhQumY8s1crlcbv+xq6ttkrJ7925zwcRrvP7666YjiE0cdR7lFwd+wVHnUdNRbEG1JWDtWus1DfTlIm66iRGLFzOqpIQu58+zb+1adtxzDw6Xi5R16+j5s59RHhhIdu/e5Dz9NNWHDpmOLC1w+Q6Ex48fZ9WqVWRmZjJ37lwaGxsNJ7w+P7TDoLaZFYD58+ebjiDik1RbAj6wlff1cvj5cdOECdz27rsMrqriwokT7PrjH9mfnEzs4cOkLlpEaI8eFIaGsmXsWD5//XWaGhpMx5aruHwHws2bN1NdXc2UKVM4f/48GzduNJzw2rmzPbe2mRWABQsWmI4gNhEXFMeixEXEBcWZjmILqi0Ba9daWzTQl2sXFcWQ+fM1jOhDJk2axBNPPAFcHLBLSrLnoIw7zTPAiBEjPBtMvNIzzzxjOoLYhMvlotHVaOvb2jxJtSVg7Vprywb6cl1TUxn95puklpXR/tw5Cpct47NRowj96ituXbmSmGHD2BcczJYhQ8h77jnOnTplOrJcwYYNG0hPT7flDm3uNs8AO3fu9Fww8VqvvPKK6QhiE8Xnihm+ZzjF54pNR7EF1ZaAtWutTzTQ36ZhRPvKzc0lOjqa9PR0ioqKTMdpkZY0z4Btr7BL67r33ntNRxCbiAmM4Xfdf0dMYIzpKLag2hKwdq31uQb6cu4OI36SlETO3LkaRvQQp9NJZmYmhw8fZvXq1WRlZTF9+nTmzZvH6NGjbfVrypY2zwDl5eXWBxOvl5eXZzqC2ER4QDg/jfypNlFxk2pLwNq19oZ6qOQ3w4jf3hlx17JlnF2z5uLOiAsX0rRwoXZG9IDv24GwoKDAYKJrcy3NM0BISIi1wcQWunTpYjqC2MSZxjPsqNnB8NDhhAWEmY7j9VRbAtautT5/BfpqWjSM+MgjGkaUS1xr8wzg53dDl558LSDghrqGIdfhWMMx5h2ax7GGY6aj2IJqS8DatVar+LdcdRhxxQoNI0qz62meAaqrqy3JJfZySLeMiZt6te1F1oAserXVLqbuUG0JWLvWqoG+Ag0jypVcb/MM0L1799YPJrYzevRo0xHEJvwd/oT4h+DvuIYvnBuQakvA2rVWDbSbNIwo0DrNM0BhYWHrBhNbyszMNB1BbOKY8xjPHnqWY07dwuEO1ZaAtWutGuhrcLWdEbseOkTqwoXaGdEHtVbzDHDrrbe2XjCxrV/96lemI4hNNLma+KrxK5pcTaaj2IJqS8DatVYNdCvQMKLva83mGSA7O7t1gomtPffcc6YjiE3EB8ez9KalxAfHm45iC6otAWvXWo2pWqBraipdU1MBaKyvp3DlSqoyM4nKy6PvihX4rVjBvqAgjvXrR2haGn1nzqRtRITh1HIlrd08A4wZM+b630Rsb/78+aYjiPgk1ZaAtWutrkBbTMOI9mZF8wyQlZXVOm8ktrZgwQLTEcQmiuuKSdmTQnGdtvJ2h2pLwNq1Vg20h2kY0T6sap4BBg4c2HpvJrb18MMPm44gNhHdJpqnuz1NdJto01FsQbUlYO1aqwbaIA0jei8rm2eAgwcPtu4bii1t2rTJdASxiY5tOnJ/p/vp2Kaj6Si2oNoSsHatVQPtRTSM6B2sbp4BIiMjW/9NxXZ69dKmGOKemqYask9nU9NUYzqKLai2BKxda9VAezHtjOh5nmieARobG615Y7GVc+fOmY4gNlHmLGPOgTmUOctMR7EF1ZaAtWutGmib0DCi9TzVPAPU1dVZ9+ZiG1VVVaYjiE30bNuT95Pfp2fbnqaj2IJqS8DatVYNtE1pGLF1ebJ5BujSpYu1HyC2MGDAANMRxCbaONrQqU0n2jjamI5iC6otAWvXWjXQPuCKw4j9+2sY0Q2ebp4BSkpKrP8Q8Xrr1683HUFsosJZwR+O/IEKZ4XpKLag2hKwdq1VA+2DmocRd+++6jDitvj4G34Y0UTzDDBkyBDPfJB4tVmzZpmOIDbhdDk5WH8Qp8tpOootqLYErF1r1UDfAK40jBh26tT3DiPWV1ebjuwRpppngJycHM99mHithQsXmo4gNpEQnMCK3itICE4wHcUWVFsC1q61aqBvMJcPI57ev59tc+ZcMozo6tixeRjxwPr1PjmMaLJ5Bm3lLRdpu2ERa6i2BLSVt1ioY2IiIxYtuuIwYuL48T43jGi6eQZt5S0XabthcVdJXQljPxtLSZ3mJ9yh2hLQVt7iITfCMKI3NM+ge6DlopkzZ5qOIDYR2SaSR7o8QmQbbcLkDtWWgO6BFkN8bRjRW5pngL1795r7cPEaa9euNR1BbCKyTSQPRT+kBtpNqi0Ba9daNdDiNjsPI3pT8wwQGxtrNoB4haFDh5qOIDZxtuksu2p2cbbprOkotqDaErB2rVUDLdfETsOI3tY8A9TW1pqOIF6gokLP9BX3lDpLmblvJqXOUtNRbEG1JWDtWqsGWlqFtw4jemPzDHDBB59sIi3X1NRkOoLYRI/gHvy777/pEdzDdBRbUG0JWLvWqoGWVuctw4je2jwDhIeHm44gXiAhIcF0BLGJIL8g4oLjCPILMh3FFlRbAtautWqgxXLfN4y47aGHrjyMuGvXdX+mNzfPAKWl+jWsQHZ2tukIYhOVDZX8+eifqWyoNB3FFlRbAtautWqgxeO6pqYyauXKKw8jDh16XcOI+w55d/MM0K9fP9MRxAtMnjzZdASxibqmOvJq8qhrqjMdxRZUWwLWrrVqoMWo6x1GLK+EB4B5X/87H3jrX97dPAPkevkj/8QzMjIyTEcQm+jRtgdv932bHm11D7Q7VFsC1q61aqDFq7RkGHHrL57h9p81UH8f/N+ci68/GwLt23l38wzaylsu0nbDItZQbQlYu9YGuHOQy+WipqbGshAiVxJ9++1E3347ANVVVRS/8QZ1775LVFERX7ycT138cV56CQq2ngQgPLmeY7XVZJ2Etl46a1Pd1MSmHTu4Y9gwaoK8NKR4REZGBo8//rjpGGIDpedL+dNXf+LZjs8S3ybedByvp9qSkydPsmnTJiZPnkz79u1b9NrQ0FAcDsdVj3G4XC7XD73RmTNn6NChQ4s+XERERETEbk6fPk1YWNhVj3GrgdYVaPE2TqeTPXucTJwIH3wAAQEVDBs2jJd+9yb/XR/Fb34DQYGmU36/s3V1jJs4kby8PEJCQkzHEUNqa2sZPHiwzgORVqbaEvjfeXD06NEfbIYv12pXoEW81YxHYf0GSEsrY8mSOAIDj/LK4m78/DHTya7sm9/ouPMTrvgunQci1lBtCVh/HmiIUGzt1dcgIwMqv3406jvv4NXNs4iIiNifGmixNYcDJkyAl1+++O9Bg4zGERERkRuAGmjxCUFfP80iyAZPtQgKCuLRRx+1RVaxjs4DEWuotgSsPw/UQItPsFsDnZKSYousYh2dByLWUG0JWH8eaIhQfILdhkbKy8uJjY01HUMM03kgYg3VloC154GuQIsYsHz5ctMRxAvoPBCxhmpLwNrzQFegxSfY7Qq0iIiI2JeuQIsYsGDBAtMRxAvoPBCxhmpLwNrzQFegxSfY7Qq00+nUgIvoPBCxiGpLwNrzQFegRQxYvHix6QjiBXQeiFhDtSVg7XmgBlrEQ86ePcuGDRsYN24caWlppuOIIToPRKxTV1fH8uXLCQ8PZ/r06Vy4cMF0JDGktraWzZs3U1paasn7q4EW8ZD27dtz9913c/78eRITE03HEUN0HohYZ+/evRw4cIAZM2ZQWFiI0+k0HUkMWL58OS+++CIffPCBZT9E6R5o8Qkul4uamhpCQ0NxOBym41zVbbfdxpYtW0zHEMN0HohY48SJE7z99tuEh4czdepU03HEIIfDwaFDh0hISGj199YVaPEJDoeDsLAwr2+eRUTEWp06deKJJ57g73//O8XFxabjiI9SAy0iIiI+YcmSJfz1r38FICAggAMHDhhOJL5KDbSIhzidTjIzMzl8+DCrV6/WvXk3KJ0HItYZO3YsoaGhrFu3juTkZO68807TkcRH6R5oEREREfE5ugdaRERERMRLqIEWsZjD4XD7j/g+/b8XsY7qSwBWr17NrFmzAJg3bx4ZGRmt/hm6hUNEREREpAV0BVrEYt/eeQ7g+PHjrFq1iszMTObOnUtjY6PhhOJJ3+yU9u6772qnNBGLlJWVMXfuXNMxxIepgRax2Ld3ngPYvHkz1dXVTJkyhfPnz7Nx40bDCcWTvtkp7Z577tFOaSIWcLlcrFu3jqqqKtNRxIcFmA4gcqOZNGlS898rKytJSkoymEY8bfDgwcTHx7NkyRJmz55N27ZtTUcS8SkfffQRP/7xj8nNzTUdRXyYrkCLGLJhwwbS09MtebyOeDftlCZijQMHDhAdHa0fTMVyaqBFDMjNzSU6Opr09HSKiopMxxEP0k5pItbJz8/n0KFDfPjhh5SWllJQUGA6kvgo3cIhYjGn08maNWuad56LjY3lySefpHPnzjQ0NLB06VLTEcWDxo4dS35+vnZKE7FAWloa58+fJyMjA6fTiR40JlbRY+xERERERFpAt3CIiIiIiLSAGmgRERERkRZQAy0iIiIi0gJqoEVEREREWkANtIiIiIhIC6iBFhERERFpATXQIiIiIiItoAZaRERERKQF1ECLiIiIiLSAGmgRERERkRZQAy0iIiIi0gL/D1wgO+EQyubhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "Graphics object consisting of 71 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:56,776 Plotting completion diagram with perturbation... done\n", + "INFO: 2023-09-20 09:43:56,776 Finding epsilon interval for perturbation...\n", + "INFO: 2023-09-20 09:43:56,779 Finding epsilon interval for perturbation... done. Interval is [-3/13, 3/13]\n", + "INFO: 2023-09-20 09:43:56,780 Plotting perturbation...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAALkCAYAAADwEE0uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1zV1f/A8dcFVJbg3iguFPfK2bCsNDNnS/1mZlpWmiucqCi4NXflRsu0TDAz08yJmluciIjg3soQ2dzfH/fHjauojHs/nzvez8eDR9zLvee8ufnm3Pc953OORqvVahFCCCGEEEIIIYRR2KkdgBBCCCGEEEIIYU2k0BZCCCGEEEIIIYxICm0hhBBCCCGEEMKIpNAWQgghhBBCCCGMSAptIYQQQgghhBDCiKTQFkIIIYQQQgghjEgKbSGEEEIIIYQQwoik0BZCCCGEEEIIIYxItUJbq9USFxeHVqtVKwQhhBBCCCGEEMLoVCu04+PjcXd3Jz4+Xq0QLFZwcLDaIQghsiG5KYQQtk3GASHMl9L5qdGqNKUcFxeHu7s7sbGxuLm5qRGCEEIIIYQQQghhdHKNtgUKCAhQOwQhRDYkN4UQwrbJOCCE+VI6P2VG2wI9fPgQV1dXtcMQQjxGclMIIWybjANCmC+l81NmtC3QkiVL1A5BCJENyU0hhLBtMg4IYb6Uzk8ptC3QW2+9pXYIQohsSG4KIYRtk3FACPOldH46KNqbMIpTp05Rs2ZNtcMQQjxGclMIIWybrYwDKSkppKWlqR2GELkSHh5OxYoVc/RYBwcHChYsmK/+pNC2QEWKFFE7BCFENiQ3hRDCttnCOJCSksKZM2fIyMhQOxQhcqVChQqEhYXl6LF2dnbUrl07X8W2FNoWqHDhwmqHIITIhuSmEELYNlsYB9LS0sjIyMDT0xMnJye1wxHC6BITE4mOjiYtLU0KbVsTFhZG8+bN1Q5DCPEYyU0hhLBttjQOODk54ezsrHYYQphMbGwsSUlJFCpUCBcXl1w/3yiboT18+JBu3bpx+fJlYzQnnuONN95QOwQhRDYkN4UQwrbJOCCE9di0aROrVq3il19+ISEhIdfPz3ehvXz5cmbMmEFQUJBcq6GQFStWqB2CECIbgYGBaocghBBCRTIOCGE9XFxcKFiwIHFxcSQnJ+f6+fkutPv06cOECRPy24zIAT8/P7yqexESEsKDBw/UDkcI8RhfX1+1QxBCCKEiGQeEsB6FChWiUKFCeX6+YudoJycnExcXZ/Alcu7+/fv4+/sTcSGCbdu2cf36dbVDEkI8JiAgQO0QhBBCqEjGASFEpjwV2mvWrCEyMpLp06eTnJys/6Myf/58rl+/zrJlyzh8+DBbt24lKCiIs2fP0rlzZ9zd3fVfHh4eACxevJiTJ0+yceNG/vzzT44dO8aiRYu4c+eOvt2AgAAePXrErFmzCA8P59dff2X79u3s37+fwMBArly5YvDY9PR0pkyZwqVLl/jxxx/Zu3cvu3btYu3atURERDBjxgySkpIMnnPz5k2WLFnC4cOH2bJlC8HBwZw+fZr58+cTGxtr8NiYmBgWLFjAqVOn2LBhA5s3b+bo0aMsXryYW7duGTw2MTGRWbNmERERwS+//MKOHTvYt28fq1at4vLly0yaNImMjAwCAgLIyMhg0qRJXL58mVWrVrFv3z527NjBL7/8wr179yjgUED//2Dx4sUEBARw69YtFi9ezNGjR9m8eTMbNmzg1KlTLFiwgJiYGINYYmNjmT9/PqdPnyY4OJgtW7Zw+PBhlixZws2bNw0em5SUxIwZM4iIiGDt2rXs2rWLvXv38uOPP3Lp0iWmTJlCenq6wXOuXLlCYGAg+/fvZ/v27fz666+Eh4cza9YsHj16ZPDYO3fusGjRIo4dO8aff/7Jxo0bOXnyJAsXLuT+/fsGj42Li2PevHmcPXuWoKAgtm7dyuHDh1m2bBnXr183eGxycjLTp08nMjKSNWvWsGvXLkJCQvjpp5+Ijo5m6tSppKWlGTzn6tWrrFixggMHDrBt2zbWrVvHuXPnmD17Ng8fPjR47N27d/nhhx8IDQ1l06ZN/PHHH4SGhvL9999z7949g8fGx8czZ84czp49y/r16/n77785ePAgy5cvfyLu1NRUpk2bxsWLF1m9ejV79uxhz549rF69mosXLzJt2jRSU1MNnnP9+nWWL1/OwYMH+fvvv1m/fj1nz55lzpw5xMfHGzz23r17fP/994SGhvLHH3+wadMmQkND+eGHH7h7967BYx8+fMjs2bM5d+4c69atY9u2bRw4cIAVK1Zw9epVg8empaUxdepUoqOj+emnnwgJCWHXrl1P/RuRGXd2fyPmzZtHXFycwWPv37/PwoULLeZvxMiRI1X7GxEREcGsWbNITEw0aF/+RsjfCPkbYT5/IzIfK38jrPdvRJMmTaz+b8SePXsQwhaEh4fz8OFDTpw4Afz3NyKnNFqtVmuMQDQaDVFRUXh6emb78+TkZIPA4uLi8PDwIDY2Fjc3N2OEYNW0Wi2OBR1JSUsBwMG+ABEXzj/19RZCKG/q1KmMHDlS7TCEEEKoxBbGgUePHhEWFoa3t7fF7joeGBjI4MGDiYmJUTsUkzPl72qtr2Pmv/Ho6GhiYmKIj4+nV69eFCtWLFftKLZ0vFChQri5uRl8iZy7c+eOvsgGSEtPZfy48SpGJIR43Icffqh2CEIIIVQk40D+9e7dG41Go/8qXrw47dq14+TJk0br44MPPuD8+fNGa8+YAgMDKVKkiNphPMHT05M5c+YY3KfU6xgUFETbtm0pUaIEGo2G0NBQk/dpDIoV2iJ/Ll26pP/e3s4egB9//JHTp0+rFZIQ4jF79+5VOwQhhBAqknHAONq1a8eNGze4ceMG27dvx8HBgQ4dOhitfScnJ0qVKmW09owlNTXVrNt7nFKvY0JCAq1atWLq1Kkm78uY8l1or1mzhi+++AKAkSNH8t133+U7KPGk6Oho/feNmzQGQIuWUSNGqRSREOJxlSpVUjsEIYQQKpJxwDgKFSpEmTJlKFOmDA0aNGDEiBFcuXKFO3fu6B8zYsQIvLy8cHZ2pkqVKowdO9agsDxx4gSvvvoqhQsXxs3NjcaNG3PkyBEg+1njjRs30qRJExwdHSlRogRdu3Z9anx+fn40aNCARYsW4eHhgbOzM++9994TS6hXrFiBt7c3jo6O1KxZ06BOio6ORqPR8Ouvv9K6dWscHR356aef+OSTT4iNjdXP6Pv5+QG6y3Q3bNhg0H6RIkX0R8o9rb1MGzZswMvLC0dHR9544w2uXLmi/1lkZCSdOnWidOnSuLq68sILL/DPP//of966dWsuXbrEkCFD9HE97XX8/vvvqVq1KgULFqRGjRr8+OOPBj/XaDQsXbqULl264OzsTPXq1dm4ceNTX2uAjz76iHHjxvH6668/83HmJt+Fdvfu3fn+++/RarWsXbuWL7/80hhxicdkndF+9dVXKVW8NACbNm/i33//VSssIUQW6enpaocghBBCRTIOGN/Dhw9ZvXo11apVo3jx4vr7CxcuTGBgIGfPnmXu3LksWbKE2bNn63/es2dPKlSowOHDhzl69CgjR46kQIEC2XXBn3/+SdeuXXn77bc5fvw427dvp0mTJs+M68KFC/z666/88ccfbNmyhdDQUL766iv9z5csWcKYMWOYNGkSYWFhTJ48mbFjx7Jy5UqDdkaMGMHXX39NWFgYbdq0Yc6cObi5ueln9L/55ptcvV5Z22vbti2gu+Z40qRJrFy5kn379hEXF2dwmcPDhw9p3749//zzD8ePH6dt27a88847XL58GdAt3a5QoQITJ07Ux5Wd4OBgBg0axLBhwzh9+jSff/45n3zyCTt37jR43IQJE3j//fc5efIk7du3p2fPnty/fz9Xv6clcFA7AJEzWQttJycnAqb489lnnwHgM8SHkH9D9J8uCSHU8bSBRwghhG2QccA4Nm3ahKurK6BbNly2bFk2bdqEnd1/c4RZzyz39PRk2LBh/PLLLwwfPhyAy5cv4+PjQ82aNQGoXr36U/ubNGkSH374IRMmTNDfV79+/WfGmJSUxMqVK6lQoQKgO33p7bffZtasWZQpUwZ/f39mzZqlnxmvXLkyZ8+eZdGiRXz88cf6dgYPHmwwe+7u7o5Go6FMmTLPfpGe4vH2QLeEfMGCBTRr1gyAlStX4u3tzaFDh2jatCn169c3+H0DAgIIDg5m48aNDBgwgGLFimFvb0/hwoWfGdfMmTPp3bu3fuJ16NChHDhwgJkzZ/Lqq6/qH9e7d2+6d+8OwOTJk5k/fz6HDh2iXbt2efqdzZVco20hoi5G6b9/4403+OSTT6hSsQoA+w7uY+vWrWqFJoT4f02bNlU7BCGEECqSccA4Xn31VUJDQwkNDeXgwYO8+eabvPXWWwYTT7/99hsvvvgiZcqUwdXVlbFjx+pnYEFX5PXt25fXX3+dqVOnEhkZ+dT+QkNDadOmTa5irFixor7IBmjRogUZGRmEh4dz584drly5wqeffoqrq6v+KyAg4Ik4njdznlvZtefg4GBwf82aNSlSpAhhYWGA7sOM4cOHU6tWLYoUKYKrqyvnzp0zeD1zIiwsjFatWhnc16pVK30/merVq6f/3sXFhcKFC3P79u1c9WUJpNC2EJHhuqR0sC9ASEgIDg4OTJ3534YA3wz+hoyMDLXCE0IA69evVzsEIYQQKpJxwDhcXFyoVq0a1apVo2nTpixbtoyEhASWLFkCwIEDB/jwww9566232LRpE8ePH2fMmDGkpPx3Qo+fnx9nzpzh7bffZseOHdSqVYvg4OBs+3Nycsp3zJkrSzUajf49+ZIlS/QfGISGhnL69GkOHDjwxO+a0/YfP5U5u83OntZeditfM+/z8fFh/fr1TJo0iZCQEEJDQ6lbt67B65lTj/ej1WqfuO/xJfxZXzNrIoW2BdBqtVy+qtuwoGypsgwePBiAbt26Ub+ObpnHmfAz/PLLL2qFKIQABg0apHYIQgghVCTjgGloNBrs7OxITEwEYN++fVSqVIkxY8bQpEkTqlevbjDbncnLy4shQ4bw999/07VrV1asWJFt+/Xq1WP79u25iuny5ctcv35df/vff//Fzs4OLy8vSpcuTfny5bl48aL+A4PMr8qVKz+z3YIFC2Z7rX/JkiUNLk2IiIjg0aNHOYo1LS1NvxEcQHh4ODExMfpl9SEhIfTu3ZsuXbpQt25dypQpY7AR87Piysrb2/uJnff379+Pt7d3juK0NlJoW4CYmBgeJScAULV6FWbMmAGAnZ0dM76doX/cyG9G5umTJyGEcWTmphBCCNsk44BxJCcnc/PmTW7evElYWBgDBw7k4cOHvPPOOwBUq1aNy5cvs3btWiIjI5k3b57BbHViYiIDBgxg165dXLp0iX379nH48OGnFnzjx49nzZo1jB8/nrCwME6dOsX06dOfGaOjoyMff/wxJ06cICQkhK+//pr3339ffw2zn58fU6ZMYe7cuZw/f55Tp06xYsUKvv3222e26+npycOHD9m+fTt3797VF9OvvfYaCxYs4NixYxw5coT+/fs/dXO3xxUoUICBAwdy8OBBjh07xieffELz5s31lzpUq1aNoKAgQkNDOXHiBD169HhihtnT05M9e/Zw7do17t69m20/Pj4+BAYG8sMPPxAREcG3335LUFBQrjd0e9z9+/cJDQ3l7NmzgO6DgtDQUG7evJmvdk1NCm0LkPUTuirVqhhs/vD666/zyouvAHD5+mWWLVumeHxCCJ2suSmEEML2yDhgHFu2bKFs2bKULVuWZs2acfjwYdatW0fr1q0B6NSpE0OGDGHAgAE0aNCA/fv3M3bsWP3z7e3tuXfvHr169cLLy4v333+ft956y2Czs6xat27NunXr2LhxIw0aNOC1117j4MGDz4yxWrVqdO3alfbt2/Pmm29Sp04dg+O7+vbty9KlSwkMDKRu3bq88sorBAYGPndGu2XLlvTv358PPviAkiVL6gv+WbNm4eHhwcsvv0yPHj345ptvcHZ2zsnLibOzMyNGjKBHjx60aNECJycn1q5dq//57NmzKVq0KC1btuSdd96hbdu2NGrUyKCNiRMnEh0dTdWqVSlZsmS2/XTu3Jm5c+cyY8YMateuzaJFi1ixYoX+/1tebdy4kYYNG/L2228D8OGHH9KwYUN++OGHfLVrahrt44v9FRIXF4e7uzuxsbG4ubmpEYLF2LBhA126dAF0/8g1Go3BH/JDhw7pdxEsUaQk0Vejcny9hxDCeAICAuRNlhBC2DBbGAcePXpEWFgY3t7eOS70rI2fnx8bNmwgNDRU7VCECWT+G4+OjiYmJob4+Hh69epFsWLFctWOzGhbgKwz2pUqVaJPnz4GP2/atCmdO3YG4G7MHebNm6dkeEKI//d4bgohhLAtMg4IITJJoW0Bsm5GUKlSJf76668nHjN56mQ0Gt3/zsn+U6zy0HchzF12uSmEEMJ2yDgghMgkhbYFyFpoe3p6Gpw9l8nb25tPevcG4GFiPFOnTn3iMUII08ouN4UQQtgOGQdsg5+fnywbF88lhbYFiDynO0PbTmNP+fLlnzpb7TfBjwL2BQGYO3se165dUyxGIQSykkQIIWycjAPWqXfv3nTu3Nni2n7csmXLePPNNxXpK6927dqFRqMhJiYmX+14enoyZ84cQLeLfcWKFTl69Gj+A8wFKbQtwKUrlwEoU6IMDg4OJCQkZPs4Dw8PBg4aAEBKWjIT/LLfWVEIYRpPy00hhBC2QcYB86Bk8ZpT0dHRaDSaJ2bC586dS2BgoMn7T05OZty4cQa7s9uKQoUK8c033zBixAhF+5VC28zFx8cTlxALQOUqngD6w+WzM3r0aFwcXQFYtmw558+fN3mMQgidZ+WmEEII6yfjgLrS09OfOP/ZnNrLjru7O0WKFDFpHwDr16/H1dWVl1566amPSUlJMXkcaunZsychISGEhYUp1qcU2mbO4AxtryoA/PPPP099fPHixRk5RvdpTYY2nTGjxpg2QCGE3rNyUwghhPWTcSDnWrduzYABAxgwYABFihShePHi+Pr6kvXk4ZSUFIYPH0758uVxcXGhWbNm7Nq1S//zwMBAihQpwqZNm6hVqxaFChXik08+YeXKlfz+++9oNBo0Gg27du3KdklyaGgoGo1Gvx9Sdu1lfS8+YcIESpUqhZubG59//rlBYbplyxZefPFF/e/SoUMHIiMj9T/PPD+7YcOGaDQa/dnSj8++Jycn8/XXX1OqVCkcHR158cUXOXz4sP7nmb/H9u3badKkCc7OzrRs2ZLw8PBnvt5r166lY8eOBvdl9j1lyhTKlSuHl5cXANeuXeODDz6gaNGiFC9enE6dOhnsGbVr1y6aNm2Ki4sLRYoUoVWrVgav08aNG2nSpAmOjo6UKFGCrl276n/2008/0aRJEwoXLkyZMmXo0aMHt2/ffmbs+/fv5+WXX8bJyQkPDw++/vprg9Ujt2/f5p133sHJyYnKlSuzevXqJ9ooXrw4LVu2ZM2aNc/sy5ik0DZzWf/Renp6ArqkeJbBgwdTzL04AL8F/ab49QhC2Krn5aYQQgjrJuNA7qxcuRIHBwcOHjzIvHnzmD17NkuXLtX//JNPPmHfvn2sXbuWkydP8t5779GuXTsiIiL0j3n06BFTpkxh6dKlnDlzhnnz5vH+++/Trl07bty4wY0bN2jZsmWOY3q8vVKlSgGwfft2wsLC2LlzJ2vWrCE4OJgJE/67TDMhIYGhQ4dy+PBhtm/fjp2dHV26dNHPiB86dAjQfRhz48YNgoKCsu1/+PDhrF+/npUrV3Ls2DGqVatG27Ztn7j+f8yYMcyaNYsjR47g4ODw3KPlQkJCaNKkyRP3Z/5e27ZtY9OmTTx69IhXX30VV1dX9uzZw969e3F1daVdu3akpKSQlpZG586deeWVVzh58iT//vsvn332GRqNBoA///yTrl278vbbb3P8+HH9BwKZUlJS8Pf358SJE2zYsIGoqKhn5s2pU6do27YtXbt25eTJk/zyyy/s3buXAQMG6B/Tu3dvoqOj2bFjB7/99hvfffddtsV706ZNCQkJeebrZFRalcTGxmoBbWxsrFohWISFCxdqAS2gXbp0qVar1Wr9/f2f+7z58+frn/faK6+ZOkwhhDZnuSmEEMJ62cI4kJCQoD1y5Ig2ISEhy51arfZoDr6yPOWVV17Rent7azMyMvT3jRgxQuvt7a3VarXaCxcuaDUajfbatWsG/bdp00Y7atQorVar1a5YsUILaENDQw0e8/HHH2s7depkcN/OnTu1gPbBgwf6+44fP64FtFFRUc9tr1ixYga/8/fff691dXXVpqenZ/s63b59WwtoT506pdVqtdqoqCgtoD1+/PhTY3348KG2QIEC2tWrV+t/npKSoi1Xrpx2+vTpBr/HP//8o3/Mn3/+qQW0iYmJ2cby4MEDLaDds2fPE32XLl1am5ycrL9v2bJl2ho1ahj8f0lOTtY6OTlpt27dqr13754W0O7atSvbvlq0aKHt2bNntj/LzqFDh7SANj4+3uD3y/z/9NFHH2k/++wzg+eEhIRo7ezstImJidrw8HAtoD1w4ID+52FhYVpAO3v2bIPnzZ07V+vp6fncmDL/jf/222/apUuXamfPnq29d+9ejn+nTDKjbeYeP9oLwNfX97nP++yzz6hQxgOAHbt3sH37dlOEJ4TIIie5KYQQwnrZ7DhwDmicg69zhk9r3ry5fiYUoEWLFkRERJCens6xY8fQarV4eXnh6uqq/9q9e7fBkuyCBQsa9Vi1p7VXv359nJ2dDWJ9+PAhV65cASAyMpIePXpQpUoV3Nzc9EvFL1++nOO+IyMjSU1NpVWrVvr7ChQoQNOmTZ+4tjhrjGXLlgV46hLsxMREABwdHZ/4Wd26dSlYsKD+9tGjR7lw4QKFCxfWv+bFihUjKSmJyMhIihUrRu/evWnbti3vvPMOc+fO5caNG/rnh4aG0qZNm6f+jsePH6dTp05UqlSJwoUL65fQP+11Onr0KIGBgQb/Btq2bUtGRgZRUVGEhYXh4OBgMGtes2bNbK97d3Jy4tGjR0+Nzdik0DZzl6L/WzpeqVIlAAICAp77vIIFCzJlxmT9bZ+hww2ueRFCGF9OclMIIYT1stlxoCZwNAdfudgrLiMjA3t7e44ePUpoaKj+KywsjLlz5+of5+TkZFCsP42dna7syfp+ODU19YnH5bS9TJmPfeedd7h37x5Llizh4MGDHDx4EMjdBmOZsT3ev1arfeK+AgUKPBHD0zZuK168OBqNhgcPHjzxMxcXF4PbGRkZNG7c2OA1Dw0N5fz58/To0QOAFStW8O+//9KyZUt++eUXvLy8OHDgAKB7/Z4mISGBN998E1dXV3766ScOHz5McHAw8PTXKSMjg88//9wglhMnThAREUHVqlWf+ppl5/79+5QsWfK5jzMWKbTN3IVzF/Tfe3joZqi//PLLHD23e/fueFf3BuD4yWP6f8hCCNPIaW4KIYSwTjY7DjgDjXLw5Wz4tMziLOvt6tWrY29vT8OGDUlPT+f27dtUq1bN4KtMmTLPDKdgwYKkp6cb3JdZYD0++5pTJ06c0M8MZ8bq6upKhQoVuHfvHmFhYfj6+tKmTRu8vb2fKGozZ40fjyuratWqUbBgQfbu3au/LzU1lSNHjuDt7Z3jWB9XsGBBatWqxdmzZ5/72EaNGhEREUGpUqWeeN3d3d31j2vYsCGjRo1i//791KlTh59//hnQzbQ/bSXtuXPnuHv3LlOnTuWll16iZs2az90IrVGjRpw5c+aJWDJfK29vb9LS0jhy5Ij+OeHh4dmew3369GkaNmz43NfAWKTQNnPR/78ZWsmipShUqBBAjnfLs7e3Z/q30/W3RwwbQVpamvGDFEIAOc9NIYQQ1knGgdy5cuUKQ4cOJTw8nDVr1jB//nwGDRoEgJeXFz179qRXr14EBQURFRXF4cOHmTZtGps3b35mu56enpw8eZLw8HDu3r1Lamoq1apVw8PDAz8/P86fP8+ff/7JrFmzchxrSkoKn376KWfPnuWvv/5i/PjxDBgwADs7O/3u3IsXL+bChQvs2LGDoUOHGjy/VKlSODk5sWXLFm7dukVsbOwTfbi4uPDFF1/g4+PDli1bOHv2LP369ePRo0d8+umnOY41O23btjUo4J+mZ8+elChRgk6dOhESEkJUVBS7d+9m0KBBXL16laioKEaNGsW///7LpUuX+Pvvvzl//rz+g4Dx48ezZs0axo8fT1hYGKdOnWL6dF09UrFiRQoWLMj8+fO5ePEiGzduxN/f/5nxjBgxgn///ZevvvqK0NBQIiIi2LhxIwMHDgSgRo0atGvXjn79+nHw4EGOHj1K3759s51ZDwkJ4c0338ztS5dnUmibscTERO7H3QPA07OS/v5nnX/3uLfffpvmLzQH4EL0BVatWmXcIIUQernJTSGEENZHxoHc6dWrF4mJiTRt2pSvvvqKgQMH8tlnn+l/vmLFCnr16sWwYcOoUaMGHTt25ODBg/pVnk/Tr18/atSoQZMmTShZsiT79u2jQIECrFmzhnPnzlG/fn2mTZuWq6X+bdq0oXr16rz88su8//77vPPOO/j5+QG6Zelr167l6NGj1KlThyFDhjBjxgyD5zs4ODBv3jwWLVpEuXLl6NSpU7b9TJ06lW7duvHRRx/RqFEjLly4wNatWylatGiOY81Ov3792Lx5c7YFflbOzs7s2bOHihUr0rVrV7y9venTpw+JiYm4ubnh7OzMuXPn6NatG15eXnz22WcMGDCAzz//HNAd27Zu3To2btxIgwYNeO211/TL6EuWLElgYCDr1q2jVq1aTJ06lZkzZz4znnr16rF7924iIiJ46aWXaNiwIWPHjtVflw66fyceHh688sordO3alc8++0y/W3ymf//9l9jYWN599928vHx5otGqdOFuXFwc7u7uxMbG4ubmpkYIZi88PJyaNXUXs3T/sDs/r9Etydi4ceMT5+A9y969e/V/+MuUKEvUlYvZboYghMif3OamEEII62IL48CjR48ICwvD29vbYHOw3GrdujUNGjRgzpw5xgtOPNP777+vX/Jta9577z0aNmzI6NGjn/vYzH/j0dHRxMTEEB8fT69evShWrFiu+pQZbTOW9QztSllmtO3t7XPVzosvvshbb74FwM27N/juu++ME6AQwkBuc1MIIYR1kXFAmLMZM2bg6uqqdhiKS05Opn79+gwZMkTRfqXQNmNZj/bK3HEcMFgqkVNTZ0xFg243vonj/Z+7bEQIkXt5yU0hhBDWQ8YBYc4qVaqkv7bZlhQqVAhfX99n7ohuClJom7GsM9qZZ2gDHD58ONdt1atXj+7duwMQ+zAmV5s/CCFyJi+5KYQQwnrIOJBzu3btsuhl461bt2bw4MFGbzcwMDDbM6Aft2zZsnxv7BUdHY1Go8nV7usLFiyw+ssjjEUKbTNmsHQ8y4x2165d89Sef4A/DnYOAMyYNpNbt27lL0AhhIG85qYQQgjrIOOA+TJVYayG5ORkxo0bx9ixY/PVjoeHBzdu3KBOnTo5fk6/fv04fPhwjnYwt3VSaJuxC+GR+u+zFtqLFi3KU3tVqlTh8y90OwImpSTmaqdFIcTz5TU3hRBCWAcZB8xPamqqWbeXF+vXr8fV1TXfu9zb29tTpkwZHBwccvycQoUK0aNHD+bPn5+vvm2BFNpmLPpiNABFCxcz2NXR19c3z22OHTsWx4K66xN++O4HoqKi8hWjEOI/+clNIYQQlk/Ggfzx9PTE39+fHj164OrqSrly5Z4o6GJjY/XHN7m5ufHaa69x4sQJ/c/9/Pxo0KABy5cvp0qVKhQqVIiPP/6Y3bt3M3fuXDQaDRqNhujo6GyXaW/YsAGNRvPM9jIPbUpLS2PAgAEUKVKE4sWL4+vrS9YDnVJSUhg+fDjly5fHxcWFZs2asWvXLoP+AgMDqVixIs7OznTp0oV79+4993Vau3btE8u3e/fuTefOnZk8eTKlS5emSJEiTJgwgbS0NHx8fChWrBgVKlRg+fLl+uc8vnR8165daDQatm/fTpMmTXB2dqZly5aEh4cb9NWxY0c2bNhAYmLic2O1ZVJom6mUlBRu39ct7a5YsaLBz/IzE126dGm+GT4MgLSMNHzHyIAghLHIKhEhhLBtMg7k34wZM6hXrx7Hjh1j1KhRDBkyhG3btgGg1Wp5++23uXnzJps3b+bo0aM0atSINm3acP/+fX0bFy5c4Ndff2X9+vWEhoYyb948WrRoQb9+/bhx4wY3btx47lncWT3eXqaVK1fi4ODAwYMHmTdvHrNnz2bp0qX6n3/yySfs27ePtWvXcvLkSd577z3atWtHREQEAAcPHqRPnz58+eWXhIaG8uqrr+bo31BISAhNmjR54v4dO3Zw/fp19uzZw7fffoufnx8dOnSgaNGiHDx4kP79+9O/f3+uXLnyzPbHjBnDrFmzOHLkCA4ODvTp08fg502aNCE1NZVDhw49N1abplVJbGysFtDGxsaqFYJZi4yM1AJaQPtut3cNfpaQkJCvtmNiYrTuru5aQKtBoz1x4kS+2hNC6OQ3N4UQQlg2WxgHEhIStEeOHDH8XRMStNqjR5//9ZzXp1KlStp27doZ3PfBBx9o33rrLa1Wq9Vu375d6+bmpk1KSjJ4TNWqVbWLFi3SarVa7fjx47UFChTQ3r592+Axr7zyinbQoEEG961YsULr7u5ucF9wcLA2a4n0rPa8vb21GRkZ+vtGjBih9fb21mq1Wu2FCxe0Go1Ge+3aNYPntWnTRjtq1CitVqvVdu/ePdvf9/GYsnrw4IEW0O7Zs8fg/o8//lhbqVIlbXp6uv6+GjVqaF966SX97bS0NK2Li4t2zZo1Wq1Wq42KitIC2uPHj2u1Wq12586dWkD7zz//6J/z559/agFtYmKiQX9FixbVBgYGPjVOS5b5b/y3337TLl26VDt79mztvXv3ct2OzGibqaedoQ3w/fff56ttd3d3xvrpNk/QomXUcNs7tF4IU8hvbgohhLBsNjsOnDsHjRs//+vcOQBWr16Nq6ur/iskJETfVIsWLQyabtGiBWFhYQAcPXqUhw8fUrx4cYPnR0VFERlpuLdRyZIljfbrPa295s2bGywzb9GiBREREaSnp3Ps2DG0Wi1eXl4Gse7evVsfa1hYWLa/77NkLtd2dHR84me1a9fGzu6/8q506dLUrVtXf9ve3p7ixYtz+/btZ/ZRr149/feZR9Y9/hwnJycePXr0zHZsXc6vfBeKynqGdtajvQA6dOiQ7/a//PJLZk6dxc27N9i8dTN79+7lxRdfzHe7QtgyY+SmEEIIy2Wz40DNmnD0aM4eh+4a32bNmunvLl++/DOfllnMZmRkULZs2SeucwYMrrV2cXF5fiyAnZ2dwTXVkP1mZzltL6uMjAzs7e05evQo9vb2Bj9zdXUFeKLvnChevDgajYYHDx488bMCBQoY3NZoNNnel5GR8cw+sj4n62uf1f379436YYY1kkLbTD3taC+AEydOUKNGjXy17+TkRMBUf/r27QuAzxAf9h/ab/CpnBAid4yRm0IIISyXzY4Dzs7QqFGOH164cGEKFy6c7c8OHDjwxO2a/1+gN2rUiJs3b+Lg4PDERNTzFCxYkPT0dIP7SpYsSXx8PAkJCfpiOjdnSmcXa/Xq1bG3t6dhw4akp6dz+/btp+4OXqtWrWzbeN7vUatWLc6ePZvvc7TzKjIykqSkJBo2bKhK/5ZClo6bqawz2o8X2sWLFzdKHx9//DFVK1UF4MCRA2zevNko7Qphq4yVm0IIISyTjAP5t2/fPqZPn8758+dZuHAh69atY9CgQQC8/vrrtGjRgs6dO7N161aio6PZv38/vr6+HDly5Jntenp6cvDgQaKjo7l79y4ZGRk0a9YMZ2dnRo8ezYULF/j5558JDAzMcaxXrlxh6NChhIeHs2bNGubPn6+P1cvLi549e9KrVy+CgoKIiori8OHDTJs2Tf+e++uvv2bLli3633fBggVs2bLluf22bdtW1XOsQ0JCqFKlClWrVlUtBksghbaZuhhxUf/944W2k5OTUfpwcHBg2qxp+ts+Q3yeu5RECPF0xspNIYQQlknGgfwbNmwYR48epWHDhvj7+zNr1izatm0L6JYxb968mZdffpk+ffrg5eXFhx9+SHR0NKVLl35mu9988w329vbUqlWLkiVLcvnyZYoVK8ZPP/3E5s2bqVu3LmvWrMHPzy/Hsfbq1YvExESaNm3KV199xcCBA/nss8/0P1+xYgW9evVi2LBh1KhRg44dO3Lw4EH9jufNmzdn6dKlzJ8/nwYNGvD333/n6Ii4fv36sXnzZmJjY3McqzGtWbOGfv36qdK3JdFo83JxgBHExcXh7u5ObGwsbm5uaoRg1jzKeHD11lVcnQoT/yjO4GeBgYH07t3bKP1otVqaNGjCsZPHAPjpp5/o2bOnUdoWwtYYMzeFEEJYHlsYBx49ekRYWBje3t44OzsbtW1PT08GDx7M4MGDjdquNXr//fdp2LAho0Ypu6nx6dOnadOmDefPn8fd3V3RvpWS+W88OjqamJgY4uPj6dWrF8WKFctVOzKjbYbS09O5cecGAJU8Kj7x8zZt2hitL41Gw4zZM/S3R/mMIiUlxWjtC2FLjJmbQgghLI+MA0IpM2bM0G+qpqTr16+zatUqqy2yjUkKbTN0/fp10jN0mzVUrfHktQ8rV640an+vvfYar7V+DYArN66wZMkSo7YvhK0wdm4KIYSwLDIOCKVUqlSJgQMHKt7vm2++qV/KL55NCm0zZHC0V2XPJ36ek2s3cmvajP+u1R4/xo+HDx8avQ8hrJ0pclMIIYTlkHEgf6Kjo61i2binpydz5swxert+fn40aNDguY8bO3aswbXiatm0aRMNGza02T2gpNA2Q1mP9sru6IKAgACj99mkSRO6de0GwL3Yu8ydO9fofQhh7UyRm0IIISyHjAOWyVSFsRpu3brF3LlzGT16tNqh0KFDBzQaDT///LPaoahCCm0z9KwztAGTbXowafIk7DT2AEwJmMq9e/dM0o8Q1krpDUmEEEKYFxkH8q5169a5OlrLGIy9L5E57HO0bNkyWrRoketzxk3lk08+Yf78+WqHoQoptM2QwdLxbJJk+vTpJum3Ro0a9OnzCQAJSQ+ZMmWKSfoRwlqZKjeFEEJYBhkHTEej0fD999/z1ltv4eTkROXKlVm3bp3BY65du8YHH3xA0aJFKV68OJ06dTJ4X927d286d+7MlClTKFeuHF5eXrRu3ZpLly4xZMgQNBoNGo0GyH6Z9pw5cwzem2fXXqb4+Hh69OiBq6sr5cqVe6LYjI2N5bPPPqNUqVK4ubnx2muvceLECYPHTJ06ldKlS1O4cGE+/fRTkpKSnvs6rV27lo4dOxrc17p1awYOHMjgwYMpWrQopUuXZvHixSQkJPDJJ59QuHBhqlatyl9//aV/Tnp6Op9++imVK1fGycmJGjVqGKx4TUpKonbt2gZL1KOionB3dzfY76ljx44cOnSIixf/O7rYVkihbYaiIqP032c3o92jRw+T9T3ebzwFHQoBMG/OfK5cuWKyvoSwNqbMTSGEEOZPxgHTGjt2LN26dePEiRP873//o3v37oSFhQG6I5leffVVXF1d2bNnD3v37sXV1ZV27doZzDRv376dsLAwtm3bxqZNmwgKCqJChQpMnDiRGzducOPGjVzF9Hh7mWbMmEG9evU4duwYo0aNYsiQIWzbtg3QHa/79ttvc/PmTTZv3szRo0dp1KgRbdq04f79+wD8+uuvjB8/nkmTJnHkyBHKli3Ld99998xYHjx4wOnTp2nSpMkTP1u5ciUlSpTg0KFDDBw4kC+++IL33nuPli1bcuzYMdq2bctHH33Eo0ePAMjIyKBChQr8+uuvnD17lnHjxjF69Gh+/fVXABwdHVm9ejUrV65kw4YNpKen89FHH/Hqq68anLFdqVIlSpUqRUhISK5eV2sghbYZijwfCYBjQadsz2vbs2ePyfquUKECXw/W7WCYmp6C33g/k/UlhLUxZW4KIYQwf7Y6Djx6BMeOPf/r/2u4PHvvvffo27cvXl5e+Pv706RJE/1M8dq1a7Gzs2Pp0qXUrVsXb29vVqxYweXLl9m1a5e+DRcXF5YuXUrt2rWpU6cOxYoVw97ensKFC1OmTBnKlCmTq5geby9Tq1atGDlyJF5eXgwcOJB3332X2bNnA7Bz505OnTrFunXraNKkCdWrV2fmzJkUKVKE3377DdDNnvfp04e+fftSo0YNAgICqFWr1jNjuXTpElqtlnLlyj3xs/r16+Pr60v16tUZNWoUTk5OlChRgn79+lG9enXGjRvHvXv3OHnyJAAFChRgwoQJvPDCC1SuXJmePXvSu3dvfaEN0KBBAwICAujXrx9DhgwhMjKSpUuXPtF3+fLlDVYW2AoptM1MRkYG125dB6BieQ/98pWsKleubNIYRo0ahatTYQBWBAZy7tw5k/YnhLUwdW4KIYQwb7Y6Dpw7B40bP/8r61vKyZMn4+rqqv8KCQmhf//+T9yXVYsWLZ64nTmjffToUS5cuEDhwoX1zy9WrBhJSUlERkbqn1O3bl0KFixotN/9ae09L9aHDx9SvHhxg983KipKH2tYWFi2bTxLYmIioJttfly9evX039vb21O8eHHq1q2rv6906dIA3L59W3/fDz/8QJMmTShZsiSurq4sWbKEy5cvG7Q7bNgwatSowfz581mxYgUlSpR4om8nJyf9TLktcVA7AGHo9u3bpKbplrdU9XryDG2AtLQ0k8ZQrFgxRvmOZMyYMWi1GYweOZqgDUEm7VMIa2Dq3BRCCGHebHUcqFkTjh7N2eMy9e/fn/fff19/u2fPnnTr1o2uXbvq7ytfvvxz28yclMrIyKBx48asXr36iceULFlS/72Li8vzAwXs7OzQarUG96Wmpj7xuJy293isZcuWNZhpz1SkSJEct/e4zCL3wYMHBr8z6GaoH48l631ZYwPd0vUhQ4Ywa9YsWrRoQeHChZkxYwYHDx40aOf27duEh4djb29PREQE7dq1eyKu+/fvPxGPLZBC28xkXVZRuWr2n4revHnT5HEMGjSIb2fM5l7MXYJ/D+bw4cO88MILJu9XCEumRG4KIYQwX7Y6Djg7Q6NGuXtOsWLFDC6RdHJyolSpUlSrVu2pzzlw4AC9evUyuN2wYUMAGjVqxC+//KLfXCw3ChYsSHp6usF9JUuW5ObNm2i1Wn0RGhoamuM2Dxw48MTtmv//SUOjRo24efMmDg4OT90d3NvbO9vf91mqVq2Km5sbZ8+eNdiYLS9CQkJo2bIlX375pf6+rCsDMvXp04c6derQr18/Pv30U9q0aWOwxD1zRUHm/ydbIkvHzczzjvYCaNy4scnjcHFxYeKkCfrbw4cNN3mfQlg6JXJTCCGE+ZJxwLTWrVvH8uXLOX/+POPHj+fQoUMMGDAA0M2IlyhRgk6dOhESEkJUVBS7d+9m0KBBXL169Zntenp6smfPHq5du8bdu3cB3U7dd+7cYfr06URGRrJw4UKDXbmfZ9++fUyfPp3z58+zcOFC1q1bx6BBgwB4/fXXadGiBZ07d2br1q1ER0ezf/9+fH19OXLkCKCb9Fq+fLnB73vmzJln9mlnZ8frr7/O3r17cxzn01SrVo0jR46wdetWzp8/z9ixYzl8+LDBYxYuXMi///7LqlWr6NGjB++++y49e/Y02HzuwIEDFCpU6LnL3q2RFNpmJuuM9tMK7Q0bNigSS9++falYriIAu0J28c8//yjSrxCWSqncFEIIYZ5kHDCtCRMmsHbtWurVq8fKlStZvXq1fvbU2dmZPXv2ULFiRbp27Yq3tzd9+vQhMTHxuTPcEydOJDo6mqpVq+qXOHt7e/Pdd9+xcOFC6tevz6FDh/jmm29yHOuwYcM4evQoDRs2xN/fn1mzZtG2bVtAt0x78+bNvPzyy/Tp0wcvLy8+/PBDoqOj9ddKf/DBB4wbN44RI0bQuHFjLl26xBdffPHcfj/77DPWrl2rXwKeV/3796dr16588MEHNGvWjHv37hnMbp87dw4fHx++++47PDw8AF3hHRMTw9ixY/WPW7NmDT179sTZ2Tlf8Vgijfbxiw8UEhcXh7u7O7Gxsble3mHNvvzyS77//ntA9wlQs2bNnnhMUlJStpscmMKaNWv0R1XUr1Of4yePZ7tBmxBC2dwUQghhfmxhHHj06BFhYWF4e3srWjxpNBqCg4Pp3LmzYn1aIq1WS/PmzRk8eDDdu3dXNZY7d+5Qs2ZNjhw5YlEbBWb+G4+OjiYmJob4+Hh69eqV7WlQzyIz2mYm+mK0/vunzWjPnDlToWh0n6bVrlEbgBOnT7B+/XrF+hbC0iiZm0IIIcyPjANCbRqNhsWLF5vFxnxRUVF89913FlVkG5PMaJsZr8peRERHUNChEEkpiWYxe/zXX3/Rvn17AKpUrEJ4ZDgODrKPnhBCCCGErZEZbWHtZEbbCmm1Wq5c123WUK50uacW2QEBAUqGRbt27WjVvBUAFy9fJDAwUNH+hbAUSuemEEII8yLjgOlotVo6d+6Mn58fDRo0yNVzW7duzeDBg40aT07i2LdvH3Xr1qVAgQKqf0DQu3dv1WOwNVJom5F79+6RlKI7aL6qV5WnPq5v375KhQToPkGcPmu6/rbvyLEkJiYqGoMQlkDp3BRCCGFeZBwwvW+++Ybt27fn6jlBQUH4+/ubKKKnGzp0KA0aNCAqKkqxiaro6Gg0Gs0TR5HNnTtXJssUJoW2Gcl6tFeVak8vtP/44w8lwjHQsmVLOrTvAMCtezdZuHCh4jEIYe7UyE0hhBDmQ8YB09FqtaSlpeHq6krx4sVz9dxixYpRuHBhE0X2dJGRkbz22mtUqFCBIkWKKN5/Vu7u7qrHYGuk0DYjOTlDG8j1chljmTJtChp0y9n9/fyJiYlRJQ4hzJVauSmEEMI8yDiQc8nJyXz99deUKlUKR0dHXnzxRYNzmnft2oVGo2Hr1q00adKEQoUKERIS8sSS7bS0NL7++muKFClC8eLFGTFiBB9//LHBMunHl457enoyefJk+vTpQ+HChalYsSKLFy82iG/EiBF4eXnh7OxMlSpVGDt2LKmpqTn63TJnle/du0efPn3QaDQEBgYSGBj4RLG7YcMGg8tFM3+/H3/8EU9PT9zd3fnwww+Jj4/XPyYjI4Np06ZRrVo1ChUqRMWKFZk0aRKAfuOxhg0botFoaN26NfDk0vGcvv7bt2+nSZMmODs707JlS8LDw3P0GggptM1K1jO0PT09n/q4e/fumT6YbNSpU4f//e9/AMQlxDFjxgxV4hDCXKmVm0IIIcyDjAM5N3z4cNavX8/KlSs5duwY1apVo23btty/f/+Jx02ZMoWwsDDq1av3RDvTpk1j9erVrFixgn379hEXF5ej88xnzZpFkyZNOH78OF9++SVffPEF586d0/+8cOHCBAYGcvbsWebOncuSJUuYPXt2jn43Dw8Pbty4gZubG3PmzOHGjRt88MEHOXou6GbCN2zYwKZNm9i0aRO7d+9m6tSp+p+PGjWKadOmMXbsWM6ePcvPP/+sP3/70KFDAPzzzz/cuHGDoKCgbPvI6es/ZswYZs2axZEjR3BwcKBPnz45/j1snRTaZiSnM9pqXh890X8iDna6Hce/nfEtN27cUC0WIcyN7F0ghBC2TcaBnElISOD7779nxowZvPXWW9SqVYslS5bg5OTEsmXLDB47ceJE3njjDapWrZrtkvH58+czatQounTpQs2aNVmwYEGOlki3b9+eL7/8kmrVqjFixAhKlCjBrl279D/39fWlZcuWeHp68s477zBs2DB+/fXXHP1+9vb2lClTBo1Gg7u7O2XKlMHJySlHzwXdjHVgYCB16tThpZde4qOPPtJflx4fH8/cuXOZPn06H3/8MVWrVuXFF1/U7w9QsmRJAIoXL06ZMmWy3Sk7N6//pEmTeOWVV6hVqxYjR45k//79JCUl5fh3sWVyRpMZiboYpf/+WYV29erVlQgnW56ennzx1RfMnz+fpNQk/P39+e6771SLRwhzomZuCiGEUJ+tjgNNmjTh5s2bz31cmTJlOHLkCJGRkaSmptKqVSv9zwoUKEDTpk0JCwt7ou2niY2N5datWzRt2lR/n729PY0bNyYjI+OZsWSdHddoNJQpU4bbt2/r7/vtt9+YM2cOFy5c4OHDh6SlpSl2JLGnp6fBNeVly5bVxxYWFkZycjJt2rTJc/u5ef2zvk5ly5YF4Pbt21SsWDHP/dsKmdE2I5HhkQDY29lTrly5pz5u586dSoWULV9fXxwL6j6VW7xoMZGRkarGI4S5UDs3hRBCqMtWx4GbN29y7dq1535lFuNarRbgiaNstVrtE/e5uLg8t//s2nmeAgUKPNFGZnF+4MABPvzwQ9566y02bdrE8ePHGTNmDCkpKc9t91ns7OyeiC27676fFVtuZsafJjevf9ZYMn/2vA8xhI4U2mbk8tUrAJQtWRZ7e/unPq5Xr15KhZStUqVKMXykDwDpGen4jvFVNR4hzIXauSmEEEJdtjoOlClThvLlyz/3q0yZMgBUq1aNggULsnfvXn0bqampHDlyBG9v7xz36+7uTunSpfXXJQOkp6dz/PjxfP0++/bto1KlSowZM4YmTZpQvXp1g0s886pkyZLEx8eTkJCgv+/xY7iep3r16jg5OT31iLOCBQsCutfhaYz1+otnk0LbTMTGxvIwUbeb4LOO9gLdtShqGzZsGEUKFwVg7S9rc/1HQghrZA65KYQQQj22Og4cOXKEq1evPvfryJEjgG6W+osvvsDHx4ctW7Zw9uxZ+vXrx6NHj/j0009z1ffAgQOZMmUKv//+O+Hh4QwaNIgHDx48MTObG9WqVePy5cusXbuWyMhI5s2bR3BwcJ7by9SsWTOcnZ0ZPXo0Fy5c4Oeff8712daOjo6MGDGC4cOHs2rVKiIjIzlw4ID+2upSpUrh5OTEli1buHXrFrGxsU+0YczXXzydFNpmwuAM7erPLrR9fdWfQXZzc2P8xHH62yOHj1QxGiHMgznkphBCCPXIOJBzU6dOpVu3bnz00Uc0atSICxcusHXrVooWLZqrdkaMGEH37t3p1asXLVq0wNXVlbZt2+Lo6Jjn2Dp16sSQIUMYMGAADRo0YP/+/YwdOzbP7WUqVqwYP/30E5s3b6Zu3bqsWbMGPz+/XLczduxYhg0bxrhx4/D29uaDDz7QX8Pt4ODAvHnzWLRoEeXKlaNTp07ZtmGs1188nUabk4sYTCAuLg53d3diY2MV21jAnG3cuFGfCOPHj39m0gUEBJjFH/KkpCSqVqrG9dvXANi9ezcvv/yyylEJoR5zyU0hhBDqsIVx4NGjR4SFheHt7Y2zs7Pa4TwhIyMDb29v3n//ffz9/dUOR1igzH/j0dHRxMTEEB8fT69evbLdwf1ZZEbbTGSd0X7WGdoAAwYMMHE0OePo6MikaQH62z5Dh+do8wkhrJW55KYQQgh1yDigvEuXLrFkyRLOnz/PqVOn+OKLL4iKiqJHjx5qhyZsnBTaZiKnZ2gD/PTTT6YOJ8c++ugjvKp4AXDo6EE2bdqkckRCqMecclMIIYTyZBxQnp2dHYGBgbzwwgu0atWKU6dO8c8//8imXkJ1UmibieioaP33z5vRfuWVV0wbTC7Y29szbdY0/e3hQ4c/c5dDIayZOeWmEEII5ck4oDwPDw/27dtHbGwscXFx7N+/Xy5lFGZBCm0zceH/z9C209hRoUKFZz7W3M6t7tSpE00aNAHg3IVz/PzzzypHJIQ6zC03hRBCKEvGASFEJim0zUTm0vGSRUs9cUj94zLPxzMXGo2GGbNn6G+PHj6a5ORkFSMSQh3mlptCCCGUJeOAECKTFNpmICEhgZiHDwCoXLXycx9funRpU4eUa61bt+b1V18H4OrNqyxatEjliIRQnjnmphBCCOXIOCCEyCSFthm4fPmy/vuqXs8+Qxvg6NGjpgwnz6bN/O9abb+xE4iPj1cxGiGUZ665KYQQQhkyDgghMkmhbQaio6P13z9vIzTgqQfPq61Ro0a89+57ADyIu8/s2bNVjkgIZZlrbgohhFCGjANCiExSaJuB3BztBbBkyRJThpMvkyZPwk5jD8C0ydO5c+eOyhEJoRxzzk0hhBCmJ+OAECKTFNpmIOuMdk4KbV9fXxNGkz/Vq1enb99PAXiUnMDkyZNVjkgI5ZhzbgohhDA9GQeEEJkc1A5AwKXo/2a0c7J0PCAgwKz/kI/3G0/gipWkpCWzYP5ChgwZQsWKFdUOSwiTM/fcFEIIYVq2NA4kJiaqHYIQJmGsf9sarVarNUpLuRQXF4e7uzuxsbG4ubmpEYLZaNqoKYePHwZ0/2MdHR2f+fjExEScnJyUCC3PRowYwfTp0wHo/XFvVgSuUDkiIUzPEnJTCCGE6djCOJCSksKZM2fIyMhQOxQhTEar1XLx4kXi4+OJj4+nV69eFCtWLFdtSKFtBkoWLcXdmDsUdy/B3ZjnX9M8a9Yshg0bpkBkeffgwQMqVahE/KN4NBo7Tp8+Ra1atdQOSwiTsoTcFEIIYTq2Mg6kpKSQlpZGbGwsmzZtwsXFhUKFCqkdlhDPdPLkSerVq5ejx6anp5OWlkZiYmKeC21ZOq6y5ORkfXHtmYPrswE6duxoypCMomjRoowZN4aRI0ei1WYwesRoNvyxQe2whDApS8hNIYQQpmMr40DBggUpWLAgSUlJJCQkkJqaKoW2MHtubm7ExMTk6jnJycl57k8KbZUZnKFdo2qOnnPs2DGqV69uqpCMZuDAgcya/i137t/m902/c/DgQZo1a6Z2WEKYjKXkphBCCNOwtXGgUKFCuLm5ERcXR0pKitrhCPFMly9fxt7ePtfPc3Nzy9MHSVJoqyzr0V6elT1z9JySJUuaKBrjcnZ2xn/yRPr37w+AzxAfdu/bjUajUTkyIUzDUnJTCCGEadjaOODi4sIHH3yQr1k/IZSyb98+WrVqlevnFSpUCBcXl1w/TwptleX2DG3Aopbm9OnTh6kBU4m+Gk3IvyFs27aNN998U+2whDAJS8pNIYQQxmeL44CLi0ueihAhlFasWLFcX2edH3KOtsqynqGdk6O9ACIjI00TjAkUKFCAqTOn6m/7DPGRXSqF1bKk3BRCCGF8Mg4IYb6Uzk8ptFWWlxnt1q1bmyga03jvvfeoW6suACfPnmTdunUqRySEaVhabgohhDAuGQeEMF9K56cU2iq7EH5B/31OC+0ff/zRVOGYhJ2dHTO+naG/PfKbkaSmpqoYkRCmYWm5KYQQwrhkHBDCfCmdn3KOtsrKlSzPjbvXcXcpQszDBzl6TkZGBnZ2lvUZiVar5ZUXXyFkfwgAP/zwA59//rnKUQlhXJaYm0IIIYxHxgEhzJfS+Sl/CVSUlpbGrXu3AKjo4ZHj502ePNlUIZmMRqNh+qzp+ttjR43j0aNHKkYkhPFZYm4KIYQwHhkHhDBfSuenzGirKDo6msqVKwPQpUsXgoKCcvQ8S/60tNM7ndi4aSMAU6dOZcSIESpHJITxWHJuCiGEyD8ZB4QwXzKjbUMMztDO4Y7jAFOmTDFBNMqYPHUyGo3un92kiZN48CBny+WFsASWnJtCCCHyT8YBIcyX0vkphbaKsh7tldON0AA++ugjE0SjjNq1a9Pr/+OPfxTPtGnTVI5ICOOx5NwUQgiRfzIOCGG+lM5PKbRVlNcZ7V27dhk/GAVN9J+Ig30BAOZ8O4fr16+rHJEQxmHpuSmEECJ/ZBwQwnwpnZ9SaKsoL2doA1StWtUU4SimYsWKDBj4FQDJqclMnDBR5YiEMA5Lz00hhBD5I+OAEOZL6fyUQltFkRGR+u9zM6OdnJxsgmiUNXr0aJwdXQBYsmQpERERKkckRP5ZQ24KIYTIOxkHhDBfSuenFNoqunghCgAXR1eKFCmS4+fduXPHRBEpp2TJkowYNRyADG06vqN9VY5IiPyzhtwUQgiRdzIOCGG+lM5PKbRVkpGRwY3bumuTPcpXyNVzGzVqZIqQFDdkyBCKuhUD4NfffuX48eMqRyRE/lhLbgohhMgbGQeEMF9K56cU2iq5ceMGaelpAFSrWS1Xz924caMpQlJc4cKF8fMfr7894hs5U1tYNmvJTSGEEHkj44AQ5kvp/NRotVqtoj3+v7i4ONzd3YmNjcXNzU2NEFS1f/9+WrVqBcCAAQOYP39+jp+bmJiIk5OTqUJTVHJyMlUrVeParasA7Ny5k9atW6sblBB5ZE25KYQQIvdkHBDCfCmdnzKjrZKsZ2jnZiM0gFmzZhk3GBUVKlSIydMn6W9/M8QHlT77ESLfrCk3hRBC5J6MA0KYL6XzU2a0VTJlyhRGjx4NwLp163j33XdVjkg96enp1K5Rm/DIcACCg4Pp3LmzukEJIYQQQgghRB7JjLZK8jOjHRAQYNxgVGZvb8/0b6frbw8fOpz09HQVIxIib6wtN4UQQuSOjANCmC+l81NmtFXy5utvsm37NgBu375NyZIlc/zcW7duUbp0aVOFpgqtVkvzJs05dOwQACtWrKB3797qBiVELlljbgohhMg5GQeEMF9K56fMaKskMuIiAIUKFKJEiRK5eu7vv/9uipBUpdFomDF7hv72mBFjSEpKUjEiIXLPGnNTCCFEzsk4IIT5Ujo/pdBWgVar5doN3S7bFcp6oNFocvX8xo0bmyIs1b388su8+fqbAFy/fZ0ffvhB5YiEyB1rzU0hhBA5I+OAEOZL6fyUQlsFd+7cITk1GYCqNark+vm3bt0ydkhmY/rM/67VnjBuInFxcSpGI0TuWHNuCiGEeD4ZB4QwX0rnpxTaKsi6EVqVqrkvtFNSUowYjXmpX78+H37wIQAx8Q/49ttvVY5IiJyz5twUQgjxfDIOCGG+lM5PKbRVcOnSJf33lSpVyvXzq1atasxwzE7ApADs7ewBmD51Brdv31Y5IiFyxtpzUwghxLPJOCCE+VI6P6XQVkF+C+3du3cbMxyzU7VqVT77/DMAEpMfMWnSJJUjEiJnrD03hRBCPJuMA0KYL6XzU473UsGAAQNYuHAhAPv376dFixa5en5MTAxFihQxQWTm48aNG1SpVIWk1CQc7AsQceF8rs8bF0JptpCbQgghnk7GASHMl9L5KTPaKoiOitZ/n5cZ7QULFhgxGvNUtmxZhvoMBSAtPZXx48arHJEQz2cLuSmEEOLpZBwQwnwpnZ8yo62CmlVrEn4xHAf7AiSnJGFnJ593ZCcmJoZKFSoRlxCHBg0nT52kTp06aoclhBBCCCGEEM8kFZ7CtFotV67pztAuV7pcnorsgIAAY4dllooUKYLveF8AtGgZNXyUyhEJ8Wy2kptCCCGyJ+OAEOZL6fyUGW2FPXjwgGLFigHQ+uXW7Ny9M9dtxMbG4u7ubuzQzFJiYiKeHpW5fU937t2+ffto2bKlylEJkT1byk0hhBBPknFACPOldH7KjLbCsp6hXbV63raYX7VqlZGiMX9OTk4ETPHX3/YZ4oNKnw0J8Vy2lJtCCCGeJOOAEOZL6fyUQlth+T3aC+DVV181VjgW4ZNPPqFKxSoA7D+0ny1btqgckRDZs7XcFEIIYUjGASHMl9L5KYW2wrLOaOf1uKqIiAjjBGMhHBwcmDpzqv62zxAfMjIyVIxIiOzZWm4KIYQwJOOAEOZL6fyUQlthxpjRdnJyMlY4FqNbt27Ur1MfgDPhZ/jll19UjkiIJ9libgohhPiPjANCmC+l81MKbYVlndHOa6FdvHhxI0VjOezs7Jg5e6b+9shvRpKSkqJiREI8yRZzUwghxH9kHBDCfCmdn1JoK+xC2AUA7DT2lC9fPk9thIaGGjEiy/H666/T+qXWAFy+fplly5apG5AQj7HV3BRCCKEj44AQ5kvp/JTjvRTm7lqEuIRYypUsz7XbV/PUxs2bNylTpoyRI7MMhw8fpmnTpgCUKFKS6KtRuLi4qByVEDq2nJtCCCFkHBDCnCmdnzKjraD4+HjiEmIBqFK1cp7bWbp0qbFCsjgvvPACXTp1AeBuzB3mzZunckRC/MeWc1MIIYSMA0KYM6XzU2a0FXT69Gnq1q0LQK9evVi5cqXKEVmmc+fOUatWbbTaDFydCnPpajTFihVTOywhhBBCCCGEAGRGW1HG2HEcICAgwBjhWKyaNWvySe/eADxMjGfq1KnPfoIQCrH13BRCCFsn44AQ5kvp/JQZbQUtXLiQAQMGALBs2TL69OmTp3aSkpJwdHQ0ZmgW58qVK1StXI3U9BQKOhTiYnRknjeXE8JYJDeFEMK2yTgghPlSOj9lRltBxprRnj9/vjHCsWgeHh4MHKT70CIlLRm/8X7qBiQEkptCCGHrZBwQwnwpnZ9SaCsoOipa/72np2ee2+ncuXO+Y7EGo0ePxsXRFYDly1cQHh6uckTC1kluCiGEbZNxQAjzpXR+SqGtoAvhkQBo0ODh4ZHndo4ePWqskCxa8eLFGTlmBAAZ2nTGjBqjckTC1kluCiGEbZNxQAjzpXR+SqGtoMyl4yWKlqRgwYJ5bkfOZ/zP4MGDKeZeHID1wes5cuSIyhEJWya5KYQQtk3GASHMl9L5KYW2QhITE7kfdw+AypU989WWg4ODESKyDq6urkwI8NPfHvHNCPWCETZPclMIG9C7N9SoAersJSvMnIwDQpgvpfNTCm2FXL58Wf99Va+q+WorKioqv+FYlc8++wyPsrql+Dt272D79u0qRyRsleSmEDbgwAE4fx4OH1Y7EmGGZBwQwnwpnZ9SaCskOjpa/71nPme0X3755fwFY2UKFizIlBlT9Ld9hg5HpVPrhI2T3BTCyt2+rSuyy5WDkSNlVls8QcYBIcyX0vkphbZCjHW0F8DPP/+c33CsTvfu3anlVQuA4yePERwcrHJEwhZJbgph5TZuBI0GpkyBnTvhn3/UjkiYGRkHhDBfSuenRqvS1F9cXBzu7u7Exsbi5uamRgiKGjNmDJMnTwbgr7/+ol27dnluKz09HXt7e2OFZjX+/PNPOnToAEA1z2qERYTJtVJCUZKbQli5t9+Ghw9h1y5o1QpSUuDQIbCTeQuhI+OAEOZL6fyUkUEhxjpDG2DKlCnPf5ANat++PS1eaAHAhegLrFq1SuWIhK2R3BTCisXF6Wawu3bVzWpPnQpHj8L69WpHJsyIjANCmC+l81NmtBXSvElzDh49CEBCQgLOzs4qR2Sd9u7dy0svvQRAmRJlibpyEUdHR5WjEkIIYfHWroXu3eHSJahYUXdf+/Zw4QKcOQMFCqgbnxBCCLMiM9oKifr/Ge2ihYvlu8gOCAgwQkTW6cUXX6R92/YA3Lx7g++++07liIQtkdwUwooFBUHjxv8V2QCTJ0NEBAQGqhaWMC8yDghhvpTOT5nRVkBKSgqOhRzRoqVBnYYcP3UsX+1duXIFDw8PI0VnfU6ePEmD+g3QosXdtQiXrkbj7u6udljCBkhuCmGlEhOhZEkYPVr3lVWPHrB7t25m28lJnfiE2ZBxQAjzpXR+yoy2Aq5evYoW3ecZ1Wrk7wxtQM6Jfo569erRvXt3AGIfxjBr1iyVIxK2QnJTCCv1zz+QkKC7Pvtx/v66Y78WLFA+LmF2ZBwQwnwpnZ9SaCvAmGdoA3h5eeW7DWvnH+CPg51ux/EZ02Zy69YtlSMStkByUwgrFRQENWvqvh5XtSp89pnuyK+YGMVDE+ZFxgEhzJfS+SmFtgKMeYY2QGJiYr7bsHZVqlTh8y8+ByApJRF/f3+VIxK2QHJTCCuUlqY7Pzu72exMvr6QnAwzZigXlzBLMg4IYb6Uzk8ptBVgMKOdz6O9AO7du5fvNmzB2LFjcSyou15u0feLuHjxosoRCWsnuSmEFdqzB+7ff3ahXbYsDB4Ms2fDjRuKhSbMj4wDQpgvpfNTCm0FGHtGu379+vluwxaULl2ab4YPAyAtI42xvmNVjkhYO8lNIaxQUJBup/FGjZ79OB8fcHTUXbMtbJaMA0KYL6XzUwptBVw8/99MqjEK7U2bNuW7DVvxzTff4O6q23F8zZo1nDx5UuWIhDWT3BTCymRkQHAwdOkCGs2zH1ukCIwaBUuW6HYgFzZJxgEhzJfS+SnHeymgQmkPrt2+SmFnN+ISYvPd3qNHj/J9FrctmTVrFt988w0A7du2588tf6ockbBWkptCWJmDB6F5c9i1C1555fmPT0yEatV0j/35Z5OHJ8yPjANCmC+l81NmtE0sLS2Nm3d112tVrGCcc9u+/fZbo7RjK7766ivKlCgLwOatm9m7d6/KEQlrJbkphJUJCtKdn/3iizl7vJMT+PnBmjUQGmrKyISZknFACPOldH7KjLaJXb58Wb9cvFPHTmz4fYO6Admo5cuX8+mnnwLQvElz9h/aj+Z5ywCFEELYLq0WvLygdWvdcvCcSkuD2rV1x35t3myy8IQQQpg3mdE2sawboRnjDG2AgIAAo7RjS3r16kU1z2oAHDhygM3y5keYgOSmEFbkzBndtdZduuTueQ4OEBAAf/0Fu3ebJjZhtmQcEMJ8KZ2fUmibmLF3HAf4/PPPjdKOLXFwcGDarGn62z5DfMjIyFAxImGNJDeFsCJBQVC4MLRpk/vndusGjRvrNkdTZ+GgUImMA0KYL6XzUwptEzP2GdoAQUFBRmnH1nTp0oWG9XTHs4RFhLFmzRqVIxLWRnJTCCsSHAwdOkChQrl/rp0dTJkC//4Lf/xh/NiE2ZJxQAjzpXR+SqFtYqaY0X7hhReM0o6t0Wg0zJw9Q397lM8oUlJSVIxIWBvJTSGsxMWLus3McrtsPKvXX4fXXoPRoyE93WihCfMm44AQ5kvp/JRC28QuRvx3hraxZrRv3LhhlHZs0WuvvcZrrV8D4MqNKyzJzQY3QjyH5KYQViI4WDeT/dZbeW9Do9HNap85A6tXGy82YdZkHBDCfCmdn1Jom1jk/xfaToWcKVq0qFHaTJdPxvNl2oz/rtUeN2Y8Dx8+VDEaYU0kN4WwEsHB0LYtuLrmr52mTXXXa48bB8nJxolNmDUZB4QwX0rnpxTaJpSRkcH129cB8ChXwWjHSRlrZtxWNWnShG5duwFwP/Yec+bMUTcgYTUkN4WwAjduwP79+Vs2nlVAAFy5AosWGac9YdZkHBDCfCmdn1Jom9CtW7dITdNdA1ytRjWjtRsSEmK0tmzVpMmTsNPYAzB10jTu3r2rckTCGkhuCmEFfv9dt5nZO+8Yp72aNeGTT3QFd3y8cdoUZkvGASHMl9L5KYW2CRmcoV3F02jtdu/e3Wht2aoaNWrQp88nACQkPWTKlCkqRySsgeSmEFYgOBhat4bixY3X5vjxEBcH335rvDaFWZJxQAjzpXR+SqFtQqY42gvgu+++M1pbtmy833gKOuiObZk/dwFXrlxROSJh6SQ3hbBwDx7Ajh3GWzaeycMDBgyAmTPhzh3jti3MiowDQpgvpfNTCm0TMsXRXgC+vr5Ga8uWVahQga8HDwQgNT0Fv/F+6gYkLJ7kphAWbtMmSEuDzp2N3/aoUbol6ZMnG79tYTZkHBDCfCmdn1Jom5CpCu2AgACjtWXrRo0ahatTYQBWBAZy7tw5lSMSlkxyUwgLFxwMzZpB+fLGb7t4cfDxge++gyzvD4R1kXFACPOldH5KoW1CFyONf4Y2wNdff220tmxdsWLFGD12FABabQajR45WOSJhySQ3hbBgCQmwZQt07Wq6PgYPhiJFwM/PdH0IVck4IIT5Ujo/pdA2oYvhukK7oEMhSpUqZbR2AwMDjdaW0CVdiaIlAQj+PZjDhw+rHJGwVJKbQliwrVshMdH412dn5eoKY8fCqlVw5ozp+hGqkXFACPOldH5KoW0iWq2WKzd0m2uVL1PeaGdoA7z++utGa0uAi4sLEydN0N8ePmy4itEISya5KYQFCw6GOnWgenXT9vPZZ1CxIsi1vFZJxgEhzJfS+SmFtoncu3ePpJQkAKp6VTFq23IdsfH17duXSuV119HvCtnFP//8o25AwiJJbgphoVJS4I8/TLtsPFPBguDvDxs2wIEDpu9PKErGASHMl9L5KYW2iWTdCK1y1cpGbdvFxcWo7QkoUKAAU2b8d5b2N0O+QavVqhiRsESSm0JYqF27IDZWmUIboHt3qFsXRo4EGWusiowDQpgvpfNTCm0TMdUZ2qDbwEsY3wcffEDtGrUBOHH6BOvXr1c5ImFpJDeFsFBBQVC5MtSrp0x/9va6Y75274a//1amT6EIGQeEMF9K56cU2iZiqqO9AE6ePGnU9oSOnZ0dM2bP0N8eMWwEaWlpKkYkLI3kphAWKD1dt4y7a1cw4n4qz/X229Cqle587YwM5foVJiXjgBDmS+n8lELbREw5o/3WW28ZtT3xn3bt2tGqeSsALl6+yIoVK1SOSFgSyU0hLNCBA3DrlnLLxjNpNDB1Khw/DuvWKdu3MBkZB4QwX0rnpxTaJhIdFa3/3tgz2suXLzdqe+I/Go2G6bOm62/7jhpLYmKiihEJSyK5KYQFCgqCMmWgeXPl+37xRejQQbcDeWqq8v0Lo5NxQAjzpXR+arQq7fgUFxeHu7s7sbGxuLm5qRGCSdX2qs3ZiLPY29mTnJKMvb292iGJXHjn7XfYtHkTANOnT8fHx0fliIQQQhidVgtVqkC7dvD99+rEcPIkNGig6//zz9WJQQghhNHJjLaJXL56GYBypcoZvcgOCAgwanviSVOmTUGD7lq9gAkBxMTEqBuQsAiSm0JYmBMnIDpa+WXjWdWrBz17woQJ8OiRenEIo5BxQAjzpXR+SqFtAjExMTxMfAgY/2gvQGZXFVCnTh3+97//ARCXEMeMGTOe8wwhJDeFsDhBQVCkCLRurW4cEybA3bswb566cYh8k3FACPOldH5KoW0CWXccr+pV1ejtz5071+htiidN9J+Ig30BAL6d8S03btxQOSJh7iQ3hbAwQUHwzjtQoIC6cVSpols2Pm0aPHigbiwiX2QcEMJ8KZ2fUmibgCmP9gLo1q2b0dsUT/L09OTLr74AICk1CX9/f5UjEuZOclMIC3L+PJw5A126qB2JTuaGaNOmqR2JyAcZB4QwX0rnpxTaJmDqQvvQoUNGb1Nkb8yYMTgVcgZg8aLFREZGqhyRMGeSm0JYkOBgcHKCtm3VjkSndGkYMgTmzoVr19SORuSRjANCmC+l81MKbRMw5RnaAGXLljV6myJ7pUqVYvhI3fUc6Rnp+I7xVTkiYc4kN4WwIEFB8NZb4OysdiT/+eYbXTyygspiyTgghPlSOj+l0DaBrIW2KWa05agwZQ0dOpQihYsCsPaXtYSGhqobkDBbkptCWIirV+HQIfNZNp7J3R1Gj4alSyEiQu1oRB7IOCCE+VI6P6XQNoEL53TLi+00dlSoUMHo7Wddmi5Mz83NjfETx+lvjxw+UsVohDmT3BTCQmzYAA4O0KGD2pE86csvoWxZGDtW7UhEHsg4IIT5Ujo/pdA2gcuXdWdolypWmgIm2Mn0xRdfNHqb4tn69+9PuVLlAdi6bSt79uxROSJhjiQ3hbAQQUHQpo3uaC9z4+QEfn7wyy9w7Jja0YhcknFACPOldH5KoW1kCQkJxDzUHc3hWcXTJH2sXbvWJO2Kp3N0dGTStP8OufcZOhytVqtiRMIcSW4KYQHu3oU9e8xv2XhWH38MNWrolpELiyLjgBDmS+n81GhVqhbi4uJwd3cnNjYWNzc3NUIwibNnz1K7dm0A/ve///Hjjz8avY+0tDQcHByM3q54tvT0dGp51eL8xfMA/P7773Ts2FHlqIQ5kdwUwgKsWAGffgrXr0OZMmpH83Tr18O778KOHfDqq2pHI3JIxgEhzJfS+Skz2kZm6qO9AKZOnWqSdsWz2dvbM23Wf+ebDh86nPT0dBUjEuZGclMICxAcDK1amXeRDdC1K7zwAowaBbKCymLIOCCE+VI6P6XQNjJTH+0F4OsrR0yppVOnTjRp0ASA8MhwVq9erXJEwpxIbgph5uLj4e+/zXvZeCaNBqZOhYMH4fff1Y5G5JCMA0KYL6XzUwptI1NiRjsgIOD5DxImodFomDF7hv726OGjSU5OVjEiYU4kN4Uwc3/9BcnJllFoA7z2Grzxhu5abVlBZRFkHBDCfCmdn1JoG9mlaNMX2r179zZJuyJnWrduzeuvvg7AtVvXWLRokcoRCXMhuSmEmQsOhoYNoXJltSPJucmTISwMVq1SOxKRAzIOCGG+lM5PKbSN7MK5C/rvK1asaJI+tm3bZpJ2Rc5NnzVd/73f2AnEx8erGI0wF5KbQpixpCTYtMlyZrMzNWkC770H48frfgdh1mQcEMJ8KZ2feSq0b9++zbx589i+fTtLly41dkwWLfr/l44Xdy+Bo6OjSfrw9vY2Sbsi5xo2bMj7774PwIO4+8yePVvliIQ5kNwUwoxt3w4PH+o2GbM0/v66XdK//17tSMRzyDgghPlSOj/zVGhPmzaN+vXr06ZNG86fP09ERISx47JISUlJ3I25A5huIzRAZk/NxKQpk7C3swdg2uTp3LlzR+WIhNokN4UwY8HB4OUFtWqpHUnu1agBffrApEkQF6d2NOIZZBwQwnwpnZ95KrSrV69OTEwMALGxsRw/ftyYMVmsK1eu6L+vVqOqyfrJfO2FuqpVq0bfvn0BeJScwOTJk1WOSKhNclMIM5WWptu5u0sX3W7elmjcOEhIgFmz1I5EPIOMA0KYL6XzM0+Fdv/+/XF0dGTfvn04ODhQqFAhY8dlkQx2HPc0zUZoAHXr1jVZ2yJ3xo0fR6ECun//C+Yv5PLlyypHJNQkuSmEmdq7F+7etcxl45kqVICBA3WF9u3bakcjnuLq1ato5dxzIcyS0u/T8lRob968meTkZFq1akVcXBytW7d+7nOSk5OJi4sz+LI2SpyhDfDXX3+ZrG2RO+XKlWPw0MEApKWnMn7ceHUDEqqS3BTCTAUHQ/nyuo3FLNnIkeDgoFtCLszK7t27KVumLEOHDmXq1KlqhyOEyIbS79PyVGifO3eOw4cP07VrV7p168b8+fMB3dlk169fZ9myZRw+fJitW7cSFBTE2bNn6dy5M+7u7vovDw8PABYvXszJkyfZuHEjf/75J8eOHWPRokXcuXNHf9ZZQEAAjx49YtasWYSHh/Prr7+yfft29u/fT2BgIFeuXDF4bHp6OlOmTOHSpUv8+OOP7N27l127drF27VoiIiKYMWMGSUlJBs+5efMmS5Ys4fDhw2zZsoXg4GBOnz7N/PnziY2NNXhsTEwMCxYs4NSpU2zYsIHNmzdz9OhRgoOD9a9RpUqVCAgIIDExkVmzZhEREcEvv/zCjh072LdvH6tWreLy5ctMmjSJjIwMAgICyMjIYNKkSVy+fJlVq1axb98+duzYwS+//EJERASzZs0iMTGRBw8e6GO5desWixcv5ujRo2zevJkNGzZw6tQpFixYQExMjEHcsbGxzJ8/n9OnTxMcHMyWLVs4fPgwS5Ys4ebNmwaPTUpKYsaMGURERLB27Vp27drF3r17+fHHH7l06RJTpkwhPT3d4DlXrlwhMDCQ/fv3s337dn799VfCw8OZNWsWjx49MnjsnTt3WLRoEceOHePPP/9k48aNnDx5koULF3L//n2Dx8bFxTFv3jzOnj1LUFAQW7du5fDhwyxbtozr168bPDY5OZnp06cTGRnJmjVr2LVrFyEhIfz0009ER0czdepU0tLSDJ5z9epVVqxYwYEDB9i2bRvr1q3j3LlzzJ49m4cPHxo89u7du/zwww+EhoayadMm/vjjD9q3b6+f1Q5cuZKzZ88SEBBAfHw8c+bM4ezZs6xfv56///6bgwcPsnz58ifiTk1NZdq0aVy8eJHVq1ezZ88e9uzZw+rVq7l48SLTpk0jNTXV4DnXr19n+fLlHDx4kL///pv169dz9uxZ5syZQ3x8vMFj7927x/fff09oaCh//PEHmzZtIjQ0lB9++IG7d+8aPPbhw4fMnj2bc+fOsW7dOrZt28aBAwdYsWIFV69eNXhsWloaU6dOJTo6mp9++omQkBB27drFmjVriIyMZPr06SQnJz8Rd3Z/I+bNm0dcXJzBY+/fv8/ChQst5m9Ev379nvk3YvHixdy6dcugXVP8jcjavvyNUP9vRGhoKN9//z337t0zeKz8jVDob4RWS0BgII86dGDW7Nlm/T7iuX8jtm1jR7du7Fu4kFWzZsnfCDP4GzFx4kQCAgJo0+Z1bt66CcDYsWM5fvy4/I2wlL8RmM/7iHz/jZD3Ec/8G9GiRQuj/I3IKY1WofUtycnJBoHFxcXh4eFBbGwsbm5uSoRgch999BE//fQTAGfOnKGWiTZcCQgIwNfX1yRti7yZNm0aI0eOBKBTh05s+GODugEJVUhuCmGGDh+Gpk1hxw549VW1o8m/hASoWhXatoWVK9WOxqadOHGCT3v35WjokSd+tnr1anr06KFCVEKIp1H6fZpihfbj4uLicHd3t6pCu2Wzlvx76F8AHj58iIuLi8oRCaU8evQIT4/K3Lmvu27uwIEDNGvWTOWohBBCMHo0LF4MN2/qll1bg+++gwED4ORJqFNH7WhsTkJCAn5+fnw7azYZ2nT9/e3atmPL1i0AVCxXkYioCAoWLKhWmEIIleVq6bhGo8nxly2KvqjbDM3dpYhJi+zM5QvCfDg7O+M/eaL+ts8QH9kMxQZJbgphhoKCoGNH6ymyAfr2hcqVYcwYtSOxOX/99Rc1q9Vk5syZ+iK7euXq7Nmzh7+2/IVnJU8ALl+/zLJly1SMVAjxOKXfp8mMtpGkpqbiWMiRDG0G9bzrceLsCZP1dffuXUqUKGGy9kXepKam4lXFi+ir0QBs2bKFtm3bqhuUUJTkphBmJixMd272H39Ahw5qR2NcP/8MPXvCvn3QsqXa0Vi9mzdv8vXAr1n32zr9fQXsCzLObyzDhw/Xz1xv27aNN998E4ASRUoSfTVKVjgKYSaUfp+WqxnthIQE/vzzT9544w1At1x2+fLl/PHHH3z66adkZGSYJEhLcO3aNTK0ut+/ak3TnaEN8Ntvv5m0fZE3BQoUYOrM/3Ya9RniY9M5YYskN4UwM0FB4OoKr7+udiTG9+GHUL++bidyWUFlMhkZGSxatIjqVbwMiuxXXnyF02dP4evra7A8PDIyki6dugBwN+YOc+fOVTxmIUT2lH6flqtC28XFhbfffpvU1FQAwsLCiIyMpEOHDpw6dSpXu7BZm6xHe1WuXNmkfTVv3tyk7Yu8e++996hbS3dG36mwU6xbt+45zxDWRHJTCDMTFATt24Ojo9qRGJ+dHUyZAiEhsGWL2tFYpdOnT9OyaUv69+/Pw8R4AIq4FmHlypXs3LMTLy+vJ57TvHlzJk+djEaje4s92X8K9+7dUzRuIUT2lH6flqfjvTI1btyYwYMHs3DhQr7++mucnJyMFZfFuXTpkv77SpUqmbSvq1evmrR9kXd2dnbMnD1Tf3vkNyP1H0wJ6ye5KYQZuXQJjh2Drl3VjsR02rWDl1+GUaNAVlAZTWJiIqNHj6ZB/QYcPHpQf//HvT4mIiqCXr16PXU/oqtXr1KzZk0+6d0bgISkh3KuthBmQun3afkqtAFKlizJgAEDWL16NefOnTNGTBZJyUJbNtkyb2+88QYvt3oZgOir0SxfvlzliIRSJDeFMCPBwVCwILz1ltqRmI5Go5vVPnEC1q5VOxqrsG3bNmpWq6k7wzdDt9lZlYpV2LlzJ4ErA597fWfmOOA3wY8C9rol5fPmzJcPYoUwA0q/T8tXob1w4UIWLVoEgIODA5GRkUYJyhJlXTru6elp0r48PDxM2r7IH41Gw/RZ0/W3x44ax6NHj1SMSChFclMIMxIUBG+8AVaw4eoztWyp21V97FhISVE7Got1+/ZtenTvwZtvvsnl65cBcLAvwPjx4zkTfobWrVvnqJ3MccDDw4OBgwYAkJKWzAS/CSaJWwiRc0q/T8tVoZ2cnMzPP/9MdHQ0a9as4cUXX6Rw4cL8/vvv1K1bl3bt2pkqTrN3MeKi/ntTz2j/+++/Jm1f5F+zZs3o1KETAHce3Gb+/PkqRySUILkphJm4dQv27rXuZeNZTZoEUVGwdKnakVgcrVbLsmXLqF6lOmvWrtHf36p5K06dPomfnx+OubjGP+s4MHr0aFwcXQFYvnwF4eHhxgtcCJFrSr9Pk+O9jKRi2YpcuXkFVydX4h/Fm7Sve/fuUbx4cZP2IfLv7Nmz1KlTF602g8LOhbl09RJFixZVOyxhQpKbIjuPHsGpU9CsmdqR2JAlS6B/f7h5E0qWVDsaZXz8MWzdCpGRIMdJ5ci5c+fo27sv+w7u09/n5uLG7Hmz6d27N3Z2uV/4+fg4EBAQwNixYwHo1qUbvwXJ6RRCqEXp92n5vkZb6I5+uHHnBgAe5U2/JOH77783eR8i/2rVqsXHvXoBEP8onmnTpqkckTA1yU2RncGDoXlz3WW0QiFBQbpNwmylyAaYMAHu3wc5Tuq5kpKSGD9+PHVr1zUosnt070HExQj69OmTpyIbnhwHBg8eTPEiuuu61wev58iRI3kPXAiRL0q/T5MZbSO4du0aFSpUAKDD2x34Y9MfKkckzMXly5epWqUaaempFCpQiIvRFylXrpzaYQkhFNSpE2zeDL176yZahYnFxuoK7Jkz4euv1Y5GWYMGQWAgXLwIsromWzt37qRv775cvJzlkr/ylViyYglvvPGGSfpcuHAhAwbortd+7ZXX2L5ru0n6EUKYF5nRNgKDM7SrmPYMbdAtQxKWoWLFigwY+BUAyanJTJwwUeWIhClJborHJSbCP//oTmFavhxs+HAO5fz5J6SmQpcuakeivDFjID0dZAXVE+7evcvHvT7mtdde0xfZ9nb2jBo1irCIMKMV2dmNA/369cOjbEUAduzewfbtUmgLoQal36dJoW0ESh7tBTBo0CCT9yGMZ/To0Tg76q6XW7JkKRERESpHJExFclM87u+/dddoT5kCFSqAr6/aEdmAoCB44QWwxVMASpWCYcNg/nyQ46QA3WZnq1atolrl6qz6cZX+/maNm3Hi5AkmT56Mk5OT0frLbhwoWLAgU2ZM1t/2GeIjx0EKoQKl36dJoW0ESh7tBbBs2TKT9yGMp2TJkowYNRyADG06Y0aPUTkiYSqSm+JxQUFQqxbUqQMTJ8L69XD4sNpRWbHERPjrL9uczc40bJhuM7SJsoLq/PnzvPryq3z88cfEPowBwNWpMD/88AP7D+2ndu3aRu/zaeNA9+7dqeVVC4Djp44THBxs9L6FEM+m9Ps0KbSNQOkZ7TfffNPkfQjjGjJkCEXdigGw7rd1HDt2TOWIhClIboqsUlNh48b/Tpj63/90RfeoUerGZdUylxDYyrFe2XFz0y0hX74cbPQ4qeTkZPz9/alTqy679+7W3//+u+8TcfE8n3/+eZ43O3uep40DdnZ2TP92uv72iGEjSEtLM0kMQojsKf0+TQptI4iKjNJ/r0ShHRYWZvI+hHEVLlwYP//x+tsjvhmhYjTCVCQ3RVa7d0NMzH81n709TJ4M27frrtsWJhAcrPs0o0YNtSNR1xdfQLly8P/HStmSkJAQ6nrXZdy4caSmpwBQoUwFNm/ezC/rfqFMmTIm7f9Z40D79u1p8UILAC5EX2DlypUmjUUIYUjp92lSaBvBhfBIABwLOFKiRAmT91e4cGGT9yGM7/PPP6d8ad3u9P/s/IedO3eqHJEwNslNkVVQEFSqBA0a/Hdfx466o75GjgS5RNPIMpcQ2PKy8UyOjrql4+vWgY0cJ3X//n36ftqXl19+mYgo3V4odhp7fHx8OHfhHG+99ZYicTxrHNBoNAaz2r4jfUlMTFQiLCEEyr9Pk0I7n7RaLdduXgOgfNkKaDQak/fp7u5u8j6E8RUqVIjJ0yfpb/sMHS6boVgZyU2RKSMDNmzQzWZnHRY0Gpg6FY4e1V2vLYxo92548MC2l41n9dFHutn90aPVjsSktFotP//8M9WreLFs+X/XXzaq35hjx48yffp0XFxcFIvneePAiy++SPu27QG4efcm3333nRJhCSFQ/n2aFNr5dPv2bVLSkgGoVrOqIn2eOXNGkX6E8fXs2ZOa1WoCcDT0CL///rvKEQljktwUmQ4ehBs3sq/5XnlFd9zXmDEgl2gaUXCwbglBw4ZqR2Ie7O1h0iTYtk13vYIVioyM5I3X3qBnz57cj70HgLOjCwsWLODQ0YPUr19f8ZhyMg5MmT4FDbpP4PzH+xMbG2vqsIQQKP8+TQrtfMq6EZoSZ2gDtGvXTpF+hPHZ29sbLBsbPnQ46enpKkYkjElyU2QKCtKdtNSiRfY/nzwZzp+HwEBFw7JeGRm6QrtLF8MlBLauUydo1ky3A58VraBKTU1lypQp1KpZm+27/vsQoUunLkREnuerr77C3t5eldhyMg7Uq1eP7t27AxCbEMvMmTNNHZYQAuXfp0mhnU9ZC20ljvYCWL58uSL9CNPo0KEDzRo3AyAiKoIff/xR5YiEsUhuCtDVM0FB0LmzblIxOw0bwocfgp+f7kQqkU/PWkJgyzKvVTh8WPeP0gr8+++/1KtVj9GjR+tXFJYtWY6NGzcStCGIcuXKqRpfTscB/wB/HOwcAJg5bSa3bt0yZVhCCJR/nyaFdj5lPUNbiR3HAXx9fRXpR5iGRqNhxuwZ+ttjRowhKSlJxYiEsUhuCoBTp+DixefvyeXvD7duwcKFysRl1YKDdUsIWrZUOxLz07o1tG1r8dcqxMTE0P/z/rRq2YpzF84BoNHYMXjwYM5fDOedd95ROUKdnI4DVapU4fMvPgcgKTUJf39/U4YlhED592lSaOeT0mdoAwQEBCjSjzCdl156ibZvtAXg+u3r/PDDDypHJIxBclOAbuLQzQ1ee+3Zj6tWDfr21S0jj4lRJDTrlLmEoFOnpy8hsHWTJ+vO1LbA46S0Wi2//vor1at4sWjxIrTolsDXr1OfI0cOM3v2bFxdXVWO8j+5GQfGjh2LY0EnABZ9v4iLFy+aKiwhBMq/T9NoVdr2OC4uDnd3d2JjY3Fzc1MjBKN4u/3bbP5rMwDXr1+nbNmyJu8zNTWVAgUKmLwfYVonTpygwf+f+1OkcFEuXY226FwQkptCp359qFsXfvrp+Y+9cQOqVoWhQ0E+p8mjkyd1L/pff+l2mRPZ+/BD2LdPtzmAk5Pa0eRIdHQ0/T/rz9ZtW/X3ORVyZsq0yXz11Vc4ODioGF32cjsOjBs3Tj+b3aN7D1b/vNpUoQlh85R+nyYz2vkU+f9naBewL0Dp0qUV6fPbb79VpB9hWvXr1+fDDz4EICb+gfx/tQLy/1BcuKCr+3J6lHPZsjB4MMyeDTdvmjQ06xUcnLMlBLbO31/3yY4FHCeVlpbGzJkz8fbyNiiyO7TvQHjEOQYNGmSWRTbkfhwYNmwY7q5FAFizZg0nT540QVRCCFD+fZoU2vmg1Wq5cu0qAOVKl8fOTpmX87333lOkH2F6AZMCsLfTLXWcPnUGt2/fVjkikR+SmyI4GBwdczexOnw4FCokM9p5FhQEHTpAwYJqR2Leqlf/71oFMz5O6tChQzSo0wAfHx+SUnX7l5QuXoagoCD++PMPPDw8VI7w2XI7Dri7uzNuwlgAtGgZOXykKcISQqD8+zQptPPhwYMHPEpOAKBq9SqK9fvvv/8q1pcwrapVq/LZ558BkJj8SK7xtXCSmyI4WFdku7jk/DlFisDIkbBoEURGmiw06xQZqVtCILuN58y4cfDoEZjhcVJxcXEMHDiQ5s2acyZcd9atBg0DBgzg/MVwuuR0mYjK8jIOfPnll5Qpobv08K+tf7F3715jhyWEQPn3aVJo54PBGdrVlDlDGzD7T3NF7owdOxbHAo4AfL/we4Od7IVlkdy0bdevw7//5nzZeFYDBug2zR43zvhxWbW8LCGwZeXKwaBB8O23ui3vzYBWqyUoKIjqVbxYsGCBfrOz2jVqc+DgAebPn29R+5fkZRxwdHRk0rT/Pmj3GeKDSlsoCWHVlH6fJoV2PmQtiJQ6Q1tYn7JlyzLUZygAaRlpjBsr77SFsEQbNoCDg24Vc245O8P48fDzzxAaauzIrFhQkO7oqtwsIbB1I0boltmbwQqqK1eu0PHtjnTr1o3b93SFv2MBR2bOnEno6VCaNm2qcoTK6dWrF9U8qwFw4MgB/vzzT5UjEkLklxTa+aDG0V6gG5iEdfHx8cHNRfeJ/U8//cTp06dVjkjkheSmbQsOhldfhWLF8vb8Tz7RXUY7Zoxx47JaN27olhDIsvHcKVpUV2wvWqQ78F0F6enpzJkzB69qNdj01yb9/e3eaEfY+TCGDRtmtpudPU9exwEHBwemzZqmv+0zZDjp6enGCksIgfLv06TQzoeshbaSM9otWrRQrC+hjCJFiuA73hfQbYYyavgolSMSeSG5abvu34edO/O2bDxTgQK6ScbNm2HPHuPFZrU2bNCdm52XJQS27uuvoUQJ3TIKhR07dozGDRozZMgQklISAShRtCS//vorm7dutvgVgvkZB7p06UKjeo0AOHchjDVr1hgrLCEEyr9Pk0I7H6KiovTfKzmjvW7dOsX6EsoZMGAApYuXAWDTX5vYv3+/yhGJ3JLctF1//AEZGdC5c/7aefddaNQIRo0CuUTzOYKC8reEwJZlXquwerVuMzkFPHz4kCFDhtCkyQucOH0C0G121v/z/kRcPM97772HRqNRJBZTys84oNFomDF7hv72KJ9RpKSkGCMsIQTKv0/TaFXabSEuLg53d3diY2MtapOLrOrWrMvp8NPYaexJTklSbJmT0oetC+UsXbqUfv36AdCyaUv2HthrFW88bIXkpu3q3Bnu3IF9+/Lf1t9/6y473rgR3nkn/+1Zpfv3oXRpmDcPvvhC7WgsU2oq1KoFNWvqPikyoT/++IPPP+3PjTvX9ffVrObN8lXLrG4lkDHGgTavtmHHrh0AzJ8/nwEDBhgjNCFsntLv02RGOx8uXbkMQJmSZRS9lmjatGnPf5CwSL1796ZKRd1RcfsP7WfLli0qRyRyQ3LTNj18CFu35m/ZeFZvvKGbqB09GuQSzafYtAnS0qBTJ7UjsVyZ1yps2gQmOk7q2rVrdOnUhY4dO+qL7IIOhZgyZQonz56wuiIbjDMOTJvxXxvjff14+PBhvtsUQij/Pk1mtPMoPj5eH/eLzV8k5N8QlSMS1uK3337jvffeA3THm5w8exI7O/lMTAhz9dtv8N57cOECVK1qnDYPHoTmzWHVKvjoI+O0aVU6d4bbt0EuscmfjAxo0kS3lDwkBIy0gio9PZ0ffviB4d+M4FFSgv7+Nq3bsHjZYqpUqWKUfqzZu93eZX3QegD8/f3x9fVVOSIhRG7Ju/c8yroRWtUaRnpnlUMBZnAkhzCdbt26Ub9OfQDOhJ/hl19+UTkikVOSm7YpOBjq1zdekQ3QrJluhnzcOEhONl67ViEhQbeEQHYbzz87O5gyRXfNg5GOkzpx4gRNGzdjwIAB+iK7mHtxVq9ezbYd26y+yDbWODB5ymTsNPYATJ00jbt37xqlXSFsmdLv06TQzqOsZ2gruREaQJ8+fRTtTyhLo9Ewc/ZM/e2R34yUzVAshOSm7UlJ0a28Nday8awmTYLLl2HxYuO3bdG2bIGkJNO86LbozTehdWvdDnz5uFYhISEBHx8fGjVszLETR/X3f9rnUyIunqdHjx42seeIscYBLy8vPv1U11ZC0kOmTJlilHaFsGVKv0+TQjuP1DpDG5Drdm3A66+/TuuXWgNw+fplli1bpm5AIkckN23Pjh0QF2eayVVvb+jdG/z9IT7e+O1brKAgqFfPuEsIbJlGo5vVPn0a8nic1F9//UXNajWZOXMmGVpdsV69cnX27NnD0mVLKWZDO8MbcxwY7zeegg6FAJg/d4HiZwALYW2Ufp8mhXYeZZ3RVvrMx9q1ayvan1DH9FnT9d+PGz2ehISEZzxamAPJTdsTFKSr9+rUMU3748frCvk5c0zTvsUx5RICW9a8ue6697Fjda9xDt28eZP333uf9u3bc/XmVQAK2BfE39+f0+dO89JLL5koYPNlzHGgfPnyDBryNQCp6Sn4jfczWttC2CKl36dJoZ1Hl6LVm9GOjY1VtD+hjhdeeIEunXRvJu/G3GHevHkqRySeR3LTtqSnw4YNutlsU62IrVgRvvoKZszQHR9m80y5hMDWBQTk+FqFjIwMFi1aRPUqXqz77b9zaV958RVOnz2Fr68vBQsWNGW0ZsvY48DIkSNxdSoMwIrAQM6dO2fU9oWwJUq/T5NCO48uhEcCoEGDh4eHon3HyxpCmzF56mQ0Gl2aTvafwv3791WOSDyL5KZt2b9fV/yauuYbNUr3X7lEk/+WENStq3Yk1qd2bejVS3etwjOOkzp9+jQtmrakf//+PEzU/c0r4lqElStXsnPPTry8vJSK2CwZexwoVqwYo8fq/ghotRmMHjnaqO0LYUuUfp8mhXYeRV+KBqBksVKKf2rr7e2taH9CPTVr1uST3r0BeJgYL5uhmDnJTdsSFARly0LTpqbtp0QJ8PGBhQt1E442Kz0dfv9dt2zcBjbVUoWfH8TEZHutQmJiIqNGjaJB/QYcOnpQf//HvT4mIiqCXr162cRmZ89jinHg66+/pkTRkgAE/x7M4cOHjd6HELZA6fdpUmjnQWJiIg/idDOLnp7KLhsH+PvvvxXvU6jHb4IfBex1H+bMmzOfq1evqhyReBrJTduh1eoK7S5ddCckmdqQIeDurquDbNb+/bqzs2XZuOlUqgRffqm7ViHLcVLbtm2jZrWaTJ06lfQM3WZnVSpWYceOHQSuDKREiRJqRWx2TDEOuLi4MHHSBP1tn6E+aLVao/cjhLVT+n2aFNp5kHXH8Wo1qine/6effqp4n0I9Hh4eDBw0AICUtGQm+E14zjOEWiQ3bcfx47rZZaVqPldX3T5VK1fC2bPK9Gl2MpcQNGumdiTWbfRoyMiAqVO5ffs2Pbr34M033+Tydd1yCgf7AowfP54z4Wd49dVXVQ7W/JhqHOjbty+Vyusmd3bv3c0///xjkn6EsGZKv0+TQjsPDI72UmFGe+7cuYr3KdQ1evRoXBxdAVi+fAXh4eEqRySyI7lpO4KCoGhRePll5fr87DPd5mi+vsr1aTa0WggO1u2MrcQSAltWsiQZQ4eybO5cqntWY83a/478atW8FadOn8TPzw9HR0cVgzRfphoHChQowJQZ/10+5jPEh4yMDJP0JYS1Uvp9moxWeZC10Fb6aC8AX5t8l2XbihcvzijfkQBkaNMZM2qMyhGJ7Ehu2o6gIOjYEQoUUK7PQoVg4kRdvXnw4PMfb1WOH4dLl2TZuALCwsJo/c8/9E1LI+7/Nztzc3Fj2bJl7Nm3h5o1a6ocoXkz5TjwwQcfULuG7niiE2dOsH79epP1JYQ1Uvp9mhTaeZD1DG2lj/YCCAgIULxPob5BgwZRvIjuOrj1wes5cuSIyhGJx0lu2oZz5yAsTJ2ar0cP3ZndI0fqJnltRnCwbgnBK6+oHYnVSkpKYvz48dSvX5+Q/fv19/fo3oOIixH06dMHO1lN8FymHAfs7OyYMXuG/vaIYSNITU01WX9CWBul36fJX8w8UPMMbYAvvvhC8T6F+lxdXZkQ4Ke/PeKbEeoFI7IluWkbgoPBxQXeeEP5vu3tYfJk2LULtm1Tvn/VBAXBO+8ou4TAhuzcuZP69eszceLELIVbVaZO/ZvVP6+mVKlSqsZnSUw9DrRr145WzVsBEHUlisDAQJP2J4Q1Ufp9mhTaeXDh/AX992oU2r/++qvifQrz0K9fPzzK6s5t37F7B9u3b1c5IpGV5KZtCAqCt94CJyd1+u/QAVq10p2vbROXaIaH63aAk2XjRnf37l169+7Na6+9xvnz5wFwcHCgVavRFClyiqFDVfg0ycKZehzQaDTM+Pa/WW3fUWNJTEw0aZ9CWAul36dJoZ0H0VG6Ge2ibsVwUuGdVosWLRTvU5iHggULGm6GMnS4HPFhRiQ3rd/ly3DkiLo1n0YDU6fCsWPw22/qxaGY4GBwdoY331Q7Equh1WpZuXIlNWvWZOXKlfr7W7ZsSWhoKDExk+jY0UkWEOSBEuNAixYteOftdwC4fe8WCxYsMHmfQlgDpd+nSaGdSykpKdy5fxsAz0qeqsRw5coVVfoV5qF79+7U8qoFwPGTxwgODlY5IpFJctP6bdigW73cvr26cbz4Irz9tm4Hcqu/RFPtJQRW5vz587Rp04bevXtz7949ANzd3fnhhx8ICQmhQIHanDkjCwjySqlxYMq0KWjQABAwIYCYmBhF+hXCkin9Pk0K7Vy6cuUKWnQziNVqVFUlBo1Go0q/wjzY2dkx/dvp+tsjho0gLS1NxYhEJslN6xccDK+/Du7uakeiu1b7wgVYsULtSEzoyhU4fFiqPiNITk7G39+fevXqsXPnTv39H374IefOnePzzz/Hzs5OFhDkk1LjQO3atfnoo48AiEuIY/r06c95hhBC6fdpUmjnktpnaANUqFBBlX6F+Wjfvj0tXtAtf7kQfYFVq1apHJEAyU1rd+cO7NljPjVfvXq6XcgnTIBHj9SOxkQylxC8/bbakVi0kJAQGjZsyLhx40hOTgZ0x5Nu3ryZNWvWUKZMGf1jZQFB/ig5DkyYOAEHe936/m9nzubGjRuK9S2EJVL6fZoU2rmU9WgvNc7QBjhw4IAq/QrzodFoDGa1x4zwlc1QzIDkpnXbuFH3344d1Y0jq4kT4fZtmD9f7UhMJCgI2rQxjyUEFuj+/fv069ePl19+mbCwMADs7e0ZPnw4p0+f5q233jJ4/NWrcOiQ+XyYZImUHAc8PT358ivdLsrJqUn4T/RXrG8hLJHS79Ok0M4lgxltFXYcB3j33XdV6VeYlxdffJH2bXUXit68e4PvvvtO5YiE5KZ1Cw7WXRttTicdVakCn3+u2xztwQO1ozEyc1tCYEG0Wi2rV6+mZs2aLF26VH9/06ZNOXr0KNOmTcPFxeWJ58kCgvxTehwYM2YMToWcAVi8eDGRkZGK9i+EJVE6P6XQzqWshbZaM9o//PCDKv0K8zNl+n+bofj7+RMbG6tyRLZNctN6xcXpzq02x5rP1xdSUsDqLtH84w/Qas1rCYEFiIyMpF27dvzvf//jzp07ABQuXJgFCxawf/9+6tev/9TnygKC/FN6HChVqhTDR/oAkJ6RzphRYxTtXwhLonR+arQqnQ0UFxeHu7s7sbGxuLm5qRFCnrzU8iX2/rsX0P0OhQsXVjkiYet69ujJz2t+BsDX1xd/f1k6JoSxrV0L3btDdDSotJjpmXx94dtvdZujlSundjRG0qGD7hOOPXvUjsQipKamMnPmTCZOnEhSUpL+/m7dujFv3jzKPecfxt27UKYMfP899Otn6miFMcXFxVGpgicx8bplLcePH6dBgwbqBiWEkBnt3IqKjAagsLObakV2QECAKv0K8xQwKQAHOwcAZk6bya1bt1SOyHZJblqv4GBo3Ng8i2wAHx/d5lVW8zmbOS8hMEP79++nUaNGjB49Wl9ke3h4sHHjRn777bfnFtmgW0CQkSELCPJLjXHAzc2N8RPH6W+P8BmheAxCWAKl81MK7VxIS0vjxh3djo6VPCqqFsfgwYNV61uYn8qVK9P/y/4AJKUmyYy2iiQ3rVNSEvz5J3TponYkT+fuDqNGwZIlEBGhdjRG8NdfuvXwnTurHYlZi4mJ4YsvvqBVq1acPn0a0B0BOWTIEM6ePcs777yT47aCgnR7EJQubapobYNa40D//v0pV6o8AH//8ze7d+9WJQ4hzJnS+SmFdi5cv36dDG06AFVVOkMbYMmSJar1LcyTr68vjgV1Z7Es+n4RFy9eVDki2yS5aZ22bYOEBPOfXP3qK93S33Hjnv9YsxcUBI0agUp7oZg7rVbLr7/+ire3t8E1h40bN+bw4cN8++23uLq65ri9+HhZQGAsao0Djo6OTJr232ydz9DhqHR1qBBmS+n8lEI7F7JuhFa5SmXV4nj8OA4hSpcujc+IbwBIy0hjrO9YlSOyTZKb1ik4GGrWBG9vtSN5Nicn8PPTXU9+/Lja0eRDUhJs3ixV31NER0fToUMHPvjgA27evAmAq6src+bM4cCBAzRq1CjXbf71FyQnywICY1BzHPjoo4/wquIFwOFjh/jjjz9Ui0UIc6R0fkqhnQtZz9BW62gvgFOnTqnWtzBfw4YNw921CABr1qzh5MmT6gZkgyQ3rU9aGvz+u3kvG8+qd2+oUQNGj1Y7knz45x94+NByXnSFpKWlMXPmTGrXrs3mzZv193fs2JGzZ88yaNAgHBwc8tS2LCAwHjXHAXt7e6bNmqa/PXzocNLT01WLRwhzo3R+SqGdC+ZwhjZAkSJFVOtbmC93d3fGTdDNZGvRMmr4KJUjsj2Sm9Znzx64f99yJlcdHGDSJNiyBXbtUjuaPAoK0n1aYO5LCBR06NAhmjRpgo+PD48ePQKgfPnyBAUF8fvvv+Ph4ZHnti1hDwJLovY40KlTJ15o+AIA4ZHhrF69WtV4hDAnSuenFNq5kHVGW60ztAE5Ukw81ZdffkmZEmUB2Lx1M3v37lU5ItsiuWl9goPBw0O347il6NoVmjTRbY5mcZdopqXBxo26X0KjUTsa1cXFxTFw4ECaN2/OiRMnANBoNAwcOJCzZ8/SxQjV8fbtugUElvJhkrlTexzQaDTMmD1Df3v08NEkJyerGJEQ5kPp/JRCOxeiLkTpv1dzRjssLEy1voV5e2IzlCE+shmKgiQ3rUtGhq7Q7tLFsmo+jQamToUDB3Q1q0UJCYF792x+elWr1RIUFIS3tzcLFizQ/x2vX78+Bw4cYN68ebi5uRmlL1lAYFzmMA688sorvNHmDQCu3brGokWLVI5ICPOgdH5qtCq9C4+Li8Pd3Z3Y2FijDRam5lm+MpeuR+NcyIWHifFoVHrndfXqVSpUqKBK38L8paWl4V3dmwvRFwDYtGkTb7/9tspR2QbJTety6BA0a6Zbgv3KK2pHk3tvvAHXr8PJk2Bvr3Y0OTRwIGzYAJcvW9anG0Z05coVBgwYwMYsn5I4OzszceLEfF2HnZ20NChbFvr2hSlTjNasTTOXceD48eP6jfGKuhXj0tVo1WfbhVCb0vkpM9o5lJGRwfVb1wDwKF9BtSIbIDAwULW+hflzcHAw2AzFZ4gPGRkZKkZkOyQ3rUtQEJQsqTtb2BJNngxnz8KPP6odSQ5lLiGw0WXjaWlpzJkzB29vb4Miu3379pw5c4Zhw4YZtcgG2LsX7t6VZePGZC7jQMOGDfngvQ8AeBB3n9mzZ6sckRDqUzo/ZUY7h27cuEG5cuUAaN+uPX/+9afKEQnxdFqtlsYNmnD85DEAfvzxR/73v/+pHJUQlkOr1S2nffllWLpU7Wjy7r33dDPz4eHg6Kh2NM+RuYRg505o3VrtaBR19OhRPvvsM44dO6a/r0yZMsybN493333XZB/uf/217rMNG15AYNUuXLhAzRo1Sc9Ix7mQC9FXoihZsqTaYQlhM2RGO4eyboRWuap6Z2gDBAQEPP9BwqZpNBpmZtkMZZTPaFJSUlSMyDZIblqPs2chIsLyZ/oCAuDaNfjhB7UjyYGgIChRwnKXEOTBw4cPGTJkCE2bNtUX2RqNhi+++IKwsDDee+89kxXZWq1l7kFg7sxpHKhWrRp9+/YF4FFyApMnT1Y5IiHUpXR+yox2Dq1du5bu3bsDMH36dHx8fFSLJS0tzejLx4R1avNqG3bs2gHA/PnzGTBggMoRWTfJTevh7w8zZsCdO1CokNrR5E+/frrLniMjwWyH28wlBC+9BMuWqR2NIv744w+++uorrly5or+vTp06LF68mBYtWpi8/8OHoWlTm1xAYFLmNg5cv36dKp5VSE5NxsG+ABciI1Td0FcINSmdnzKjnUNZz9BW82gvgJkzZ6rav7Ac02dO138/3tePhw8fqhiN9ZPctB5BQfD225ZfZAOMHw/x8fDtt2pH8gzWsoQgB65du0a3bt3o2LGjvsh2dHRkypQpHDt2TJEiG2xyAYEizG0cKFeuHIOHDgYgLT2V8ePGqxuQECpSOj+l0M6hrEvH1f4k8MMPP1S1f2E5GjduzLvd3gXgfuw95syZo25AVk5y0zpERUFoqPXUfBUq6DbznjULbt9WO5qnCAqCwoWhTRu1IzGZ9PR0FixYgLe3N0FBQfr733zzTc6cOcPIkSMpUKCAIrFotbqXvGNHMKPJV6tgjuPAiBEjKOysW86y6scfOXPmjMoRCaEOpfNTCu0cirpoHmdoA+zdu1fV/oVlmTR5EnYa3dk+UydN4+7duypHZL0kN61DcLBuJvutt9SOxHhG/h979x0eRbXGcfy7KSTU0KSD9C6gCAqKigioSFEsyEVFBQURpJgQQqgJBAhNRYoKgooFdUMTEBAUBBEEQUpoofeehEBCyt4/RpYEA6TszpnZeT/P43Oza7Lzk8ubs++eM+cEg5eXthO5IUVFwdNPm2DHtpzZtm0bTZs2pXfv3sTHxwNQokQJ5s6dy7Jly6hcubKueaKjYe9ez/kwyUiMOA4UKVKEwUNDAHA40ggJDlGcSAg19K5PabSzKGZPDAB5fPwoUaKE0iyqG31hLtWrV+fNN98AICHxMhFyWKrbSG16BrsdWrWCAgVUJ3GdYsUgKAimTYN0C7SM4eBB+Ptvj+z6EhISCAoKomHDhmzcuNH5fLdu3YiOjqZz585KjguNitL+fnvwAgJljDoO9O7dm7uKau9fFy5eyIYNGxQnEkJ/etenNNpZ4HA4OHbiGABlS5VVeoY2aMvPhMiOYcOHkcdHu9n0ow+mZNh8R7iO1Kb5nToF69d7ZM9H375QpAgMH646yU3mz/e8JQTA0qVLqVu3LpGRkc7fDbVq1WLNmjV8+umnFC1aVFm263sQeOgCAqWMOg7ky5ePsNEjnY8D+weiaD9kIZTRuz6l0c6C8+fPk5icCEDVGlUUp9HO9BYiO8qWLct7/foAkJx6jeHDhqsN5KGkNs1vwQJtiXXbtqqTuF7+/DB0KHzxBezYoTpNOnY7tGyp3aPtAU6ePEmnTp14+umnnfu7+Pn5ERYWxtatW2nWrJnSfIcOwZYtnvlhkhEYeRx44403qFReO6L29z9+Z/ny5YoTCaEvvetTGu0sMNIZ2gCNGzdWHUGYUHBwMAXyam9kP589m927dytO5HmkNs3PbodHH9WWWnuibt2gUiUIDVWd5F+nT8O6dR7R9aWlpTF9+nRq1arFd99953z+8ccf559//iE0NJQ8efIoTKjx0AUEhmHkccDX15cx48c4Hwf2CyQtLU1hIiH0pXd9SqOdBemP9jLCvTc//vij6gjChIoWLUrIkEGAbIbiLlKb5nbpEqxa5RE93y3lyaOdEb5gAfzxh+o0eMwSgh07dtCsWTN69uxJbGwsAMWKFWPOnDmsXLmS6tWrK054g4ctIDAco48Dzz//PPXq1Adge/R2vv/+e8WJhNCP3vVpcyi6QSMuLo6AgABiY2MpVKiQighZNmHCBN5//30A5s6dS+fOnZXmSUpKws8TDncVuktISKBi+Uqcu3gWgI0bN9KoUSPFqTyH1Ka5ffUVvPIKHDsGZcuqTuM+aWlw771QuDD8+iso3XbkySfh2jXtEw4Tunr1KmFhYURGRpKSkuJ8vmvXrkRGRlK8eHGF6f7r9GkoXRpmzoTXX1edxjOZYRxYvnw5rVu3BqBiuYrsPbBXt6PlhFBJ7/qUGe0sMNqMdmRkpOoIwqTy58/PyFEjnI+DBgQpTON5pDbNLSoKHnjAs5ts0CaQIyJgzRr4+WeFQS5dgl9+Me0SghUrVlC3bl0iIiKcTXb16tVZtWoVn3/+ueGabICFC7UPVky+gMDQzDAOtGzZkkceegSAQ8cOMWvWLMWJhNCH3vUpM9pZ0K5tOxYtXgTAsWPHKOvp78KER0tOTqZapWocPq59gLR8+XJatmypOJUQal25AsWLaztyB1ng8yeHQ7sXPS5O2xjLS8XH7nPnQpcucPQolCunIEDOnDlzhn79+vH11187n8uTJw+DBg0iODgYfwNv5f3UU5CUZNoFBMKF/vzzTx588EEA7ipSgkPHDpIvXz7FqYTwLDKjnQX7d+8HwMfbh9KlSytOA+Hh4aojCBPz9fUlIvLGWdqB/WUzFFeR2jSvn3+Gq1fh2WdVJ9GHzabNam/bBun27dKX3Q6NG5umyU5LS2PmzJnUrFkzQ5P9yCOPsG3bNoYPH27oJjs21tQLCEzDLOPAAw88QPu27QE4e/EMH330keJEQrif3vUpM9pZUDBfQS5fvUz5UuU5cvKI6jicOHGCMmXKqI4hTCwtLY16teuxc89OAObNm8cLL7ygOJX5SW2a16uvwt9/w/btqpPoq1072LkToqO1jdJ0c30JwbBhMHCgjhfOmejoaN5++23Wrl3rfK5IkSKMHz+erl274qVkSUD2fP01/O9/pltAYDpmGgd27dpF3br34HCkUTBfQQ4fO0yRIkVUxxLCbfSuT+OPDIpdunSJy1cvA1C5amXFaTRLly5VHUGYnJeXF5GTbtynMnBAMMnJyQoTeQapTXO6dg0WLbLmTN+oUXDwoLY5lq6WLzfFEoLExESGDRtG/fr1MzTZXbp0Yffu3bzxxhumaLLBdAsITMtM40Dt2rV57dVXAYi/Es+YMWPu8BNCmJve9WmO0UGh9BuhVa5mjEa7Xr16qiMID/Dkk0/ycJOHATh49ACzZ89WG8gDSG2a06+/avtyGbznc4t77tFukx45EhISdLyw3Q516oCBjr262erVq6lfvz4jR450fhBZpUoVli9fzpdffkmJEiUUJ8y6q1dh6VJrfpikN7ONAyNGjsDHW9txfPLEDzh+/LjiREK4j971KY32HaRvtCtWrKguSDoXLlxQHUF4AJvNxrgJ45yPQwcN4erVqwoTmZ/UpjlFRUGlSlC/vuokaowYAefPw4cf6nTB5GRDLyE4d+4cXbt25fHHH2fv3r0A+Pj4EBISwvbt2025eeTy5dpqfSt+mKQ3s40DFSpU4N3evQC4lpLEyBEjFScSwn30rk9ptO/g0KFDzq+NcLQXaGchC+EKTZo0oW0b7ZyXM+dPM2XKFMWJzE1q03xSU7VG+7nnFJ8nrVClStCjB4wdC7q8BzHoEgKHw8GcOXOoWbMmc+bMcT7ftGlTtm7dyqhRo8ibN6/ChDlnggUEHsOM40BISAj5/PMD8NlnM9m3b5/iREK4h971KY32HRjtDG2AmjVrqo4gPEjE2AhsaB1G+IhwLl26pDaQiUltms+GDXD6tOF6Pt0NHgwpKVqz7XZ2O1SsCA0a6HCxrNm7dy8tWrSga9eunD9/HoCAgACmT5/O2rVrqVOnjuKEOZecrJ2fbfW/43ox4zhw1113MXCQdq5hmiOVwSGDFScSwj30rk9ptO/g4MGDzq+NsnR85cqVqiMID1KnTh1eeeUVAOIS4oiMjLzDT4hbkdo0n6goKFUKmjRRnUStkiVhwABt+bhbb9FMS4P58w2zhCApKYmwsDDq1avH6tWrnc936tSJ3bt38/bbb5tms7Nb+e03bQGBQVfqexyzjgP9+vWjSKGiAHz/w/ds2bJFcSIhXE/v+pTjve6gfu36/BP9D142LxKTEvH19VUdibi4OEP/mQnzOXToENWqViclNRl/X38OHD5giDPjzUZq01wcDqhSBVq3hmnTVKdRLy4OKleGjh1hxgw3XWT9enjoIVi7Fh5+2E0XyZq1a9fy1ltvsXv3budzFStWZOrUqTz11FMKk7nWO+9oG6EdOGCIzzY8npnHgY8++og+ffoA8ETzJ1ixaoXiREK4lt71ae6PaXVw5OhRAEoWK2WIJhvgQ912rBFWUbFiRd7p1ROAxOREwsLCFCcyJ6lNc9m2TTvaSpbUagoV0paQz5wJ/+4B5np2uzZ9rnAJwYULF+jWrRuPPPKIs8n29vYmKCiIHTt2eFSTfX0BwbPPSpOtFzOPA2+99RblSmnnv61cvTLDKg8hPIHe9Skz2reRkJBAgQIFAGjSuAnr/1yvOJEQ7nPmzBkqVqjE1aQreHt5s2fvHqpUqaI6lhBuM2yYtlT69GnIk0d1GmNITNQ2zGrSBL77zsUv7nBA1arQsiVMn+7iF8/K5R18/fXX9OvXj7Nnzzqfb9y4MZ988gn1PXDb+T/+gKZNDbGAQJjEl19+yav/nq3dsMH9bNqyEZt8SiNEjsiM9m2k3witSnXjNBzh4eGqIwgPVKJECYKCAwFITUsldHCo4kTmI7VpLnY7PPOMNNnp+ftrx33NmwebN7v4xf/5R1u/rGAJQUxMDE8++SRdunRxNtkFCxZkypQprF+/3iObbDDEAgLLMfs40LlzZ2pWrQXA5q1/sWDBAsWJhHAdvetTGu3bSH+0l1E2QgN45513VEcQHqp///4ULlgEgG+/+5atW7eqDWQyUpvmsW8f7NghG0Rl5pVXoFYtGDTIxS9st0NAADRv7uIXvrVr164RERFB3bp1Wb58ufP5jh07Eh0dTa9evfD29tYtj54cDm2zv/btwUP/Ew3J7OOAt7c34ybeOH4gqH8QqampChMJ4Tp616c02rdhxKO9AL755hvVEYSHKlSoEMNGDnU+Hhg4UGEa85HaNI+oKMibV9sITWTk4wOjRsGKFfDLLy584agoaNtWtyUE69evp2HDhoSEhJCYmAhA+fLlWbhwIT/88ANly5bVJYcq27dDTIx8mKQ3TxgHnnnmGR5o+AAA+w7u48svv1ScSAjX0Ls+pdG+jfSNtpFmtJs1a6Y6gvBgPXr0oEwJ7Q3o8pXL+e233xQnMg+pTfOw2+HJJyFfPtVJjKlDB2jcWJvVdslOLvv2aZ2fDsvGL126RM+ePXnooYfYsWMHAF5eXvTr149du3bRtm1bt2cwAgULCASeMQ7YbDYiJ9046jMkaLDzwyohzEzv+pRG+zYOHTzk/NpIM9rpl7QL4Wr+/v6MGnvjHpbA/kEo2jPRdKQ2zeH4cfjzT5npux2bDcaMgU2btInoXNNhCYHD4WDevHnUqlWL6ek2W2vYsCGbNm1i4sSJzg1OrSAqSvYgUMFTxoFmzZrRuqVWryfPnmCanIEoPIDe9SmN9m3E7Ilxfl2+fHmFSTLy1PvJhHG88sorVK9cHYBNWzayaNEixYnMQWrTHObP15ZHP/OM6iTG1rw5tGqlHfmVkpLLF4uK0pYQ5M/vkmw3O3ToEM888wwvvfQSp06dAqBAgQJMnjyZDRs2cN9997nluka1f7+295x8mKQ/TxoHxkbeuFd7xNCRxMXFKUwjRO7pXZ/SaN/GwX8/9She+C78/f3VhkmndOnSqiMID6dthjLO+Vg2Q8kaqU1zsNvh8cehcGHVSYxv9GjYvRu++CIXL3L8OGzY4JZl48nJyURGRlK7dm2WLFnifL5du3bs2rWL9957Dx8fH5df1+hkDwJ1PGkcqF+/Pp1e6gRA7OVLTJgwQXEiIXJH7/qURvsWEhMTOR97DoCKBlo2DrBp0ybVEYQFtGvXjkb3NgJgT8we5s6dqziR8UltGt/58/DbbzLTl1UNG8KLL2pnjuf4Fk03LSHYuHEjjRo1IigoiKtXrwJQtmxZ7HY7CxYsMNRKNL1FRWlNtpsWEIjb8LRxIHxUON5e2izguDGRnDlzRnEiIXJO7/qURvsWjh496vy6as2qCpP813PyDlHo4L+boYSQlJSkMJHxSW0a36JFkJamHXkksiYsDE6ehKlTc/gCUVHaOvQiRVySJy4ujt69e/Pggw+ybds2QPt91bt3b3bt2sWzCs7pNpITJ+CPP+TDJFU8bRyoUqUKb739FgCJ166a/pxwYW1616c02reQ/mb5uysaa0Z7xowZqiMIi3j00Udp+XhLAI6fPi5/9+5A/nyMz26Hpk2hVCnVScyjenXo1k1bRh4bm80fPn8efv3VJV2fw+HAbrdTq1YtpkyZ4tyksX79+mzYsIEPP/yQQoUK5fo6Zid7EKjliePA0KFD8ffVbqGc9vE0j9nwTViP3vUpjfYtGPUMbYDQ0FDVEYSFjB1/YzOU4UNGEB8frzCNsUltGtvly7B8ucz05cTQoZCQANm+RdNFSwiOHDlChw4d6NixIydOnAAgX758jB8/nr/++ovGjRvn6vU9iYsXEIhs8sRxoFSpUgwIGgBASloKQ4cMVZxIiJzRuz6l0b6F9J/WGekMbUCW7Qhd3Xvvvbz4/IsAXIy7wKRJkxQnMi6pTWNbuhSSknQ5ytnjlCkD770HEyfC6dPZ+MGoKGjSBHK4AU1KSgqTJ0+mdu3aLFy40Pn8008/zc6dOxkwYIAlNzu7lQsXYPVq+TBJJU8dBwIDAymUPwCAr776ynlGvRBmond9SqN9C0ae0e7fv7/qCMJiRkWMcm6GMnb0OM6ePas4kTFJbRqb3Q4NGkClSqqTmNPAgeDrC6NGZfEHLl+Gn3/Ocde3efNmHnjgAfr160dCQgKgzazNmzePxYsXG+5DcCOQPQjU89RxICAggCHDtdlABw4GBQ1SnEiI7NO7PqXRvoWYvTfO0DZaoz1t2jTVEYTFVK1alW7dugFwJSmB0aNHK05kTFKbxpWUBD/9JDN9uVGkiNZsT58OBw9m4QeWLcvREoLLly/Tr18/GjduzJYtWwBts7OePXsSHR3NCy+8gM1my8F/gefL5QIC4QKePA706tWLksW0DS4WL13M+vXrFScSInv0rk9ptG/hYMwhAAoXKEJ+g52P8YzscCIUGDpsKH6+fgBM+ehjjhw5ojiR8UhtGtcvv0B8vDTaudWnDxQvrt2zfUd2O9SvD5UrZ/n1Fy5cSO3atZk8eTJpaWkA1K1bl3Xr1jF16lQKy+Hnt5SQkKsFBMJFPHkcyJs3L+FjwpyPA/sFOjclFMIM9K5PabQzkZyczJkL2k1oFQx4Duf140yE0FOZMmXo278vACmpybIZSiakNo0rKgqqVYPatVUnMbd8+bQme+5c+Oef23xjUhIsXpzlru/48eN07NiR9u3bO4/X9Pf3JyIigi1bttCkSRMXpPdsy5ZpZ53LHgRqefo40LVrVypX0D48W79xPcuWLVOcSIis07s+pdHOxLFjx0hzaJ+kV61lrDO0AYoVK6Y6grCogQMHUjBfQQC++PJLdu7cqTiRsUhtGlNqqnbk0XPPgaw4zr0339QmqQcPvs03rVqVpSUEqampTJkyhVq1amG3253Pt2rVip07dxIcHIyvr6+Lknu2HCwgEG7g6eOAj48PYyfcOI0ksF+gc/WJEEand31Ko52J9BuhGXGzlbx586qOICyqSJEiDB6qvbt2ONIICQ5RnMhYpDaN6fff4dw5melzFV9fCA/XJqx///0W32S3Q9WqUKfOLV9n27ZtNG3alN69ezuPDSxRogRz585l2bJlVJaOMcuuXcvWAgLhRlYYBzp27Ej9ug0A2LlnJ99++63aQEJkkd71KY12JozeaO/du1d1BGFhvXv3pkTRkgAsXLyQDRs2KE5kHFKbxhQVBWXLQqNGqpN4jhdf1HZwDw6G/9yimZoKCxbccglBQkICQUFBNGzYkI0bNzqf79atG9HR0XTu3Fk2O8umVasgLk4+TDICK4wDNpuN8ZMinY8HBQ7i2rVrChMJkTV616c02plIf4a20XYcB2jRooXqCMLC8uXLR1jESOfjwP6yGcp1UpvG43Bok6vPPgteMuK5jJcXRETAunWwZMlN/3LdOjh7NtPp1SVLllCnTh0iIyNJTU0FoFatWqxZs4ZPP/2UokWL6pDe81xfQFC3ruokwirjwBNPPMFjzR4D4MiJI3z22WdqAwmRBXrXp7ztyISRz9AGmDNnjuoIwuJef/11KpXXDiP+/Y/fWb58ueJExiC1aTybN8PRozLT5w6tW8Ojj8KgQdrZzU52O5Qpk2EJwcmTJ3nppZdo06aNc4z18/MjLCyMrVu30qxZM53Tew7Zg8BYrDQOjJswzvn10MHDnOfdC2FUetenzaFoKiouLo6AgABiY2MpVKiQigi39OjDj7Jm3RoALl68KMeJCJGJefPm8dJLLwFwT6172LpjK14yZSgMZvBg7dzn06fBx0d1Gs+zYYN2bvNXX8H//oe2hKBiRWjbFqZMIS0tjU8++YTg4GBiY2OdP/f4448zbdo0qlevriy7p1i7Fh55BP74Ax58UHUaYTXPdXiOqAVRAIwaNYqQENm7RYjr5F1xJg7GHASgQN4Chmyyw8PDVUcQgueff556tesBsD16O99//73iROpJbRqP3Q7t20uT7S4PPggdOsCQIdqGXGzZAkeOwLPPsmPHDpo1a0bPnj2dTXaxYsWYM2cOK1eulCbbRa4vIGjcWHUSAdYbB0aPGY3NprUTo8MiOH/+vOJEQtya3vUpM9o3SU1Nxd/Pn5TUFGpXq83OvcY7vig1NRVvb2/VMYRg+fLltG7dGoCK5Sqy98BeSx/FI7VpLNHR2rnZCxdqE6zCPXbuhHr14MMPodeJwVydNo2w7t2JnDiRlJQU5/d17dqVyMhIihcvrjCtZ7m+gOCZZ+Djj1WnEWDNcaDbm92YOWsmAO+//z6RkZF3+Akh1NC7PmVG+yYnT54kJVV7Y1ClRhXFaTI3bty4O3+TEDpo2bIljzz0CACHjh1i1qxZihOpJbVpLFFRkD8/tGypOolnq1MHXn0VwsJg4Zx51E1JIWLcOGeTXb16dVatWsXnn38uTbaL/f23toBAjvUyDiuOA8NHDMfXOw8AH07+iGPHjilOJETm9K5PabRvkuFor0oV1QW5jc6dO6uOIASgHfGRfjOUIYOGcuXKFYWJ1JLaNBa7Hdq0AX9/1Uk837vvnuHsmc60P76fA/+eiZ0nTx6GDRvGtm3baN68ueKEnsluh6JFtXu0hTFYcRwoV64cffr2BuBaShIjho9QnEiIzOldn9Jo3yT90V5GPEMbYM2aNaojCOH0wAMP0P6Z9gCcvXiGjz76SHEidaQ2jePwYW3Hcdlt3L3S0tKYOXMmLVvWJM3xjfP5Rx55hG3btjF8+HD85ZMOt7HbtdsiLHzHjuFYdRwYNGgQ+f0LADBr1ufs2bNHcSIh/kvv+pRG+yZGP9oLoFKlSqojCJHB6LE3NkMZNXIUFy9eVJxIDalN45g/H/LkgaefVp3Ec0VHR/PYY4/RrVu3dDVfhNatZ7J69Wpq1qypNJ+n271b24dAlo0bi1XHgWLFijEoNBiANEcqgwcNVpxIiP/Suz6l0b5JhqXjBp3RTr+5jBBGULt2bV579VUA4q/EM2bMGMWJ1JDaNA67Xbs320B7bXqMxMREhg4dSv369Vm7dq3z+S7A+23s/PrrGxw/Lm8v3E32IDAmK48D7733HsUKa/sw/Bj1I3/99ZfiREJkpHd9ykh4kwP7Dzi/NuqM9qlTp1RHEOI/RowcgY+3tn5x8sQPOH78uOJE+pPaNIYzZ+D332XZuDusWrWKevXqERYWRnJyMgBVqlRhec+efJknD0Nn3EfBgjBCbtF0O7sdnnoK8uZVnUSkZ+VxoECBAowIH+58PPD9gerCCJEJvetTGu2bxOzVGm1/X3+KFSumOE3mGjZsqDqCEP9RoUIF3u3dC9A2Qxk5YqTiRPqT2jSGhQu1/23XTm0OT3Lu3Dm6du1KixYt2LdvHwA+Pj6EhISwfft2Wu7aBU88QcGyhQgNhc8/15Y2C/c4cgT++kuWjRuR1ceB7t27U750BQBW/baKX375RXEiIW7Quz6l0U7H4XBw/JQ2C1e+THlsNpviRJmbP3++6ghCZGrw4MHk888PwGefzXS+IbcKqU1jsNu1XZjvukt1EvNzOBzMmTOHmjVrMmfOHOfzTZs2ZevWrYwaNYq88fGwdq1zCUGPHlCuHISGqkrt+a7vQdCmjeok4mZWHwfy5MlDRORo5+P3+76Pw+FQmEiIG/SuT2m00zlz5gzXUpIAqFyjsuI0t9a7d2/VEYTIVPHixQkO0ZaKpTlSGRxirc1QpDbVi42FX36RZeOusHfvXlq0aEHXrl05f/48AAEBAUyfPp21a9dSp04d7RtvWkLg5wcjR8KPP8KmTSqSe76oKGjRQvYgMCIZB+Dll1+mdvXaAGzdsRW73a44kRAavetTGu100m+EVrmKcRvt8ePHq44gxC3169ePIoWKAvD9D9+zZcsWxYn0I7Wp3pIlcO2aNNq5kZSUxMiRI7nnnntYvXq18/lOnTqxe/du3n77bby80r19iIqCZs2gRAnnU126QO3aMGiQnsmt4exZWLNGlo0blYwD4OXlxbiJ45yPBw4YaOlN4oRx6F2f0mink/4MbaNuhAYQKuvxhIFZeTMUqU317Ha4/34oX151EnNau3YtDRo0YNiwYVy7dg3QTuBYsmQJ33zzDaVKlcr4A7GxsHLlfz7Z8PaG0aO11QUrV+qV3hpkDwJjk3FA8/TTT9OkURMAYg7HZLj1RAhV9K5PabTTMcPRXgDh4eGqIwhxW2+99RblSpUDYOXqlRlmxTyZ1KZaV6/C0qUy05cTFy5coFu3bjzyyCPs/ncXM29vb4KCgtixYwdPPfVU5j94myUE7dpBkyYQHAxyi6brREXBww9nWEAgDETGAY3NZiNyUqTzcWhwKFevXlWYSAj961Ma7XTMMqPdrVs31RGEuC0/Pz9Gj7uxGUpg/yBLbIYitanWihWQkCCNdnY4HA7mzp1LzZo1mTlzpvP5xo0bs3nzZsaOHUv+/Plv/QJRUdCwIVSo8J9/ZbPBmDGwebN2v7bIvbg47e+5/B03LhkHbnjooYdo86S2Y9+pc6eYOnWq4kTC6vSuT2m00zl04JDzayM32osWLVIdQYg76ty5MzWr1gRg89a/WLBggeJE7ie1qZbdDrVqQY0aqpOYQ0xMDK1bt6ZLly6cPXsWgIIFCzJlyhTWr19P/fr1b/8CV69qM9q36foeeUQ763nwYJBbNHPv+gKCDh1UJxG3IuNARhHjIrChneITNiyM2NhYxYmEleldn9JopxOzNwYAX588lCxZUnGaW2vQoIHqCELckbe3d4bNUIL6B5GamqowkftJbaqTnAyLFslMX1Zcu3aNiIgI6taty4oVK5zPd+zYkejoaHr16oW3t/edXyiLSwhGj4a9e2H27FwGF84FBAaeC7A8GQcyuueee+jcuTMAsQmxslmcUErv+pRG+18Oh4Mjx48CUKZEmYw7qhrM9WNWhDC6Z555hgcaPgDAvoP7+PLLLxUnci+pTXXWrIELF6TRvpP169fTsGFDQkJCSExMBKB8+fIsXLiQH374gbJly2b9xaKioGZN7Z/baNAAXn4Zhg/XJsFFziQmwk8/yd9xo5Nx4L/CwsPw8fIBYPzY8Zw+fVpxImFVetencbtJnV28eJGrSVcAqFq9iuI0tyebSQizuHkzlMEDBzvf3HsiqU11oqK0Wb5771WdxJguXbpEz549eeihh9ixYwegHcHTr18/du3aRdu2bbP3gsnJ2vbXWez6Ro6E06fh44+zm1xcd30BgRxdZ2wyDvxXpUqV6PFODwASkxMJCwtTnEhYld71KY32v9JvhFapaiV1QbKgWrVqqiMIkWXNmjWjdcvWAJw4c4Lp06crTuQ+UptqpKVpjfazz2obcIkbHA4H3333HTVr1sxQew0bNmTTpk1MnDiRAgUKZP+Fs7mEoGpV6N5dW0Z+6VL2LyduLCCoVUt1EnE7Mg5kLjQ0FP88eQGYMW0GBw4cUJxIWJHe9SmN9r/SH+1l5I3QAMsclSQ8x9jIsc6vRwwdSVxcnMI07iO1qcbGjXDihCypvdnBgwdp06YNnTp1ci7VLFCgAJMnT2bDhg3cd999OX/xqChtp/FsvMaQIdry58jIO3+vyCglBRYskL/jZiDjQOZKlixJ4MD3AUhJS2FI6BDFiYQV6V2f0mj/yyxnaAO8+uqrqiMIkS3169en00udALgUf5EJEyYoTuQeUptqREXBXXdB06aqkxhDcnIykZGR1KlTh6VLlzqfb9euHbt27eK9997Dx8cn5xfI4RKC0qWhb1+YPBlOnsz55a3o+gICWTZufDIO3NqAAQMIKFAYgG+++YZ//vlHbSBhOXrXpzTa/zLLGdoAH330keoIQmRb+KhwvL20nYzHjYnkzJkzihO5ntSm/hwO7VivDh0gKxtle7qNGzfSqFEjgoKCnPeilS1bFrvdzoIFCyhfvnzuL7JpU46XEAQFgZ8fhIfnPoaVREVB+fLajuPC2GQcuLWAgACGjtBmsh04GBg4UHEiYTV616c02v9K32gbfUY7NDRUdQQhsq1KlSq83eNtABKvXSXcA99pS23qb8cO2L9fltTGxcXRu3dvHnzwQbZt2wZomxH27t2bXbt28awrp0Ltdm0JwUMPZftHCxeG4GD45BOIiXFdJE92fQHBc8/JHgRmIOPA7b3zzjuUKl4agGXLl7F27VrFiYSV6F2f0mj/a3/0fgC8vbwpU6aM4jS354kNirCGIUOG4O/rD8C0j6dl+IDLE0ht6i8qCgoVgscfV51EDYfDgd1up1atWkyZMgWHwwFot2ts2LCBDz/8kEKFCrnyglqj3b59jpcQvPsulCgBQ4e6LpYn27QJjh+XZeNmIePA7fn7+zNq7I0/o6D+Qc7fW0K4m971KY32v44c087QLlW8NN4GX3/47rvvqo4gRI6UKlWKAUEDAG0zlKFDPOudttSm/ux2eOYZyJNHdRL9HTlyhPbt29OxY0dOnDgBQL58+Rg/fjx//fUXjRs3dv1Fd+7M9RKCfPlg2DD4+mvYutV10TzV9T0IHn5YdRKRFTIO3Nmrr75K1YpVAdjw1wZ++uknxYmEVehdn9Jooy25i7+i7YJcuYqxj/YC+Oqrr1RHECLHAgMDKZQ/AND+Ll8/09cTSG3q68AB2LbNesvGU1JSmDx5MrVr12bRokXO559++ml27tzJgAEDcrfZ2e3Y7VCwYK6XELzxBlSvDoMHuyiXh3LBAgKhMxkH7szHx4exE26cRhLYL4jU1FSFiYRV6F2f0miTccfxytUrK0ySNY8++qjqCELkWEBAAEOGa/fIOHAwKGiQ4kSuI7Wpr6go8PeHJ59UnUQ/mzdv5oEHHqBfv34kJCQA2kqRefPmsXjxYvfvMXJ9CYGfX65exsdH2xBtyRJtR22RuV27YN8+WTZuJjIOZM2zzz7LffW13f1274/mm2++UZxIWIHe9SmNNuY62gsgRnaQESbXq1cvShYrBcDipYtZv3694kSuIbWpL7sdWreG/PlVJ3G/+Ph4+vXrR+PGjdmyZQugbXbWs2dPoqOjeeGFF7C5e6csFy8h6NhR20V70CBt5lb81/UFBC1aqE4iskrGgayx2WyMnxTpfDwocBDXrl1TmEhYgd71KY025jraCyCPFW9GFB4lb968hI8Jcz4O7BfoEZuhSG3q5+RJWL/eGjN9CxcupE6dOkyePJm0tDQA6taty7p165g6dSqFCxfWJ0hUlDaT7aIlBF5eEBGh/f+4eLFLXtLj2O3Qpk2uFxAIHck4kHXNmzenxWPap0jHTh3jk08+UZxIeDq961MabTLOaJuh0S5ZsqTqCELkWteuXalcQbtVY/3G9SxbtkxxotyT2tTPggXaPatt26pO4j7Hjx+nY8eOtG/fnqNHtQ07/f39iYiIYMuWLTRp0kTfQNeXEBQo4LKXfOIJ7XbvkBCQWzQzOnhQ2yzOansQmJ2MA9kzdvyNe7WHhQ7n8uXLCtMIT6d3fUqjDRw+ZK6l45s3b1YdQYhc++9mKIHO2TqzktrUj90OzZtD0aKqk7heamoqU6ZMoVatWtjtdufzrVq1YufOnQQHB+Pr66tvqJMn4Y8/XL6EwGbTZrV37NB2IRc3XF9A8NRTqpOI7JBxIHsaNmzI8x2fB+BC7HkmT56sNpDwaHrXp82haL1mXFwcAQEBxMbGuvaMzxy495772Lrjb2zYSExKNPyyn9OnT8snpsIjOBwO7q13L9t2bAPg66+/5uWXX1acKuekNvVx8aJ2DvMHH8A776hO41pbt27l7bffZuPGjc7nSpQowaRJk3j55Zfdfx/2rUyfrh2Affo0FCvm8pfv2BG2bIHdu2WZ9HUPP6x9kLRwoeokIjtkHMi+vXv3UqtmbdIcqeT3L8ChowcpXry46ljCA+ldnzKjDRw+os1olyha0vBNNsCnn36qOoIQLqFthjLe+Tj4/WBTb4YitamPxYshJQU6dFCdxHUSEhIIDAzk/vvvz9Bkd+vWjejoaDp37qyuyQZtCcFjj7mlyQZtB/IjR2DGDLe8vOmcOqXduy7Lxs1HxoHsq169Om+++QYACYmXiYiIUJxIeCq969PyM9pXrlwh/79b1j7Q8AE2/LVBWRYhrKr5I835de2vAHz88ce842nTlMKlnn1Wm1j1kM3qWbJkCe+8806G/UJq1arFjBkzaNasmcJk/7q+hGDyZOjVy22XefNNWLQIYmK0nbatbMYM7Y/aTQsIhDCc48ePU7liFa6lJOHrnYeYg/spX7686lhC5IrlZ7SPHDni/LpK9SoKk2RdeHi46ghCuNS4CeOcXw8dPMx5PrDZSG26X0IC/PyzZ+w2fvLkSV566SXatGnjbLL9/PwICwtj69atxmiyQbclBMOGQVwcTJrk1suYgt0Ojz4qTbYZyTiQM2XLluW9fn0ASE69xrChwxQnEp5I7/q0fKOd4QztShXVBcmGAQMGqI4ghEs1atSI5zpoayTPXzrHBx98oDhRzkhtut/PP8PVq+ZutNPS0pg+fTq1atVi3rx5zucff/xx/vnnH0JDQ411G1NUFDz4IJQt69bLVKigzeKOHw9nz7r1UoZ26RKsWiXLxs1KxoGcCw4OpkBebTnL7DlziI6OVpxIeBq969PyjbbZztAGmDp1quoIQrjc6DGj8bJ5a1+HRXD+/HnFibJPatP97HaoVw+qVlWdJGd27NjBww8/TM+ePYmNjQWgWLFizJkzh5UrV1K9enXFCW+SkADLlun2ycagQdr/WvkWTU/cg8BKZBzIuaJFixIyRPsl4HCkERIcojiR8DR616flG+0MM9omONoLoF27dqojCOFyNWrU4PXXuwLaZihjxoxRGygHpDbd69o1rQkx42z21atXCQkJ4d577+WPP/5wPt+1a1d2797Nq6++qnazs1vReQlB8eIQGAgff6xtjmZFdjs88IDbFxAIN5FxIHf69OlD8SJ3ATB/4fwMm0MKkVt616flG+1DBw85vzbLjPaWLVtURxDCLYaPGI6vt7Zk9sPJH3Hs2DHFibJHatO9Vq+G2FjzLaldsWIFdevWJSIigpSUFEDbZXfVqlV8/vnnxj7GJioK7rkHqlXT7ZL9+kHhwjB8uG6XNIwrV7QFBGb7Oy5ukHEgd/Lnz8/IUSOcjwP7B6Jo32bhgfSuT8s32jF7Y5xfV6hQQWGSrLvrrrtURxDCLcqVK0efvr0BuJaSxIjhI+7wE8YiteledjtUqaL1fWZw5swZ/ve//9GqVSsOHDgAQJ48eRg2bBjbtm2jefPmihPewbVr2jbgOi8hKFAAhgyBOXNg1y5dL62cJ+xBYHUyDuRet27duLusNvm1Zt0aVq5cqTiR8BR616flG+1Dh7Sl40ULFSNv3ryK02SNn5+f6ghCuM2gQYPI718AgFmzPmfPnj2KE2Wd1Kb7pKbCggVaA2LEFdbppaWl8dlnn1GzZk2+/vpr5/OPPPII27ZtY/jw4fj7+ytMmEUKlxC89Za2OVpoqO6XVspuh7p1dV1AIFxMxoHc8/X1Zcz4G7ePBfYLJC0tTWEi4Sn0rk9LN9rXrl3j7IUzgHmWjQPExMTc+ZuEMKlixYoxKDQYgDRHKoMHDVacKOukNt3njz+0M4WNvqQ2Ojqaxx57jO7du3Px4kUAihQpwsyZM1m9ejU1a9ZUnDAboqKgcmVt9zmd5ckDYWFahD//1P3ySlzfg8Dof8fF7ck44BovvvgidWvWBWDbzm38+OOPihMJT6B3fVq60T569CgOtPs+qtU0zxa2jz32mOoIQrjVe++9R7HC2n2rP0b9yF9//aU4UdZIbbqP3Q6lS2ubRBlRYmIiQ4cOpX79+qxdu9b5/P/+9z92797NG2+8gZeXiYbc1FSYP1/pEoKXX9ZuEwgOBivcovnrr9rRXrJs3NxkHHANLy8vIidFOh8PHDCQ5ORkhYmEJ9C7Pk006rtehqO9KppnRvvLL79UHUEItypQoAAjwoc7Hw98f6C6MNkgtekeDoc2s9mhAxixV121ahX16tUjLCzM+UawSpUqLF++nK+++ooSJUooTpgDBlhC4O0No0drDeiKFcpi6CYqCipVgvr1VScRuSHjgOu0bt2ah5s8DMDBoweZPXu22kDC9PSuT5tD0VZ+cXFxBAQEEBsbS6FChVREYNasWbz55psATJkyhV69einJkV1paWnmmhkRIgeuXbtG1YpVOXryKAArV66kRYsWilPdntSme/z9N9x3n9ZsPfGE6jQ3nDt3jvfff585c+Y4n/Px8SEoKIjQ0FDT7PuRqQED4Ouv4fhxpZ9uOBzQrJm2QdimTcb8oMUVUlO147y6dIHx41WnEbkh44Br/fHHHzRt2hSAEsVKcujoQXP/bhVK6V2flv5NYMYztAFGjx6tOoIQbpcnTx4iIiOcjwP7Bxn+iA+pTfeIioIiReDRR1Un0TgcDmbPnk3NmjUzNNlNmzZl69atjBo1ytxvBB0Oba2+AZYQ2GwwZgxs2QLff680iltt2KAtIJBl4+Yn44BrNWnShLZt2gJw5vxppkyZojiRMDO969PSM9qvvfYaX3zxBQDbt2+nbt26SnJkl3xaKqwiLS2Ne2rdw6692hk/P/zwAx07dlSc6takNt2jbl1o2FA77km1vXv30qNHD1avXu18LiAggLFjx9K9e3fP+P//+hKC5cuhZUvVaQB45hnYs0c77svXV3Ua13v/fZg7V/kCAuECMg643s6dO7mn7j04cFAofyEOHztM4cKFVccSJiQz2jo6sO+A82sz7ToeERFx528SwgN4eXkxbuI45+OBAwaSkpKiMNHtSW263t69sHOn+p2Yk5KSGDlyJPfcc0+GJrtTp07s3r2bt99+23PeXEdFQeHCYKBNnUaPhpgYmDVLdRLXM9ACAuECMg64Xp06dXjllVcAiEuIY9y4cXf4CSEyp3d9WnpGu2yJcpw4e5xC+QOIvXxJSYacOHLkCBUqVFAdQwhdOBwOHnrwIf7Y+AcAn332mXNvBaOR2nS9sWNh5Eg4dw5UrcZes2YNb7/9Nrt373Y+V7FiRaZOncpTTz2lJpQ71a2rzWj/u+LLKLp0gVWrYP9+yJdPdRrX2boV7r0Xfv4ZWrVSnUbklowD7nHo0CGqVa1OSmoyfr5+HDx8kNKlS6uOJUxG7/q07GenKSkpnDp3CoAK5corTpM9v/76q+oIQujGZrMROfHGER+hwUO4evWqwkS3JrXpenY7PPWUmib7woULdOvWjUcffdTZZHt7exMUFMSOHTs8s8k2yhKCTIwcCWfPwkcfqU7iWgZcQCByQcYB96hYsSLv9OoJQFJyEiNHjFScSJiR3vVp2Ub7xIkTpDlSAahayzxnaIN2bIwQVvLQQw/R5sk2AJw6d5KpU6cqTpQ5qU3XOnYMNm7Uv+dzOBzMnTuXmjVrMnPmTOfzjRs3ZvPmzYwdO5b8+fPrG0ovUVHapxoGnFqtXBneflvbHO3iRdVpXMduh7ZtIU8e1UmEK8g44D6DBw8mr5+2nOXTTz9l//79ihMJs9G7Pi3baKc/Q9tMO46Ddq+gEFYTMS4CGzYAwoaHERsbqzjRf0ltutb8+drGV23a6HfNmJgYWrduTZcuXTh79iwABQsWZMqUKaxfv576nn7I8fUlBAZdmz1kCCQng6fcorlvH+zYIbuNexIZB9ynRIkSBAUHApCalkpoSKjiRMJs9K5PyzbaZj3aC3C++RPCSu655x46d+4MQOzlWMYb8LBZqU3XstuhRQsICHD/ta5du0ZERAR169ZlxYoVzuc7duxIdHQ0vXr1wtvb2/1BVFK1hCAbSpaEfv3ggw/gxAnVaXLv+gKC1q1VJxGuIuOAe/Xv35/CBYsA8N3337F161a1gYSp6F2flm20089om2nHcYD77rtPdQQhlAgLD8PHyweA8WPHc/r0acWJMpLadJ1z5+C33/Tp+davX0/Dhg0JCQkhMTERgPLly7Nw4UJ++OEHypYt6/4QRjB/Pvj46LuEIAfef19rTsPCVCfJPYMvIBA5IOOAexUqVIjhYcOcjwcGDlSYRpiN3vVp2UY7/Yy22RrthQsXqo4ghBKVKlWixzs9AEhMTiTMYO+0pTZdZ9Ei7dijdu3cd41Lly7Ro0cPHnroIXbs2AFoR8r169ePXbt20bZtW/dd3IiuLyEw+Pm0AQEQEgKffqotvTar48fhzz9l2binkXHA/Xr06EGZEtoHoMtXLue3335TnEiYhd71adnjvVo81oJVv60CtJ1lixQponuGnLp69Sp5VZ1zI4Rip0+fpmKFSiReu4qPlw979u2hcuXKqmMBUpuu1LYtxMbCmjWuf22Hw8G8efN47733MqyKaNiwIZ988ok1Z6TOnYNSpWDqVHjrLdVp7ujqVaheHR5+GL75RnWanPn4Y+jbV9tJ3eCfbYhskHFAH3PmzKFr164ANLqvMX/+tQGbzaY2lDA8vevTsjPa+/fFAJDPLz+FTTbCTZgwQXUEIZQpWbIkgQPfByAlLYUhoUMUJ7pBatM14uNh+XL3LBs/ePAgbdq0oVOnTs4mO3/+/EyaNIkNGzZYs8kGbQlBWhq0b686SZbkzQvDh8O338Lff6tOkzN2Ozz+uDTZnkbGAX106dKF6pWrA7Bpy0YWLVqkOJEwA73r05Iz2mlpafjn8Sc5NZkalWuyOyZa1+sLIXInNjaWu8tVJPbyJWzY2LptK/Xq1VMdS7jIvHnw0ktw8CC4aq/K5ORkJk+ezLBhwzKcw96uXTumTJlC+fLlXXMhs2rbFi5dgrVrVSfJspQUqFsXKlWCpUtVp8me8+e1jd0+/lg7skwIkX0LFiygQ4cOANSoUoOde3Z6/qaVwlQsOaN96tQpklOTAaha03znHYaHh6uOIIRSAQEBDB2hzWQ7cDAoaJDiRBqpTdew2+G++1zXZP/555/cf//9BAUFOZvssmXLYrfbWbBggTTZ8fGwYoXpbhb28YFRo2DZMvj1V9VpssdkCwhENsg4oJ927drR6N5GAOyJ2cPcuXMVJxJGp3d9WrLRznC0V6WK6oLkUPfu3VVHEEK5d955h1LFSwOw5Ocl/P7774oTSW26QmIi/PSTa5aNx8XF8e6779KkSRP++ecfAGw2G71792bXrl08a7LG0m2WLoWkJNM12qD9Pbn/fggO1jbPMwu7HZo21W6LF55FxgH92Gw2IidFOh+HBIXIOebitvSuT2m0TXaGNmhLZYSwOn9/f0aNvfHJZGC/QBTdCeMktZl7v/wCly/nrudzOBzY7XZq1arFxx9/7Px7Ub9+fTZs2MCHH36oZBNOw7Lb4d57tTXYJmOzwZgx2u7dZik/d+5BINSTcUBfjz76KC1btATg+OnjzJgxQ3EiYWR616clG20zn6EN2s64Qgh49dVXqVapGgAb/trATz/9pDSP1Gbu2e1QowbUqpWznz9y5Ajt27enY8eOnDhxAoB8+fIxfvx4/vrrLxo3buzCtB7g+hICE85mX9eiBTzxhHbkV2qq6jR3tmyZaRcQiCyQcUB/YyPHOr8ePmQE8fHxCtMII9O7Pi3ZaJt9Rjv9cTRCWJmPjw9jJ9wYYAP7BZGq8J221GbupKTAwoXaTF92T2lJSUlh0qRJ1K5dO8Pus08//TQ7d+5kwIAB+Pj4uDixB7i+hMDk06ujR0N0NHz5peokd2a3Q4MGplxAILJAxgH93Xvvvbz0wksAXIy7wMSJExUnEkald31astE+EHPA+bUZZ7SvXbumOoIQhtGhQwfuq68dybR7fzTfKDxUV2ozd37/XTvOObszfZs3b+aBBx6gf//+JCQkAFCqVCnmzZvH4sWLTfmBqm7sdu1A6tq1VSfJlUaN4PnnYdgwbZLeqJKSXLcHgTAmGQfUCB8djreXtuP42IhxnD17VnEiYUR616clG+2YPVqj7efrx1133aU4TfZVqWK+ndKFcBebzcb4SeOdjwcFhih7oyO1mTt2O5Qrp21ulRXx8fH069ePxo0bs2XLFkD7+9CzZ0+io6N54YUXsGV3atxKri8hePbZ7C8hMKDwcDh+HKZPV53k1n75RbtHWxptzyXjgBpVq1alW7duAFxNusKoUaMUJxJGpHd9Wq7RdjgcHD95DICypcqZ8k3Yb7/9pjqCEIbSvHlzWjzWAoBjp47yySefKMkhtZlzDgdERWW951u4cCF16tRh8uTJpKWlAVC3bl3WrVvH1KlTKVy4sHsDe4LrSwg8pOurUQPeeEM78isuTnWazNntUK2a6RcQiNuQcUCdocOG4ufrB8DHU6ZmuFVUCNC/Pi3XaJ87d47EZG1dWZXqlRWnyZkuXbqojiCE4Ywdf+Ne7WGhw7l8+bLuGaQ2c+6vv+DYsTv3fMePH6djx460b9+eo0ePAtoO9BEREWzZsoUmTZrokNZDREVlbwmBCQwdqt1ybsRbNFNTtZ3Rc7IHgTAPGQfUKVOmDP0G9AMgJTWZYUOHKU4kjEbv+rRco53+063KVc3ZaE+ZMkV1BCEMp2HDhjzf8XkALsSeZ/LkybpnkNrMObsdiheHhx/O/N+npqby0UcfUatWLex2u/P5Vq1asXPnToKDg/H19dUprQdwOLQ/9A4dwMtz3gqUKwe9e8OECXDmjOo0GeV0DwJhLjIOqDVw4EAK5deOb/ziyy/ZuXOn4kTCSPSuT88ZXbPI7Ed7AYSGhqqOIIQhjRo9Ci+bthnKmFFjOXfunK7Xl9rMmes9X7t2kNnG4Fu3bqVp06b06dPHeWxLiRIlmDt3LsuWLaNyZXN+aKpUVpcQmFBwMHh7azuRG4ndDmXLahu3Cc8l44BahQsXZvDQwQA4HGmEBIcoTiSMRO/6tFyjnX5G26yNdnh4uOoIQhhS9erVefPNNwBISLxMRESErteX2syZ6GjYu/e/PV9CQgKBgYHcf//9bNy40fl8t27diI6OpnPnzqbcZ8MQoqKgWDFo1kx1EpcrWhSCgmDaNEj32bpS6fcg8KAFBCITMg6o9+6771KiaEkAFi5eyIYNGxQnEkahd31a7te92c/QBujdu7fqCEIY1rDhw8jjo22G8tEHU5z38epBajNn7HYoWBBatLjx3JIlS6hTpw7jx493no1eq1Yt1qxZw6effkrRokUVpfUADgf8+OOtlxB4gPfegyJFYPhw1Uk0mzfD0aOybNwKZBxQL1++fIRFjHQ+DuwfiMPhUJhIGIXe9Wm5RvvggYPOr806o/3FF1+ojiCEYZUtW5b3+vUBIDn1GsOHDdft2lKbORMVBU8/Df7+cPLkSV566SXatGnj/GDUz8+PsLAwtm7dSjMPnIHV3a2WEHiQ/Pm1jdG++AJ27FCdRvswqWhReOQR1UmEu8k4YAyvv/46lcpXAuD3P35n+fLlihMJI9C7Pi3XaMfsiQHAx9uH0qVLK06TM82bN1cdQQhDCw4OpkDeggB8Pns2u3fv1uW6UpvZd+gQbNkCHTqkMX36dGrVqsW8efOc//7xxx/nn3/+ITQ0lDx58qgL6kmioqBAAXjiCdVJ3KpbN6hUCQYPVp1E+yNv395jFxCIdGQcMAZfX1/GjB/jfBzYL9B5FKSwLr3r03KN9pFj2jLS0iXK4GXSG6X27dunOoIQhla0aFFChgwCtM1QBg0cpMt1pTazb/588PXdwaRJD9OzZ09iY2MBKFasGHPmzGHlypVUr15dbUhPY7ffWELgwfLkgbAwWLgQ1q9XlyM6GnbvlmXjViHjgHE8//zz1KtTH4Dt0dv5/vvvFScSquldn+bsNHPo0qVLJCRqZ+tWrlJJcZqcy5s3r+oIQhjee++9x11FSgAwf+H8DJtpuYvUZvZcvXqViRNDSEm5l40b/3A+37VrV3bv3s2rr74qm5252vUlBB68bDy9Tp2gXj1tJ3JVt2ja7dpS9pYt1Vxf6EvGAePw8vIicuI45+Pg94NJTk5WmEiopnd9WqrRTr8RWpXqVRQmyZ1ixYqpjiCE4eXLl4+Ro0c4H+uxGYrUZtYtX76cahWqcfRoBA5HCqDtGr9q1So+//xzihcvrjihh5o/X5vqfeop1Ul04eUFERGwdi0sW6YmQ1QUtGnj8QsIxL9kHDCWli1b8shD2uYIh44dYubMmYoTCZX0rk9LNdqecIY2aGfKCiHu7M033+Tuslqtr1m3hpUrV7r1elKbd3b69Gle7vQyrVu35vi54wD4evkwbNgwtm3bJvc3upvdrk2tFiqkOolunnpKO8Vs0CDQ+xbNw4e1Hcdl2bh1yDhgLDabjXETbsxqDwkZypUrVxQmEirpXZ+WarQ94WgvgLZt26qOIIQp/GczlP7u3QxFavPW0tLS+Oyzz6hepTrffvet8/mHipfinyIBDH//ffxlys+9Tp+G33+3zLLx62w2GDMGtm2D777T99pRUdoCgqef1ve6Qh0ZB4zngQceoH3b9gCcu3iWDz/8UHEioYre9WmpRttTZrQ/++wz1RGEMI0XX3yRujXrArBtxzZ+/PFHt11LajNz0dHRNGvSjO7duxOXEAdAofyFmDlzJmv+XEfN+Hj44APFKS1g4UKt67RgI9C0qXZseGgoXLum33Wjoiy3gMDyZBwwpoixEdhsWtszOmw0Fy9eVJxIqKB3fdocik5wj4uLIyAggNjYWArpNAI999xzREVFAXDw4EFTz2oLIbJu2bJlPPXvPamVyldmT8xufH19FafyfImJiYwePZqIURGkpKU4n3+508tM/mAyJUpom9XRty98/jkcOAByf6P7PPUUJCbC6tWqkyixY4e2MdrHH0PPnu6/3pkzUKoUfPopvPmm+68nhLi9N15/g89nfw5AUFAQY8eOVZxIeDpLzWjH7NbO0PayeVOuXDnFaXIuPDxcdQQhTKV169Y83ORhAA4ePcDs2bPdch2pzRtWrVpF7eq1CQsLczbZd5e9m+XLl/P1N1/faLIBQkK0m2fHjLnFq4lci42FX36x3LLx9OrWhVdegZEjISHB/de7voCgXTv3X0sYh4wDxjV8xHB8vfMAMHniBxw/flxxIqE3vevTUjPahQsUITbhEqWLl+HEWfMWV2JiotzLKEQ2/fHHHzRt2hSAEsVKcujoQZcf8yC1CefOnaN/v/58+dWXzue8vbwJGhjEkCFDbv1nPny41mjv3w8m/iDUsL7+Gv73PzhyBMqXV51GmUOHoHp1GDFC2xzNnZ5+Gq5cgV9/de91hLHIOGBs/fv3Z9KkSQC81f0tZnwyQ3EioSe969MyM9qXL18mNuESAJWqVFSaJbc++ugj1RGEMJ0mTZrQto12b+qZ86eZMmWKy69h5dp0OBzMnj2bqpWqZWiyH2j4ANv+2cbo0aNv/8HGgAFQsKDWAQnXs9uhUSNLN9kAFStqy8bHjoULF9x3ndhYWLnS0gsILMvK44AZhISEkM8/PwCffTaTffv2KU4k9KR3fVqm0faUM7QBOnTooDqCEKYUMTYCGzYAwkeEc+nSJZe+vlVrc+/evTzW7DFef/11Yi9fAqBA3oJMnz6d9RvXU6dOnTu/SMGC2k5Vs2bB7t3uDWw1V6/C0qXS9f1r8GBISdGabXdZsgSSk+VYLyuy6jhgFsWLFyc4ZCAAaY5UBocMVpxI6Env+rRko23mHccBNm/erDqCEKZUp04dXnnlFQDiEuKIjIx06etbrTaTkpIYOXIkdWrXZc26Nc7nX3z+RfYd2Mvbb7+Nl1c2hpkePbRl46GhbkhrYcuXa2uYpesDoEQJbQHFhx+Cu27RtNvh/vstv4DAkqw2DphRv379KFKoKADf//A9W7ZsUZxI6EXv+rRko2323cZLlSqlOoIQpjVi5Ah8vLUdxydGTuTkyZMue20r1eaaNWuoW7Muw4YNIyU1GYBypcqzZMkSvvv+u5z9Wfj5aTtV/fgjbNrk4sQWZrdD7dpQo4bqJIYxYADkz++eOxWuXtVmtGUBgTVZaRwwqwIFCjAifLjz8cD3B6oLI3Sld31aptH2lDO0AXx8fFRHEMK0KlasyDu9tLN9EpMTGTlypMte2wq1eeHCBd58400effRR9h/aD2gnOQQGBrJ7f7TzGLUc69JFawrdvVOVVSQnw6JF0vXdpFAhbQn5rFmwZ49rX3vFCm0BgfyRW5MVxgFP8NZbb1GulLbx5srVK1lt0WMPrUbv+rRMo334kOfMaB88eFB1BCFMbfDgweT1ywfAp598yv79+13yup5cmw6Hg7lz51K1UjVmfT7L+fx99Ruy5e/NjBs3jvz58+f+Qt7eMHq0dhTVypW5fz2r++03uHhRlo1nomdPKFMGhgxx7eva7VCrliwgsCpPHgc8iZ+fH6PHjXY+DuwfhKKDmISO9K5PyzTa+3ffeCNd3uQ3TT3yyCOqIwhhaiVKlGDgoCAAUtNSGTLYNe+0PbU2Y2JieKL5E3Tp0oWLcdpWzfn88zNlyhQ2bv6T+vXru/aC7drBgw9CcDDIG5/csdvh7rvh3ntVJzEcf39t6fj338Nff7nmNZOTtfOzZTbbujx1HPBEnTt3pmbVWgBs3voX8+fPVxtIuJ3e9WmZRvvQv/doFy98F35+forT5M7XX3+tOoIQpte/f38KFywCwLfzvmXr1q25fk1Pq81r164xevRoatesw6rfVjmff7b9s+zdv4devXrh7e3t+gvbbNqZ2ps3a/dri5xJS4P587XZbJtNdRpDeuUVbfY5JMQ1r7dmjbaAQBpt6/K0ccCTeXt7M27ijeMHBg4YSEpKisJEwt30rk+bQ9E6ibi4OAICAoiNjaVQoUJuvVZiYqLz/NZGDRqx8e+Nbr2eu6Wmprrnza0QFvPBBx/Qt29fAFo90YqfV/ycq9fzpNpct24db772JntibtzAWvquMsyYOZ22bdvqE+Kpp+DAAdi5E+S+x+z74w9o2lTr/po1U53GsK5/FrFyJbRokbvX6tULfvoJDh6UzzasypPGAStwOBw0adSEPzf/CcCsWbN4/fXXFacS7qJ3fVpiRvvIkSPOr6vUMPcZ2gARERGqIwjhEXr06EGZEmUBWL5yOb/99luuXs8TavPSpUu8/dbbPPzww84m22bzom/fvuw9sEe/Jhu0e7X37oXZs/W7piex27WzrJo2VZ3E0Nq3hwce0Pbfy83UQ1oaREXJAgKr84RxwEpsNhuRk24c9Tl4YCiJiYkKEwl30rs+LdFoZzjaq1JFdUFcJFTOmBXCJbTNUEY5H+d2MxQz16bD4eC7776jaqVqfPLpJ87n69etz19/bWLSpEkUKFBA31D33gudOsHw4dqZSSLrHA6t62vfXttgTtzS9TsVNm3S/shyauNGOHlSlo1bnZnHAatq1qwZrVu2BuDk2RNMmzZNcSLhLnrXpyUabU862gsgPDxcdQQhPEaXLl2oXrk6AJu2bGTRokU5fi2z1ubBgwd5stWTdOrUifOXzgHgnycvkyZN4q+//+K+++5TFy4sDE6fho8/VpfBjLZvh5gY6fqy6LHHoHVr7civnN6iabfDXXfJAgKrM+s4YHXjxo/DhrYUZcTQkcTFxSlOJNxB7/q0RKOdfkbbExrt1157TXUEITyGthnKOOfjoP5BpKam5ui1zFabycnJjBs3jlo1arF85XLn8888/Qx79++hb9++6s+ErVoVunXTlpFfuqQ2i5lERWmHRT/+uOokpjF6NOzeDV98kf2fdTi0RrtDB1lAYHVmGweEpl69enTq1AmA2MuXmDBhguJEwh30rk/LNdpmP0Mb4JdfflEdQQiP0q5dOxrd2wiAPTF7mDt3bo5ex0y1+eeff9KgbgMGDhxIUnISACWLlcJut7Pop0XGOgZxyBBITITx41UnMQ+7HZ55BvLkUZ3ENO67D156CYYN0/66ZceOHdoCAjmuXJhpHBAZhY8Kx9tL+6Rs3JhIzpw5oziRcDW969MSjfb+PTHOrytUqKAwiWtUr15ddQQhPMrNm6GEBIWQlJSU7dcxQ23GxcXRq1cvmjzYhF17dwFgw8a7777L3gN7eNaInUKZMtC3L0yaBKdOqU5jfDEx8M8/smw8B8LCtPusp07N3s/Z7bKAQGjMMA6IzFWuXJm3e7wNQOK1q3IbgAfSuz4t0WgfOnAIgCIFi5I/f361YVzgqmwKJITLPfroo7R8vCUAx08fZ8aMGdl+DSPXpsPh4Mcff6Ra5epMnToVB9qmb3Vq1GHDnxv46KOP3H7UYq4EBYGfH8gbnzuLigJ/f3jySdVJTKdatRt3KsTGZv3noqK0BQR+fu7LJszByOOAuLMhQ4bg7+sPwLSPp2XY50mYn9716fGNdnJyMmcunAY8YzYb4Pz586ojCOGRxo4f6/x6+JARxMfHZ+vnjVqbR44coe3TbXn++ec5c177fejv68/48ePZumMrjRs3VpwwCwoXhuBgmDFDO1tb3Jrdru3s5QEfLKswdCgkJEBWb9GMiYFt22TZuNAYdRwQWVOqVCkGBA0AICUthaFDhipOJFxJ7/r0+Eb72LFjpDnSAKhSo7LiNK5Rv3591RGE8Ej33nsvLz7/IgAX4y4wceLEbP280WozJSWFSZMmUaNaTX5a9pPz+SdbPkn03mgGDBigfrOz7Hj3Xe1c6CFDVCcxrhMn4I8/ZNl4LpQpA++9BxMnahve34ksIBDpGW0cENkXGBhIofwBAHz11Vfs2LFDcSLhKnrXp8c32uk3QqtUqZLCJK6zePFi1RGE8FijIkY5N0MZGzGOs2fPZvlnjVSbmzdvpmH9hvTv35/Ea9pSqeJF7mLevHks+XmJOTeGzJdP26nq669h61bVaYxpwQLw8dHWMYscGzgQfH2zdqdCVJS2gEDvY+aFMRlpHBA5ExAQwJDh2nnLDhwMChqkOJFwFb3r0+MbbU87QxugZ8+eqiMI4bGqVq1K9+7dAbiadIVRo0Zl+WeNUJvx8fH07duXRo0a88+ufwBts7Meb/dg34G9vPDCC9hsNsUpc+H117UbaQcPVp3EmOx27VDookVVJzG1IkW0ZvtOdyqcPAnr18uycXGDEcYBkXu9evWiZLFSACxeuph169YpTiRcQe/69PhG29OO9gKyvZxVCJE9Q4cNxc9X29Xo4ylTM/weuR3Vtblw4UJqVKnJBx98gOPfW2ZqVq3FuvXrmDZ9GoULF1aazyWuTzMuWQJr1qhOYywXLsDq1bJs3EX69IHixbVFFLcyf752bnbbtrrFEganehwQrpE3b17Cx4Q5Hwf2C8ThcChMJFxB7/q0ORT9rYmLiyMgIIDY2Fi37nT7+uuvM3v2bAC2bdtGvXr13HYtIYTnGDRoEGPGjAHgtVdfY/ac2WoD3cbx48fp1aMXCxYvcD6Xx8ePEWHDGTBgAL6+vgrTuUFaGjRqpN0Y+/vvYOYZelf64gt47TU4fly70Vjk2owZ0LOndqdCZm8fWrUChwNWrNA9mhDCzVJSUqhRpQYHjmjLWn766SeefvppxamEmXj8jPaBfTfWfHnK0nE5108I9xs4cCCF8mkfAn7x5Zfs3Lnzjj+jd22mpqby0UcfUb1qjQxNdovHWhC9ZxfBwcGe12QDeHlBRIS2Zlfuh7zBbocmTaTJdqE33oAqVTK/U+H6AgJZNi7Sk/donsPHx4exE26cRhLYL5C0tDSFiURu6V2fHt9oH4w5CECBvAUJCAhQnMY13n77bdURhPB4hQsXZvAw7d21w5FGSHDIHX9Gz9rcunUrjRs2pk+fPlxJTACgaEAx5s6dy4pVK6hc2TNOWbilli2heXMICYHUVNVp1EtIgJ9/lmXjLnb9ToXFi7XFE+ktXgwpKdChg5JowqDkPZpn6dixIw3uuReAXXt38e233ypOJHJD7/r06EY7NTWVE2dOAFChXHnFaVzHbrerjiCEJbz77ruUKFoSgIWLF7Jhw4bbfr8etZmQkMD7779Pw/vuZ8u2Lc7n33zjTfYd2Evnzp3NvdlZVtls2qz2jh3aLuRWt2wZJCbK9KobvPAC3Huvdox7+pvtoqJkAYH4L3mP5llsNhvjJ0U6Hw8KHMS1a9cUJhK5oXd9enSjffLkSVLTtJmOqjWrKk7jOo0aNVIdQQhLyJcvH2ERI52PA/vffjMUd9fmkiVLqFGlBhMmTCDNof1uq1apGmvWrOGzmZ9R1Go7TT/wgNZYDh0KSUmq06hlt2s3EVepojqJx7l+p8K6ddoefKAtIFi2TD7XEP8l79E8T4sWLWj+SHMAjpw4wmeffaY4kcgpvevToxvt9Ed7VaxUUVkOVzt58qTqCEJYxuuvv06l8pUA+P2P31m+fPktv9ddtXny5Eme7/g8bdq04fjp4wD4euchLCyM7dHbadasmVuuawrh4XDkCHzyieok6ly7pq1jlmXjbtOqlXZq2qBB2l58soBA3Iq8R/NMY8ffuFd76OBhJCQkKEwjckrv+vToRjv9kTyeshEaaEvihRD68PX1Zcz4Mc7Ht9sMxdW1mZaWxvTp06lepQY/2n90Pv/ow4+yY9d2QkND8fPzc+k1Tad2bW2n7bAwiI9XnUaNVasgLk66Pje6fqfC9u3wzTfasvF77oGqnrNYTriIvEfzTI0aNeK5DtqHmecvneODDz5QnEjkhN71aZlG21PO0AbP+m8Rwgyef/556tXWzvbZHr2d77//PtPvc2Vtbt++nQcbNaFnz55cvqo1kIULFGbOnDmsXrOa6tWru+xapjd8uNZoTp6sOokadru2ZPyee1Qn8WgPPqhtfBYaCosWyQICkTl5j+a5Ro8ZjZfNW/s6LILz588rTiSyS+/69OhGO/3ScU+a0V67dq3qCEJYipeXF5HpNkMJfj+Y5OTk/3yfK2rzypUrBAcHc2+De9m0ZaPz+ddefY19B/fx6quvWmOzs+yoUAF69YLISDh3TnUafaWmwoIFWtcnfy/cLjwcDh/WPteRRltkRt6jea4aNWrw+utdAUhIvMyYMWNu/wPCcPSuT5vjdjv7uFFcXBwBAQHExsZSqFAht1yjZYuWrFy1EoBz585RrFgxt1xHbxcuXLDepkdCKOZwOHis2WOsWbcGgOnTp//nmIjc1uby5cvp/np3jpw44nyucoXKfDb7M5o3b57j17WEc+egcmXo3h0mTFCdRj9r18Ijj2hnijdpojqNJdSsCTExcPUq+PioTiOMRt6jebZjx45RuWIVklOvkcfHj5iD+ylXrpzqWCKL9K5Pj57R3r8nBgD/PHk96pfe1KlTVUcQwnJsNhvjJoxzPh4yaChXrlzJ8D05rc3Tp0/zcqeXad26tbPJ9vH2ZdiwYezcs1Oa7KwoXhwCA2HKFG1zNKuw26F0aW0HdqGLpUvhl1+kyRaZk/donq1cuXL06dsbgGspSYwYPkJxIpEdetenx85oOxwO/PPk5VpKEtXursbeQ3tdfg0hhPU82+5Z5i+aD0BERATBwcE5fq20tDRmzZrFgL4DiEuIcz7/0IMP8dnnn1GzZs3cxrWWy5e1We1nnoFZs1SncT+HAypVgjZt4OOPVacRQghLOH/+PHeXq0hC4mW8bN7sit5JjRo1VMcSBuSxM9pnzpzhWop2rmqVGp51rmh4eLjqCEJY1uixo7HZtF+do8NGc/HiRee/y05t7tq1i2ZNmtG9e3dnk10ofyFmzpzJmnVrpMnOiQIFYMgQmDMHdu1Sncb9/v5bu2FYdhsXwjDkPZrnK1asGINCtQ/Z0xyphASHKE4kskrv+vTYRjv9RmiVqlRSF8QN+vTpozqCEJZVq1Ytur72GgDxV+IzbIaSldpMTEwkNDSU+vfUZ/3G9c7nX+70MvsO7OONN97Ay8tjfzW731tvaZujhYaqTuJ+djsUKQKPPqo6iRDiX/IezRree+89ihUuDoB9vp1NmzYpTiSyQu/69Nh3c556tBfA7NmzVUcQwtKGjxiOr3ceACZP/IDjx48Dd67NVatWUbt6bUaNGkVKWgoAd5e9m+XLl/P1N19TokQJt+a2BD8/GDlSO+j4zz9Vp3GvqCho1w58fVUnEUL8S96jWUOBAgUYET7c+Xjg+wPVhRFZpnd9emyj7alHewE88cQTqiMIYWkVKlTg3T69AG0zlJEjRgK3rs1z587x6iuv0qJFCw4ePQiAt5c3gwYNInpfNC1bttQnuFV07gx160JwsHYfsyfavVtbHi/LxoUwFHmPZh3du3enQpkKAKxes5qVK1cqTiTuRO/6zFWjfezYMQYMGOCqLC6Vfkbb0xrt3bt3q44ghOWFhISQzz8/AJ99NpN9+/b9pzYdDgezZ8+maqVqfPnVl87nH2j4ANv+2cbo0aPJmzevrrktwdsbRo+GX3+FFStUp3GPqCjIlw9atVKdRAiRjrxHs448efIQERnhfBzYLxBFe0yLLNK7PnPcaDscDhYsWMD58+ddmcdlDh045Pza05aO58+fX3UEISyvePHiBIdoS8XSHKkMDhmcoTb37NnDow8/yuuvv07s5UsAFMhbkOnTp7N+43rq1KmjIrZ1PPMMNG0KgwZBWprqNK4XFQVPPQXyQY0QhiLv0aylU6dO1K5eG4CtO7Zit9sVJxK3o3d95rjRXrFiBY8//rgrs7jU/j37AfD1yeNx9z160pngQphZv379KFJIq8fvf/ieM2fOkJSUxMiRI6lb5x7Wrl/r/N4Xn3+RfQf28vbbb8tmZ3qw2WDMGNiyBX74QXUa1zpyBDZtgueeU51ECHETeY9mLV5eXkROinQ+HjhgICkpKQoTidvRuz5z9G4vJiaGkiVLGnbJo8Ph4OiJYwCULVnW497U/vPPP6ojCCH472YoQ0KHULdmXYYNG0ZKajIA5UqVY8mSJXz3/XeUKlVKUVKLatYMnn5a24E8OVl1GteZP1/bAK1NG9VJhBA3kfdo1vPUU0/RtHFTAGIOxzBnzhzFicSt6F2fOepAt27dysGDB1m+fDlHjhwx3C+VCxcucDXpCgBVqlVWnMb1nnrqKdURhBD/euuttyhTogwAh48cZv8hbTWNl82bwMBAdu/fLTWr0ujRsG8ffP656iSuExUFLVpAQIDqJEKIm8jve+ux2WyMmzjO+Tg0OJSrV68qTCRuRe/6zFGj3bFjR9q0acPVq1dJSkrK0o3/SUlJxMXFZfjHXdJvhFbZAxvtWbNmqY4ghPiXn58fTzyZcRfL++rfx5a/NzNu3Di5X0+1+vW1XchHjIArV1Snyb2zZ2HNGlk2LoRByXs0a3rooYdo86S2yujUuVNMnTpVcSKRGb3rM0eN9jfffMORI0dISkpi1apVLFq0CIDw8HBOnDjBzJkz2bRpEz///DN2u51du3bRoUMHAgICnP+UL18egE8++YR//vmHhQsX8tNPP7FlyxZmzJjB2bNnCQ8Pd77ulStXmDBhAnv27GHevHn88ssvrF+/ntmzZ3P06NEM33vgwAFn1gsXLvD777/z66+/8u2337Jv3z4iIyNJTEzM8DOnTp3i008/ZdOmTSxbtoyoqCh27NjBRx99RGxsbIbvvXTpElOmTGH79u3Mnz+fJUuWsHnzZj755BNOnz6d4XuvXr3KhAkT2LdvH9999x2rVq1i3bp1fPHFFxw5coRRo0aRlpZGeHg4aWlpjBo1iiNHjvDFF1+wbt06Vq1axXfffce+ffuYMGFChk/IwsPDOX36NJ988gmbN29myZIlzJ8/n+3btzNlyhQuXbqUIUtsbCwfffQRO3bsICoqimXLlrFp0yY+/fRTTp06leF7ExMTiYyMZN++fXz77bf8+uuv/P7773z55ZccPnyYiIgIUlNTM/zM0aNHmT17NuvXr+eXX35h3rx57NmzhwkTJnDlypUM33v27FlmzJjBli1b+Omnn1i4cCH//PMPH3/8MRcuXMjwvXFxcXz44Yfs2rULu93Ozz//zKZNm5g5cyYnTpzI8L1JSUmMGzeOmJgYvvnmG3799VfWrl3LV199xaFDhxgzZgwpKSkZfubYsWN8/vnnbNiwgRUrVvD999+ze/duJk2axOXLlzN877lz55g+fTpbt25l8eLFLFq0iK1btzJt2jTOnz+f4Xvj4+OZPHkyu3bt4scff2T58uX8+eefzJo16z+5k5OTGTt2LAcOHGDu3LmsWbOGNWvWMHfuXA4cOMDYsWNJTk7O8DMnTpxg1qxZ/Pnnnyxfvpwff/yRXbt2MXnyZOLj4zN87/nz55k2bRpbt25l0aJFLF68mK1btzJ9+nTOnTuX4XsvX77MpEmT2L17N99//z0rVqxgw4YNfP755xw7dizD96akpDBmzBgOHTrEV199xdq1a/n111/55ptviImJYdy4cSQlJf0nd2a/Iz788EPi4uIyfO+FCxf4+OOPXf47IjU1lYiICA4fPsyXX36Z698R48ePx9vbG4CaNWvy07KfWLt2rbLfEelfX35HnCC8ZEk4c4bwZ581/++IWbOYm5bGmhIl5HeEiX5HGO19hPyOcN/7iAceeEDeR1j0d8RzL9z4ADR0UOh/all+R6j/HdGuXTuX/I7IKptDp33ok5KSMgSLi4ujfPnyxMbGUqhQIZdea9KkSfTv3x+AL7/8ki5durj09VULDw8nNDRUdQwhRDoLFy5kxYoVfPTRR6qjiMy8+y7MnQsHDkCRIqrT5Nwzz0BcnDarLYQwHHmPZm1d/teFuV/PBSA0NJSwsDDFiUR6etdnthptm82W5Re+08vGxcUREBDglka7b9++fPDBBwCsXbuWhx9+2KWvr1pSUhJ+fn6qYwghbiK1aWCnTkGVKtCnD0RE3Pn7jSguDu66C8aOhb59VacRQmRCxgFrO3jwINWrViclLQV/X38OHT1EyZIlVccS/9K7PrO1dNzhcGT5H5UOHjjo/Pruu+9WmMQ9rn+IIIQwFqlNAytVCvr1gw8+gBMnVKfJmaVL4do1ePZZ1UmEELcg44C1VapUiR7v9AAgMTmRkSNHKk4k0tO7PrPVaCckJPDTTz/RsmVLAK5cucKsWbNYtGgRb775JmlpaW4JmV0xe2IA8PbypkyZMorTuF7Hjh1VRxBCZEJq0+ACAyFvXjDrUj67He67DzzwA2QhPIWMAyI0NBT/PNoRyDOmz8iwd5RQS+/6zFajnT9/ftq0aUPyv+eRRkdHExMTwzPPPMP27duzdXO4Ox05dhSAUneVdm5Q5Ek2btyoOoIQIhNSmwYXEACDBsGnn2pHfplJYiIsWSK7jQthcDIOiJIlSxI48H0AUtNSCR0s9+wbhd71maNdx69r2LAhffv25eOPP6ZPnz7kzZvXVblyLC4ujvgr2tFhlStXUpzGPUqXLq06ghAiE1KbJtCrl7aMfOhQ1UmyZ+VKuHxZGm0hDE7GAQHw/vvvE1CgMADffvst27ZtUxtIAPrXZ64abYC77rqLd999l7lz57J7925XZMqV9GdoV6lRRWES9/HEWXohPIHUpgnkzQvDh8O338Lff6tOk3V2O9SoAbVqqU4ihLgNGQcEQKFChRg2UvtA14GD4KBgxYkE6F+fuWq0P/74Y2bMmAGAj48PMTExLgmVG4cOHXJ+7YkboUHGDxOEEMYhtWkSXbtC9eoQEqI6SdakpMDChTKbLYQJyDggruvZsyel79L2ilq2fBlr165VnEjoXZ/ZarSTkpL4+uuvOXToEN988w0PP/wwBQsWZMGCBdxzzz08+eST7sqZZen/ACtWrKguiBt52nFlQngKqU2T8PGBUaNg2TL49VfVae5s7Vo4f152GxfCBGQcENf5+/szamy483FQ/yDlJzNZnd71ma1G28/Pj86dO3Po0CFefvll6tevT+fOnWnfvj2jR482xHKZ9I22p85of/vtt6ojCCEyIbVpIh07QsOG2uZoRn/jY7dDuXJw//2qkwgh7kDGAZHeK6+8QrVK1QDY8NcGfvrpJ8WJrE3v+rQ5FH20EhcXR0BAALGxsRQqVMhlr/vC8y/ww48/ABATE0PlypVd9tpGkZKSgo+Pj+oYQoibSG2azMqV0LIlzJ8P7durTpO5tDSoUEH7YEDO5xXC8GQcEDeLioriuX9v/alZtRY7dm83xOSkFeldn7neDM1o9v97hraXzYty5copTuMeY8aMUR1BCJEJqU2TeeIJaNFCu1c7NVV1msz99RccPy7LxoUwCRkHxM06dOjAffUbArB7fzTffPON4kTWpXd9etyMdtFCxbgYf4GSRUtx6vxJl72uEEIID7RpEzRuDLNnw2uvqU7zX8HBMHMmnDyp3VsuhBDCdFavXs3jjz8OQLlS5Yg5HEOePHkUpxLu5lEz2leuXOFi/AUAKlWuqDaMG4WHh9/5m4QQupPaNKFGjeD557VztZOSVKfJyOHQ7s9u316abCFMQsYBkZnmzZvT4rEWABw7dYxPPvlEcSJr0rs+ParRPnLkiPPrKtU98wxtgK5du6qOIITIhNSmSYWHa8uzp09XnSSjXbtg3z5ZNi6Eicg4IG5l7Pixzq+HhQ7n8uXLCtNYk9716VGNdoYztCt65o7jACtWrFAdQQiRCalNk6pRA15/XWu44+JUp7nBboeCBbX7yIUQpiDjgLiVhg0b8nzH5wG4EHueyZMnqw1kQXrXp0c12lY4QxugVq1aqiMIITIhtWliw4ZBfDxMnKg6yQ1RUdCmDfj7q04ihMgiGQfE7YwaPQovm7bjeMSoMZw7d05xImvRuz49qtHOMKPtoWdoA8THx6uOIITIhNSmiZUrB717w4QJcOaM6jRw8CD8/bcsGxfCZGQcELdTvXp13nzzDQCuJCYwevRoxYmsRe/69KhG+/Aha8xoX7p0SXUEIUQmpDZNLjgYvLzACG98oqLAzw+eekp1EiFENsg4IO5k2PBh5PHxA2DKhx9n2GNKuJfe9elRjXbM3hjn1xUqVFCYxL3uuece1RGEEJmQ2jS5YsUgKAimTYN0K6SUiIqCVq20e7SFEKYh44C4k7Jly9K3/3sAJKdeY/iw4WoDWYje9elRjfbBg4cA7Sxtfw++p23p0qWqIwghMiG16QHeew+KFIHhw9VlOHUK1q2TZeNCmJCMAyIrgoODKZhP+yB19pw5REdHK05kDXrXp8c02klJSZy7eBbw7GXjAN27d1cdQQiRCalND1CgAAwZAl98ATt2qMmwYIG2hL1tWzXXF0LkmIwDIiuKFClCyJAQAByONEKCQxQnsga969NjGu2jR4/iwAFA1Rqee4Y2IMcBCGFQUpseont3qFgRQkPVXD8qCh55BIoXV3N9IUSOyTggsqpPnz7cVaQEAPMXzmfjxo2KE3k+vevTYxrtDEd7VaqoLogOQlW9+RNC3JbUpofIkwfCwrSZ5T/+0Pfaly7BL7/Ac8/pe10hhEvIOCCyKl++fIwcPcL5OLB/IA6HQ2Eiz6d3fXpko+3JR3sBhIeHq44ghMiE1KYHefllqFdP24lczzc+ixdDSgp06KDfNYUQLiPjgMiON998k7vLan3LmnVrWLlypeJEnk3v+vSYRtsqZ2gD9OjRQ3UEIUQmpDY9yPVjvtasgZ9/1u+6UVHQuLF2rrcQwnRkHBDZ4evry5jxY5yPA/sFkpaWpjCRZ9O7Pj2m0c6wdNzDN0P74YcfVEcQQmRCatPDPP00PPwwDBoEerzxuXIFli6VZeNCmJiMAyK7XnzxRerWrAvAtp3b+PHHHxUn8lx616fHNNoxe26coe3pM9oPPvig6ghCiExIbXoYmw3GjIGtW2HePPdf7+ef4epVOdZLCBOTcUBkl5eXF5GTIp2PBw4YSHJyssJEnkvv+vSYRvvggUMABOQvTIECBdSGcbNjx46pjiCEyITUpgd66CHtmK3QUHD3G5+oKKhTB6pXd+91hBBuI+OAyInWrVvzcJOHATh49CCzZ89WG8hD6V2fHtFop6SkcOrcKQAqlC+vOI37yY6EQhiT1KaHGjUKDhyAmTPdd43kZFi0SJaNC2FyMg6InLDZbIybMM75OHTQEK5cuaIwkWfSuz49otE+fvw4aY5UAKrU9OwztAHKW+DDBCHMSGrTQ91zD3TpAiNGQEKCe67x66/a0V7SaAthajIOiJxq0qQJbdu0BeDM+dNMmTJFcSLPo3d9ekSjnX4jtEqVKilMoo8/9D7XVQiRJVKbHmzECDh/Hj780D2vb7dDxYpQv757Xl8IoQsZB0RuRIyNwIYNgPARo7h48aLiRJ5F7/r0iEbbSkd7gbY7oRDCeKQ2PVilStCjB4wdCxcuuPa109Jg/nxtNttmc+1rCyF0JeOAyI06derwyiuvABB/JY7IyMg7/ITIDr3r0yMabSsd7QUwbdo01RGEEJmQ2vRwgwdDSorWbLvShg1w6pQsGxfCA8g4IHJrZNhIfLx9AZg4fiInT55UnMhz6F2fHtdoW2FGOzQ0VHUEIUQmpDY9XMmS0L+/tnz8+HHXva7drr12kyaue00hhBIyDojcuvvuu+n17jsAJCUnMXLESMWJPIfe9ekRjXbMPuucoQ0QHh6uOoIQIhNSmxYwYADkzw8jXfTGx+HQGu0OHcDLI4ZkISxNxgHhCoMHDyavXz4APv30U/bv3684kWfQuz5tDkXnEMTFxREQEEBsbCyFChXK1WvdXbYiR04cJr9/AeKvxGHz8Hvc4uPjKViwoOoYQoibSG1axMSJEBQEu3bl/szrbdugQQP4+Wdo1col8YQQ6sg4IFxlxIgRDB8+HICXXniJb+d9qzaQB9C7Pk3/8XlaWhonTp8AoHzZch7fZAPMdOdZrkKIHJPatIh33oHSpWHIkNy/lt0OAQHw2GO5fy0hhHIyDghX6d+/P4ULFgHgu++/Y+vWrWoDeQC969P0jfapU6dISU0GoGrNqorT6KOVzHoIYUhSmxbh768d9zVvHmzenLvXstuhbVvIk8c12YQQSsk4IFylYMGCDA8b5nw8MHCgwjSeQe/6NH2jnWHH8UoV1QXRUXR0tOoIQohMSG1ayKuvQs2aEBKS89fYtw927IBnn3VdLiGEUjIOCFfq0aMHZUqUBWD5yuX89ttvihOZm971afpG22pnaANy748QBiW1aSE+PjBqFCxfDqtW5ew1oqIgb15o3dq12YQQysg4IFzJz8+P0eNGOR8H9g9C0fZaHkHv+jR9o221M7QBAgICVEcQQmRCatNinn0WGjeGQYO03cOzy26HJ5/UdjEXQngEGQeEq3Xp0oXqlbWNNzdt2ciiRYsUJzIvvevT9I22FWe0d+7cqTqCECITUpsWY7PBmDGwcSPMn5+9nz1+HP78U5aNC+FhZBwQrubt7c24ieOcj4P6B5GamqowkXnpXZ+mb7QPHjjo/NoqM9pPPvmk6ghCiExIbVpQ8+basVyDB0NKStZ/bv58bfn5M8+4LZoQQn8yDgh3aNeuHY3ubQTAnpg9fPXVV4oTmZPe9Wn6RjtmzwEA/Hz9KF68uOI0+pg1a5bqCEKITEhtWtTo0RAdDV98kfWfiYqCxx+HIkXcl0sIoTsZB4Q72Gw2IidFOh+HBA0mKSlJYSJz0rs+bQ5Fd9THxcUREBBAbGwshQoVytFrOBwO8vrlJSk5icoVqhBzeL+LUwohhBBZ8NJLsH69tpO4v//tv/f8eShZEqZMgR499MknhBDC9Fo90YoVv6wAYPLkybz33nuKE4nbMfWM9rlz50hK1j7NqVq9iuI0+gkPD1cdQQiRCalNCwsLg5MnYerUO3/vokWQlgbt27s/lxBCVzIOCHcaN/7GvdrDh4wgPj5eYRrz0bs+Td1op98IrVKVSuqC6GzgQDmwXggjktq0sOrV4c03tWXksbG3/96oKGjaFEqX1iebEEI3Mg4Id2rQoAGdXuwEwKX4i0ycOFFxInPRuz5N3Whb8WgvQIpKCIOS2rS4oUMhIQEmTLj191y+DD//LLuNC+GhZBwQ7hY2KgxvL28AxkaM4+zZs4oTmYfe9ekxjbZVjvYCeOGFF1RHEEJkQmrT4sqWhT59YOJEOH068+9ZuhSSkqTRFsJDyTgg3K1q1ap0794dgKtJVxg1apTiROahd32autG24hnaAH/88YfqCEKITEhtCgYO1I7tutUbn6goaNAAKlfWNZYQQh8yDgg9DB02FD9fPwA+njI1w+SjuDW969PcjfbBQ86vrbR0vHz58qojCCEyIbUpKFpUa7anT4eDBzP+u6QkWLxYZrOF8GAyDgg9lC5dmn4D+gGQkprMsKHDFCcyB73r09SN9v7d2nFePt6+lCpVSnEaIYQQAm35eLFiMOymNz6//ALx8fDcc2pyCSGE8BgDBw6kUH7tiOQvvvySnTt3Kk4kbmbqRvvo8WMAlClRBi8vU/+nZMvRo0dVRxBCZEJqUwCQP7+2MdpXX8H27Teej4qCqlWhTh112YQQbiXjgNBL4cKFGTx0MAAORxohwSGKExmf3vVp2u700qVLJCReBqByVesc7QXQpEkT1RGEEJmQ2hRO3bpp92EP1t4EkZoK8+drs9k2m9JoQgj3kXFA6Ondd9+lRNGSACxcvJANGzYoTmRsetenaRvt9BuhVa5mrU1lvv/+e9URhBCZkNoUTr6+EBYGixbBunXw++9w7pwsGxfCw8k4IPSUL18+wiJGOh8H9g/E4XAoTGRsetenzaHo/424uDgCAgKIjY2lUKFC2f75BQsW0KFDBwBGjhzJkCFDXJzQuJKTk/H19VUdQwhxE6lNkUFaGjRsCAUKwH33wQ8/wNGjYKFbnYSwGhkHhN6Sk5OpUaUGB49qG3AuXbqUJ598UnEqY9K7Pk072lv1aC+AsWPHqo4ghMiE1KbIwMsLIiK02exvvtF2G5cmWwiPJuOA0Juvry9jxo9xPg7sF0haWprCRMald32adka7f//+TJo0CYDffvuNRx55xNURhRBCiNxxOOD++2HLFlixAp54QnUiIYQQHiYtLY17693HPzu3AfDNN9/QqVMnxamEaT9at/KMdnh4uOoIQohMSG2K/7DZoEsXbSfymjVVpxFCuJmMA0IFLy8vxk+KdD4Ofj+Y5ORkhYmMSe/6NO2Mdr1a9di+ezteNm+SriXi4+PjhpTGdOLECcqUKaM6hhDiJlKb4pYcDtltXAgLkHFAqOJwOGj+SHN++/03AKZNm0aPHj0UpzIWvevTtDPaR/49B61U8VKWarIBli1bpjqCECITUpvilqTJFsISZBwQqthsNsZNGOd8PCRkKFeuXFGYyHj0rk9TNtqXL18mNuESABUrW2vZOECdOnVURxBCZEJqUwghrE3GAaFS48aN6dCuAwDnLp7lww8/XAz2KwAAMWZJREFUVBvIYPSuT1M22ocPH3Z+XbVGVYVJ1IiNjVUdQQiRCalNIYSwNhkHhGqjx4zGZtNavNFho7l48aLiRMahd32avtG22kZoAPHx8aojCCEyIbUphBDWJuOAUK1WrVp0fe01AOKvxDNmzJg7/IR16F2fpmy0rbzjOGgFJIQwHqlNIYSwNhkHhBEMHzEcX+88AEye+AHHjx9XnMgY9K5PUzba6We0K1asqC6IIsuXL1cdQQiRCalNIYSwNhkHhBFUqFCBd/v0AuBaShIjR4xUnMgY9K5PUx7v9dKLLzHv+3kA7Nu3j6pVrXWfdnx8PAULFlQdQwhxE6lNIYSwNhkHhFGcO3eOu8tX5EpiAl42b3bviaZatWqqYymld32ackY7Zk8MADZslC9fXnEa/X3wwQeqIwghMiG1KYQQ1ibjgDCK4sWLExwyEIA0RyqDQwYrTqSe3vVpyhntYoWLcyH2PHcVKcGZC6fdlFAIIYQQQgghzOny5ctUKHs3F+MuAPDXX3/RsGFDxamsw3Qz2omJiVyIPQ9AxYrW2wgNIDw8XHUEIUQmpDaFEMLaZBwQRlKgQAFGhA93Ph74/kB1YQxA7/o03Yz23r17qVGjBgAvd3qZr7/52l0RDev8+fMUK1ZMdQwhxE2kNoUQwtpkHBBGk5SURNWKVTl26hgAv/zyC48//rjiVGroXZ+mm9HOcLSXRWe0582bpzqCECITUptCCGFtMg4Io/Hz8yMiMsL5OLB/EIrmWZXTuz5N12hb/WgvgCZNmqiOIITIhNSmEEJYm4wDwohefvllalXTzpDesm0z8+fPVxtIEb3r03SNdoYZ7butOaN99OhR1RGEEJmQ2hRCCGuTcUAYkbe3N+MmjnM+HjhgICkpKQoTqaF3fZqu0U4/o23VRttms6mOIITIhNSmEEJYm4wDwqjatGnDg/c/CMC+g/v48ssvFSfSn971abpGO2bvAefXVm20y5UrpzqCECITUptCCGFtMg4Io7LZbEROinQ+HjwwlMTERIWJ9Kd3fZqu0T4YcxCAIgWLki9fPsVp1NiwYYPqCEKITEhtCiGEtck4IIzs4Ycf5slWTwJw8uwJpk2bpjiRvvSuT1Md73Xt2jXy+uclzZFGgzoN+HvH325OaUznzp2jePHiqmMIIW4itSmEENYm44Awun/++YcG9RvgwEFAgcIcOX44W0ctm5ne9WmqGe1jx46R5kgDoErNKorTqDN9+nTVEYQQmZDaFEIIa5NxQBhdvXr16NSpEwCxly8xYcIExYn0o3d9mmpGe/Xq1c4D1gcMGMD48ePdGVEIIYQQQgghPMqBAweoXq06qWmp+OfJy+GjhyhRooTqWB7HVDPacoa2Jjw8XHUEIUQmpDaFEMLaZBwQZlC5cmXe7vE2AInXrlrm763e/52mmtEePnw4I0aMAGDhwoW0bdvWnREN6/LlyxQoUEB1DCHETaQ2hRDC2mQcEGZx6tQpKlWoRGJyIj5ePuyL2efxE5l616fMaJvQp59+qjqCECITUptCCGFtMg4IsyhVqhQDggYAkJKWwpDQIYoTuZ/e9WmqRjtmb4zza6ueoQ3w1FNPqY4ghMiE1KYQQlibjAPCTAIDAymUPwCAuXPnsn37dsWJ3Evv+jRVo339DO0CeQtaZhv6zHh6EQhhVlKbQghhbTIOCDMJCAhgyPBQABw4GBQ0SHEi99K7Pk3TaKempnLy7EkA7i5fQXEatQoXLqw6ghAiE1KbQghhbTIOCLPp1asXpYqXAuCnZT+xbt06xYncR+/6NE2jfeLECVLTUgGoUsO6Z2gDFCxYUHUEIUQmpDaFEMLaZBwQZpM3b17Cx9zYjTuwXyCK9sp2O73r0zSNdvqN0CpVrqQwiXrR0dGqIwghMiG1KYQQ1ibjgDCj1157jSp3axOZf2z6g6VLlypO5B5616dpGu1Dhw45v7byRmgALVu2VB1BCJEJqU0hhLA2GQeEGfn4+DB2wljn48B+gaSlpSlM5B5616dpGu30M9pWb7Rnz56tOoIQIhNSm0IIYW0yDgizeu6552hwz70A7Nq7i2+//VZxItfTuz5tDkWL8OPi4ggICCA2NjZLO4i/9dZbzrPPNm/ezH333efuiEIIIYQQQghhCb/88gtPPPEEABXKVGDfwX3kyZNHcSrzMs2M9oH9B5xfW31GOzw8/M7fJITQndSmEEJYm4wDwsxatGhB80eaA3DkxBE+++wzxYlcS+/6NM2MdqVylTl0/CB5/fKRcPUyNptNh5TGlJKSgo+Pj+oYQoibSG0KIYS1yTggzG7Tpk00btwYgGKFi3P42CHy58+vOJVr6F2fppjRTktL4/jp4wCUK13O0k02wPjx41VHEEJkQmpTCCGsTcYBYXaNGjXiuQ7PAXD+0jk++OADxYlcR+/6NMWM9qlTpyhdujQAT7Z6kqU/e+aW81l16NAhKlasqDqGEOImUptCCGFtMg4IT7Bnzx5q16pDmiOV/P4FOHzsEMWKFVMdK9f0rk9TzGin33G8ctXKCpMYw++//646ghAiE1KbQghhbTIOCE9Qo0YNXn+9KwAJiZeJiIhQG8hF9K5PUzTacoZ2RvJnIIQxSW0KIYS1yTggPMXwEcPx9dZ2HP/wg484duyY4kS5p3d9mqLRTj+jLctxIDU1VXUEIUQmpDaFEMLaZBwQnqJcuXL06dsbgOSUawwfNlxtIBfQuz5N0WjLjHZGJ0+eVB1BCJEJqU0hhLA2GQeEJwkJCaFA3oIAzPr8c3bv3q04Ue7oXZ/maLQPHHJ+LY02zi33hRDGIrUphBDWJuOA8CRFixZlUGgwAA5HGoMHDVacKHf0rk9TNNoxe2MAyOPjR8mSJRWnUe/HH39UHUEIkQmpTSGEsDYZB4Snee+99yhWuDgA9vl2Nm3apDhRzuldn4Y/3svhcJDPPz+J165SsWwlDh47oGNKY0pKSsLPz091DCHETaQ2hRDC2mQcEJ5o6tSp9OrVC4DmjzRn1W+rFCfKGb3r0/Az2hcuXCDx2lUAqtaoojiNMURGRqqOIITIhNSmEEJYm4wDwhN169aNCmUqALB6zWpWrlypOFHO6F2fhp/R3rx5M/fffz8A3bt355NPPtErohBCCCGEEEJY3tdff83//vc/ABrUbcCWf7Zgs9kUpzI2w89opz/aSzZC04SHh6uOIITIhNSmEEJYm4wDwlN16tSJ2tVrA7B1x1bsdrviRNmnd32aqtGWM7Q1b7zxhuoIQohMSG0KIYS1yTggPJWXlxeRk24svR44YCApKSkKE2Wf3vVp+EZbztD+r6VLl6qOIITIhNSmEEJYm4wDwpM99dRTNG3cFICYwzHMmTNHcaLs0bs+jd9oHzzk/FpmtDX16tVTHUEIkQmpTSGEsDYZB4Qns9lsjJs4zvk4NDiUq1evKkyUPXrXp+Eb7f279wPg7eVN6dKlFacxhgsXLqiOIITIhNSmEEJYm4wDwtM99NBDtHmyDQCnzp1i6tSpihNlnd71afhG+8ixowCUvqsM3t7eitMYQ0JCguoIQohMSG0KIYS1yTggrCBiXAQ2tB3Hw4aFERsbqzhR1uhdn4ZutGNjY7l8NR6AylUrKU5jHDVr1lQdQQiRCalNIYSwNhkHhBXcc889dO7cGYDYhFjTnB+vd30autFOv+N45WqVFSYxFrMeEi+Ep5PaFEIIa5NxQFhF+KhwfLx8AJgwbgKnTp1SnOjO9K5P0zTashHaDV27dlUdQQiRCalNIYSwNhkHhFVUrFiRnr16ApCYnEhYWJjiRHemd30autGWo70y9+GHH6qOIITIhNSmEEJYm4wDwkpCQ0Pxz5MXgBnTZ3DgwAHFiW5P7/o0dKMtM9qZCw0NVR1BCJEJqU0hhLA2GQeElZQoUYKg4EAAUtNSCR1s7L//etensRvtQzcabZnRviE8PFx1BCFEJqQ2hRDC2mQcEFYzYMAAAgoUBuDbb79l27ZtagPdht71aXM4HA5dr/ivuLg4AgICiI2NpVChQpl+T4O697Jt51a8bF4kJiXi6+urc0pjunDhAkWLFlUdQwhxE6lNIYSwNhkHhBVNmjSJ/v37A/BkqydZ+vNSxYkyp3d9GnpG+8iRIwCUKFpSmux0vvnmG9URhBCZkNoUQghrk3FAWFHPnj0pfVcZAJYtX8batWsVJ8qc3vVp2EY7ISGBi/EXAKhYSZaNp9esWTPVEYQQmZDaFEIIa5NxQFiRv78/o8beWJYd1D8IRYumb0vv+jRso319Nhugao2qCpMYT/rd2IUQxiG1KYQQ1ibjgLCqV155hWqVqgGw4a8N/PTTT4oT/Zfe9WnYRjv9juN3V5QZ7fS8vb1VRxBCZEJqUwghrE3GAWFVPj4+jJ0w1vk4sF8QqampChP9l971adhGW87QvrXSpUurjiCEyITUphBCWJuMA8LKOnTowH31GwKwe3+04fYs0Ls+Ddtoyxnat7Zp0ybVEYQQmZDaFEIIa5NxQFiZzWZj/KRI5+NBgYNISkpSmCgjvevTsI32oYOHnF/LjHZGzz33nOoIQohMSG0KIYS1yTggrK558+a0eKwFAMdOHeOTTz5RnOgGvevTsI12zN4Y59cVKlRQmMR4ZsyYoTqCECITUptCCGFtMg4IAeMmjHN+PSx0OPHx8QrT3KB3fdocivZej4uLIyAggNjYWAoVKvSff1+iaEnOXjxDsYDinLt0VkFCIYQQQgghhBDZ9eILL/L9D98DMHLkSIYMGaI4kf4MOaOdlJTE2YtnAKgoy8b/Izw8/M7fJITQndSmEEJYm4wDQmhGjR6Fl03b5XvM6LGcO3dOcSL969OQjfbRo0edX1etKWdo36x///6qIwghMiG1KTJ1AHgOSFMdRAjhbjIOCKGpVq0a3bq9CcCVxARGjx6tOJH+9WnIRjvD0V5yhvZ/TJs2TXUEIUQmpDbFf1wBngKigCDFWYQQbifjgBA3DBs+jDw+fgBM+fBjjhw5ojSP3vVpyEZbjva6vWeeeUZ1BCFEJqQ2RQbJwPPAceBtYAIwVWkiIYSbyTggxA1lypShb//3AEhOvcbwYcOV5tG7Pg3faMvRXv+1bds21RGEEJmQ2hROacDrwErADkwD+gLvAt+qiyWEcC8ZB4TIKDg4mIL5CgIwe84coqOjlWXRuz4N2WhnWDoujfZ/FCtWTHUEIUQmpDYFAA6gH/A18BXQCrChzWj/D3gF+FlZOiGEG8k4IERGRYoUIWRICAAORxohwSHKsuhdn4ZstA/sPeD8Whrt/8qbN6/qCEKITEhtCgBGAR8CHwMvpnveC5gFtEbbHG2D/tGEEO4l44AQ/9WnTx/uKlICgPkL57Nx40YlOfSuT2M22jEHAQjIX5gCBQooTmM8e/fuVR1BCJEJqU3BNGAIMBLomcm/9wXmAfcBTwM79YsmhHA/GQeE+K98+fIxcvQI5+PA/oE4HA7dc+hdn4ZrtFNSUjh9/jQAd1eooDiNMbVo0UJ1BCFEJqQ2LW4e0AvoA4Te5vvyAYuA8mjLyg+5PZkQQicyDgiRuTfffJO7y2orldesW8PKlSt1z6B3fRqu0T5+/DhpjlQAqtSsojiNMc2ZM0d1BCFEJqQ2LWw50AXoDExCuyf7dgoDywB/tGb7jDvDCSH0IuOAEJnz9fVlzPgxzsfv932ftLQ0XTPoXZ82h4p5eyAuLo6AgABiY2MpVKiQ8/nffvuNxx57DIB+/foxceJEFfGEEEKIrPkTaAE8AixAWx6eVTHAQ0BZYDVQ6PbfLoQQQphVWloaDeo2YHv0dgC+++47XnzxxTv8lHkZbkZbztC+s/DwcNURhBCZkNq0oF1o91rXB34ge002QBW0HchjgPZAokvTCSF0JuOAELfm5eVF5KRI5+Pg94NJTk7W7fp616fhGm052uvOBg0apDqCECITUpsWcxht2XcZYDHavdc5UR/tnu0NwMtAikvSCSEUkHFAiNtr1aoVzZo0A+Dg0YN8/vnnul1b7/o0XKMtM9p3Nm7cONURhBCZkNq0kLNoTbYv2ox0kVy+XjPge7SGuwfaWdxCCNORcUCI27PZbIybeKNOhoQM5cqVK7pcW+/6NFyjfWC/nKF9J507d1YdQQiRCalNi4gHngIuASvQZrRd4Rngc2AmIJNiQpiSjANC3NmDDz5Iu2faAXDm/GmmTJmiy3X1rk/DNdox+7RGO79/AQoXLqw2jEGtWbNGdQQhRCakNi0gEegA7EObya7q4td/BW3X8rHAeBe/thDC7WQcECJrRo8Zjc2mtaLhI0Zx8eJFt19T7/o0VKOdlpbGyTMnAChftrziNMZVqVIl1RGEEJmQ2vRwqcD/gPVoS7wbuOk6fYEQIBBthlsIYRoyDgiRNXXq1OHVV14BIP5KHJGRkXf4idzTuz4N1WifPHmSlFRtF5iqcob2LaWkyE45QhiR1KYHc6DdO70A+A7tKC93CgfeArr9e00hhCnIOCBE1o0YOQIfb+24jonjJ3Ly5Em3Xk/v+jRUo51+I7RKleUTwVs5deqU6ghCiExIbXqwwcBnaPdPt9PhejZgKvAc8BLwmw7XFELkmowDQmTd3XffTa933wEgKTmJkSNGuvV6etenYRtt2Qjt1ho2bKg6ghAiE1KbHmoiEIF2z/RrOl7XG/gKeBhoC/yt47WFEDki44AQ2TN48GDy+mnnY3766afs37/fbdfSuz4N1WjLGdpZM3/+fNURhBCZkNr0QHOAAUDwv/+rNz8gCqgJPIm2CZsQwrBkHBAie+666y4GDgoCIDUtldCQULddS+/6tDkcDiWndcbFxREQEEBsbCyFChUCoEePHsyYMQOATZs2cf/996uIZniJiYn4+/urjiGEuInUpodZBDwLvA58gracW5VzaDPbScA6XHekmBDCpWQcECL74uPjqVD2bi7FazuP//333zRo0MDl19G7Pg01oy1naGfN+PFy5osQRiS16UHWAC8C7YFpqG2yAYoDy4EUoDVwQW0cIUTmZBwQIvsKFizI8LBhzscDAwe65Tp616ehZrSr3F2VA0di8Pf150rSFWw21e9shBBCWM5W4FGgIbAEMNLkVDTQDKgOrADyq40jhBBCuEJSUhKVK1ThxJnjAPz66688+uijilPljmFmtB0OB8dPHgOgbOly0mTfRnh4uOoIQohMSG16gP1o90JXA+ZjrCYboBZa8/8P8DxwTW0cIURGMg4IkTN+fn6MHjfK+TiwXyCung/Wuz4NM6N95swZSpYsCUCrJ1rx84qfVcQyhVOnTlGqVCnVMYQQN5HaNLmTwEOAL/A7cJfaOLe1Engardn+CgN9bC6Etck4IETOpaamUqdGHfbE7AG0zcvat2/vstfXuz4NMzSnP9qrctXKCpMY36JFi1RHEEJkQmrTxC6i3ft8De1eaCM32QBPAF8D3wLvAUo+MhdC3EzGASFyztvbm3ETxzkfB/UPIjU11WWvr3d9GqbRlqO9ss4du/AJIXJPatOkrqCdU30crck2yxD0PNpGbVOAMMVZhBCAjANC5Fbbtm1pdF9jAPYe2MtXX33lstfWuz4N02inn9GuWLGiuiAmcP78edURhBCZkNo0oWTgBbQN0JYAtZWmyb63gXBgGDBVcRYhhIwDQuSSzWZj/KRI5+OQoMEkJSW55LX1rk9DNtoyo317V69eVR1BCJEJqU2TSUM7I3sFYAceUBsnx0KAvsC7aEvJhRDKyDggRO498sgjtHqiFQAnzhxn+vTpLnldvevTMI32wQMHnV9Lo3171apVUx1BCJEJqU0TcQD90O5z/hJopTZOrtiACcD/gFcB2UtUCGVkHBDCNcZGjnV+PXzICOLj43P9mnrXp2Ea7Zg9MQD4ePvKbo13sHr1atURhBCZkNo0kVHAh8DHwEuKs7iCFzAL7QOD54ANauMIYVUyDgjhGg0aNKDTi50AuBR/kYkTJ+b6NfWuT0Mc71WwYEEK5C3IlaQEKpS5m8PHD6mIZBqxsbEEBASojiGEuInUpklMB3oCI4EhirO42hW03dN3AWuAOmrjCGE1Mg4I4Tr79++nZo2apKalktcvH4ePHuKuu3J+LIje9WmIGe1Lly5xJSkBgCrV5GivO/noo49URxBCZEJq0wTmAe8AvYFQxVncIR+wCCiH1nAfvv23CyFcS8YBIVynatWqdO/eHYCrSVcYNWpUrl5P7/o0xIz2gQMHuPfeewF48803+eyzz1REEkII4clWAG3Qdhn/EoN81OwmJ4GHAR9gLVBCbRwhhBAiJ06ePEmluyuRlJyEj7cv+2P2mWY/L0O8zZAztLMnPDxcdQQhRCakNg3sT+BZ4AlgNgYZ/dyoNNqZ4LHAU0Cc2jhCWIWMA0K4VunSpek3oB8AKanJDBs6LMevpXd9GmJG+/PPP6dv374AfPHFF7zyyisqIpnGpUuXKFy4sOoYQoibSG0aVDTa7G5NtFntfGrj6Gob8ChwH9o54f5q4wjh6WQcEML1Ll26xN3l7iYuIQ6bzYvt2/+hTp3sb0Kid30a4jN9mdHOnq+++kp1BCFEJqQ2DegI2k7cZYDFWKvJBqiPds/2H0BnIEVtHCE8nYwDQrhe4cKFGTx0MAAORxqDBg7K0evoXZ+Ga7QrVqyoLIdZPProo6ojCCEyIbVpMGfRmmwftLOli6iNo0wz4HtgIdAD7QxxIYRbyDgghHv07t2bEkVLArDop0X88ccf2X4NvevTEI12zG7tDG0vmzdlypRRnMb4YmJiVEcQQmRCatNA4oGngYtoy8WtPrQ8g3bO9kwgZxMBQogskHFACPfImzcv4WPCnI8D+weS3Tug9a5PQzTah48eAaBU8VL4+PgoTmN8efLkUR1BCJEJqU2DSAI6AHvRZrKrKk1jHK8CE4GxwHjFWYTwUDIOCOE+r7/+OpUraEdBr9uwjp9//jlbP693fSpvtOPj44lLiAWgcpVKitOYQ8mSJVVHEEJkQmrTAFLR7kVej3ZvcgOlaYynHxACBAKfK84ihAeScUAI9/Hx8WHM+DHOx4H9AklLS8vyz+tdn8ob7aNHjzq/rly9ssIk5rF582bVEYQQmZDaVMwB9AQWAN8Bj6iNY1jhwFtAN7Q/KyGEy8g4IIR7dezYkfp16wOwY/cO5s2bl+Wf1bs+DdVoy0ZoWdO+fXvVEYQQmZDaVGww8CnafcjtFGcxMhswFe1c8ZeA39TGEcKTyDgghHt5eXkROTHS+Tj4/WCSk5Oz9LN616fyRvvIkSPOr+Vor6z59NNPVUcQQmRCalOhiUAE2r3HrynOYgbewFy088XbAn+rjSOEp5BxQAj3e+KJJ3j0YW0H8cPHDzNz5sws/Zze9WlzZHe7NheJi4sjICCAPn368OGHHwKwcuVKWrRooSKOEEIIs/oCrbkORmu2RdbFA4+jnTf+O1BNbRwhhBAiKzZu3MgDDzwAQPEid3H42CHy5cunOFVGyme0jx6RpePZFR4erjqCECITUpsKLALeQLvfeLTiLGZUEFiKdsZ4K+CE2jhCmJ2MA0Loo3HjxnRo1wGAcxfPOidub0fv+lQ+o12vdn3+2bUNGzYSkxLlWIQsuHr1Knnz5lUdQwhxE6lNna0BWqOdl/0dIKdD5twR4CGgMNo920WVphHCtGQcEEI/0dHR1KlTF4cjjYL5CnL42GGKFClyy+/Xuz7Vz2j/e4b2XUVKSJOdRVOnTlUdQQiRCalNHW1Fu7e4Cdq9xtJk504FYDlwEngGSFAbRwizknFACP3UqlWLrq9pG7PEX4lnzJgxt/1+vetT+Yz2dY3va8yfm/9UEcV09u3bR7VqciOdEEYjtamTGLTZ13LAKqCQ2jgeZSPaPdvN0I7+ks+/hcgWGQeE0NeRI0eoWrkayanXyOPjx4FDMZQtWzbT79W7PpXPaF9XpXoV1RFMY8uWLaojCCEyIbWpg5NASyAA7d5iabJdqzEwH/gF6AqkqQwjhPnIOCCEvipUqMC7fXrx//buP8jrqt7j+HNjbQ1YSXBDSRQlLZ1RMm9lo6E0IOSGP/Ju8iO6lt1Ep1soOVhw6+pdMdOrmSJ6xR0mYyk0kwRTURO9TjN2vQrOBS62w6+EBJFYZGNZdvf+cYBR/EK78N3POZ/9Ph//sMjy/b5mnTfvfe85n3MAdu5q5oZ/u2G/n5t1fSYzaA86YVDsCLlRVVUVO4KkAqzNLraF8Ez2TsI2Z7/cXWM4YTv+L4HvAlH2vUn5ZB+Qsjd16lR6Hd4bgAceqGPlypUFPy/r+kxm0PYO7Y6rqKiIHUFSAdZmF2oiPJP9BmHItmV0rRpgJnA38O+Rs0g5Yh+QstevXz+unzoFgLb2Vqb+YGrBz8u6PpMZtL3aq+MaGhpiR5BUgLXZRVoIg9+rwOPAqVHTlI4rgVrgR4DnO0kdYh+Q4pg0aRJ9+/QD4OFfP8zLL7/8vs/Juj6TGbRd0e648847L3YESQVYm12gjXBP9iLgEeCzceOUnB8Qto9/m7CVXNIB2QekOHr37s0Ntf+29/dTvjflfZ+TdX0mM2gfd9xxsSPkxoMPPhg7gqQCrM0iaweuJTwv/CBwftw4JakMuB0YD3wNeDJuHCl19gEpnm9961sce/SxADzz3DM8++yz7/nzrOszieu9jqzsy9uNm2PEyKW2tjY+8IFkfkYiaTdrs8huAqYRti1fFTlLqWsBLgF+TziR/Ky4caRU2QekuH7xi18wYcIEAD415Ez++5U/UlZWBmRfn9H+Jdi5c+fej9023jnTp0+PHUFSAdZmEd1LGLJvxCE7BYcB84AzgGrgf+PGkVJlH5DiGjt2LKecdAoA/7PkZR599NG9f5Z1fUZb0V6yZAmf/OQnAaj5xxrmPTQvRoxc8qelUpqszSJ5CLiM8FzwnYTty0rDX4Fzgc3Ai3j6u7QP+4AU34IFCxg9ejQAJ51wEstWLqO8vLx0VrTXrVu39+PjB9mpO+Pmm2+OHUFSAdZmESwiPA88FvgpDtmp+TDwBFBBeGZ+Y9Q0UnLsA1J81dXVnPUP4Rmn11e9vvfZ7KzrM9qgvXbt2r0fu3W8c/Y8dyApLdbmIXqJ8BzwcGA2CR3Xqfc4hnCX+Vbgi0Bj3DhSSuwDUnxlZWXcesete38/dco0duzYkXl9JrGi7R3anfPcc8/FjiCpAGvzECwnDG1DgIcJzwQrXYMJJ5A3ABcDO6KmkZJhH5DScM455zDq/FEAbNi0npkzZ2Zen9EG7TVr1uz92BXtzhk8eHDsCJIKsDYP0lrCNuQBwAKgZ9w46qAhwGPAH4BxwK64caQU2AekdNxy6y2U7X4G7YYf3sjRRx+d6ftHG7RXN6ze+7GDduc0NzfHjiCpAGvzIGwiDNnlhBXSI+PGUSd9nnB43W+BiYS7z6USZh+Q0nH66aczZswYALa+89fM79Eu7+xfaG9vZ9u2bZ1+o+bm5vf849PwegMAvT7YG16FRh/y6rA1z6+hsdyvl5Qaa7OTmoBJwFuEQ9B64/O+eTQUmEEYtCuBG+LGUZH8DlhJOGVeHWYfkNIy5aIpzPvVPFrbW/ll/S/50XU/4iODPnLIr1tZWbn3fu796fT1Xo2NjfTp0+eQgkmSJEmSlEdbt27liCOOOODndHrQLsaK9o4dO7jlpluYNXsWV375Sn7y3Z90+vVKVeP2RgZeMJB1j6/jiF4H/p8rKTvW5kHaAZyOz2V3FzcC/wHcQ7imTfnzf8BI4ERgOnB43Dh5Yh+Q0rTx7Y2c+81zWb95PX9a+ieqjq865NfskhXtYvnzn//MwIEDWbduHccee2yMCLm0Z0dBR36KIik71qZEeEZ7IvAA8Gvgorhx1ElrgbMJ96U/j2cmdJJ9QErXli1b6Nu3b6b16S2lkiSpOMoIq9kXA5cBi6OmUWd4MKGkbqxHjx6Zv6eDtiRJKp4ewBzgHOBC4JW4cdQB24ALgC2EgwkHxI0jSd1BtEG7oqLiPb+qYyoqKhg2bJhfNykx1qb0LhXAb4CTgVHA63Hj6ACaCTsQVhJWsj8WNU2u2QekdMWoz2jPaPscy8F788036d+/f+wYkvZhbUr7eIuwst0MvIgrpalpBb4CPE4YsofGjdMd2AekdGVdn24dz6H58+fHjiCpAGtT2sdRwFPALsJJ1lvixtG7tANXAfOBX+GQXST2ASldWdeng3YOnXnmmbEjSCrA2pQKOI4wbG8AvgRsjxtHu00F7iecEH9h5CzdiH1ASlfW9emgnUNvvvlm7AiSCrA2pf04hbA9eQlQA7TEjVPybgduBm4D/ilylm7GPiClK+v6dNDOoZ07d8aOIKkAa1M6gM8AjwJPA5cDbTHDlLCfA5OB63f/qqKyD0jpyro+HbRzaPDgwbEjSCrA2pT+juGEq7/mApMIzwkrO48B3wC+CUyPnKWbsg9I6cq6Ph20c2L79u0sXLiQESNGsHjx4thxJL3LnvqsqamJHUVKXw0wE7gLqI2cpZQ8Tzhh/CLC178sbpzupqmpibq6Ou6++26uuOIK2trcsiGl5J133mHChAmsXbs2s/d00M6JXr16UV1dTUtLC1/96ldjx5H0Lnvq86ijjoodRcqHKwlD9g8JQ5+61qvAaOBzhB0F5VHTdEvLly+noaGBH//4x7z22ms0NzfHjiRpt7q6Om699VaWLFmS6Q/BvEc7Z8477zyGDx/OtGnTYkeRtI8TTjiBVatWxY4h5UM7cA3wM8JW8svixum2GoCzgWOBZwG/5eoymzZt4utf/zpjxoxxUURKUFlZGatWrWLQoEGZvJ8r2jnkkC2l6fjjj48dQcqPMsLp1+OBCYQrwFRcG4ARQB/gdzhkd7GqqioWLFjAnDlzWLFiRew4kiJz81AO1dbWOmxLCVqzZk3sCFK+fACoA7YAlwDPAGdFTdR9bAFGAjuB3wNVceN0dzNmzKC8vJxNmzZRXl5OQ0MDn/jEJ2LHkhSRK9o50dzcTH19PatXr+aYY47x2R8pIXvqs7W1lblz51qfUmccBswDzgCqgWVx43QLTYRnst8g7BRws02XGzZsGJWVlZx44omcdtppjBo1KnYkSZE5aOdERUUF48aNY/Xq1TQ1NVFRURE7kqTd9tTnddddx9ixY61PqbN6AguAjwLnA24OOXgthJPdXwUeB06NmqZknHrqqYwbN47Nmzczffp0evToETuSpMgctHNo2LBhsSNIKsDalA7Bh4EngQ8Shu2NUdPkUxvhnuxFwCPAZ+PGKUX2AUl7+Ix24srKOn7RZaQD5KWSt786tSalTjqGMCSeDXyR8GyxB3h1TDtwLeH6rrmEH1YoM/YBKV1z587l+eefB+D6669n6NChXH311V3+vl7vlUNPPPGEz/5ICbI2pSJZApwLfIqw/fnwuHFy4SZgGnAPcFXkLCXMPiClK+v6dOt44rZv387ChQsZMWIEABs3buSll16ivr6eyZMns2vXrsgJJTU1NVFXV8eyZcu44ooraGtrix1JyrchwGPAH4BxgK3uwO4lDNk34pAd2a5du5g8eXLsGJIK6NevX6bv56CduF69elFdXU1LSwsAzz77LMuXL2fcuHG0tLTw9NNPR04oafny5TQ0NNC7d29ee+01Tx2XiuHzhNPIfwtMJGyN1vs9BFwN/Ath2FY07e3t1NfXs3nz5thRJBXw6quvZvp+Dto5M2bMGO644w4A/vKXv3hHo5SAM888k0mTJvHWW2/xne98hw996EOxI0ndw2jCPdsPAN+PnCVFi4DxwFjgp0DHj3VRF1i0aBETJ06MHUPSfowePTrT93PQzqFZs2axcOFCampqGDRoUOw4koCqqira2tqYM2cOK1asiB1H6j6+BtwO3ALcFjlLSl4CLgGGA7PxO7rIGhoa6N+/P/Pnz48dRdJ+zJo1K9P385/lHBo5ciT9+/enpqaGZcuWxY4jlbwZM2Zw3333MW3aNMrLy2loaIgdSeperiGsaF9HGCpL3XLCqexDgIeBw+LGUdiSumrVKj7+8Y+zdu1ali5dGjuSpH1Mm5bt8zUO2olrbm6mvr6e1atXM3fuXBYvXszo0aP3Hk3vtRFSfMOGDaOyspLx48dz2mmneeKs1BVuAv4Z+CZQyouGawlXdw0AFgA948ZRcOmll1JdXc38+fNpbm72+zMpQbW1tZm+n9d75dCOHTs4/HDvOpFSY21KXawVuIwwYD5JuAKslGwiHBLXDLxIGLaVFPuAlK6s69MV7Ry66667YkeQVIC1KXWxHsAc4BzgQuCVuHEytQ24ANhCOATNITtJ9gEpXVnXp4N2Dl188cWxI0gqwNqUMlAB/AY4GRgFvB43TiaagYuBlcATwMeiptEB2AekdGVdnw7aOfTyyy/HjiCpAGtTykgl8DhwJOF55fVx43SpVsIVXi8S7hQ/I24cHZh9QEpX1vXpoJ1DRx99dOwIkgqwNqUMVQFPAbuAkYQt1d1NO3AV8Cgwj9J7Jj2H7ANSurKuTwftHCovL48dQVIB1qaUseMIw/YG4EvA9rhxim4acD8wi/BMupJnH5DSlXV9Omjn0KpVq2JHkFSAtSlFcAphG/kSoAZoiRunaO4ApgO3AZfHjaKOsw9I6cq6Ph20c2jo0KGxI0gqwNqUIvkM4YC0pwlDaVvUNIfu58C1wBRgcuQs6hT7gJSurOvTQTuH6uvrY0eQVIC1KUU0gnD111xgEuH55jx6DPgGcAVwc+Qs6jT7gJSurOuzrL29PUoramxspE+fPmzdupUjjjgiRoTcam1tpUePHrFjSNqHtSkl4F7CAWI3Av8aOUtnvUA4Rf2LhMPPfNw3d+wDUrqyrk9XtHPo5pv9EbeUImtTSsBEoBb4ITAzcpbOWEI40O1zQD0O2TllH5DSlXV9uqItSZK6l3bgGuBnhK3kl8WN83c1AGcDHwV+D/htkSTlnivaOVRbWxs7gqQCrE0pEWXA7cB4YALhCrBUbSA8X94H+B0O2TlnH5DSlXV9uqKdQ+vWrWPgwIGxY0jah7UpJaYFuISwSvwMcFbcOO+zBTgXeBt4ETg+bhwdOvuAlK6s69MV7Rx65plnYkeQVIC1KSXmMMKhYmcA1cCyuHHeowkYDbxBWHF3yO4W7ANSurKuTwftHDr55JNjR5BUgLUpJagnsIDw/PP5wJq4cYCw0v4V4BVgIXBq3DgqHvuAlK6s69NBO4f+9re/xY4gqQBrU0rUh4EngQ8Shu1NEbO0Ee7Jfgp4hPS2s+uQ2AekdGVdnw7aObR58+bYESQVYG1KCTsGWARsJdxT3RghQztwLTAHeBAYGSGDupR9QEpX1vXpoJ1DQ4YMiR1BUgHWppS4wYSV7T8BFwM7Mn7/6cCdwAzSv3JMB8U+IKUr6/p00M6hBQsWxI4gqQBrU8qBIcBjwB+AccCujN73PmAacANwVUbvqczZB6R0ZV2fXu+VQ01NTfTs2TN2DEn7sDalHHmMcPXX5cD9hLu3u8pDhBXsbxNWtLvyvRSVfUBKV9b16Yp2Dt1+++2xI0gqwNqUcmQ0UAc8APygC99nETAeGAv8FIfsbs4+IKUr6/p0RVuSJJWuOwgHlN0GTC7ya78EfAEYCjxKOPVcklQSXNHOodra2tgRJBVgbUo5dA3wfeB7wOwivu5y4ALgdMLWcYfskmAfkNKVdX26op1DmzZtoqqqKnYMSfuwNqWcageuJGwlfwS48BBfby1wNuH+7sVA30N8PeWGfUBKV9b16Yp2Dj3yyCOxI0gqwNqUcqoMmEm48usrhOH4YG0CzgfKCVeJOWSXFPuAlK6s69NBO4c+/elPx44gqQBrU8qxHsAc4BzCivYrB/Ea2wjbxbcATwEDipZOOWEfkNKVdX06aOfQhg0bYkeQVIC1KeVcBfAb4GRgFPB6J/5uM+G6sJXAE8BJRU+nHLAPSOnKuj4dtHOotbU1dgRJBVibUjdQCTwOHEnYAr6+A3+nlXCF138BvwXO6LJ0Spx9QEpX1vXpoJ1DgwYNih1BUgHWptRNVBG2fu8CRhK2gu9PO3A1YSX8V8C5XZ5OCbMPSOnKuj4dtHPohRdeiB1BUgHWptSNHEcYtjcAXwKa9vN504D/BGYBF2UTTemyD0jpyro+vd4rh95++2369vUYUyk11qbUDb0EfAEYCswHDnvXn90BXAvcSriHWyXPPiClK+v6dEU7h+65557YESQVYG1K3dBnCNvCnwYuB9p2//efE4bsKThkay/7gJSurOvTFW1JkqS/5yHgMuDbwHDgy4TB+37CPdySJL2LK9o5VFtbGzuCpAKsTakbqwHuAe4CLiXctX0vDtl6D/uAlK6s69MV7RxqbGz0ayYlyNqUSsD5wB+BtYSrwKR3sQ9I6cq6Pl3RzqHZs2fHjiCpAGtTKgFPAm/gkK2C7ANSurKuTwftHBo+fHjsCJIKsDalElAG9IwdQqmyD0jpyro+HbRzaMWKFbEjSCrA2pSk0mYfkNKVdX06aOdQr169YkeQVIC1KUmlzT4gpSvr+nTQzqEsL1qX1HHWpiSVNvuAlK6s69NBO4eWLl0aO4KkAqxNSSpt9gEpXVnXp9d75dD69esZMGBA7BiS9mFtSlJpsw9I6cq6Pl3RzqG6urrYESQVYG1KUmmzD0jpyro+XdGWJEmSJKmIXNHOodra2tgRJBVgbUpSabMPSOnKuj5d0c6h5uZmKioqYseQtA9rU5JKm31ASlfW9emKdg7deeedsSNIKsDalKTSZh+Q0pV1fTpo59Cll14aO4KkAqxNSSpt9gEpXVnXp1vHJUmSJEkqomiDdnt7O9u2baOyspKysrIYESRJkiRJKrpog7YkSZIkSd2Rz2hLkiRJklREDtqSJEmSJBWRg7YkSZIkSUXkoC1JkiRJUhE5aEuSJEmSVEQO2pIkSZIkFZGDtiRJkiRJRfT/jNhoMiizW7gAAAAASUVORK5CYII=\n", + "text/plain": [ + "Graphics object consisting of 25 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:56,998 Plotting perturbation... done\n", + "INFO: 2023-09-20 09:43:56,999 Thus the function is NOT extreme.\n" + ] + }, + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "extremality_test(h, show_plots=True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "Indeed, it's not extreme. We see a perturbation in magenta and the two\n", - "perturbed functions in blue and red, whose average is the original\n", - "function (black).\n", - "\n", - "The extremality test stops when it has found one perturbation. To see\n", + "Indeed, it's not extreme. We see a perturbation in magenta and the two\n", + "perturbed functions in blue and red, whose average is the original\n", + "function (black).\n", + "\n", + "The extremality test stops when it has found one perturbation. To see\n", "more perturbations, we use the following: :" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:57,007 pi(0) = 0\n", + "INFO: 2023-09-20 09:43:57,008 pi is subadditive.\n", + "INFO: 2023-09-20 09:43:57,009 pi is symmetric.\n", + "INFO: 2023-09-20 09:43:57,009 Thus pi is minimal.\n", + "INFO: 2023-09-20 09:43:57,009 Plotting 2d diagram...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAALfCAYAAABb1rW9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADREElEQVR4nOzddZhU5d8G8Hu2u2ZTaqVLukVCkAGkBCUkFQUJRQGDn2CiiGIrvCySUoo0AktId0gvzVJud8fsvH8cd2Rhe+fMc87M/bmuvZTdM+d8GZ45c+8zT2gMBoMBRERERERkEjaiCyAiIiIisiQM2EREREREJsSATURERERkQgzYREREREQmxIBNRERERGRCDNhERERERCbEgE1EREREZEIM2GQRDAYDkpOTwWXdiYiISDQGbLIIKSkp8PT0REpKiuhSSmX16tWiSyDB2AaI5MHXFimhDWi4kyNZguTkZHh6eiIpKQkeHh6iyyEiIiIrxh5sIgFmzpwpugQSjG2ASB58bZES2gB7sMkiqK0HOzc3F3Z2dqLLIIHYBojkwdcWKaENsAebSIA5c+aILoEEYxsgkgdfW6SENsAebLIIauvBDg8PR3BwsOgySCC2ASJ58LVFSmgD/AyFSICDBw+a5cWfnZ2N3Nxc2a9DZXfy5En4+/uLLoMEs7Ozg4ODg+gyLIq57q+kXEpoAwzYRAJUq1ZN9mtkZ2fj4sWLyMvLk/1aVHaPP/44wsLCRJdBgtnY2KBBgwYM2SZkjvsrKZsS2gADNpEAer1e9mvk5uYiLy8PwcHBcHZ2lv16RFQ2GRkZCA8PR25uLgO2CZnj/krKpoQ2wIBNJEBERITZruXs7AwXFxezXY+IyiYpKQmZmZlwdHSEq6ur6HJUz5z3V1ImJbQBBmwiAVq1aiW6BCJSiC1btiAtLQ0eHh4YNGgQQ3YF8f5KSmgDXKaPSIC1a9eKLoGIFMLV1RUODg5ITk5GVlaW6HJUj/dXUkIbYMAmEmDSpEmiSyAihXB0dISjo6PoMiwG76+khDbAgE1kRjExQNWqwCuvfCW6FCIii/TVV7y/WjsltAEGbCIz2rYNuHsX2Lx5OvbuFV0NEZHlmT59uugSSDAltAEGbCIzOnsWCAoCtNqZeOYZICREdEVERJZl5syZoksgwZTQBhiwicxo+3age3fgr79extixwNixwBtvAJa42eJHH32EJk2aFHvMqFGj0K9fP+OfO3XqhDfffLPYxyxZsgReXl4Vrq8kGzZsQM2aNWFra1tiTUSkHC+//LLoEkgwJbQBBmwiM7l7F7h0CdDpgF27tuGnn4C5c6WvZ58FEhPNX5MmZ0Gpjz18+DBsbW3RvXt32epZt24dPv30U+Ofg4OD8d133xU4ZtCgQbh69apsNeQbO3Ysnn/+edy9e7dATUSkbNu2bRNdAgmmhDbAgE1kJjt2ABoN0LUr0KhRIwDAuHHS90+cANq0Aa5dE1xkMRYtWoTXX38dBw8exJ07d2S5ho+PD9zd3Ys9xtnZGf7+/rJcP19qaiqio6Oh0+nw2GOPlVgTESlH/v2VrJcS2gADNpGZhIYCLVsCWi0QHx9v/P7TTwPHjkn/37o1sGuXoAKLkZaWht9//x3jxo1Dr169sGTJkkeO+eKLLxAQEAB3d3eMHj0amZmZBX6u1+sxefJkeHl5QavV4p133oHBYChwzINDRDp16oTbt2/jrbfegkajgUajAVBwiMiVK1eg0Whw+fLlAuf55ptvEBwcbDz/pUuX0LNnT7i5uSEgIADDhw9HbGxsoX/XvXv3GgP1008/DY1Gg7179yIuLg5DhgxB5cqV4eLigieeeAKrVq0q8Ni8vDzMnj0bNWvWhKOjI6pWrYrPPvvM+PP79+9j0KBB8Pb2hlarRd++fREeHl70E09EZfbg/ZWskxLaAAM2kRno9VJw1umkP6elpRX4ea1awNGjUgDv3l0aNqIkv/32G+rUqYM6depg2LBhWLx4cYFw/Pvvv+PDDz/EZ599hpMnTyIoKAhzH/pLfP3111i0aBEWLlyIgwcPIj4+HuvXry/ymuvWrUPlypXxySefICIiotCtb+vUqYPmzZtjxYoVBb6/cuVKvPjii9BoNIiIiEDHjh3RpEkTnDx5Etu3b0dUVBQGDhxY6HXbtWuHK1euAJA2K4iIiEC7du2QmZmJ5s2bY8uWLbhw4QLGjBmD4cOH41j+b0cApk2bhtmzZ2PGjBm4dOkSVq5ciYCAAABAeno6OnfuDDc3N+zfvx8HDx6Em5sbunfvjuzs7BL+BYiotB6+v5L1UUQbMBBZgKSkJAMAQ1JSkuhSCnXkiMEAGAyHDkl/vnjxYqHH5eQYDG+8IR07bpzBkJ1d/mumpaUZTp48aUhLSyvyGGSHlOpc7dq1M3z33Xf/1phj8PX1NezcudP487Zt2xpee+21Ao9p3bq1oXHjxsY/BwUFGb744gvjn3NycgyVK1c29O3b1/i9jh07GiZNmmT8c7Vq1QzffvttgfMuXrzY4OnpafzzN998Y6hevbrxz1euXDEAMD7HM2bMMHTr1q3AOe7evWsAYLhy5Uqhf9+EhAQDAMOePXsK/Xm+nj17GqZMmWIwGAyG5ORkg6Ojo2HBggWFHrtw4UJDnTp1DHl5ecbvZWVlGZydnQ2hoaHFXocsU/5r9I8//jD88ssvhm+//dYQFxcnuizVK+r+StZDCW2APdhEZhAaCnh6Aq1aSX/eVcQ4EDs74PvvgfnzgQULgB49ANGfdF25cgXHjx/H4MGD/63RDoMGDcKiRYuMx4SFhaFt27YFHvfgn5OSkhAREVHge3Z2dmjRokWF6xs8eDBu376No0ePAgBWrFiBJk2aoH79+gCAU6dOYc+ePXBzczN+1a1bFwBw48aNUl9Hr9fjs88+Q6NGjaDVauHm5oYdO3YYx6OHhYUhKysLXbp0KfTxp06dwvXr1+Hu7m6sw8fHB5mZmWWqg4iKV9T9layHEtqAnegCiKxBaKg0udHu31fcqFGjij1+zBigdm1gwABpXPbmzcC/mdDsFi5ciNzcXFSqVMn4PYPBAHt7eyQkJMDb21tMYf8KCgpC586dsXLlSrRp0warVq3C2LFjjT/Py8tD7969MXv27EIfW1pff/01vv32W3z33Xd44okn4OrqijfffNM4vMPZ2bnYx+fl5RU6nAUA/Pz8Sl0HERWvpPsrWT4ltAH2YBPJLCFBmsSYP/4aAH744YcSH9epk7S6iIODtMLIjh3y1ViU3NxcLFu2DF9//TXOnDlj/Dp79iyqVatmDIv16tUz9iDne/DPnp6eCAoKKvC93NxcnDp1qtjrOzg4QK/Xl1jn0KFD8dtvv+HIkSO4ceOGsbcdAJo1a4aLFy8iODgYNWvWLPDl6upaqucBAA4cOIC+ffti2LBhaNy4MapXr45rDyz7UqtWLTg7O2P37t2FPr5Zs2a4du0a/P39H6nD09Oz1HUQUfFKc38ly6aENsCATSSzXbuAvLyCAbu027hWrw4cOQI8+aQ0XOSHH4CHFt6Q1ZYtW5CQkIDRo0ejYcOGBb6ef/55LFy4EAAwadIkLFq0CIsWLcLVq1fx4Ycf4uLFiwXONWnSJHzxxRdYv349Ll++jPHjxyOxhMW/g4ODsX//fty/f7/IVT8AoH///khOTsa4cePQuXPnAr3tEyZMQHx8PIYMGYLjx4/j5s2b2LFjB15++eVShfd8NWvWxM6dO3H48GGEhYVh7NixiIyMNP7cyckJ7777Lt555x0sW7YMN27cwNGjR43P0dChQ+Hr64u+ffviwIEDuHXrFvbt24dJkybh3r17pa6DiIqnhG2ySSwltAEGbCKZhYZKwzuqVv3ve2XZxtXDA9i0CXjrLWDSJOC11wBzLTqxcOFCdO3atdAe1gEDBuDMmTM4ffo0Bg0ahA8++ADvvvsumjdvjtu3b2PcuHEFjp8yZQpGjBiBUaNGoW3btnB3d8dzzz1X7PU/+eQThIeHo0aNGsUOo/Dw8EDv3r1x9uxZDB06tMDPHnvsMRw6dAh6vR46nQ4NGzbEpEmT4OnpCRub0t8CZ8yYgWbNmkGn06FTp04IDAwssAtl/jFTpkzBBx98gHr16mHQoEGIjo4GALi4uGD//v2oWrUq+vfvj3r16uHll19GRkYGPDw8Sl0HERVPCdtkk1hKaAMag8Gc/WFE8khOToanpyeSkpIUFVYMBilYDxgAPLghYXx8PHx8fMp8vkWLpIDdrh2wdq20pnZR0tPTERYWhnr16sHFxaXsxRORrPJfo+Hh4UhMTERKSgpGjBhRrnsD/ae891eyHEpoA+zBJpJRWBhw717B4SEAHtmgpLRefhnYvRu4eFFakeTSJRMUSURkQcp7fyXLoYQ2wIBNJKPQUMDREejYseD3n3rqqXKf86mnpMmPLi7S5MetWytYJBGRBanI/ZUsgxLaAAM2kYxCQ4EOHaQw/KCKbo8dHAwcPiytNNK7N/DNN+ad/EhEpFQVvb+S+imhDTBgE8kkIwPYt+/R4SEAYGtrW+Hzu7sD69cDb78NTJkCvPKK+SY/Kkl4eDg0Gg3OnDkjupRSUVu9RGpjivsrqZsS2gADNpFMDhwAMjMLD9hl2eCkOLa2wBdfAEuXAsuXS5vZxMSY5NQFREZG4vXXX0f16tXh6OiIKlWqoHfv3kWu+Wxp9u7dC41GA41GAxsbG3h6eqJp06Z45513EBERYZJzl7RkYWmMGjXKWKe9vT2qV6+OqVOnIi0trcLnJlILU91fSb2U0AYYsIlkEhoKVKoENGjw6M9OnDhh0muNGAHs2QNcuSJNfjx/3nTnDg8PR/PmzfHXX3/hyy+/xPnz57F9+3Z07twZEyZMMN2FVODKlSv4559/cOLECbz77rvYtWsXGjZsiPOmfMIrqHv37oiIiMDNmzcxc+ZMzJ07F1OnThVdFpHZmPr+SuqjhDbAgE0kk+3bgW7dAI3m0Z/179/f5Ndr1w44fhzw9JT+f/9+05x3/Pjx0Gg0OH78OJ5//nnUrl0bDRo0wOTJkwvszHjnzh307dsXbm5u8PDwwMCBAxEVFWX8+UcffYQmTZpg0aJFqFq1Ktzc3DBu3Djo9Xp8+eWXCAwMhL+/Pz777LMC19doNJg3bx569OgBZ2dnPP7441izZk2xNV+6dAk9e/aEm5sbAgICMHz4cONGNXv37oWDgwMOHDhgPP7rr7+Gr69vib3R/v7+CAwMRO3atTF48GAcOnQIfn5+j6z5vXjxYtSrVw9OTk6oW7cu5s6dW+j5wsPD0blzZwCAt7c3NBqNcYvf7du3o3379vDy8oJWq0WvXr1w48aNYusDAEdHRwQGBqJKlSp48cUXMXToUGzYsKHExxFZCjnur6QuSmgDDNhEMrh7V1pCr7DhIQAwf/58Wa5brRpw8KA0VOSttx79eU5ODiIiIkr8ysnJASCtJbp9+3ZMmDCh0G3Fvby8AAAGgwH9+vVDfHw89u3bh507d+LGjRsYNGhQgeNv3LiBbdu2Yfv27Vi1ahUWLVqEZ599Fvfu3cO+ffswe/ZsTJ8+/ZFt12fMmIEBAwbg7NmzGDZsGIYMGYKwsLBCn4OIiAh07NgRTZo0wcmTJ7F9+3ZERUVh4MCBAIBOnTrhzTffxPDhw5GUlISzZ8/i/fffx4IFC8r8saKzszNee+01HDp0yLihzIIFC/D+++/js88+Q1hYGD7//HPMmDEDS5cufeTxVapUwdq1awFIveMRERH4/vvvAQBpaWmYPHkyTpw4gd27d8PGxgbPPfcc8vLyylxj/r8nkTWQ6/5K6qGENmAnugAiS7Rjh9Rz3bVr4T+XcxtXNzdpE5qvv370Z7GxsQgJCSnxHGPGjEFQUBCuX78Og8GAunXrFnv8rl27cO7cOdy6dQtVqlQBAPz6669o0KABTpw4gZYtWwIA8vLysGjRIri7u6N+/fro3Lkzrly5gq1bt8LGxgZ16tTB7NmzsXfvXrRp08Z4/hdeeAGvvPIKAODTTz/Fzp078eOPPxbaMzxv3jw0a9YMn3/+ufF7ixYtQpUqVXD16lXUrl0bM2fOxK5duzBmzBhcvHgRw4cPL3FXyaLkPzfh4eHw9/fHp59+iq+//trYg/L444/j0qVLmD9/PkaOHFngsba2tsbNEPz9/Y2/sADSTpkPWrhwIfz9/XHp0iU0bNiwVLUdP34cK1euRJcuXcr1dyNSIyVsk01iKaENMGATySA0FGjZsuidFmfOnCnrDcDGBpgwQdro5kG+vr4YM2ZMiY/39fUFIPVMA9IwjeKEhYWhSpUqxnANAPXr14eXlxfCwsKMATs4OBju7u7GYwICAmBra1tgy/KAgABjb3C+tm3bPvLnolbhOHXqFPbs2QM3N7dHfnbjxg3Url0bDg4OWL58ORo1aoRq1arhuwe32SyjB5+jmJgY3L17F6NHj8arr75qPCY3N7fQ7eaLc+PGDcyYMQNHjx5FbGyssef6zp07xQbsLVu2wM3NDbm5ucjJyUHfvn3x448/luNvRqROct9fSfmU0AYYsIlMTK8Hdu0CJk4s+pjJkyebr6AH2Nvbl2kYRK1ataDRaBAWFoZ+/foVeZzBYCg0hD/8fXt7+wI/z1/t4uHvlWYYRFGhPy8vD71798bs2bMf+dmDf/fDhw8DkIbBxMfHFzoEpjTyh6oEBwcb616wYAFat25d4LiyLhvVu3dvVKlSBQsWLMBjjz2GvLw8NGzYENklrMXYuXNnzJs3D/b29njsscceeX6JLJ2o+ysphxLaAMdgE5nYiRNAQgLQvXvRx8ybN898BVWAj48PdDodfv7550KXestfWq5+/fq4c+cO7t69a/zZpUuXkJSUhHr16lW4jofHZB89erTIYSvNmjXDxYsXERwcjJo1axb4yg/RN27cwFtvvYUFCxagTZs2GDFiRJnHNgNARkYGQkJC0KFDB/j5+SEgIACVKlXCzZs3H7n2448/Xug5HBwcAAB6vd74vbi4OISFhWH69Ono0qUL6tWrh4SEhFLV5Orqipo1a6JatWoM12SV1HJ/JfkooQ0wYBOZWGiotJJHq1ZFH9OrVy/zFVRBc+fOhV6vR6tWrbB27Vpcu3YNYWFh+OGHH4xDN7p27YpGjRph6NChOH36NI4fP44RI0agY8eOaNGiRYVrWLNmDRYtWoSrV6/iww8/xPHjxzGxiI8IJkyYgPj4eAwZMgTHjx/HzZs3sWPHDrz88svQ6/XQ6/UYPnw4unXrhpdeegmLFy/GhQsX8HVhg9YfEh0djcjISFy7dg2rV6/Gk08+idjY2AI3848++gizZs3C999/j6tXr+L8+fNYvHgxvvnmm0LPWa1aNWg0GmzZsgUxMTFITU2Ft7c3tFotQkJCcP36dfz111+K6JEhUgM13V9JHkpoAwzYRCYWGipNbrQrZgDW2bNnzVdQBT3++OM4ffo0OnfujClTpqBhw4Z45plnsHv3bmOw1Gg02LBhA7y9vdGhQwd07doV1atXx2+//WaSGj7++GOsXr0ajRo1wtKlS7FixQrUr1+/0GMfe+wxHDp0CHq9HjqdDg0bNsSkSZPg6ekJGxsbfPbZZwgPDzdO9gwMDMQvv/yC6dOnl7i7Yp06dfDYY4+hefPm+OKLL9C1a1dcuHChQC2vvPIKfvnlFyxZsgRPPPEEOnbsiCVLlhTZg12pUiV8/PHHeO+99xAQEICJEyfCxsYGq1evxqlTp9CwYUO89dZb+Oqrr8r35BFZGTXdX0keSmgDGkP+DB0iFUtOToanpyeSkpLg4eEhrI6EBMDXF/i//wMemOP2iN27d8u+skN6ejrCwsJQr149uLi4yHotOWk0Gqxfv77YMeBEapT/Gg0PD0diYiJSUlIwYsQI48oyVD7muL+SsimhDbAHm8iEdu0C8vKKXv86n7Ozs3kKIiKyMry/khLaAAM2kQmFhgJ16wJVqxZ/3NWrV81TEBGRleH9lZTQBhiwiUzEYJACdkm91wCEf3SlFPm7KhYnf5fI8tq7dy80Go1xxRO1u3LlCgIDA5GSklKq47ds2YKmTZuWa5UUU+rQoQNWrlxZqmOzsrJQtWpVnDp1Suaqirdw4UJ069at1MdPnToVb7zxhowVUWnw/kpKaAMM2EQmEhYG3LtXuoBd2LbZIpw/f17o9detW4dPP/3UZOcrLLC3a9cOERERZd7oxdz279+P3r1747HHHjNOGi3M+++/jwkTJhg37Mn/BeLhr/xNFnr16gWNRlPqcFsWe/fuRd++fREUFARXV1c0adIEK1aseOS4LVu2IDIyEoMHDzZ+Lzg4+JGaK1euDABwdHTE1KlT8e6775q8ZgAYO3YsatSoAWdnZ/j5+aFv3764fPlygWOysrLwwQcfYMaMGcbvffTRR4U+17t27QIAvPPOO1i8eDFu3bolS91UOkq5v5I4SmgDDNhEJhIaCjg6Ah07lnys6B2m5FbSZij5fHx8CuzsKAcHBwcEBgaWuBulaGlpaWjcuDF++umnIo+5d+8eNm3ahJdeeumRn125cgURERHGr/fee8/4s5deekmW3RwPHz6MRo0aYe3atTh37hxefvlljBgxAps3by5w3A8//ICXXnqpwI6dAPDJJ58UqPnvv/82/mzo0KE4cOCAcSMfU2revDkWL16MsLAwhIaGwmAwoFu3bgXWIl+7di3c3Nzw1FNPFXhsgwYNCtQcERGBDh06AJC2u+/WrRv+7//+z+Q1U+lZ+v2VSqaENsCATWQioaFAhw5AaRbsmDlzpvwFmUinTp0wceJETJw4EV5eXtBqtZg+fToeXIAoODgYM2fOxKhRo+Dp6WncJnzt2rVo0KABHB0dERwc/Mha0w/3OGdnZ+Odd95BpUqV4OrqitatW2Pv3r0FHnPo0CF07NgRLi4u8Pb2hk6nQ0JCAkaNGoV9+/bh+++/N/YshoeHFzpEpKS6goOD8fnnn+Pll1+Gu7s7qlatalzWL7/OiRMnIigoCE5OTggODsasWbOKfA5HjRqFfv364eOPP4a/vz88PDwwduzYAr+I9OjRAzNnzkT//v2LPM/vv/+Oxo0bG3t6H+Tv74/AwEDj14Nbxffp08e4Jnhp5T9vf/75Jxo3bgwnJye0bt26wKce//vf//Dpp5+iXbt2qFGjBt544w10794d69evNx4TGxuLXbt2oU+fPo9cw93dvUDNfn5+xp9ptVq0a9cOq1atKnXNgPRv9+mnn+LFF1+Em5sbHnvssUd+uRgzZgw6dOiA4OBgNGvWDDNnzsTdu3cRHh5uPGb16tWF1mxnZ1eg5sDAQONmQYD0XJe1ZjItNd1fSR5KaAMM2EQmkJEB7NtXuuEhADBt2jR5CzKxpUuXws7ODseOHcMPP/yAb7/9Fr/88kuBY7766is0bNgQp06dwowZM3Dq1CkMHDgQgwcPxvnz5/HRRx9hxowZWLJkSZHXeemll3Do0CGsXr0a586dwwsvvIDu3bvj2rVrAIAzZ86gS5cuaNCgAY4cOYKDBw+id+/e0Ov1+P7779G2bVu8+uqrxp7FKlWqPHKN0tb19ddfo0WLFvj7778xfvx4jBs3zjiM4IcffsCmTZvw+++/48qVK1i+fDmCg4OLfQ53796NsLAw7NmzB6tWrcL69evx8ccfl/zkP2D//v3l2rinWrVq8Pf3x4EDB8r82Lfffhtz5szBiRMn4O/vjz59+iAnJ6fI45OSkgosM3fw4EG4uLiUa0fPVq1alavmr776Co0aNcLp06cxbdo0vPXWW9i5c2ehx6alpWHx4sV4/PHHC7SXAwcOlOu5btWqFe7evYvbt2+X+bFkGmq7v5LpKaINGIgsQFJSkgGAISkpScj1Q0MNBsBgOH++dMd//vnn8hZkMBjS0tIMJ0+eNKSlpRV5zLlz50o8T8eOHQ316tUz5OXlGb/37rvvGurVq2f8c7Vq1Qz9+vUr8LgXX3zR8MwzzxT43ttvv22oX79+gXNPmjTJYDAYDNevXzdoNBrD/fv3CzymS5cuhmnTphkMBoNhyJAhhieffLLYWvPPl2/Pnj0GAIaEhIRS11WtWjXDsGHDjH/Oy8sz+Pv7G+bNm2cwGAyG119/3fD0008XeE6KM3LkSIOPj0+Bf4t58+YZ3NzcDHq9/pHjARjWr1//yPcbN25s+OSTTwr9+7m6uhb4io2NLXBc06ZNDR999FGp6n3wvKtXrzZ+Ly4uzuDs7Gz47bffCn3MmjVrDA4ODoYLFy4Yv/ftt98aqlev/six1apVMzg4OBSo+fvvvy9wzPfff28IDg4udc355+3evXuB7w0aNMjQo0ePAt/7+eefDa6urgYAhrp16xquX79u/FlCQoIBgGH//v0FHvPhhx8abGxsCtTcsmXLAsfk34v27t1bYq35r9E//vjD8Msvvxi+/fZbQ1xcXJn+vvQoc9xfSdmU0AbYg01kAqGhQKVKQIMGpTv+xRdflLcgE2vTpk2BMcxt27bFtWvXCoxZfbi3LywsDE8++WSB7z355JOPPC7f6dOnYTAYULt2bbi5uRm/9u3bhxs3bgD4rwe7IkpbV6NGjYz/r9FoEBgYiOjoaADSkI8zZ86gTp06eOONN7Bjx44Sr9u4ceMCG/60bdsWqampuHv3bqlrz8jIgJOTU6E/O3DgAM6cOWP88vb2LvBzZ2dnpKenl/paD9aZz8fHB3Xq1Cl0XPTevXsxatQoLFiwAA0eeCEUV/Pbb79doOYRI0aYvOb8Pz9c89ChQ/H3339j3759qFWrFgYOHIjMzExjzQAKrbtOnToFal67du0jNQMoV91kGmq7v5LpKaENFLOZMxGV1vbtQLduQGnn0e3fvx/Dhw+Xtygzc3V1LfBng8HwyMRCQzEbx+bl5cHW1hanTp2Cra1tgZ/ljyc2xeYBpa3L3t6+wJ81Go1xqbtmzZrh1q1b2LZtG3bt2oWBAweia9eu+OOPP8pcT1kmX/r6+iIhIaHQnz3++OPw8vIq8rHx8fEFxjhXxMM179u3D71798Y333zzSEgurmZfX1/UrFmzyOvIWbOnpyc8PT1Rq1YttGnTBt7e3li/fj2GDBkCrVYLjUZTaN0ODg4l1gzAZHVT2Vni/ZXKRgltgD3YRBV09y5w6VLpx18DUhhSk6NHjz7y51q1aj0ShB9Uv359HDx4sMD3Dh8+jNq1axf6uKZNm0Kv1yM6Oho1a9Ys8BUYGAhA6lXevXt3kdd0cHAotHe8InUVxcPDA4MGDcKCBQvw22+/Ye3atcZwVZizZ88ae0YB6Tl0c3MrdMJiUZo2bYpLly6V+vh8mZmZuHHjBpo2bVrmxz74b5+QkICrV6+ibt26xu/t3bsXzz77LL744guMGTOm0JojIyOLDNnFuXDhQoVrzv/zgzUXxmAwICsrC4DUjurXr1+u5/rChQuwt7cv0ItP5qW2+yuZnhLaAAM2UQXt2CH1XHftWvrH5ObmyleQDO7evYvJkyfjypUrWLVqFX788UdMmjSp2MdMmTIFu3fvxqeffoqrV69i6dKl+OmnnzB16tRCj69duzaGDh2KESNGYN26dbh16xZOnDiB2bNnY+vWrQCkiSsnTpzA+PHjce7cOVy+fBnz5s1DbGwsAGkFiWPHjiE8PByxsbGFbq5S1roK8+2332L16tW4fPkyrl69ijVr1iAwMLDYHuTs7GyMHj0aly5dwrZt2/Dhhx9i4sSJxqXrUlNTjcMOAODWrVs4c+YM7ty5YzyHTqfDkSNHSvwl4mFHjx6Fo6PjI0MnSuOTTz7B7t27ceHCBYwaNQq+vr7GjX/yw/Ubb7yBAQMGIDIyEpGRkQV+0WjatCn8/Pxw6NChMl/7wIEDZdroJd+hQ4fw5Zdf4urVq/j555+xZs0aY3u9efMmZs2ahVOnTuHOnTs4cuQIBg4cCGdnZ/Ts2dN4Dp1O98gvYqWt+amnnlLEVs3WSm33VzI9JbQBBmyiCgoNBVq2BLTa0j8mMjJSvoLK4IknnijVcSNGjEBGRgZatWqFCRMm4PXXXy+0t/JBzZo1w++//47Vq1ejYcOG+OCDD/DJJ59g1KhRRT5m8eLFGDFiBKZMmYI6deqgT58+OHbsmHF1h9q1a2PHjh04e/YsWrVqhbZt22Ljxo2ws5NGu02dOhW2traoX78+/Pz8CoTTitT1MDc3N8yePRstWrRAy5YtER4ejq1btz6yzvODunTpglq1aqFDhw4YOHAgevfujY8++sj485MnT6Jp06bGHtvJkyejadOm+OCDD4zH9OzZE/b29saNTUpr1apVGDp0aIEx4KNGjUKnTp1KfOwXX3yBSZMmoXnz5oiIiMCmTZuMy9ItWbIE6enpmDVrFoKCgoxfDy41aGtri5dffrnQDWiKc+TIESQlJeH55583fi9/6cAHl9MrzJQpU3Dq1Ck0bdoUn376Kb7++mvo/v2IycnJCQcOHEDPnj1Rs2ZNDBw4EK6urjh8+DD8/f2N53j11VexdetWJCUllanuVatWGZepJDGUcn8lcRTRBkTOsCQyFVGriOTmGgze3gbDjBlle9zVq1flKegBpVlFpDQKW5nDVNq0aWN4//33ZTm3kowcOdLQt29fk5zr559/NnTr1q3Ux0dHRxt8fHwMN2/eLPD9jh07Gj788MMiH/fw6isVERkZadBqtYbw8PBSP+b55583fPbZZwW+t3jxYkPNmjUN2dnZRT6uWrVqhm+//ba8pRbwwgsvlGk1gi1bthjq1atnyMnJKdXxXEVEHua4v5KyKaENsAebqAJOnAASEoDu3cv2uKK2wbYWWVlZOHnyJC5evMixqmWUv0lKSkpKqY6/desW5s6dW2BMYkpKCm7cuFGmYTEVERAQgIULFxb6iUJhsrKy0LhxY7z11lsFvr99+3Z8/vnnj0xAlctXX31VYMOekuSvqZ3/iQqJYe33V1JGG+BdgKgCQkMBT0+gVauyPe7111+XpyCV2LZtG0aMGIHevXsXGAJAJbOzs8P7779f6uNbtWqFVg81UHd39zItD2gKffv2LfWxjo6OhW51vHr1alOWVKJq1aqV6bU6cOBAGauh0rL2+yspow2wB5uoAkJDpcmNZe2wmjNnjjwFyWDv3r347rvvTHrOfv36ITk5GStWrCh3b2RwcLDJ6yqPjz76CE2aNCn2mCVLliiiR6UsOnXqBIPBUOzETSUKDw/Hm2++KboMEkhN91eShxLaAAM2UTklJADHjpVteb58hfXOKdWoUaOg0Wge+bp+/bpZrr9kyZJCQ96JEydKnGhpDlOnTi126UAiMp+EBGDqVPXcX0keSniPZcAmKqddu4C8vPIF7JkzZ5q+IBl1794dERERBb5ErzPq5+dXYFUMUdzc3KAtyxIyRGRSsbHAqlXA8OGAnx9Qq9ZM5OSIropEUsJ7LAM2UTmFhgJ16wJVq5b9sa+88orpC5KRo6MjAgMDC3zZ2tpi1KhRxjWR87355psFln/r1KkT3njjDbzzzjvw8fFBYGBggeXpACAxMRFjxoxBQEAAnJyc0LBhQ2zZsgV79+7FSy+9hKSkJGPPef5jHx4icufOHfTt2xdubm7w8PDAwIEDERUVZfx5/lCOX3/9FcHBwfD09MTgwYOLnSyY33u+YcMG1K5dG05OTnjmmWcKjF8uzRARIjKdnBxg/35g+nRpiVR/f+DFF4Fz54BnngEiIl5Bt25AXJzoSkkUJbzHMmATlYPBIAXs8vReA8DmzZtNW5DCLV26FK6urjh27Bi+/PJLfPLJJ9i5cycAaYv0Hj164PDhw1i+fDkuXbqEL774Ara2tmjXrh2+++47eHh4GHvOC1v5wmAwoF+/foiPj8e+ffuwc+dO3LhxA4MGDSpw3I0bN7BhwwZs2bIFW7Zswb59+/DFF18UW3t6ejo+++wzLF26FIcOHUJycjIGDx5suieHiEp08yYwbx7Qr5+050DHjsD8+UCtWsDixcA//wBnzwLbtgGTJ2/GhQtA69ZAWJjoykkEJbzHchURonIICwPu3St/wBbV45meDly+XPJxdesCD46+2LJlS4Hlynr06IE1a9aU+rqNGjXChx9+CACoVasWfvrpJ+zevRvPPPMMdu3ahePHjyMsLAy1a9cGAFSvXt34WE9PT2g0GuN26YXZtWsXzp07h1u3bhk3pfn111/RoEEDnDhxAi1btgQghfklS5bA3d0dADB8+HDs3r0bn332WZHnzsnJwU8//YTWrVsDkH5ZqFevHo4fP/7I6hxEZBqpqcCePVJHRmgocP26NJm8XTvg3Xele2+zZkBhezu98EITjBsH9OkDtGkDrF4N9Ohh/r8DiaOETxUZsInKITQUcHSUelHKI07QZ5eXLwPNm5d83KlT0ptXvs6dO2PevHnGP7u6upbpuo0aNSrw56CgIERHRwMAzpw5g8qVKxvDdXmEhYWhSpUqxnANAPXr14eXlxfCwsKMATs4ONgYrh+uoyh2dnZo0aKF8c9169Y1npcBm8g08vKAM2f+C9SHD0tDQapXl8L0nDlA586Ah0fJ54qLi0PLltI5hg4FevWSHv/mm4BGI/ffhJRA1HvsgxiwicohNBTo0KFgL29ZZGRkmLagUqpbVwrPpTnuQa6urqhZs+Yjx9nY2MBgMBT4Xk4hs4seXopPo9EgLy8PAODs7FxyQSUwGAzQFPLO+fD3i6ujOIWdu7DvEVHpRUUBO3ZI99OdO4HoaMDNTQrS334rBetCbjslyr+/ursD69cD//sfMHkycPEiMHcu4OBg4r8IKY6o99gHMWATlVFGBrBvH1CRScq1atUyXUFl4OJSsGe6ovz8/HDhwoUC3ztz5kyZ1rZu1KgR7t27h6tXrxbai+3g4AC9Xl/sOerXr487d+7g7t27xl7sS5cuISkpCfXq1St1LYXJzc3FyZMnjb3VV65cQWJiIuo+/FsIERUrKws4dOi/UH3mjPT9Zs2A0aOlQN22bcUD8IP3V1tbYPZsoEED4NVXgatXgbVrpdVGyHKJeo99ECc5EpXRgQNAZmb5x18DwJ49e0xXkEBPP/00Tp48iWXLluHatWv48MMPHwncJenYsSM6dOiAAQMGYOfOnbh16xa2bduG7du3A5CGdaSmpmL37t2IjY1Fenr6I+fo2rUrGjVqhKFDh+L06dM4fvw4RowYgY4dOxYY3lEe9vb2eP3113Hs2DGcPn0aL730Etq0acPhIUQlMBikQPvjj9IwDa0W6NIFWLIEeOIJYPlyqRf71Cng88+lIXem6F0u7P46YoQ0pvvKFWnn3TLepkhllPAey4BNVEbbtwOVKkk9IuU1YsQI0xUkkE6nw4wZM/DOO++gZcuWSElJKdffbe3atWjZsiWGDBmC+vXr45133jH2Wrdr1w6vvfYaBg0aBD8/P3z55ZePPF6j0WDDhg3w9vZGhw4d0LVrV1SvXh2//fZbhf+OLi4uePfdd/Hiiy+ibdu2cHZ2NvuW3URqkZQkDct47TVp/HSdOsDUqdInfzNmAH//La34sWyZND7a39/0NRR1D2rXDjh+HPD0lHrKt2wx/bVJGZTwHqsxPDyAkkiFkpOT4enpiaSkJHiUZhZMBTRoIC3/tGhR+c8xc+ZM2XeaSk9PR1hYGOrVq6eIDVnUaMmSJXjzzTeRmJgouhSyQPmv0fDwcCQmJhp/QfXx8RFdWqnp9VIPdGioNPTjyBHpe7VrS5/y6XRAp05AGedFV0hJ99fUVGlTmo0bpeEjU6dy8qOlMcd7bEk4BpuoDO7eBS5dAj74oGLnEf3CJyIqr/v3/xtHvWuXtKGLh4c0/OPnn6VQHRwsrr6S7q9ubtI47BkzgHfekSY/zp8vrQxFlkEJ77EcIkJUBjt2SD0dXbtW7DxK2MaViKg0MjOlVT6mTpXGTleuLE1KvHULGD9empcSGwusWweMHSs2XAOlu7/a2ACffSaNA1+9Gnj6aWkVE7IMSniP5RARsgjmGiIycCBw+zZw7FjFzpOYmAgvLy+T1FQUDhEhUjalDhExGKTNtPLXpN63TwrZjz3237CPrl2lSYtKVNb767Fj0g6RDg7A5s3AQ8v2kwqZ4z22JOzBJiolvV76OLR794qfa/ny5RU/CRGRiSQkAGvWAK+8AlStKs01mTZN2gBm5kzg/Hlp99pFi4BBg5QbroGy319bt5YmP2q10kTIjRtlKozMRgnvsRyDTVRKJ05Ib0IVWZ4vX8fybgFJRGQCublSqMyfnHj8uBSm69cHXnhBus916ACYYB8osyvP/bVKFWmoy8iRwHPPScNH3nuPkx/VSgnvsQzYRKUUGiot72SK5Y9v3LiBJ554ouInIiIqpTt3/hv2sXs3kJgIeHtLwz1eeQXo1k0KmmpX3vurqyvw++/Axx9Luz9eugQsWAA4OclQJMlKCe+xDNhEpRQaKr0R2ZngVePAvXqJSGbp6dL46fxQffmyNLmvTRvgrbekQN2ypbTboSWpyP3VxkYK2PXrA6NGAdeuARs2AIGBJiuPzEAJ77EM2ESlkJAgTYT5v/8zzfkCAgJMcyIion8ZDNJY6fxAfeAAkJ0tjanW6aSx1F26AILnfsnOFPfXQYOAGjWAvn2lX0I2bQKaNjVBcWQWSniP5SRHolLYtUsan2iK8dcAcOrUKdOciIisWmwssGqV1NtaqRLQuDHw0UfSms5ffimtBhIeDoSEAAMGWH64Bkx3f23RQhqbHhgItG8vrZ1N6qCE91j2YBOVQmgoULeu1BNkCn379jXNiUohIyPDbNciotIrz2szJ0faLTF/cuKpU1LPdaNGwLBhUidA+/bWvWmKKe+vlSpJw2xefhl4/nngk0+A6dM5+VHpzPkeWxQGbKISGAzSm9mAAaY754IFC2TfacrOzg42NjYIDw+X9TpEVH4GgwF6vb7YY27e/G/Yx19/ASkpgK8v8MwzwMSJ0ljqoCAzFawCpr6/urhInxI0aCDt4nvpkrRcoRpXWLEW5niPLQk3miGLIOdGM5cuSTfWrVuBHj1MemrZZWdnIzc3F0lJSdiyZQtcXV3haAFdW5GRUu+dg4PUY+ftLboiovLR6/XIzc1FRkaGcaMZe3sf7N37X6i+fl2aXN2u3X8bvTRtKk3II/P64w9gxAigYUNp8uNjj4muiJSKPdhEJQgNlT5uNeWymjNnzjTLb9cODg5wcHBAZmYm0tLSkJOTYxEB28lJ+vfYsAH4+Wfg2WeBxx8XXVXZHD16FG3atBFdBimAwQDcv5+F27elT8oOHZKGglSvLoXpOXOAzp0BGTeptShy3l+ff16a/NinjzT5ceNGaaw2KYu53mOLwx5ssghy9mB37y5NcNyxw3TnzMjIgLMZP19MS0vDb7/9huTkZLNd0xxycqSVEu7eld7k6tdXz9jI3Nxc2JlizUdSpYwM4J9/gPv3gYgIaStyg8EDVasOgk7nCp0OqFlTdJXqZI77a0SEtCHNuXPAkiXAwIGyXo7KyNzvsYVhwCaLIFfAzsgAfHyk5a2mTDHZafH1119jiilPWAppaWnIysoy6zXNQa8HvvhC6skePBiYPRuwtxddVcn+7//+D6+99proMshMsrOl3WD37pW+Ll6Uvv/EE0CnTtJXu3aO8PZ2FVekhTDX/TUzU9qgZ8UK4MMPpfHZHLajDCLeYx/G7hOiYhw4IN1ETbU8X74+ffqY9oSl4OrqCldXy3zz/vpraXmyV1+VJoStXQv4+YmuqngvvPACfHx8RJdBMjEYpE1K8sdR790LpKUBAQHSpMTJk6VJiv7+oiu1POa6vzo5Ab/+Ks3R+d//pF+ali6VJkWSWCLeYx/G37WIirF9u7RMU4MGpj3v6dOnTXtCwogRwJ49wJUr0nb2Fy6Irqh4bAOWJykJWL8eeO01afx0nTrA1KnSJ2EzZgB//y0NC1m2DBg6lOFaLuZ8bWk0wLRp0r/7tm3AU08B9+6Z7fJUBCXcX9mDTVSM0FCpt8nU43r9lN69qlLt2kkbQ/TtC7RtKy2t1auX6KoKxzagfnq9tA51/prUR45I36tdG+jdW/rkq1MnwEI/OFIsEa+tfv2kyam9e0uTHzdsAFq3NnsZ9C8l3F/Zg01UhLt3pSX6TD08BIBFrOShVNWqAQcPAl27SjP9v/pK+rheadgG1On+fWDxYmm8v7+/FKLmzJGGJP38M3DrlvQpyg8/SKvbMFybn6jXVuPG0jj76tWlVY5WrhRSBkEZ91cGbKIi7Ngh9Vx37Wr6c9+4ccP0JyUjNzdpHPb//ge88w7w0kuA0uZ3sg2oQ2amdC+YOlWakFi5MjB6tBSkJ0yQfpmLjQXWrQPGjgWCg0VXTCJfWwEB0mZAgwZJw4CmT5dWoSLzUsL9lauIkEWQYxWRgQOB27eBY8dMcroC7ty5g6qm2nedirVypbTNcfPmUggKCBBdkYRtQJkMBiAs7L/Jifv2SSH7scf+2+Sla1dAqxVdKRVFCa8tg0H6ZOPdd6XhI8uWSb/4k3kooQ2wB5uoEHo9sGuXtAa2HH799Vd5TkyPePFFKSTdvClNfjx7VnRFErYB5UhIANaskZZcq1pVmtQ8bZoUkmbOBM6flyauLVok9UwyXCubEl5bGg3w9tvSRjQ7dwLt2wN37oiuynooog2wB5ssgal7sI8elSbJHTokTZwztby8PNhwwVSzundPmvx45QqwfLnUqyQS24A4ubnSZNj8XuoTJ6SP8evX/6+XukMHQPA+FVROSnttnT8vzQdJT5cmP7ZtK7oiy6eENqCcFkikIKGhgKen1OMph88//1yeE1ORKlcG9u8HevSQdmCbNUvs5Ee2AfO6cwdYsEDa6trPD3jySeDHH6Ue65AQ6ecXLwLffCMFbIZr9VLaa+uJJ6Rf6OrUkVaVUUDnqsVTQhtgDzZZBFP3YLdrJ425/OMPExRXCCX8dm2t8vKAjz8GPvlEmoT0yy/ShhHmr4NtQE7p6dLmLjt2SL8wX74s7bLXps1/vdQtWgC2tqIrJVNT6msrOxsYN04aavTuu8Bnn7H9yUUJbUB5LZBIsIQEaWKjHMvz5Zs1a5Z8J6di2dhIAXv1ammlkU6dgMhI89fBNmBaBgNw7py0LGPXroC3t7RM3vr10uYff/wBxMVJw74++EBaXo/hxjIp9bXl4CD9Qv/NN1I7fe45ICVFdFWWSQltgD3YZBFM2YO9Zs1/K4jINQlZCTOcCTh5UhqXbWMDbNoENG1qvmuzDVRcbKw0gSx/o5eICGmb6k6dpA2idDrpY3lTbxRFyqaG19a2bdJa6tWqSfceLu9oWkpoA+zBJnpIaChQt6584RoA9u7dK9/JqdRatJAmuAUFSbP8164137XZBsouJ0caR//++9K/nb+/tErM338Dw4ZJK//ExwN//glMmiS9jhmurY8aXls9ekg7f6alSXN9Dh4UXZFlUUIbYMAmeoDBIAVsOYeHAECNGjXkvQCV2mOPScv49ekjTYD75BPzTH5kGyidmzeBefOkVV+0WmmHvJAQaTvyxYuBf/6Rll788kugSxdAARu4kWBqeW3Vry9NfmzQAHj6aak9k2kooQ3YiS6ASEnCwqTl3OQO2FlK21bQyjk7SxvS1K8vjc+9dEl6s5NzJQm2gcKlpEiTE/OX0Lt+HbCzkyYev/ee9Nps2lQa1kNUGDW9trRaqZ2//rq0IdaFC9Ivi5wfUDFKaAMM2EQPCA2VesA6dpT3OjExMfJegMpMowFmzJBC9ogR0jrIGzdKPdxyYBuQ5OUBZ878F6gPH5aGglSvLoXpOXOAzp0BE23QSlZAba8tBwfg//5P6sl+6y1pxZtVq9jmK0IJbYCTHMkimGqSY/fu0hv+jh0mLK4Q165dQ61ateS9CJXb339LQ0by8qSQ3aKF6a9hzW0gKuq/5fN27gSio6VtpDt3/m8JvZo1RVdJaqXm19aOHdIk+0qVgM2bpV80qeyU0Ab4IRvRvzIypLG4cg8PAYBNmzbJfxEqt6ZNpbGRVapIS7z99pvpr2FNbSArC/jrL2nt36ZNgcBA6VOCsDBg9GhpSEhcnLSawoQJDNdUMWp+bXXrJu0knJ0tTX7ct090ReqkhDbAHmyyCKbowd6xQwrX588DDRuauMCHZGRkwJlbxSleZibwyivAihXS2OwPPzTd2F9LbgMGA3Dt2n/DPvbulVZLCAj4b/m8Z56RVgEhMjVLeG3Fx0s92fv2AXPnAq++KroidVFCG2APNtG/tm+XPpZr0ED+a3399dfyX4QqzMlJ2tZ41izg00+BQYOkoGgKltYGkpKkTV1ee036WLtOHWDqVOmToQ8+kIbd/PMPsGyZtIMmwzXJxRJeWz4+0lrZY8ZIX2++CeTmiq5KPZTQBtiDTRbBFD3YDRpIu7stWmTi4sgibNwoBcPataWhDJUri65ILL0eOHXqv17qo0el79Wu/d846k6dAFdX0ZUSqdvcucAbb0g7lK5eDXh5ia6ISoM92EQA7t6VlmYzx/hrAJg5c6Z5LkQm07evtM12XBzQsiVw7FjFzqfGNnD/vrR84eDBUg9069bSKh8BAcDPPwO3bgFXrgA//CBtU85wTSKo8bVVnPHjpV9ijx8H2rSRhl9R8ZTQBtiDTRahoj3YCxdKY9xiYqR1SeUWFRWFgIAA+S9EJhcVBfTvL/XeLlok7SRYvvMovw1kZko7J+b3Ul+8KC1n2LLlf73UrVtL61QTKYUaXlvlce0a0Lu3tOrOH39Im9NQ4ZTQBtiDTQQpPLRsaZ5wDQAbN240z4XI5AICpBUxBg2Shoy8/760nF9ZKbENGAzSJznffistWentLYXo1aulFQ1Wr5Z+CT12TNrx8sknGa5JeZT42jKFWrWkoVgtW0qThefNE12RcimhDfDWSFZPrwd27ZJ20jKX5s2bm+9iZHKOjsCSJcATTwDvvCMtN7dsmbSWc2kppQ3ExwO7d//XS33v3n+bLX32mRSw69eXeq6J1EApry05eHkBf/4JTJkiDR25eBH47jv+ovswJbQB/pOQ1TtxAkhIMN/4a0D6+IrUTaORVsmoWxcYMgRo316a/Fi1aukeL6oN5OZKYznzA/WJE1IPfP36wAsvSK+DDh3k3SaeSE6Wfn+1swO+/16amD9hgjTv4fffpU+cSKKENsCATVYvNBTw9JQ+AjeX7Oxs812MZNWrF3DkiDQ2smVLaam6du1Kfpw528CdO/8F6t27gcRE6c24a1dp7kG3btKmOkSWwFrur2PGSKv2DBggzYXYvFlaHpOU0QY4BpusXmioFDTM+RFbjRo1zHcxkl3DhlKvcJ060nbfy5aV/Bg520BaGrB1KzBpElCvHlCtmrQ+dUQE8NZb0jjOmBip12v0aIZrsizWdH/t1Em699jZSSuM7NwpuiJlUEIbYMAmq5aQIE3YMufwEADYx/1vLY6fnzSWf/hwYORIaVtwvb7o403ZBgwG4Nw54KuvpF8WfXykZfI2bJC2ev/jD2l5wUOHpE1fWrcGbG1NdnkiRbG2+2uNGtKnaG3bAj16AD/+KN0TrJkS2gCX6SOLUN5l+taskbajvX279GNnTSExMRFe3C3AIhkM0qSjqVOlkLtiBeDu/uhxFW0DsbFSb1VoKLBjh9Q77eIi9Wjlb0depw4nJ5L1sdb7q14vTbr+5htg7FgpaNvbi65KDCW0AfZgk1ULDZUmqZkzXAPATz/9ZN4LktloNNIwjC1bgH37pPHY4eGPHlfWNpCTI61J/f77QIsW0kYvL74obUE+bJjUex4fL60wMGmS1K4ZrskaWev91dYW+Ppr4JdfpDX6u3WTPrmyRkpoA+zBJotQnh5sg0EK1gMGSD2ORKZ26RLQpw+QlCRNfmzfvmyPv3nzv8mJf/0FpKQAvr7AM89IPdTdugFBQfLUTkTqtX+/9N7m6SlNfqxXT3RF1oc92GS1wsKkNX/NPf4aUMY2riS/+vWlMf4NG0q7ri1e/N/PCmsDKSnSUn8TJ0qbStSoAbzxhjRX4L33gJMnpZ0kV66UxnkzXBM9ivdXaanN48el5TbbtAG2bxddkXkpoQ2wB5ssQnl6sL/9Fpg2TfpY3cVF5gIfkpSUBE9PT/NelITJyZE2Mpo/H5g8GfjySyA1NQnu7p44c+a/XurDh6Vjq1f/byvyzp2BMkwrILJ6vL/+JyVF2nH2zz+l4SOTJlnH0DEltAH2YJPVCg2Vfss3d7gGgGWlWceNLIa9vbSt8Q8/SL/YNWsGdO68DEFBQPPmwOefSx/lfvcdcO0acOMGMHcu0LcvwzVRWfH++h93d2l42tSp0tyQMWMABSwRLTsltAFuNENWKSNDmoAm6lOkzp07i7kwCaPRSL3Y1apJwfmxxzpj9Gipl7ptW8DBQXSFRJaB99eCbG2B2bOlIWtjxkg7P65dKy0taqmU0AbYg01W6cABIDNTzPhrALh27ZqYC5NwffoAV68CP/10DZ9/DnTsyHBNZEq8vxZu5Ehgzx4pYLdqBVy4ILoi+SihDTBgk1Xavh2oVAlo0EDM9Z2dncVcmBShVi22ASK58LVVtHbtpMmPHh7SJ2dbtoiuSB5KaAMM2GSVQkOlJc5ETfbQarViLkyKwTZAJA++topXrZq0q2vXrtInanPmWN7Oj0poAwzYZHXu3pXWJxY1PAQAzpw5I+7ipAhsA0Ty4GurZG5u0jjsadOAt98GXn4ZyMoSXZXpKKENcJk+sghlWaZv4ULg1VeBmBhA1C+5kZGRCAwMFHNxUgS2ASJ58LVVNitWAKNHSzvErlsn7RKrdkpoA+zBJqsTGgq0bCkuXAPAL7/8Iu7ipAhsA0Ty4GurbIYOlVbVunFDmvx47pzoiipOCW2APdhkEUrbg63XS0sTvf468PHHZiyQiIhIwe7elZYQvXpV6tXu21d0RerGHmyyKidOSNtOixx/DShjG1cSi22ASB58bZVPlSrSErbduwPPPQfMmqXeyY9KaAPswSaLUNoe7I8/lnbSi40F7ARus5SZmQknJydxBZBwbANE8uBrq2Ly8oCPPgI+/RQYNgxYsABQ29OphDbAHmyyKqGh0tJEIsM1APz4449iCyDh2AaI5MHXVsXY2ACffAKsXg388QfQuTMQGSm6qrJRQhtgwCarkZAAHDsmfngIAPTr1090CSQY2wCRPPjaMo1Bg4D9+4Hbt6XJj3//Lbqi0lNCG2DAJquxa5f00ZcSAvapU6dEl0CCsQ0QyYOvLdNp2VKauxQQALRvLy3jpwZKaAMM2GQ1QkOBunWBqlVFVwLh63OSeGwDRPLga8u0KlWSlvHr3RsYMACYOVP5kx+V0AYEj0QlMg+DQQrYAwaIrkRiJ3oQOAnHNkAkD762TM/FBVi1CmjQAJgxA7h4EVi0CHB2Fl1Z4ZTQBtiDTVYhLAy4d08Zw0MA4NatW6JLIMHYBojkwdeWPDQaKVyvWQNs3Ah07Aj884/oqgqnhDbAgE1WITQUcHSUbghK0KFDB9ElkGBsA0Ty4GtLXs8/Dxw8KIXrli2BkydFV/QoJbQBBmyyCqGhQIcO0sdcSrBy5UrRJZBgbANE8uBrS37NmkmTHytXlt5bf/9ddEUFKaENcKMZsgjFbTSTkQH4+EgTM6ZMEVTgQ/R6PWxtbUWXQQKxDRDJg68t88nIAF59Vdpa/cMPgQ8+kNbRFk0JbUABTwORvA4cADIzlTP+GgBmzZolugQSjG2ASB58bZmPszPw66/A559LOyUPHgykp4uuShltgD3YZBGK68GePFn6+OruXWmSBhEREZnWhg3S1up16kiTICtXFl2RWOzBJosXGgp066ascD1z5kzRJZBgbANE8uBrS4x+/YBDh4CYGGnnx+PHxdWihDbAgE0W7e5d4NIlZQ0PAYCRI0eKLoEEYxsgkgdfW+I0bixNfgwOliY/ipprqIQ2wIBNFm3HDqnnumtX0ZUUtHv3btElkGBsA0Ty4GtLrIAAYM8eYNAgYOhQYPp0IC/PvDUooQ2I3+qGSEahodI6nVqt6EoKql27tugSSDC2ASJ58LUlnqMjsGSJtPPje+9JnyQvWwa4uZnn+kpoA+zBJoul1wO7dgHdu4uu5FEZGRmiSyDB2AaI5MHXljJoNMA770gTHnfuBNq3B+7cMc+1ldAGGLDJYp04ASQkKG/8NQDExcWJLoEEYxsgkgdfW8rSuzdw+DCQlCRNfjxyRP5rKqENMGCTxQoNBTw9pRe00jRu3Fh0CSQY2wCRPPjaUp4nnpBWFaldG+jUSVo7W05KaAMM2GSxQkOlyY12CpxpsGXLFtElkGBsA0Ty4GtLmfz8pGGbw4YBI0ZIY7PlmvyohDbAjWbIIjy80UxCAuDrC/zf/0nbuCpNeno6XFxcRJdBArENEMmDry1lMxiAb78F3n4bePZZaZt1d3fTXkMJbYA92GSRdu2SfjNW4vhrAPjmm29El0CCsQ0QyYOvLWXTaKQdljdvBvbuBZ58EggPN+01lNAG2INNFuHhHuxXXpF2lAoLE10ZERERFebSJWkSZEoKsG6dtNKIpWAPNlkcg0Eaf63U3mtAGdu4klhsA0Ty4GtLPerXB44dk/779NPS2tmmoIQ2wB5ssggP9mDfu+eBBg2ArVuBHj1EV1a4mJgY+Pn5iS6DBGIbIJIHX1vqk50NvP46EBICTJkCzJ4N2NqW/3xKaAPswSaLExoq7SLVsaPoSoq2bt060SWQYGwDRPLga0t9HBykRQm+/16aANm3L5CcXP7zKaENMGCTxQkNBTp0AJQ8ibxly5aiSyDB2AaI5MHXljppNMAbbwDbtgEHDwJt2wI3b5bvXEpoAwzYZFEyMoB9+5Q9/hoAIiIiRJdAgrENEMmDry1169YNOHpUGjbSqpX0nl5WSmgDDNhkUQ4fBjIzlR+w9Xq96BJIMLYBInnwtaV+detKkx8bN5Y2jFuwoGyPV0IbUOAed0Tl99tvcfD3d0Ze3mWcPy+6mqLl5OTgvJILJNmpqQ088cQToksgKrW7d+9i69atossgE5g0SQMnp/oYM6Ya/vzzFkaPvgxb25LX5ggODpa/uBKwB5ssyvHjrmjXLgUajehKinf69GnRJZBgbANE8rh48aLoEshE7OwMmDDhIsaNu4DNm6vho49aIC2t5L7hAwcOmKG64jFgk0W5dcsJ7dqlii6jRD2Uun4gmQ3bAJE8Oip5CSkql1697uCTT07gyhUvTJ7cDv/8U/wqBkOGDDFTZUVjwCYLY0CbNsoP2L/99pvoEkgwtgEiefz555+iSyAZNG0ah2+/PQQAeOutdjh7VlvksXPnzjVXWUXiRjNkEfI3mqlXLwK//RYjuhwii8Ix2KQmHH9t2VJT7TB7dlOcPavFa69dQs+edx45pmfPngIqK4g92GQR8icMq6H3GgBCQkJEl0CCsQ0QyWP16tWiSyAZubnl4qOPTuLZZ2/j558bYt68+tDrC068UsJW6VxFhCxC/nwxKWBXYH9VM3nxxRdFl0CCsQ0QyaNPnz6iSyCZ2doaMHZsGKpWTcW8eQ1w754b3nvvNNzdcwEAb7zxhuAK2YNNCpOamooBAwbgzp1HP/Ipzq5d0n/r1cuQoSrT27hxo+gSSDC2ASJ57Mp/QyCL16PHXXz66XHcuOGByZOfxL17rgCAJUuWiC0MDNikIIsWLcJXX32FdevWIS8vr0yP3b1bmkpgp4LPZAwGA9q0aSO6DBKIbYBIHgaDAU2aNBFdBplR48bx+Oabw7C1zcPkye3w99++6Nq1q+iyOMmRlEej0eDWrVvFLhSflZWFrKwsAMC5cymYf/AXLJ/2Edoc/wGzMxqbqdKyy87OxvkLF5CRkYGWbVrD1lb5w1nItHJzc3Dp/AVkpGegTZs2qmgDtWrVEl0CUYn0ej12796Na9evof4TDWFjwz5Ea5KRYYdff62F69fc8FyfvzBr1hC4uBS/nJ+cSh2wV61ahVatWmHt2rWYNGkSvvrqK0yfPh0zZ87Eyy+/jG3btqFRo0aIj49HWloa6tati127dmHUqFH44YcfjMeOHz8eq1atwlNPPYXw8HDY2toiKCgIJ06cQP/+/TF//nzjsZMnT8a8efPQq1cvnD17FlqtFs7Ozrh69Sq6dOmCpUuXGo+dNm0avvzyS7z44ovYv38/Hn/8ceTm5iIyMhLNmzfHhg0b8Prrr2POnDnGx7zyyivYvHkzmjRpgri4OGRkZKBWrVrYs2cPRowYgR9//NF47MSJE7F8+XJ07NgRN27cgIODAwICAnDq1Cn07dsXCxYsMB47ZcoUzJ07F3369MHp06fh5+cHR0dH3LhxA506dcKvv/6KadOm4fPPP8f//vc/zJo1C8OHD8fevXtRo0YNZGVlISYmBs2aNcOmTZswfvx4fP3118bzv/rqq9i4cSOaN2+OqKgoZGdno0aNGti3bx+GDRuGn376yXjs66+/jmXLlqFz5864du0anJ2dodVqcebMGfTu3Ru//PKL8dipU6fixx9/RL9+/XDq1CkEBgbCzs4Ot27dQocOHbBy5Uq88847mDVrlvExI0eOxO7du1G7dm1kZGQgLi4OjRs3xpYtWzBu3Dh88803xmPHjh2LdevWoWXLloiIiIBer0dwcDAOHDiAIUOGYO7cuZg+fTo0Gg3OnTuHPXv2wMHBAXfv3oWTkxPc3d1x69YttGjRAnPmzMG5c+cAAK6urhj1zuv4+cMv8N5778HJyUnWFw0REREpW/fu3XHs2DF07doVly9fhqurK3x8fHDu3Dn06NEDixYtMuaTt99+G99//z0GDBiA48ePIygoCLa2trh9+zbat2+P1atXY+rUqfjiiy8wffr0Ul2fPdikOA/2YBe13FJOTg6ys3Pw008NcPhwIOrsXIiLnd/GWx9Mw6uDh8PLy8u8RZfB/fv38eeffyLbQYP1z3oi0VsF41rIpHpFeaHSn9dha2uLXr16ISAgQHRJRcrJyUF8fDx8fHxgb28vuhyiYkVHR2PDhg0wANjZ2R23HncUXRKZWc1YG3TZFI3+/fsLXWKU7+ykSvb29ti4sQ7276+Lt98+g/WeUlPOcrbF1q1bMWrUKGi1RS9CrwS+rp7oG5qChUN9EOPH4GJNsuAGAPDz88O2bdswfPhwVK5cWXBVRatataroEojKpEaNGsDeG1jjZYdL9ZxFl0Nm5Pvv9MKEhATExcUJywIcoESqdPSoP5YsqYNBg66jU6d/jN8/1MUPTk5OWLJkCeLi4gRWWLJ+vfvgMTcfjF4RD7+YHNHlkAA9evRAYGAgfv31V9y7d090OYVKSUnB/v37kZKSIroUolJ7unNnNGzQEC9sSED9MHWsLkWm988//wjLAgzYpDrh4e6YM6cJ2rSJwrBhVwv8LMvRFiNHjlRFyHZycsLokaMYsq2Yvb09hg4dquiQnZ6ejhMnTiA9PV10KUSlZmNjg/7PPceQTcJCNgM2KcaqVaswbtw4AMB7772HuXPnPnJMUpIDPv64OQID0zFlylkUNknczc1NNSHbxcWFIdvKOTg4KDpkBwQEYMqUKYoeJ05UGIZsyiciZDNgk2IMGTIE8+bNg8FgwOrVqzF+/PgCP8/JscFnnzVDdrYtPvjgJJyd9UWeiyGb1ETpIZtIrRiyKZ+5QzYDNqmCwQD8/HMDXLniienTT8HfP7PExzBkk5ooNWTHxMRg/vz5iImJEV0KUbkwZFM+c4ZsBmxShQ0bHsfOnVUwadJ51KuXWOrHMWSTmigxZDs4OKBy5cpwcHAQXQpRuTFkUz5zhWwGbFK8Eyf8sGhRXTz//A08/fQ/JT/gIQzZpCZKC9menp549tln4enpKbQOoopiyKZ85gjZDNikaLdvu2H27CZo0SIaI0deKfd5GLJJTZQUsnNzc5GYmIjc3FxhNRCZCkM25fvnn3+QmVnycNPyYsAmxYqNBT75pDkCAjLw9ttnCl0xpCwYsklNlBKyY2Ji8P3333MMNlkMhmzKl5eXJ9u5GbBJkbKzgeefBzIy7PDBB6fg4lL0iiFlwZBNaqKEkO3j44Phw4fDx8fH7NcmkgtDNsmNAZsUx2AAJk4EDh8G3n//NAICTHvjY8gmNREdsh0dHVG9enU4Ojqa9bpEcmPIJjkxYJPi/PgjsGABMH8+0KBBgizXYMgmNREZslNTU3HkyBGkpqaa7ZpE5sKQTXJhwCZFCQ0F3noLmDIFeOklea/FkE1qIipkp6amYu/evQzYZLEYskkODNikGJcvA4MGAd27A7Nnm+eaDNmkJiJCdmBgIKZNm4bAwEDZr0UkCkM2mRoDNilCfDzQuzdQqRKwahVga2u+azNkk5qIHpNNZKkYssmUGLBJuJwc4IUXgIQEYPNmwMPD/DUwZJOamDNkx8bGYtGiRYiNjZXtGkRKwZBNpsKATcJNmgTs3w+sXQtUry6uDoZsUhNzhWw7Ozv4+PjAzs5OlvMTKQ1DNpkCAzYJNXcuMG+e9N+OHUVXw5BN6mKOkO3l5YV+/frBy8vL5OcmUiqGbKooBmwSZtcu4I03pB7sV18VXc1/GLJJTeQO2Xq9HmlpadDrTbPZE5FaMGRTRTBgkxBXr0rjrrt2BebMEV3NoxiySU3kDNnR0dGYM2cOoqOjTXZOIrVgyKbyYsAms0tIkFYMCQgAVq8GlDq0kyGb1ESukO3t7Y3BgwfD29vbJOcjUhuGbCoPBmwyq9xcYPBgICZGWjFE6cM6GbJJTeQI2U5OTqhTpw6cnJxMUCGROjFkU1kxYJNZTZ4M7N4N/PEHUKuW6GpKhyGb1MTUITstLQ0nT55EWlqaiSokUieGbCoLBmwym/nzgR9/lL6eflp0NWXDkE1qYsqQnZycjK1btyI5OdmEFRKpE0M2lRYDNpnFnj3AxInAhAnAuHGiqykfhmxSE1OF7KCgIHzwwQcICgoycYVE6sSQTaXBgE2yu34deP55oFMn4LvvRFdTMQzZpCbcVp1IHgzZVBIGbJJVUhLQpw+g1QK//67cFUPKgiGb1KSiITsuLg7Lly9XdDsnEoEhm4rDgE2y0euBIUOAiAhpxRBLWuWLIZvUpCIh28bGBo6OjrCx4dsF0cMYsqkovGOSbN5+G9ixQ+q5rlNHdDWmx5BNalLekO3t7Y0XXniB62ATFYEhmwrDgE2yWLgQ+PZb6euZZ0RXIx+GbFKT8oTsvLw8ZGdnIy8vzwwVEqkTQzY9jAGbTG7/fmmlkLFjpZVDLB1DNqlJWUN2VFQUZs2ahaioKDNVSKRODNn0IAZsMqlbt4ABA4Ann5TWu9ZoRFdkHgzZpCZlCdleXl7o378/vJS+7SqRAjBkUz4GbDKZ5GSgd2/A01PaqdHeXnRF5sWQTWpS2pDt7OyMJ554As7OzmaukEidGLIJYMAmE9HrgaFDgbt3pRVDtFrRFYnBkE1qUpqQnZGRgXPnziEjgyGBqLQYsokBm0xi2jRg61Zg9WqgXj3R1YjFkE1qUlLITkxMxPr165GYmCimQCKVYsi2bgzYVGFLlgBffQXMmQP06CG6GmVgyCY1KS5kBwYG4v3330dgYKDAConUiSHbejFgU4UcOiStFjJ6NPDmm6KrURaGbFKTokK2RqOBnZ0dNNYyY5nIxBiyrRMDNpXb7dvAc88BrVsDc+daz4ohZcGQTWpSWMhOSEjAb7/9hoSEBNHlEakWQ7b1YcCmcklNBfr0AVxdgbVrAQcH0RUp18MhW8ljWRmy6eGQHRERAb1eD4PBILo0IlVjyLYuDNhUZnl5wLBhwM2b0oohfn6iK1K+B0P25s2bRZdTLIZsejBkb9y4ER06dICPj4/osohUjyHbejBgU5lNnw5s2gSsWgU0bCi6GvXID9mOjo4AwJ5sUrTybKtORCVjyLYODNhUJsuXA7NmAbNnA716ia5Gfdzc3NDr3ydu8+bNHJNNiubg4IAuXbogOzsbS5cuZcgmMhGGbMvHgE2ldvQo8MorwMiRwNSpoqtRLxcXFwCAo6MjJz6S4vn6+qJHjx4ICAhgTzaRCTFkWzYGbCqVu3eBfv2A5s2B+fO5Yogp9OrVi6uLkOK5uLigVatWGDFiBIeLEJkYQ7blYsCmEqWlSSuGODoC69dL/6WKc3Fx4RJ+pHgZGRkICwuDXq/nmGwiGTBkWyYGbCpWXp40JOTaNWnFEH9/0RVZFq6TTUqXmJiI33//HYmJiZz4SCQThmzLw4BNxfroI2DdOmDFCqBRI9HVWCaGbFKygIAAvPPOOwgICADA1UWI5MKQbVkYsKlIq1cDn34KfP450Lev6GosG0M2KZWNjQ2cnZ1hY/Pf2wVDNpE8GLItBwM2FerECeCll6QNZd59V3Q11oEhm5QoISEB69ate2SrdIZsInkwZFsGBmx6xP37Uo91kybAggVcMcScGLJJafLy8pCcnIy8vLxHfsaQTSQPhmz1Y8CmAtLTpXBtayutGOLkJLoi68OQTUqi1WoxatQoaLXaQn/OkE0kD4ZsdWPAJiODQRoWEhYmbYUeGCi6IuvFkE1qwpBNJA+GbPViwCajTz8Ffv8d+PVXoGlT0dUQQzYpQWRkJD7//HNERkYWexxDNpE8GLLViQGbAABr1gAffiiF7P79RVdD+RiySTR3d3d06dIF7u7uJR7LkE0kD4Zs9WHAJpw+LW0mM3gw8P77oquhhzFkk0iurq5o3bo1XF1dS3U8QzaRPBiy1YUB28pFREjboDdsCCxaxBVDlIohm0TJysrC9evXkZWVVerHMGQTyYMhWz0YsK1YRgbQr580uXHDBsDZWXRFVByGbBIhPj4eK1asQHx8fJkex5BNJA+GbHVgwLZSBgPwyivA+fPAxo3AY4+JrohKgyGbzM3f3x9vvfUW/P39y/xYhmwieTBkKx8DtpWaNQtYuRJYsgRo0UJ0NVQWDNlkTra2tvDw8ICtrW25Hs+QTSQPhmxlY8C2QuvXS5MZP/wQGDhQdDVUHgzZZC5JSUnYvHkzkpKSyn0OhmwieTBkKxcDtpU5cwYYNgx4/nnggw9EV0MVwZBN5pCTk4PIyEjk5FTs34whm0geDNnKxIBtRaKipBVD6tYFli4FbPivr3oM2SQ3X19fvPrqq/D19a3wuRiyieTBkK08jFhWIjMTeO45ICdHmtTo4iK6IjIVhmxSE4ZsInkwZCsLA7YVMBiAsWOlDWU2bAAqVxZdEZkaQzbJJSoqCl999RWioqJMdk6GbCJ5MGQrBwO2FfjqK2DZMmkjmdatRVdDcmHIJjm4urqiTZs2pd7JsbQYsonkwZCtDAzYFm7TJuC996RVQ158UXQ1JDeGbDI1Nzc3PPXUU3BzczP5uRmyieTBkC0eA7YFO38eGDpU2q3xk09EV0PmwpBNppSdnY07d+4gOztblvMzZBPJgyFbLAZsCxUTA/TuDdSoIQ0P4Yoh1oUhm0wlLi4OixcvlrUNMWQTyYMhWxzGLguUlQX07w9kZEhDRGT4ZJdUgCGbTMHPzw8TJkyAn5+frNdhyCaSB0O2GAzYFsZgAMaNA44fl1YMqVpVdEUkEkM2VZSdnR18fX1hZ2cn+7UYsonkwZBtfgzYFubbb4HFi4FffgHathVdDSkBQzZVRHJyMkJDQ5GcnGyW6zFkE8mDIdu8GLAtyNatwNtvA+++CwwfLroaUhKGbCqvrKws3LhxA1lZWWa7JkM2kTwYss2HAdtCXLwIDB4MPPss8NlnoqshJWLIpvLw8/PD+PHjZR+D/TCGbCJ5MGSbBwO2BYiNBfr0AYKDgRUrAFtb0RWRUjFkk5owZBPJgyFbfgzYKpedDTz/PJCcLK0Y4u4uuiJSOoZsKovo6Gh89913iI6OFnJ9hmwieTBky4sBW8UMBmDiRODwYWD9eqkHm6g0GLKptJydndGoUSM4OzsLq4Ehm0geDNnyYcBWsR9/BBYsAObPB9q3F10NqQ1DNpWGu7s7nn76abgL/niMIZtIHgzZ8mDAVqnQUOCtt4ApU4CXXhJdDakVQzaVJCcnBxEREcjJEf98M2QTyYMh2/QYsFXo8mVg0CCge3dg9mzR1ZDaMWRTcWJjYxESEoLY2FjRpQBgyCaSC0O2aTFgq0x8PNC7N1CpErBqFVcMIdNgyKai+Pr6YsyYMfD19RVdihFDNpE8GLJNhwFbRXJygBdeABISgM2bAQ8P0RWRJWHIpsLY29sjKCgI9vb2okspgCGbSB4M2abBgK0ikyYB+/cDf/wBVK8uuhqyRAzZ9LCUlBT89ddfSElJEV3KIxiyieTBkF1xDNgqMXcuMG+e9N9OnURXQ5aMIZselJGRgXPnziEjQ5lvsAzZRPJgyK4YBmwV2LULeOMNqQf71VdFV0PWgCGb8vn7++PNN9+Ev7+/6FKKxJBNJA+G7PJjwFa4q1elcddduwJz5oiuhqwJQzapCUM2kTwYssuHAVvBEhKkFUMCAoDVqwE7O9EVkbVhyKaYmBjMnTsXMTExokspEUM2kTwYssuOAVuhcnOBwYOBmBhpxRAvL9EVkbViyLZujo6OqFGjBhwdHUWXUioM2UTyYMguGwZshZo8Gdi9W1oxpFYt0dWQtWPItl4eHh7Q6XTwUNG6oAzZRPJgyC49BmwFmj8f+PFH6evpp0VXQyRhyLZOubm5iI2NRW5uruhSyoQhm0geDNmlw4CtMHv2ABMnAhMmAOPGia6GqCCGbOsTExODn3/+WRVjsB/GkE0kD4bskjFgK8j168Dzz0vrXH/3nehqiArHkG1dtFotXnrpJWi1WtGllAtDNpE8GLKLx4CtEElJQJ8+gFYL/P47VwwhZWPIth4ODg6oWrUqHBwcRJdSbgzZRPJgyC4aA7YC6PXAkCFARIS0Yoi3t+iKiErGkG0dUlNTceDAAaSmpooupUIYsonkwZBdOAZsBXj7bWDHDqnnuk4d0dUQlR5DtuVLS0vD0aNHkZaWJrqUCmPIJpIHQ/ajGLAFW7gQ+PZb6euZZ0RXQ1R2DNmWLSAgAG+//TYCAgJEl2ISDNlE8mDILogBW6D9+6WVQsaOlVYOIVIrhmxSE4ZsInkwZP+HAVuQW7eAAQOAJ5+U1rvWaERXRFQxDNmWKTY2FgsWLEBsbKzoUkyKIZtIHgzZEgZsAZKTgd69AU9PaadGe3vRFRGZBkO25bG3t0dgYCDsLfBGxZBNJA+GbAZss9PrgaFDgbt3pRVDVLq0LFGRGLIti6enJ3r37g1PT0/RpciCIZtIHtYeshmwzWzaNGDrVmD1aqBePdHVEMmDIdty6PV6JCcnQ6/Xiy5FNgzZRPKw5pDNgG1GS5YAX30FzJkD9OghuhoieTFkW4bo6Gh8++23iI6OFl2KrBiyieRhrSGbAdtMDh2SVgsZPRp4803R1RCZB0O2+vn4+GDo0KHw8fERXYrsGLKJ5GGNIZsB2wxu3waeew5o3RqYO5crhpB1YchWN0dHR9SsWROOjo6iSzELhmwieVhbyGbAlllqKtCnD+DqCqxdCzg4iK6IyPwYstUrLS0Nx44ds4idHEuLIZtIHtYUshmwZZSXBwwbBty8Ka0Y4ucnuiIicRiy1SklJQW7d+9GSkqK6FLMiiGbSB7WErIZsGU0fTqwaROwahXQsKHoaojEY8hWn8DAQPzvf/9DYGCg6FLMjiGbSB7WELIZsGWyfDkwaxYwezbQq5foaoiUgyGb1IQhm0gelh6yGbBlcPQo8MorwMiRwNSpoqshUh6GbPWIi4tT/L+R3BiyieRhySGbAdvE7t4F+vUDmjcH5s/niiFERWHIVgcbGxt4eHjAxsa63y4YsonkYakh27rvmCaWliatGOLoCKxfL/2XiIrGkK183t7e6N+/P7y9vUWXIhxDNpE8LDFkM2CbSF6eNCTk2jVpxRB/f9EVEakDQ7ay5eXlISMjA3l5eaJLUQSGbCJ5WFrIZsA2kY8+AtatA1asABo1El0NkbowZCtXVFQUvvzyS0RFRYkuRTEYsonkYUkhmwHbBFavBj79FPjsM6BvX9HVEKkTQ7YyeXl5YeDAgfDy8hJdiqIwZBPJw1JCNgN2BZ04Abz0krShzHvvia6GSN0YspXH2dkZ9erVg7Ozs+hSFIchm0gelhCyGbAr4P59qce6cWNgwQKuGEJkCgzZypKeno7Tp08jPT1ddCmKxJBNJA+1h2wG7HJKT5fCta0tsGED4OQkuiIiy8GQrRxJSUnYvHkzkpKSRJeiWAzZRPJQc8hmwC4Hg0EaFhIWJm2FboU7CBPJjiFbGYKCgvDhhx8iKChIdCmKxpBNJA+1hmwG7HL49FPg99+BZcuApk1FV0NkuRiySU0YsonkocaQzYBdRmvWAB9+CHzyCTBggOhqiCwfQ7ZY8fHxWLlyJeLj40WXogoM2UTyUFvIZsAug9Onpc1kBg8Gpk8XXQ2R9WDIFkej0cDW1hYazuIuNYZsInmoKWQzYJdSRIS0DXqDBsCiRVwxhMjcGLLF8Pb2xqBBg7hVehkxZBPJQy0hmwG7FDIygH79pMmNGzcCXA6WSAyGbPMzGAzIzc2FwWAQXYrqMGQTyUMNIZsBuwQGA/DKK8D581K4fuwx0RVZrvT0dCxatAibN2/G6NGjkZeXJ7okUiCGbPOKjIzEZ599hsjISNGlqBJDNpE8lB6yGbBLMGsWsHIlsGQJ0KKF6GosW1hYGG7cuIFevXrh/PnzyMrKEl0SKRRDtvl4eXnhueee41bpFcCQTSQPJYdsBuxirF8PvP++tGrIwIGiq7F8zZs3x5tvvomff/4Zb7zxBrdmpmKpOWSHJ6inN9jZ2RmNGjXi67GCGLKJ5PFwyH7sljJ2nbUTXYBSLVgAjB8PPP888MEHoquxHn5+fpg4cSJ69OiBFsV8ZJCTk4OcHKknMDc3Fy1vxeM6ALvENERERJip2vKJjY0t8F+qmO7du2PLli1YuHAhevfureie1md0z2DJlrVo+6cUsM/G3BZcUckyMzNx7949VK5cGU7csrbCunTpgm3btmHp0qV49tlnERAQILoki8L7q/Vq26YNMjIygD03AAB6vV5oPRpDKWeurFq1Cq1atcLatWsxadIkfPXVV5g+fTpmzpyJl19+Gdu2bUOjRo0QHx+PtLQ01K1bF7t27cKoUaPwww8/GI8dP348Vq1ahaeeegrh4eGwtbVFUFAQTpw4gf79+2P+/PnGYydPnox58+ahV69eOHv2LLRaLZydnXH16lV06dIFS5cuNR47bdo0fPnll3jxxRexf/9+PP7448jNzUVkZCSaN2+ODRs24PXXX8ecOXOMj3nllVewefNmNGnSBHFxccjIyECtWrWwZ88e3LkzAnPm/Ijz56djw4aZmDhxIpYvX46OHTvixo0bcHBwQEBAAE6dOoW+fftiwYIFxvNOmTIFc+fORZ8+fXD69Gn4+fnB0dERN27cQKdOnfDrr79i2rRp+Pzzz/G///0Ps2bNwvDhw7F3717UqFEDWVlZiImJQbNmzbBp0yaMHz8eX3/9tfH8r776KjZu3IjmzZsjKioK2dnZqFGjBvbt24dhw4bhp59+Mh77+uuvY9myZejcuTOuXbsGZ2dnaLVanDlzBr1798Yvv/xiPHbq1Kn48ccf0a9fP5w6dQqBgYGws7PDrVu30KFDB6xcuRLvvPMOZs2aZXzMyJEjsXv3btSuXRsZGRmIi4tD48aNsWXLFowbNw7ffPON8dixY8di3bp1aNmyJSIiIqDX6xEcHIwDBw5gyJAhGDlyJHr16oWYmBgcOnQIVatWxaRJk3D58mW4urrCx8cH586dQ48ePTBs2DDs2bMHgPQR9og3X8MPH32B9957jyGAiIjIyj3xxBM4fvw42rRpg1u3bsHZ2Rmenp64evUq2rdvjw0bNmD27Nn45ptv8Pbbb+P777/HgAEDcPz4cQQFBcHW1ha3b99G+/btsXr1akydOhVffPEFppdyneZSB2xrk5wM+PgAP/wg9WST/C5duoQzZ87A1dUVx44dw6effgpbW9tCj83KyiowRrvNuf9D2FPvYuIn/8Mbg0fBzc3NXGWXWWxsLNatW4f+/fvD19dXdDkWIz09HVu2bEFWVpaie7KTDFmYdncHmmyPQIYDcODZAHzl+zQe17iLLq1QeXl50Ov1sLW1hY0NRxWaSk5ODrZt24bY2Fj2ZJsQ768UExOD9evXo2fPniV2uNWoUQMuLi6y1MEhIkXw8ACefBIIDWXANpf69eujfv36AIC+ffsWe6yjoyMcHR2NfzZ4uAIAbKDB9u3bMXLkSHh4eMhXrAn4+voiKChIdBkWZfTo0Vi6dCm2bt2KUaNGQavVii7pEUEAZqEbfsNSpLvYol1oDF4ZehDrAvujrsZLdHlkRi+99BJWrFiBbdu2Yfjw4ahcubLokiwG769UqVIl5ObmIikpScj12R1RDJ0O+OsvIDtbdCVUWoe6+iE3NxdLly5FcnKy6HLIzNQy8dFTI/1yeLlnFaS52uDZFffRP2IdLhsSxRZWiISEBKxZswYJCQmiS7E4nPhIJB+NRoMqVarA09NTyPUZsIvRrRuQmgocOSK6Euug0WgK/SqLNFc7jBo1iiHbiqklZAPAD64dcXpoLUWH7Ly8PGRlZXFdepkwZBPJR2TIZsAuRrNmgK+vNEyE5GcwGAr9Kitvb2+GbCunlpDtqXHEVo8+ig7ZWq0Ww4YNU+RwG0vBkE0kH1EhmwG7GDY2wDPPADt2iK7Euty7dw9Tpkyp0DkYskktIdtH46T4kE3yY8gmko+IkM2AXQKdDjh9GoiJEV2JdTAYDNi4caNJwhBDNjFkV1xERAQ++eQTxa8vbwkYsonkY+6QzYBdgm7dAIMB2LlTdCXWYefOnXj66adNdj6GbGLIrhgPDw/07NlT8avyWAqGbCL5mDNkM2CXICgIaNSI47DN4caNGwgICDD5lswM2cSQXX6urq5o0aIFXF1dhdVgbRiyieRjrpDNgF0KOp00Dptb8sjrzJkzuHXrFnbs2IE7d+7g3LlzJjs3QzYxZJdPZmYmrly5gszMTCHXt1YM2UTyyQ/ZD+6nYWoM2KWg0wGRkYAJ8x4VYsCAAXj22WeRkZGBrKyscq0gUhyGbGLILruEhASsXr2a62ALwJBNJB+NRlPkbtGmwIBdCu3bA87OHCZiDvb29pg0aRIOHTqExo0bm/z8DNnEkF02/v7+mDp1Kvz9/c16XZIwZBOpEwN2KTg6Ap06MWBbCoZsYsguPVtbW7i6usra00PFY8gmUh8G7FLS6YCDB4G0NNGVkCkwZBNDdukkJiZiw4YNSEw0z/WocAzZROrCgF1KOh2QnQ3s2ye6EjIVhmxiyC5Zbm4u4uPjkZubK/u1qHgM2UTqwYBdSnXqAFWrcpiIpWHIJobs4vn6+uLll1+Gr6+vrNeh0mHIJlIHBuxS0mikXmwGbMvDkE0M2aQmDNlEyseAXQY6HXDlCnD7tuhKyNQYsokhu3CRkZGYNWsWIiMjZTk/lQ9DNpGyMWCXQZcugK0te7EtFUM2MWQ/ys3NDZ06dYKbm5vJz00Vw5BNpFwM2GXg5QW0bs2AbckYsokhuyA3Nze0bduWAVuhGLKJlIkBu4x0OmD3boAT6i0XQzYxZP8nKysLN2/eRFZWlsnOSabFkE2kPAzYZdStG5CUBBw7JroSkhNDNjFkS+Lj4/Hrr78iPj7eJOcjeTBkEykLA3YZtWwJeHtzmIg1YMgmhmzAz88PkyZNgp+fX8ULJVkxZBMpBwN2GdnaAl27Ajt2iK6EzIEhm6w9ZNvZ2cHLywt2dnamKZRkxZBNpAwM2OWg0wEnTgD8xNQ6MGSTNYfspKQk/Pnnn0hKSjJdoSQrhmwi8Riwy0GnA/LygF27RFdC5sKQTdYasrOzs3Hv3j1kZ2ebtlCSFUM2kVgM2OVQuTJQvz7HYVsbhmyyxpDt5+eHsWPHcgy2CjFkE4nDgF1O+dumGwyiKyFzYsgmawzZpF4M2URiMGCXk04H3L8PXLokuhIyN4ZssqaQHRUVha+//hpRUVHyFUqyYsgmMj8G7HLq0AFwdOQwEWvFkE3WErJdXFzQsmVLuLi4yFsoyYohm8i8GLDLydlZCtkM2NaLIZusIWS7u7ujQ4cOcHd3l79QkhVDNpH5MGBXgE4H7N8PZGSIroREYcgmSw/Z2dnZuHv3LlcRsRAM2UTmwYBdATodkJkJHDgguhISiSGbLDlkx8XFYdGiRYr9O1HZMWQTyY8BuwIaNAAqVeIwEWLIJssN2b6+vhg3bhx8fX3NWyjJiiGbSF4M2BWg0QDdujFgk4QhmywxZNvb28Pf3x/29vbmL5RkxZBNJB8G7ArS6YCLFwHelwhgyCbLC9nJycnYsWMH27KFYsgmkgcDdgV17Sr1ZO/YIboSUgqGbLKkkJ2ZmYmrV68iMzNTXKEkK4ZsItNjwK4grRZo2ZLDRKgghmyylJDt7++PiRMnwt/fX2yhJCuGbCLTYsA2AZ0O2LkT0OtFV0JKwpBNlhKyyTowZBOZDgO2CXTrBiQkACdPiq6ElIYhm9Qeso9F3cAPP/yA6Oho0SWSGTBkE5kGA7YJtG4NeHhwmAgV7uGQnZqaKrokMrOHQ3ZiYqLokgpVWMgen7wbgfVrwMnJSXR5ZCYM2UQVx4BtAvb2QJcunOgokn12nugSivVgyN6yZYvockiAB0P25s2bRZdTpIdD9tMbovBR/Sj8467s1xiZFkM2UcUwYJuITgccPQokJYmuxDo1Pxov/Y/BILaQYuSHbP2/g/XZk2198kO2o6MjAKijJ9tFg96/3sMLd//gmGwrw5BNVH4M2Cai00mTHHfvFl2JdTrf1FP6H41GbCEl8Pb2Ru/evQEAW7Zs4ZhsK+Tm5oZevXoBADZv3qz4MdnXu1WBS6YBPVf9w4mPVoghm6h8GLBNJDgYqF2b47BFSXOXdpnT5Bmwe/duRfcOe3h4AAD0ej0nPlopFxcXAICjo6PiJz7+WvU5HB4cjBQ3ri5irRiyicqOAduEdDopYCt4lILFc8rU4/z584iIiBBdSol69+7N1UWsXK9evRS/ukiAowdW1R6E08Nqcwk/K8aQTVQ2DNgmpNMBt28DV6+KrsR6ZbjYYeLEiahVqxYAICcnR3BFRfPw8OASflbOxcVF8Uv4paSk4Ny+o1ijeZrrZFs5hmyi0mPANqFOnaQVRThMRCw7OzsAwIkTJxASEoKsrCzBFRWN62ST0tfJTk9Px+nTp+GQoedmNMSQTVRKDNgm5OoKtG/PgK0U1atXR5MmTeDg4CC6lGIxZJOSQ3ZAQAAmT56MgIAA7vhIABiyiUqDAdvEdDpg715AwZ2mVkOr1eLJJ5+ERqPBrVu3FD3xkSGblByyH8SQTQBDNlFJGLBNTKcD0tOBQ4dEV0L59Ho9Nm3ahIMHD4oupVgM2aTEkB0TE4N58+YhJibG+D2GbAIYsomKw4BtYo0aAQEBHCaiJLa2thg5ciS6du0qupQSMWST0kK2g4MDgoODHxlqxZBNAEM2UVEYsE3Mxgbo1o0BW2m8vLxgZ2eHuLg4/PrrrxwuQoqmpJDt6emJHj16wNPT85GfMWQTwJBNVBgGbBnodMDZs0BkpOhKSK0YskkpITs3Nxfx8fHIzc0t9OcM2QQwZBM9jAFbBs88I/13xw6xddCjtFothg8fDjc3N2RmZrInmxRNCSE7JiYGP/74Y4Ex2A9jyCaAIZvoQQzYMvD3B5o14zARpdu4cSN+//13GBS89SZDNokO2T4+Phg5ciR8fHyKP44hm8CQTZSPAVsmOp3Ug52XJ7oSKkrXrl3Ro0cPaDQa0aUUiyGbRIZsR0dHBAcHw9HRscRjGbIJYMgmAhiwZaPTAbGxwN9/i66EiqLVahEUFIS8vDzs2bOHw0VI0USF7NTUVBw6dKjUrw+GbAIYsokYsGXSti3g5sZhImqQmpqKM2fO4P79+6JLKRZDNokI2ampqTh48GCZfgFlyCaAIZusGwO2TBwcgM6dOdFRDTw8PDBx4kTUqVMHAIpcLUEJGLLJ3CE7MDAQ7777LgIDA8v0OIZsAhiyyXoxYMtIp5N2dExJEV0JlcTe3h4AcOrUKYSEhCBLwXvdM2ST6ImPpcWQTQBDNlknBmwZ6XRAbi6wZ4/oSqi0goOD8cQTTzyya53SMGSTuUJ2bGwsFi5ciNjY2HI9niGbAIZssj4M2DKqWROoXp3jsNVEq9Xiqaeegkajwe3btznxkRTNHCHbzs4Ofn5+sLOzK/c5GLIJYMgm68KALTOdjgFbjfR6PTZu3Ij9+/eLLqVYDNkkd8j28vJCnz594OXlVaHzMGQTwJBN1oMBW2Y6HXDjhvRF6mFra4sRI0agW7duokspEUM2yRmy9Xo9UlJSoNfrK3wuhmwCGLLJOjBgy6xzZ8DOjr3YauTl5QU7OzvEx8dj+fLlHC5CiiZXyI6OjsY333yD6Ohok5yPIZsAhmyyfAzYMvPwANq1Y8BWM4PBAL1er+gt1QGGbJInZHt7e2PIkCHw9vY2QYUShmwCGLLJsjFgm0G3bsBffwHZ2aIrofLQarUYOXIk3N3dkZWVxZ5sUjRTh2wnJyfUrl0bTk5OJqpQwpBNAEM2WS4GbDPQ6YDUVODIEdGVUEVt2rQJv/32m6J7sxmyyZQhOy0tDcePH0daWpoJK5QwZBPAkE2WiQHbDJo1A3x9uaujJXj66afRvXt3aDQa0aUUiyGbTBWyk5OTsWPHDtnaEEM2AQzZZHkYsM3AxgZ45hmOw7YEWq0WlSpVgsFgwL59+zhchBTNFCE7KCgI06dPR1BQkAwVShiyCWDIJsvCgG0mOh1w+jQQEyO6EjKF1NRUnD59Gnfu3BFdSrEYsonbqpOaMGSTpWDANpNu3QCDAdi5U3QlZAru7u6YMGEC6tevDwDIzc0VXFHRGLKpIiE7Li4Oy5YtM0swZ8gmgCGbLAMDtpkEBQGNGnGYiCVxcHAAAJw5cwYhISHIzMwUXFHRGLKpvCHbxsYGrq6usLExz9sFQzYBDNmkfgzYZqTTSRMdFbwABZVDlSpVUL9+fTg6OooupVgM2VSekO3t7Y0BAwaYdB3skjBkE8CQTerGgG1GOh0QGQmcOye6EjIlrVaLTp06QaPR4O7du5z4SIpW1pCdl5eHrKws5OXlmalCCUM2AQzZpF4M2Gb05JOAszOHiViqvLw8bNiwAXv37hVdSrEYsqksITsqKgpffPEFoqKizFihhCGbAIZsUicGbDNycgI6dWLAtlQ2NjYYNmwYdDqd6FJKxJBNpQ3ZXl5eeP755+Hl5WXeAv/FkE0AQzapDwO2mel0wMGDgAybopECeHt7w97eHomJiVi5ciWHi5CilSZkOzs7o0GDBnB2dhZQoYQhmwCGbFIXBmwz0+mA7Gxg3z7RlZCc9Ho9srKyoNfrRZdSLIZsKilkp6en48yZM0hPTxdUoYQhmwCGbFIPBmwzq1MHqFqVw0QsnVarxahRo+Dp6Yns7GykKfgjC4ZsKi5kJyUlYePGjUhKShJYoYQhmwCGbFIHBmwz02ikXmwGbMun0WgAAJs3b8aqVatgUPD6jAzZVFTIDgwMxIwZMxAYGCi4QglDNgEM2aR8DNgC6HTAlSvA7duiKyFz6NSpE3Q6nTFwKxVDNhUWsjUaDWxsbBTVfhmyCWDIJmVjwBagSxfA1pa92NZCq9WiSpUqMBgMOHDggPCxrMVhyKaHQ/bNmzexatUqxMfHiy6tAIZsAh4N2SKWkyQqDAO2AF5eQOvWDNjWJjU1FSdOnEBERIToUorFkE0Phuy1a9ciOztbdEmFYsgmoGDI/vPPP0WXQwSAAVuYbt2A3buB3FzRlZC5uLu7Y+LEiahRowYAKHqFEYZsyg/ZLi4uiI2NVewcAoZsAv4L2b6+vgDAnmwSjgFbEJ0OSEoCjh0TXQmZk4ODg/H/161bh8zMTIHVFI8hm9zc3DBixAg4Ojpi8eLFJW6rLgpDNgHS/bVHjx4AgD///JNjskkoBmxBWrYEvL2BHTtEV0KiBAcHw9HRUXQZxWLIptTUVMTFxcHe3r7EbdVFYsgmALC3twcA+Pr6cuIjCcWALYitLdC1K8dhW7OWLVtCo9Hg/v373PGRFMvT0xN9+/bFiy++WOK26qIxZFO+Hj16cHUREooBWyCdDjhxAlDY5Hwyo7y8PKxfvx5//fWX6FKKxZBtvVxcXNCkSRP4+fmVuK26EjBkEyD1ZHMJPxKJAVsgnQ7IywN27RJdCYliY2ODoUOHonv37qJLKRFDtnXKyMjAxYsXkZGRUeK26krBkE0A18kmsRiwBapcGahfn8NErJ23tzccHByQnJyMVatWcbgIKUpiYiL++OMPJCYmAih+W3UlYcgmgCGbxGHAFix/23SFroBFZpSTk4P09HTkKnztRoZs6xIQEID33nsPAQEBxu8xZJOaMGSTCAzYgul0wP37wKVLoish0bRaLV5++WV4eXkhJycHaWlpoksqEkO29bCxsYGjoyNsbAq+XTBkk5owZJO5MWAL9tRTgKMjh4mQRKPRAAC2bNmClStXKnZzD4Ah21okJCRg7dq1SEhIeORnDNmkJgzZZE4M2IK5uAAdOjBgU0EdOnRAt27djIFbqRiyLV9eXh7S0tKQl5dX6M8ZsklNGLLJXBiwFUCnA/bvBzIyRFdCSqHValGtWjUYDAYcOnSIEx9JGK1WixEjRkCr1RZ5DEM2qQlDNpkDA7YC6HRAZiZw4IDoSkhp0tLScOzYMdy8eVN0KcViyCaGbFIThmySGwO2AjRoAFSqxGEi9Cg3NzdMmDABjRo1AgDo9XrBFRWNIdsyRUREYObMmYiIiCjxWIZsUhOGbJITA7YCaDRAt24M2FQ4R0dHAMCFCxcQEhKCDAWPJWLItjweHh7o1q0bPDw8SnU8QzapCUM2yYUBWyF0OuDiRYCvbSpKUFAQatasCScnJ9GlFIsh27K4urqiVatWcHV1LfVjGLJJTRiySQ4M2ArRtavUk71jh+hKSKm0Wi2eeeYZaDQa/PPPP5z4SGaRmZmJq1evIjMzs0yPY8gmNWHIJlNjwFYIrRZo2ZLDRKhkeXl5WL9+PXbv3i26lGIxZFuGhIQErFq1qtB1sEvCkE1qwpBNpsSArSDdugE7dwIKnsdGCmBjY4MhQ4age/fuokspEUO2+vn7+2Py5Mnw9/cv1+MZsklNGLLJVBiwFUSnAxISgJMnRVdCSufj4wNHR0ekpKTgt99+43ARko2trS3c3d1ha2tb7nMwZJOaMGSTKTBgK0jr1oCHB8dhU+llZ2cjJSUF2dnZokspFkO2eiUmJmLTpk1ITEys0HkYsklNGLKpohiwFcTeHujSheOwqfS0Wi1Gjx4NHx8f5ObmIi0tTXRJRWLIVqfc3FzExMQgNze3wudiyCY1YcimimDAVhidDjh6FEhKEl0JqYVGowEA/Pnnn1ixYgUMBoPgiorGkK0+vr6+GD16NHx9fU1yPoZsUhOGbCovBmyF0emkSY4KXyCCFKh9+/bGZfyUjCGbGLJJTRiyqTwYsBUmOBioXZvDRKjstFotHn/8cRgMBhw5coQTH8kkIiMjMXv2bERGRpr0vAzZpCYM2VRWDNgKpNNJAVvBn/STgqWnp+PIkSO4fv266FKKxZCtDm5ubmjfvj3c3NxkOTdDNqkFQzaVBQO2Aul0wO3bwNWroishNXJ1dcX48ePRpEkTANLGNErFkK18bm5uePLJJ2UJ2PnnZ8gmtWDIptJiwFagjh2lFUU4TITKy8nJCQAQFhaG+fPnIyMjQ3BFRWPIVrasrCyEh4cjKytLtmswZJOaMGRTaTBgK5CbG9C+PQM2VZy/vz+qV68OR0dH0aUUiyFbueLj47F06VLEx8fLeh2GbFIThmwqCQO2Qul0wN69gIydRmQFtFotdDodbGxsEBkZyYmPVGZ+fn54/fXX4efnJ/u1GLJJTRiyqTgM2Aql0wHp6cChQ6IrIUtgMBiwfv167Ny5U3QpxWLIVh47Ozv4+PjAzs7OLNdjyCY1YcimojBgK1SjRkBAAIeJkGloNBoMGjQIPXr0EF1KiRiylSUpKQnbtm1Dkhl3v2LIJjVhyKbCMGArlI0N0K0bAzaZjo+PD5ycnJCWloY1a9ZwuAiVSnZ2NsLDw5GdnW3W6zJkk5owZNPDGLAVTKcDzp4FTLy/A1m5zMxMJCQkyLoqhCkwZCuDn58fxo0bZ5Yx2A9jyCY1YcimBzFgK9gzz0j/3bFDbB1kWbRaLV599VVotVro9Xqkp6eLLqlIDNnEkE1qwpBN+RiwFczfH2jWjMNEyPQ0Gg0AYOvWrfj111+5GQ0VKSoqCt988w2ioqKE1cCQTWrCkE0AA7bi6XRSD7aC8w+pWLt27dC1a1fY2Cj7VsCQLY6LiwuaNWsGFxcXoXUwZJOaMGSTst9VCd26AbGxwN9/i66ELJFWq0WNGjVgMBhw/PhxTnykR7i7u6NTp05wd3cXXQpDNqkKQ7Z1Y8BWuHbtpJ0dOQ6b5JSRkYEDBw7g6tWrokspFkO2+WVnZ+P+/ftmX0WkKAzZpCYM2daLAVvhHByAzp05Dpvk5eLigvHjx6NZs2YAwDHZZBQXF4dffvlFUUGWIZvUhCHbOjFgq4BOJ+3omJIiuhKyZM7OzgCAK1euICQkhKuLEADA19cXr732Gnx9fUWXUgBDNqkJQ7b1YcBWAZ0OyM0F9uwRXQlZA19fX1SrVg1OTk6iSykWQ7Z52NvbIyAgAPb29qJLeQRDNqkJQ7Z1YcBWgZo1gerVOUyEzEOr1aJHjx6wsbFBdHQ0Jz5aueTkZOzatUuxzy1DNqkJQ7b1YMBWCZ2OAZvMy2AwYN26dQhVeMNjyJZXZmYmLl26hMzMTNGlFIkhm9SEIds6MGCrhE4H3LghfRGZg0ajwcCBA9GzZ0/RpZSIIVs+/v7+eOONN+Dv7y+6lGIxZJOaMGRbPgZslejcGbCzYy82mZePjw+cnZ2Rnp6OP/74g8NFSNEYsklNGLItGwO2Snh4AG3bMmCTGBkZGYiLi0NGRoboUorFkG160dHR+OmnnxAdHS26lFJhyCY1Yci2XAzYKqLTAX/9BShkvweyIlqtFmPGjIGfnx/0ej2X8LMiTk5OqF27tuJXlXkQQzapCUO2ZWLAVhGdDkhNBY4eFV0JWSONRgMA2L59O5YtW8bNaKyEh4cHunXrBg8PD9GllAlDNqkJQ7blYcBWkWbNAF9fDhMhsdq0aYOnn34aNjbKvn0wZJtGTk4OoqOjkZOTI7qUMmPIJjVhyLYsyn6HpAJsbIBnnmHAJrG0Wi1q164NADh58iQnPlq42NhYzJs3D7GxsaJLKReGbFIThmzLwYCtMjodcPo0EBMjuhKydhkZGdi3bx8uX74supRiMWRXjFarxcsvvwytViu6lHJjyCY1Yci2DAzYKtOtG2AwADt3iq6ErJ2zszPGjx+PFi1aAADHZFsoBwcHVKlSBQ4ODqJLqRCGbFIThmz1Y8BWmaAgoFEjDhMhZXB2dgYAXLt2DQsWLODqIhYoJSUF+/fvR0pKiuhSKowhm9SEIVvdGLBVSKcDduyQerKJlMDHxweVKlWCo6Oj6FKKxZBddunp6Thx4oSif3kqC4ZsUhOGbPViwFahbt2AyEjg3DnRlRBJtFotevXqBVtbW8TExHDiowUJCAjAlClTEBAQILoUk2HIJjVhyFYnBmwVat8ecHbmMBFSHoPBgHXr1mH79u2iSykWQzYxZJOaMGSrDwO2Cjk5AZ06ScNEiJREo9Hg+eefR8+ePUWXUiKG7NKJiYnB/PnzEWOBSxcxZJOaMGSrCwO2Sul0wIEDQFqa6EqICtJqtXBxcUFGRgbWrVvH4SIq5+DggMqVK6t+FZGiMGSTmjBkqwcDtkrpdEB2NrBvn+hKiAqXkZGB6OhopCn8t0CG7OJ5enri2Wefhaenp+hSZMOQTWrCkK0ODNgqVacOULUqx2GTcvn4+GDs2LEICAhAXl6eolehYMguWm5uLhITE5Gbmyu6FFkxZJOaMGQrHwO2Smk0Ui82AzYpmUajAQCEhoZi2bJl3IxGhWJiYvD9999b5BjshzFkk5owZCsbA7aK6XTAlSvA7duiKyEqXqtWrdCpUyfY2Cj7lsOQ/SgfHx8MHz4cPj4+oksxC4ZsUhOGbOVS9rsdFatLF8DGhr3YpHxarRZ169YFAJw+fZoTH1XE0dER1atXV/wmQqbEkE1qwpCtTAzYKublBbRuzYBN6pGZmYm9e/fi4sWLokspFkP2f1JTU3HkyBFF/1IkB4ZsUhOGbOVhwFY5nQ7YvRuw8PlHZCGcnJzw2muvoVWrVgCkjWmUiiFbkpqair1791pdwAYYskldGLKVhQFb5XQ6ICkJOH5cdCVEpePi4gKNRoMbN24gJCRE0cv4MWQDgYGBmDZtGgIDA0WXIgRDNqkJQ7ZyMGCrXMuWgLc3h4mQ+nh5eSEoKAhOTk6iSykWQzYxZJOaMGQrAwO2ytnaAl27MmCT+mi1WvTp0we2traIi4tT9BAEaw7ZsbGxWLRoEWJjY0WXIhRDNqkJQ7Z4DNgWQKcDTpwA4uNFV0JUdgaDAevWrcPWrVtFl1Isaw3ZdnZ28PHxgZ2dnehShGPIJjVhyBaLAdsC6HRAXh6wa5foSojKTqPRoH///ujZs6foUkpkjSHby8sL/fr1g5eXl+hSFIEhm9SEIVscBmwLULkyUL8+h4mQemm1Wri5uSEzMxMbNmzgcBEF0ev1SEtLg16vF12KYjBkk5owZIvBgG0h8rdNV/CqZ0QlSk9Pxz///KPogA1YV8iOjo7GnDlzEB0dLboURWHIJjVhyDY/BmwL0a0bcP8+cOmS6EqIys/Hxwfjxo1DYGAg8vLykJGRIbqkIllLyPb29sbgwYPh7e0tuhTFYcgmNWHINi8GbAvRoQPg6MhhIqR+Go0GALBr1y4sWbJE0UMTrCFkOzk5oU6dOopfTlEUhmxSE4Zs82HAthAuLlLI3rFDdCVEptG8eXN07NgRtra2oksplqWH7LS0NJw8eVLRGwKJxpBNasKQbR4M2BZEpwP27QMU/Kk6UalptVrUr18fAHDmzBlFj8u25JCdnJyMrVu3WtTfSQ4M2aQmDNnyY8C2IDodkJkJHDgguhIi08nMzMRff/2F8+fPiy6lWJYasoOCgvDBBx8gKChIdCmKx5BNasKQLS8GbAvSoAFQqRLHYZNlcXJywtixY9GmTRsA0sY0SmWpIZtKjyGb1IQhWz4M2BZEo5FWE2HAJkvj6uoKjUaDW7duYcGCBYoeD2xpITsuLg7Lly9XbFBUIoZsUhOGbHkwYFsYnQ64eBHg64MskYeHBwICAuDo6Ci6lGJZUsi2sbGBo6MjbGz4dlEWDNmkJgzZpsc7poXp2lXqyeZqImSJtFot+vbtCzs7OyQkJHDioxl4e3vjhRde4DrY5cCQTWrCkG1aDNgWRqsFWrTgMBGybAaDAWvXrsWff/4pupRiWULIzsvLQ3Z2NvLy8kSXokoM2aQmDNmmw4BtgXQ6YOdOQMH7cxBViEajwXPPPYeePXuKLqVEag/ZUVFRmDVrFqKiokSXoloM2aQmDNmmwYBtgXQ6ICEBOHVKdCVE8tFqtXB3d0dWVhY2btyoquEiSq71YV5eXujfvz+8vLxEl6JqDNmkJgzZFceAbYFatwY8PKxzmIh7Yrbx/2NiYpCUlAQAyM3NRUREBLKysgAAqampiIyMNB4bGxuLxMREAIBer0dERAQyMzMBSDvZRUREGI+Ni4tDQkICAOnj84iICGT8u7tPeno6IiIijEvJxcfHIz4+HoA0rOHB82ZlZSEiIsL40XtCQkKBN92IiAjjahmZmZmIiIgwbhuemJiI2NhY47GRkZHG0JZ/3tzcXABAUlISYmJijMdGRUUhJSUFAJCdnY2IiAjk5OQAkDYViY6ONh4bHR1t7HHNyclBREQEsrOl5zglJaVAr6aI5zsjIwPh4eG4d+8ekpOTkZCQYHy+85/D9PR047HFPd+RkZHG5zv/Ocx/vpOSkgo831FRUcbnO/85zH++k5OTCzzf0dHRSElJgbe3N4YOHYqsrCxs3rzZ+Hd98PmOiYkxPt/5z2H+852amlrg+Y6NjTU+3/nPYf7znZaWVuD5Lk2bzRcfH2881mAwIDExETVr1oSzs3OJzyHbbPHPt5ubGwYOHAg7OzssXrwYcXFxhd4jSttm5Xq+c6KTsEbztBSyXTTo/es9vHD3D1w2JKri+c5/Ph58DvPvyUq+Rzz4HOa375SUFGH3CL1ej6FDh8LPzw9Lly41huyH7xEP35NF3yPynzvRGLAtkL090KWLZQTs8+fPl+or798XaLt9/72Q//jjDxw+fBiAdEMLCQkx3pTPnj2LpUuXGo/duHEj9u/fD0AKHCEhIbhz5w4A4OLFi1i4cKHx2D///BN//fUXAOmFHBISgps3bwIArl69ipCQEOPNPDQ0FKH//kMYDAaEhITg9u3bAID79+8jJCTEeDP466+/CowpXrhwIS5evAgAuHPnDkJCQoxvBPv378fGjRuNxy5duhRnz54FIN3AQkJCjDfhw4cP448//jAeu2LFCpz69+ONmJgYhISEGN9wjh8/jtWrVxuP/f3333H06FEA0o0yJCTEeAP/+++/sXz5cuOx69atw8GDBwFIN/qQkBDcv3/f+O+4ePFi47GbNm3C3r17AUg32Qefl7CwMCxYsMB47LZt27Br1y4A0htKSEgIrl+/DgC4du0aVq9ejVdffRWPPfYYQkNDCzyHISEhuHz5MgAgPDwcISEhxjeYPXv2GIMuACxatAgXLlwAANy9exchISHGN4L9+/dj/fr1xmOXLVuGv//+G4D0JhASEmIMA0eOHMGaNWuMx65cuRInTpwAIL3JpaWlISNHekM8c+YMVq5caTx2zZo1OHLkCADpzSYkJMT4Jvj3339j2bJlxmPXr19vbLNpaWkICQnB3bt3AQAXLlzAokWLjMdu3rwZe/bsASC9UYWEhCA8PBwAcPnyZYSEhBiP3b59O3b8O0tar9cjJCQEu3fvRkZGBq5fv46QkBDjm9yuXbuwbds242MXLFiAsLAwAMDt27cREhJiDDp79+7Fpk2bjMcuXrzYuHlQ/msh/8304MGDWLdunfHY5cuXG5/vqKgohISEGN/gjx49it9//9147OrVq3H8+HEAUhAICQkxvhGfOnUKK1asMB4r4h5x//59JCYmGnuyN2/e/Mg94urVqwCAmzdvCrtH3Dh9AVs9+uBG1ypwyTSg56p/0D9iHbYfP6Doe0R+WMsPg9euXUNISIjx+zt27MD27duNj1XaPSI2NhYhISHGoHnixAmh9wgHBwc0atQIubm5xp7swu4R165dAwBF3CMe/AVKJI1Bybs2ULnNnw9MmADExQGenqKrKb/S7t73fO4eXG02CS33fYPjHd4CIIVHBwcHeHp6Ijc3FzExMfDx8YGjoyNSU1ORmpqKwMBAANJNzc7ODl5eXtDr9YiOjoa3tzecnJyQlpaG5ORk4052cXFxsLGxgbe3N/Ly8hAVFQUvLy84OzsjPT0dSUlJCAwMhEajMb7QfXx8YDAYEBkZiczMTCxbtgwjR46Eo6MjAgICYGNjg4SEBOTl5UGr1QKQ3gQ9PDzg6uqKzMxMJCQkwN/fH7a2tkhMTERubi58fX0BSDdwNzc3uLm5ISsrC/Hx8fDz84OdnR2SkpKQnZ0NPz8/AFJAcXFxgbu7O7KzsxEXFwdfX1/Y29sjOTkZmZmZ8Pf3ByD1rDg5OcHDwwM5OTmIjY2FVquFg4MDUlJSkJ6ejoCAAGHPd0ZGBhITE43P95YtWxAeHo5x48bB1tYWERER8PT0hIuLi/HYop7vyMhIuLu7w9XV1fgc5j/fSUlJyMnJMT7fUVFRcHV1hZubm/E5zH++k5OTkZWVZXy+o6Oj4ezsDHd3d+NzuDn2EiLWHYSzmyuef64/qlevbnwOHR0d4eHhYXwO85/v1NRUpKWlGZ/v2NhY2Nvbw9PT0/gc5j/faWlpSElJMT7fpWmz+c93fHw8NBoNvL29YTAYcOHCBaxbtw5jxoyBl5dXsc8h22zp7xFubm5YtmwZ0tPTMWDAAFSvXt14jyhtmzXH8x2VlYzhd9aj5o67cE034K9+AZjr0QWtA2oo8vm+f/8+fvnlF4wYMQKPP/74I/eIhIQEGAwG+Pj4GJ9DJd4j8tt3SkoKMjIyjO1b1D0iNjYWu3fvRmRkJPr27YugoCDjPSIyMvKRe7LINnvnzh0sXrwYY8aMEboDLQO2hQoPBx5/HFi7FujfX3Q15VfWgF337E8IazRB5qoqJr/3SPSL3xLFxcUhIiICDRs2FF1KsZbeP47wX7Yhw9UWAY4eGD1yFDw8PESXVSiDwQC9Xg9bW1toNBrR5ViU1NRULF26FJmZmRg1apQxhChNvCETPZM3odmKa3BNy8OfQythXVB/1NV4iS7tEby/yic7OxsrVqxAZGQkhg8fjsqVK4suqVBKaQMcImKhgoOB2rUtY5gIUWlptVpjuD5//rziJxOu7+GBiNwULFy6RLGri2g0GtjZ2TFcy4ATH0lNOPGxbBiwLZhOJwVsfkZB1iYrKws7d+40jjlVqhQPW/wy1EfRITshIQG//fabccwzmRZDNqkJQ3bpMWBbMJ0OuH0b+He+DJHVcHR0xJgxY9CuXTsAgJJHwiV42yk6ZOcPEVHyc6h2DNmkJgzZpcOAbcE6dpRWFOEwEbJGbm5u0Gg0uH37Nn755RfjbH8lUnLI9vHxwYsvvmicFEbyYMgmNWHILhkDtgVzcwPatwf+XU2HyCq5ubnB19cXDg4OoksplpJDNpkHQzapCUN28RiwLZxOB+zZA/y7rCeR1dFqtXjuuedgb2+PxMRERU98VGLIjoiIwMcff1xgYw+SD0M2qQlDdtEYsC2cTgekpwOHDomuhEgsg8GAdevWFdg4QomUFrI9PT3Ru3dveKp5QX2VYcgmNWHILhwDtoVr1AgICOA4bCKNRoO+ffuiZ8+eokspkZJCtouLC5o1awYXFxdhNVgjhmxSE4bsRzFgWzgbG6BbNwZsIkAaLuLp6Yns7Gxs3ryZw0VKISMjA2FhYcjIyBByfWvGkP3/7d15eFTl3f/x92Tft5OFuABKcS+iKKWKKAqGHYWigguIuLC41O0HPnR5WuuubbWIgFAQJVglLCGCCiJYHxcUEbUoioBiSSCEhCQkk2Xm98doBCUhwMzc58x8XteVyxYmM99LJ+Gdw7nvW5xEkX0gBXYYyMuDjz+G4mLTk4jYQ3V1Ndu2baO8vNz0KC2yQ2SXl5fzr3/9y/b/rkKVIlucRJH9IwV2GOjd2/dP7SYi4pOens64ceM47rjj8Hq91NbWmh6pWaYjOycnh3vvvZecnJygvq78SJEtTqLI9lFgh4HsbDj7bN0mIrK/iAjft79Vq1Yxa9YsGhsbDU/UPJORHRERQXx8fNO/LzFDkS1OoshWYIeNSy/1XcH2eExPImIvZ555Jueffz6RkZGmR2mRqcjes2cPBQUFOirdBhTZ4iThHtkK7DCRlwelpbB+velJROzFsizOPPNMAD777DMtfPwJj8fD3r178einc1tQZIuThHNkK7DDxHnn+U521G0iIgdXV1fHq6++ykcffWR6lBYFO7Ity2LUqFFYlhXQ15HWU2SLk4RrZCuww0RMDPTsqcAWaU5MTAw33ngj3bt3B3wH09iV6YWPYp4iW5wkHCNbgR1G8vJ8JzpWVpqeRMSekpOTcblcfPvtt8ycOVO3iwDFxcU88MADFGufT9tRZIuThFtkK7DDSF4eNDTAqlWmJxGxt4SEBNLT04mJiTE9SouCEdnJyclccsklJCcn+/255egpssVJwimyFdhh5Be/gBNP1G0iIodiWRZDhw4lJiaGvXv3hvWV7MTERH71q1+RmJjo1+cV/1Fki5OES2QrsMNMXp4CW6S1vF4vCxYsYPHixaZHaVEgI9vtdvPVV1/hdrv99pzif4pscZJwiGwFdpjJy4PNm30fItIyl8vFoEGD6N+/v+lRDilQkV1WVsYLL7xAWVmZX55PAkeRLU4S6pGtwA4zPXtCVJSuYou0lmVZpKWlUV9fz9KlS8PudpHs7Gx++9vfkp2d7YcJJdAU2eIkoRzZCuwwk5ICv/61AlvkcFVVVbFlyxbbX8n1d2RHRkaSkpJi+5Mu5UeKbHGSUI1sBXYYysuDN96A+nrTk4g4R3p6OuPHj6dt27Z4vV5qa2tNj9Qsf0Z2RUUFhYWFVFRU+HFCCTRFtjhJKEa2AjsM5eVBVRW8847pSUScJSLC9y1zzZo1zJo1i4aGBsMTNc9fkV1fX09xcTH1+onccRTZ4iShFtkK7DB09tmQmanbRESO1BlnnMGvf/1roqKiTI/SIn9EdmZmJjfeeCOZmZkBmFACTZEtThJKka3ADkMREdC7twJb5EhZlsVZZ50FwMaNG8Nu4aM4iyJbnCRUIluBHaby8mDdOti1y/QkIs5VX1/P8uXL+eCDD0yP0qKjieySkhIeffRRSkpKAjihBJoiW5wkFCJbgR2mLr0UvF54/XXTk4g4V3R0NGPGjOHCCy8EfAfT2NWRRnZiYiLdunXTSY4hQJEtTuL0yFZgh6ncXOjUSbeJiByt5ORkXC4X3333HbNmzQq520WSkpK44IILSEpKCsKEEmiKbHESJ0e2AjuMXXopvPaa70q2iByduLg4UlJSiI6ONj1Kiw43suvq6vjmm2+oq6sL0oQSaIpscRKnRrYCO4zl5UFxMWzYYHoSEeezLIthw4YRGxtLZWVlyFzJ3r17N//85z9tG2FyZBTZ4iROjGwFdhjr3h3i431XsUXEfwoKCli0aJHpMVrU2sjOyspi/PjxZGVlBXlCCTRFtjiJ0yJbgR3G4uLgoot0H7aIvw0YMIB+/fqZHuOQWhPZUVFRZGZm2n7PbzkyimxxEidFtgI7zOXlwVtvQXW16UlEQodlWWRkZNDQ0MArr7zi6NtF9u7dy6uvvqr9s0OYIlucxCmRrcAOc3l5UFcHq1ebnkQk9FRVVfHVV1/ZNlh+0FJku91uNm/ejNvtNjihBJoiW5zECZGtwA5zJ58Mbdva4zaR6upqioqK6N27t+lRRPwiLS2N8ePH065dO7xer60jtbnIzsrKYty4cboHOwwossVJ7B7ZCuww53L5rmLbIbATExPp378/9fX1pkcR8ZvIyEgA/v3vfzNz5kxbv791rLo4PbK3eCtNjyZBZOfIVmALeXnwxRewbZvpSURC12mnncavfvUrx+2T/fXXX/O3v/2NnTt3mh5NgsTJkX1P6Rumx5Ig+2lkl5SUmB4JAC0LFy6+2Hcle9o0eOAB09O0Tl1dXdPBFx6Ph45fl7MJiCqvZseOHWaHO4TS0tID/inh45hjjmHHjh1UfLIFgMzSBsMTNW/xpclcvmwvLy8s4MR27dm7dy+NjY2mx5Ig6tOnD0uXLmXmzJkMHDiQtLQ00yMd1GxvV27rXcMpr3zLBUW+uPp4l64YhZtLLrmEZcuWsXTpUgAaGsx+f3V5va07xy8/P5+uXbuyYMECbr/9dh599FEmT57M/fffz+jRo1m2bBmdOnWirKyM6upqTjnlFFasWMGoUaN48sknmx47btw48vPzueCCC9i6dSuRkZHk5uaydu1ahgwZwrRp05oee+eddzJ16lQGDBjAxx9/jGVZxMfHs2nTJi655BLmzJnT9NhJkybxyCOPMGLECNasWcMJJ5xAQ0MDxcXFdOnShUWLFnHrrbfy2GOPNX3OmDFjKCwspHPnzuzevZuamho6duzIqlWruO6663jqqaeaHjthwgSef/55LrzwQjZv3kxMTAw5OTl8+OGHDB48mBkzZjQ99q677uLpp59m0KBBrFu3jqysLGJjY9m8eTMXXXQRc+fOZdKkSTzwwAPcd999PPjgg1x77bW8+eabdOjQAbfbza5duzj77LNZsmQJ48aN4/HHH296/htvvJHFixfTpUsXSkpKqKuro0OHDqxevZprrrmGf/zjH02PvfXWW3nuuefo2bMnX375JfHx8ViWxfr16xk4cCDPPvss55wzmb597+dXv7qboUOf4rLLLuPDDz+kTZs2REVFsWXLFnr06MG8efO49957efDBB5uef+TIkaxcuZKTTjqJmpoadu/ezZlnnsnSpUsZO3YsTzzxRNNjb775ZgoKCjj33HPZsWMHjY2NtG/fnrfeeovhw4fz9NNPM3nyZE444QQ+/vhjZs+eTdu2bdmyZQvx8fGkpqayadMmunfvzqRJk1i7di0A2dnZXHfjaB77y0NMnDiRuLi4gH7RiIiIiL316dOH9957j169evH555+TmJhIRkYGGzZsoG/fvsyaNaupT+655x7+/ve/M3ToUN5//31yc3OJjIxk27ZtdO/enfnz53P33Xfz0EMPMXny5Fa9fqsDW0LTxo3QrZvv0JklS+D720WNcLvdLFiwoOmHjiFDhrBp06aDPnb/K9gA4/atYX2vidz48P8w+aqbbP3X8KWlpRQUFDBkyBAyMzNNjyMGfPPNNyxfvpwhQ4ZgWRYul8v0SM0qKytj6dKlREdHM3DgQJKSkkyPJEG2b98+li5ditvttvWV7Aqvm0nfvkbn5Tuoi3GxsH8q5en6i/pw07EYLn6llMsvv5xOnToZm0PvvDC2ezcMHAjHHw/5+WbjGiA2NpYRI0YwYsSIQz42JiaGmJiYpv+/Ly4egNRKDytXruTqq68+4PftKDMzk9zcXNNjiGGvvvoqw4YNs3W41tbWEhkZyfLlyxk5ciQpKSmmR5Igu+GGG5gzZw6vvPIKo0aNwrIs0yP9TC7wBH15jllkJqYy+NVKZl6dwa4s+15wEf+zvL7lhV999RW5ubnGdkDSIscwVV8Pw4ZBebnvynWo/Hn5fz0zKS4u5oUXXjjgCreIHUVFRZGQkGDrUxIzMzO56aabuO6662hoaGDOnDnaXSQMOWXhY5zL97V02cBBHJOUwQ0vlJG1y74790jgNDY2sm7dOnbt2mXk9RXYYcjrhdtu853gWFAAJ55oeiIfl8v1s4/D/eudssxYrr32WkW2OEJaWhpXXnklcXFxVFVV2fLEx+joaHJzc8nOzmbUqFGK7DDmlMgGiIuL44aRoxTZYc5kZCuww9CUKfDMMzB1KvToYXqaH3m93p99bNiw4bCf57jjjlNki+MsXLiQhQsXmh7jZyorK3njjTeorKwkPT1dkR3mnBTZCQkJimwxFtkK7DDz+utwxx2+jzFjTE9zoH379jFr1iwKCwu54YYb8Hg8R/xcimxxmn79+tG3b1/TY/xMTU0NGzZsoKamBkCRLYpscRwTka3ADiObNsEVV0Dv3vDoo6an+bmNGzeyefNmBgwYwCeffHLUx0orssVJLMsiMzOTxsZGli9fbpvbRbKzs7njjjvIzs5u+jVFtiiyxWmCHdkK7DCxZ49vx5A2bWD+fLDjmqouXbpwxx13MGXKFG677Tbi4+OP+jkV2eI0lZWVfPHFF8YW5rSWIlsU2eI0wYxsBXYYaGjwXbkuLYXCQkhNNT1R87KyspgwYQIvvPACn3/+uV+eU5EtTpKWlsaECRM44YQT8Hq9xt+vu3bt4umnnz7oH0iKbFFki9MEK7IV2GHgt7+FN9+El1+GX/zC9DTNmzJlCtOmTQN825dt3rzZb8+tyBYnifx+U/p33nmHZ599lvp6cyEQGxtLhw4diI2NPejvK7JFkS1O80NkB/JWPAV2iHvmGfjHP3wfPXuanqZlPXv2JDk5mcWLF/PLX/6SPn36+PX5FdniNCeffDLnnHOO0ZNJU1JSyMvLa/FwGUW2KLLFaRobG6mtrQ3Y8yuwQ9gbb8CECb6Pm282Pc2hnXbaaYwYMYLBgwfzwAMPNF3F8ydFtjiJZVl07doVgC+//NLIwseGhgZKS0tpaGho8XGKbFFki/xIgR2ivvoKfvMbuPhi+OtfTU9jL4pscZqGhgaKiop49913g/7au3btYsqUKa26X1GRLYpsER8FdggqL/ftGJKVBS++aM8dQ0xTZIuTREVFcf3113PxxRcDvkOZgsWyLK6//nosy2rV4xXZosgWUWCHnIYGuOoqKC727RiSnm56IvtSZIuTpKamEhERQUlJCXPmzAna7SIxMTG0bduWmJiYVn+OIlsU2RLuFNgh5p57YMUKeOklOOkk09PYnyJbnCYqKorY2NiArFE4mKqqKt56663DDnpFtiiyJZwpsEPIs8/C3/4Gf/879OplehrnUGSLk1iWxfDhw4mPj2ffvn0Bv5JdXV3Nu+++S3V19WF/riJbFNkSrhTYIWL1ahg7Fm65BcaNMz2N8yiyxYkWLlzIggULAvoaOTk53HPPPeTk5BzR5yuyRZEt4UiBHQK+/hqGDoUePeDJJ8HlMj2RMymyxWn69OlD3759TY9xSIpsUWRLuFFgO9zevb4dQ9LSfPddGzyPIiQossVJLMsiOzubxsZGXnvttYDcLlJaWsqMGTMoLS09qudRZIsiW8KJAtvBGhthxAjYvt23Y0hGhumJQoMiW5ymqqqKjRs3UlJS4vfnjo6Opk2bNn45TVKRLYpsCRcKbAebOBGWLfPtdX3qqaanCS2KbHGS1NRUxo8fT4cOHQD8+n5NTU1l4MCBpKam+uX5FNmiyJZwoMB2qNmz4bHH4IknoE8f09OEJkW2OEnU9ydKvfvuu8yYMcNv79fGxkb27t1LY2OjX54PFNmiyJbQp8B2oLffhptugjFj4LbbTE8T2hTZ4jQdO3akS5cuh3UwTEt27tzJX//6V3bu3OmX5/uBIlsU2RLKFNgOs3UrXH45nHceTJmiHUOCQZEtTmJZFt26dQNg8+bNR73wMSMjg6uvvpqMACzyUGSLIltClQLbQSorYdAgSEqCl18GP12gklZQZIvTNDQ0sHTpUv7v//7vqJ4nNjaWX/ziF8TGxvppsgMpskWRLaFIge0QHg9cc43vCnZhIWRmmp4o/CiyxUmioqIYNWoUl1xyyVE9T3V1Ne+9994RneTYWopsUWRLqFFgO8T//I8vrPPz4fTTTU8TvhTZ4iSpqalERkaya9cu5syZc0S3i1RWVrJy5UoqKysDMOGPFNmiyJZQosB2gLlz4aGH4NFHoX9/09OIIlucJiIigqioKCIiDv9bfps2bbjvvvto06ZNACY7kCJbFNkSKhTYNvfuu77dQq6/Hu680/Q08gNFtjiJZVlcffXVJCQkUFNTE5ATH/1FkS2KbAkFCmwb++YbuOwy6NoVpk7VjiF2o8gWJ1q0aBEvv/wyXq+3VY/fvXt30CNHkS2KbHE6BbZNVVfD4MEQFwcLFkCAFvDLUVJki9Nceuml9O3bF1crf2KPiIggJSXliG4vORqKbFFki5MpsG3I44HrroMvv4QlSyA72/RE0hJFtjiJZVnk5OTg8XhYsWLFIW8XSU9PZ8iQIaSnpwdpwgNfW5Ed3hTZ4lQKbBv6wx9g4UKYNw86dTI9jbSGIlucprKykk8//ZQdO3a0+DiPx0NNTQ0ejydIkx1IkS2KbHEiBbbN5OfD/ffDgw/6DpUR51Bki5OkpqYyYcIEOnbsCEB9/cFDoKSkhEceeYSSkpJgjncARbYossVpFNg28v77vt1Crr0W7r3X9DRyJBTZ4iRRUVEArF27lhkzZhz0/ZqWlsYVV1xBWlpakKc7kCJbFNniJApsm9i+3beo8ayzYPp07RjiZIpscZoTTzyRM888k+jo6J/9Xnx8PKeeeirx8fEGJjuQIlsU2eIUCmwb2LfPtx1fdLTv3uu4ONMTydFSZIuTWJbF+eefj8vlYsuWLQcsfNy3bx/r1q1j3759Bif8kSJbFNniBApswzweGDUKNm707RgShMPSJEgU2eI0jY2NLFmyhH//+99Nv1ZRUUFhYSEVFRUGJzuQIlsU2WJ3CmzD/vxneOkl33HonTubnkb8TZEtThIZGcnIkSPp3bt306/l5ubyhz/8gdzcXIOT/ZwiWxTZYmcKbINeegn++EffriFDhpieRgLlp5Hd3G4NInaQlpZGZGQkpaWlzJ07V8eqi639NLLLy8tNj9QsRXZ4UWAb8uGHMHIkDB8O991nehoJtP0je9myZabHETmkH056LC8vZ968eZSVlRme6OAU2bJ/ZBcWFpoep0WK7PChwDbgv//17XF9xhkwc6Z2DAkXP0R2aWkp0Py+wyJ2YFkW1157LYmJiQDU1NQYnqh5imz5IbJjY2MBdCVbjFNgB1lNjW/HEJcLFi8GG+x8JUF03HHH0b9/fwCWLVume7LF9tLT04mMjOTVV1/F6/WaHqdZimxJSkpiwIABABQWFuqebDFKgR1EXi+MHg2ffuqLa5utGZIgycnJAaC0tFQLH8X2vF4vF110EX369Gm6bcSuFNmSkJAAQGxsrBY+ilEK7CB64AGYPx/mzIEuXUxPI6b1799fu4uI7RUXF/PMM8/gcrnweDysWrVKCx/F9gYMGKDdRcQoBXaQFBTA5Mm+XUOGDTM9jdhBTk6OtvAT20tLS+Pyyy8nLS2Nqqoq1q9fz3fffWd6rBYpsiUhIUFb+IlRCuwg+OgjuPZaX1j/7nempxE70T7ZYnfx8fF06tSJ+Ph4UlJSmDBhAieffDIADQ0NhqdrniJbtE+2mKTADrDiYhg8GE49FWbPhgj9G5efUGSLndXU1PDJJ5807SISHR0NwIcffsj06dNxu90mx2uRIlsU2WKKci+Aamvh8suhocG3qPH7tRciP6PIFrsqLy+noKDgZ9uetW/fnl/+8pfExMSYGayVFNmiyBYTFNgB4vXCjTfC+vWwaBEce6zpicTuFNliRzk5OUyaNKlp95sfWJbFBRdcgMvlYtu2bVr4KLamyJZgU2AHyCOPwPPPw6xZ0LWr6WnEKRTZYjcRERHExMQQ0cz9bY2NjSxevJg1a9YEebLDo8gWRbYEkwI7AJYsgUmTfLuGDB9uehpxGkW22MmePXt46aWX2LNnz0F/PzIykuuuu45LL700yJMdPkW2KLIlWBTYfrZhA4wY4bv3+n//1/Q04lSKbLELj8eD2+3G4/E0+5i0tDSioqIoKyvj+eef1+0iYmuKbAkGBbYf7dwJgwZBx47w3HPaMUSOjiJb7MCyLK655hosyzrkY71eL42NjbY+Uh0U2aLIlsBTAvqJ2w1Dhvh2DlmyBBITTU8koUCRLU5iWRYjR44kOTkZt9utK9lia4psCSQFth94vXDLLfDBB74dQ44/3vREEkoU2WLSjh07+NOf/sSOHTsO6/OWLFnCiy++aOur2YpsUWRLoCiw/eCJJ3yHyDz7LHTrZnoaCUWKbDElJSWFfv36kZKSclifd/HFF9OnTx9cLleAJvMPRbYosiUQFNhHqagI7rkHJk6Ea64xPY2EMkW2mJCYmMg555xD4mHe92ZZFsceeyxer5fVq1frdhGxNUW2+JsC+yh89plvG75Bg+AvfzE9jYQDRbYEW21tLV988QW1tbVH9PlVVVWsW7eOb7/91s+T+ZciWxTZ4k8K7CNUWgoDB0L79jB3rnYMkeBRZEsw7dmzh/nz5ze7D/ahJCcnM378eE499VQAGhoa/DmeXymyRZEt/qIsPAJ1dTB0KFRVQWEhJCebnkjCjSJbgiU7O5u7776b7OzsI36OmJgYAD766COmT59+xFfDg0GRLYps8QcF9mHyemH8eHjnHVi4ENq1Mz2RhCtFtgRDZGQkiYmJREZGHvVztW3bltNPP53Y2Fg/TBY4imxRZMvRUmAfpief9O0WMn06nH++6Wkk3CmyJdDKy8tZtGgR5eXlR/1clmVx4YUX4nK5+Pbbb7XwUWxNkS1HQ4F9GJYvhzvvhLvvhlGjTE8j4qPIlkBqaGigrKzMr/dOezweFi1axJtvvum35wwERbYosuVIKbBbaeNGuPJK6NsXHnrI9DQiB1JkS6BkZmYyevRoMjMz/facERERXHPNNeTl5fntOQNFkS2KbDkSCuxW2L3bt2PI8cfDvHngh1sRRfxOkS1Okp6eTnR0NOXl5cybN0+3i4itKbLlcCmwD6G+Hq64AsrLYckSOMzDzESCSpEt/lZcXMyDDz5IcXFxQJ6/sbGRuro6PB5PQJ7fXxTZosiWw6HAboHXC7fdBmvWQEEBnHii6YlEDk2RLf6UlJTERRddRFJSUkCe37IsRo4cSUpKCnV1dVRXVwfkdfxBkS2KbGktBXYLpkyBZ56BqVOhRw/T04i0niJb/CUpKYlf//rXAQtsAJfLBUBhYSH5+fl4vd6AvdbRUmSLIltaQ4HdjNdfhzvu8H2MGWN6GpHDp8gWf3C73Xz99de43e6Av9ZFF11EXl5eU3DblSJbFNlyKArsg9i0yXffde/e8OijpqcROXKKbDlaZWVlzJ07l7KysoC/lmVZHH/88Xi9Xt566y0tfBRbU2RLSxTYP7Fnj2/HkDZtYP58iIoyPZHI0VFky9HIysri9ttvJysrK2ivWVVVxdq1a9m2bVvQXvNIKLJFkS3NUWDvp6HBd+W6tBQKCyE11fREIv6hyJYjFRUVRVpaGlFBvNqQnJzMhAkTOP300wHfTiN2pcgWRbYcjAJ7P7/9Lbz5Jrz8MvziF6anEfEvRbYciYqKCoqKiqioqAjq68bExACwYcMGpk2bRm1tbVBf/3AoskWRLT+lwP7eM8/AP/4BTz0FPXuankYkMBTZcrjq6urYvn27sffKscceyymnnEJsbKyR128tRbYosmV/CmzgjTdgwgTfxy23mJ5GJLAU2XI4srKyuPnmm4N6D/b+LMvi4osvxuVy8d1332nho9iaIlt+EPaB/dVX8Jvf+K5a//WvpqcRCQ5FtjiNx+Nh4cKFrFq1yvQoLVJkiyJbIMwDu7zct2NIVhb861/aMUTCiyJbWqOkpITHH3+ckpISo3NERERw9dVXk5eXZ3SO1lBkiyJbwjawGxrgqquguNi3Y0h6uumJRIJPkS2HkpCQwLnnnktCQoLpUUhPTycmJoaKigry8/N1u4jYmiI7vIVtYN9zD6xY4btyfdJJpqcRMUeRLS1JTk6mR48eJCcnmx6lSUNDAzU1NTQ0NJgepUWKbFFkh6+wDOxnn4W//c330bu36WlEzFNkS3Pq6ur49ttvbfWesCyL66+/nrS0NOrr66murjY9UrMU2aLIDk9hF9irV8PYsb7dQsaPNz2NiH0osuVgdu/ezaxZs2wXBS6XC4ClS5cyb948vF6v4Ymap8gWRXb4CavA/vprGDoULrgAnnwSvv/+LCLfU2TLT2VmZjJ27FgyMzNNj3JQPXr04NJLL20KbrtSZIsiO7yETWDv3evbMSQtDV56CaKjTU8kYk+KbNlfdHQ02dnZRNv0m6ZlWbRr1w6v18vbb7+thY9ia4rs8BEWgd3YCCNGwPbtvh1DLMv0RCL2psiWH+zdu5fXXnvN9jFYXV3Ne++9x9dff216lBYpskWRHR7CIrAnToRly+DFF+HUU01PI+IMimwBqK2tZdOmTdTW1poepUVJSUmMHz+eTp06AdDY2Gh4ouYpskWRHfpCPrBnz4bHHoPHH4c+fUxPI+IsimzJzs5mwoQJZGdnmx7lkGJjYwH49NNPmT59OjU1NYYnap4iWxTZoS2kA/vtt+Gmm2DMGLj9dtPTiDiTIlucJjc3l44dOxIXF2d6lBYpskWRHbpCNrC3boXLL4fzzoMpU7RjiMjRUGSHr507d/Lkk0+yc+dO06O0mmVZ9OrVC5fLxX//+18tfBRbU2SHppAM7MpKGDQIkpLg5ZchJsb0RCLOp8gOT3FxcZx22mm2vxp8MB6Ph4ULF7Jy5UrTo7RIkS2K7NATcoHt8cA11/iuYBcWgk23bhVxJEV2+ElJSaFXr16kpKSYHuWwRUREMHz4cPo4YAGOIlsU2aEl5AL7f/7HF9b5+XD66aanEQk9iuzwUl9fT0lJCfX1zvwDNCMjg9jYWCorK3nxxRd1u4jYmiI7dIRUYM+dCw89BI8+Cv37m55GJHQpssNHaWkpzzzzDKWlpaZHOSp1dXVUVlba/r2qyBZFdmgImcB+913fbiHXXw933ml6GpHQp8gOD5ZlMWbMGCyHn9BlWRY33HADGRkZNDQ0UF1dbXqkZimyRZHtfCER2N98A5ddBl27wtSp2jFEJFgU2aEvJiaGY489lpgQWC3u+v4Ph6KiIl544QW8Xq/hiZqnyBZFtrM5PrCrq2HwYIiLgwUL4PtzBkQkSBTZoa2yspI333yTyspK06P4Tffu3endu3dTcNuVIlsU2c7l6MD2eOC66+DLL2HJEnDAQWMiIUmRHbr27dvHunXr2Ldvn+lR/MayLE444QS8Xi/vvPOOFj6KrSmyncnRgf2HP8DChTBvHnTqZHoakfCmyA5NOTk53HnnneTk5Jgexe/27dvHO++8w1dffWV6lBYpskWR7TyODez8fLj/fnjwQd+hMiJiniJbnCQxMZFx48bRuXNnwHcwjV0pskWR7SyODOz33/ftFnLttXDvvaanEZH9KbJDy65du5g6dSq7du0yPUpA/HBC5X/+8x+mTZtGTU2N4Ymap8gWRbZzOC6wv/vOt2PIWWfB9OnaMUTEjhTZoSMmJob27duHxC4iLcnJyeHEE08k1uYr5RXZosh2BkcF9r59vh1DoqJ8915/f+FBRGxIkR0aUlNT6du3L6mpqaZHCSjLssjLyyMiIoLi4mItfBRbU2Tbn2MC2+OBUaNg40bfjiFt2pieSEQORZHtfA0NDZSVldHQ0GB6lKDwer0UFBTw+uuvmx6lRYpsUWTbm2MC+89/hpde8h2H/v16FBFxAEW2s+3atYunnnoqZO/B/imXy8VVV11F3759TY9ySIpsUWTblyMC+6WX4I9/9O0aMmSI6WlE5HApsp0rIyODkSNHkpGRYXqUoMnIyCAuLo6qqir+9a9/6XYRsTVFtj3ZPrA//BBGjoThw+G++0xPIyJHSpHtTLGxsbRv3972i/8Cwe12U1FRgdvtNj1KixTZosi2H1sH9n//69vj+owzYOZM7Rgi4nSKbOepqqri7bfftvVV3ECxLIsxY8ZgWRaNjY22Ps1SkS2KbHuxbWDX1Pi243O5YPFiiI83PZGI+IMi21mqqqr497//HZaBDb57sgFeeeUV5s6di9frNTxR8xTZosi2D1sGttcLo0fDp5/64jo31/REIuJPimznaNOmDf/v//0/2oT51k3nnXcevXr1agpuu1JkiyLbHmwZ2A88APPnw5w50KWL6WlEJBAU2eIklmXRoUMHvF4v7733nq2v6CuyRZFtnu0Cu6AAJk/27RoybJjpaUQkkBTZ9ldaWsrMmTMpLS01PYot1NTU8Pbbb7Np0ybTo7RIkS2KbLNsFdgffQTXXusL69/9zvQ0IhIMimx7i4qKIisri6ioKNOj2EJCQgLjxo3j7LPPBsDj8RieqHmKbFFkm2ObwC4u9h2DfuqpMHs2RNhmMhEJNEW2faWlpTFo0CDS0tJMj2IbcXFxAHz++edMnz5du4uIrSmyzbBFxtbWwuWXQ0ODb1FjQoLpiUQk2BTZ9tTY2EhlZSWNjY2mR7GdrKws2rVr1xTcdqXIFkV28BkPbK8XbrwR1q+HRYvg2GNNTyQipiiy7Wfnzp088cQT7Ny50/QotmNZFn379iUiIoKdO3dq4aPYmiI7uIwH9iOPwPPPw6xZ0LWr6WlExDRFtr2kp6czfPhw0tPTTY9iW16vl4KCAl577TXTo7RIkS2K7OAxGthLlsCkSb5dQ4YPNzmJiNiJIts+4uLiOOmkk2x/G4RJLpeLK664gr59+5oe5ZAU2aLIDg5jgb1hA4wY4Tut8X//19QUImJXimx7qK6u5v3336e6utr0KLaWkZFBfHw8+/bt4+WXX9btImJriuzAMxLYO3fCoEHQsSPMnasdQ0Tk4BTZ5u3du5fXXntNEdZKtbW17N69m5qaGtOjtEiRLYrswAp62rrdMGSIb+eQxYshMTHYE4iIkyiyzcrNzWXy5Mnk5uaaHsURMjIyuOmmm8jKyqKxsVFb+ImtKbIDJ6iB7fXCLbfA2rWwcCG0bRvMVxcRp1Jki5O4XC4Ali9fznPPPafDaMTWFNmBEdTAfuIJ3yEyM2fCr38dzFcWEadTZJuxe/dunnvuOVv/oWtX3bp145JLLiHC5vdBKrJFke1/QfuqLyqCe+6BiRPhmmuC9aoiEkoU2cEXERFBYmKi7SPRjizLomPHjgB88MEHWvgotqbI9q+gfMf87DPfNnwDB8Jf/hKMVxSnqK6upqioiN69e5seRRxCkR1c6enpDB06VPtgH4WamhpWr17N559/bnqUFimyRZHtPwEP7NJSX1i3b+87UEYXQWR/iYmJ9O/fn/p6e31hiL0psoPH4/HgdrttfR+x3cXHxzNu3DjOOeccAFv/u1RkiyLbPwKau3V1MHQoVFVBYSEkJwfy1UQknCiyg6OkpISHHnqIkpIS06M4Wnx8PABffvklM2bM0O4iYmtOjuyUcntEdlSgntjjgYsvhvfeg1WroF27QL2ShKO6urqmoPJ6vXT4popNQGpZHTt27DA73CGUlpYe8E85cpGRkfTt25eioiL++c9/0rdvX6Kjo02PdUhOeg+43W569eqF2+22/deWEzQ0NJCRkcGePXuoqKgwPU6L+vXrR2FhITNnzmTAgAEkJSWZHumQnPS15QR9+vRh6dKlzJw5k4EDB5KWlmZ6pGYN6NOXRYVL6Fm0CzD/N0Uur9frbc0D8/Pz6dq1KwsWLOD222/n0UcfZfLkydx///2MHj2aZcuW0alTJ8rKyqiurqau7hSGD18BjCI5+Ul+85vJVFffz1/+Mo5XX83nggsuYOvWrURGRpKbm8vatWsZMmQI06ZNa3reO++8k6lTpzJgwAA+/vhjLMsiPj6eTZs2cckllzBnzpymx06aNIlHHnmEESNGsGbNGk444QQaGhooLi6mS5cuLFq0iFtvvZXHHnus6XPGjBlDYWEhnTt3bjoYoGPHjqxatYrrrruOp556qumxEyZM4Pnnn+fCCy9k8+bNxMTEkJOTw4cffsjgwYOZMWNG02Pvuusunn76aQYNGsS6devIysoiNjaWzZs3c9FFFzF37lwmTZrEAw88wH333ceDDz7Itddey5tvvkmHDh1wu93s2rWLs88+myVLljBu3Dgef/zxpue/8cYbWbx4MV26dKGkpIS6ujo6dOjA6tWrueaaa/jHP/7R9Nhbb72V5557jp49e/Lll18SHx+PZVmsX7+egQMH8uyzzzY99u677+app57isssu48MPP6RNmzZERUWxZcsWevTowbx587j33nt58MEHmz5n5MiRrFy5kpNOOomamhp2797NmWeeydKlSxk7dixPPPFE02NvvvlmCgoKOPfcc9mxYweNjY20b9+et956i/z8fPr06dP02Ntuu43Zs2fTtm1btmzZQnx8PKmpqWzatInu3bszadIk1q5dC0CbNm24dtQoHn3oISZOnKgjnUVERMLcscceywcffEDnzp359ttviYuLIzk5mS1btnDOOefw+uuv88QTT/DMM89wzz338Pe//52hQ4fy/vvvk5ubS2RkJNu2baN79+7Mnz+fu+++m4ceeojJkye36vVbHdhH4ptv4Isv4NVXfR+ffgouF5x7LuTl+T5+9SuICth1dLE7t9vNggULmn7QGDJkCLGxsU2//8knnxz08/a/gg0wsXQNawZN5ObH/sjkK28gMjIy4LMfqdLSUgoKChgyZAiZmZmmxwkZJSUlFBUVkZmZafsr2U56D9TW1rJt2zbatWunH179yOv1UlBQQGpqKr169TI9Tov27t1LYWEhkZGRtr+S7aSvLSfZt28fS5cuxe122/5K9nfffUdRURGdO3c+5J8DXbt2Ddj7JKBp27at76N3b3jsMfjuO3jtNV9sT5kCf/4zpKbCJZf8GNy6lSS8xMbGMmLECEaMGHFYnxcTE0NMTEzT//9F1QmsAVLLaln91hquuuJKW0c2QGZmpk7H86Pc3FwyMzOZO3cuK1eu5Oqrrz7gPWJHTngP7Nixg9WrV3PTTTfZflanGT58OPHx8SQkJJgepUW5ublkZ2cze/Zsli9fzsiRI0lJSTE9Vouc8LXlNDfccANz5szhlVdeYdSoUViWZXqkFp155pls3brV2HqHoO7pceyxcP31MH8+7Nzpuz/7rruguBjGjfPtNHLqqXDHHbBsGdh4DYjY1MqLUti0+Svm/+tFGhsbTY8jQaaFj/7Xpk0bfve739GmTRvTo4Qcy7JISEigpqaGgoIC7ZMttuakhY/gu4DXrVs3Yz/AGts0LzISunaF3/0O3n7bt53fyy/DBRf4jlHv1w8yMn68+v3JJ76j1iU0uFyuVn106tTpsJ53+7HRzPtNuiI7jCmy/cvlchEREdF0/Lf4X01NDTt37rT1ziKgyBbnRXZcXJyxyLbNrtRpab4t/aZPh61bYeNGePhhiI6G3/8eOnWC446D0aPhxRfB5v9N5RC8Xm+rPjZs2HDYz/1VhzhFdphTZPtPWVkZ+fn5lJWVmR4lZGVkZHDzzTeTnZ2Nx+OxdWgrskWR3Tq2Cez9uVxwyilw++3wyitQVua7d3v4cFi7Fq66CrKyfAskf/973xXwhgbTU8vh+OkJjjt37uT5559n3rx53HXXXTQc5X9QRbYossVJfvgbgldffZXnnnvO+BZjLVFkiyL70GwZ2D8VF3fgrSLbt8PMmXDCCb7Fkt27Q2bmj1fAt20zPbEcyk9PcHzjjTcoLy9nxIgR1NfXs2LFiqN+DUW2KLKPXkZGBsOHDycjI8P0KGGha9eu9OzZkwibH3usyBZFdsvs/RXcDC2WDD1XXXUVEyZMAKC4uJhTTjnFL8+ryBZF9tHxer14PB4CuKOr7MeyLE4++WQA1q1bp4WPYmuK7OY5MrD3p8WSoaWoqIhhw4bRvn17vz2nIlsU2UeuuLiYP//5zxQXF5seJazU1tayatUqPvvsM9OjtEiRLYrsg3N8YP+UFks619q1a8nJyWHYsGH85z//8etzK7JFkX1kUlNTGTx4MKmpqaZHCStxcXGMHTuWrl27Atj6bxAU2eLUyA7k4VkhF9j702JJ+3K73cybN4+tW7eSn5/P6tWrueGGG5g4cSI9evQIyB8mimxRZB++hIQEOnfubPvDUEJRQkICLpeLzZs3M336dO0uIrbmxMgO5KmkIR3YP6XFkvbxwwmOW7duZfjw4Vx44YVs2LCBFStWsGbNGk4//fSAvK4iWxTZh6empobPPvuMmpoa06OErbS0NI455hhiY2NNj9IiRbY4LbIDKawC+6e0WDI8KbJFkd165eXlvPzyy5SXl5seJWxZlsXAgQOJjIxk9+7dWvgotqbI9gnrwN6fFkuGF0W2KLJbJycnh4kTJ5KTk2N6lLDn9XopKCjglVdeMT1KixTZoshWYDdLiyVDnyJbFNmHFhERQWxsrO33ZQ4HLpeLIUOG0K9fP9OjHJIiW8I9svUdsxW0WDJ0KbJFkd2yPXv2sGDBAvbs2WN6FMF3u0hSUhK1tbUsXLhQt4uIrYVzZCuwj8DhLJacMQO++cb0xNISRbYospvn8Xiorq629dHd4Wjfvn0UFxfbOrBBkS3hG9kKbD842GLJO+/0LZa85RZo106LJe1OkS2K7IOzLIvrrrsOy7JMjyL7ycjI4JZbbqFNmzZ4PB5b7/KiyJZwjGwFtp/9sFjyh1tFdu/WYkmnUGSLIlucxOVyAfD6668ze/ZsW/8tgyJbwi2yFdgBpsWSzqLIFkX2gXbs2MH999/Pjh07TI8izTjnnHO48MILbb8QVZEt4RTZ9v5qDDFaLOkMimxRZP8oJSWFSy+9lJSUFNOjSDMsy+K0004DYP369ba+L1uRLeES2Qpsg7RY0r4U2aLI9klMTKRr164kJiaaHkUOoba2ljfeeINPPvnE9CgtUmRLOES2AttGtFjSXhTZosj2RdumTZuora01PYocQlxcHDfffDPdunUDfAfT2JUiW0I9shXYNqXFkvagyJZwj+w9e/aQn5+vfbAdIjExEZfLxZYtW5gxYwbV1dWmR2qWIltCObIV2A6hxZLmKLIlnCM7OzubO++8k+zsbNOjyGFISUkhJyeH2NhY06O0SJEtoRrZCmwH0mLJ4FNkS7hGdmRkJMnJyURGRpoeRQ6DZVkMHjyYqKgo9uzZo4WPYmuhGNkK7BCgxZLBociWcIzs8vJylixZQnl5uelR5Ah4vV4WLFhAUVGR6VFapMiWUItsBXYI0mLJwFFkS7hFdkNDA7t27aJBfw3mSC6Xi8svv5x+/fqZHuWQFNkSSpGtwA5xWizpf4psCafIzszM5IYbbiAzM9P0KHKELMsiOTkZt9vN4sWLdbuI2FqoRLYCO8w0t1gyKkqLJQ+HIlvCKbIlNFRXV7N9+3bbR6siW0IhshXYYWz/xZLLlmmx5OFSZEs4RHZxcTEPP/wwxcXFpkeRo5SRkcHYsWM55phj8Hq91NTUmB6pWYpscXpkK7CliRZLHj5FtoR6ZCclJdG9e3eSkpJMjyJ+EBHh+2N/5cqVzJ4929bfsxTZ4uTIVmBLs7RYsnUU2RLKkZ2UlMT555+vwA4xZ511FhdccIHtt19UZItTI1uBLa2ixZItU2RLqEa22+1m69atuN1u06OIH1mWxRlnnAHAhg0btPBRbM2Jka3AliOixZI/p8iWUIzssrIy5syZQ1lZmelRJADcbjcrVqzg448/Nj1KixTZ4rTIVmDLUdNiyR8psiXUIjsrK4tbb72VrKws06NIAMTGxnLTTTdx3nnnAb6DaexKkS1OimwFtvhduC+WVGRLKEV2VFQUGRkZREVFmR5FAiQpKQmXy8W2bdt49tlnqa6uNj1SsxTZ4pTIVmBLwIXjYklFtoRKZFdUVLBs2TIqKipMjyIBlpSURGZmJjExMaZHaZEiW5wQ2QpsCarDXSy5aVOsYxdLKrIlFCK7rq6OrVu3OnJ2OTyWZXH55ZcTHR1NeXm5Fj6Krdk9shXYYtShFkv+5jcn0bv3Kfz+98eyfHkq5eX23lLqpxTZ4vTIzsrKYuzYsboHO4x4vV4KCgooLCw0PUqLFNli58hWYIttHGyx5LRpW+jTp5xPP03g3nvbcuGFpzJiRAemTMnmo48SHLFYUpEtP43s+vp60yOJNMvlcjF48GD69etnepRD+mlk2/mquwTGTyO7vLzc9EgAuLytWDLs9XqprKwMxjwiB/jss8+a/vfOnVG8/34S77+fyHvvRVNZ2UhiYiOdO1cTOfht1tx7Eycv+yPlbRMNTty8476rp9ebe6nIjCNtZy1r+mVTYdn7Xkfxr/RdbrqtKKUiOQJrTyNF/dLxWPZ8v/4geU8d3d7YzbsXW1Sm6/0abiLrPZz+QQUbz06lPta+1+QSKhs47/VdNOIlqdrjiK8t8a+4mka6vb6LmNpGYt1e3h1+IovbXxmw10tOTsblcjX7+60K7L1795KamurXwUREREREnKiiooKUlJRmf19XsMWR3G73ASfLffjhFi67rAczZz5Hbm6mwckO7aH4zyndu4fItpl4Ypx1T7n4R0NFNZFuD1XpUSRHx5seR+TQvF4aGxux+5pzT7WbaHcjVenR+toKU3FV9dT+dzdxZ53AG+m/Cdjr+OUKtojdbd++neOPP57PPvsMj8dj68MSqqqqOO+889iwYQNnnHFGi1+gEpp++FvBQ10BEbETt9vN119/TYONF7/88P31gw8+oFOnTkRHR5seSYLMLt9f7XtDlcgRSElJ4fjjj3dEtFZVVbFt2zZb/zAgIvKD2NhYTjzxREccOlRXV8fXX3+tBcVijAJbQk5qaqpjIruyslKRLSKOocgWaR0FtoSE2NjYA/5p58iOiYmhe/fuTaelKbLDT2xsLH379m16v4o4iZ0j+6ffXxXZ4ccu3191D7aEhObuuaqoqODbb7+1XbxWVFT8bGee5ORk2rVrZ8sfCsT/ysrKyMjIMD2GyBGz6z3ZB/v+GhMTw4knnqh7ssOEHb6/6gq2hDS7Xsl+8cUXf/ZrupIdXp5++mnTI4gcFbteyT7Y91ddyQ4vdvj+qivYEhIOtWrYrleyD0ZXskXESex6JftgdCVbgkVXsCUs2O1K9vTp05v9PV3JDg/333+/6RFE/MJuV7Jb+v6qK9nhwQ7fX3UFW0JCa/e93Lt3L+Xl5cEbrBmVlZUkJye3+Jjk5GTS09ODNJEE2969e7UHtoQUt9tNSUmJ6TFa9f01JiaGnJwc21x0Ef+yw/dXe/y4KRIkKSkpxr/oAJ588kluu+0202OIQbNnz9Z7QEJKbGwsbdu2NT2Gvr+KLb6/6hYREQN69eplegQxTO8BkcDQ15bY4T2gwBYJkurqaoqKiujduzeff/656XHEAL0HRAJj3759zJo1i8LCQm699VY8Ho/pkcSQqqoqRo8ezTfffGN0DgW2SJAkJibSv39/6uvrSUxMND2OGKD3gEhgbNy4kc2bNzNgwAC2b9+O2+02PZIYMGvWLB599FHee+894z9k6R5sEQNMb4Av5uk9IOI/Xbp0oW3btkyZMoWrr76a+Ph40yOJAaNHjwbgT3/6k+FJdAVbxIgNGzaYHkEM03tAxL+ysrKYMGECL730km7BEuMU2CIG9O3b1/QIYpjeAyL+M2XKFKZNmwZAmzZt2Lx5s+GJJNwpsEWCxO12M2/ePLZu3codd9yhewTDkN4DIoHRs2dPkpOTWbx4MXV1dfTp08f0SBLmdNCMhITWHjQjIiIioc3lcrFlyxbat29vbAZdwRYxwA7HuIpZeg+IBIa+tsQOdAVbQoKdr2AfzlG8+nIMbc29F/TfXeTo6GtLAPLz81mzZg3PPPMMV155JT169GDcuHFGZtEVbJEA83q9P/t4+OGHD/rrEtqaew+IyNHR15YADB8+nKlTp/Lwww8zf/58Y3ENCmyRgNv/9D6AnTt3EhkZybx587jrrrtoaGgwPKEEy/6nza1du9b4QQgioWb79u188cUXpscQw4YOHWp6BAW2SKDtf3ofwBtvvEFsbCwjRoygvr6eFStWGJ5QgmX/0+a2bdumXURE/Mjr9bJ48WIaGxtNjyKGdejQwfQIOslRQkNycjIVFRUkJyebHuWQrrrqqqb/XVxczCmnnGJwGgmm/U+bu+2223TanIgfvf7661x88cWsXbvW9CgiuoItocHlcpGSknJYCwpNKyoqYtiwYUa3EZLg++G0uRdeeEGnzYn4yebNm8nJydEPrWIbCmwRA9auXUtOTg7Dhg3jP//5j+lxJEj2P20uKipKp82J+Mn69evZsmULr732Gt988w0bNmwwPZKEOd0iIhJgbrebBQsWsHXrVvLz8znmmGO49dZbyc7Opq6ujqlTp5oeUYKkZ8+erF+/nsWLF/PLX/5Sp82J+MnQoUOpr6/n6aefxu12awcRMU77YIuIiIiI+JFuERERERER8SMFtoiIiIiIHymwRURERET8SIEtIiIiIuJHCmwRERERET9SYIuIiIiI+JECW0RERETEjxTYIiIiIiJ+pMAWEREREfEjBbaIiIiIiB8psEVERERE/Oj/A2rxD9IZKwM6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "Graphics object consisting of 57 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:57,344 Plotting 2d diagram... done\n", + "INFO: 2023-09-20 09:43:57,345 Plotting covered intervals...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAALhCAYAAACg3dydAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADnIklEQVR4nOzdeVhUZf8G8HsGZJdVRVxxRURxXyi30tIs07fNX1luuWSm7fVaWtaLmVtabqkJWJqapWVWLqm4gwgiKAiIIm7sMsOOMOf3hzpJIuvMec4w9+e9vK5X5pznuZn88p2HZ+YclSRJEoiIiIiIiIjIINSiAxARERERERHVJVxoExERERERERkQF9pEREREREREBsSFNhEREREREZEBcaFNREREREREZEBcaBMREREREREZEBfaRERERERERAYkbKEtSRK0Wi14G28iIiIiIiKqS4QttHNycuDk5IScnBxREYiIiIiIiIgMjm8dN0GbN28WHYGIysHaJCIyb+wDRMold31yoW2CevfuLToCEZWDtUlEZN7YB4iUS+765ELbBP3yyy+iIxBROVibRETmjX2ASLnkrk+VJOhqZFqtFk5OTtBoNHB0dBQRwWQVFRXB2tpadAwi+hfWJhGReWMfIFIuueuTO9omaNGiRaIjEFE5WJtEROaNfYBIueSuT+5oExERERGRQRUXF6OkpER0DKIasbS0hJWVVe3GMFAWkpG/vz9mz54tOgYR/Qtrk4jIvLEP3FZcXIxz585Bp9OJjkJUI2q1Gj4+PrVabHOhbYImTpwoOgIRlYO1SURk3tgHbispKYFOp4OnpydsbW1FxyGqloKCAiQlJaGkpIQLbXPz119/4dVXXxUdg4j+hbVJRGTe2AfKsrW1hZ2dnegYRDWi0WhQWFgIa2tr2NvbV/t8LrRNkK+vr+gIRFQO1iYRkXljHyCqO3bt2oW8vDw4Ojpi9OjR1V5sG+Sq47m5uXj22WeRnJxsiOGoEllZWaIjEFE5WJtEROaNfYCo7rC3t4eVlRW0Wi2KioqqfX6tF9oBAQFYtGgRtm/fzgseyKCwpBA5uTmiYxBROfLy8kRHICIigdgHiOoOa2vrWt13u9YL7YkTJ+Kzzz6r9LiioiJotdoyf6h6Qi4cRockW+w/skR0FCIqR4cOHURHICIigdgHiOiuGi20N2/ejMTERCxcuBBFRUXw9/cHACxfvhzXr1/H+vXrERYWhj179mD79u2IiYnBqFGj4OTkpP/TvHlzAMDatWsRFRWFnTt34o8//kBERATWrFmD9PR0/bj+/v7Iz8/HkiVLEBcXh59++gn79+/H8ePHERQUhCtXrpQ5trS0FPPnz8fly5fxww8/4OjRowgODsaWLVuQkJCARYsWobCwsMw5KSkpWLduHcLCwrB7927s2LEDZ8+exfLly6HRaMocm52djRUrViA6Ohq//vor/vzzT4SHh2Pt2rVITU0tc2xBQQGWLFmChIQEbN26FQcOHMCxY8fw/fffIzk5GfPmzYNOp4O/vz90Oh3mzZuH5ORkfP/99zh27BgOHDiArVu3IiEhAb8v+RGuKUBg2En9+KmpqVi7di3Cw8Px559/4tdff0V0dDRWrFiB7OzsMlk0Gg2WL1+Os2fPYseOHdi9ezfCwsKwbt06pKSklDm2sLAQixYtQkJCArZs2YLg4GAcPXoUP/zwAy5fvoz58+ejtLS0zDlXrlxBUFAQjh8/jv379+Onn35CXFwclixZgvz8/DLHpqenY82aNYiIiMAff/yBnTt3IioqCitXrkRWVlaZY7VaLb755hvExMRg+/bt2LNnD8LCwrB+/Xpcv369zLFFRUVYuHAhEhMTsXnzZgQHB+PIkSPYuHEjkpKS8OWXX6KkpKTMOVevXkVgYCBCQkKwb98+bNu2DefPn8fSpUuRm5tb5tiMjAx8++23iIyMxK5du/D7778jMjISq1evRmZmZpljc3JysGzZMsTExOCXX37B3r17ERoaioCAgPty37p1CwsWLMDFixexadMmHD58GIcPH8amTZtw8eJFLFiwALdu3SpzzvXr1xEQEIDQ0FDs3bsXv/zyC2JiYrBs2TLk5OSUOTYzMxOrV69GZGQkfv/9d+zatQuRkZH49ttvkZGRUebY3NxcLF26FOfPn8e2bduwb98+hISEIDAwEFevXi1zbElJCb788kskJSVh48aNOHLkCIKDgx/4M+Ju7vJ+RnzzzTfQarVljs3KysLKlStN5mfE33//LfRnxJIlS1BQUFBmfP6M4M8I/oxQzs+Iu8fyZ0Td/RmxYsUK/ozIzcWmTZtAZOri4uKQm5uLM2fOAPjnZ0RVqSRJkgwRRKVS4dKlS/D09Cz38aKiojLBtFotmjdvDo1GA0dHR0NEqPMiv/4ayfvfwsiNwLKLy/Bm1zdFRyKie2i1Wv48IyIyY+wDt+Xn5yM2Nhbe3t686jiZnLv/fpOSkpCdnY2cnByMHTsWrq6u1RrHIBdDqwpra2s4OjqW+UPVkxsbixG/A/XmWGKuNFd0HCL6l2+++UZ0BCIiEoh9gJRi0KBBeOutt0THMGuyLbSp9kouXkSWSoV3X3oP2d2ysfzMctGRiOges2fPFh2BiIgEYh9Qnrlz56Jr166iY5AZ4kLbhKivXUO6jQ3s9trBJs4Gn5Z+KjoSEd3j7mfUiIjIPLEPkCEVFxeLjkC1UOuF9ubNmzFt2jQAwH//+1+sWrWq1qGofLbp6dA4OmL69OmYeXMmbna/iVVRfL6JlOL1118XHYGIiARiHzCsQYMGYebMmfjggw/g6uqKxo0bY+7cuWWOSU5OxsiRI+Hg4ABHR0e88MILSE1NBQAEBQXhs88+w5kzZ6BSqaBSqRAUFPTA+QICAuDj4wNra2t4eHjgjTfeqNI8cXFxUKlUOH/+fJnxvvrqK3h6euLuJbFiYmIwfPhwODg4wN3dHa+88goyMjLKfL9vvPEG3nnnHTRo0ACPPfZYlc7Ly8vD2LFj4eDgAA8PDyxZwjsUKUGtF9ovvvgiVq9eDUmSsGXLFv6AMSKnnBwUNmqEzZs3Y17vebCJs8GcW3NExyKiOzZv3iw6AhERCcQ+YHgbNmyAvb09QkNDsXDhQnz++efYt28fAECSJIwaNQpZWVk4dOgQ9u3bh8TERIwePRoAMHr0aLz77rvw8fHBjRs3cOPGDf1j/7Z69WpMnz4dU6ZMQXR0NHbu3Im2bdtWaR4vLy/06NHjvqut//jjj3jppZegUqlw48YNDBw4EF27dsWpU6ewe/dupKam4oUXXrjv+7W0tMSxY8ewZs2aKp33/vvv4+DBg9ixYwf27t2L4OBghIeHG+Y/ANWYpegAVHWNiopwvWlT9O/fH5ZqS7yR9QYW+y3Gmug1mNp5quh4RGavf//+oiMQEZFA7AMPlp+ff9+Ob3k6dOhQ5krlvr6++PTT2x+XbNeuHVasWIH9+/fjsccew99//42oqChcunRJf+vgH374AT4+PggLC0OvXr3g4OAAS0tLNG7cuMJ5/f398e677+LNN/+5q0+vXr0AoErzjBkzBitWrMD//vc/AEB8fDzCw8Px/fffA7i9kO/evTu++OIL/fgBAQFo3rw54uPj0b59ewBA27ZtsXDhQv0xn3zySYXnNWnSBOvXr8f333+v3wHfsGEDmjVrVulzTcbFz2ibiJzr1+EsSajXujWSkpIAAPP7zId1gjU+LvpYbDgiAgB9bRIRkXliH3iw8+fPo0ePHpX++fdi3NfXt8zfPTw8kJaWBgCIjY1F8+bN9YtfAOjYsSOcnZ0RGxtb5WxpaWm4fv06Bg8eXO7jVZnn//7v/3D58mWEhIQAADZt2oSuXbuiY8eOAIDw8HAcPHgQDg4O+j8dOnQAACQmJurH7dmzZ5m5KzsvMTERxcXF8PPz05/j6uoKLy+vKn//ZBzc0TYRqadOoT6A+j4+yLawAABYqi3xesbrWOq3FGuj12JK5yliQxKZOYs7tUlEROaJfeDBOnToUKW3M99dRN5Vr169Mn9XqVTQ6XQAbr+lW6VS3TfGg77+ILa2thU+XpV5PDw88Mgjj+DHH39E3759sXnzZkyd+s87TnU6HUaMGIEFCxbcN46Hh4f+/9vb25d5rLLzEhISKv7mSBgutE1EdnQ0AMC1SxeU3PPDYGGfhViVsAofFX2EKeBCm0ikexslERGZH/aBB7Ozs0P37t0NOmbHjh2RnJyMK1eu6HebY2JioNFo4O3tDQCwsrJCaWlphePUr18fnp6e2L9/Px555JEazQMAY8aMwYcffogXX3wRiYmJ+L//+z/9Y927d8cvv/wCT09PWFpWfQlW2Xlt27ZFvXr1EBISghYtWgAAbt68ifj4eAwcOLDK85Dh8a3jJiI/Lg46AO7duiEsLEz/dUu1JaamT0Vmz0ysP7teXEAiKlObRERkftgH5DVkyBD4+vpizJgxiIiIwMmTJzF27FgMHDhQ/xZsT09PXLp0CZGRkcjIyEBRUVG5Y82dOxdLlizBN998g4SEBERERGD58uVVngcAnnnmGWi1WkybNg2PPPIImjZtqn9s+vTpyMrKwosvvoiTJ0/i4sWL2Lt3LyZOnFjhLwIqO8/BwQGvvvoq3n//fezfvx9nz57F+PHjoVZzmSca/wuYCF1SElLVatSzs8MzzzxT5rFFfRbB+oI1ZhXMEpSOiADcV5tERGRe2AfkpVKp8Ouvv8LFxQUDBgzAkCFD0Lp1a2zdulV/zLPPPothw4bhkUceQcOGDR94Zfhx48Zh2bJlWLVqFXx8fPDUU0/p35ZdlXkAwNHRESNGjMCZM2cwZsyYMo81adIEx44dQ2lpKYYOHYpOnTrhzTffhJOTU4WL4qqct2jRIgwYMABPP/00hgwZgn79+qFHjx41ek7JcFTS3Ru7yUyr1cLJyQkajQaOjo4iIpiUI+3awTklBZ1zcuDv74/Zs2eXeXzm8ZlY/tByBJwLwASfCYJSEpm38mqTiIjMB/vAbfn5+YiNjYW3t3eZK4gTmYK7/36TkpKQnZ2NnJwcjB07Fq6urtUahwttExHh6ooie3v4XblS7uPFpcWon1QfzpnOSO2dKnM6IiIiIqLbuNAmU2aohTbfOm4iXHJzUeTuDuD2b0v/zcrCCpNSJiGtdxq+j/le7nhEhPJrk4iIzAf7ABHdxYW2CZB0OjS+dQuqO1cSfOedd8o9bmnfpbC6aIX3c9+XMx4R3fGg2iQiIvPAPkBEd3GhbQIy4+JgC8C6XTsAwOrVq8s9zsrCChNvTERa7zRsjN0oY0IiAh5cm0REZB7YB6ginp6eWLZsmegYJBMutE1AekQEAMDRxwcA8NRTTz3w2KV9lqLepXp4X8tdbSK5VVSbRERU97EPEBnX+PHjMWrUqEqPO3z4MEaMGIEmTZrorxovNy60TYD23DkAQMPu3QEAZ86ceeCxNpY2mHhtIlL6pGDz+fJvX0BExlFRbRIRUd3HPlD3FRcXi45AVZCXl4cuXbpgxYoVwjJwoW0CCuPjUQjArUMHAICbm1uFxy/ruwz1kurh3ex3ZUhHRHdVVptERFS3sQ8Ylk6nw4IFC9C2bVtYW1ujRYsWmDdvnv7x6OhoPProo7C1tYWbmxumTJmC3NxcAMCePXtgY2OD7OzsMmPOnDkTAwcO1P/9+PHjGDBgAGxtbdG8eXPMnDkTeXl5+sc9PT3h7++P8ePHw8nJCZMnT67SeWlpaRgxYgRsbW3RqlUrbNq0qUrfc0BAAHx8fGBtbQ0PDw+88cYb+seSk5MxcuRIODg4wNHRES+88AJSU/+529DcuXPRtWtXBAQEoEWLFnBwcMC0adNQWlqKhQsXonHjxmjUqFGZ5xC4fZ/w1atX44knntDn3bZtW5ljKnqugX92mhcvXgwPDw+4ublh+vTpuHXrlv6Y4uJifPDBB2jatCns7e3Rp08fBAcH6x8PCgqCs7Mz9uzZA29vbzg4OGDYsGG4ceOG/vvbsGEDfvvtN6hUKqhUqjLn3+uJJ56Av7+/0Hvbc6FtAqTkZKRaWkJtaQkAsLW1rfB4G0sbjLs6Djf63sDWuK1yRCQiVF6bRERUt7EPVCA/H4iIqPxPfr7+lFmzZmHBggWYM2cOYmJi8OOPP8L9zl148vPzMWzYMLi4uCAsLAzbtm3D33//rV+YDhkyBM7Ozvjll1/045WWluKnn37CmDFjANxePA4dOhTPPPMMoqKisHXrVhw9erTM4hYAFi1ahE6dOiE8PBxz5syp0nnjx49HUlISDhw4gJ9//hmrVq1CWlpahU/R6tWrMX36dEyZMgXR0dHYuXMn2rZtCwCQJAmjRo1CVlYWDh06hH379iExMRGjR48uM0ZiYiL++usv7N69G5s3b0ZAQACefPJJXL16FYcOHcKCBQswe/ZshISElDlvzpw5ePbZZ3HmzBm8/PLLePHFFxEbG1ul5/qugwcPIjExEQcPHsSGDRsQFBSEoKAg/eMTJkzAsWPHsGXLFkRFReH555/HsGHDkJCQcM8/k3wsXrwYP/zwAw4fPozk5GS89957AID33nsPL7zwgn7xfePGDTz00EMVPqdCSYJoNBoJgKTRaERFMBnHWrSQIpyd9X8PDAys9JyCWwWSZZKl5HHCw4jJiOheValNIiKqu9gHbsvLy5NOnTol5eXl/fPF8HBJAir/Ex4uSZIkabVaydraWlq3bl25c6xdu1ZycXGRcnNz9V/7448/JLVaLaWkpEiSJEkzZ86UHn30Uf3je/bskaysrKSsrCxJkiTplVdekaZMmVJm3CNHjkhqtVoqKCiQJEmSWrZsKY0aNarMMZWdFxcXJwGQQkJC9I/HxsZKAKSlS5c+8Hlr0qSJ9PHHH5f72N69eyULCwspOTlZ/7Vz585JAKSTJ09KkiRJn376qWRnZydptVr9MUOHDpU8PT2l0tJS/de8vLyk+fPn6/8OQHrttdfKzNenTx9p2rRpkiRV7bkeN26c1LJlS6mkpER/zPPPPy+NHj1akiRJunDhgqRSqaRr166VmWfw4MHSrFmzJEm6XT8ApAsXLugfX7lypeTu7q7/+7hx46SRI0eW+xw9CABpx44dVT7+7r/fn3/+Wfruu++kpUuXSpmZmdWaU5IkyVLgGp+qyOHmTWgbNtT/ffDgwZWeY2Npg1eSX0Fg/0D8HP8znmv/nDEjEhGqVptERFR3sQ9UoEMHIDy8ascBiI2NRVFR0QOf09jYWHTp0gX29vb6rz388MPQ6XSIi4uDu7s7xowZAz8/P1y/fh1NmjTBpk2bMHz4cLi4uAAAwsPDceHChTJv65YkCTqdDpcuXYK3tzcAoGfPnmXmruy8+Ph4WFpaljmvQ4cOcHZ2fuC3nZaWhuvXr1f4/TZv3hzNmzfXf61jx45wdnZGbGwsevXqBeD2W93r16+vP8bd3R0WFhZQq9Vlvvbv3XU/P7/7/h4ZGamfu7LnGgB8fHxgYWGhP8bDwwPR0dEAgIiICEiShPbt25eZp6ioqMxHLuzs7NCmTZsyY1T2TgCl4kLbBLjl5yPLw0P/9w0bNmD27NmVnrei7wr8cPkHvJX5Fp4DF9pExlbV2iQiorqJfaACdnbAnQv7VkVlb8OXJAkqlarcx+5+vXfv3mjTpg22bNmCadOmYceOHQgMDNQfp9PpMHXqVMycOfO+MVq0aKH///cuMKtyXlxcXJkcVVHT7/ffX69Xr16Zx1UqVblf0+l0lWa6O25VnusHzX13Hp1OBwsLC4SHh5dZjAOAg4NDhWPc3pQ2PfyMtsKVFBaicWkp1C1b6r9W1R/gdvXs8HLyy7jmdw2/xP9S+QlEVCt8cUVEZN7YBwynXbt2sLW1xf79+8t9vGPHjoiMjCxzAbJjx45BrVaX2TV96aWXsGnTJvz+++9Qq9V48skn9Y91794d586dQ9u2be/7Y2Vl9cBslZ3n7e2NkpISnDp1Sn9OXFzcfRdmu1f9+vXh6elZ4febnJyMK1eu6L8WExMDjUaj33mvjX9/ZjskJAQd7ry7oKrPdUW6deuG0tJSpKWl3fecNW7cuMo5raysUFpaWuXjReJCW+HSzpyBBQBbLy/91/z9/at8/sq+K2GZbIm3Mt8yfDgiKqM6tUlERHUP+4Dh2NjY4MMPP8QHH3yA77//HomJiQgJCcH69esBAGPGjIGNjQ3GjRuHs2fP4uDBg5gxYwZeeeUV/VuZ7x4XERGBefPm4bnnnoONjY3+sQ8//BAnTpzA9OnTERkZiYSEBOzcuRMzZsyoMFtl53l5eWHYsGGYPHkyQkNDER4ejkmTJlW6az137lwsWbIE33zzDRISEhAREYHly5cDuH1xN19fX/33c/LkSYwdOxYDBw68763tNbFt2zYEBAQgPj4en376KU6ePKm/2FlVn+uKtG/fHmPGjMHYsWOxfft2XLp0CWFhYViwYAH+/PPPKuf09PREVFQU4uLikJGRUeaq5vfKzc1FZGSk/u3vly5dQmRkJJKTk6s8V21xoa1wmXf+cTh37qz/2qxZs6p8vl09O7x0+SVc7XMVv134zdDxiOge1alNIiKqe9gHDGvOnDl499138cknn8Db2xujR4/Wf17Xzs4Oe/bsQVZWFnr16oXnnnsOgwcPvu++ye3atUOvXr0QFRWlv9r4Xb6+vjh06BASEhLQv39/dOvWDXPmzIHHPR/ZLE9VzgsMDETz5s0xcOBAPPPMM5gyZQoaNWpU4bjjxo3DsmXLsGrVKvj4+OCpp57SX5FbpVLh119/hYuLCwYMGIAhQ4agdevW2LrVMHcY+uyzz7Blyxb4+vpiw4YN2LRpEzp27Aig6s91ZQIDAzF27Fi8++678PLywtNPP43Q0NAynzuvzOTJk+Hl5YWePXuiYcOGOHbsWLnHnTp1Ct26dUO3bt0AAO+88w66deuGTz75pFqZa0MlCXrTu1arhZOTEzQaDRwdHUVEMAnHZ87EQ8uXQ3P5MpzufFZk/vz51fpBnlucC+c0ZzRJboLkh+T7LQ6RualubRIRUd3CPnBbfn4+YmNj4e3tDTs7O9FxqBIqlQo7duzAqFGjREdRhLv/fpOSkpCdnY2cnByMHTsWrq6u1RqHO9oKV5yYCA2gX2QDtz9rUh0OVg74v4v/hyt9r2DnhZ0GTkhEd1W3NomIqG5hHyCiu7jQVjjV1atIs7Yu87XDhw9Xe5xv+34Li+sWmJFW8WdOiKjmalKbRERUd7APENFdXGgrnE1aGrLvuRceALRq1ara4zhYOWD0xdFI7puMXYm7DBWPiO5Rk9okIqK6g32AKuLp6Ylly5aJjnEfSZL4tnEj4EJb4Rw1GhQ0aFDmayUlJTUaa03fNbC4YYE3Ut4wRDQi+pea1iYREdUN7ANExjV+/Pgq/VJg/vz56NWrF+rXr49GjRph1KhR+vuby4ULbYVrUFgIXdOmZb6WkpJSo7EcrBzwfOLzuNz3Mv66+Jch4hHRPWpam0REVDewD9R9xcXFoiNQFRw6dAjTp09HSEgI9u3bh5KSEjz++ONl7gVubFxoK1hBVhYaShIs//U2pB49etR4zDV91sAi1QLTr0+vbTwi+pfa1CYREZk+9gHD0ul0WLBgAdq2bQtra2u0aNEC8+bN0z8eHR2NRx99FLa2tnBzc8OUKVOQm5sLANizZw9sbGyQnZ1dZsyZM2di4MCB+r8fP34cAwYMgK2tLZo3b46ZM2eWWYx5enrC398f48ePh5OTEyZPnlyl89LS0jBixAjY2tqiVatW2LRpU5W+54CAAPj4+MDa2hoeHh76e1kDQHJyMkaOHAkHBwc4OjrihRdeQGpqqv7xuXPnomvXrggICECLFi3g4OCAadOmobS0FAsXLkTjxo3RqFGjMs8hcPuq46tXr8YTTzyhz7tt27Yyx1T0XAP/7DQvXrwYHh4ecHNzw/Tp08vc57q4uBgffPABmjZtCnt7e/Tp0wfBwcH6x4OCguDs7Iw9e/bA29sbDg4OGDZsGG7cuKH//jZs2IDffvsNKpUKKpWqzPn32r17N8aPHw8fHx906dIFgYGBSE5ORnh4eJX+OxgCF9oKlnrnH4K9t3eZr//66681HtPR2hHPJDyDS36XsOfSntrEI6J/qU1tEhGR6WMfeLB85COiCv/LR77+nFmzZmHBggWYM2cOYmJi8OOPP8Ld3f32ePn5GDZsGFxcXBAWFoZt27bh77//1i9MhwwZAmdnZ/zyyy/68UpLS/HTTz/p76cdHR2NoUOH4plnnkFUVBS2bt2Ko0ePllncAsCiRYvQqVMnhIeHY86cOVU6b/z48UhKSsKBAwfw888/Y9WqVfp7gD/I6tWrMX36dEyZMgXR0dHYuXMn2rZtC+Cfz1FnZWXh0KFD2LdvHxITEzF69OgyYyQmJuKvv/7C7t27sXnzZgQEBODJJ5/E1atXcejQISxYsACzZ89GSEhImfPmzJmDZ599FmfOnMHLL7+MF198EbGxsVV6ru86ePAgEhMTcfDgQWzYsAFBQUEICgrSPz5hwgQcO3YMW7ZsQVRUFJ5//nkMGzZMf6/wu3MtXrwYP/zwAw4fPozk5GS89957AID33nsPL7zwgn7xfePGDTz00EMVPqd3aTQaAKj2LbpqRRJEo9FIACSNRiMqguJFLF4sSYCU9PffZb5eUFBQq3FvFtyU1NfVUusjrWs1DhGVVdvaJCIi08Y+cFteXp506tQpKS8vT/+1cClcQhX+Fy6FS5IkSVqtVrK2tpbWrVtX7hxr166VXFxcpNzcXP3X/vjjD0mtVkspKSmSJEnSzJkzpUcffVT/+J49eyQrKyspKytLkiRJeuWVV6QpU6aUGffIkSOSWq3W/7ds2bKlNGrUqDLHVHZeXFycBEAKCQnRPx4bGysBkJYuXfrA561JkybSxx9/XO5je/fulSwsLKTk5GT9186dOycBkE6ePClJkiR9+umnkp2dnaTVavXHDB06VPL09JRKS0v1X/Py8pLmz5+v/zsA6bXXXiszX58+faRp06ZJklS153rcuHFSy5YtpZKSEv0xzz//vDR69GhJkiTpwoULkkqlkq5du1ZmnsGDB0uzZs2SJEmSAgMDJQDShQsX9I+vXLlScnd31/993Lhx0siRI8t9jh5Ep9NJI0aMkPr161el4+/++/3555+l7777Tlq6dKmUmZlZrTklSZK4o61geXd+i+T+r7chLV68uFbjOts445n4Z3DR7yL2Je2r1VhE9I/a1iYREZk29oEH64AOCK/C/zqgAwAgNjYWRUVFGDx4cLnjxcbGokuXLrC3t9d/7eGHH4ZOp9Nf9GrMmDEIDg7G9evXAQCbNm3C8OHD4eLiAgAIDw9HUFAQHBwc9H+GDh0KnU6HS5cu6cft2bNnmbkrOy82NhaWlpZlzuvQoQOcnZ0f+PykpaXh+vXrFX6/zZs3R/PmzfVf69ixI5ydnfU7z8Dtt7rXv+eORe7u7ujYsSPUanWZr/17d93Pz+++v98dtyrPNQD4+PjAwsJC/3cPDw/9PBEREZAkCe3bty/zvB06dAiJiYn6c+zs7NCmTZtyx6ipN954A1FRUdi8eXOtxqkuS1lno2opuXQJ6SoVGv6rKGfPnl3rsdf1WYftadsx7eo0XPC8UOvxiMgwtUlERKaLfeDB7GCH7uhe5eNtbW0rfFySJKhUqnIfu/v13r17o02bNtiyZQumTZuGHTt2IDAwUH+cTqfD1KlTMXPmzPvGaNGihf7/37vArMp5dxefD8pXnpp+v//+er169co8rlKpyv2aTqerNNPdcavyXD9o7rvz6HQ6WFhYIDw8vMxiHAAcHBwqHEOSpEqzPsiMGTOwc+dOHD58GM2aNavxODXBHW0FU1+/jvRyis7f37/WYzvbOGNU/Cgk9k3EgcsHaj0eERmmNomIyHSxDxhOu3btYGtri/3795f7eMeOHREZGVnmAmTHjh2DWq1G+/bt9V976aWXsGnTJvz+++9Qq9V48skn9Y91794d586dQ9u2be/7Y2Vl9cBslZ3n7e2NkpISnDp1Sn9OXFzcfRdmu1f9+vXh6elZ4febnJyMK1eu6L8WExMDjUYD739dz6km/v2Z7ZCQEHTo0EE/d1We64p069YNpaWlSEtLu+85a9y4cZVzWllZobS0tNLjJEnCG2+8ge3bt+PAgQNC7nHPhbaC2aWnQ+vkdN/XJ02aZJDx1/VeB3WmGq8lv2aQ8YjMnaFqk4iITBP7gOHY2Njgww8/xAcffIDvv/8eiYmJCAkJwfr16wHcflu4jY0Nxo0bh7Nnz+LgwYOYMWMGXnnlFf0F0+4eFxERgXnz5uG5556DjY2N/rEPP/wQJ06cwPTp0xEZGYmEhATs3LkTM2bMqDBbZed5eXlh2LBhmDx5MkJDQxEeHo5JkyZVums9d+5cLFmyBN988w0SEhIQERGB5cuXA7h9cTdfX1/993Py5EmMHTsWAwcOvO+t7TWxbds2BAQEID4+Hp9++ilOnjypv9hZVZ/rirRv3x5jxozB2LFjsX37dly6dAlhYWFYsGAB/vzzzyrn9PT0RFRUFOLi4pCRkVHmqub3mj59OjZu3Igff/wR9evXR0pKClJSUlBQUFDluWqLC20Fc87NRVGjRvd9/ffffzfI+K62rnj6/NNI8EvgrjaRARiqNomIyDSxDxjWnDlz8O677+KTTz6Bt7c3Ro8erf+8rp2dHfbs2YOsrCz06tULzz33HAYPHowVK1aUGaNdu3bo1asXoqKi9Fcbv8vX1xeHDh1CQkIC+vfvj27dumHOnDnw8PCoMFdVzgsMDETz5s0xcOBAPPPMM5gyZQoalfO6/l7jxo3DsmXLsGrVKvj4+OCpp57SX5FbpVLh119/hYuLCwYMGIAhQ4agdevW2Lp1a5Wfz4p89tln2LJlC3x9fbFhwwZs2rQJHTt2BFD157oygYGBGDt2LN599114eXnh6aefRmhoaJnPnVdm8uTJ8PLyQs+ePdGwYUMcO3as3ONWr14NjUaDQYMGwcPDQ//HUM9XVaik2rzpvRa0Wi2cnJyg0Wjg6OgoIoKiSTodci0sEP7kkxi0a1eZx8LCwtCrVy+DzJNVkIWGOQ3RJq4N4vvHG2RMInNlyNokIiLTwz5wW35+PmJjY+Ht7Q07OzvRcagSKpUKO3bswKhRo0RHUYS7/36TkpKQnZ2NnJwcjB07ttq3BuOOtkJpr1xBfQBW91x1767MzEyDzeNq64oRMSOQ0DcBh68cNti4RObIkLVJRESmh32AiO7iQluhUu9cPKG+j899jxn6swXf9f4O6ptqTLk0xaDjEpkbOT/3Q0REysM+QER3caGtUJqzZwEADbp1u++xdu3aGXSuBnYNMDxmOOL84nD06lGDjk1kTgxdm0REZFrYB6ginp6eWLZsmegY95EkiW8bNwIutBWqIC4OJQAadely32MHDx40+Hzre62HKluFyRcnG3xsInNhjNokIiLTwT5AZFzjx4+v0i8FVq9eDV9fXzg6OsLR0RF+fn7466+/jB/wHlxoK5Tu8mWkWFjAopx7+I0dO9bg8zWyb4Qnzj2B833P49jV8q/eR0QVM0ZtEhGR6WAfqPuKi4tFR6AqaNasGb788kucOnUKp06dwqOPPoqRI0fi3LlzsmXgQluhLFNSkPWAqzTevZ+eoQX2CoRKy11topoyVm0SEZFpYB8wLJ1OhwULFqBt27awtrZGixYtMG/ePP3j0dHRePTRR2Fraws3NzdMmTIFubm5AIA9e/bAxsYG2dnZZcacOXMmBg4cqP/78ePHMWDAANja2qJ58+aYOXMm8vLy9I97enrC398f48ePh5OTEyZPnlyl89LS0jBixAjY2tqiVatW2LRpU5W+54CAAPj4+MDa2hoeHh76e1kDQHJyMkaOHAkHBwc4OjrihRdeQGpqqv7xuXPnomvXrggICECLFi3g4OCAadOmobS0FAsXLkTjxo3RqFGjMs8hcPuq46tXr8YTTzyhz7tt27Yyx1T0XAP/7DQvXrwYHh4ecHNzw/Tp08vc57q4uBgffPABmjZtCnt7e/Tp0wfBwcH6x4OCguDs7Iw9e/bA29sbDg4OGDZsGG7cuKH//jZs2IDffvsNKpUKKpWqzPn3GjFiBIYPH4727dujffv2mDdvHhwcHBASElKl/w6GwIW2QjlkZiLnAZeQnz17tlHmbGTfCEPPDkVs31icuHbCKHMQ1WXGqk0iIjIN7AOGNWvWLCxYsABz5sxBTEwMfvzxR7i7uwO4fQumYcOGwcXFBWFhYdi2bRv+/vtv/cJ0yJAhcHZ2xi+//KIfr7S0FD/99JP+ftrR0dEYOnQonnnmGURFRWHr1q04evRomcUtACxatAidOnVCeHg45syZU6Xzxo8fj6SkJBw4cAA///wzVq1apb8H+IOsXr0a06dPx5QpUxAdHY2dO3eibdu2AP75HHVWVhYOHTqEffv2ITExEaNHjy4zRmJiIv766y/s3r0bmzdvRkBAAJ588klcvXoVhw4dwoIFCzB79uz7Fpxz5szBs88+izNnzuDll1/Giy++iNjY2Co913cdPHgQiYmJOHjwIDZs2ICgoCAEBQXpH58wYQKOHTuGLVu2ICoqCs8//zyGDRumv1f43bkWL16MH374AYcPH0ZycjLee+89AMB7772HF154Qb/4vnHjBh566KEKn1Pg9n/3LVu2IC8vD35+fpUebzCSIBqNRgIgaTQaUREULcnSUjrYu3e5j/3vf/8z2rw3cm5IqgyV5HPIx2hzENVVxqxNIiJSPvaB2/Ly8qRTp05JeXl593xNksLDK/9z9xStVitZW1tL69atK3eOtWvXSi4uLlJubq7+a3/88YekVqullJQUSZIkaebMmdKjjz6qf3zPnj2SlZWVlJWVJUmSJL3yyivSlClTyox75MgRSa1WSwUFBZIkSVLLli2lUaNGlTmmsvPi4uIkAFJISIj+8djYWAmAtHTp0gc+b02aNJE+/vjjch/bu3evZGFhISUnJ+u/du7cOQmAdPLkSUmSJOnTTz+V7OzsJK1Wqz9m6NChkqenp1RaWqr/mpeXlzR//nz93wFIr732Wpn5+vTpI02bNk2SpKo91+PGjZNatmwplZSU6I95/vnnpdGjR0uSJEkXLlyQVCqVdO3atTLzDB48WJo1a5YkSZIUGBgoAZAuXLigf3zlypWSu7u7/u/jxo2TRo4cWe5z9G9RUVGSvb29ZGFhITk5OUl//PFHlc67++/3559/lr777jtp6dKlUmZmZpXOvZelfEt6qipdSQkal5QgqUWLch//92+PDKmxQ2M8fupx7PHbg7AbYejl0ctocxHVNcasTSIiUj72gQc7fx7o0aPy48LDge7dgdjYWBQVFWHw4MHlHhcbG4suXbrA3t5e/7WHH34YOp0OcXFxcHd3x5gxY+Dn54fr16+jSZMm2LRpE4YPHw4XF5c7c4XjwoULZd7WLUkSdDodLl26BG9vbwBAz549/5Wx4vPi4+NhaWlZ5rwOHTrA2dn5gd93Wloarl+/XuH327x5czRv3lz/tY4dO8LZ2RmxsbHo1ev2a3ZPT0/Ur19ff4y7uzssLCygVqvLfO3fu+v/3un18/NDZGSkfu7KnmsA8PHxgYWFhf4YDw8PREdHAwAiIiIgSRLat29fZp6ioiK4ubnp/25nZ4c2bdqUGaOydwI8iJeXFyIjI5GdnY1ffvkF48aNw6FDh9CxY8cajVddXGgrUEZMDBoBsPnXP8S7Nm7caNQf5AE9AtAsrxlejX8VUR5RRpuHqK4xdm0SEZGysQ88WIcOtxfRVTkOAGxtbSs8TpIkqFSqch+7+/XevXujTZs22LJlC6ZNm4YdO3YgMDBQf5xOp8PUqVMxc+bM+8Zocc+G170LzKqcFxcXVyZHVdT0+/331+vVq1fmcZVKVe7XdDpdpZnujluV5/pBc9+dR6fTwcLCAuHh4WUW4wDg4OBQ4RiSJFWatTxWVlb6t9737NkTYWFh+Prrr7FmzZoajVddXGgrUMbp02gEwKlTp3Ifv/cCDsbQpH4TDAkegn1++3Dqxin09OhZ+UlEZPTaJCIiZWMfeDA7u9s71VXVrl072NraYv/+/Zg0adJ9j3fs2BEbNmxAXl6efiF87NgxqNXqMrumL730EjZt2oRmzZpBrVbjySef1D/WvXt3nDt3Tr8Yq6rKzvP29kZJSQlOnTqF3r17AwDi4uLuuzDbverXrw9PT0/s378fjzzySLnfb3JyMq5cuaLf1Y6JiYFGo9HvvNdGSEhImavmh4SEoFu3bvq5q/JcV6Rbt24oLS1FWloa+vfvX+OcVlZWKC0trdG5kiShqKioxnNXFy+GpkDaO5edb/iAn0aJiYlGzxDQPQCqfBUmxk80+lxEdYUctUlERMrFPmA4NjY2+PDDD/HBBx/g+++/R2JiIkJCQrB+/XoAwJgxY2BjY4Nx48bh7NmzOHjwIGbMmIFXXnlF/1bmu8dFRERg3rx5eO6552BjY6N/7MMPP8SJEycwffp0REZGIiEhATt37sSMGTMqzFbZeV5eXhg2bBgmT56M0NBQhIeHY9KkSZXuWs+dOxdLlizBN998g4SEBEREROivZD9kyBD4+vrqv5+TJ09i7NixGDhw4H1vba+Jbdu2ISAgAPHx8fj0009x8uRJ/bszqvpcV6R9+/YYM2YMxo4di+3bt+PSpUsICwvDggUL8Oeff1Y5p6enJ6KiohAXF4eMjIwyVzW/10cffYQjR44gKSkJ0dHR+PjjjxEcHKy/EJ4cuNBWoKKEBOQDcG3XrtzHrcq5t7ahNXNshkfPPIroPtGISIkw+nxEdYEctUlERMrFPmBYc+bMwbvvvotPPvkE3t7eGD16tP7zunZ2dtizZw+ysrLQq1cvPPfccxg8eDBWrFhRZox27dqhV69eiIqKum+R5evri0OHDiEhIQH9+/dHt27dMGfOHHh4eFSYqyrnBQYGonnz5hg4cCCeeeYZTJkyBY0aNapw3HHjxmHZsmVYtWoVfHx88NRTT+mvyK1SqfDrr7/CxcUFAwYMwJAhQ9C6dWts3bq1ys9nRT777DNs2bIFvr6+2LBhAzZt2qT/LHNVn+vKBAYGYuzYsXj33Xfh5eWFp59+GqGhoWU+d16ZyZMnw8vLCz179kTDhg1x7Nixco9LTU3FK6+8Ai8vLwwePBihoaHYvXs3HnvssWplrg2VVNM3vdeSVquFk5MTNBoNHB0dRURQrOCePdEyKgqtiovLfTw8PBw9qnI1iVpK1iTDU+cJ3yhfRA6MNPp8RKZOrtokIiJlYh+4LT8/H7GxsfD29oadnZ3oOFQJlUqFHTt2YNSoUaKjKMLdf79JSUnIzs5GTk4Oxo4dC9cH3Hr5QbijrUDWKSm4ec9FAf4tvCpXkjCAFk4t8MiZR3Cm9xlEpkbKMieRKZOrNomISJnYB4joLi60Fah+djbyGjR44OMjR46ULUtgt0CoilSYeJ6f1SaqjJy1SUREysM+QER3caGtQG4FBSit4LMh69atky1LC6cWGBg5EKd7n0ZUGm/1RVQROWuTiIiUh32ATJEkSXzbuBFwoa0wxbm5cNfpYOHp+cBjZs+eLV8gAEHdgoBiYELMBFnnJTI1ctcmEREpC/sAEd3FhbbCpEVGQg3ArkOHBx7j7+8vXyAALZ1aYsDpAYjoHYGz6WdlnZvIlMhdm0REpCzsA0R0FxfaCpMZGQkAcO7c+YHHvPvuuzKl+UdQ1yDgFjD+3HjZ5yYyFSJqk4iIlIN9gIju4kJbYXJjYgAA7hXceH7VqlVyxdFr5dwK/U/3R3jvcJxLPyf7/ESmQERtEhGRcrAPENFdXGgrzK2LF3FTpYJD48YPPObpp5+WMdE/ArsEAiXAhHP8rDZReUTVJhERKQP7ABHdxYW2wqiuXUOatXWFx0RERMiUpqw2Lm3wcMTDCOsVhtiMWCEZiJRMVG0SEZEysA8Q0V2WogNQWbZpadA4OlZ4TMOGDWVKc79A30C017XHhLMTEDIoRFgOIiUSWZtERCQe+0BZBQUFoiMQVZuh/t1yoa0wTlotUtu0qfAY60p2vI2pnWs7+AX74UTPE4jLjIOXm5ewLERKI7I2iYhIPPaB2ywtLaFWq5GUlCQ6ClGNSJKE0tLSWo3BhbbCNCwqwo2mTSs8JjExEQ8//LBMie4X2DkQHdAB46PH48SgE8JyECmN6NokIiKx2Adus7Kygo+PD0pKSqDRaLBr1y7Y29vzFxEkVHx8PNq3b1+lY0tLS1FSUlKr+bjQVpC8tDS4ShLqtW5d4XGDBg2SJ9ADeLl5oW9wX4T0CEFCVgLaubYTmodIKUTXJhERicU+8A8rKytYWVmhsLAQeXl5uHXrFhfaJJSNjQ2ys7OrdU5RUVGN5+NCW0FST51CawAOHTtWeNwPP/yAjz/+WJ5QDxDUOQgdVB0wPmo8jg06JjQLkVIooTaJiEgc9oH7WVtbw9HREVqtFsXFxaLjkBmLjo6Gr69vtc9zdHSs0S+JVJIkSdU+ywC0Wi2cnJyg0WjgWMnFv8xF+JdfosesWbhy6BCaDxjwwON0Oh3UavEXjO8T3Acnu5/EhdILaONS8efKicyBUmqTiIjEYB8oX15eXq12BokMoab1aW1tDXt7+2qfxx1tBck/fx46AO7du1d43BdffIHZs2fLE6oCQZ2C0NGiI8ZHjMeRQUdExyESTim1SUREYrAPlM/e3r5GCxUiQ/L395e1PrmjrSDBgwahw5EjaFzJFe6U9NvSXsG9cKr7Ke5qE0FZtUlERPJjHyBSLrnrkz8JFMTi+nVk2NpWetz8+fNlSFM1gT6BgCUw4cwE0VGIhFNSbRIRkfzYB4iUS+765I62goS7uaHY1hZ+V69WeFxycjJatGghU6rK9QzuifBu4bgoXUQr51ai4xAJo7TaJCIiebEPECmX3PXJHW0FccnNRZG7e6XHBQcHGz9MNQT5BAH1gAmR3NUm86a02iQiInmxDxApl9z1yYW2Qkg6HdyLi4HmzSs9tk0bZX0WulPDTuh+sjsOdTuEy5rLouMQCaO02iQiInmxDxApl9z1yYW2QtxMTIQ9AOt27So9Vom3RwjsGAhYARNOc1ebzJcSa5OIiOTDPkCkXHLXJxfaCpEeEQEAcOzYsfJj09ONHafafBv5ouvJrgjuGoxkTbLoOERCKLE2iYhIPuwDRMold31yoa0QmrNnAQANunWr9NjuldxnW5T1Xush2Ujc1SazpdTaJCIiebAPECmX3PXJhbZCFMTFoRhAw06dKj12586dxg9UA90bd4dvqC8OdjmIq9qKr5xOVBcptTaJiEge7ANEyiV3ffL2XgoR3LcvWoeHo8WtW5UeW1BQANsq3G9bhFM3TqGXSy8MCRmCfYP2iY5DJCsl1yYRERkf+wCRcsldn9zRVoh6KSnIsrev0rFLliwxcpqa6+nRE51DO2O/735cz7kuOg6RrJRcm0REZHzsA0TKJXd9ckdbIc44OSHHzQ39Ll4UHaXWwm6Eobdrbzx+4nHsGbRHdBwiIiIiIiJZcUdbIdzy8lDSuHGVjvX39zdymtrp5dELnUI6YV/nfdzVJrOi9NokIiLjYh8gUi6565MLbQUoLS5G49JSqFu2rNLxkydPNnKi2vuu3XeQ6kuYGD5RdBQi2ZhCbRIRkfGwDxApl9z1yYW2AqRFRcESgK2XV5WO/+2334wbyAD6NOmDjiEdsbfzXqTkpoiOQyQLU6hNIiIyHvYBIuWSuz650FaAzMhIAIBTFW7tBQA9evQwYhrD+a7NnV3tU9zVJvNgKrVJRETGwT5ApFxy1ycX2gqgPXcOANCoiv/xU1NTjRnHYPya+sE7xBu7fXYjLS9NdBwiozOV2iQiIuNgHyBSLrnrkwttBSi+cAE5AJyq+Bnt4uJi4wYyoHWt10FykjAxjLvaVPeZUm0SEZHhsQ8QKZfc9cmFtgKorl5FmpUVVOqq/edo06aNkRMZzsPNHkaHkA740+dP7mpTnWdKtUlERIbHPkCkXHLXJxfaCmCdmoqb9etX+fhDhw4ZMY3hrWu9DpKzhFfDXhUdhcioTK02iYjIsNgHiJRL7vpUSZIkyTrjHVqtFk5OTtBoNHB0dBQRQTFi7O2R0bw5Bpw/X6Xjs7Oz4ezsbNxQBuZ1xAsJHRKQZp+GBnYNRMchMgpTrE0iIjIc9gEi5ZK7PrmjrQANCguha9KkysevWLHCiGmMY03LNZCcJUw6OUl0FCKjMcXaJCIiw2EfIFIuueuTO9qCFWm1sHZywpEJE9A/IEB0HKNqf6Q9EtsnIt0xHa62rqLjEBERERERGQV3tAVLOXUKAGDv7V3lc/z9/Y0Vx6jWtlwLnZuOu9pUZ5lqbRIRkWGwDxApl9z1yR1twSKXLUPXt9/Gpd270Wro0Cqdo9Fo4OTkZORkxtHuSDtcbHcRmc6ZcLZxFh2HyKBMuTaJiKj22AeIlEvu+uSOtmC5MTEAAPcePap8zvfff2+sOEb3bYtvoWugw6RQ7mpT3WPKtUlERLXHPkCkXHLXJxfagpVcuoQMlQp2Dap+Je5HHnnEiImMa3DLwWgd0ho72u9AdmG26DhEBmXKtUlERLXHPkCkXHLXJxfagqmvXUO6jU21zklISDBSGnl82+xb6BrpMDl0sugoRAZl6rVJRES1wz5ApFxy1ycX2oLZZmRAW83PCtja2hopjTwe83wMrU+0xvb226Et0oqOQ2Qwpl6bRERUO+wDRMold31yoS2Ys1aLwoYNq3WOm5ubkdLIZ1XTVdA10mFKyBTRUYgMpi7UJhER1Rz7AJFyyV2fXGgL1qioCFKzZtU6JzIy0jhhZDS01VB4hnji53Y/c1eb6oy6UJtERFRz7ANEyiV3fXKhLZD26lU4AbBq06Za540YMcI4gWS20mMlShuX4rXQ10RHITKIulKbRERUM+wDRMold31yoS1QWng4AMChY8dqnffdd98ZI47shrcejpYnWuKnNj9xV5vqhLpSm0REVDPsA0TKJXd9qiRJkmSd8Q6tVgsnJydoNBo4OjqKiCDcKX9/9JwzB9eOH0dTPz/RcYTYlbgLI1qNwEtHX8KmAZtExyEiIiIiIqo17mgLlH/+PEoBuHfrVq3z/P39jRNIgKfaPIUWIS2wtfVW5Bbnio5DVCt1qTaJiKj62AeIlEvu+uSOtkDB/fuj/YkTaFJSUq3zCgsLYVPNe28r2c4LOzGy9Ui8cvQVfD/ge9FxiGqsrtUmERFVD/sAkXLJXZ/c0RbI8sYNZNbgfm7Lly83Qhpxnm77NJqHNMfmVpuRfytfdByiGqtrtUlERNXDPkCkXHLXJxfaAtlnZiLHxaXa540aNcrwYQT7uuHXKGlegtdDXhcdhajG6mJtEhFR1bEPECmX3PXJhbZALnl5KHZ3r/Z54XeuVl6X/Kfdf9D0RFNs8tzEXW0yWXWxNomIqOrYB4iUS+765EJbEEmnQ+Nbt6Bq0aLa5zZu3NgIicT72u32rvb0kOmioxDVSF2tTSIiqhr2ASLlkrs+udAWJCM2FjYAbNq3r/a5lpaWhg+kAM+2fxZNTzTFxhYbuatNJqmu1iYREVUN+wCRcsldn1xoC5Jx+jQAwNHHp9rnXrp0ydBxFGOZ2zKUtCzBzNCZoqMQVVtdrk0iIqoc+wCRcsldn1xoC6I9dw4A0KCa99AGgAEDBhg6jmI81/45eIR4YEPzDSgsKRQdh6ha6nJtEhFR5dgHiJRL7vrkQluQwvh4FAJo4O1d7XN//PFHwwdSkKUuS2/vaodwV5tMS12vTSIiqhj7AJFyyV2fKkmSJFlnvEOr1cLJyQkajQaOjo4iIggV3KsXPM+cgWdxcbXPLS0thYWFhRFSKYdHqAcyG2VC21wLG0v5bixPVBvmUJtERPRg7ANEyiV3fXJHWxCr1FTctLev0bnz5883cBrlWey4GLda3cJbIW+JjkJUZeZQm0RE9GDsA0TKJXd9ckdbkOj69aFxd0e/CxdER1GsxqGNkdUoC7ktcmFlYSU6DhERERERUZVwR1sQt4IClHh41Ohcf39/A6dRJu5qk6kxl9okIqLysQ8QKZfc9ckdbQFKCguhsrXFsTFjMGDjxmqff+XKFTRv3twIyZTH/aQ7shtkI6dlDne1SfHMqTaJiOh+7ANEyiV3fXJHW4DU06dhAcCuQ4canb9//37DBlKwRQ6LUNy6GO+Gvis6ClGlzKk2iYjofuwDRMold31yoS1AZmQkAMC5c+cand++fXsDplG2sR3HomFYQ6x1X4vi0upfoZ1ITuZUm0REdD/2ASLlkrs+udAWIDcmBgDQqEePGp1fUFBgyDiKt8BuAYrbFOO90PdERyGqkLnVJhERlcU+QKRcctcnF9oCFCcmQgPAsVmzGp2fmZlp2EAKN8FnAhqENcDaRmtRoisRHYfogcytNomIqCz2ASLlkrs+udAWQHX1KtKsrWt8fpcuXQyYxjTMt52PorZFeD/kfdFRiB7IHGuTiIj+wT5ApFxy1ycX2gLYpKcjuxZXWt+1a5cB05iGSZ0mwe2UG1Y3XM1dbVIsc6xNIiL6B/sAkXLJXZ+8vZcAsXZ2SPf0xIA7n9Wurvz8fNjZ2Rk4lfKtjV6LqZ2n4p0T72CJ3xLRcYjuY661SUREt7EPECmX3PXJHW0BGhYWQte0aY3P/+qrrwyYxnRM6TwFruGuWOW2irvapEjmWptERHQb+wCRcsldn9zRlll+RgbsGjbE0cmT0W/tWtFxTM7qqNV43fd1vHfiPSzyWyQ6DhERERER0X24oy2z1PBwAIBDx441HsPf399QcUzONN9pcIlwwQrXFdzVJsUx59okIiL2ASIlk7s+udCW2c2oKACAi69vjceYOnWqoeKYpM8tPkehVyE+Pvmx6ChEZZh7bRIRmTv2ASLlkrs+udCWWV5sLACgcc+eNR5j+/bthopjkt7o8gZcIlyw3Hk5dJJOdBwiPXOvTSIic8c+QKRcctcnF9oyK01KQppaDetafC69V69eBkxkmj6z+AwFHQow++Rs0VGI9FibRETmjX2ASLnkrk8utGWmvn4dGTY2tRrjxo0bBkpjumZ0mQHn085Y5riMu9qkGKxNIiLzxj5ApFxy1ycX2jKzy8iA1smpVmOUlpYaKI1p+1T1KQq8C/Bp2KeioxABYG0SEZk79gEi5ZK7PrnQlplLTg6K3N1rNYanp6dhwpi4t7q+BadIJyypv4S72qQIrE0iIvPGPkCkXHLXJxfaMpJ0OjQqLobUrFmtxjly5IiBEpm+OdIcFHgXYG7YXNFRiFibRERmjn2ASLnkrk+VJEmSrDPeodVq4eTkBI1GA8daXBjMlGRfugTn1q1x4u234ffVVzUeJysrC66urgZMZrp0kg4uUS4oqVeCHO8cqFX83RGJw9okIjJv7ANEyiV3fXJVIqO08HAAQP2OHWs1zqpVqwwRp05Qq9SYXTob+R3z8b9T/xMdh8wca5OIyLyxDxApl9z1yR1tGYXNnYten32GG2Fh8KjFfbSpLJ2kg3O0M3RqHbQ+Wu5qExERERGRUFyRyKggLg63ADTy9a3VOP7+/oYJVEeoVWp8dOsj5HXKwxfhX4iOQ2aMtUlEZN7YB4iUS+765I62jIIfeghtT55Es5KSWo2j1WrN5jmrKp2kg9NZJ0gqibvaJAxrk4jIvLEPECmX3PXJ1YiMLFNSkGlvX+txgoKCah+mjlGr1Phv0X+R1ykP88Pni45DZoq1SURk3tgHiJRL7vrkQltGDllZyHVxqfU4Q4YMMUCaumdWj1lwiHbAl9Zf8r7aJARrk4jIvLEPECmX3PXJhbaMXPPycKtx41qPc/78eQOkqXvUKjU+LPoQuZ1zsTBioeg4ZIZYm0RE5o19gEi55K5PLrRloispQeOSEqhatKj1WPYGePt5XfVRj49gf9YeX9T7grvaJDvWJhGReWMfIFIuueuTC22ZpJ89CysAtl5etR5Lzhutmxq1So33C95Hjm8OlpxeIjoOmRnWJhGReWMfIFIuueuTC22ZZJw+DQBw6tSp1mNFRUXVeoy6bE7PObCLsYO/hT93tUlWrE0iIvPGPkCkXHLXJxfaMtGePQsAaNi9e63HeuKJJ2o9Rl2mVqnxbu670HbRYmnkUtFxyIywNomIzBv7AJFyyV2fXGjLpCgxEXkAXNq0qfVYAQEBtQ9Ux83tNRd2MXb4n+p/oqOQGWFtEhGZN/YBIuWSuz5VkiRJss54h1arhZOTEzQajaw3DhcluEcPtDh7Fq2LikRHMRtzTs6Bf29/LI1cire6viU6DhERERERmQnuaMvEOjUVNx0cDDKWv7+/Qcap6z7r9RlsY23xmfSZ6ChkJlibRETmjX2ASLnkrk/uaMvkrIMDbjZpgv7x8bUeq6ioCNbW1gZIVfd9FPoR5veZj2/OfIMZXWaIjkN1HGuTiMi8sQ8QKZfc9ckdbZk0KChAaZMmBhnr66+/Nsg45sC/tz9sz9vi09JPRUchM8DaJCIyb+wDRMold31yoS2D4txcNNLpYOHpaZDxnn32WYOMYw7UKjVmZM/Aze43seLMCtFxqI5jbRIRmTf2ASLlkrs+udCWQWpEBNQA7Dp0MMh4J0+eNMg45mJe73mwibPBJ6WfiI5CdRxrk4jIvLEPECmX3PXJhbYMss6cAQC4+PoaZDwPDw+DjGMuLNWWmHHz9q726qjVouNQHcbaJCIyb+wDRMold31yoS2D3JgYAIB7z54GGc/CwsIg45iTL3p/AZt4G8y+NVt0FKrDWJtEROaNfYBIueSuTy60ZXDr4kVkqVSwb9TIIONdvnzZIOOYE0u1JV7PfB1ZPbKwNnqt6DhUR7E2iYjMG/sAkXLJXZ9caMtAfe0a0g14Kfl+/foZbCxzsqDPAlgnWOOjoo9ER6E6irVJRGTe2AeIlEvu+uRCWwY26enQGPBe4Vu2bDHYWObEUm2JaenTkNkzE9+d/U50HKqDWJtEROaNfYBIueSuT5UkSZKsM96h1Wrh5OQEjUYDRwMuQpUoztYWKW3bYmB0tEHGKykpgaWlpUHGMjcluhI4XHRA/Zv1kd4rXXQcqmNYm0RE5o19gEi55K5P7mjLoFFREaSmTQ023pdffmmwscyNpdoSU9OmIqNXBgLPBYqOQ3UMa5OIyLyxDxApl9z1yR1tI8tNSYGDhweOTZuGh1etEh2HABSXFqN+Un04ZTkhrVea6DhERERERFTHcEfbyFJPnQIAOHTsaLAx/f39DTaWObKysMKU1ClI75WODTEbRMehOoS1SURk3tgHiJRL7vrkQtvIsu98Ltuta1eDjTl+/HiDjWWulvRZAqtEK3yQ+4HoKFSHsDaJiMwb+wCRcsldn1xoG1n++fPQAXDv3t1gY+7bt89gY5krKwsrvJryKtJ6p2Fj7EbRcaiOYG0SEZk39gEi5ZK7PrnQNrLSpCSkqtWoZ2dnsDG9vb0NNpY5W9Z3Gepdqof3tO+JjkJ1BGuTiMi8sQ8QKZfc9cmFtpFZ3LiBTFtbg46Zk5Nj0PHMlZWFFSZem4jUPqnYFLtJdByqA1ibRETmjX2ASLnkrk8utI3MPiMDOS4uBh0zOzvboOOZM+5qkyGxNomIzBv7AJFyyV2fXGgbmUtuLorc3Q06ZufOnQ06njmzsbTB+GvjkdInBVvjtoqOQyaOtUlEZN7YB4iUS+765ELbiCSdDu63bkHVvLlBx/3rr78MOp65+6bvN6iXVA9v33xbdBQycaxNIiLzxj5ApFxy1ycX2kaUlZAAOwDW7doZdNzJkycbdDxzZ2Npg7FXx+JG3xv4Ke4n0XHIhLE2iYjMG/sAkXLJXZ9caBtRekQEAMDRx8eg4y5btsyg4xGwou8KWF625K421Qprk4jIvLEPECmX3PWpkiRJknXGO7RaLZycnKDRaODo6CgigtGFfvQR+syfj7QzZ9DI11d0HKrEhCMTENQ/CNvit+G59s+JjkNERERERCaKO9pGVJiQgCIADTp2NOi4/v7+Bh2PblvZdyUsky3xVuZboqOQiWJtEhGZN/YBIuWSuz650DYiKTkZKZaWUFtaGnTc1157zaDj0W129eww5vIYXPO7hh0JO0THIRPE2iQiMm/sA0TKJXd9cqFtRFYpKbhpb2/wcX/++WeDj0m3req7CpZXLPFm+puio5AJYm0SEZk39gEi5ZK7PrnQNiKHmzeR6+Zm8HH79u1r8DHpNrt6dnjx0ou40vcKfrvwm+g4ZGJYm0RE5o19gEi55K5PLrSNyDU/HyWNGxt83KtXrxp8TPrHqr6rYHHdAjPSZoiOQiaGtUlEZN7YB4iUS+765ELbSEqLi9G4tBTqli0NPragC8WbDQcrB4y+OBpX+l7Bzgs7RcchE8LaJCIyb+wDRMold31yoW0kaWfOwBKArZeXwcdu3ry5wcekstb0XQOLGxaYmTpTdBQyIaxNIiLzxj5ApFxy1ycX2kaScfo0AMCpUyeDj33ixAmDj0llOVg54IXEF3DZ7zL+vPin6DhkIlibRETmjX2ASLnkrk+VJOg9LlqtFk5OTtBoNHB0dBQRwaiOv/kmHvrmG2iSkuBk4LePZ2Zmws0IF1mjsrRFWrhmuqL5pea49PAl0XHIBLA2iYjMG/sAkXLJXZ/c0TaS4sREaAE4GuEtCqtXrzb4mHQ/R2tHPJfwHJL6JmHPpT2i45AJYG0SEZk39gEi5ZK7PrmjbSSHunZF0/Pn0bawUHQUqgVtkRYuWS7wTPREYr9E0XGIiIiIiMgEcEfbSKzT0pDt4GCUsf39/Y0yLt3P0doRz8Q/g4t+F7mrTZVibRIRmTf2ASLlkrs+uaNtJDH29sho0QIDYmMNPnZOTg7q169v8HGpfNmF2XC76cZdbaoUa5OIyLyxDxApl9z1yR1tI2lYUABdkyZGGXv9+vVGGZfK52zjjP/E/wcX+17E/sv7RcchBWNtEhGZN/YBIuWSuz650DaCwuxsNJQkWLZqZZTxH3/8caOMSw/2XZ/voM5Q47Xk10RHIQVjbRIRmTf2ASLlkrs+udA2gtTwcACAvbe3UcaPNcLb0alizjbOGBk3Ehf8LuDA5QOi45BCsTaJiMwb+wCRcsldn1xoG0HWmTMAABdfX6OMz8/+iPFd7++gzuSuNj0Ya5OIyLyxDxApl9z1yYW2EeTd+W2Je48eRhnfycnJKONSxVxtXTEidgQS/BIQnBwsOg4pEGuTiMi8sQ8QKZfc9cmFthGUXLqEdJUKtq6uRhn/3LlzRhmXKvdd7++gzlJj6uWpoqOQArE2iYjMG/sAkXLJXZ9caBuB+to1ZNjYGG38YcOGGW1sqlgDuwZ4KuYpxPeNx9GrR0XHIYVhbRIRmTf2ASLlkrs+udA2AtuMDGiN+NaEgIAAo41NlVvfez1U2SpMvjhZdBRSGNYmEZF5Yx8gUi6561MlSZIk64x3aLVaODk5QaPRwNHRUUQEo0mwscF1Ly8MvHNRNKp7ngp+Cn88/AeOph7Fw80eFh2HiIiIiIgUhDvaRtCoqAhSs2ZGG9/f399oY1PVBPQK4K423Ye1SURk3tgHiJRL7vrkjraBaZKT4dSyJY7PnImHvv7aKHPcunUL9erVM8rYVHXDg4fjr4f+wvH04/Br6ic6DikAa5OIyLyxDxApl9z1yR1tA0sLDwcA1O/Y0WhzfPXVV0Ybm6ouoGcAVFoVJiVOEh2FFIK1SURk3tgHiJRL7vrkQtvAsqOjAQBuXbsabY7nn3/eaGNT1TV2aIyhZ4cipm8MQq+Hio5DCsDaJCIyb+wDRMold33WaKGdlpaGb775Bvv378d3331n6EwmrSAuDiUAGnXpYrQ5Tpw4YbSxqXoCewZClaPCpATuahNrk4jI3LEPECmX3PVZo4X2ggUL0KVLFwwePBjx8fFISEgwdC6Tpbt8GakWFrA04n20mzdvbrSxqXoaOzTGY9GP4Wzfswi7ESY6DgnG2iQiMm/sA0TKJXd91mih3a5dO2RnZwMANBoNTp8+bchMJs3yxg1k2tmJjkEyCuwRCFWeCq/Gvyo6ChERERERKUCNFtqvvfYabGxscOzYMVhaWsLa2rrSc4qKiqDVasv8qYvss7KQ6+Ji1DmuXLli1PGpeprUb4LBUYMR3Scap26cEh2HBGJtEhGZr6GzluDRaZug0wm5oQ8RVULu12k1Wmh/8MEHSEpKwrFjx3Dz5k2Ehd1+y6y/vz+uX7+O9evXIywsDHv27MH27dsRExODUaNGwcnJSf/n7tb92rVrERUVhZ07d+KPP/5AREQE1qxZg/T0dP29zvz9/ZGfn48lS5YgLi4OP/30E/bv34/jx48jKCgIV65cKXNsaWkp5s+fj8uXL+OHH37A0aNHERwcjC1btiAhIQGLFi1CYWFhmXNSUlKwbt06hIWFYffu3dixYwfOnj2L5cuXQ6PRlDk2OzsbK1asQHR0NH799Vf8+eefCA8Px9q1a1Gak4P1paX6YwsKCrBkyRIkJCRg69atOHDgAI4dO4bvv/8eycnJmDdvHnQ6Hfz9/aHT6TBv3jwkJyfj+++/x7Fjx3DgwAFs3boVCQkJWLJkCQoKChB+58rm/v7+SE1Nxdq1axEeHo4///wTv/76K6Kjo7FixQpkZ2eXya3RaLB8+XKcPXsWO3bswO7duxEWFoZ169YhJSWlzLGFhYVYtGgREhISsGXLFgQHB+Po0aP44YcfcPnyZcyfPx+lpaVlzrly5QqCgoJw/Phx7N+/Hz/99BPi4uKwZMkS5Ofnlzk2PT0da9asQUREBP744w/s3LkTUVFRWLlyJbKyssocq9Vq8c033yAmJgbbt2/Hnj17EBYWhvXr1+P69etlji0qKsLChQuRmJiIzZs3Izg4GEeOHMHGjRuRlJSEL7/8EiUlJWXOuXr1KgIDAxESEoJ9+/Zh27ZtOH/+PJYuXYrc3Nwyx2ZkZODbb79FZGQkdu3ahd9//x2RkZF4JOIR4Brw1Oyn9Mfm5ORg2bJliImJwS+//IK9e/ciNDQUAQEB9+W+desWFixYgIsXL2LTpk04fPgwDh8+jE2bNuHixYtYsGABbt26Veac69evIyAgAKGhodi7dy9++eUXxMTEYNmyZcjJySlzbGZmJlavXo3IyEj8/vvv2LVrFyIjI/Htt98iIyOjzLG5ublYunQpzp8/j23btmHfvn0ICQlBYGAgrl69WubYkpISfPnll0hKSsLGjRtx5MgRBAcHY/PmzUhMTMTChQtRVFR0X+7yfkZ888030Gq1ZY7NysrCypUrTeZnhJ+fX6U/I1JTU8uMa4yfEfeOz58RyvgZsXr1amRmZpY5lj8jzO9nxN1j+TOibv2MCAuLhYfHf7H3y4dRCie8/Pmr/BnBnxH8GaHAnxEuLi4G+RlRVTW6j3Z8fDz++usv2NjYoFmzZnjyyScrPaeoqKhMMK1Wi+bNm9ep+2jrSkpwq149hDz7LAb+/LPR5lmwYAE+/PBDo41PNTM4eDAO9D2A8OxwdG/cXXQcEoC1SURkXhYujMBHHzVCaakTXnwpHD81fgxOLzkis0em6GhE9C9yv06r0ULbELRaLZycnOrUQjv97Fk07NwZobNmoc8XXxhtHrlvtk5Vk6xJhqfkiS5nuuD0QF63wByxNomIzMP16zl47LHTiIkZABeXCOzc2Qj9+jXDO0fewdL+S7EqahWm+U4THZOI7iH36zTeR9uA0iMiAACOPj5GnWfBggVGHZ9qpoVTCwyKHITI3pGITI0UHYcEYG0SEdV9X311Gi1bZiMmpjtGjz6EtLSu6NevGQDAOdgZ1gnWmH1rtuCURPRvcr9Oq9aOtkqlqvLAlQ1bF3e0Qz74AH0XLUJGTAwaeHuLjkMCXNZchic80f10d4QPChcdh4iIiAwkLS0PQ4acQnT0QDg5ReLXX10xaFCL+45798S7+MrvK6yJXoMpnacISEpESlCtHW1Jkqr8xxwVXbiAAgBuXl5GnefuB/JJeVo6tcTA0wMR0TsCUWlRouOQzFibRER10/LlZ9C0aQaio3vh2WcPISPDt9xFtr+/Pxb0WQDrBGt8VPSRgKRE9CByv06r1kI7Ly8Pf/zxBx577DEAQH5+PgICAvD777/j1VdfhU6nM0pIUyElJyOlXj2o1MZ9R/7EiRONOj7VTmDXQOAWMDGG/53MDWuTiKhuycjIR7duhzBzZmfY2WXj77/T8fPPA2FpWf5rvYkTJ8JSbYlp6dOQ2TMT68+ulzkxET2I3K/TqrUitLe3x5NPPolbt24BAGJjY5GYmIinnnoK0dHR1brceV1knZqKmw4ORp9n9+7dRp+Daq6Vcyv0P90f4b3DcTb9rOg4JCPWJhFR3bF6dRSaNElDZGRvjBp1BOnpnTB4cMsKz7nbBxb1XQTrC9aYVTBLjqhEVAVyv06r1dZrjx498NZbb2HlypWYOXMmbG1tDZXLJDlkZyPPzc3o8/gY+WJrVHuBXW7vak84N0F0FJIRa5OIyPRlZRWgZ89DeP31TrC2zsGff97Ajh0DYWVlUem5d/uApdoSU9KmIL1XOgLPBRo7MhFVgdyv02r9HueGDRvijTfewKZNm3D+/HlDZDJZDfLzUerhYfR5NBqN0eeg2mnj0gb9TvfDqV6ncC79nOg4JBPWJhGRafvuu7No3DgF4eF98OSTh5GZ2RFPPNG6yuff2wcW91kMq0QrfJgv3317iejB5H6dVquF9sqVK7FmzRoAgKWlJRITEw0SyhTdys+Hu04Htaen0efKyckx+hxUe0FdgoBSYOI5fm7XXLA2iYhMU3Z2Ifr0Ccbkyd6wssrD779fw65dg6q0i32ve/uAlYUVpqTe3tXeELPB0JGJqJrkfp1WrYV2UVERfvzxRyQlJWHz5s3o168f6tevj99++w2dO3fGsGHDjJVT8VJPn4YagJ2RrzgOAN68dZhJaOPSBg9FPISTPU8iNiNWdBySAWuTiMj0BAXFwN39Gk6e9MOwYUeQkdEBTz3VpkZj/bsPLOmzBFaJVvgg9wNDRCWiWpD7dVq1FtrW1tZ46aWXkJSUhBdffBFdunTBSy+9hJEjR+KLL76AhUX1futXl2SdOQMAcO7c2ehz7d271+hzkGEE+QYBEjDhLD+rbQ5Ym0REpkOrLcJDDwVjwgQvWFoW4ddfr+CvvwbBxsayxmP+uw9YWVjh1ZRXkdY7DRtjN9Y2MhHVgtyv01SSoJtea7VaODk5QaPRwNHRUUQEgzo2fToeXrUKOdeuoX6TJkadKycnB/Xr1zfqHGQ4fsF+COkZgvNF5+HlZvx3PJA4rE0iItOwcWMsJk2yRFFRSzz22HHs3NmvVgvsu8rrA8WlxXBIdoBbmhtu9LlR6zmIqGbkfp1m3Bs+m5FbFy8iW6Uy+iIbAL7++mujz0GGE9Q5CAAwIZq72nUda5OISNlyc4sxYEAwXnmlHdTqEmzbloS9e2u3i32v8vqAlYUVJl6biJQ+Kdh8frNB5iGi6pP7dRp3tA3kkK8vPBIS0L6gQHQUUqC+wX0R2iMU8bfi0c61neg4REREZmfr1jiMHw8UFrbGI48cw65dD8POrp4scxeWFMLxqiPcUrmrTWQuuKNtIDZpadDI9FYEf39/WeYhwwnsFAiogQlR3NWuy1ibRETKk59/C488Eoz/+7/bt+nasuUiDhwYZJRF9oP6gI2lDcZdHYeUPinYGrfV4PMSUeXkfp3GHW0DOW9nh7RWrTDgnPHvmZyZmQk3Nzejz0OG1Tu4N8K6h+FC6QW0canZ1UxJ2VibRETK8vPP8Rg7thQFBe0wYMBR/PHHQ3BwsDLafBX1gcKSQtS/Vh8NbzTE9b7XjZaBiMon9+s07mgbSMPCQuiaNpVlrp9++kmWeciwAn0CAQtgwhnuatdVrE0iImUoLCzBY48F4/nnPaHTWeKHHxJw6NAgoy6ygYr7gI2lDcZdGYcbfW/g5/ifjZqDiO4n9+s0LrQNID8jA26SBMvWrWWZz8/PT5Z5yLB8GvqgR1gPHOl2BJeyL4mOQ0bA2iQiEm/HjgS4ucXj77/746GHjiMtrQVeflme++dW1gdW9F0By8uWeCvzLVnyENE/5H6dxoW2AaSEhQEAHGS6CfqVK1dkmYcML8gnCKgHjI8cLzoKGQFrk4hInMLCEgwbFoxnnmmBkhIrBAXF4dixQXB0tJYtQ2V9wMbSBi8nv4xrftfwS/wvMqUiIkD+12lcaBtAdnQ0AMC1SxdZ5lOpVLLMQ4bXqWEn9DjZA4e7HcZlzWXRccjAWJtERGLs2pWIBg3OY8+e/ujT5wRSU5th3LiOsueoSh9Y2XclLJMt8WbmmzIkIqK75H6dxoW2AeTFxkIHwL17d1nma9asmSzzkHEEdAwArIDxp8eLjkIGxtokIpJXcXEpnnwyGCNGNMWtW3ZYty4WISGD4OxsIyRPVfqAXT07vHT5JVzzu4YdCTtkSEVEgPyv07jQNoDSpCSkq9Wwlunq6SEhIbLMQ8bh28gX3U52w6Guh5CsSRYdhwyItUlEJJ+//roIN7cY/PnnAPTsGYIbNzwwaVInoZmq2gdW9lkJyyuWeDOdu9pEcpH7dRoX2gZgcf06MmxtZZvvueeek20uMo6ADgGQrCVMOM0rkNclrE0iIuMrLi7FqFHBGD7cA0VFDli16izCwgbB1VW+12IPUtU+4GDlgBcvvYgrfa9g54WdRk5FRID8r9O40DYAu4wMaJ2dZZvv22+/lW0uMo6u7l3R5WQXHOx6kLvadQhrk4jIuP7++zIaNjyH334bgG7dTuL6dXdMm+YrOpZedfrAqr6rYHHdAjPSZhgxERHdJffrNJUkSZKsM96h1Wrh5OQEjUYDR5necm0sidbWuOrjg4EREaKjkAmJSIlAD+ceGBwyGH8P+lt0HCIiIsUqKdFh9Ogj2L69Fywt0/HVVzcxY0ZX0bFqbczhMfix34/4/dLveKrNU6LjEJEBcUe7liSdDu7FxZCaN5dtTn9/f9nmIuPp3rg7fEN9caDLAVzVXhUdhwyAtUlEZHjBwclo0CAK27cPhK9vGK5da6DYRXZ1+8CavmtgccMCb6S8YaRERHSX3K/TuNCupexLl+AAwLptW9nmfOutt2Sbi4xrffv1kOwkTIyYKDoKGQBrk4jIcEpKdHjhhUN45BE35OW5YenSSJw5MxCNGtmLjvZA1e0DDlYOeD7xeVz2u4w/L/5pnFBEBED+12lcaNdSWng4AKB+R/nu1bhu3TrZ5iLj6unRE51DOuNv379xPee66DhUS6xNIiLDOHr0Kho2PINt2wbCx+cUrlxxwVtvdRUdq1I16QNr+qyBRYoFpt+YboRERHSX3K/TuNCuJU10NACgQbduss35xBNPyDYXGd/69ush2UuYGM5dbVPH2iQiqh2dTsKYMYfRv78TcnIaYuHCCJw9OxCNGzuIjlYlNekDjtaOeC7hOST1TcKeS3uMkIqIAPlfp3GhXUsFCQkoBtDIV74rXkbfWdxT3dDLoxd8Qn2wt/NepOSmiI5DtcDaJCKquePHr6Fhwwj8+OMAdOhwGklJjnj//e6iY1VLTfvA2r5roU5T4/Vrrxs4ERHdJffrNC60a0m6fBmplpZQW1rKNqezjLcSI3msa7MOUn0JE07xvtqmjLVJRFR9Op2EceOO4OGH60Oj8cAXX4QjNnYAmjUzvbvS1LQPOFo74pn4Z3DR7yL2Je0zbCgiAiD/6zQutGup3o0byLKzk3XO+vXryzofGZ9fUz94h3hjT6c93NU2YaxNIqLqCQu7gUaNwvH99/3Rrt0ZXLxoj1mzeoiOVWO16QPr+qyDOk2NaVenGTAREd0l9+s0LrRryeHmTeS6uso6Z2xsrKzzkTzWtV4HyVHCq6deFR2Faoi1SURUNTqdhIkTj6B3bzvcvNkUn30Whvj4/mjRwkl0tFqpTR9wtnHGqPhRSOybiP2X9xswFREB8r9OU0mSJMk64x1arRZOTk7QaDRwdDS9twbddaVePST27IlBJ07INufVq1fRrFkz2eYj+Xgf9kacdxxS7FLQyL6R6DhUTaxNIqLKhYen4IknriA9vRfatDmKffs6oVUrZ9GxDKK2fSCrIAsNtQ3ROr41EvonGDAZEcn9Oo072rVQWlyMxiUlULVsKeu8QUFBss5H8lnXeh0kZwmvhnFX2xSxNomIHkynk/Daa0fRq5cNMjNbYM6ck7hwoV+dWWQDte8DrrauGHl+JC74XcCBywcME4qIAMj/Oo072rWQEhGBxj164OScOej9+eei41Ad0eFwB8R7xyPNPg0N7BqIjkNERFRrUVFpGDr0ElJS+qBVq6PYt88Hbdq4iI6lSHd3tdvEt0F8/3jRcYiohrijXQsZp08DAJw6dZJ1Xn9/f1nnI3mtbbX29q72Se5qmxrWJhFRWTqdhOnTj6FrV0ukprbGf/8biosX+9XZRbYh+oCrrStGxI5AQt8EHL5y2ACpiAiQ/3Uad7Rr4cQ778Bv6VLcvHABLm3ayDZvSUkJLGW8nRjJr/2R9kj0SkSqQyp3tU0Ia5OI6B9nz6bj8ccTceNGX7RocRx793rBy8tNdCyjMlQfyMjPgHuuO9qdb4fzA84bIBkRyf06jTvatVCUmIhcAM6tWsk67+LFi2Wdj+S3tuVa6Fx1mBw2WXQUqgbWJhHRbW+/fRy+vmqkpLTBe++dwOXLD9X5RTZguD7QwK4BhscMR5xfHI5ePWqQMYnMndyv07ijXQuHundHs3Pn0KaoSNZ5k5KS4OnpKeucJL/2R9ojsX0i0h3T4Wor7y3kqGZYm0Rk7mJjM/D44wm4etUPzZodx9697eHtbT7vzDJkH0jLS0Pj/MbwivVC7ADePpKotuR+ncYd7VqwTk1FtoOD7PMePcrfbJqDb1t8C52bDpNPclfbVLA2icicvf/+Cfj4SLh2rT3eeus4rlx5yKwW2YBh+0Aj+0YYfm44zvudx7Grxww2LpG5kvt1GhfatVBfo0F+A/kbSEuZbydGYjza8lG0CWmDX71+RXZhtug4VAWsTSIyRwkJWWjZ8jgWL/ZD48aJiIrSYenSh0THEsLQfSCgVwBU2SpMvshfuhPVltyv07jQroUGBQUobdJE9nlLS0tln5PEWN1sNXQNdZgUOkl0FKoC1iYRmZtZs0LRoUMJrlzxxvTpx3D1ah906tRQdCxhDN0HGtk3wrBzwxDbNxYnrp0w6NhE5kbu12lcaNdQkVYLd50OFgI+j3njxg3Z5yQxHvN8DK1PtMaO9ju4q20CWJtEZC4SE2+iVatj+PLLPmjY8BIiIoqxYsXDUKtVoqMJZYw+ENAzACqtCpMTuatNVBtyv07jQruGUiMiAAD23t6yz927d2/Z5yRxVjVdBV0jHaaEThEdhSrB2iQic/DJJyfRvn0xLl/2wdSpR3H9em907eouOpYiGKMPNHZojMfPPo5zfc8h9HqowccnMhdyv07jQruGss6cAQA4d+4s+9y//PKL7HOSOENbDUWrE62wvd12aIu0ouNQBVibRFSXXb6sQdu2R/G///WGm9tlnDpViG+/7Wf2u9j3MlYfCOgRAFWuCpMS+FEyopqS+3Uab+9VQ0dfew391qxBfno67GS+IFpRURGsra1lnZPE+uviXxjecjj+79j/YfOAzaLj0AOwNomorvr881P47LOm0Ons8Oqr0Vi7lm8TL48x+8DjwY9jn98+nMw6iV4evYwyB1FdJvfrNO5o11DJxYvIVKlkX2QDwKJFi2Sfk8R6ovUTaBnSEtvabOOutoKxNomorklO1qB9+yP49NOecHW9ipMn8/Hdd9zFfhBj9oGA7gFQ5anwavyrRpuDqC6T+3Uad7Rr6LCPDxpduoQO+fmio5CZ2JW4CyNajcBLR1/CpgGbRMchIqI6bv78cMyZ44HSUgeMHRuJwMD+XGAL9ljwY/i7798Izw5H98bdRcchogpwR7uGbNPToRH0CwJ/f38h85JYT7V5Ci1CWmBr663ILc4VHYfKwdokorpAq9WiS5c9+OijHnByuoHjx3OwYcMALrKrwNh9ILB7IFQFKkyMm2jUeYjqIrlfp3GhXUNOOTkobNRIyNwTJ/KHq7la3mg5SpuU4rWQ10RHoXKwNonI1O3fvx+dO3dGXNxWvPTSYaSnd4efX1PRsUyGsftAM8dmeOTMIzjT+wwiUyONOhdRXSP36zQutGuoUVERpKZiGs9ff/0lZF4S7+m2T6N5SHNsab2Fu9oKxNokIlOVm5uL119/HUOGDEGbNm1w/vwn2LSJu9jVJUcfCOwWCFWRChPOTzD6XER1idyv07jQroGc69fhLEmwattWyPy+vr5C5iVluLurPT10uugo9C+sTSIyRcHBwejcuTM2bNiAlStX4u+//4anp6foWCZJjj7QwqkFBkYORGTvSO5qE1WD3K/TuNCugdRTpwAADt7eQubPysoSMi8pw8i2I9EstBl+9PwR+bd4MT4lYW0SkSnJy8vDjBkz8Mgjj6BFixaIiorC66+/DrWaLw9rSq4+ENQtCCgGXo3lFciJqkru12n8SVoD2dHRAADXLl2EzJ+XlydkXlKOZW7LUNK8BNNDuKutJKxNIjIVR44cga+vL9avX4+vv/4aBw8eRJs2bUTHMnly9YGWTi0x8PRARPSOwNn0s7LMSWTq5H6dxoV2DeTHxaEUgHu3bkLm79Chg5B5STmebf8smp5oio0tN3JXW0FYm0SkdPn5+Xj77bcxcOBAeHh44MyZM5g5cyZ3sQ1Ezj4Q2DUQuAWMPzdetjmJTJncr9P4U7UGdElJSFOrUc/OTsj8f//9t5B5SVmWuS1DSYsSvBHyhugodAdrk4iU7Pjx4+jatSu+/fZbLFmyBIcOHUK7du1Ex6pT5OwDrZxbof/p/gjvHY5z6edkm5fIVMn9Ok0lSZIk64x3aLVaODk5QaPRwFHQ/ahr6ki7dnBOSUHnnBwh82u1WpN7zsg4moY0RZpHGnKa5sDG0kZ0HLPH2iQiJSooKMCcOXPw1VdfoU+fPggKCoKXl5foWHWS3H0g8WYi2lq0Rc+InggbFCbbvESmSO765I52DdhnZiLHxUXY/N98842wuUlZlrosRUnLEswImSE6CoG1SUTKExISgm7dumHFihVYuHAhjh49ykW2EcndB9q4tMHDEQ/jVK9T3NUmqoTc9ckd7Rq4ZGWFy76+GHTn6uNEIjUJaYKMxhnQNtNyV5uIiAAAhYWFmDt3LhYtWoSePXsiKCgI3oLulkLGlZCVgPaW7dE7ojdCB4WKjkNEd3BHu5oknQ6Nb92CqkULYRn8/f2FzU3Ks8R5CW553sJbIW+JjmL2WJtEpARhYWHo0aMHli5dinnz5uHYsWNcZMtERB9o59oOD0U8hJM9TyIuM072+YlMhdz1yR3tasqIjUWDjh0R8sEH6LtggZAMWVlZcHV1FTI3KZNHqAcyG2VC25y72iKxNolIpKKiInz++edYsGABunbtiqCgIHTq1El0LLMiqg8kZCWgfb326BveFycGnZB9fiJTIHd9cke7mtIjIgAAjj4+wjJs3rxZ2NykTIscF+FWq1t4O/Rt0VHMGmuTiESJiIhAz549sWjRInz22Wc4ceIEF9kCiOoD7VzboW94X4T0CEFCVoKQDERKJ3d9cqFdTdqzZwEADbt3F5ahf//+wuYmZXrZ+2W4h7ojwCMAxaXFouOYLdYmEcmtuLgYn3zyCXr37g1LS0ucOnUKH3/8MerVqyc6mlkS2QeCOgcBKmB81HhhGYiUTO765EK7mgoTElAIwE3mG57fKykpSdjcpFyLHRejuHUx3g7hrrYorE0iklNkZCR69+6N+fPn45NPPsHJkyfh6+srOpZZE9kHvNy80PtUbxzvcZy72kTlkLs+udCuJik5GamWllBbWgrLYGFhIWxuUq6XvV9Go5ON8F3j77irLQhrk4jkcOvWLXz++efo1asXJElCWFgYPvnkE+5iK4DoPhDUKQhQAxOiJgjNQaREctcnF9rVZJWSgiwHB6EZPDw8hM5PyrXQYSGK2xTjvdD3REcxS6xNIjK26Oho9OnTB59//jlmzZqFsLAwdO3aVXQsukN0H/Bu4I1eYb1wrPsxJN5MFJqFSGnkrk8utKvJITsbeYKvKhwWFiZ0flKucR3HoWFYQ6xttJa72gKwNonIWEpKSjBv3jz06NEDxcXFCA0Nxeeffw4rKyvR0egeSugDgT6BgAUw4Qx3tYnuJXd9cqFdTW75+SgR/NvKZ555Ruj8pGzzbeejqG0R3g99X3QUs8PaJCJjOHfuHPz8/PDJJ5/gvffeQ3h4OHr06CE6FpVDCX3Ap6EPeoT1wJFuR3Ap+5LoOESKIXd9cqFdDSWFhWhcWgp1y5ZCc6xZs0bo/KRsr3Z6FW6n3LCm4RqU6EpExzErrE0iMqSSkhIsWLAA3bt3R15eHk6cOIEvvvgC1tbWoqPRAyilDwT5BAH1gAmR3NUmukvu+lRJkiTJOuMdWq0WTk5O0Gg0cHR0FBGh2q6HhqJJ374I++wz9PrkE9FxiB5obfRaTO08FW+feBtf+X0lOg4REVXT+fPnMX78eISFheG9997DZ599BhsbG9GxyIT0CO6BiG4RSEISWjqJ3SQiMkfc0a6GzMhIAIBz585Cc/j7+wudn5RvSucpcDvlhlUNVnFXW0asTSKqrdLSUixevBhdu3bFzZs3cfToUSxYsICLbBOhpD4Q2DEQsALGnx4vOgqRIshdn9zRrobjM2fioeXLobl8GU4tWgjLkZ+fDzs7O2Hzk2lYE70Gr3V+De+deA+L/BaJjmMWWJtEVBvx8fEYP348QkJC8M477+B///sfbG1tRceialBaH+h+qDsiu0QiSZWEFk7iXrsSKYHc9ckd7WooTkyEBhC6yAaA1atXC52fTMPUzlPhGu6KFa4ruKstE9YmEdVEaWkpli5dii5duiA9PR1HjhzB4sWLucg2QUrrAwEdAiBZS5hwmp/VJpK7PrnQrgbV1atIU8AFSJ566inREchE/K/e/1DoVYiPTn4kOopZYG0SUXVduHABgwYNwrvvvoupU6fizJkzePjhh0XHohpSWh/o6t4VXU52wcEuB3FVe1V0HCKh5K5PLrSrwSYtDdn164uOgTNnzoiOQCbidd/X4RLhguUuy7mrLQPWJhFVlU6nw/Lly+Hr64vr168jODgYy5YtU9Tbjqn6lNgHArwCINlKmBDBXW0yb3LXJxfa1eCo0aCgQQPRMeDm5iY6ApmQzyw+Q6FXIeaEzREdpc5jbRJRVVy8eBGPPvooZs6ciVdffRVRUVEYMGCA6FhkAErsA90bd0fn0M7Y32U/d7XJrMldn1xoV0ODwkLomjYVHYOf2aJqmdFlBpxPO+Nrx6+hk3Si49RprE0iqohOp8OqVavg6+uLy5cv48CBA1i+fDns7e1FRyMDUWofWN9+PSQ7CRMjJoqOQiSM3PXJhXYVFWRloaEkwbJVK9FREB8fLzoCmZi5qrko8C7AnJPc1TYm1iYRPUhSUhIee+wxTJ8+Ha+88gqioqLwyCOPiI5FBqbUPtDLoxc6h3TG375/43rOddFxiISQuz650K6i1PBwAIC9t7fgJMDgwYNFRyAT82bXN+EU6YSljku5q21ErE0i+jdJkrBmzRp07twZFy5cwL59+7B69WrUV8A1X8jwlNwH1rdfD8lewsRw7mqTeZK7PrnQrqKbUVEAANcuXQQnATZs2CA6ApmgT6RPUOBdgE/DPhUdpc5ibRLRvZKTkzF06FC89tprePHFFxEdHY0hQ4aIjkVGpOQ+0MujF3xCfbC3816k5KaIjkMkO7nrUyVJkiTrjHdotVo4OTlBo9HA0dFRRIRqOTppEvqtX4/Cmzdh4+wsOg5RtekkHVyiXFBSrwQ53jlQq/h7NiIiY5AkCQEBAXj77bfh5OSE7777DkOHDhUdiwgnrp3AQw0fwhPHn8Cfg/4UHYeoTuMr7SoquXQJ6SqVIhbZ/v7+oiOQCVKr1PhE9wnyO+bj81Ofi45TJ7E2iejq1asYPnw4Jk2ahOeffx5nz57lItuMKL0P+DX1g3eIN3Z32o20vDTRcYhkJXd9cke7ig57e6NBcjI65uWJjoLS0lJYWFiIjkEm6O6udqllKbQdtdzVNjDWJpH5kiQJGzZswFtvvQV7e3usW7cOw4cPFx2LZGYKfeDY1WPo16gfhh8fjj8G/SE6DpFs5K5PvsquIrv0dGidnETHAAAsXLhQdAQyUWqVGh+Xfow8nzz4n1L2b91NEWuTyDxdv34dI0aMwIQJEzBy5EicPXuWi2wzZQp94OFmD6NDSAf85fMXd7XJrMhdn9zRrqILNja41qEDBkZGio6Cy5cvo2XLlqJjkInSSTo4RztDp9ZB68NdbUNibRKZF0mSsHHjRsycORM2NjZYu3YtRowYIToWCWQqfeDo1aPo794fTx17Cr8P+l10HCJZyF2ffIVdBZJOB/eiIkjNmomOAgA4fPiw6AhkwtQqNWbdmoW8TnmYHz5fdJw6hbVJZD5SUlIwatQojB07Fk8++STOnTvHRTaZTB/o16wfvE544Q+fP5CRnyE6DpEs5K5PLrSrQHvlCuoDsGrXTnQUAECrVq1ERyAT92H3D+EQ7YAvrb/kfbUNiLVJVPdJkoTNmzfDx8cHISEh2L59OzZu3AhXV1fR0UgBTKkPrG21FpKzhEknJ4mOQiQLueuTC+0qSD11CgBQ39tbcJLbSkpKREcgE6dWqfFh0YfI7ZyLBRELRMepM1ibRHVbWloannvuObz00kt4/PHHce7cOfznP/8RHYsUxJT6wIDmA9AupB1+9/4dWQVZouMQGZ3c9cmFdhVooqMBAA26dROc5LaUlBTREagO+KjHR7A/a4/59eZzV9tAWJtEdde2bdvg4+ODw4cPY9u2bdi8eTMaNGggOhYpjKn1gbUt10LnpsOrJ18VHYXI6OSuTy60q6AgPh4lABp16SI6CgCgR48eoiNQHaBWqfFBwQfI8c3B4tOLRcepE1ibRHVPeno6XnjhBbzwwgsYOHAgzp07h+eee050LFIoU+sDg1oMQtsTbbGzw07ualOdJ3d9cqFdBbrLl5FiYQELKyvRUQAAv/76q+gIVEfM7jkb9ufsMc9iHne1DYC1SVS3bN++HT4+Pjhw4AC2bNmCbdu2oVGjRqJjkYKZYh/4tsW30LnpMPnkZNFRiIxK7vrk7b2q4Gjr1nDMyICvVis6CgCgsLAQNjY2omNQHTE3bC4+6/UZFp9ejHe7vSs6jkljbRLVDZmZmZgxYwY2b96MUaNG4dtvv4W7u7voWGQCTLUPtD3aFpfaXEKmSyacbZxFxyEyCrnrkzvaVeCQlYUcBV1NdPFivs2XDOeTnp/ALsYOn6s/5652LbE2iUzfb7/9Bh8fH+zevRubNm3C9u3bucimKjPVPrC62WroGukwOZS72lR3yV2f3NGugsv16uFS9+4YFBoqOgqRUcw5OQf+vf2x5PQSvNPtHdFxiIhkl5WVhTfffBMbN27EiBEjsGbNGnh4eIiORSSbNkfbIKlNEne1iQyEO9qV0JWUwKOkBKoWLURH0fP39xcdgeqYz3p9BttYW3yu+lx0FJPG2iQyTbt27UKnTp2wa9cubNiwAb/99hsX2VQjptwHVjVdBV0jHaaEThEdhcgo5K5PLrQrkRETAysANu3bi46iN2nSJNERqI5Rq9R4W/s2NF01+Drya9FxTBZrk8i0ZGdnY/z48RgxYgS6deuGs2fPYuzYsVCpVKKjkYky5T4wtNVQeIZ4Ynu77dAWKeO6RESGJHd9cqFdiYzTpwEATp06CU7yj99//110BKqD/tf7f7CNtcVcaa7oKCaLtUlkOv766y906tQJO3bsQEBAAHbt2oWmTZuKjkUmztT7wEqPlSh1L8XU0KmioxAZnNz1yYV2JTRnzwIAGnbvLjjJP7p27So6AtVBapUab2rfRHa3bCw/s1x0HJPE2iRSPo1Gg0mTJmH48OHo1KkTzp49iwkTJnAXmwzC1PvA8NbD0TKkJba12cZdbapz5K5PLrQrUXzhAvIBuLZrJzqKXmZmpugIVEfN6z0PNnE2+LT0U9FRTBJrk0jZ9u3bh86dO+Onn37CunXr8Ndff6F58+aiY1EdUhf6wIrGK1DqUYppodNERyEyKLnrkwvtSkhXriC1Xj2o1Mp5qgoKCkRHoDpKrVJjxs0ZuNn9JlZFrRIdx+SwNomUKScnB1OnTsXjjz+O9u3bIzo6GpMmTeIuNhlcXegDT7V5Ci1CWmBr663ILc4VHYfIYOSuT+WsHhXKOiUFNx0cRMcoo52Cdtep7vmi9xewibfBnFtzREcxOaxNIuXZv38/OnfujE2bNmH16tXYt28fWrZsKToW1VF1pQ8sb7QcpU1K8XrI66KjEBmM3PXJhXYl6mdnI69BA9Exyjh48KDoCFSHWaot8UbmG8jqkYU10WtExzEprE0i5cjNzcX06dMxZMgQtG7dGtHR0Xjttde4i01GVVf6wNNtn0bzkOb4sfWP3NWmOkPu+lRJkiTJOuMdWq0WTk5O0Gg0cHR0FBGhSm5YWCCuXz8MOnRIdBQ9jUYDJycn0TGoDivRlcAh0QEOGgdk9MwQHcdksDaJlCE4OBgTJ05EamoqFi5ciGnTpkGtoI+AUd1Vl/rAjoQdeKbdMxh7ZCw29N8gOg5Rrcldn+w6FSjOzYW7TgcLT0/RUcpYvpxXhCbjslRb4vWM15HZMxPfnf1OdByTwdokEisvLw8zZ87EI488gmbNmiEqKgrTp0/nIptkU5f6wH/a/QfNTjTDj54/Iv9Wvug4RLUmd31yR7sCV48eRbP+/RH+xRfoMWuW6DhEsrq7q10/uz7Se6WLjkNEVKEjR45gwoQJuH79Or788ku88cYbXGAT1dIv8b/gufbPYfyR8QjsHyg6DpFJYQeqQGZkJADAuXNnsUH+xd/fX3QEMgOWaktMTZ+KjF4ZWH92veg4JoG1SSS//Px8vPPOOxg4cCAaN26MM2fOYObMmVxkkxB1rQ882/5ZND3RFBtbbOSuNpk8ueuTO9oVOPb663h49Wrk3rgBh8aNRcfRy87OhrOzs+gYZAaKS4tRP6k+nLKckNYrTXQcxWNtEsnr+PHjGD9+PK5cuYJ58+bhzTffhIWFhehYZMbqYh/4Of5nPN/+ebx69FV8148fJyPTJXd98te9Fbh18SJuqlSKWmQDwMaNG0VHIDNhZWGFqalTkd4rHYHn+JaxyrA2ieRRUFCA999/H/369YObmxsiIyPxzjvvcJFNwtXFPvBc++fgEeKBDc03oLCkUHQcohqTuz650K6A6to1pFlbi45xn4EDB4qOQGZkcZ/FsEq0wn/z/is6iuKxNomMLzQ0FN27d8fy5cuxYMECHD16FF5eXqJjEQGou31gqctSlLQswYyQGaKjENWY3PXJhXYFbNPSoFHg29oTExNFRyAzYmVhhUkpk5DWOw3fx3wvOo6isTaJjKewsBD//e9/8dBDD6F+/fqIiIjA+++/z11sUpS62gdGe42+vavdjLvaZLrkrk8utCvgpNWisGFD0THuY2VlJToCmZmlfZfC6qIVPsj5QHQURWNtEhlHWFgYevTogaVLl2LevHk4fvw4OnbsKDoW0X3qch9Y4rwEtzxv4a2Qt0RHIaoRueuTC+0KNCwqgq5pU9Ex7uPu7i46ApkZKwsrTLwxEal9UrExtu59/sxQWJtEhlVUVITZs2fDz88Ptra2CA8Px3//+19YWlqKjkZUrrrcB17s8CIahzZGQNMAFJcWi45DVG1y1ycX2g+Ql5YGV0lCvTZtREe5T3h4uOgIZIaW9lmKepfq4X3t+6KjKBZrk8hwIiIi0LNnTyxcuBBz587FiRMn0KlTJ9GxiCpU1/vAIsdFuNWKu9pkmuSuTy60HyD11CkAgIO3t+Ak9xs5cqToCGSGbCxtMPHaRKT0ScHm85tFx1Ek1iZR7RUXF+PTTz9F7969YWlpiVOnTmH27NmoV6+e6GhElarrfeBl75fR6GQjrPdYz11tMjly1ycX2g9wMyoKAODapYvgJPdbt26d6Ahkppb1XYZ6SfXwbva7oqMoEmuTqHbOnDmD3r1744svvsCcOXNw8uRJ+Pr6io5FVGXm0AcWOSxCcetivB3ytugoRNUid32qJEmSZJ3xDq1WCycnJ2g0Gjgq8MreR8aPx8MbNqAkJwdWDg6i4xApxuSjk/Fdv++wNW4rXvB6QXQcIqoDbt26hS+//BKff/45vL29sWHDBnTr1k10LCJ6APeT7sh2y0aOZw6sLOruBeCIaoM72g9QmpSENLVakYtsf39/0RHIjC3vuxyWly3x9k3+JvvfWJtE1RcdHY2+ffvis88+w3//+1+cOnWKi2wyWebSBxY6LERxm2K8F/qe6ChEVSZ3fXJH+wGOtG8Pl+vX0Sk3V3SU+xQUFMDW1lZ0DDJjE49MRGD/QGyL34bn2j8nOo5isDaJqq6kpER/obN27dphw4YN6Nmzp+hYRLViTn2gUVgjaF20yG2dC0s17wRAyid3fXJH+wHsMjOR4+wsOka5Vq1aJToCmbkVfVfAMtkSb2W+JTqKorA2iaomJiYGfn5+mDNnDt577z39FcaJTJ059YH5tvNR1LYI74fwbiRkGuSuTy60H8AlNxdFCr0X4tNPPy06Apk5u3p2GHN5DK75XcMv8b+IjqMYrE2iipWUlGDBggXo1q0bcnNzceLECXzxxRewtrYWHY3IIMypD7za6VW4nXLD6oarUaIrER2HqFJy1ycX2uWQdDo0Li4GmjcXHaVcERERoiMQYVXfVbC8wl3te7E2iR7s/Pnz6NevHz766CO8+eabOH36NHr37i06FpFBmVsf+ML6CxS1K8IHoR+IjkJUKbnrkwvtctxMTIQdAOt27URHKVfDhg1FRyCCXT07vJT0Eq72uYrfLvwmOo4isDaJ7ldaWoolS5aga9euuHnzJo4ePYqFCxfCxsZGdDQigzO3PjCl8xS4hrtiVYNV3NUmxZO7PrnQLkf6nd92OHbsKDhJ+fgWO1KKlX1WwuK6BWakzRAdRRFYm0RlxcfHY8CAAXj//fcxffp0REZGws/PT3QsIqMxxz7gX88fRe2KMCt0lugoRBWSuz650C5HdlQUAKCBQm8vkpiYKDoCEQDAwcoB/3fx/3Cl7xXsvLBTdBzhWJtEt+l0OixbtgxdunRBWloaDh8+jCVLlpjN1ZjJfJljH5jmOw2u4a5Y4bqCu9qkaHLXJxfa5ShMSEAxgIadOomOUq5BgwaJjkCk923fb7mrfQdrkwi4cOECBg0ahLfffhtTp07FmTNn0K9fP9GxiGRhrn3gf/X+h0KvQnx88mPRUYgeSO765EK7HFJyMlIsLaG2VOY9AX/44QfREYj0HKwc8MLFF5DcNxm7EneJjiMUa5PMmU6nw/Lly9GlSxdcu3YNwcHBWLZsGezs7ERHI5KNufaB131fh0uEC5Y7L4dO0omOQ1QuuetTJUmSJOuMd2i1Wjg5OUGj0cDR0VFEhAc65ukJ++xsdM3OFh2lXDqdDmo1f0dCyqEt0sI1wxXNkpoh6eEk0XGEYW2Subp48SImTpyIQ4cOYfr06fjyyy/h4OAgOhaR7My5Dyw/sxwzu8zEf0P/i/l95ouOQ3QfuevTPH8SVMLh5k3kurqKjvFAX3zxhegIRGU4Wjvi+cTncbnvZfx18S/RcYRhbZK50el0WL16NXx9fXH58mUcOHAAK1as4CKbzJY594EZXWbA+bQzvnb8mrvapEhy1yd3tMtx1dISF3r3xqDjx0VHKZc5/7aUlEtbpIVrpitaXGyBi/0uio4jBGuTzMnly5fx6quvYv/+/XjttdewcOFC1K9fX3QsIqHMvQ8si1yGt7u+jY9CP8K8PvNExyEqgzvagpUWF6NxaSnULVuKjvJA8+fz7TikPI7Wjngm4Rlc8ruEPZf2iI4jBGuTzIEkSVi7di06deqE+Ph47N27F6tXr+YimwjsA291fQtOkU5Y6riUu9qkOHLXJxfa/5IWFQVLALZeXqKjPNArr7wiOgJRudb2WQt1mhqvX3tddBQhWJtU1125cgVDhw7F1KlT8X//9384e/YsHnvsMdGxiBSDfQD4RPoEBd4FmBs2V3QUojLkrk8utP8lMzISAOCk0Ft7AUBwcLDoCETlcrZxxn/i/4OLfhexL2mf6DiyY21SXSVJEtavX49OnTohJiYGu3fvxrp16xT30S8i0dgHbu9qO55xxBKHJdzVJkWRuz650P4X7blzAIBGPXoITvJgbdq0ER2B6IG+6/Md1OlqTLs6TXQU2bE2qS66evUqhg8fjkmTJuHZZ5/F2bNnMXToUNGxiBSJfQBQq9SYXTob+R3z8fmpz0XHIdKTuz650P6X4gsXkAPAScGf0S4qKhIdgeiBnG2cMSpuFBL7JuLA5QOi48iKtUl1iSRJ2LBhAzp16oQzZ85g165dCAgIgLOzs+hoRIrFPnDbu93eRf2o+lhst5i72qQYctcnF9r/orp6FWlWVlAp+IqR6enpoiMQVWhd73VQZ6rxWvJroqPIirVJdcX169fx9NNPY/z48Rg5ciTOnTuHJ598UnQsIsVjH7hNrVLjo1sfIc8nD/6n/EXHIQIgf30qdzUpiHVqKm4q/Mqp3bt3Fx2BqEKutq54+vzTSPBLQHBysOg4smFtkqmTJAmbNm1Cp06dcOrUKfz222/YsGEDXFxcREcjMgnsA//4oPsHqB9VHwttF3JXmxRB7vrkQvtfHDUa5DdoIDpGhXbu3Ck6AlGl1vdeD3WWGlMvTxUdRTasTTJlKSkp+M9//oOXX34ZTzzxBM6ePYunn35adCwik8I+8A+1So1Zt2Yhr1Me5oeb923PSBnkrk+VJEmSrDPeodVq4eTkBI1Go6irlqZZWCBm4EAMOqDcz5YWFBTA1tZWdAyiSo0MHomdD+/EoZRDGNB8gOg4RsfaJFMkSRK2bt2K6dOnw9LSEt9++y3+85//iI5FZJLYB8rSSTo4nXUCAGg6aaBWcY+PxJG7Pvmv/R5FWi0a6XSw8PQUHaVCS5YsER2BqErW914PVbYKUy5NER1FFqxNMjVpaWl4/vnn8eKLL+Kxxx7DuXPnuMgmqgX2gbLUKjU+LPoQuZ1zsTBioeg4ZObkrk/uaN/j8oEDaDl4MCIWLkT3998XHYeoThgRPAK7Ht6FI6lH0K9ZP9FxiOiObdu24fXXXwcArFq1Cs8//7zgRERUF+kkHRzPOUKtUyO7czZ3tcls8F/6PW5GRQEAXHx9BSepmL8/r95IpmN9r9u72pMvThYdxehYm2QKMjIyMHr0aLzwwgsYOHAgzp07x0U2kYGwD9xPrVLj/YL3keObg8WnF4uOQ2ZM7vrkjvY9jk6Zgn7r1qEgMxO2rq6i4zxQamoq3N3dRccgqrIng5/Enw/9iePpx+HX1E90HKNhbZLS7dixA6+99hpKSkqwcuVKjB49GiqVSnQsojqDfaB8OkkHxxhHWJRY4KbvTe5qkxBy1yf/ld+j5NIlZKhUil5kA8Bvv/0mOgJRtQT2CoRKq8KkxEmioxgVa5OUKjMzEy+99BKeeeaZ/2/vzsOjLMy1gd8zCWSBZLIn7HsAgQAhgUARUYqiUrVaq22tsqpwQGmp+4Y1iqIWkB2EUAURF1AUFREaBSELgSwkBGJYQ8hOZrJvM98fUr+Co2SZeZ/3nff+XZfX6dFk5j713Hny5CEzGD16NDIzM3HvvfdyySZyMM4B+4wGI/5R/Q9YhlqwOHWxdBzSKaX7yUX7fxjPn0exp6d0jKsaMWKEdASiFgnpEIKbjt6ErJgsHDx/UDqO07CbpEY7duzAoEGD8NVXX2HTpk3Yvn07wsLCpGMRuSTOgV/2fNTz8M7yxkuGl6SjkE4p3U8u2v/Dq6QEFpNJOsZVFRYWSkcgarG4qDgYKgyYmeu6v6vNbpKaXLx4Effffz9uv/12REdHIzMzE3/5y194xSZyIs6BX2Y0GPH3yr/DPMyMJalLpOOQDindTy7a/8PPYkFtcLB0jKuqr6+XjkDUYmEdw3Bjxo3IHJWJ5AvJ0nGcgt0ktdi5cycGDRqEHTt24N///jd27NiBTp06SccicnmcA7/uxegX4XXMCwuwQDoK6ZDS/eSi/T9C6upg69pVOsZV9enTRzoCUatsGLEBhioDpp+YLh3FKdhNklZeXo6pU6di8uTJGDZsGDIzM3H//ffzik2kEM6BX2c0GDHPMg/mYWYsTV0qHYd0Rul+ctG+xJKXBxOA9n37Ske5qm+//VY6AlGrdPbpjN+m/xYZMRk4dOGQdByHYzdJ0ldffYXBgwdj27ZtWL9+PXbu3IkuXbpIxyLSFc6Bq4sdGQuvbC8ssC2QjkI6o3Q/uWhfUpSSAgDoOHCgcJKru++++6QjELXahsgNMFS75lWb3SQJZrMZM2bMwM0334xBgwbh6NGjmDZtGq/YRAI4B67OaDDiUfOjKB9ejuVpy6XjkI4o3U8u2pdcTEsDAAQOGyYbpBmWL+cXJdKurr5dcUPaDUgflY7DBYel4zgUu0lK2717N4YMGYKtW7di7dq1+Oqrr9CtWzfpWES6xTnQPC+PfBmexz3xfNPz0lFIR5Tup8Fms9kUfcZLLBYLTCYTzGYzfH19JSJc5rv77sNvNm+GraYG7hp4iy8iLTtrPouetp6ISItA6nWp0nGINKeiogKPPfYY1qxZgwkTJmD9+vXo0aOHdCwiomZ7POFxvB7zOlamr8SsiFnScYgcjhftS6xnzqDQzU0TS3ZsbKx0BKI26W7qjutTr0fayDSkFqZKx3EYdpOUsHfvXgwZMgSbNm3CqlWrsHv3bi7ZRCrBOdB8r4x8BZ4nPPFsw7PSUUgnlO4nF+1L3PPzUerlJR2jWebOnSsdgajN4obHwVBnwLTsadJRHIbdJGeqrKzEnDlzMGHCBPTq1QsZGRl4+OGH+bvYRCrCOdB87kZ3zC6djbIRZViTsUY6DumA0v3kon1Jh7IyVPj7S8dolnfeeUc6AlGbdTd1x3Wp1+HIyCNIL0qXjuMQ7CY5y7fffouIiAjExcVh2bJl2LNnD3r16iUdi4iuwDnQMq+Neg0eOR54pu4Z6SikA0r3k4v2Jf5VVagPDZWO0SzXX3+9dAQih9g4fCNQD0zLco2rNrtJjlZVVYVHH30U48ePR9euXZGeno45c+bAaOT4JlIjzoGWcTe6Y3bJbJRGleLto29LxyEXp3Q/OakB2KxWhDU0wNC9u3SUZsnJyZGOQOQQPUw9MO7IOKSMTMHR4qPScdqM3SRH2r9/P4YNG4Z169ZhyZIliI+PR58+faRjEdGv4BxouUWjFsEjxwNP1TwlHYVcnNL95KINoOTYMXgC8AwPl47SLF4a+V1youbYOGwj0ABMyZwiHaXN2E1yhJqaGvz973/HuHHjEBISgtTUVDz66KO8YhNpAOdAy7kb3fFQ8UMoiS5BXGacdBxyYUr3k1MbQMmRIwAA30GDhJM0T2BgoHQEIofp5dcLY4+MRcrIFGQWZ0rHaRN2k9rq4MGDGDZsGFauXIk33ngD3333HcI18kNgIuIcaK3XR72O9rnt8UT1E9JRyIUp3U8u2gDMGRkAgKDhw4WTNE9qaqp0BCKH2jh0I9AITM2cKh2lTdhNaq3a2lo8/vjjGDt2LPz9/ZGamoq///3vcHNzk45GRC3AOdA67d3a48HCB1EcXcyrNjmN0v002Gw2m6LPeInFYoHJZILZbIavr69EhJ98e9ddGLVtGzyammDQwB/NKygoQFhYmHQMIocaGz8W30d/j6yaLAwMGigdp1XYTWqNxMRETJkyBSdPnsRLL72E+fPnc8Em0ijOgdarb6qHz2kf+JX6oXBkoXQcckFK91P9W6UCbGfPoqBdO00s2QDw9tt8VUZyPXERcYAVmHpUu1dtdpNaoq6uDk899RTGjBkDHx8fHDlyBI8//jiXbCIN4xxovfZu7TGjYAaKRhbhnSy+TRo5ntL95EUbwIHu3eFVUYHhFy+K5iDSuzHxY3Aw6iCy67LRP7C/dBwipzl06BCmTJmCEydO4MUXX8Rjjz0Gd3d36VhERKLqm+rhc8YH/sX+KBhVIB2HqE20ccJ1Mp+LF1GloReviI2NlY5A5BRxQ378vawpGVNkg7QSu0lXU1dXh2effRYxMTHw8PBASkoKnnrqKS7ZRC6Cc6Bt2ru1x7QL01A4qhCbj22WjkMuRul+8qININ/dHSdGj8b4fftEczRXbW0tPD09pWMQOUVMfAwSRyTiRMMJ9AvoJx2nRdhN+jWHDx/GlClTkJ2djeeffx5PPPEE2rVrJx2LiByIc6Dtahtr4XvOF4FFgbgw6oJ0HHIhSvdT9xftxtpahDY1wdijh3SUZlu2bJl0BCKniRscBxiAKelTpKO0GLtJ9tTX12PBggUYNWoUjEYjkpOT8eyzz3LJJnJBnANt5+nuiSnnp6BgVAG2ZG+RjkMuROl+6n7RLjxyBG4AvAcMkI7SbHfccYd0BCKnGRg0ECMPjcSByAPIvZgrHadF2E26UlpaGkaNGoWXX34ZzzzzDJKSkjB06FDpWETkJJwDjvFWzFtod7od5pfPl45CLkTpfup+0S699H5qfkOGyAZpgZSUFOkIRE61cfBGwA2YkjZFOkqLsJv0Xw0NDXjppZcQFRWFpqYmJCYmYsGCBWjfvr10NCJyIs4Bx/B098QDeQ/gQswFfHD8A+k45CKU7qfuF+3KrCwAQMiIEcJJmo/vz0iubmDQQEQlR2H/8P2aumqzmwQAR48eRUxMDF588UU88cQTSE5ORmRkpHQsIlIA54DjLItZBvcz7vjbxb9JRyEXoXQ/db9o1+fmwgzAt2tX6SjNxlenJT2IGxQHtAOmpmnnfbXZTX1rbGzEwoULMWLECNTW1iIhIQGxsbHw8PCQjkZECuEccBxPd0/89exfkR+Tj49OfCQdh1yA0v3U/aJtyMtDkca+CTp16pR0BCKnGxw8GCOSRmDf8H04Va6N/59nN/UrKysLY8aMwbPPPou///3vSElJQVRUlHQsIlIY54BjLY9ZDvez7phXOk86CrkApfup+0Xbs7gY5cJvL9ZS48aNk45ApIgN12z48aqdqo2rNrupP01NTVi0aBEiIyNRUVGBAwcOYOHChXx7HyKd4hxwLO923vjLmb/g/Ojz2J6zXToOaZzS/dT9ou1rNqMmKEg6Rou899570hGIFBEREoHIpEh8O/xbnDGfkY5zVeymvhw/fhxjx47Fk08+iUceeQSHDx/GqFGjpGMRkSDOAcdbGbMS7ufc8UjJI9JRSOOU7qfBZrPZFH3GSywWC0wmE8xmM3wFL8olRiOOTpiA8bt3i2VoqaamJri5uUnHIFJEelE6hvoMxfWJ12Pv+L3ScX4Vu6kPTU1NWLJkCZ599ll069YNGzduxJgxY6RjEZEKcA44x/3f3Y93x76LT05+gtv73i4dhzRK6X7q+qJdXVKCIJsN7n36SEdpkYULF0pHIFJMREgEhiUNQ/yweJw1n5WO86vYTdeXk5ODcePG4bHHHsOsWbOQmprKJZuIfsI54BwrY1bCLd8Nc4vmSkchDVO6n7q+aJ/atQu9Jk1C6uLFGDZvnkgGIrq6wwWHMcJvBCYkTMA347+RjkM6ZLVasWzZMjz11FPo3LkzNm7ciLFjx0rHIiLSjfu+uw+bx27Gpyc/xW19b5OOQ3RVur5oX0xPBwD4R0QIJ2mZ2NhY6QhEiooMi0REYgT2Dt2LPEuedJxfxG66ptzcXIwfPx7z5s3DzJkzkZaWxiWbiOziHHCe1TGr4ZbvhkcK+bva1DpK91PXi3bVsWMAgDCNvQXLAw88IB2BSHHrw9fD5m3D1MPqfQVydtO1WK1WLF++HBEREcjLy0N8fDyWLl2KDh06SEcjIpXiHHCeju074o8n/4gzo8/gi5NfSMchDVK6n7petJtOn0aR0QgPjb291549e6QjECkuqlMUhiQMwZ6IPcivyJeOYxe76TpOnTqFCRMmYO7cuZg6dSrS09Nx3XXXScciIpXjHHCu1aNWw63ADbMvzJaOQhqkdD91vWi7nT+PEg2+12l4eLh0BCIR68PXw9bBhqkp6rxqs5vaZ7VasWrVKgwZMgSnTp3Cnj17sHz5cnTs2FE6GhFpAOeAc/l6+OIPOX/AmZgz+PLkl9JxSGOU7qeuF22v0lJY/PykY7RYTU2NdAQiEdGdojE4YTB2D9mNgsoC6Tg/w25q25kzZ3DjjTdi9uzZuO+++5CRkYEbbrhBOhYRaQjngPOtjVkLY5ER/5f/f9JRSGOU7qeuF23/igrUhYRIx2ix0tJS6QhEYt7u9zZsPjZMPaS+qza7qU02mw3r1q3DkCFDcOLECXz99ddYvXo1fHx8pKMRkcZwDjifr4cv7jpxF06NPoVdp3ZJxyENUbqful20bVYrQuvrYevaVTpKiw0dOlQ6ApGYUZ1H4ZqEa7BryC7VXbXZTe05d+4cJk2ahAcffBD33HMPMjIyMHHiROlYRKRRnAPKWDvqx6v27PP8XW1qPqX7qdtF23zmDDoC8OjXTzpKi33++efSEYhEvd3nx6v2tEPTpKNcht3UDpvNhg0bNmDw4MHIzMzEF198gXXr1sFkMklHIyIN4xxQhp+nH35/4vc4GXMSe87wBeioeZTup8Fms9kUfcZLLBYLTCYTzGYzfAVe9fvERx8h/O67cXTdOgyeMUPx52+L6upqeHt7S8cgEnXNd9cge2A2CrwLENJBHb8Cwm5qw/nz5zFz5kx8+eWXmDJlChYvXgw/Db5eBxGpD+eAcspryxFYHoheP/TCD2N/kI5DGqB0P3V70S5PTwcABA4bJhukFf71r39JRyASt673OthMNkxLVs9Vm91UN5vNhnfeeQeDBg1CamoqPv/8c8TFxXHJJiKH4RxQjp+nH24/fjtyY3Kx98xe6TikAUr3U7cX7e/+9CeMfv99GOvq4Na+veLPT0RtN/C7gTg+8DiKOhQhyDtIOg6p2IULF/DQQw/hs88+w1//+lcsXboU/v7+0rGIiKgNymrKEGwJRp8TfXDi2hPScYguo9uLtvXMGRS6uWlyyY6NjZWOQKQK63qvg83PhulJ06WjAGA31chms2Hz5s0YNGgQkpKS8Mknn+Cdd97hkk1ETsE5oKwArwDcln0bckbnIP5svHQcUjml+6nbi/b3vXqhY1kZhprNij93WxUXFyM4OFg6BpEq9N/XHzkDclRx1WY31aWwsBAPP/wwPvnkE/z5z3/GW2+9hcDAQOlYROTCOAeUV1ZThuCKYPQ93hfHrz0uHYdUTOl+6vai3eHiRVRq9KKxbds26QhEqrGmxxrY/G2YkST/oobspjrYbDZs3boVgwYNwvfff4+PP/4Ymzdv5pJNRE7HOaC8AK8ATM6ajBMxJ7A/b790HFIxpfup20U7oKoKDWFh0jFaJTo6WjoCkWqM7z4e/Q72w2cDP0NZTZloFnZTXlFREe6++27ce++9mDBhAjIzM3HnnXdKxyIineAckLF+5HoYyg2YeXKmdBRSMaX7qctF29rYiLDGRhi6d5eO0ioXLlyQjkCkKqu7r4Y10Cp+1WY3ZX300UcYNGgQvv32W3zwwQfYunUr/wgnESmKc0BGkHcQbsm8Bdmjs3nVpl+kdD91uWgXHz2K9gC8+veXjtIqTU1N0hGIVOWGHjeg78G++LT/pyivLRfLwW7KKCkpwb333ou7774b48aNQ2ZmJu6++27pWESkQ5wDcjZEb+BVm36V0v3U5aJdcuQIAMA0eLBwktbp2bOndAQi1VndfTWsQVbMSJS7arObytu+fTsGDRqE3bt3Y8uWLfjoo48QEhIiHYuIdIpzQE5IhxDcnHkzsmOycfD8Qek4pEJK91OXi7bl6FEAQHBkpHCS1tm3b590BCLVmdBjAnon9Mb28O1iV212UzmlpaX4y1/+gjvvvBOjR49GZmYm7r33XhgMBuloRKRjnAOy4qLjYLAYMCNX/gVSSX2U7qcuF+263FxUAfDv00c6Sqv86U9/ko5ApEqru66GNcSKmYkyf2yM3VTGjh07MHjwYHz55Zd49913sX37doRp9MUtici1cA7ICukQgpuO3oSsmCwk5idKxyGVUbqfuly0ce4cCtu3h8Gozf/zV65cKR2BSJUm9pyIXgd7YVv4NljqLIo/P7vpXBcvXsT999+P22+/HVFRUTh69Cjuu+8+XrGJSDU4B+TFRcXBUGHAjBxetelySvfTYLPZbIo+4yUWiwUmkwlmsxm+vr6KPvfBrl3RvqYGI0pLFX1eInK+L09+iVt63IJ79t+D9697XzoOOcjOnTvx4IMPoqqqCkuXLsX999/PBZuIiOy6Kf4mfD36aySVJSG6E99yjWRo86TbRj7l5agODJSO0WqxsbHSEYhU6+beN6NnQk981O8jxa/a7KbjlZeXY9q0aZg8eTKGDh2KzMxMPPDAA1yyiUiVOAfUIW5EHAxVBkw/MV06CqmI0v3U5UW7wM0N2ddei/Hx8Yo+r6NYLBbF/zsj0pIvTn6BW3veij/t/xPeG/eeYs/LbjrWrl27MGPGDJjNZixZsgRTp07lgk1EqsY5oB43xt+I3aN3I7ksGVGdoqTjkAoo3U/dXbTrKysRYrXCTcNvv7Bx40bpCESqdkvvW9DjYA980OcDVNZXKva87KZjWCwWzJw5E5MmTcLAgQNx9OhRTJs2jUs2Eake54B6bIjcAEM1r9r0/yndT90t2oWHD8MIwHvAAOkorfbb3/5WOgKR6i0PW46mTk14KOEhxZ6T3Wy7b775BoMHD8b777+PNWvWYNeuXejevbt0LCKiZuEcUI+uvl1xQ9oNSB+VjsMFh6XjkAoo3U/dLdplaWkAAP+ICOEkrZednS0dgUj1JveZjG4J3bC191bFrtrsZutVVFRg1qxZmDhxIvr164eMjAw8+OCDvGITkaZwDqjLhuEbYKg1YPpxXrVJ+X7qbtGuzMoCAIRGafd3NTp06CAdgUgTloUsQ1PnJsxOmK3I87GbrfOf//wHERERePfdd7Fy5Urs3r0bPTX86z1EpF+cA+rS3dQd41PHI3VkKlILU6XjkDCl+6m7Rbvh5EmUGQzoEBIiHaXVAgICpCMQacLtfW9Ht4Ru2NJrC6obqp3+fOxmyxQWVuLaaz/CDTdMQI8ePZCeno5Zs2bBaNTdaCIiF8E5oD5xw+OAemBa9jTpKCRM6X7q7rsZ4/nzKPbwkI7RJunp6dIRiDRjafBSNHZrVOSqzW4237JlaejatRT799+CJ5/cjL1796J3797SsYiI2oRzQH16mHpg/JHxODLyCNKL+O9Hz5Tup+7e3ispNBQ2gwGjCgoUe05Hy8/PR+fOnaVjEGlG14NdUdilEOZOZni383ba87CbV1dSUo2JE5ORmnotfH0zsG2bHyZM6CEdi4jIITgH1OmM+Qx6oidGHBmBQ+MPScchIUr3U3cXbZPFgtrgYOkYbbJhwwbpCESasjRwKRq7N2JOwhynPg+7+etWrkxD585FSE0diTvu2IeSkiFcsonIpXAOqFMPUw+MOzIOKSNTcLT4qHQcEqJ0P3V30b5oNCLtxhsx/quvFHtOIpLXJaELijoVwdzZuVdt+rmyshrceGMiUlLGwccnEx9+2BE33dRLOhYREenIqfJT6G3ojagjUUgenywdh3RAVxftyoIC+NtsaNenj3SUNomNjZWOQKQ5i/0Xo7FHIx5JfMRpz8Fu/ty6dRkICytASkoMJk/eh5KSa7hkE5HL4hxQr15+vTD2yFgcij6EzOJM6TgkQOl+6uqinfv55+jzu98hbdkyDJ3j3D9C6kx1dXXw0PgLuhFJ6JzQGcWdilHRpQKe7p4Of3x28/8rL6/FTTcdRFLSOHTokI0PPvDCLbfwxc6IyLVxDqhb7sVc9HXri+jD0UganyQdhxSmdD91ddG+mJYGAAgcNkw2SBstXbpUOgKRJv101U5wzlWb3fxRXFwmQkPPIylpDG6+eR9KSvpzySYiXeAcULc+/n0w5vAYJEcn41jJMek4pDCl+6mrRbvmxAlYAYRGRkpHaZO77rpLOgKRJt3T/x6EJYZhY5eNqG2sdfjj672bFksdxoyJx7RpA+DuXodPPjmHL74YD09Pd+loRESK0Psc0IKNERsBKzD16FTpKKQwpfupq0W76fRpFBqNaOet7RdCSkriH3Uhaq03fN9AQ68G/C3xbw5/bD138913sxASchYHD47BxIn7UFoajttv7ysdi4hIUXqeA1rRL6AfRqeMRmJUIo6XHpeOQwpSup+6WrTd8vNR6uUlHaPNOnXqJB2BSLP+MvAvCE0MxfrO61HfVO/Qx9ZjNysr63HttfG4//5wGI2N+Oij0/j6a16xiUif9DgHtChuSBwAYGoGr9p6onQ/dbVodygtRYW/v3SMNnNzc5OOQKRp/71qz0uY59DH1Vs3t2zJRnDwKezf/xtcf/1+lJT0xV13hUvHIiISo7c5oFX9A/tj1KFRODjiIHLKcqTjkEKU7qeuFm3/ykrUhYZKx2izM2fOSEcg0rT7Bt6HkKQQrO/k2Ku2XrpZXd2A66+Px5///ONbJb7//kns3Tse3t7thJMREcnSyxxwBXGD4wAjMCV9inQUUojS/dTNom2zWhHW0ABDt27SUdps7Nix0hGINO/1jq+jvnc95ifOd9hj6qGbH310AkFBuYiPH4tx475HcXEv3HNPf+lYRESqoIc54CoGBg1EdHI0DkQeQO7FXOk4pACl+6mbRbssJwdeADz69ZOO0mbvv/++dAQizbv/mvsRnByMtaFrHXbVduVuVlc34Le/jcfdd/eE1eqGTZty8O2349GxY3vpaEREquHKc8AVxQ2KA9yAKWlTpKOQApTup8Fms9kUfcZLLBYLTCYTzGYzfH19nf582Vu2YMCf/4ysjRtxzQMPOP35nKmxsRHu7nyhIaK2isuMw7RB0/DIgUewdEzb31vRVbu5fXsO7ruvAdXV/TFmzD58+eVo+Pp6SMciIlIdV50Driw6PhqHhh/CSdtJ9PLrJR2HnEjpfurmom3OyAAABA0fLpyk7V599VXpCEQuYeqgqQhKDsKakDVotDa2+fFcrZu1tY246aZ43HlndzQ1tcfGjcfx/ffjuWQTEf0CV5sDehA3KA5oB0xJnSIdhZxM6X7q5qL97d13I+ajj9CuoQFG/qSRiC55++jbmDl4JuYdmIfFYxZLx1GNzz/Pxb331qKqagBGjdqHr76KgZ+fp3QsIiIih4uKj0LK8BScxmn0MPWQjkMuQjcXbdvZsyhwd3eJJTs2NlY6ApHLmDF4BgIPBWJV8Ko2X7VdoZv19U249dZ4/O53XdDQ4IW3385GQsJ4LtlERM3gCnNAjzZcswFoD0w5MkU6CjmR0v3UzaLdvqAAFzt0kI7hEFOmTJGOQORSXvF4BXX96vBE4hNtehytd/PLL08iMDALX3wxDlFRCbhwoROmTx8kHYuISDO0Pgf0KiIkAsOThiN+eDzOmPkWba5K6X7qZtHuePEiKgMDpWM4xO7du6UjELmUB4c8iICUAKwMXNmmq7ZWu1lf34Tbb4/HLbd0Ql1dR6xalYnk5PEICPCSjkZEpClanQMEbBjw41V76pGp0lHISZTup24W7YDqajSGhUnHcIiBAwdKRyByObHtYlEbXounk55u9WNosZu7d59GUFAmduwYh+HDk5CfH4qHHx4iHYuISJO0OAfoR8NCh2FY0jDED4vHWfNZ6TjkBEr3UxeLdlN9PcKammDs4RovblBRUSEdgcjlzIqYBf/D/ljmv6zVV20tdbOx0Yo774zHjTeGoKbGhGXLMnD48HUICvKWjkZEpFlamgP0c+v7r4fN04ZpR6ZJRyEnULqfuli0i9LS4A7Aq39/6SgOUV5eLh2ByCX90+2fqO1fi2eSnmnV52ulm//5zxkEBaVj+/bxiIhIxvnzQZgzZ6h0LCIizdPKHCD7IsMiEZEYgb1D9yLPkicdhxxM6X7qYtEuOXIEAGAaPFg4iWMMGcI/1knkDHOGzoHfET8s81sGq83a4s9XezcbG6344x+/xQ03BKGqKhCLF6ciLe06hIS4xgtFEhFJU/scoKtbH74eNm8bph3mVdvVKN1PXSzaFZmZAIDQqCjhJI7x5ZdfSkcgclkLDAtQM6AGzyY92+LPVXM39+/PQ3BwGj788DoMHnwI5875Y968YdKxiIhciprnADVPVKcoDEkYgm8ivkF+Rb50HHIgpftpsNlsNkWf8RKLxQKTyQSz2QxfX1+nPlf85MmI3LkTPk1NMBi1/7OFyspKdOzYUToGkcvyP+KPOs86VA6ohNHQ/K8Zauym1WrDX//6Hd57LxJubmYsXFiExx6LlI5FROSS1DgHqOWSLyRjZMBI3HjwRuwav0s6DjmI0v3U/tbZDIa8PBR5eLjEkg0AS5YskY5A5NJeMLyAmoE1eCH5hRZ9ntq6+f33eQgOPoz33rsOAwYcwenTvlyyiYicSG1zgFonulM0BicMxu4hu1FQWSAdhxxE6X7q4qKd0Lkz3BoaEF1c7NTnISLX4Zfqh4b2DagYWNGiq7YaWK02TJmyD+++OwxubhV46aUCPPXUCOlYREREmpGYn4iYoBhMOjAJX47nrwRQy2nru8dW8jWbURMUJB3DYWJjY6UjELm852zPofqaaixIXtDsz1FDN5OS8hESkoJ33x2H8PA0nDzZkUs2EZFC1DAHyDFGdR6FaxKuwa7Bu3jVdhFK91MXF+1ioxGZ11+P8Xv2OPV5lFJSUoIgF/rBAZEaWW1W+Kf7o7FdY7Ov2pLdtFptmDFjP+LiImA0VuOFF/Lw/PPRIlmIiPSK36O5loPnD2JM8BjccuAW7By/UzoOtZHS/XT5i3ZteTmCbTa49+4tHcVhPvroI+kIRC7PaDDi2aZnUX1NNV469FKzPkeqm4cOXUBY2CHExV2Lvn3TcfKkN5dsIiIB/B7NtYzuMhoDEgbgy0FfoqiqSDoOtZHS/XT5RbswJQUA0GHAAOEkjhMTEyMdgUgX5g+fD590H7zu9Xqz3ldb6W5arTY8/PB+jBzphdLSbnjuuSTk5FyLHj1MiuYgIqIf8Xs017Ou9zrY/GyYlsz31dY6pfvp8ot2WVoaAMA/IkI4iePk5eVJRyDSBaPBiKcbnkbV4Cq8kvLKVT9eyW6mphaic+ckrFkzFj17HsWJEx745z9HKvb8RET0c/wezfWM7ToWAw4OwBeDvkBJdYl0HGoDpfvp8ot21bFjAIDQEa7zYkBCv1ZPpEuPRz6Ojhkd8ZrHa1e9aivRTavVhv/7v+8RGdkexcW98NRTiTh5ciz69PF3+nMTEdGv4/dorum/V+3pSdOlo1AbKN1Pl1+0G0+dQrHBAK+AAOkoDtOtWzfpCES6YTQY8WTdk6gcUomFKQt/9WOd3c2jR4vRtWsiVq78Dbp3z0J2tjteeWWUU5+TiIiaj9+juaaxXcciPCEcn1/zOa/aGqZ0P11+0TaeP48ST0/pGA518OBB6QhEuvLUiKfQ4WgHvOrx6q9etZ3ZzUcfPYCICCMKCvrgH/84iNOnf4N+/VznB4hERK6A36O5rjU91sAaYMXM5JnSUaiVlO6ny7+9V3JwMJratUNMfr7TnkNppaWlCAwMlI5BpCuxh2LxXNRzWJiyEE+OeNLuxzijm8eOlWDixBycPz8aXbsexNdf98PAgXzrGCIiNeL3aK4tfF84csNzUexbjAAv/rBba5Tup8tftP0qKlAXHCwdw6FWrVolHYFId54e8TQ6HO2AV9q98otXbUd387HHDmLQIBvy88Mxb94BnDs3mks2EZGK8Xs017a6+2pYA62YkTRDOgq1gtL9dPmLtsVgwOFbbsH4nXyTeSJqmxeTX8SC6AVYdHgRHot8zGnPc/x4KSZOPI5z58agU6cEfP11Hwwe7Fo/MCQiItKivvv74lTfUyj1K4Wfp590HFIxl75om8+ehS+A9n37SkdxqNjYWOkIRLr0XNRz8M7yRqxbrN2rtiO6+dRTiRg40Iq8vIGYM+cA8vJGcckmItIIfo/m+tZ0WwNrkBUzEnnV1hql++nSi3ZRSgoAwOeaa4STONajjz4qHYFIl4wGI+ZXzodlqAVLUpf87J+3pZu5uRfRq9f3ePXVUQgNPYkjRxqwbNkYGI2GNiQmIiIl8Xs01zehxwT0TuiN7eHbUV5bLh2HWkDpfrr0ol2eng4ACBw2TDaIg61fv146ApFuLYheAO8sb/zT8M+f/bPWdvO555IQHl6PM2cG4eGHv8f58yMxdGhIW6MSEZHC+D2aPqzuuhrWECseTHxQOgq1gNL9dOlFu+bECTQCCBk6VDqKQ914443SEYh0y2gwYl7FPJiHmX921W5pN0+fLkffvvsQGzsSQUFncOhQLVat+g2v2EREGsXv0fRhYs+J6HWwFz4O/xiWOot0HGompfvp0ou29cwZFLq5wd3F3kf72LFj0hGIdO2lkS/B65gXXrS9eNnfb0k3X3wxGX361CA3NwLTp+/HhQvRiIwMc3RUIiJSEL9H048VnVf8eNVO4FVbK5Tup0sv2u4XLqDU21s6hsP5+PhIRyDSNaPBiHmWeSgfXo5lact++vvN6ebZs2aEh+/DggXRCAjIQ1JSNd5+eyyv2ERELoDfo+nHzb1vRo+EHvio30e8amuE0v106UW7Q1kZKv39pWM4nMlkko5ApHuxI2Phle2FF5pe+OnvXa2br7xyCL17VyEnZygeeGAfCgujEB3dydlRiYhIIfweTV9WdlqJprAmPJz4sHQUagal++nSi3ZAZSXqQ0OlYzhcZmamdAQi3TMajJhbPhcXIy9iedpyAL/czbw8CwYO/A7PPBMFk+kCDhyowMaN1/KKTUTkYvg9mr7c0vsW9DjYAx/0/gCV9ZXScegqlO6nyy7a1sZGhDU2wtC9u3QUh5s0aZJ0BCIC8PLIl+F53BPPNz0PwH43Fy06jJ49LcjOHo6//OU7FBdHYvToLkpHJSIiBfB7NP1ZHrYcTZ2b8HACr9pqp3Q/27Ro5+XlYf78+Y7K4lCl2dnwAOAZHi4dxeE2bNggHYGIALgb3TGnbA4uRl7EqvRVl3WzoKASgwd/hyeeiISvbxH27TNj06ZxvGITEbkwfo+mP5P7TEa3hG54v/f7vGqrnNL9NNhsNltrPtFms2HlypVITk7Gxo0bW/z5FosFJpMJZrMZvr6+rYnwq7LeeQfXPPAAjm3ahIF/+YvDH5+ICAAarY3w+cEH3hXeKB1RCgD417+O4IkngtDYGIB77jmETZuuhbu7y/4BIiIiIl379IdPcUfvO/DX/X/FO+PekY5DKtHq7/x2796NG264wZFZHMpy9CgAIDgyUjiJ48XGxkpHIKJL3I3umF06G2UjyjBpxm2IiPgW8+cPR4cOpfjPf0rx/vvXcckmItIJfo+mT7f3vR1dE7tiS68tqG6olo5Dv0Dpfrbqop2bm4vKykqYTCYsWLCgWRfturo61NXV/fS/WywWdOvWzWkX7W/vvBMjt2+HZ1MTDEbX+ia3oaEB7dq1k45BRJc0Whvh+f5v0TR/NVDQHXfdlYz33+cVm4hIb/g9mn5tz9mOO/vdiQf2PYCN126UjkN2KN3PVn0XuHz5chw8eBDz58/H6dOnMWfOHAA//pQgPz8f69evR3JyMnbt2oVt27YhKysLd9xxB0wm009/devWDQCwdu1apKenY8eOHdi5cycOHz6MNWvWoLi4+KefOsTGxqK6uhpvvvkmjh8/jg8++AB79uzBgQMHsHHjRpw7d+6yj21qasKmxESkuLtj0+bN2L9/P+Lj4/H+++8jJycHr7/+Ompray/7nIKCAqxbtw7Jycn46quvsH37dhw9ehTLli2D2Wy+7GPLy8uxfPlyZGRk4JNPPsEXX3yBlJQUrF27FoWFhZd9bE1NDd58803k5ORg69at2Lt3L77//nu88847OHv2LF5++WVYrVbExsbCarXi5ZdfxtmzZ/HOO+/g+++/x969e7F161bk5OTgzTffRE1NDW699dafHr+wsBBr165FSkoKvvjiC3zyySfIyMjA8uXLUV5eflkWs9mMZcuW4ejRo9i+fTu++uorJCcnY926dSgoKLjsY2tra/H6668jJycH77//PuLj47F//368++67OHPmDBYuXIimpqbLPufcuXPYuHEjDhw4gD179uCDDz7A8ePH8eabb6K6uvqyjy0uLsaaNWtw+PBh7Ny5Ezt27EB6ejpWrFiBsrKyyz7WYrHgrbfeQlZWFrZt24Zdu3YhOTkZ69evR35+/mUfW1dXh0WLFiE3NxdbtmxBfHw89u3bh02bNuH06dN49dVX0djYeNnn5OXlIS4uDgkJCdi9ezc+/PBDZGdnY/HixaisrLzsY0tKSrB69Wqkpqbi888/x2effYbU1FSsWrUKpaWll31sRUUFlixZgqysLHz88cf4+uuvkZiYiA0bNvwsd0NDA1577TWcPHkSmzdvxnfffYfvvvsOmzdvxsmTJ/Haa6+hoaHhss/Jz8/Hhg0bkJiYiK+//hoff/wxsrKysGTJElRUVFz2saWlpVi1ahVSU1Px2Wef4fPPP0dqaipWr16NkpKSyz62srISixcvRnZ2Nj788EPs3r0bCQkJiIuLQ15e3mUf29jYiFdffRWnT5/Gpk2bsG/fPsTHx2PLli3Izc3FokWLUFdX97Pc9r5GvPXWW7BYLJd9bFlZGVasWOGUrxELFy7EmTNn8O6777b5a0RVRRVClrYDsBT3/vVxvP32UKxevVLsa8T/Pj6/RvBrBL9GyH+NUNv3Efwa4byvEbNmzeLXCJ1+jfA/7w//f/pjk3UTXn71ZX6NUOHXiMcee8whXyOaq9W/o93Q0ICVK1figw8+wMqVKzF06NBf/XilL9oHu3WDR1UVIsvKHP7Y0k6ePInevXtLxyCi/2G1WfFDzkmEh/eVjkJEREL4PZq+fXziY/wh/A+Yum8qNlzLF8ZTG6X72eo/19iuXTs8+uij+P7776+6ZAOAh4cHfH19L/vLmTqWl6MqMNCpzyHl4MGD0hGI6ApGgxHJyYnSMYiISBC/R9O3u8LvQueEzni3+7uobayVjkNXULqfLvsLhEHV1Wjq1Ek6hlP894/dE5G6sJtERPrGOUCL/RejsUcj5ibMlY5CV1C6ny1atA0GQ7P/ktRQXY1QqxVuvXqJ5iAiIiIiIv34Y/8/olNCJ2zstpFXbZ1r0aJts9ma/ZekwiNHYATgFR4umsNZzp07Jx2BiOxgN4mI9I1zgADgTb830dijEY8kPCIdhf6H0v1s0aJdVVWFnTt3YuLEiQCA6upqbNiwAZ999hmmT58Oq9XqlJAtVZaWBgDwGzJEOIlzjB49WjoCEdnBbhIR6RvnAAHAnwb8CWGJYdjYhVdtNVG6ny1atDt06IBbb70VDQ0NAIBjx44hNzcXkydPRkZGRote7tyZKjIzAQChUVHCSZzjww8/lI5ARHawm0RE+sY5QP/1hu8baOjVgL8l/k06Cl2idD9b9fZe48ePR3x8PACguLgYW7duhZ+fH+67775mP4bFYoHJZHLK23vF33wzhu3aBT+VXNgdTek3Wyei5mE3iYj0jXOA/ldYYhguBl9ERY8KtHdrLx1H95TuZ5tfdTw4OBhz5szB5s2bkZ2d7YhMbWY4fx5FHh7SMZzmtddek45ARHawm0RE+sY5QP/rDd83UN+7Hn9L4FVbDZTuZ5su2itWrIC7uzseeugh/O53v8PDDz+MW2+9tVmP4cyLdmJYGAw2G0YWFjr0cYmIiIiIiJorNCkU5UHlvGrrUIsu2nV1dXjvvfdw+vRpbNmyBWPHjoWPjw8+/fRTDBkyBJMmTXJWzhYxWSyoDQqSjuE0sbGx0hGIyA52k4hI3zgH6EqLOi5Cfe96zE+cLx1F95TuZ6su2o7gzIt2qdGIjN/+FuO//tqhj6sW+fn56Ny5s3QMIroCu0lEpG+cA2RPSHIIzAFmVPTkVVuS0v1s8+9oq011SQkCbTa069NHOorTfPXVV9IRiMgOdpOISN84B8ie17xfQ32fejyW+Jh0FF1Tup8ut2gXJCcDADoMGCCcxHkGDRokHYGI7GA3iYj0jXOA7Jk6aCqCkoOwJngNGq2N0nF0S+l+utyifTEtDQAQMHSocBLnMZvN0hGIyA52k4hI3zgH6Jcs9FqIun51eDzxcekouqV0P11u0a4+fhxWAKGRkdJRnKaiokI6AhHZwW4SEekb5wD9khmDZyDwUCBWBq3kVVuI0v10uUW76fRpFBuN8HDwC6ypycCBA6UjEJEd7CYRkb5xDtCvednjZdT1q8MTiU9IR9Elpfvpcou22/nzKPHyko7hVF+76KupE2kdu0lEpG+cA/RrHhryEAJSArAykFdtCUr30+Xe3islMBD1Xl4YnZfnsMdUm4qKCvj4+EjHIKIrsJtERPrGOUBXsyp9FWZHzMZjCY9hUcwi6Ti6onQ/Xe6i7VdZifqQEOkYTrV06VLpCERkB7tJRKRvnAN0NbMiZsH/sD+W+S/jVVthSvfTpS7aNqsV1W5uSL7tNoz/9FOHPCYREREREZGjLE9bjrlD5+LJxCexcNRC6TjkJC510S4/dQodAHj07SsdxaliY2OlIxCRHewmEZG+cQ5Qc8wZOgd+R/yw1LQUVptVOo5uKN1Pl1q0i1JSAAA+11wjnMS5Zs2aJR2BiOxgN4mI9I1zgJprgWEBagbU4NmkZ6Wj6IbS/XSpRduckQEACBo+XDiJc33wwQfSEYjIDnaTiEjfOAeouR4d9ihMqSYs8V3Cq7ZClO6nSy3aNTk5qAcQEhEhHcWpRo8eLR2BiOxgN4mI9I1zgFpiARagZmANXkh+QTqKLijdT5datG1nzqDQ3R1Gd3fpKE517tw56QhEZAe7SUSkb5wD1BLzhs2DKdWEf3X8F6/aClC6ny61aLe7cAFl3t7SMZzOYDBIRyAiO9hNIiJ94xyglnrO9hyqr6nGPw/9UzqKy1O6ny61aHe8eBGVAQHSMZyua9eu0hGIyA52k4hI3zgHqKX+Nuxv8E3zxRveb/Cq7WRK99OlFu2A6mo0hIVJx3C6hIQE6QhEZAe7SUSkb5wD1FJGgxHPND2DqkFVeOnQS9JxXJrS/TTYbDabos94icVigclkgtlshq+vb5sfr6m+HlYPDxy45x5c9/77DkioXiUlJQgKCpKOQURXYDeJiPSNc4Baw2qzwi/DD1ajFZZBFhgNLnULVQ2l++ky/xaLjx5FOwBe4eHSUZxu9erV0hGIyA52k4hI3zgHqDWMBiOebngaVYOr8ErKK9JxXJbS/XSZi/bR9esxeMYMHN+6Ff3/+EcHJCQiIiIiInI+q80K01ETAMA82MyrtgtwmX+DFZmZAICQESOEkzhfbGysdAQisoPdJCLSN84Bai2jwYgn655E5ZBKvHb4Nek4LknpfrrMRTv+9tsRtWMHOjQ1wWB0mZ8f2FVZWYmOHTtKxyCiK7CbRET6xjlAbWG1WeGb6Quj1YjyIeW8ajuY0v10mX97hnPnUNi+vcsv2QCwbt066QhEZAe7SUSkb5wD1BZGgxGP1zyOiogKLDq8SDqOy1G6ny5z0U7o0gXudXWIKilxQDp1y87OxoABA6RjENEV2E0iIn3jHKC2stqs8M3yhbGJV21HU7qfLvNvzsdsRk1goHQMRWRkZEhHICI72E0iIn3jHKC2MhqM+Ef1P1ARUYE3j7wpHcelKN1Pl1m0g2pq0NS5s3QMRfj5+UlHICI72E0iIn3jHCBHeD7qeXhneSPWLRZWm1U6jstQup8usWjXWSwItVrh1quXdBRF+Pj4SEcgIjvYTSIifeMcIEcwGoyYXzkflqEWLEldIh3HZSjdT5dYtAsPHwYAdNDJ78QcO3ZMOgIR2cFuEhHpG+cAOcqC6AXwzvLGPw3/lI7iMpTup0ss2mVpaQAAvyFDhJMoY+LEidIRiMgOdpOISN84B8hRjAYj5lXMg3mYmVdtB1G6ny6xaFde+ulEWHS0cBJlbNy4UToCEdnBbhIR6RvnADnSSyNfgtcxL7xoe1E6iktQup8u8fZe8TfeiCHffINAK18sgIiIiIiIXMNTiU/h1VGv4q20tzB36FzpONQCLnHRNublodjTUzqGYmJjY6UjEJEd7CYRkb5xDpCjvTzyZXhle+GFpheko2ie0v10iYt2ckgIrG5uGHXhgoPSqVtjYyPc3d2lYxDRFdhNIiJ94xwgZ3gi4QksilmEFekrMDtitnQczVK6ny5x0TZVVKA2OFg6hmLeeOMN6QhEZAe7SUSkb5wD5Awvj3wZnsc98VzDc9JRNE3pfrrEoh1aWwtbly7SMRRz7733SkcgIjvYTSIifeMcIGdwN7pjTtkclI0ow6r0VdJxNEvpfmp+0a7Iz4cJQPu+faWjKGb//v3SEYjIDnaTiEjfOAfIWRaOWgiPHA882/CsdBTNUrqfml+0Cw8dAgB0HDhQOIlyevToIR2BiOxgN4mI9I1zgJzF3eiO2SWzUTaiDGsz1krH0SSl+6n5Rbs8PR0AEDB0qHAS5TQ1NUlHICI72E0iIn3jHCBnWjRqETxyPPB03dPSUTRJ6X5qftGuPnECTQBChw+XjqKYCzp5dXUirWE3iYj0jXOAnMnd6I5ZxbNQGlWK9UfXS8fRHKX7qflF23r6NIqMRrTz9paOopiRI0dKRyAiO9hNIiJ94xwgZ3s95nV4/OCBp2qeko6iOUr3U/OLtnt+Pkp0tGQDwMcffywdgYjsYDeJiPSNc4Cczd3ojgeLHkRxdDHiMuOk42iK0v002Gw2m6LPeInFYoHJZILZbIavr2+rH+dwQABqO3bEmLNnHZhO3erq6uDh4SEdg4iuwG4SEekb5wApob6pHj6nfeBX6ofCkYXScTRD6X5q/qLtX1mJ+pAQ6RiKev3116UjEJEd7CYRkb5xDpAS2ru1x4yCGSgaWYR/Z/1bOo5mKN1PTV+0bVYrat3ckPT73+O6bdscnJCIiIiIiEh96pvq4XPGB34lvGqrlaYv2qXHj8MLgEe/ftJRFBUbGysdgYjsYDeJiPSNc4CU0t6tPaZfmI6ikUXYdGyTdBxNULqfmr5oH9u8GQPvuw9Z//43rrn/fgcnVK/8/Hx07txZOgYRXYHdJCLSN84BUlJ9Uz06nu2IwKJAXBjFt5a7GqX7qemLtuXoUQBAcGSkcBJlffnll9IRiMgOdpOISN84B0hJ7d3aY9r5aSgYVYAt2Vuk46ie0v3U9KJdm5ODWgCBAwZIR1FURESEdAQisoPdJCLSN84BUtqSmCVod7od5pfPl46iekr3U9OLtu3sWRS6u8Po7i4dRVFlZWXSEYjIDnaTiEjfOAdIaZ7unngg7wFciLmArce3SsdRNaX7qelFu31BAco6dpSOobiqqirpCERkB7tJRKRvnAMkYVnMMrifccffLv5NOoqqKd1PTS/aHcvLURUQIB1DcQN09kflibSC3SQi0jfOAZLg6e6JB879eNX+6MRH0nFUS+l+anrRDqyuRmOnTtIxFPfNN99IRyAiO9hNIiJ94xwgKctjlsP9jDvmlc6TjqJaSvdTs4t2Y20twpqaYOzZUzqK4qZMmSIdgYjsYDeJiPSNc4CkeLp74r6z9+H86PP4+MTH0nFUSel+anbRLkpLgxsAr/Bw6SiKe+utt6QjEJEd7CYRkb5xDpCkFTEr4H6WV+1fonQ/DTabzaboM15isVhgMplgNpvh6+vb4s/PWLMGQx5+GDnbtqHf73/vhIRERERERETa8cC+B/DOte9gW842/L4fdyRJmr1oV2RmAgBCo6OFkygvNjZWOgIR2cFuEhHpG+cASVsxagXc8tzwaPGj0lFUR+l+avaiHX/rrRj+xRcwycQXVVZWhgAdvto6kdqxm0RE+sY5QGpw/3f3492x7+LTk5/itr63ScdRDaX7qdmLtiEvD0UeHtIxRGzZskU6AhHZwW4SEekb5wCpwcqYlXDLd8PcornSUVRF6X5qdtH2LCpCeSsu4a7g2muvlY5ARHawm0RE+sY5QGrQsX1H3HPyHpyNOYvPcz+XjqMaSvdTs4u2r9mMmsBA6RgiTp8+LR2BiOxgN4mI9I1zgNRiTcwauF1ww5yCOdJRVEPpfmp20Q6urYW1SxfpGCLc3NykIxCRHewmEZG+cQ6QWnRs3xF3596NMzFn8MXJL6TjqILS/dTkol1TVoYgmw3uvXtLRxHRqVMn6QhEZAe7SUSkb5wDpCZrRq2BW6Eb/u/C/0lHUQWl+6nJRbswJQUA0GHAAOEkMpKTk6UjEJEd7CYRkb5xDpCa+Hr44s6cO3E65jR2ndolHUec0v3U5KJdlpoKAAgYOlQ2iJA777xTOgIR2cFuEhHpG+cAqc3aUWthLDJi9vnZ0lHEKd1PTS7a1cePAwBCR4wQTiJjzZo10hGIyA52k4hI3zgHSG38PP1w54k7cXL0Sew+vVs6jiil+2mw2Ww2RZ/xEovFApPJBLPZDN8Wvk1X/IQJGPSf/yDYanVSOiIiIiIiIu0rry1H4MVA9MrthR/G/iAdRzc0edE2nj+PYi8v6RhiYmNjpSMQkR3sJhGRvnEOkBr5efrhjhN3IDcmF3vO7JGOI0bpfmryon0oKAiN7dsjJj/fSenUrbq6Gt7e3tIxiOgK7CYRkb5xDpBaldWUIdgSjN4neiPn2hzpOCKU7qcmL9p+lZWoCwmRjiFm1apV0hGIyA52k4hI3zgHSK0CvAJwW/Zt+GH0D9h7Zq90HBFK91Nzi7bNakVoXR1sXbtKRxEzefJk6QhEZAe7SUSkb5wDpGbrR66HsdSIh88+LB1FhNL91NyibTl3Dj4A2vfrJx1FTFpamnQEIrKD3SQi0jfOAVKzAK8A/O7Y75ATk4Pvzn0nHUdxSvdTc4t24aFDAACfgQOFk8gJDAyUjkBEdrCbRET6xjlAavf2yLdhvGjEg6celI6iOKX7qblF25yRAQAIGj5cOIkcLx2/4jqRmrGbRET6xjlAahfkHYRbsm7B8dHHsT9vv3QcRSndT80t2jUnTqARQMjQodJRxJw4cUI6AhHZwW4SEekb5wBpwfro9TCUGzDz5EzpKIpSup+aW7StZ86gwM0Nbu3bS0cRM2HCBOkIRGQHu0lEpG+cA6QFIR1CcHPmzcgenY3v876XjqMYpfupuUXb/cIFlOn8/Qn//e9/S0cgIjvYTSIifeMcIK2Ii46Dwayvq7bS/TTYbDabos94icVigclkgtlshq+vb7M/L9XPD1V+fvjN6dPOC0dEREREROTCbom/BV+O+RIHig9gdJfR0nFcjuYu2v5VVWgIDZWOISo2NlY6AhHZwW4SEekb5wBpyYaoDTBYDJiZq4+rttL91NRF29rYiMZ27XDwD3/AdR9+6OSE6tXU1AQ3NzfpGER0BXaTiEjfOAdIaybFT8Ku0buQVJaE6E7R0nGcSul+auqiXZKVhfYAPMPDpaOIWrRokXQEIrKD3SQi0jfOAdKaDSM2wFBlwPQT06WjOJ3S/dTWon3kCADANHiwcBJZf/7zn6UjEJEd7CYRkb5xDpDWdPbpjN+m/xYZMRlIvpAsHceplO6nphZt89GjAIDgyEjhJLK+++476QhEZAe7SUSkb5wDpEUbIjfAUO36V22l+6mpRbv+hx9QDSCgXz/pKKJ69eolHYGI7GA3iYj0jXOAtKirb1dMSJuAjFEZOFxwWDqO0yjdT00t2rZz51DYrh0MRk3FdrjGxkbpCERkB7tJRKRvnAOkVXGRcTDUGDDt+DTpKE6jdD81tbF6FBSgzMdHOoa4goIC6QhEZAe7SUSkb5wDpFVdfbvi+rTrkTYyDamFqdJxnELpfmpq0fYpL0d1YKB0DHEjRoyQjkBEdrCbRET6xjlAWhY3PA6GOgOmZbvmVVvpfmpq0Q6sqUFTp07SMcR98skn0hGIyA52k4hI3zgHSMu6m7rjutTrcGTkEZe8aivdT4PNZrMp+oyXWCwWmEwmmM1m+Pr6XvXj6ysr4e7jg+8feADXbtzo/IAqVltbC09PT+kYRHQFdpOISN84B0jrzpjPoCd6IvJIJFLGp0jHcSil+6mZi3ZRaiqMALz795eOIu6NN96QjkBEdrCbRET6xjlAWtfD1APXHbkOh0cextHio9JxHErpfmrmop22fDmGzp2L3M8+Q5/JkxVISEREREREpC+nyk+ht6E3RhwZgUPjD0nH0SzNXLQrs7IAAKFRUcJJ5MXGxkpHICI72E0iIn3jHCBX0MuvF649ci1SRqYgszhTOo7DKN1PzVy04ydNwtCvv4a/1apAOnUrKChAWFiYdAwiugK7SUSkb5wD5CpyL+air1tfRB+ORtL4JOk4DqF0PzVz0Tbm5aHIw0M6hip89tln0hGIyA52k4hI3zgHyFX08e+D3xz+DZKjk13mqq10PzWzaHsWF8PcjMu3HgwbNkw6AhHZwW4SEekb5wC5kriIOMAKTMt0jffVVrqfmlm0TRYLaoODpWOoQmlpqXQEIrKD3SQi0jfOAXIl/QL6YUzKGCRFJeF46XHpOG2mdD81s2iH1NXB2qWLdAxVqKmpkY5ARHawm0RE+sY5QK5mY8RGwAZMyZgiHaXNlO6nJhbtqqIi+NtsaNenj3QUVejXr590BCKyg90kItI3zgFyNf0C+iEmJQYJIxKQU5YjHadNlO6nJhbtwkM/vn9bx4EDhZOow3/+8x/pCERkB7tJRKRvnAPkijYO2QgYgCnpU6SjtInS/dTEon0xLQ0AEDB0qHASdbj//vulIxCRHewmEZG+cQ6QK+of2B8jD43EgcgDmr5qK91PTSza1cePwwogNDJSOooqLFu2TDoCEdnBbhIR6RvnALmqjYM3Am7A1PSp0lFaTel+Gmw2m03RZ7zEYrHAZDLBbDbD9ypv2xU/fjwG7NuHsKYmhdIRERERERHRf0XHR+NQ5CH80PQD+vjztbOuRhMXbbf8fJR4eUnHUI3Y2FjpCERkB7tJRKRvnAPkyjYO2gi4A1PTtHnVVrqfmrhopwQGot7LC6Pz8hRKp27l5eXw8/OTjkFEV2A3iYj0jXOAXF1UfBRShqfgpO0kevn1ko7TIkr3UxMXbf/KStSFhkrHUI1NmzZJRyAiO9hNIiJ94xwgV7dx0EagHTA1VXtXbaX7qfpF22a1Iqy+HujWTTqKalx33XXSEYjIDnaTiEjfOAfI1Q0OHozIpEh8O/xbnDGfkY7TIkr3U/WL9sXcXHgD8FD4DcbVLDc3VzoCEdnBbhIR6RvnAOlB3DVxQHtgypEp0lFaROl+qn7RLj58GADge801wknUo3379tIRiMgOdpOISN84B0gPIkIiMCxpGL4d9i3Oms9Kx2k2pfup+kW7PD0dABA0fLhwEvUI5e+rE6kSu0lEpG+cA6QXcQPiYPOwYeoR7fyuttL9VP2iXZuTg3oAwYMHS0dRjZSUFOkIRGQHu0lEpG+cA6QXw0KHYWjSUPxn6H+QZ9HGO0Mp3U/VL9q2s2dR4O4Oo7u7dBTVuP3226UjEJEd7CYRkb5xDpCebOi/ATYvG6Ye1sZVW+l+qn7RbldQgLIOHaRjqMq6deukIxCRHewmEZG+cQ6QnkSGRWJI4hDsidiD/Ip86ThXpXQ/DTabzaboM15isVhgMplgNpvh6+v7ix+XZjKhIjAQY0+eVDAdERERERER/ZrkC8kYGTASNx68EbvG75KOoyqqv2gHVlWhMSxMOoaqxMbGSkcgIjvYTSIifeMcIL2J7hSNwQmDsTtit+qv2kr3U9UX7ab6etg8PHDgT3/CuPfeUzihetXU1MDLy0s6BhFdgd0kItI3zgHSo8T8RMQExeCmAzfhq/FfScf5RUr3U9UX7aL0dLgD8AoPl46iKitXrpSOQER2sJtERPrGOUB6NKrzKAxKGISvh3yNgsoC6Ti/SOl+qnrRLk1NBQCY+NZel7ntttukIxCRHewmEZG+cQ6QXq3rsw42HxumHZomHeUXKd1PVS/alsxMAEBodLRwEnU5fPiwdAQisoPdJCLSN84B0qvRXUZjYMJAfDXoKxRVFUnHsUvpfqp60a7/4QdUAPDt1k06iqoEBwdLRyAiO9hNIiJ94xwgPVvXex1sJhumJavzqq10P1W9aBvy8lDUvj0MRlXHVJyHh4d0BCKyg90kItI3zgHSs990/Q0GJAzAF4O+UOVVW+l+qnqD9SgsxEUfH+kYqpObmysdgYjsYDeJiPSNc4D0bl3vdbD52TA9ebp0lJ9Rup+qXrR9zWZUBwVJx1Cd8ePHS0cgIjvYTSIifeMcIL0b23Us+h/sj52DdqKkukQ6zmWU7qeqF+3gmhpYO3eWjqE67777rnQEIrKD3SQi0jfOASJgba+1sPnZMCNphnSUyyjdT4PNZrMp+oyXWCwWmEwmmM1m+Pr6/uyf11ks8DCZsH/6dIx9+22BhOpltVph5O+tE6kOu0lEpG+cA0Q/Ct8XjtzwXBT7FiPAK0A6DgDl+6narwQFhw4BALz79xdOoj6vvPKKdAQisoPdJCLSN84Boh+t7bEW1kCrqq7aSvdTtRftI//6F4bPn49TX32FXjfdJJBQvfjTUiJ1YjeJiPSNc4Do/+u3rx9Ohp9UzVWbF+1LqrKzAQBh0dHCSdRn4cKF0hGIyA52k4hI3zgHiP6/1d1XwxpoxcykmdJRACjfT9VetOMnTsTgPXsQZLUKpFO3s2fPonv37tIxiOgK7CYRkb5xDhBdru/+vjjV5xRK/Uvh5+knmkXpfqr2om3My0Oxp6d0DFWKj4+XjkBEdrCbRET6xjlAdLlVXVfBGmLFzET5q7bS/VTtou1VWgqLySQdQ5X69OkjHYGI7GA3iYj0jXOA6HITe05E74O9sS18Gyx1FtEsSvdTtYu2n8WC2uBg6RiqVFdXJx2BiOxgN4mI9I1zgOjnVnZZCWuIFQ8mPCiaQ+l+qnbRDqmrg61rV+kYqlRcXCwdgYjsYDeJiPSNc4Do527qdRN6JvTER/0+Er1qK91PVS7alrw8mAC079tXOooqRUZGSkcgIjvYTSIifeMcILJvRacVaAprwkOJD4llULqfqly0i1JSAAAdBw4UTqJOO3bskI5ARHawm0RE+sY5QGTfLb1vQY+DPfBhnw/FrtpK91OVi/bFtDQAQOCwYbJBVGr27NnSEYjIDnaTiEjfOAeIftnysOVo6tSEWYmzRJ5f6X6qctGuOXECTQBChw+XjqJKb775pnQEIrKD3SQi0jfOAaJfNrnPZHRP6I6tvbeisr5S8edXup8Gm81mU/QZL7FYLDCZTDCbzfD19b3sn8Vfey3CDx5E58ZGiWhERERERETkYDt+2IHbe9+Ov+7/K94Z9450HKdS5UXbPT8fpV5e0jFUKzY2VjoCEdnBbhIR6RvnANGvu63vbeiW0A1bem1R/KqtdD9VuWh3KCtDhb+/dAzVmjlzpnQEIrKD3SQi0jfOAaKrWxq8FI3dGvF/if+n6PMq3U9VLtr+VVWoDw2VjqFan376qXQEIrKD3SQi0jfOAaKr+32/36PLwS54r+d7qG6oVux5le6n6hZtm9WKsIYGGLp3l46iWiNGjJCOQER2sJtERPrGOUDUPEsDL121E5S7aivdT9Ut2iXHjsETgGd4uHQU1SosLJSOQER2sJtERPrGOUDUPHeF34UuB7tgU/dNil21le6n+hbtI0cAAL6DBgknUa/6+nrpCERkB7tJRKRvnANEzbckcAkaezTikcRHFHk+pfupukXbnJEBAAjie2j/oj59+khHICI72E0iIn3jHCBqvj+E/wGdEjrh393+jdrGWqc/n9L9VN2iXffDD6gFEDRwoHQU1fr222+lIxCRHewmEZG+cQ4Qtcxi/8Vo7NGIuQlznf5cSvfTYLPZbIo+4yUWiwUmkwlmsxm+vr4//f346Gj0TEtDT/7Rm19UXl4OPz8/6RhEdAV2k4hI3zgHiFquU2InlIaWwtLVAk93T6c9j9L9VN1Fu31hIco6dpSOoWrLly+XjkBEdrCbRET6xjlA1HL/Mv0LDT0bMC9hnlOfR+l+qu6ineHjA3NoKMb+8INELCIiIiIiIlJQp8ROKA0pRWX3SrR3ay8dxyFUd9EOrKlBY6dO0jFULTY2VjoCEdnBbhIR6RvnAFHrvO77Ohp6OfeqrXQ/VXXRbqythcHLC9//9a8Y9847ErE0wWw2w2QySccgoiuwm0RE+sY5QNR6oUmhKA8qR0WPCqdctZXup6ou2oVHjsANgHd4uHQUVXuHP4QgUiV2k4hI3zgHiFrv9Y6vo753PeYnznfK4yvdT1Ut2qWpqQAAvyFDZIOo3PXXXy8dgYjsYDeJiPSNc4Co9e6/5n4EJwdjbeha1Dc5/h2olO6nqhbtyqwsAEDIiBHCSdQtJydHOgIR2cFuEhHpG+cAUdu85v0a6vvU4x+J/3D4YyvdT1Ut2vW5uTAD8O3aVTqKqnl5eUlHICI72E0iIn3jHCBqm6mDpv541Q5Zi0Zro0MfW+l+qmrRNuTlocjDQzqG6gUGBkpHICI72E0iIn3jHCBqu4VeC1HXtw6PJTzm0MdVup+qWrQ9i4tR/j/vqU32pV76XXYiUhd2k4hI3zgHiNpu+uDpCDwUiFXBqxx61Va6n6patH3NZtQEBUnHUL3f/e530hGIyA52k4hI3zgHiBzjFY9XUNevDk8kPuGwx1S6n6patENqa2Ht0kU6huq9/fbb0hGIyA52k4hI3zgHiBzjwSEPIiAlACuCVjjsqq10Pw02m82m6DNeYrFYYDKZYDab4evri+qSEngHB2P/Qw9h7OrVEpGIiIiIiIhIBValr8LsiNn4x8F/4PXRr0vHaTHVXLQLU1IAAB0HDBBOon6xsbHSEYjIDnaTiEjfOAeIHGdWxCwEpARgecByh1y1le6nahbti2lpAAD/iAjhJOr3j384/n3liKjt2E0iIn3jHCByrJfavYTa/rV4JumZNj+W0v1UzaJdlZ0NAAiLihJOon7Lli2TjkBEdrCbRET6xjlA5FizI2bD/7A/lvktg9VmbdNjKd1P1SzaTadPo8hohAff3uuq7rjjDukIRGQHu0lEpG+cA0SO96Lbi6gZUINnk55t0+Mo3U/VLNpu58+jxNNTOoYmpFz6fXYiUhd2k4hI3zgHiBxv7tC58DvihyW+S9p01Va6n6pZtL1KS2Hx85OOoQlhYWHSEYjIDnaTiEjfOAeInOMFwwuoGViD55Kea/VjKN1P1Sza/hUVqAsJkY6hCe7u7tIRiMgOdpOISN84B4icY96weTClmrDYd3Grr9pK91MVi7bNakVofT1sXbtKR9GEU6dOSUcgIjvYTSIifeMcIHKe523Po2ZgDRYkL2jV5yvdT1Us2uYzZ9ARgEe/ftJRNGHcuHHSEYjIDnaTiEjfOAeInGfesHnwTfPFmx3fbNVVW+l+qmLRLrr0i+k+11wjnEQb3nvvPekIRGQHu0lEpG+cA0TOYzQY8WzTs6i+phovHXqpxZ+vdD8NNpvNpugzXmKxWGAymWA2m5H9xhsY+dJLuJCcjE58H+2rampqgpubm3QMIroCu0lEpG+cA0TOZbVZ4ZfhB6vRCssgC4yG5t+Nle6nKi7atTk5aAAQEhEhHUUTFi5cKB2BiOxgN4mI9I1zgMi5jAYjnm54GlWDqxB7KLZFn6t0P1Vx0T48aRL6JiWha2OjRBQiIiIiIiLSAKvNCtNRE2wGW4uv2kpSRap2Fy6gtEMH6RiaERvbsp/eEJEy2E0iIn3jHCByPqPBiKfrf7xqL0xp/pVa6X6q4qJ9snt3VPn54TenT0tE0Zxz586hW7du0jGI6ArsJhGRvnEOECnjv1dtADAPNjfrqq10P1Vx0Q6oqkJDWJh0DM3Ys2ePdAQisoPdJCLSN84BImUYDUY8UfcEKodUYtHhRc36HKX7Kb5oWxsbEdbYCEPPntJRNCM8PFw6AhHZwW4SEekb5wCRcp4e8TQ6HO2AV9q90qz31Va6n+KLdklWFtoD8OrXTzqKZtTU1EhHICI72E0iIn3jHCBSjtFgxGM1j6EiogJvHHnjqh+vdD/FF+3S9HQAgGnwYOEk2lFaWiodgYjsYDeJiPSNc4BIWc9FPQfvLG+87PbyVa/aSvdTfNGuyMoCAIRERQkn0Y6hQ4dKRyAiO9hNIiJ94xwgUpbRYMRjVY/BMtSCxamLf/Vjle6n+KJdd+oUqgD49eolHUUzPv/8c+kIRGQHu0lEpG+cA0TKez7qeXhneeMlw0u/+nFK91P87b0+HzoUA48dQ++6OokYmlRdXQ1vb2/pGER0BXaTiEjfOAeIZDyX9BxiR8ZicepizBs2z+7HKN1P8Yu2R1ERLnbsKB1DU/71r39JRyAiO9hNIiJ94xwgkvFi9IvwOuaFF20v/uLHKN1P8Yv2QW9vNHTpgmtPnJCIQURERERERBr3dOLTWDhqIZakLsGjwx6VjiN/0Q6qqUFT587SMTQlNjZWOgIR2cFuEhHpG+cAkZzYkbHwyvbCAtsC+/9c4X7KL9o2G9z4Qmgt8tBDD0lHICI72E0iIn3jHCCSYzQYMbd8LsqHl2N52vKf/XOl+ym+aBsBePfvLx1DU7Zt2yYdgYjsYDeJiPSNc4BI1ssjX4bncU883/T8z/6Z0v0UX7QBwD8iQjqCpkRHR0tHICI72E0iIn3jHCCS5W50x9yLc3Ex8iJWpa+67J8p3U9VLNqhUVHSETTlwoUL0hGIyA52k4hI3zgHiOS9MvIVeJ7wxLMNz17295Xup/iiXQagQ0iIdAxNaWpqko5ARHawm0RE+sY5QCTP3eiO2aWzUTaiDGsy1vz095Xup/iiXerhIR1Bc3r27CkdgYjsYDeJiPSNc4BIHV4b9Ro8cjzwTN0zP/09pfspvmibfX2lI2jOvn37pCMQkR3sJhGRvnEOEKmDu9Eds4pnoTSqFG8ffRuA8v002Gw2m6LPeInFYoHJZMLOgQNxS1aWRATNKisrQ0BAgHQMIroCu0lEpG+cA0Tq0WhtRMeTHeFz0QfF0cWK91P8om3r3Fk6guasXLlSOgIR2cFuEhHpG+cAkXq4G93xUNFDKIkuQVxmnOL9FLto5+fkoEt4OHbNmIEb162TiEBEREREREQuqr6pHj6nfWAqM6EoukjR53Zv6SfYbDZUVFS0+Inq6upQV1f30/+e+c03P/6H7t1hsVha/Hh6tmjRIjz++OPSMYjoCuwmEZG+cQ4Qqc+Uk1OwdtRa3Pbwbdi0aJNDHtPHxwcGg+FXP6bFF+3//m41ERERERERkd6YzWb4XuVFvVu8aDvqon3hwgWMHDkSR9PT0a1HjxY/nl5ZLBZ069YN586du+q/XCJSDrtJRKRvnANE6pV8Khm/HfZbh/WzORftFv/RcYPB4NAvHiZ/f34xagVfX1/+90akQuwmEZG+cQ4QqU90r2gAyvZT/FXHiYiIiIiIiFwJF20iIiIiIiIiBxJbtD08PC77n9Q8Hh4emDFjBv97I1IZdpOISN84B4jUS6KfXLQ1xsPDAzExMfzvjUhl2E0iIn3jHCBSL4l+tvhVxx3lv28T1pyXRqfL5efno3PnztIxiOgK7CYRkb5xDhCpl9L95O9oa9CGDRukIxCRHewmEZG+cQ4QqZfS/eRFm4iIiIiIiMiBeNHWoNjYWOkIRGQHu0lEpG+cA0TqpXQ/edHWoLq6Or7QBpEKsZtERPrGOUCkXkr3kxdtDVq6dKl0BCKyg90kItI3zgEi9VK6n1y0NaKqqgo7d+7ExIkTcdddd0nHIaL/8d9+7tixQzoKEREJqK6uxoYNG+Dn54fp06fDarVKRyKi/1FZWYm9e/fi7Nmzij0nF22N6NChA2699VY0NDSgT58+0nGI6H/8t5/u7u7SUYiISMCxY8eQm5uLmTNnIiMjA3V1ddKRiOiSDRs24PXXX8euXbsU/SGY2O9o22w2VFRUwMfHBwaDQSKCJo0fPx7x8fHSMYjIDvaTiEi/iouLsXXrVvj5+eG+++6TjkNEVzAYDDh16hR69uypyPOJXbQNBgN8fX25ZBMRERGR5gUHB2POnDnYvHkzsrOzpeMQkTD+0XEiIiIiojZYsWIF1qxZAwBwd3dHbm6ucCIiksZFWyPq6urw3nvv4fTp09iyZQt/94dIRdhPIiJ9u/766+Hj44NPP/0UQ4YMwaRJk6QjEZEwsd/RJiIiIiIiIlKCbn5Hm4iIiIiIiMgVcdFWOYPB0Oy/iEgGO0lEpG+cA0TqtWXLFsyaNQsA8OSTT2LlypWKPC//6DgRERERERGRA/GirXJVVVXYuXMnJk6cCAAoKirCpk2b8N5772H+/PlobGwUTkhE1dXV2LBhAz777DNMnz4dVqtVOhIREQnIy8vD/PnzpWMQkQpw0Va5Dh064NZbb0VDQwMAYO/evSgvL8ef//xnNDQ04JtvvhFOSETHjh1Dbm4uJk+ejIyMDL7qOBGRDtlsNnz66acoLS2VjkJEKuAuHYBa5t577/3pPxcUFGDAgAGCaYgIAEaMGIHu3btjxYoVeOSRR+Dl5SUdiYiIFLZ7927ccMMNSE5Olo5CRCrAi7ZG7dy5E3fffbdiL09PRL8uODgYc+bMwebNm5GdnS0dh4iIFJSbm4vQ0FD+oJWIfsJFW4OSk5MRGhqKu+++G1lZWdJxiHRvxYoVWLNmDQDA3d0dubm5womIiEhJqampOHXqFL7++mucPXsW6enp0pGISBj/6LjK1dXV4eOPP8bp06exZcsWdO7cGXPnzkVISAjq6+uxatUq6YhEunf99dcjNTUVn376KYYMGYJJkyZJRyIiIgXdddddaGhowMqVK1FXVwe+qQ8R8e29iIiIiIiIiByIf3SciIiIiIiIyIG4aBMRERERERE5EBdtIiIiIiIiIgfiok1ERERERETkQFy0iYiIiIiIiByIizYRERERERGRA3HRJiIiIiIiInIgLtpEREREREREDsRFm4iIiIiIiMiBuGgTERERERERORAXbSIiIiIiIiIH+n/qPeSpNh27iwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "Graphics object consisting of 9 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:57,530 Plotting covered intervals... done\n", + "INFO: 2023-09-20 09:43:57,530 Uncovered intervals: ([],)\n", + "INFO: 2023-09-20 09:43:57,531 Rational case.\n", + "INFO: 2023-09-20 09:43:57,532 Plotting completion diagram with perturbation...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAALhCAYAAAB2cZOUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1yP5//A8den0kkHklNEEil0EpZTMYTNWJtjk8bM5jiMfX3HMDanmc3GZrNhm9McZxjGFGKlyKGzlBxyKtGJVNfvj37dXx8dhD59kuv5fXwe3933fd3X9b7vruvj6uq670slhBBIkiRJkiRJklQmOtoOQJIkSZIkSZKeJ7IDLUmSJEmSJElPQHagJUmSJEmSJOkJyA60JEmSJEmSJD0B2YGWJEmSJEmSpCcgO9CSJEmSJEmS9ARkB1qSJEmSJEmSnoDsQEtVghCCu3fvIl9rLkmSJEmSpskOtFQlpKenY25uTnp6urZDkSRJkiSpipMdaEnSgg0bNmg7BKkSkPVAkjRDti0JNFsPZAdakrSgXbt22g5BqgRkPZAkzZBtSwLN1gPZgZYkLdi6dau2Q5AqAVkPJEkzZNuSQLP1QCXkU1dSFXD37l3Mzc25c+cOZmZm2g7nse7fv4+BgYG2w5C0TNYDSdIM2bYk0Gw9kCPQkqQFixcv1nYIUiUg64EkaYZsWxJoth6Uywh0Tk4Oubm55RGPJD2VjIwMunTpwuHDhzExMdF2OC80PT099PX1tR2GJEmSJGnMM3egc3JyiIiIID8/v7xikiTpOaajo0PLli1lJ7oM5s2bx4wZM7QdhiRVObJtSaDZevDMHeisrCyioqKwsbHByMiovOKSJOk5lJ2dTWJiIg4ODhgbG2s7nErv6tWrWFlZaTsMSapyZNuSQLP1QK+8MjIyMpL/YEqSBMCdO3e4d+8eBgYGVK9eXdvhVFp//fUXI0eO1HYYklTlyLYlgWbrQbl1oCVJkgrt2rWLzMxMzMzMGDRokOxEl8DJyUnbIUhSlSTblgSarQfyLRySJJW76tWro6+vz927d7l//762w6m0UlNTtR2CJFVJsm1JoNl6IDvQkiSVOwMDA/kO1jLIzMzUdgiSVCXJtiWBZuuB7EBLkiRpSYsWLbQdgiRVSbJtSaDZeiA70JIkSVpy4MABbYcgSVWSbFsSaLYeyA60JEmSlvj7+2s7BEmqkmTbkkCz9UB2oP9fYmIiKpWK8PDwZ8onICAAlUpFWlpaucT1LIKCgmjdujXVqlWjf//+2g5HKkF51b2Kzlt6dsuWLdN2CJJUJcm2JYFm60GFdqCvXbvG+PHjsbW1xcDAAGtra/r27cvBgwcrMoxy4+XlxQcffKC2r0OHDiQnJ2Nubq6doB4yefJkXFxcSEhIYM2aNdoOp8qorJ1Sf3//Ir8oWVtbk5ycTKtWrbQTlFQquVKaJGmGbFsSaLYeVFgHOjExkTZt2vDPP/+waNEizp49y969e+natStjx46tqDA0Tl9fn3r16qFSqbQdCvHx8XTr1o2GDRtSo0YNbYdTJeTk5FTq/B6lq6tLvXr10NOTr3yvjObNm6ftECSpSpJtSwLN1oMK60CPGTMGlUpFSEgIb775Js2bN6dly5ZMnjyZf//9V0mXlJREv379MDExwczMjIEDB3L9+nXl+OzZs3FxceHnn3+mUaNGmJiY8P7775OXl8eiRYuoV68ederU4bPPPlMrX6VS8d1339G7d2+MjIxo0qQJmzdvLjXmyMhI+vTpg4mJCXXr1mXYsGHcunULKBjtCwwM5Ouvv0alUqFSqUhMTCx2CsfWrVtp2bIlBgYG2NjYsGTJErVybGxs+PzzzxkxYgSmpqY0atSIH374odTY7t+/z4QJE6hTpw6GhoZ06tSJEydOAP8bIU1JSWHEiBGoVKoSR6BtbGyYN28efn5+mJiY0LhxY/744w9u3ryp/Bxat25NaGio2nmlXdP06dN56aWXipTl5OTErFmzlO3Vq1fj4OCAoaEhLVq0YMWKFcqxnJwcxo0bR/369TE0NMTGxob58+eXek8eVvhz2L17N87OzhgaGtK+fXvOnj2rlu7YsWN06dIFIyMjrK2tmTBhgtprbwrvj7+/P+bm5owaNYomTZoA4OrqikqlwsvLCyj+LxL9+/dXm4NVXH6FoqOj6dChA4aGhrRs2ZKAgADlWF5eHiNHjqRJkyYYGRlhb2/P119/rRyfPXs2a9eu5Y8//lDqY0BAQLGj5YGBgbRr1w4DAwPq16/Pf/7zH3Jzc5XjXl5eTJgwgWnTpmFhYUG9evWYPXt2me+9VHZjxozRdgiSVCXJtiWBhuuBeEaZmZkiNDRUZGZmlpgmJSVFqFQq8fnnn5eaV35+vnB1dRWdOnUSoaGh4t9//xVubm7C09NTSTNr1ixhYmIi3nzzTRERESF27twp9PX1hbe3txg/fryIjo4WP//8swDE8ePHlfMAUatWLfHjjz+KmJgYMWPGDKGrqysiIyOFEEIkJCQIQJw6dUoIIcTVq1eFpaWlmD59uoiKihInT54UPXr0EF27dhVCCJGWliY8PDzEqFGjRHJyskhOTha5ubni0KFDAhC3b98WQggRGhoqdHR0xKeffipiYmLE6tWrhZGRkVi9erUSW+PGjYWFhYVYvny5iIuLE/Pnzxc6OjoiKiqqxHs1YcIEYWVlJfbs2SMiIiLE8OHDRc2aNUVKSorIzc0VycnJwszMTHz11VciOTlZZGVlFZtPYdnff/+9iI2NFe+//74wNTUVvXr1Er///ruIiYkR/fv3Fw4ODiI/P79M13T27FkBiPPnzyvlnDt3TgAiJiZGCCHEDz/8IOrXry+2bt0qLly4ILZu3SosLCzEmjVrhBBCLF68WFhbW4vDhw+LxMREceTIEbF+/fpS68/DCn8ODg4OYv/+/eLMmTPi1VdfFTY2NiInJ0cIIcSZM2eEiYmJWLp0qYiNjRVBQUHC1dVV+Pv7q90fMzMzsXjxYhEXFyfi4uJESEiIAMSBAwdEcnKySElJEUII4enpKSZOnKgWR79+/cTw4cNLza+w7jVs2FBs2bJFREZGinfeeUeYmpqKW7duCSGEyMnJEZ988okICQkRFy5cEL/99pswNjYWmzZtEkIIkZ6eLgYOHCh69eql1Mf79+8XqdeXL18WxsbGYsyYMSIqKkps375dWFpailmzZikxenp6CjMzMzF79mwRGxsr1q5dK1Qqldi/f/9j73vh98GWLVvEqlWrxNKlS5X7IxX17bffajsESaqSZNuShNBsPaiQDnRwcLAAxLZt20rNa//+/UJXV1ckJSUp+yIiIgQgQkJChBAFHWhjY2Nx9+5dJY23t7ewsbEReXl5yj57e3sxf/58ZRsQ7733nlp57du3F++//74QomgHeubMmaJnz55q6S9duqTWCSyuw/RoB3ro0KGiR48eammmTp0qHB0dle3GjRuLt956S9nOz88XderUEd99912x9ykjI0NUq1ZNrFu3TtmXk5MjrKysxKJFi5R95ubmah314jxadnJysgDEzJkzlX3Hjx8XgEhOTi7zNTk5OYlPP/1U2Z4+fbpo27atsm1tbV2kQzx37lzh4eEhhBBi/Pjxolu3bkqn/UkV/hw2btyo7EtJSRFGRkZKp3PYsGHi3XffVTvvyJEjQkdHR2RnZwshCu5P//791dI8WlcKlbUDXVJ+CxYsUPY9ePBANGzYUCxcuLDEaxwzZox44403lO3hw4eLfv36lRrrf//7X2Fvb692X5cvXy5MTEyU9uPp6Sk6deqklk/btm3FRx99VGIshWQH+smcPn1a2yFIUpUk25YkhGbrQYVM4RBCADx2XnBUVBTW1tZYW1sr+xwdHalRowZRUVHKPhsbG0xNTZXtunXr4ujoiI6Ojtq+GzduqOXv4eFRZPvhfB8WFhbGoUOHMDExUT6FL+SOj48v9ToevaaOHTuq7evYsSNxcXHk5eUp+x5er12lUlGvXr0i8ReKj4/nwYMHavlWq1aNdu3alXg9pXm47Lp16wLQunXrIvsK4ynLNfn6+rJu3Tqg4Oe/YcMGfH19Abh58yaXLl1i5MiRavd33rx5yr319/cnPDwce3t7JkyYwP79+5/4ukD9Z25hYYG9vb1yj8LCwlizZo1aDN7e3uTn55OQkKCc5+7u/lRll6Sk/B6OVU9PD3d3d7Wf5/fff4+7uzu1a9fGxMSEH3/8kaSkpCcqOyoqCg8PD7W22LFjRzIyMrh8+bKy7+E6AVC/fv0S66P09BITE7UdgiRVSbJtSaDZelAhTxY1a9YMlUpFVFRUqa9TE0IU28l+dH+1atXUjqtUqmL35efnPza2kjr1+fn59O3bl4ULFxY5Vr9+/cfmW6i4ayr8heJhTxJ/Sb+QlHT/HufhsgvPL25fYTxluaahQ4fyn//8h5MnT5Kdnc2lS5cYPHiwWj4//vgj7du3VztPV1cXADc3NxISEvjrr784cOAAAwcOpHv37mzZsuWJr+9RD1/P6NGjmTBhQpE0jRo1Uv67evXqZcpXR0enyH148OBBkXRlze/hWH///XcmTZrEkiVL8PDwwNTUlMWLFxMcHFzmvKD0n93j2lhZ2pP0ZArruyRJ5Uu2LQk0Ww8qZATawsICb29vli9fXuy65IUP3Dk6OpKUlMSlS5eUY5GRkdy5cwcHB4dnjuPhhxULt0ta5tHNzY2IiAhsbGyws7NT+xR2gPT19dVGkYvj6OjI0aNH1fYdO3aM5s2bP/UP1s7ODn19fbV8Hzx4QGhoaLncp8cpyzU1bNiQLl26sG7dOtatW0f37t2Vkey6devSoEEDLly4UOTeFj6gB2BmZsagQYP48ccf2bRpE1u3biU1NfWJYn34Z3779m1iY2OVn3nhz/jRGArvb0kKjz36s69duzbJycnKdl5eHufOnXuqWHNzcwkLC1NiPXLkCB06dGDMmDG4urpiZ2dX5C8hZa2Px44dU+voHzt2DFNTUxo0aFDmWKXy8SS/jEuSVHaybUmg2XpQYW/hWLFiBXl5ebRr146tW7cSFxdHVFQUy5YtU/503b17d5ycnPD19eXkyZOEhITg5+eHp6dnufwZffPmzfz888/ExsYya9YsQkJCGDduXLFpx44dS2pqKkOGDCEkJIQLFy6wf/9+RowYoXRSbGxsCA4OJjExkVu3bhU7QjdlyhQOHjzI3LlziY2NZe3atXz77bd8+OGHT30d1atX5/3332fq1Kns3buXyMhIRo0aRVZWFiNHjnzqfMuqrNfk6+vLxo0b2bx5M2+99ZbasdmzZzN//ny+/vprYmNjOXv2LKtXr+bLL78EYOnSpWzcuJHo6GhiY2PZvHkz9erVe+LX8X366accPHiQc+fO4e/vj6WlpfJXkI8++ojjx48zduxYwsPDiYuLY+fOnYwfP77UPOvUqYORkRF79+7l+vXr3LlzB4Bu3bqxe/dudu/eTXR0NGPGjHmiBXWWL1/O9u3biY6OZuzYsdy+fZsRI0YABb80hYaGsm/fPmJjY5k5c6by1pVCNjY2nDlzhpiYGG7dulXs6PeYMWO4dOkS48ePJzo6mj/++INZs2YxefJktSlQUsV49GcoSVL5kG1LAs3Wgwr7F7NJkyacPHmSrl27MmXKFFq1akWPHj04ePAg3333HVDwZ+IdO3ZQs2ZNunTpQvfu3bG1tWXTpk3lEsOcOXPYuHEjTk5OrF27lnXr1uHo6FhsWisrK4KCgsjLy8Pb25tWrVoxceJEzM3NlY7Ghx9+iK6uLo6OjtSuXbvY+ahubm78/vvvbNy4kVatWvHJJ5/w6aefPvPykgsWLOCNN95g2LBhuLm5cf78efbt20fNmjWfKd+yKOs1DRgwgJSUFLKysopM3XnnnXdYtWoVa9asoXXr1nh6erJmzRplBNrExISFCxfi7u5O27ZtSUxMZM+ePcq99/f3V14fV5oFCxYwceJE2rRpQ3JyMjt37lRGkJ2cnAgMDCQuLo7OnTvj6urKzJkzH/sbq56eHsuWLWPlypVYWVnRr18/AEaMGMHw4cOVX/qaNGlC165dy3BH/xfrwoULcXZ25siRI/zxxx9YWloC8N577+Hj48OgQYNo3749KSkpRV7PM2rUKOzt7ZV50kFBQUXKaNCgAXv27CEkJARnZ2fee+89Ro4cKRcd0BIfHx9thyBJVZJsWxJoth6oRHETcp9AVlYWUVFRODg4YGxsXF5xlTuVSsX27dvlktZVhJeXF15eXiW+nzggIICuXbty+/ZtuYhMBSr8PkhMTCQtLY309HT8/PywsLDQdmiV0rx58+QvL5KkAbJtSaDZeiCXJ5OeO+np6cTHx7Nr1y5thyJJz0T+Ay9JmiHblgRVZClvSSovpqamXLp0CRMTE22HIknPRC43LEmaIduWBJqtBxU/heP/H7jC3PxZipUkqRKSUzieTFZWVqWe+iZJzyvZtiTQbD2o2BHoO3dg7tyCT2FH+gXi5eXFBx98oO0wJEmqJAofoJYkqXzJtiWBZutBxXags7Lg1q2CT1ZWqUmvXbvG+PHjsbW1xcDAAGtra/r27cvBgwcrKFipMpo9ezYuLi6PTRcREcEbb7yBjY0NKpWKr776SuOxSdKTevXVV7UdgiRVSbJtSaDZelAp50AnJibSpk0b/vnnHxYtWsTZs2fZu3cvXbt2ZezYsVqNLScnR6vlS2WTlZWFra0tCxYsoF69etoOR5KKdfr0aW2HIElVkmxbEmi2HlTKDvSYMWNQqVSEhITw5ptv0rx5c1q2bMnkyZPVVmtLSkqiX79+mJiYYGZmxsCBA7l+/ToAMTExqFQqoqOj1fL+8ssvsbGxUVZii4yMpE+fPpiYmFC3bl2GDRvGrVu3lPReXl6MGzeOyZMnY2lpSY8ePcp0XmZmJn5+fpiYmFC/fn2WLFlSpmvfuXMn7u7uGBoaYmlpqfYOw9u3b+Pn50fNmjUxNjamd+/exMXFKcfXrFlDjRo12LVrF/b29hgbG/Pmm2+SmZnJ2rVrsbGxoWbNmowfP15txTobGxvmzp3L0KFDMTExwcrKim+++UYtrtLuNfxvZPjXX3/FxsYGc3NzBg8eTHp6upJGCMGiRYuwtbXFyMgIZ2dntaW5AwICUKlUHDx4EHd3d4yNjenQoQMxMTHK9c2ZM4fTp0+jUqlQqVSsWbOm2PvYtm1bFi9ezODBgzEwMCjTvZekilarVi1thyBJVZJsWxJoth5Uug50amoqe/fuZezYscqS2Q8rfKevEIL+/fuTmppKYGAgf//9N/Hx8QwaNAgAe3t72rRpw7p169TOX79+PUOHDkWlUpGcnIynpycuLi6EhoYqK8sNHDhQ7Zy1a9eip6dHUFAQK1euLNN5U6dO5dChQ2zfvp39+/cTEBBAWFhYqde+e/dufHx8eOWVVzh16pTSkSzk7+9PaGgoO3fu5Pjx4wgh6NOnj9qKc1lZWSxbtoyNGzeyd+9eAgIC8PHxYc+ePezZs4dff/2VH374Qa3jCrB48WKcnJw4efIk06dPZ9KkSfz9999luteF4uPj2bFjB7t27WLXrl0EBgayYMEC5fiMGTNYvXo13333HREREUyaNIm33nqLwMBAtXw+/vhjlixZQmhoKHp6espqfIMGDWLKlCm0bNmS5ORkkpOTi8QgSc8TIyMjbYcgSVWSbFsSaLgeiGeUmZkpQkNDRWZm5uMTX70qxPDhBZ+rV4tNEhwcLACxbdu2UrPav3+/0NXVFUlJScq+iIgIAYiQkBAhhBBffvmlsLW1VY7HxMQIQERERAghhJg5c6bo2bOnWr6XLl0SgIiJiRFCCOHp6SlcXFzU0jzuvPT0dKGvry82btyoHE9JSRFGRkZi4sSJJV6Th4eH8PX1LfZYbGysAERQUJCy79atW8LIyEj8/vvvQgghVq9eLQBx/vx5Jc3o0aOFsbGxSE9PV/Z5e3uL0aNHK9uNGzcWvXr1Uitv0KBBonfv3kKIst3rWbNmCWNjY3H37l0lzdSpU0X79u2FEEJkZGQIQ0NDcezYMbVyRo4cKYYMGSKEEOLQoUMCEAcOHFCO7969WwAiOztbKcfZ2bnYe1SSxo0bi6VLlz7ROdLTKfw+2LJli1i1apVYunSpSElJ0XZYldbq1au1HYIkVUmybUlCaLYeVLoRaPH/UytUKlWp6aKiorC2tsba2lrZ5+joSI0aNYiKigJg8ODBXLx4UZn2sW7dOlxcXJTlu8PCwjh06BAmJibKp0WLFkDBaGqhh0eBy3JefHw8OTk5eHh4KOdYWFhgb29f6jWFh4fz8ssvl3i9enp6tG/fXtlXq1Yt7O3tlesFMDY2pmnTpsp23bp1sbGxUXtnct26dblx44Za/g/HWrhdmG9Z7jUUTAUxNTVVtuvXr6+UExkZyb179+jRo4faffvll1/U7jUULLH9cB5AkXglqSooqb1LkvRsZNuSQLP1oNJ1oJs1a4ZKpVLrmBVHCFFsJ/vh/fXr16dr166sX78egA0bNvDWW28pafPz8+nbty/h4eFqn7i4OLp06aKke3QqyePOE0/5au3S/tRQUp6P3odq1aqpHVepVMXuy8/Pf2w8hfmW5V6XVHZhOYX/v3v3brV7FhkZWWQ6ycP5FOZflngl6Xmzdu1abYcgSVWSbFsSaLYeVLoOtIWFBd7e3ixfvpzMzMwix9PS0oCCEdCkpCQuXbqkHIuMjOTOnTs4ODgo+3x9fdm0aRPHjx8nPj6ewYMHK8fc3NyIiIjAxsYGOzs7tU9x86/Lep6dnR3VqlVTe+Dx9u3bxMbGlnrtTk5OJb6mz9HRkdzcXIKDg5V9KSkpxMbGql3v03o41sLtwlH1st7r0jg6OmJgYEBSUlKRe/bwyPbj6Ovrqz0AKUnPM7ncsCRphmxbEryAS3mvWLGCvLw82rVrx9atW4mLiyMqKoply5YpUw26d++Ok5MTvr6+nDx5kpCQEPz8/PD09FSbcuHj48Pdu3d5//336dq1Kw0aNFCOjR07ltTUVIYMGUJISAgXLlxg//79jBgxotRO2uPOMzExYeTIkUydOpWDBw9y7tw5/P390dEp/XbPmjWLDRs2MGvWLKKiojh79iyLFi0CCkbm+/Xrx6hRozh69CinT5/mrbfeokGDBvTr1+9ZbjcAQUFBLFq0iNjYWJYvX87mzZuZOHEiUPZ7XRpTU1M+/PBDJk2axNq1a4mPj+fUqVMsX778iX5DtLGxISEhgfDwcG7dusX9+/eLTZeTk6OMcufk5HDlyhXCw8M5f/58mcuSJE2Tyw1LkmbItiWBZutBxXagjY3B0rLgU8rSik2aNOHkyZN07dqVKVOm0KpVK3r06MHBgweVVWVUKhU7duygZs2adOnShe7du2Nra8umTZvU8jIzM6Nv376cPn0aX19ftWNWVlYEBQWRl5eHt7c3rVq1YuLEiZibm5fa2S3LeYsXL6ZLly689tprdO/enU6dOtGmTZtSb4+XlxebN29m586duLi40K1bN7UR59WrV9OmTRteffVVPDw8EEKwZ8+eIlMnnsaUKVMICwvD1dWVuXPnsmTJEry9vYGy3+vHmTt3Lp988gnz58/HwcEBb29v/vzzT5o0aVLmPN544w169epF165dqV27Nhs2bCg23dWrV3F1dcXV1ZXk5GS++OILXF1deeedd54oZknSpOnTp2s7BEmqkmTbkkCz9UAlnnbC7v/LysoiKioKBweHsq03XriEt7n5sxQrlSMbGxs++OADucy49MwKvw8SExNJS0sjPT0dPz8/LCwstB1apTR//nz5D70kaYBsWxJoth7oaSTX0siOsyRJEgBDhw7VdgiSVCXJtiWBZutBhc+BvvP//5MkSXrRHT58WNshSFKVJNuWBJqtBxU6An2HO8xlLgAzmYk5L9ZotJeXFy4uLnz11VfaDkVNYmKitkOQpBfSk8z/lySp7GTbkkCz9aBCR6CzyOLW//8vi6xS0167do3x48dja2uLgYEB1tbW9O3bt8TXvEkvhtmzZ+Pi4vLYdD/++COdO3emZs2a1KxZk+7duxMSEqL5ACXpCeTm5mo7BEmqkmTbkkCz9aBSvsYuMTGRNm3a8M8//7Bo0SLOnj3L3r176dq1K2PHjtVqbDk5OVotXyqbgIAAhgwZwqFDhzh+/DiNGjWiZ8+eXLlyRduhSZLi2rVr2g5Bkqok2bYk0Gw9qJQd6DFjxqBSqQgJCeHNN9+kefPmtGzZksmTJ6st+JGUlES/fv0wMTHBzMyMgQMHcv36dQBiYmJQqVRER0er5f3ll19iY2OjrOwXGRlJnz59MDExoW7dugwbNoxbt24p6b28vBg3bhyTJ0/G0tKSHj16lOm8zMxM/Pz8MDExoX79+ixZsqRM175z507c3d0xNDTE0tISHx8f5djt27fx8/OjZs2aGBsb07t3b+Li4pTja9asoUaNGuzatQt7e3uMjY158803yczMZO3atdjY2FCzZk3Gjx+v9p5rGxsb5s6dy9ChQzExMcHKyopvvvlGLa7S7jX8b2T4119/xcbGBnNzcwYPHkx6erqSRgjBokWLsLW1xcjICGdnZ7VVCAMCAlCpVBw8eBB3d3eMjY3p0KEDMTExyvXNmTOH06dPo1KpUKlUrFmzptj7uG7dOsaMGYOLiwstWrTgxx9/JD8/X/4FQ6pUHvdqS0mSno5sWxJoth5Uug50amoqe/fuZezYscWuBlijRg2goDPWv39/UlNTCQwM5O+//yY+Pp5BgwYBYG9vT5s2bVi3bp3a+evXr2fo0KGoVCqSk5Px9PTExcWF0NBQ9u7dy/Xr1xk4cKDaOWvXrkVPT4+goCBWrlxZpvOmTp3KoUOH2L59O/v37ycgIICwsLBSr3337t34+PjwyiuvcOrUKaUjWcjf35/Q0FB27tzJ8ePHEULQp08fHjx4oKTJyspi2bJlbNy4kb179xIQEICPjw979uxhz549/Prrr/zwww9Fls9evHgxTk5OnDx5kunTpzNp0iT+/vvvMt3rQvHx8ezYsYNdu3axa9cuAgMDWbBggXJ8xowZrF69mu+++46IiAgmTZrEW2+9RWBgoFo+H3/8MUuWLCE0NBQ9PT1GjBgBwKBBg5gyZQotW7YkOTmZ5OTkIjGUJCsriwcPHsjXqUmVyo4dO7QdgiRVSbJtSaDheiCeUWZmpggNDRWZmZmPTXtVXBXD//9/V8XVYtMEBwcLQGzbtq3UvPbv3y90dXVFUlKSsi8iIkIAIiQkRAghxJdffilsbW2V4zExMQIQERERQgghZs6cKXr27KmW76VLlwQgYmJihBBCeHp6ChcXF7U0jzsvPT1d6Ovri40bNyrHU1JShJGRkZg4cWKJ1+Th4SF8fX2LPRYbGysAERQUpOy7deuWMDIyEr///rsQQojVq1cLQJw/f15JM3r0aGFsbCzS09OVfd7e3mL06NHKduPGjUWvXr3Uyhs0aJDo3bu3EKJs93rWrFnC2NhY3L17V0kzdepU0b59eyGEEBkZGcLQ0FAcO3ZMrZyRI0eKIUOGCCGEOHTokADEgQMHlOO7d+8WgMjOzlbKcXZ2LvYelWbMmDGiadOmSj6SZhR+H2zZskWsWrVKLF26VKSkpGg7rEpL1kdJ0gzZtiQhNFsPKt0ItPj/qRUqlarUdFFRUVhbW2Ntba3sc3R0pEaNGkRFRQEwePBgLl68qEz7WLduHS4uLjg6OgIQFhbGoUOHMDExUT4tWrQACkZTCz26XPXjzouPjycnJ0dZdhzAwsICe3v7Uq8pPDycl19+ucTr1dPTo3379sq+WrVqYW9vr1wvgLGxMU2bNlW269ati42NDSYmJmr7bty4oZb/w7EWbhfmW5Z7DQVTQUxNTZXt+vXrK+VERkZy7949evTooXbffvnlF7V7DeDk5KSWB1Ak3iexaNEiNmzYwLZt2zA0NHzqfCSpvH3xxRfaDkGSqiTZtiTQbD2o+IVUHqNZs2aoVCqioqLo379/iemEEMV2sh/eX79+fbp27cr69et56aWX2LBhA6NHj1bS5ufn07dvXxYuXFgkn8KOG1BkKsnjznt4XvKTMDIyKvGYKGHByEfvw6PLeqtUqmL35efnPzaewnzLcq9LKruwnML/3717Nw0aNFBLZ2BgoLb9cD6F+Zcl3uJ88cUXfP755xw4cECtYy5JlcGMGTO0HYIkVUmybUmg2XpQ6UagLSws8Pb2Zvny5WRmZhY5npaWBhSMgCYlJXHp0iXlWGRkJHfu3MHBwUHZ5+vry6ZNmzh+/Djx8fEMHjxYOebm5kZERAQ2NjbY2dmpfYqbf13W8+zs7KhWrZraA4+3b98mNja21Gt3cnIq8SE3R0dHcnNzCQ4OVvalpKQQGxurdr1P6+FYC7cLR9XLeq9L4+joiIGBAUlJSUXu2cMj24+jr6+v9gBkaRYvXszcuXPZu3dvkb8iSFJlMG/ePG2HIElVkmxbEmi2HlS6DjTAihUryMvLo127dmzdupW4uDiioqJYtmyZMtWge/fuODk54evry8mTJwkJCcHPzw9PT0+1zpKPjw93797l/fffp2vXrmqjn2PHjiU1NZUhQ4YQEhLChQsX2L9/PyNGjCi1k/a480xMTBg5ciRTp07l4MGDnDt3Dn9/f3R0Sr/ds2bNYsOGDcyaNYuoqCjOnj3LokWLgIKR+X79+jFq1CiOHj3K6dOneeutt2jQoAH9+vV7ltsNQFBQEIsWLSI2Npbly5ezefNmJk6cCJT9XpfG1NSUDz/8kEmTJrF27Vri4+M5deoUy5cvZ+3atWWO08bGhoSEBMLDw7l16xb3798vNt2iRYuYMWMGP//8MzY2Nly7do1r166RkZFR5rIkSdPeeecdbYcgSVWSbFsSaLYeVGgH2hhjLP//f8YYl5iuSZMmnDx5kq5duzJlyhRatWpFjx49OHjwIN999x1Q8Kf9HTt2ULNmTbp06UL37t2xtbVl06ZNanmZmZnRt29fTp8+ja+vr9oxKysrgoKCyMvLw9vbm1atWjFx4kTMzc1L7eyW5bzFixfTpUsXXnvtNbp3706nTp0e+zoVLy8vNm/ezM6dO3FxcaFbt25qI86rV6+mTZs2vPrqq3h4eCCEYM+ePUWmTjyNKVOmEBYWhqurK3PnzmXJkiV4e3sDZb/XjzN37lw++eQT5s+fj4ODA97e3vz5559PtFLQG2+8Qa9evejatSu1a9dmw4YNxaZbsWIFOTk5vPnmm9SvX1/5yHlxUmXy559/ajsESaqSZNuSQLP1QCVKmlxbRllZWURFReHg4ICxccmd4kJ3uAPwwi3jXZnZ2NjwwQcf8MEHH2g7FOk5V/h9kJiYSFpaGunp6fj5+cnXB5bgxIkTtG3bVtthSFKVI9uWBJqtBxX+EKHsOEuSJBVISUnRdgiSVCXJtiWBZutBpZwDLUmS9CLIzs7WdgiSVCXJtiWBZutBhY9A3ymYwYH5CzgQ7eXlhYuLC1999ZW2Q1GTmJio7RCkKiY6NZp6OvW0HUal16xZM22HIElVkmxbEmi2HlToCPSdOzB3bsGnsCNdkmvXrjF+/HhsbW0xMDDA2tqavn37lviaN+nFMHv2bFxcXB6bbtu2bbi7u1OjRg2qV6+Oi4sLv/76q+YDlAA4bH6YA1cPaDuMSu/QoUPaDkGSqqSlP/2o7RCkSkCT37EVOgKdlQW3bv3vv0sahU5MTKRjx47UqFGDRYsW4eTkxIMHD9i3bx9jx44lOjq64oJ+RE5ODvr6+lorXyobCwsLPv74Y1q0aIG+vj67du3i7bffpk6dOsrbRSTNMbtpxmmr06TEpTA0f6i2w6m0/Pz8tB2CJFUJGRk5rFoVyaZNaYTF1uJB6qcktxrHnpHfajs0SYs0+R1bKedAjxkzBpVKRUhICG+++SbNmzenZcuWTJ48WW3Bj6SkJPr164eJiQlmZmYMHDiQ69evAxATE4NKpSrS2f7yyy+xsbFRVvaLjIykT58+mJiYULduXYYNG8atwl4+BdMuxo0bx+TJk7G0tKRHjx5lOi8zMxM/Pz9MTEyoX78+S5YsKdO179y5E3d3dwwNDbG0tMTHx0c5dvv2bfz8/KhZsybGxsb07t1bbdXDNWvWUKNGDXbt2oW9vT3Gxsa8+eabZGZmsnbtWmxsbKhZsybjx49Xe8+1jY0Nc+fOZejQoZiYmGBlZcU333yjFldp9xr+NzL866+/YmNjg7m5OYMHDyY9PV1JI4Rg0aJF2NraYmRkhLOzM1u2bFGOBwQEoFKpOHjwIO7u7hgbG9OhQwdiYmKU65szZw6nT59GpVKhUqlYs2ZNsffRy8uL119/HQcHB5o2bcrEiRNxcnLi6NGjZfo5SM9mUL1BNL3UlJt1b+Ie7s7V9KvaDqlSerSdSZJUNvn5gr//TmTAgEDq1g3B1DSHSZNcCA5uSX2zNAw79OKvAb/gHuBOTl6OtsOVtEST37GVrgOdmprK3r17GTt2bLGrAdaoUQMo6Iz179+f1NRUAgMD+fvvv4mPj2fQoEEA2Nvb06ZNG9atW6d2/vr16xk6dCgqlYrk5GQ8PT1xcXEhNDSUvXv3cv36dQYOHKh2ztq1a9HT0yMoKIiVK1eW6bypU6dy6NAhtm/fzv79+wkICCAsLKzUa9+9ezc+Pj688sornDp1SulIFvL39yc0NJSdO3dy/PhxhBD06dOHBw8eKGmysrJYtmwZGzduZO/evQQEBODj48OePXvYs2cPv/76Kz/88INaxxUK3lvt5OTEyZMnmT59OpMmTeLvv/8u070uFB8fz44dO9i1axe7du0iMDCQBQsWKMdnzJjB6tWr+e6774iIiGDSpEm89dZbBAYGquXz8ccfs2TJEkJDQ9HT02PEiBEADBo0iClTptCyZUuSk5NJTk4uEkNxhBAcPHiQmJgYunTp8tj00rNToaK/dX+cbjlxo9kNmiY3JehykLbDqnTkcsOSVHaXL99l+vRgWrY8jIHBJXr2tGHLlg7cv69Pz56h/PZbFDk5tbiY0JnMo0H4nOpBWOcwGp5syOW7l7UdvqQFGv2OFc8oMzNThIaGiszMzMemvXpViOHDCz5XrxafJjg4WABi27Ztpea1f/9+oaurK5KSkpR9ERERAhAhISFCCCG+/PJLYWtrqxyPiYkRgIiIiBBCCDFz5kzRs2dPtXwvXbokABETEyOEEMLT01O4uLiopXnceenp6UJfX19s3LhROZ6SkiKMjIzExIkTS7wmDw8P4evrW+yx2NhYAYigoCBl361bt4SRkZH4/fffhRBCrF69WgDi/PnzSprRo0cLY2NjkZ6eruzz9vYWo0ePVrYbN24sevXqpVbeoEGDRO/evYUQZbvXs2bNEsbGxuLu3btKmqlTp4r27dsLIYTIyMgQhoaG4tixY2rljBw5UgwZMkQIIcShQ4cEIA4cOKAc3717twBEdna2Uo6zs3Ox9+hRaWlponr16kJPT08YGBiIn376qUznSU+v8Ptgy5YtYtWqVWLp0qVifdh6oXdRT6huqMSK0yu0HWKlMnfuXG2HIEmV1oMHeWLt2gjRvfshYWYWLiBHgBDVqiWI1q0DxMcfB4srV+4We25h2/o89HNBGsIgzkAcunioAqOXKgNNfsdWuhFo8f9TK1QqVanpoqKisLa2xtraWtnn6OhIjRo1iIqKAmDw4MFcvHhRmfaxbt06XFxccHR0BCAsLIxDhw5hYmKifFq0aAEUjKYWenS56sedFx8fT05OjrLsOBTMybW3ty/1msLDw3n55ZdLvF49PT3at2+v7KtVqxb29vbK9QIYGxvTtGlTZbtu3brY2NhgYmKitu/GjRtq+T8ca+F2Yb5luddQMBXE1NRU2a5fv75STmRkJPfu3aNHjx5q9+2XX35Ru9cATk5OankAReItC1NTU8LDwzlx4gSfffYZkydPJiAg4InzkZ6Nt40356qfw+yKGWNajOGdo3KJ3ULjxo3TdgiSVKmcPHmNd945SuPGx9DXv83w4Y4cOOCGsfE9Bg8+zqFDSeTk2HDmjCfz5rXDysq02HwK29b0NtPZnbKbfL18ulXvxtfhX1fk5Uhapsnv2Ap/jd3jNGvWDJVKRVRUFP379y8xnRCi2E72w/vr169P165dWb9+PS+99BIbNmxg9OjRStr8/Hz69u3LwoULi+RT2HEDikwledx5D89LfhJGRkYlHhMlLBj56H14dFlvlUpV7L78/PzHxlOYb1nudUllF5ZT+P+7d++mQYMGaukMDAzUth/OpzD/ssT7KB0dHezs7ABwcXEhKiqK+fPn4+Xl9cR5Sc/GvpY9l00v0ya4DT91/onTAacJ6hyEvu6L/UDub7/9JjvR0gstLe0eP/wQyebNdzl3zop795oDdTA2jsbD4yyDB9dk5EhHjI3bPzavhz3ctvrY9iHqdhRtE9ryQesPCDscxi9dftHA1UiVjSa/YyvdCLSFhQXe3t4sX76czMzMIsfT0tKAghHQpKQkLl26pByLjIzkzp07ODg4KPt8fX3ZtGkTx48fJz4+nsGDByvH3NzciIiIwMbGBjs7O7VPcfOvy3qenZ0d1apVU3vg8fbt28TGxpZ67U5OTiW+ps/R0ZHc3FyCg4OVfSkpKcTGxqpd79N6ONbC7cJR9bLe69I4OjpiYGBAUlJSkXv28Mj24+jr66s9APkkhBDcv3//qc6Vnp2JvglRnaLoH9if0M6hWIdZv/DzEj09PbUdgiRVqPx8wa5d8bz+egB16pygZs18PvrIjZMnHWjQ4Abjxh0jMjKVzExHgoK8GD/eGWPjao/P+BGPtq2mNZtyufVlWh1rxa9dfsU10JV7uffK67KkSkqT37GVrgMNsGLFCvLy8mjXrh1bt24lLi6OqKgoli1bpkw16N69O05OTvj6+nLy5ElCQkLw8/PD09NTbcqFj48Pd+/e5f3336dr165qo59jx44lNTWVIUOGEBISwoULF9i/fz8jRowotZP2uPNMTEwYOXIkU6dO5eDBg5w7dw5/f390dEq/3bNmzWLDhg3MmjWLqKgozp49y6JFi4CCkfl+/foxatQojh49yunTp3nrrbdo0KAB/fr1e5bbDUBQUBCLFi0iNjaW5cuXs3nzZiZOnAiU/V6XxtTUlA8//JBJkyaxdu1a4uPjOXXqFMuXL2ft2rVljtPGxoaEhATCw8O5detWiR3i+fPn8/fff3PhwgWio6P58ssv+eWXX3jrrbfKXJZU/nRUOmz33M6ck3O4YX8Du+t2BCQFaDssrXl0+pIkVUUJCWlMmXKcFi0Oo69/hb59m7Jjhwe5ubr06RPC5s2xPHhQh/PnO/HNNx1wcLB85jKLa1vG1Yw563mWQYGDCO8YTsPwhiTdSXrmsqTKS5PfsRXagTY2BkvLgo+xccnpmjRpwsmTJ+natStTpkyhVatW9OjRg4MHD/Ldd98BBX/a37FjBzVr1qRLly50794dW1tbNm3apJaXmZkZffv25fTp0/j6+qods7KyIigoiLy8PLy9vWnVqhUTJ07E3Ny81M5uWc5bvHgxXbp04bXXXqN79+506tSJNm3alHp/vLy82Lx5Mzt37sTFxYVu3bqpjTivXr2aNm3a8Oqrr+Lh4YEQgj179hSZOvE0pkyZQlhYGK6ursydO5clS5Yo70su671+nLlz5/LJJ58wf/58HBwc8Pb25s8//6RJkyZlzuONN96gV69edO3aldq1a7Nhw4Zi02VmZjJmzBhatmxJhw4d2LJlC7/99hvvvCPn31YGn7T9hD9v/Umeft4LPS9RvlNeqopycvJYteocXbsGYGp6FltbU7780oOEhIa0bh3PnDmh3LiRR2qqG7t3e/Hmm83R0Sn9uacnVVrb2ui5kUVnFpHaNJVmt5px8KJcoK2q0uR3rEqUNLm2jLKysoiKisLBwQHj0nrF/+9FXsq7srKxseGDDz7ggw8+0HYo0nOu8PsgMTGRtLQ00tPT8fPzw8LCotj0calxtLvYjrRWafj968fazmX/a0RVEBYW9thfrCXpeRAcfJUVK87zzz96XLnigBA1gTs0aBBJt24PGD3alo4dG1ZYPGVpW38n/s2r+a/yoOYDFicuZorrlAqKTqoomvyOrfApHObmsvMsSVKBZhbNuNLqCo7HHfml8y+4Bbq9UPMSH/dueEmqrFJSspg3LxQ3t0AMDOJ56SUrfvmlI2lpZnTufJrvvz9LdnZ1Ll/24JdfulRo5xnK1rZ62PQgtlYsFvEWfNj6Q4YcHlIBkUkVSZPfsZXuLRySJL1YjKsZc7ZzwbzELR23YH3KmrDmYTQyb6Tt0DSuPJ5fkKSKkJ8v+OOP8/z88xWOHTMlNbUl4I6ubjJNm56nT58bjBvXgqZNW2k7VKDsbauxeWMuu1zmpaCX2Oi5kYjACEI6hmCoZ6jhCKWKoMnv2Er5EKFUsRITE+X0DUmrdFQ6bPbczPzT87nV/NYLMy/xxx9/1HYIklSilJQUNm7cyNtvv03NmnPw8WnGrl3tUakE/fr9yx9/nCcnpx4xMZ1ZutSDpk1rajtkxZO0LUM9Q8I9w/E97MvZDmdpcLoBCWkJGoxOqiia/I6t8DnQkiRVXU86B7o4f134i36qfuSa5/LFxS+Y7DpZgxFLklTowYMHBAcHs2/fPvbt20doaChCCFq1aoWHx2CaNOnF6NGOWFiUvGbB8+6r8K+Y3Ggyenf0+EP8QW/b3toOSaqk5Ai0JEmVSm/b3sTUjKFmQk2mtJrC0MNDtR2SxsybN0/bIUgvuISEBL7//nt8fHywtLSkc+fOrFixAltbW3766ScuX77M2bNn+eGHj5k+vc1z03l+2rb1gcsHHEg/gCpfxSsWr7AgbEE5RyZVJE1+x1bKDrSXlxfjx4/ngw8+oGbNmtStW5cffviBzMxM3n77bUxNTWnatCl//fWXck5gYCDt2rXDwMCA+vXr85///Ifc3FwAVq5cSYMGDYqsZvfaa68xfPhwZfvPP/+kTZs2GBoaYmtry5w5c5Q8AGbPnk2jRo0wMDDAysqKCRMmaPhOSNKLqUmNJlxyukTrY63Z0GUDToFOVfLhwilT5FP/UsXKyMhg165djB8/nubNm2Nra8u4ceO4ceMGH374IcHBwdy4cUOZuvHoyrHPi2dpW90adyPOMg7LOEumO09nQOAA8sWTr4YraZ8mv2MrZQcaYO3atVhaWhISEsL48eN5//33GTBgAB06dODkyZN4e3szbNgwsrKyuHLlCn369KFt27acPn2a7777jp9++kn5zWPAgAHcunWLQ4cOKfnfvn2bffv2Ke+G3rdvH2+99RYTJkwgMjKSlStXsmbNGj777DMAtmzZwtKlS1m5ciVxcXHs2LGD1q1bV/yNkaQXhHE1Y854nmHw4cGc7Vg15yWuWLFC2yFIVVx+fj6nTp1i4cKFdOvWDQsLC/r27cuuXbvo1q0b27ZtIyUlhaNHjzJz5kzatWuHrq6utsN+Zs/athqZN+Ky22XaHG3DFs8ttDrSiqwHWeUUnVRRNPkdq/E50FlZEB39+HxatPjf4ipeXl7k5eVx5MgRAPLy8jA3N8fHx4dffilYv/7atWvUr1+f48eP8+eff7J161aioqJQqQpexr5ixQo++ugj7ty5g46ODv369cPS0pKffvoJgB9++IFZs2Zx+fJldHV16dKlC71792b69OlKTL/99hvTpk3j6tWrfPnll6xcuZJz586Vy8IlklQVlccc6OIsObWEqTZT0UvT40/+xLuJdzlFrF1xcXE0a9ZM22FIVcyNGzfYv38/+/bt4++//+b69esYGxvTtWtXvL298fb2plmzZsq/l1VRebYt/yP+rG2/lhoRNQhpHEIzC9lmnxea/I7V+Ah0dDS0afP4z6OdbCcnJ+W/dXV1qVWrltqIb926dYGCL4qoqCg8PDzUvgw6duxIRkYGly9fBsDX15etW7cqSz+vW7eOwYMHK79ph4WF8emnn2JiYqJ8Ro0aRXJyMllZWQwYMIDs7GxsbW0ZNWoU27dvV5veIUmS5kxxncLfd/9Gla+id83eLDq5SNshlYuTJ09qOwSpCsjJySEgIIDp06fj5uZG3bp1GTZsGOfOncPf35+DBw+SmpqqNnWjKneeoXzb1prOa1gWtYw71ndwTHdkV/yucstb0ixNfsdq/D3QLVpAWd5j3aKF+vajo7wqlUptX2Hjz8/PRwhR5MugcGC9cH/fvn3Jz89n9+7dtG3bliNHjvDll18q6fPz85kzZw4+Pj5FYjM0NMTa2pqYmBj+/vtvDhw4wJgxY1i8eDGBgYFyRFqSKsDLjV8m9k4sbeLa8JHLR4QGhvK75+/aDuuZ1K5dW9shSM8hIQTnz59XRpkPHTpERkYGtWvXpmfPnkyaNIkePXpQr149bYeqNeXdtsY7j8f5kjM9c3rSt05f5obOZYb7jHItQyp/mvyO1XgH2tgY3Nw0W4ajoyNbt25V60gfO3YMU1NT5QEIIyMjfHx8WLduHefPn6d58+Zqyzu6ubkRExODnZ1dieUYGRnx2muv8dprrzF27FhatGjB2bNncdP0BUqSBPxv0QOPIA82e26m1eFWhHiEYFzt+XyFpoGBgbZDkJ4Td+/e5Z9//lFeMZeQkEC1atXo2LEj//3vf/H29sbFxQUdnUr7aFOF0kTb6mLdhfN3z9Mmug0z28wkLDCMrV22oqOS97yy0uR3bJVYiXDMmDF89dVXjB8/nnHjxhETE8OsWbOYPHmy2peJr68vffv2JSIigrfeekstj08++YRXX30Va2trBgwYgI6ODmfOnOHs2bPMmzePNWvWkJeXR/v27TE2NubXX3/FyMiIxo0bV/TlStILzVDPkFOep/A77MevHr/S4FyD53ZeYnx8PB07dtR2GFIllJ+fz8mTJ5UO8/Hjx8nNzcXOzo4+ffrg7e2Nl5cXpqam2g61UtJU22po1pBLbS7R+UhndnjtwPGwI6EvhWKib1LuZUnPTpPfsVWiA92gQQP27NnD1KlTcXZ2xsLCgpEjRzJjhvqfVwqfQI6JiWHoUPV3y3p7e7Nr1y4+/fRTFi1aRLVq1WjRogXvvPMOADVq1GDBggVMnjyZvLw8WrduzZ9//kmtWrUq7DolSfqfX7r8QpvwNkxqNAnHdEe2397Oq01f1XZYT8TLy0vbIUiVyNWrV9Ue/ktJScHU1JRu3bqxbNkyvL29sbW11XaYzwVNti19XX2CvYIZdXQUq9qvomFkQ4Ktg7GvZa+xMqWno8l6IFcilCSp3GjqLRylCUgKoFdOL+7Xvs/cuOdrXuJnn33Gxx9/rO0wJC25d+8eR48eVUaZz549i0qlok2bNsrbMl566SX5nM1TqKi2tfLsSt6v9z6693T5/d7vvN7sdY2XKZWdJuuB7EBLklRutNGBBrh89zJuMW7cdLvJ60dfZ0uXLc/FvMT8/Hw5Z/UFIoQgOjpaGWUOCAggOzub+vXr07NnT7y9venevbt8uLQcVGTbCrocRPfM7tyzusfMqJl82u7TCilXejxN1gP5zS1J0nOvoVnDgkUPjrRhu+d2HI84kpGToe2wHuvzzz/XdgiSht2+fZstW7YwatQobGxscHR0ZNq0aeTk5DBnzhxOnz7NlStXWLNmDUOGDJGd53JSkW2rY8OOJDRIoH5Efea6z+XVgFflyoWVhCbrgRyBliSp3GhrBPphI46MYHX71ZhHmlf6eYlyBLrqycvL48SJE8q0jODgYPLz82nRooUyLcPT01P+e6lh2mhbufm5dDncheNex7E7YkdYuzDMDMwqNAZJ3Qs3Ai2E4N1338XCwgKVSkV4eDheXl588MEHGi139uzZuLi4aLSMipKYmKjcu+cp70fl5ORgZ2dHUFCQxst6VFmu08bGhq+++qrCYtKER6/z7NmzNGzYkMzMTO0G9pR+7vwzy6OXc7fhXVpltuKP839oO6QSzZ8/X9shSOXg0qVLrFq1igEDBmBpaYmHhwdLly7FysqK77//nosXLxIVFcVXX31F7969Zee5Amijbenp6HHM6xjvB73P+bbnaRjTkIibERUeh/Q/mqwHlbIDvXfvXtasWcOuXbtITk6mVatWbNu2jblz52o7NI2pyE7pk/D396d///5q+6ytrZWfi6b98MMPNG7cuNK+6uvEiRO8++67ZU4fEBCASqUiLS1Nc0E9o9atW9OuXTuWLl2q7VCe2hinMRy+dxjd+7r0r9Of2SdmazukYg0bNkzbIUhPITs7m7179zJp0iQcHR1p1KgRo0eP5vLly0yYMIGgoCBu3bqlTN1o1KiRtkN+4Wizba3ouIJV51eRWTcT5/vObIndorVYXnSarAeVsgMdHx9P/fr16dChA/Xq1UNPTw8LC4sq+77LnJycSp3fo3R1dZWfi6Z98803yqsEK6PatWtrZTRJCKHRpeTffvttvvvuO/Ly8jRWhqZ1atiJC/UuUDeqLnPazKmU8xIDAgK0HYJUBkIIzp07x5IlS+jZsyc1a9akd+/ebNmyhQ4dOvD7779z8+ZNjh8/zpw5c+jQoUOFfD9KJdN22xrZaiTH8o6hn67PAKsB/Df4v1qN50WlyXpQ6TrQ/v7+jB8/nqSkJFQqFTY2NgBqUziio6MxNjZm/fr1ynnbtm3D0NCQs2fPAnDnzh3effdd6tSpg5mZGd26deP06dNqZS1YsIC6detiamrKyJEjuXfvXqmxFY4e7t69G2dnZwwNDWnfvr1SZqFjx47RpUsXjIyMsLa2ZsKECWp/DrexsWHevHn4+/tjbm7OqFGjaNKkCQCurq6oVCrl3YXFTV3p378//v7+peZXKDo6mg4dOmBoaEjLli3VKlNeXh4jR46kSZMmGBkZYW9vz9dff60cnz17NmvXruWPP/5ApVKhUqkICAgodrQ8MDCQdu3aYWBgQP369fnPf/6j1sHz8vJiwoQJTJs2DQsLC+rVq8fs2bNLvd8nT57k/PnzvPLKK8q+wrJ///13OnfujJGREW3btiU2NpYTJ07g7u6OiYkJvXr14ubNm8p5+fn5fPrppzRs2BADAwNcXFzYu3evWnkhISG4urpiaGiIu7s7p06dKjW+wnv/8BQOlUrFqlWreP311zE2NqZZs2bs3LlTib1r164A1KxZE5VKpfwchRAsWrQIW1tbjIyMcHZ2ZsuW/41aFNa9ffv24e7ujoGBAUeOHFGmHa1cuRJra2uMjY0ZMGCA2gh3Wa79Ud7e3qSkpBAYGPjYe1CZWZlakeSexEuHX2K3125aHG3B3ft3tR2WomnTptoOQSpBSkoKGzdu5O2336Zhw4a0bt2aGTNmoKOjw/z584mIiCApKUmZulGR8/ylx6sMbau9VXsSGyXS4GwD5redj3eAd6X7Jb6q02g9EM8oMzNThIaGiszMzBISCCHCyvD5/9PT0tLEp59+Kho2bCiSk5PFjRs3hBBCeHp6iokTJyrZLl++XJibm4vExERx5coVYWFhIZYuXSqEECI/P1907NhR9O3bV5w4cULExsaKKVOmiFq1aomUlBQhhBCbNm0S+vr64scffxTR0dHi448/FqampsLZ2bnEaz106JAAhIODg9i/f784c+aMePXVV4WNjY3IyckRQghx5swZYWJiIpYuXSpiY2NFUFCQcHV1Ff7+/ko+jRs3FmZmZmLx4sUiLi5OxMXFiZCQEAGIAwcOiOTkZCXOR69bCCH69esnhg8fXmp+CQkJAhANGzYUW7ZsEZGRkeKdd94Rpqam4tatW0IIIXJycsQnn3wiQkJCxIULF8Rvv/0mjI2NxaZNm4QQQqSnp4uBAweKXr16ieTkZJGcnCzu37+v5H3q1CkhhBCXL18WxsbGYsyYMSIqKkps375dWFpailmzZikxenp6CjMzMzF79mwRGxsr1q5dK1Qqldi/f3+J93vp0qWiRYsWavsKy27RooXYu3eviIyMFC+99JJwc3MTXl5e4ujRo+LkyZPCzs5OvPfee8p5X375pTAzMxMbNmwQ0dHRYtq0aaJatWoiNjZWCCFERkaGqF27thg0aJA4d+6c+PPPP4Wtra3adRancePGSr0TQij3fP369SIuLk5MmDBBmJiYiJSUFJGbmyu2bt0qABETEyOSk5NFWlqaEEKI//73v8o1xcfHi9WrVwsDAwMREBAghPhf3XNychL79+8X58+fF7du3RKzZs0S1atXF926dROnTp0SgYGBws7OTgwdOrTM1/7oz7NQu3btxOzZs0u89uIUfh9s2bJFrFq1SixdulSpy9o2+showT2EWbiZOHfjnLbDEUIIcfDgQW2HIP2/nJwcceTIETFjxgzRtm1boVKpBCBatWolpkyZIvbv3y+ysrK0HaZURpWpbT3IeyA6H+osEIgmR5qI29m3tR3SC0OT9UDzHeiw/y/lcZ+w/52ydOlS0bhxY7VsiutIvvLKK6Jz587i5ZdfFj169BD5+flCiIIbZmZmJu7du6eWvmnTpmLlypVCCCE8PDzUOlhCCNG+ffsydaA3btyo7EtJSRFGRkZKp3PYsGHi3XffVTvvyJEjQkdHR2RnZwshCjpd/fv3V0tTUiemrB3okvJbsGCBsu/BgweiYcOGYuHChSVe45gxY8Qbb7yhbA8fPlz069ev1Fj/+9//Cnt7e+X+C1HwC46JiYnIy8tTrqNTp05q+bRt21Z89NFHJcYyceJE0a1bt2LLXrVqlbJvw4YNAlBrKPPnzxf29vbKtpWVlfjss8+KlD9mzBghhBArV64UFhYWavX4u+++e6oO9IwZM5TtjIwMoVKpxF9//SWE+F8dun37tloaQ0NDcezYMbW8R44cKYYMGaJ23o4dO9TSzJo1S+jq6opLly4p+/766y+ho6MjkpOTy3TtJdW9119/Xe0Xv7KozB1oIYRYeWalUN1QCd1LumJLzBZth6P2XSJVvAsXLojvv/9evP7668LMzEwAwsLCQgwaNEj8/PPP4vLly9oOUXpKlbFtTQiaIMhCmJwxEaevn9Z2OC8ETdYDzU/SagGElTHdE/r5559p3rw5Ojo6nDt3DpVKBUBYWBgZGRlFltnOzs4mPj4egKioKN577z214x4eHhw6dOix5Xp4eCj/bWFhgb29PVFRUUrZ58+fZ926dUoaIQT5+fkkJCTg4OAAgLu7+5NfcClKyu/hWPX09HB3d1diBfj+++9ZtWoVFy9eJDs7m5ycnCd+E0lUVBQeHh7K/Qfo2LEjGRkZXL58WXmAxsnJSe28+vXrc+PGjRLzzc7OxtDQsNhjD+dVt25doODht4f3FeZ99+5drl69WuRBxI4dOyrTeqKionB2dlabz/zwvXsSD8dWvXp1TE1NS73OyMhI7t27R48ePdT25+Tk4OrqqravuJ9zo0aNaNiwoVrc+fn5xMTEYGxs/NhrL4mRkRFZWVmlpnnevNv6XVpfaU23zG68afUm/w3+L5+1/0xr8bi5uWmt7BdRRkYGAQEByivm4uLi0NXVxcPDg6lTp9KzZ0/atGmDrq6utkOVnlFlbFtfd/gat0g3RtQegdsDN36N/pUhLYZoO6wqTZP1QPMdaGNAQ/GfPn2azMxMdHR0uHbtGlZWVkDBnM/69esXO3m8Ro0aGomlsPOYn5/P6NGjmTBhQpE0Dz+JXb169TLlq6Ojg3jkVd0PHjwokq6s+T0c6++//86kSZNYsmQJHh4emJqasnjxYoKDg8ucFxT8gvBw57lw38NlAUWWo1WpVOTnlzwfzNLSssj88uLyKizj0X2P5l1cjIX7Hr3Hz+JJr7Pw2O7du2nQoIHaMQMDA7XtsvycC6/p4est7dpLkpqaWinmEZY3jwYeJGQk4HbOjc/bfU5YQBh7PPdoZeXCnTt3MmXKlAov90WRn5/PmTNnlA7z0aNHefDgATY2Nnh7e7Nw4UK6deuGubm5tkOVylllbVvDHYfTMrklnnc8Gdp4KKf+PcWilxZpO6wqS5P1oNI9RFhWqamp+Pv78/HHH/P222/j6+tLdnY2UPAbx7Vr19DT08POzk7tY2lpCYCDgwP//vuvWp6Pbpfk4XS3b98mNjaWFi1aKGVHREQUKdfOzg59ff0S8yw89uhbD2rXrk1ycrKynZeXx7lz58oU56Ox5ubmEhYWpsR65MgROnTowJgxY3B1dcXOzk4ZoX84rse9icHR0ZFjx46pdUKPHTuGqalpkQ7hk3B1dSU6OvqZO7dmZmZYWVlx9OhRtf3Hjh1T/iLg6OjI6dOnlToEZa8PT6K4n7OjoyMGBgYkJSUVqTPW1taPzTMpKYmrV68q28ePH0dHR4fmzZuX6dpLcu7cuSIj4FVFPZN6JLVLouPhjuzz2kezoGak3Uur8DjGjBlT4WVWdTdu3OC3337Dz88PKysrXF1d+fTTTzE2NmbJkiXExMRw4cIFvv/+e15//XXZea6iKnPbcq/vzkWbi1iftmbxS4vpHtBdPlyoIZqsB89tB/q9997D2tqaGTNm8OWXXyKE4MMPPwSge/fueHh40L9/f/bt20diYiLHjh1jxowZhIaGAjBx4kR+/vlnfv75Z2JjY5k1axYREWV74fmnn37KwYMHOXfuHP7+/lhaWirvSv7oo484fvw4Y8eOJTw8nLi4OHbu3Mn48eNLzbNOnToYGRmxd+9erl+/zp07dwDo1q0bu3fvZvfu3URHRzNmzJgneofw8uXL2b59O9HR0YwdO5bbt28zYsQIAOzs7AgNDWXfvn3ExsYyc+ZMTpw4oXa+jY0NZ86cISYmhlu3bhU7+j1mzBguXbrE+PHjiY6O5o8//mDWrFlMnjz5mVYA6tq1K5mZmWX+uZRm6tSpLFy4kE2bNhETE8N//vMfwsPDmThxIgBDhw5FR0eHkSNHEhkZyZ49e/jiiy+eudxHNW7cGJVKxa5du7h58yYZGRmYmpry4YcfMmnSJNauXUt8fDynTp1i+fLlrF279rF5GhoaMnz4cE6fPs2RI0eYMGECAwcOpF69emW69uIkJiZy5coVunfvXm7XXtno6ehx1OsoY4LGcMH9AtZx1py5caZCY1iyZEmFllcV5eTkEBAQwPTp03Fzc6Nu3boMGzaMs2fP4u/vzz///ENqaiq7du1i/PjxNG/e/LF/fZGef5W9bVkaW5LokUi3gG4c9DpIk+NNSM1O1XZYVY5G68GzTqJ+7EOET+FxDxGuXbtWVK9eXXmLgBBChIaGCn19fbF7924hhBB3794V48ePF1ZWVqJatWrC2tpa+Pr6iqSkJOWczz77TFhaWgoTExMxfPhwMW3atDI9RPjnn3+Kli1bCn19fdG2bVsRHh6uli4kJET06NFDmJiYiOrVqwsnJye1h7geffCs0I8//iisra2Fjo6O8PT0FEIUPBn+/vvvCwsLC1GnTh0xf/78Yh8ifDS/wgfD1q9fL9q3by/09fWFg4OD2oN29+7dE/7+/sLc3FzUqFFDvP/+++I///mP2j24ceOGci2AOHToULEPnQUEBIi2bdsKfX19Ua9ePfHRRx+JBw8eKMfL8jBkcQYPHiz+85//FLmuh8su7sG81atXC3Nzc2U7Ly9PzJkzRzRo0EBUq1ZNODs7Kw/2FTp+/LhwdnYW+vr6wsXFRXljxpM+RLh9+3a1NObm5mL16tXK9qeffirq1asnVCqVcv35+fni66+/Fvb29qJatWqidu3awtvbWwQGBpZ4jUIUPETo7OwsVqxYIaysrIShoaHw8fERqampZb724u7p559/Lry9vUu87pJU9ocIS/LzuZ+FzjUdoXtZV2yMrnwPH0nq4uLixLfffiv69u2rfDfVrl1b+Pr6il9++UV5gFaSngeTj00WZCKqn6suwpLDHn+CVCmohHi2v49nZWURFRWFg4NDlV+eNCAggK5du3L79m2NzaWW1J09e5bu3btz/vz5KruQzrOYPXs2O3bsKNcVLO/fv0+zZs3YsGHDE68AWfh9kJiYSFpaGunp6fj5+T0X78g9kXwCzzRPshtlM/Xs1AqZlzhv3jxmzJih8XKed3fv3uWff/5h37597N+/nwsXLlCtWjU6duyIt7c3PXv2xMXF5Zn+4iVVLc9b21oXtQ6/Gn4ArL69Gj9HPy1HVDVosh7IpZKkSq1169YsWrSIxMREtbdsSJpz8eJFPv7440q7fLqmtK3fliTzJFxPu7LYYzGnAk6xz3OfRh8ufHjRI+l/8vPzOXnypPLw3/Hjx8nNzcXOzo7evXvj7e2Nl5eX/KVaKtHz1rZ8HXxpeb0lnW52YrjtcE4dO8XSDku1HdZzT5P1QP66LlV6w4cPl53nCtS8eXNGjx6t7TC0wtLYkoT2CXgGeHLA6wC2x2w1Oi/xjz/+0Fjez5vk5GTWrl3L0KFDqVu3Lm3btmXhwoVYWFiwbNky4uPjiYuL49tvv6Vv376y8yyV6nlsWy51XUhqmkTjU435qsNXeAV4kZuf+/gTpRJpsh7IDvQT8Pf3Z+nSpVqfvlG4fLMkzZ49u1ynb0gFDxcGeAXwwbEPuOh2kUYXGnHy2kmNlNWmTRuN5Ps8uHfvHgcOHGDq1Kk4OTlhZWXF22+/TVxcHKNHj+bw4cOkpKSwY8cO3n//fWxtbbUdsvQceV7bloWRBRc6XKBnQE8CvQJpEtyEW1m3tB3Wc0uT9aBSdqD9/f1RqVRFPufPn6+Q8tesWVNsJ/nEiRO8++67FRJDaT788EMOHjyo7TAkqUpb2mEpaxPWkm2RTVvRlt+ifiv3Mq5fv17ueVZWQgiio6P5+uuv6dOnDxYWFvTo0YN169bh5ubG+vXruX79OidOnGDevHl07ty5yDvVJamsnue2paPSYZ/XPv4T/B8ut75Mo4uNOJF84vEnSkVosh5U2jnQvXr1YvXq1Wr7ateuraVoKkf5hUxMTDAxMdF2GJJU5fk5+tHqWiu6pHRhWJNhnDx+ki89viy3/HNycsotr8ooLS2NAwcOsH//fvbt20dSUhL6+vp07tyZOXPm4O3tTevWreVr5aRyVxXa1vz283GNcWWo2VBeUr3EqohVvN3ybW2H9VzRZD2olCPQULACW7169dQ+urq6+Pv7K+9cLvTBBx/g5eWlbHt5eTFhwgSmTZuGhYUF9erVY/bs2WrnpKWl8e6771K3bl0MDQ1p1aoVu3btIiAggLfffps7d+4oI9+F59rY2PDVV18peSQlJdGvXz9MTEwwMzNj4MCBar/tFE61+PXXX7GxscHc3JzBgweTnp5e4nUXjn7v2LGD5s2bY2hoSI8ePbh06VKRfCVJ0jy3em4k2SbRKLwRSz2W0jWga7ktelDVVnrMy8vj33//Zc6cOXTo0IFatWoxYMAAjhw5wuuvv86ePXu4ffu22tQN2XmWNKGqtK2B9gMJ1w/H+KYxI5qOYGzQWG2H9FzRZD3Q+Ah0VlYW0dHRj03XokWLcn0N3tq1a5k8eTLBwcEcP34cf39/OnbsSI8ePcjPz6d3796kp6fz22+/0bRpUyIjI9HV1aVDhw589dVXfPLJJ8TExAAUO9orhKB///5Ur16dwMBAcnNzGTNmDIMGDVJbQjw+Pp4dO3awa9cubt++zcCBA1mwYAGfffZZibFnZWXx2WefsXbtWvT19RkzZgyDBw8mKCio3O6PJEllZ2FkQYJHAj0DenLQ6yA2x2w46XISS2PLZ8o3MDDwuX9A9vLly8rbMg4cOMDt27cxNzene/fufP/993h7e9OoUSNthym9YKpC2yrUqnYrrphdwfWEKys6reB0wGkCugSgp1NpJxFUGpqsBxq/+9HR0WWaxB0WFoabm5uyvWvXLrWOa+/evdm8eXOZy3VycmLWrFkANGvWjG+//ZaDBw/So0cPDhw4QEhICFFRUTRv3hxA7QEVc3NzVCqVspJbcQ4cOMCZM2dISEhQllv+9ddfadmyJSdOnKBt27ZAweuY1qxZozwxPmzYMA4ePFhqB/rBgwd8++23tG/fHij4ZcDBwYGQkBDatWtX5nsgSVL50VHpcMDrAFOPT+UL5y9onNiYwJqBuNd3f+o833rrrXKMsGJkZ2cTGBiovJM5MjISHR0d2rVrx4QJE/D29qZt27bo6cl/3CXteR7bVmnMDMyI6xjHqwGv8leXv2gU0oiTrU5Sz6Tkfoqk2Xqg8W+4Fi1aEBYWVqZ0D+vatSvfffedsl29evUnKtfJyUltu379+ty4cQOA8PBwGjZsqHSen0ZUVBTW1tZK5xnA0dGRGjVqEBUVpXSgbWxs1F639HAcJdHT08Pd/X//KLdo0ULJV3agJUm7Fnssxi3ajWE1htFe1f6Z5iV+++23lX6xh/x8wR9/nOfUqX/499+tHD58mPv379OwYUO8vb2ZPXs2L7/88nOxWI704nge2taT0lHpsMdrDzNDZjKv5TyaXGnCPyb/4NHAQ9uhVVqarAca70AbGxurjSyXVfXq1bGzsyuyX0dHh0cXT3zw4EGRdI8+va1SqcjPL5i3aGRk9MTxPEoIUezcvUf3lxZHaYrLW84VlKTKYUiLIbS80ZIONzowoukITh47yTcdvnnifCrrP/Bxcal8+200f/2VR3y8Hfn5zdDTW0f37rrMnz8fb29vHBwc5HeSVGlV1rZVHua2m4tLrAuDjQfTqVonvjv7He+21v4bwiojTdaDSvsQYUlq165NcnKy2r4nfQ+uk5MTly9fJjY2ttjj+vr65OXllZqHo6MjSUlJag/3RUZGcufOHRwcHJ4onkfl5uYSGhqqbMfExJCWllZklF6SJO1xquPEZbvL2Jy04dsO39I5oPMTL3owb948DUX3ZO7dy2XFijN07hyAiUkEzZvXYNmyDiQl1cPVNZbPPw/jxo3/8NdffzFp0iQcHR1l51mq1CpL29KUN5q/wRmjM5gkmzC6+WjeO/qetkOqlDRZD567DnS3bt0IDQ3ll19+IS4ujlmzZnHu3LknysPT05MuXbrwxhtv8Pfff5OQkMBff/3F3r17gYJpFxkZGRw8eJBbt26RlZVVJI/u3bvj5OSEr68vJ0+eJCQkBD8/Pzw9PdWmXzyNatWqMX78eIKDgzl58iRvv/02L730kpy+IUmVTA3DGsR3iMc7wJujXY7SOKQxNzJLn6L1sPHjx2swutIdPXoZX9/DWFn9i5FRJmPHOhEU5ISFxR3efjuIEyeSuXevGaGhnkyf3oaaNQ21FqskPSlttq2K4mDpwBWHKzQLacbKTit5KeAluXLhIzRZD567DrS3tzczZ85k2rRptG3blvT0dPz8/J44n61bt9K2bVuGDBmCo6Mj06ZNU0adO3TowHvvvcegQYOoXbs2ixYtKnK+SqVix44d1KxZky5dutC9e3dsbW3ZtGnTM1+jsbExH330EUOHDsXDwwMjIyM2btz4zPlKklT+dFQ67PXay/QT07na6io2l2wIvhpcpnN/+eUXDUf3P9euZfDJJyE4Oweir59A584NWb++A5mZxnTrdorVqyO5d8+cpKQO/PxzZ9zd61dYbJJU3iqybWmTib4J0Z2ieS3gNYI7B9PwREOupl/VdliVhibrgUo8OqH4CWVlZREVFYWDg0O5vobuRbVmzRo++OAD0tLStB2KJD2xwu+DxMRE0tLSlF9wX5QHzLbEbmGw8WCEvuC764+fl3ju3DlatWqlkVjy8wWbN8eyZk0y//5rTlpaS0AfPb1LNGuWQN+++owd60CjRuYaKV+StEmTbauymnNiDrPtZ2N4zZC/jf+mU8NO2g5J6zRZD567EWhJkqTK6s3mb3La4DTVr1Uv07zEuLi4ci0/IuImY8YE0bTpUapVu8ngwfbs3dsWff1c3njjOHv3JnD/fkMiI7uwcOFLsvMsVVnl3baeB7PazuKPG3+Qa5BLF4MurDizQtshaZ0m64F8UackSVI5alm7JZfNLuN2wo2VnVYSHhDO0S5Hi1304FnfCJSRkcOqVZFs2pTG6dN1yc52AGpjZBRN27aRDBhwhVGjHDEza/tM5UjS86Y83rb1PHrN7jXOpZyj/aX2jHUcy8mjJ1nVaZW2w9IaTdYDOQL9jIpbWvxZ8yucvlHeeZfmp59+omfPnhVS1tMKCAhApVI98/SWh5dkv3//Po0aNSrTu8olqazMDMyI7RjLKwGvENwlGOsT1sXOS6xVq9YT533w4EUGDgykXr1gTE3vM2mSC8HBLalbN5XRo49y+vQNsrJa8O+/XkyZ4oqZmUF5XJIkPVeepm1VFfa17LnseJkW/7bgp04/4R7gTk5ejrbD0gpN1oMXrgNdkZ3SskpMTESlUhV5Hd/XX3/NmjVrNF7+/fv3+eSTT5g5c6bGy6psDAwM+PDDD/noo4+0HYpUxeiodNjltYuZoTO55niNpslNCbocpJamLK/gvHz5LtOnB9Oq1WGqVbtI9+6N2bzZg/v39fH2DuO336LIyalFQkJHvv++E05OdTR0RZL0/HjS19tWNSb6JkR0jsAn0IewzmFYh1lz+e5lbYdV4TRZD16YDnReXl6ZFjDRVn7FMTc3p0aNGhotAwreSGJiYkLnzp1LTJOTU3V/e/X19eXIkSNERUVpOxSpCvq03adsu7aNXKNcOht05rsz/1thtW/fvkXS5+bm88svkfToEYC5+WmsrY1YsKA9sbGNcHBIZMaMEK5cuc/t267s3euFr68DenovzFe5JJVJcW3rRaOj0mGr51Y+D/+cG/Y3sLthR0BSgLbDqlCarAeV8lvXy8uLcePGMW7cOGrUqEGtWrWYMWOG2gqEOTk5TJs2jQYNGlC9enXat29PQECAcnzNmjXUqFGDXbt24ejoiIGBAW+//TZr167ljz/+QKVSoVKpCAgIKHZqQHh4OCqVisTExBLzu3jxopJ+zpw51KlTBzMzM0aPHq3W4dy7dy+dOnVSruXVV18lPj5eOd6kSRMAXF1dUalUeHl5AUVHy+/fv8+ECROoU6cOhoaGdOrUiRMnTijHC6/j4MGDuLu7Y2xsTIcOHYiJiSn1fm/cuJHXXntNbV9h2fPnz8fKykpZ9vzKlSsMGjSImjVrUqtWLfr166fco8IY2rVrR/Xq1alRowYdO3ZUu087d+7E3d0dQ0NDLC0t8fHxUY799ttvuLu7Y2pqSr169Rg6dOhjlz0/duwYXbp0wcjICGtrayZMmEBmZqZy/MaNG/Tt2xcjIyOaNGnCunXriuRRq1YtOnTowIYNG0otS5Ke1uvNXueM0RnMrpgxpsUY3jn6DgCrVhXMTQwPv86oUUexsQlCXz+V4cMdOXDADWPjewwefJxDh5LIybHhzBlP5s5th5WVqTYvR5IqvcK2JcH0NtPZnbKbfL18ulXvxtfhX2s7pAqjyXpQKTvQAGvXrkVPT4/g4GCWLVvG0qVL1W7E22+/TVBQEBs3buTMmTMMGDCAXr16qT1xmZWVxfz581m1ahUREREsW7aMgQMH0qtXL5KTk0lOTqZDhw5ljunR/OrUKfhT6cGDB4mKiuLQoUNs2LCB7du3M2fOHOW8zMxMJk+ezIkTJzh48CA6Ojq8/vrrygh2SEgIAAcOHCA5OZlt27YVW/60adPYunUra9eu5eTJk9jZ2eHt7U1qaqpauo8//pglS5YQGhqKnp4eI0aMKPW6jhw5UuziL4XX9ffff7Nr1y6ysrLo2rUrJiYmHD58mKNHj2JiYkKvXr3IyckhNzeX/v374+npyZkzZzh+/DjvvvuusmLZ7t278fHx4ZVXXuHUqVNKR79QTk4Oc+fO5fTp0+zYsYOEhAT8/f1LjPvs2bN4e3vj4+PDmTNn2LRpE0ePHmXcuHFKGn9/fxITE/nnn3/YsmULK1asKLZT3q5dO44cOVLqfZKkZ+Fg6cBlx8s0D27OT+1+oeGn/uzY2QEjoxhcXeuyalUHbt6sSYcO5/jmm9NkZhqRnNyeDRu64OXVSNvhS9JzpSov5f00+tj2Ico8ihoXa/BByw/wO/zk62c8jzRaD8QzyszMFKGhoSIzM7OEBEKIsDJ8Hjrd09NTODg4iPz8fGXfRx99JBwcHIQQQpw/f16oVCpx5coVtaJefvllMX36dCGEEKtXrxaACA8PV0szfPhw0a9fP7V9hw4dEoC4ffu2su/UqVMCEAkJCY/Nz8LCQu36v/vuO2FiYiLy8vKKvSU3btwQgDh79qwQQoiEhAQBiFOnTpUYa0ZGhqhWrZpYt26dcjwnJ0dYWVmJRYsWqV3HgQMHlDS7d+8WgMjOzi42ltu3bwtAHD58uEjZdevWFffv31f2/fTTT8Le3l7t53L//n1hZGQk9u3bJ1JSUgQgAgICii3Lw8ND+Pr6FnusOCEhIQIQ6enpatdX+HMaNmyYePfdd9XOOXLkiNDR0RHZ2dkiJiZGAOLff/9VjkdFRQlALF26VO28r7/+WtjY2JQ5Nql4hd8HW7ZsEatWrRJLly4VKSkp2g6rUsnLzxOdV78lQAj0pommTY+IceOCRHT0LW2HJklVxty5c7UdQqWUmZMpWga2FAiES4CLyH5QfN+gqtBkPdD8a+yigTZlSBcGuP1v86WXXlJGLgE8PDxYsmQJeXl5nDx5EiGEMq2g0P3799WeuNTX18fJyenZ4n9ISfk5OzurLSLj4eFBRkYGly5donHjxsTHxzNz5kz+/fdfbt26pYw8JyUllfkF3/Hx8Tx48ICOHTsq+6pVq0a7du2KzN19OMb69QtWE7tx4waNGhUdxcrOzgbA0LDoMr2tW7dGX19f2Q4LC+P8+fOYmqr/+fjevXvEx8fTs2dP/P398fb2pkePHnTv3p2BAwcqMYSHhzNq1KgSr/HUqVPMnj2b8PBwUlNT1e6To6NjkfSF8Tw8LUMIQX5+PgkJCcTGxqKnp6c2yt2iRYti55UbGRkVu2S7JJU3HZUOh/1/Zbr4hY8HfoJJ9eraDkmSqpwPP/xQ2yFUSsbVjDnX5RyDAwezqeMmGoY35GSzkzQyr5p/5dJkPdB8B7oFBZ3jsqQro/z8fHR1dQkLC0NXV1ftmImJifLfRkZGap3wkujoFMxkEQ/NsX7w4EGRdGXNr1Bh2r59+2Jtbc2PP/6IlZUV+fn5tGrV6okezCuM7dHyhRBF9lWrVq1IDCU98FirVi1UKhW3b98ucqz6I/+w5+fn06ZNm2LnEdeuXRuA1atXM2HCBPbu3cumTZuYMWMGf//9Ny+99FKp72PMzMykZ8+e9OzZk99++43atWuTlJSEt7d3ifcpPz+f0aNHM2HChCLHGjVqpMz9LsvPLDU1VbkGSaoI89/2Y/HixUydOlXboUhSlfPNN9/ItlWKjZ4baXOyDR81/Yhmt5qxJ20PLzd+WdthlTtN1gPNz4E2pmBk+XGfR1YB//fff4tsN2vWDF1dXVxdXcnLy+PGjRvY2dmpferVq1dqOPr6+uTl5antK+w4JScnK/ue5NUnp0+fVkZyC2M1MTGhYcOGpKSkEBUVxYwZM3j55ZdxcHAo0lktHOV9NK6H2dnZoa+vz9GjR5V9Dx48IDQ0FAcHhzLH+ih9fX0cHR2JjIx8bFo3Nzfi4uKoU6dOkftubv6/Fc1cXV2ZPn06x44do1WrVqxfvx4oGBk/ePBgsXlHR0dz69YtFixYQOfOnWnRosVjHyB0c3MjIiKiSCyF98rBwYHc3FxCQ0OVc2JiYop9j/S5c+dwdXV97D2QpPJU2V6pKUlVhWxbjzfVbSr77uwDFfQw68GSU0u0HVK502Q9qLQPEV66dInJkycTExPDhg0b+Oabb5g4cSIAzZs3x9fXFz8/P7Zt20ZCQgInTpxg4cKF7Nmzp9R8bWxsOHPmDDExMdy6dYsHDx5gZ2eHtbU1s2fPJjY2lt27d7NkSdkrUk5ODiNHjiQyMpK//vqLWbNmMW7cOHR0dJS3Vfzwww+cP3+ef/75h8mTJ6udX6dOHYyMjNi7dy/Xr1/nzp07RcqoXr0677//PlOnTmXv3r1ERkYyatQosrKyGDlyZJljLY63t7dax7wkvr6+WFpa0q9fP44cOUJCQgKBgYFMnDiRy5cvk5CQwPTp0zl+/DgXL15k//79xMbGKh38WbNmsWHDBmbNmkVUVBRnz55l0aJFQMGIsb6+Pt988w0XLlxg586dzJ07t9R4PvroI44fP87YsWMJDw8nLi6OnTt3Mn78eADs7e3p1asXo0aNIjg4mLCwMN55551iR8KPHDlS6ReSkaoeuYCPJGmGbFtl08OmB7G1YrGIt+DDVh8y9PBQbYdUrjRZDyptB9rPz4/s7GzatWvH2LFjGT9+PO+++65yfPXq1fj5+TFlyhTs7e157bXXCA4OxtrautR8R40ahb29Pe7u7tSuXZugoCCqVavGhg0biI6OxtnZmYULFzJv3rwyx/ryyy/TrFkzunTpwsCBA+nbty+zZ88GCqaHbNy4kbCwMFq1asWkSZNYvHix2vl6enosW7aMlStXYmVlRb9+/YotZ8GCBbzxxhsMGzYMNzc3zp8/z759+6hZs2aZYy3OqFGj2LNnT7Ed94cZGxtz+PBhGjVqhI+PDw4ODowYMYLs7GzMzMwwNjYmOjqaN954g+bNm/Puu+8ybtw4Ro8eDRS8nnDz5s3s3LkTFxcXunXrRnBwMFDwV4A1a9awefNmHB0dWbBgAV988UWp8Tg5OREYGEhcXBydO3fG1dWVmTNnKnOuoaCeWFtb4+npiY+PD++++67y9pRCx48f586dO7z55ptPc/sk6ak97i9mkiQ9Hdm2yq6xeWMuu1zG+ZgzG7pswCnQiXu597QdVrnQZD1QiYcn/j6FrKwsoqKicHBwUHuQ7ll4eXnh4uKiLLcsad7AgQOVqRcvmgEDBuDq6sp///tfbYfy3Cv8PkhMTCQtLY309HT8/PywsLDQdmiV0tGjR+nUqZO2w5CkKke2rafz1uG3WOexDoszFoQ2DaVJjSbaDumZaLIeVNoRaKliLV68WO0BzBfF/fv3cXZ2ZtKkSdoORXoBJSQkaDsESaqSZNt6Or91+Y0l55Zwu8lt7G/b89eFv7Qd0jPRZD2QHWgJgMaNGytzh18kBgYGzJgxo9Q3hEiSpnTp0kXbIUhSlSTb1tOb7DqZA+kHUOWreMXiFRaELdB2SE9Nk/WgUnagAwIC5PQNSZKqvMI31EiSVL5k23o23Rp3I84yDss4S6Y7T2dA4ADyRfGvw63MNFkPKmUHWhv8/f01/tqb2bNn4+LiotEyJEl6fkybNk3bIUhSlSTb1rNrZN6Iy26XaXO0DVs8t9D6SGuyHjxfC45psh7IDrQkSZKWzJ8/X9shSFKVJNtW+dDX1SfUK5ThR4YT+VIkDc41IC41TtthlZkm64HsQEuSJGnJjBkztB2CJFVJsm2VrzWd17Asahl3rO/gmO7Irvhd2g6pTDRZDyplB3rLli20bt0aIyMjatWqRffu3cnMzFSOr169GgcHBwwNDWnRogUrVqxQO//KlSsMGjRIWcSkX79+JCYmKsfz8vKYPHkyNWrUoFatWkybNo3S3uZ3584dZaGTh23bto3q1auTkZEBFCzs0bx5c4yNjbG1tWXmzJnFLgleyMvLiw8++EBtX//+/fH391e2c3JymDZtGg0aNKB69eq0b9+egICAEvOUJOn58STvm5ckqexk2yp/453HE5AdgG6OLn0t+zIvtPLfY03WgwrpQN98cJP7+fcBuJZzjQvZF5Rjcdlx3HxwU9lOTk5myJAhjBgxgqioKAICAvDx8VE6uD/++CMff/wxn332GVFRUXz++efMnDmTtWvXAgXvoe3atSsmJiYcPnyYo0ePYmJiQq9evcjJyQFgyZIl/Pzzz/z0008cPXqU1NRUtm/fXmL85ubmvPLKK6xbt05t//r16+nXr5/y+jdTU1PWrFlDZGQkX3/9NT/++CNLly59pnv39ttvExQUxMaNGzlz5gwDBgygV69exMU9P39CkSSpeMOHD9d2CJJUJcm2pRldrLtwvu556sTUYabrTF4PfL1SP1yoyXpQIR3obTe3cSPnBgC/XP+F6Qn/W6xjwvkJbLu5TdlOTk4mNzcXHx8fbGxsaN26NWPGjFE6qXPnzmXJkiX4+PjQpEkTfHx8mDRpEitXrgRg48aN6OjosGrVKlq3bo2DgwOrV68mKSlJGbn96quvmD59Om+88QYODg58//33mJubl3oNvr6+7Nixg6ysggn0d+/eZffu3bz11ltKmhkzZtChQwdsbGzo27cvU6ZM4ffff3/q+xYfH8+GDRvYvHkznTt3pmnTpnz44Yd06tSJ1atXP3W+kiRVDgcPHtR2CJJUJcm2pTkNzRpyqc0l2h1pxw7PHTgecSQjJ0PbYRVLk/VAT2M5P8Sntg9mumYA+NX1403L/y2ZvMxuGTX0aijbzs7OvPzyy7Ru3Rpvb2969uzJm2++Sc2aNbl58yaXLl1i5MiRjBo1SjknNzdX6QCHhYVx/vx5TE1N1WK4d+8e8fHx3Llzh+TkZDw8PJRjenp6uLu7lzqN45VXXkFPT4+dO3cyePBgtm7diqmpKT179lTSbNmyha+++orz58+TkZFBbm4uZmZmT3fTgJMnTyKEoHnz5mr779+/T61atZ46X0mSKodH27YkSeVDti3N0tfVJ9grmFFHR7Gq/SoaRjYk2DoY+1r22g5NjSbrQYV0oGtXq638dz199XXJmxk1U9vW1dXl77//5tixY+zfv59vvvmGjz/+mODgYGWp8B9//JH27dsXOQ8gPz+fNm3aFJluAVC7du0i+8pKX1+fN998k/Xr1zN48GDWr1/PoEGD0NMruIX//vsvgwcPZs6cOXh7e2Nubs7GjRtZsmRJiXnq6OgU6bQ/PGc6Pz8fXV1dwsLClOsr9CKuGihJVU12dra2Q5CkKkm2rYrxY6cfcT/rzvsN3qdVZiu23N5CP7t+2g5Locl6UCkfIlSpVHTs2JE5c+Zw6tQp9PX12b59O3Xr1qVBgwZcuHABOzs7tU+TJgXrtbu5uREXF0edOnWKpDE3N8fc3Jz69evz77//KuXl5uYSFhb22Lh8fX3Zu3cvERERHDp0CF9fX+VYUFAQjRs35uOPP8bd3Z1mzZpx8eLFUvOrXbs2ycnJynZeXh7nzp1Ttl1dXcnLy+PGjRtFrqVevXrFZSlJ0nMkJSVF2yFIUpUk21bFGd16NEfuH0EvW4/+dfrzScgn2g5Jocl6UOk60MHBwXz++eeEhoaSlJTEtm3buHnzJg4ODkDBYiTz58/n66+/JjY2lrNnz7J69Wq+/PJLoKCTa2lpSb9+/Thy5AgJCQkEBgYyceJELl++DMDEiRNZsGAB27dvJzo6mjFjxpCWlvbY2Dw9Palbty6+vr7Y2Njw0ksvKcfs7OxISkpi48aNxMfHs2zZslIfTATo1q0bu3fvZvfu3cXG0bx5c3x9ffHz82Pbtm0kJCRw4sQJFi5cyJ49e57wzkqSVNk4OztrOwRJqpJk26pYHRt2JKFBAvUj6zPXfS6vBrxaKR4u1GQ9qHQdaDMzMw4fPkyfPn1o3rw5M2bMYMmSJfTu3RuAd955h1WrVrFmzRpat26Np6cna9asUUagjY2NOXz4MI0aNcLHxwcHBwdGjBhBdna2Mh95ypQp+Pn54e/vj4eHB6amprz++uuPjU2lUjFkyBBOnz6tNvoM0K9fPyZNmsS4ceNwcXHh2LFjzJw5s9T8RowYwfDhw/Hz88PT05MmTZrQtWtXtTSrV6/Gz8+PKVOmYG9vz2uvvUZwcDDW1tZlvqeSJFVOu3Y9H+9SlaTnjWxbFa+eST2S2iXhcdiD3V67sT9qz937d7UakybrgUqU9uRcGWRlZREVFYWDg4MyR1mSpBdT4fdBYmIiaWlppKen4+fnh4WFhbZDq5SysrLk96YkaYBsW9o1JmgM37X5DtNYU47XP07L2i21Eocm60GlG4GWJEl6URROPZMkqXzJtqVdKzqu4MfzP5JZLxPn+85sid2ilTg0WQ/kCLQkSeVGjkBLkiRJhYKvBtP1TleyrbOZHjGdz9t/ru2Qyo0cgX7I7NmzcXFxeaY8EhMTUalUhIeHl5gmICAAlUpVpgcXy1tZyl6zZg01atSosJgk6UUllxuWJM2QbatyaG/VnsRGiTQ424D5befTK6BXhT5c+Nwv5S09XwYNGkRsbKyyXR6/WEiSVNTo0aO1HYIkVUmybVUedarXIbF9Ip0Pd2af1z7sguxIu5dWIWVrsh48Fx3onJwcbYdQJTy8SEtpjIyMqFOnjoajkSRp27Zt2g5Bkqok2bYqFz0dPQ57HWbCsQkktEnAOs6aMzfOaLxcTdaDStmB9vLyYty4cUyePBlLS0t69OgBQGRkJH369MHExIS6desybNgwbt26pZy3d+9eOnXqRI0aNahVqxavvvoq8fHxanlfvnyZwYMHY2FhQfXq1XF3dyc4OFgtza+//oqNjQ3m5uYMHjyY9PT0JyoDIDo6mg4dOmBoaEjLli0JCAgo9ZqPHTtGly5dMDIywtramgkTJpCZmVnqOd999x1NmzZFX18fe3t7fv31V7XjKpWK77//nn79+lG9enW1P2UEBQXh7OyMoaEh7du35+zZs8qxh6dwrFmzhjlz5nD69GlUKhUqlYo1a9aUGpckSWXTtm1bbYcgSVWSbFuV09cdvmZNwhqyamfh9sCNDdEbNFqeJutBhXSgbz64yf38+wBcy7nGhewLyrG47DhuPrhZ5Jy1a9eip6dHUFAQK1euJDk5GU9PT1xcXAgNDWXv3r1cv36dgQMHKudkZmYyefJkTpw4wcGDB9HR0eH1118nP79gvk1GRgaenp5cvXqVnTt3cvr0aaZNm6YcB4iPj2fHjh3s2rWLXbt2ERgYyIIFC8pcRqGpU6cyZcoUTp06RYcOHXjttddKXBHn7NmzeHt74+Pjw5kzZ9i0aRNHjx5l3LhxJd7T7du3M3HiRKZMmcK5c+cYPXo0b7/9NocOHVJLN2vWLPr168fZs2cZMWKEWnxffPEFJ06coE6dOrz22mvFjlAPGjSIKVOm0LJlS5KTk0lOTmbQoEElxiVJUtk9vBKpJEnlR7atymu443CCRTAGdwwYaj2Uaf9O01hZGq0H4hllZmaK0NBQkZmZWWKa7698L5Kyk4QQQixMWigGRgxUjvU600t8f+V7tfSenp7CxcVFbd/MmTNFz5491fZdunRJACImJqbYcm/cuCEAcfbsWSGEECtXrhSmpqYiJSWl2PSzZs0SxsbG4u7du8q+qVOnivbt25d4bY+WkZCQIACxYMECJc2DBw9Ew4YNxcKFC4UQQhw6dEgA4vbt20IIIYYNGybeffddtXyPHDkidHR0RHZ2drHldujQQYwaNUpt34ABA0SfPn2UbUB88MEHamkKy964caOyLyUlRRgZGYlNmzYJIYRYvXq1MDc3V7svzs7OJd4DSSpU+H2wZcsWsWrVKrF06dIS25skxB9//KHtECSpSpJtq/K7mXlTWAdZCwTi5UMvi7z8vHIvQ5P1oEJGoH1q+1BHv2BOrV9dP+Y3ma8cW2a3DJ/aPkXOcXd3V9sOCwvj0KFDmJiYKJ8WLVoAKFMo4uPjGTp0KLa2tpiZmSmrEyYlJQEQHh6Oq6trqa/UsrGxwdTUVNmuX78+N27cULYfV0YhDw8P5b/19PRwd3cnKiqq2DLDwsJYs2aN2rV5e3uTn59PQkJCsedERUXRsWNHtX0dO3YsUsaj97G4+CwsLLC3ty8xPkmSNMPGxkbbIUhSlSTbVuVnaWxJokci3QK6cdDrILbHbEnNTi3XMjRZD/Q0lvNDalerrfx3Pf16aseaGTUr9pzq1aurbefn59O3b18WLlxYJG39+vUB6Nu3L9bW1vz4449YWVmRn59Pq1atlIcQjYyMHhtrtWrV1LZVKpXa9IzHlVEalUpV7P78/HxGjx7NhAkTihxr1KhRmfMTQhTZ9+h9fJr4JEnSjCNHjuDk5KTtMCq/TCAbsNR2INLzQrat54OOSoeDXgeZcnwKX7p+SaMLjThc6zBu9dzKJX9N1oNK+RBhcdzc3IiIiMDGxgY7Ozu1T/Xq1UlJSSEqKooZM2bw8ssv4+DgwO3bt9XycHJyIjw8nNTUp/sNpyxlFPr333+V/87NzSUsLEwZMS/p2h69Ljs7O/T19Ys9x8HBgaNHj6rtO3bsGA4ODmW6lofju337NrGxsSXGp6+vT15eXpnylSSp7IYMGaLtECo3AewHHIAGwHfAPa1GJD0nZNt6vizxWMJvF38j2yKbtqItv0X9Vi75arIePDcd6LFjx5KamsqQIUMICQnhwoUL7N+/nxEjRpCXl0fNmjWpVasWP/zwA+fPn+eff/5h8uTJankMGTKEevXq0b9/f4KCgrhw4QJbt27l+PHjZYqhLGUUWr58Odu3byc6OpqxY8dy+/ZttYf4HvbRRx9x/Phxxo4dS3h4OHFxcezcuZPx48eXGMvUqVNZs2YN33//PXFxcXz55Zds27aNDz/8sEzX8umnn3Lw4EHOnTuHv78/lpaW9O/fv9i0NjY2JCQkEB4ezq1bt7h//36ZypAkqXQrVqzQdgiVUz6wA2gPeAOmQFtgLGALfEnBqLQklUC2reePr4MvYTphGKUYMazxMCYdm/TMeWqyHjw3HWgrKyuCgoLIy8vD29ubVq1aMXHiRMzNzdHR0UFHR4eNGzcSFhZGq1atmDRpEosXL1bLQ19fn/3791OnTh369OlD69atWbBgAbq6umWKoSxlFFqwYAELFy7E2dmZI0eO8Mcff2BpWfzfH52cnAgMDCQuLo7OnTvj6urKzJkzlakpxenfvz9ff/01ixcvpmXLlqxcuZLVq1fj5eVVpmtZsGABEydOpE2bNiQnJ7Nz584SR7vfeOMNevXqRdeuXalduzYbNmj2tTOS9KKYMWOGtkOoXHKB9YAT8DpgBOwDzgFHgSgKOtQfAY2BeUCaNgKVKjvZtp5PLnVdSGqaRONTjfmqw1d4BXiRm5/71Plpsh6ohBDiWTLIysoiKioKBwcHjI2NyysuSZKeQ4XfB4mJiaSlpZGeno6fn1+pD+6+yObNmyf/oQfIAX4BFgDxQC/gY6BTCekvAouBVYA+BSPTkwC5/pP0/2Tber7li3x6Bfbib6+/aXi8IaecT2Fp/OQPQWiyHjw3I9CSJElVTXEPDr9QsoCvgabAu4ALEAb8RcmdZygYff4WSATe+///tgEmApc1Faz0PHnh29ZzTkelw36v/Uz7dxqXW1+m0cVGnEg+8cT5aLIeyA60JEmSlrywq3reAeZT0OmdAnSlYJrGFuBJHr6vByyiYER6GvArBXOkRwHnyy9c6fnzwratKmbhSwvZdGUTOWY5vKR6idURq5/ofE3WA9mBliRJ0pLu3btrO4SKdQuYScEI8mzAB4ilYPqG4zPka/H/+V2kYF70n4A94EtBx1x64bxwbasKG2g/kHD9cIxvGjPCdgTjj5X8goVHabIeyA60JEmSlkRHR2s7hIpxlYKR5sYUvEFjJHAB+J6CEePyYkrBSHQCBVNDjgCtKXggMbQcy5EqvRembb0gWtVuxZXmV7ANs+XbDt/SOaBzmR4u1GQ9kB1oSZIkLXmShY6eSwnA+0AT4CdgMgWjxEsoeK+zphgB4yiYxvEzEEHBa/C8gUAK3i8tVWlVvm29gMwMzIjrGEfvgN4c7XKURiGNuJZxrdRzNFkPZAdakiRJS6rs20miAD+gGbCV/02vmEvFriaoD7z9//FsBK4BXkBnCh5UlB3pKqvKtq0XnI5Khz1ee/jvif+S3DKZJleacPxKyWt5aLIeyA60JEmSlpw5c0bbIZSvU8CbQEvgEAXTNRKB6YC59sJCFxgEhAM7KXjfdB/AnYIOfr7WIpM0pMq1LUnNZ+0/Y0vyFnKNc+lUrRM/nP2h2HSarAeyAy1JkqQlvXv31nYI5SOIgg6pGwWd1B8omD4xAahMywOogL7AceAAUIOCDn8rCt7g8UBrkUnlrMq0LalEbzR/gzNGZzBJNmF089G8d/S9Imk0WQ/0yiuj7Ozs8spKkqTnlPweeDI///zz87vYgwD+Bj4DDlMw6rwOGEg5/suiISrg5f///EvBNfgBn1CwyqE/YPhQegGkU/CQoqoiA5We1nPdtqQyc7B04IrZFdyC3VjZeSXhAeEc7XIUPR09srPhhx9+ZvZszdSDZ16JMCcnh4iICPLz5d/AJEkCkS+4EHmB9PR00jPS8XvDD4sacj5ilVET2AV8DpygYBrEx8BrPN9/0zxNwTVtpuD90h8Co4FtwCwKHohsRMFr+N7RUozakA+kaDsISSpdvsjn9fDX2fnyTmrvdsHt22Mc+McIlQp8XoFvV0LtuuVb5jN3oKGgE52bm8udO3fYtWsX1atXx8DAoDzik14gMTExZGRkEBYWxpAhQzA1NX38SWnA73CFI+wmikG8ijlWmg71Ke2BBgI6duRkdDRuWVlw/hYwgKo0rJWXnkduSi7ZutmkG6TjF+WHxX3ZgS7OPOYxg+dslMyBgofyPCnoOHenKlVfiKFgSfHfKHibR3oxabYD/SswJm26yXO5RPpz2bakZza71xzmXO7PG/bOLFoE33wzj9jYGdy5BUeDy7esculAF0pNTeWXX35BX19fdqClp7ZkyRLeeecdzM1LfuooLy+PvLw8SAXWwfHGawm9eJcR1Uegr9KvuGDL7C7o7IIBA6BaNdLvpZOb9wCOH4PsFkAtbQdY7h6oHpCryqVLdhdMhIm2w6mUDNIMaJTSSNthPJm2FCyf7aLlODQtmYIVDZOLOdaWgndYvwhuU/BL0nMmqVYS92vc13YYUgWLA342g7lzQa8amBuZY1ffGSsrCAwEF5fyK6vMM9U2bNhAu3bt2Lp1KxMnTmTx4sXMmDGDefPmMWLECP766y+aN29Oamoq6enpmJubc/XqVezs7IiKisLZ2ZnTp0/TokULEhISqFOnDhkZGejo6GBkZMStW7do3LgxMTExStqWLVsSExNDw4YNSU1NxdDQEF1dXe7evUv9+vU5f/68ktbJyYmzZ89ia2vL9evXMTExQQhBdnY2tWrVIikpCQcHB86dO6ec07x5cy5duoSFhQX3798nNzcXMzMzrl27RtOmTdXidnBwID4+nnr16pGenq4Wd6NGjYiNjS0St7W1NSkpKWpx16tXjwsXLtC6dWvOnDmjFve1a9cwMzMjLy+Pe/fuUatWLS5duoS9vT0RERFqcSclJWFpaUl2djb5+fmYmpo+Nu67d++ip6eHgYEBqampWFtbq8XdqlUroqKiaNSoESkpKRgZGaFSqcjIyKBu3bpqcReeY2dnR3JyslrcFhYWXL58uUjc9vb2XLx4US1uExMTbty4QZMmTYiOjsbZ2RkDAwPu3LlDdHQ0VlZW3LlzR4n79u3bNGjQgCNHjnDt2v+//9EAuAYGBgYcrn8Yff2CDnROTg4mJiakpaVRu3Ztbty4Qd26dbl+/To1a9YkIyMDAwMD8vPzycvLw9DQkPT0dCwsLLh165aStlatWty5cwdjY2NycnIA0NfXJysrC3Nzc1JSUpS0lpaWpKamYmpqyr1799DV1UVXV5d79+5hatqU1AMHqFu3LvHx8dja2nIzVw9zy5tkZV2kWrVqADx48ABjY2Pu3LlTJG4LCwvS09MxNDRUfonQVNw6Ojrcv38fExMTbt++raStU6cON2/epEaNGmRkZCj3u7i4GzRowBcXvsDV1ZXz589Tt25dsrOzycnJwdLSkgsXLuDi4kJwcDCenp4EBgbStm1bzp07R6NGjUhLS0NHRwcTExOuXr2Kg4MDoaGhSloPDw9CQ0Np3rw5165dw9jYGD09PVJSUrC1tSU8PFxJ27lzZ4KCgmjdujUXL16kRo0a5Ofnk5GRgZWVFdHR0bRr145jx44p57i5uREbG0u9evXIysoiNzcXCwsLEhMTcXZ2Vou7Xbt2nDlzBhsbG1JTU9HV1VXibtGiBWFhYUraDh06cOLECTLyM7BqYaXEnZqaio2NDWfOnKFTp04cOXKEzp07c/ToUZycnEhMTMTCwoLc3FyysrKoX78+MTExtG3bVi3uNm3aKO0nIyODvLw8JW4nJydCQkKUtO3bt+f06dNK3Hp6ehgbG3Pt2jWaN2/OyZMn1eIOCQmhxV8tuPrTVUxMTNDR0SEtLY3GjRtz9uxZOnbsyJEjR5RzXFxcuHDhArVq1VLirlevHrGxsbi7u3P8+HElrbu7O1FRUUrc+fn51KhRg6SkJFq1asWJEyfU4g4PD8fW1pZbt26hr6+PkZER169fx87OjlOnTilpO3bsyL///oujoyNXrlxRi7tRo0acO3eODh06cPToUfW4rS9g6WpJTk4O9+7do06dOpw/fx63lm786/uvWtz/x959R0dV5/8ff6YXQq+hhhY6QhCkBxtRv3ZW1xJX1951rYvrdhTb8rPioi6u2HuXFRQIvUuRJKQ3kpBACJBMZiYzc39/jAxGKZNk7nzuvfN+nONZxZs7r72+P8Mr4c79ZGZm0rt3bw4dOgRAu3btKCsrY8SIEU1yT5w4ka1btzJw4EBf7tjYWKqqqn6Ve+rUqaxbt47hw4dTVlZGu3btADh06BC9e/cmMzOTSZMmNcl9ZK1169YNu93uW2v5+fmkpKSwfv36Jmtt165dx8w9fPjwo2tt6NHcgwYNoqqqitjYWKKjo9m3b9+v1trUqVNZu3YtI0eOpKSkpMla69WrF5mZmUycOJE1a9b8Kneg3iMiIiJwu92mf48YMmQIFRUV5nuPGDqU8nI17xEzJ6Qy5wFv7k8++YRn5j9DTEwjX3/dhsbGTuzYsYNzzz3Xd5/8nDlzePDBB3nuueeYNWsWAwcO9KsXB/Qn0AD19fU4HPJdn2i5nj17smHDBvr06XPcY5xOJw6Hg02bN5E+IJ0ZH6ayYl4GXyR/Qd+DRvyJnh24Ev7+MAWDu/H1O18TdXoj4dmbwT2Rpp9Yso7w8HAiIiNUxzAkd5SbxtJGZm2dxeD8warj+O87vPdBh4IXgP8e49fDgIvwftjw+G9TAeXQHFS6KukR2YOYsCD8Ce8OvJvfrNb/pQItd2AuH6d8TFSfKCIa5f0nlDiAZeEwcSJ0qNNwLHEwYuos7v/9dMr2wAn+YLvZAv5Z6TZt2sgOQKJVHA4H7du3P+kD0MsPl5M+Kh13uJtH3v8T3zqWkFSVRPLy5OBu1uCv9/4It9xM422XsXevnf7FG2jjLoOLkmHwUNXpRJDVV9Wz58E9dHylI4ldElXH8V9nzP1hwea4H/gcyPzZrw0ArgJeBRYAV+B9zvVIfaNk2bK4I/sO3hr6FknxSfq8iAYsw/tUkuV473d/Ajgb4z9Z5Wf27dvHnj/vof+9/YnrFqc6jgiiskL48RPIWg1n9WugzZ49rHwZnn4qsOUZTLUkhDjK6XaSkpmCY6iDLyd+SY/6Hkf/ZRegq7Jox3fXtXDmePjsNRJqa+DMMyF3E3zxAVx+OQyVEh1SYiEhIcH7LGIjzqvwfrOwCXgX71M6RgBXAwnAI3i3CX8KGIX3Q4V/wvtUEh30i+nH68mv0y+mX+BPruF9sspjwAa8z/P+GO//JzN+s+T6aW3FAvLzvJCRmwvvfQqDB8PUqbBvnXcOHroBrtThcdBmXBpCMG3VNPaeupe/b/s752efrzqO/4YPh9//nvDwcOjeFWbNgmHD4IMPIDtbdToRZOHh8hZsePHADcDzeB9rd+TzsHHAHfz0qSVgF94PF6bhfS52oGNExDM6YTTxEQHcmcYNvI/3A6EXAlF4tzjfDFyKqRuCrK3QkpsL770HgwZ5fx7Vpw8MHeadg1699XlNmTBhGO+++y633XYbAH/84x+ZP3/+MY+7efXNbJyxkYtWXcRfhv8lmBEDpra21vs34eFSokOYbw6EeUUDv8f7aL/3gEq8j/ibhreMBuhTRtWN1bxW8RrVjdWtP5kTb+kfhvcWlES8pX8VcA6WeCyhrK3Q8cvyHPGz2971nAMp0MIwrrzySl5++WU0TeO9997j9ttv/9UxC3Yu4NXxr5K8KplPUj9RkDIw+vb92QcdpUSHrCZzIMwtAvgt3q3Mv8C7Lfh5eG/p+BjvhiStUNtYywfVH1DbWNvykzQALwKD8P5UfSTeW1T+h7fwW4isrdBwovIM+s6BFGhhGmvK1nBbj9tol92OLadtITzMvOP7448/Nv0FKdEh6VdzIMwvDLgAWAd8j/ce99/gLatvAq6WnXZw/GCWjF7C4PgWPLHlMN57tfsD9wDTgR/x7rKo0z3bqsnasr6TlWfQdw7M20BESKmsq+Ss+rOIsEewvtd6EqLNvTHH5MmTf/2LUqJDzjHnQFhDGHAG3hK9DhgI/A5Ixvv0DnsQMuwH/gb0Ax7Fe59zDt5dFkcE4fUVkrVlbf6UZ9B3DqRAC8NzeVyk/JiCvaedD+wfMKzLMNWRWm316uM8XFVKdEg57hwIa5kIfIn39o7xwG14H4c3D6j37xSFDYVclXUVhQ2FJz+4EngQb3F+Cm9xLwBewVvkQ4CsLevytzyDvnMgBVoYXurKVComVPDnrD9zyeBLVMcJiNTU1OP/SynRIeOEcyCs5xS8T73IwvthvYfxltw5QO2JvzQ2IpbRbUYTG3GCTZeK8T4ZJAlvWb4bKAKeBXR6EoFRydqypuaUZ9B3DqRAC0O7fc3trJ2xlvNWnsc/JvxDdZyAycjIOPEBUqJDwknnQFjTELxPwcjD+xSMOXiL9CPAcR6ykRidyB/7/pHE6GNsurMb75NABuEt6H/GW6YfB7oFOrw5yNqynuaWZ9B3DqRAC8P6z4//4eVxLzNw9UC+TP1SdZyAGjNmzMkPkhJteX7NgbCufnifilGE9xnTL/z0a/cCZU0PdXqclDvKcXqcR39xO94nfwwDluC9XaMY74YuHXRNbniytqylJeUZ9J0DKdDCkDaUb+DmrjfTNqctW8dvNfUTN46loKDAvwOlRFua33MgrK0HR8vvQ8AivPdI3wTkew/Jt+dzwa4LyLfnez+UeD7eDVA2AS/jvcf5D8jOez+RtWUdLS3PoO8cWKuVCEuoqq/i9IOnE9YYxrrEdbSLaac6UsB16dLF/4OlRFtWs+ZAWF8nvE/NKMa7rfaXeJ/acTX0ye/D/MPz6TOrD0zGW5jfxPtUjVuAGDWRjUrWljW0pjyDvnMgBVoYisvjImVHCg19GnjP9h4julrzWUtOp/PkB/2clGhLavYciNDQFu9TNArxbiG+ChJGJ3DajNNIqErwbszyI5AORCrMaWCytsyvteUZ9J0DKdDCUM5ceSZ7TtvD7F2z+U3yb1TH0Y3d3oKHwEqJtpwWzYEIHXF4n6qRB/tv3c9bb73F/nX74VLkd++TkLVlboEoz6DvHMgSFIZxz9p7WDljJTNXzuTx0x5XHUdX3bq18KPxUqItpcVzIEJLNOz71z5eGfEK+1z7VKcxBVlb5hWo8gz6zoEUaGEIizIX8fzY5+m/uj+LUxerjqO7vLy8ln+xlGjLaNUciJAyJH4IK8esZEj8ENVRTEHWljkFsjyDvnMgBVoot7liM7/v+Hva5Ldh66nWe+LGsaSkpLTuBFKiLaHVcyCEOCZZW+YT6PIM+s6B9ZuKMLR9tn2kHkglTAtjbbe1dIjtoDpSUKxfv771J5ESbXoBmQMREorsRVy/+3qK7EWqo5iCrC1z0aM8g75zIAVaKOPRPKRsS8HWz8abh95kdLfRqiMFTcC2F5USbWqy3bDwV3RYNH1i+hAdFq06iinI2jIPvcozyFbewqLOzjib0smlPLDjAa4ceqXqOEEV0O1FpUSblmw3LPzVM6Ynf0/6Oz1jeqqOYgqytsxBz/IMspW3sKAH1z3IshnLOGPFGTw96WnVcYLu1FNPDewJpUSbUsDnQFhWo9bIgcYDNGqNqqOYgqwt49O7PIO+cyAFWgTdu9nv8swpz9B3bV+Wpi5VHUeJzMzMwJ9USrTp6DIHwpLyGvI4a+dZ5DXI0yX8IWvL2IJRnkHfOZACLYJq295tXNPuGuKL4vlh7A8h8cSNY+ndu7c+J5YSbSq6zYGwnN7RvZk3YB69o2Vm/CFry7iCVZ5B3zkIzfYilKi11zK1eipamMaqTqvoFNdJdSRlDh06pN/JpUSbhq5zICylbWRbUjuk0jayreoopiBry5iCWZ5B3zmQAi2CwqN5GLtlLPUD6nn9wOuk9JBndOpKSrQQlnKg8QAfV3/MgcYDqqMI0SLBLs96kwItguLcjHMpmlLEvdvu5XfDf6c6jnLt2rXT/0WkRBteUOZAWEJlYyVPlj5JZWOl6iimIGvLWFSVZz3nQAq00N3sDbNZMmMJ01dM5/9N/n+q4xhCWVlZcF5ISrShBW0OhOkNix/GxpSNDIsfpjqKKcjaMg6VP3nWcw6kQAtdfbD7A54Y8QS91vXi++nfq45jGCNGjAjei0mJNqygzoEQIUTWljGovm1DzzmQAi1082P1j1zV5iriSuPYdso2IsMjVUcyjE2bNgX3BaVEG1LQ50CYVom9hDty76DEXqI6iinI2lJPdXkGfedACrTQxSHHISZXTEaL0sjokEGX+C6qIxmKkm1mpUQbjmw3LPwVHhZOm4g2Ifvoz+aStaWWEcozyFbewmQ8moexm8ZyOPkwr1S/wvjE8aojGY6ybWalRBuKbDcs/NU7pjdPDXiK3jHyfGN/yNpSxyjlGWQrb2EyF2RcQMHUAm7fcjs3jLxBdRxDmjhxoroXlxJtGErnQJiKW3PT4G7ArblVRzEFWVtqGKk8g75zIAVaBNSfN/6Zb6Z/w+QVk3lpykuq4xjW1q1b1QaQEm0IyudAmEZOQw5Tt08lpyFHdRRTkLUVfEYrz6DvHEiBFgHzcc7HzBk2h8SNiWRMlz8+O5GBAweqjiAl2gAMMQfCFHpG9+SxpMfoGd1TdRRTkLUVXEYsz6DvHEiBFgGRtS+LK+KuILY8lq0jt8oTN05i3759qiN4SYlWyjBzIAyvfWR7zul0Du0j26uOYgqytoLHqOUZ9J0DKdCi1eqcdUzcMxF3rJtlCcvokdBDdSTDi46OVh3hKCnRyhhqDoShHXQd5Jv933DQdVB1FFOQtRUcRi7PoO8cSIEWreLRPKRsSOHQ0EP8u/LfTOo1SXUkU4iNjVUdoSkp0UoYbg6EYZU7y/lz8Z8pd5arjmIKsrb0Z/TyDPrOgRRo0SqXZlxK7rRcbtp0EzePull1HNOoqqpSHeHXpEQHnSHnQBjSkLghrBuzjiFxQ1RHMQVZW/oyQ3kGfedACrRosX9s+gefT/ucCSsm8MrUV1THMZVBgwapjnBsUqKDyrBzIAwnPCyc6PBo2UjFT7K29GOW8gz6zoGsRNEiX+R9wV+T/0r3zd1ZNW2V6jim88MPP6iOcHxSooPG0HMgDKXMUcYD+Q9Q5ihTHcUUZG3pw0zlGfSdAynQotlya3KZFTWLmKoYtg7fSnSEfFijuQy/zayU6KAw/BwIw9A0DafmRNM01VFMQdZW4JmtPINs5S0MpM5Zx4TiCbjbuPku7jt6tpVnkraEKbaZlRKtO1PMgTCEPrF9eH7Q8/SJ7aM6iinI2gosM5ZnkK28hUF4NA/j14+ndkQtL5a/yNTeU1VHMq2pU01y7aRE68o0cyCEycjaChyzlmfQdw6kQAu/Xb7ycrKnZ3Pdhuu4ffTtquOY2rp161RH8J+UaN2Yag6EUlm2LMZtHUeWLUt1FFOQtRUYZi7PoO8cSIEWfpm7ZS4fT/2YcSvG8fq011XHMb3hw4erjtA8UqJ1Ybo5EMr0iO7Bo30fpUe0bFTlD1lbrWf28gz6zoEUaHFS3xR8wyODHqHr1q6snbZWdRxLKCsz4SfppUQHnCnnQCjRMbIjl3S5hI6RHVVHMQVZW61jhfIM+s6BFGhxQvkH8rk4/GJiqmPYOkSeuBEo7dq1Ux2hZaREB5Rp50AE3SHXIZYdWMYh1yHVUUxB1lbLWaU8g75zIAVaHJet0cb4wvG42rn4JuoberfrrTqSMAIp0UIE3R7nHh4sfJA9zj2qowgLs1J51psUaHFcp609jQOjDjCvZB5n9DtDdRxLOXTI5D9FkhIdEKafAxE0g+MGs2z0MgbHDVYdxRRkbTWfFcuznnMgBVoc0xUZV/Bj6o9cs+4a7h1zr+o4ltO7twV+mi8lutUsMQciKCLDImkf2Z7IsEjVUUxB1lbzWLE8g75zIAVa/MrTW5/m/Snvc0rGKSyavkh1HEvKzMxUHSEwpES3imXmQOhuj2MPjxY+yh6H3MLhD1lb/rNqeQZ950AKtGhiadFSHu7/MJ23dWb9lPWq41jWpEmTVEcIHCnRLWapORC6cmkuqhqrcGku1VFMQdaWf6xcnkHfOZACLXyKDxZzvud8og5EsWXwFmIjY1VHsqzVq1erjhBYUqJbxHJzIHTTL7YfryS/Qr/YfqqjmIKsrZOzenkGfedACrQAwO6yMy53HI0dG/kq/Cv6tZc3aT2lpqaqjhB4UqKbzZJzIIQByNo6sVAoz6DvHEiBFgBMXDOR/WP283TR05yddLbqOJaXkZGhOoI+pEQ3i2XnQATcbttupmybwm7bbtVRTEHW1vGFSnkGfedACrQgfWU621O3c8XaK7h/7P2q44SEsWPHqo6gHynRfrP0HIiA6hrVlTt73knXqK6qo5iCrK1jC6XyDPrOgRToEPfstmd5e9LbjMoYxbvT31UdJ2Tk5eWpjqAvKdF+sfwciIDpFNWJK7tdSaeoTqqjmIKsrV8LtfIM+s6BFOgQtqx4Gff1vY+OOzuyfrI8cSOYunXrpjqC/qREn1RIzIEIiDp3HWsPraXOXac6iinI2moqFMsz6DsHUqBDVMnBEs51nUvkwUi2DNhCfFS86kghxW63q44QHFKiTyhk5kC0WqmjlLvy7qLUUao6iinI2joqVMsz6DsHUqBDkNPt5NScU3F2cfK59jn9O/RXHSnkOJ1O1RGCR0r0cYXUHIhWGRQ7iG9GfsOg2EGqo5iCrC2vUC7PoO8cSIEOQZNXTaZ6bDWP5z3OuQPOVR0nJHXp0kV1hOCSEn1MITcHosWiwqPoHt2dqPAo1VFMQdaWlGfQdw6kQIeY61Zdx5YZW5i1Zhazx81WHSdk5efnq44QfFKifyUk50C0SIWzgsdKHqPCWaE6iimE+tqS8uyl5xxIgQ4hL25/kTdOe4NhK4fxwfQPVMcJaSkpKaojqCEluomQnQPRbHaPnWxbNnaP3Nvrj1BeW1Kej9JzDqRAh4iVpSu5u9fddNjVgc2TNhMeJv/pVVq/PoSfeiIl2iek50A0S//Y/rw59E36x8pnVvwRqmtLynNTes6BtKgQUH64nJn2mUTUR7Cx30Z54oYBhPw2s1KiAZkDIfQSimtLyvOvyVbeosWcbidjs8bi6ObgU9enDO40WHUkgWwzC0iJRuZA+C/XlsuZO84k15arOoophNrakvJ8bLKVt2ixaaumUTWuir/n/J3zB56vOo74yfjx41VHMIYQL9EyB8JfHaM6cnW3q+kY1VF1FFMIpbUl5fn49JwDKdAWdtPqm9g4YyMXrbqIv4z/i+o44md27dqlOoJxhHCJljkQ/uoS1YXre1xPlyh5PJs/QmVtSXk+MT3nQAq0RS3YuYDXxr9G8qpkPkn9RHUc8Qu9e/dWHcFYQrREyxwIf9ncNn6o+wGb26Y6iimEwtqS8nxyes6BFGgLWlO2htt63Ea77HZsOW2LPHHDgA4dOqQ6gvGEYImWORD+KnYUc2POjRQ7ilVHMQWrry0pz/7Rcw6kWVlMZV0lZ9WfRYQ9gvW91pMQnaA6khD+C8ESLYQ/BsQO4OPhHzMgdoDqKEIxKc/GIAXaQlweFyk/pmDvaecD+wcM6zJMdSRxHO3atVMdwbhCqETLHAh/xYTHkBSbREx4jOoopmDVtSXluXn0nAMp0BaSujKVigkV/Dnrz1wy+BLVccQJlJWVqY5gbCFSomUOhL/2Ovcyr2wee517VUcxBSuuLSnPzafnHEiBtojb19zO2hlrOW/lefxjwj9UxxEnMXz4cNURjC8ESrTMgfBXvbuedYfWUe+uVx3FFKy2tqQ8t4yecyAF2gL+8+N/eHncywxcPZAvU79UHUf4YfPmzaojmIPFS7TMgfDXgLgBfDj8QwbEyT3Q/rDS2pLy3HJ6zoEUaJPbUL6Bm7veTNuctmwdv1WeuGESobjNbItZuETLHAihD6usLSnPrSNbeYtjqqqv4vSDpxPWGMa6xHW0i7HmhyasKNS2mW01i5ZomQPhr7yGPM7/8XzyGvJURzEFK6wtKc+tJ1t5i19xeVyk7EihoU8D79S/w4iuI1RHEs0wceJE1RHMx4IlWuZA+Kt9RHvO63Qe7SPaq45iCmZfW1KeA0PPOZACbVJnrjyTPZP28Mddf+TyIZerjiOaaevWraojmJPFSrTMgfBX1+iu3N7zdrpGd1UdxRTMvLakPAeOnnMgBdqE7ll7DytnrGTmipnMPW2u6jiiBQYNGqQ6gnlZqETLHAh/NXgayLJl0eBpUB3FFMy6tqQ8B5aecyAF2mQWZS7i+bHPk7QmicWpi1XHES1UVVWlOoK5WaREyxwIfxXZi0jPTqfIXqQ6iimYcW1JeQ48PedACrSJbK7YzO87/p42+W34YdwP8sQNE4uNjVUdwfwsUKJlDoS/kmKTeGvoWyTFJqmOYgpmW1tSnvWh5xxIAzOJfbZ9pB5IJUwLY223tXSI7aA6kmiF6Oho1RGsweQlWuZA+CsuPI5h8cOIC49THcUUzLS2pDzrR885kAJtAh7NQ8q2FGz9bLx56E1GdxutOpJopX379qmOYB0mLtEyB8Jf1c5q5pfPp9pZrTqKKZhlbUl51peecyAF2gTOzjib0smlPLDjAa4ceqXqOCIABgyQ3cQCyqQlWuZA+Oug+yDf1HzDQfdB1VFMwQxrS8qz/vScAynQBvfgugdZNmMZZ6w4g6cnPa06jgiQbdu2qY5gPSYs0TIHwl+D4gbx1civGBRnzqdLBJvR15aU5+DQcw6kQBvY21lv88wpz9B3bV+Wpi5VHUcEkFW2mTUck5VomQMh9GHktSXlOXhkK+8QtG3vNq5tfy3xRfH8MFaeuGE1Vthm1rBMVKJlDoS/ChoKuCzzMgoaClRHMQWjri0pz8ElW3mHmFp7LVOrp6KFaazqtIpOcZ1URxIBNnXqVNURrM0kJVrmQPirTUQbJrWbRJuINqqjmIIR15aU5+DTcw6kQBuMR/MwZssY6gfW8/qB10npkaI6ktDB2rVrVUewPhOUaJkD4a/u0d25r/d9dI/urjqKKRhtbUl5VkPPOZACbTDnZpxL8ZRi7v7hbn43/Heq4widjBw5UnWE0GDwEi1zIPzl8Dgoshfh8DhURzEFI60tKc/q6DkHUqANZPaG2SyZsYTpK6bz3OTnVMcROiopKVEdIXQYuETLHAh/FdgLmJU5iwK73APtD6OsLSnPauk5B1KgDeKD3R/wxIgn6LWuF99P/151HKGzDh06qI4QWgxaomUOhL/6xfTjteTX6BfTT3UUUzDC2pLyrJ6ecyAF2gB+rP6RqxKuIq40jq2jtxIZHqk6ktCZx+NRHSH0GLBEyxwIf8VHxDM2YSzxEfGqo5iC6rUl5dkY9JwDKdCKHXIcYnLFZLRIjYwOGXRr0011JBEEdXV1qiOEJoOVaJkD4a99jftYWLmQfY3m2KJaNZVrS8qzceg5B1KgFfJoHsZuGsvh5MO8Uv0K4xPHq44kgqRXr16qI4QuA5VomQPhrwONB3i76m0ONB5QHcUUVK0tKc/GouccSIFW6IKMCyiYWsDtW27nhpE3qI4jgigzM1N1hNBmkBItcyD8NTh+MN+P/p7B8YNVRzEFFWtLyrPx6DkHUqAV+fPGP/PN9G+YvGIyL015SXUcEWQTJ05UHUEYoETLHAihj2CvLSnPxqTnHEiBVuDjnI+ZM2wOiRsTyZhuzO1Ghb7WrFmjOoIA5SVa5kD4q9BeyDXZ11BoL1QdxRSCubakPBuXnnMgBTrIsvZlcUXcFcSWx7J1pDxxI1SlpqaqjiCOUFiiZQ6Ev2LDYxkaP5TY8FjVUUwhWGtLyrOx6TkHUqCDqM5Zx8Q9E3HHulmWsIweCT1URxKKZGTInzwYiqISLXMg/JUYncif+v6JxOhE1VFMIRhrS8qz8ek5B1Kgg8SjeUjZkMKhoYd4ufJlJvWapDqSUGjs2LGqI4hfUlCiZQ6Evxo9jex17qXR06g6iinovbakPJuDnnMgBTpILs24lNxpudy06SZuGXWL6jhCsby8PNURxLEEuUTLHAh/5dnzOO/H88izy8z4Q8+1JeXZPPScAynQQfCPTf/g82mfM2HFBF6Z+orqOMIAunfvrjqCOJ4glmiZA+GvPjF9eGHQC/SJ6aM6iinotbakPJuLnu+xUqB19kXeF/w1+a9039ydVdNWqY4jDKKhoUF1BHEiQSrRMgfCXwkRCUxuN5mEiATVUUxBj7Ul5dl89HyPlQKto9yaXGZFzSKmKoatw7cSHRGtOpIwCKfTqTqCOJkglGiZA+GvmsYa3q16l5rGGtVRTCHQa0vKsznp+R4rBVondc46JhRPwN3GzXdx39GzbU/VkYSBdOnSRXUE4Q+dS7TMgfBXdWM1L5a/SHVjteoophDItSXl2bz0fI+VAq0Dj+Zh/Prx1I6o5cXyF5nae6rqSMJgCgoKVEcQ/tKxRMscCH8NiR/CmjFrGBI/RHUUUwjU2pLybG56vsdKgdbBZSsvI3t6NtdtuI7bR9+uOo4woDFjxqiOIJpDpxItcyCEPgKxtqQ8m5+e77FSoANs7pa5fDL1E8atGMfr015XHUcY1IYNG1RHEM2lQ4mWORD+KrYXc3POzRTbi1VHMYXWri0pz9ag53usFOgA+qbgGx4Z9Ahdt3Zl7bS1quMIA5MtnE0qwCVa5kD4KzIskm5R3YgMi1QdxRRas7akPFuHbOVtAvkH8rk4/GJiqmPYOkSeuCFOTLZwNrEAlmiZA+GvXjG9mNN/Dr1ieqmOYgotXVtSnq1FtvI2OFujjfGF43G1c/FN1Df0btdbdSRhcOPHj1cdQbRGgEq0zIHwl0tzcdB1EJfmUh3FFFqytqQ8W4+e77FSoAPgtLWncWDUAeaVzOOMfmeojiNM4Mcff1QdQbRWAEq0zIHwV25DLmfsOIPchlzVUUyhuWtLyrM16fkeKwW6la7IuIIfU3/kmnXXcO+Ye1XHESbRt29f1RFEILSyRMscCH/1iu7F0/2fple03MLhj+asLSnP1qXne6wU6FZ4euvTvD/lfU7JOIVF0xepjiNMpLa2VnUEESitKNEyB8Jf7SLbcUbHM2gX2U51FFPwd21JebY2Pd9jpUC30NKipTzc/2E6b+vM+inrVccRJhMeLkvPUlpYomUOhL8OuA7w6b5POeA6oDqKKfiztqQ8W5+e77Hy7t0CxQeLOd9zPlEHotgyeAuxkbGqIwmTSUhIUB1BBFoLSrTMgfBXpbOSOSVzqHRWqo5iCidbW1KeQ4Oe77FSoJvJ7rIzLnccjR0b+Sr8K/q176c6kjCh8vJy1RGEHppZomUOhL+GxQ9jS8oWhsUPUx3FFE60tqQ8hw4932OlQDfTxDUT2T9mP08XPc3ZSWerjiNMatgw+U3QsppRomUOhNDH8daWlOfQoud7rBToZkhfmc721O1csfYK7h97v+o4wsQ2b96sOoLQk58lWuZA+KvUXsrdeXdTai9VHcUUjrW2pDyHHj3fY6VA++nZbc/y9qS3GZkxknenv6s6jjA52cI5BPhRomUOhL/CwsKIDosmLCxMdRRT+OXakvIcmmQrb8WWFS/jvr730XFnRzZM3qA6jmXZbDYWLlzIl19+yQ033IDH41EdSTeyhXOIOEmJljkQ/uod05tnBj5D7xjZ6dYfP19bUp5Dl2zlrVDJwRLOdZ1L5MFItgzYQnxUvOpIlpWVlUV+fj7nn38+O3fuxOFwqI6km0mTJqmOIILlBCVa5kD4y6N5cHqceDTr/mAhkI6sLSnPoU3P91gp0CfgdDs5NedUnF2cfKZ9Rv8O/VVHsrRx48Zx77338tJLL3H33XcTFxenOpJu5N7XEHOcEi1zIPy1u2E3k7ZNYnfDbtVRTGHz5s2Ul0l5DnVyD7QiE5dPpXpsNY/nPc55A85THSckdO3alTvvvJO3336b7GZui2wmycnJqiOIYPtliS4plTkQfusZ3ZN/9vsnPaN7qo5iCsnJySzPkPIc6vR8j43U7cwmN/T6J9j97adcsuheZp85W3WckPDSSy8RGRnJLbfcQmRkJPn5+QwdOvSYxzocDu8tHoe9/1znqQti0tarrKykd3Vv6qlXHUUE2+RzwZOAa20mpaUjKNx9GPZVqE51Uh06xNOnT3vVMUJW+8j2nNdZ7Q9ySksPUltrU5rBH4vXHqa0dB9DJ/Rg7LR67FWqEwkVtAMalZX6bTzkd4F+9913mTBhAh9//DH33HMPTz/9NI8++ihz5szh+uuvZ/HixYwePZqamhrq6+sZOnQo3333Hddddx3PP/+879jbb7+dd999l2nTplFUVERERASJiYls2rSJSy+9lAULFviOve+++3j55Zc5//zz2b59O507dyYuLo6cnBzOPPNM3njjDd+xs2fP5qmnnuKqq65i5cqV9O/fH5fLRWVlJePGjeOzzz7jrrvu4plnnvF9zY033siXX37JmDFj2L9/Pw0NDQwePJjly5czs38fdpe/znlFf2HOnDnceeedvPXWW6SmppKfn090dDTdu3dny5YtXHTRRbz66qu+895///3Mnz+fCy+8kK1bt9K1a1diYmLIz89nxowZvPnmm8yePZvHH3+cRx55hLlz53LNNdewYsUKBg4ciMPhoLq6mpSUFL744gtuv/12/vWvf/nOf9NNN/H5558zbtw49u7di9PpZODAgWRkZJCens6LL77oO/auu+5i0aJFnH766eTm5hIXF0fnzp3Ztm0bF1xwAa+99prv2AceeIAXXniBiy++mC1bttCjRw8iIyMpLCxk+vTpvPPOOzz00EPMnTvX9zXXXnst33//PcnJyTQ0NLB//35OOeUUvvrqK2677TbmzZvnO/aWW27hk08+Yfz48VRUVOB2u0lKSmLVqlVceeWV7N69m4kTJ3L11VeTnJxMbm4umZmZZGdn06ZNGzp16sSOHTs499xzSU9PZ/ny5UcHtNr7P1/av2TcmnFEdI6guLiYqVOn8t577/HAAw/wxBNP+LJcd911LF26lGHDhnH48GFqa2sZNWoUixcv5qabbuLZZ5/1HXvrrbfy0UcfMXHiRMrKytA0jT59+rBu3Touv/xyXn75Zd+x99xzD//5z3+YOXMmWVlZtG3blvbt27Nr1y7OOeccFi5cyLV3XUtuQS7DPhrGunXrGD58OGVlZbRr1w6AQ4cO0bt3bzIzM5k0aRKrV68mNTWVjIwMxo4dS15eHt26dcNut+N0OunSpQv5+fmkpKSwfv1637Hjx49n165d9O7dm0OHDgHQrl07ysrKGD58OJs3b/YdO3HiRLZu3cqgQYOoqqoiNjaW6Oho9u3bx4ABA9i2bZvv2KlTp7J27VpGjhxJSUkJHTp0wOPxUFdXR69evcjMzGTixImsWbPmV7m7d+9OQ0ODL3dBQQFjxoxhw4YNTXL/+OOP9O3bl9raWsLDw0lISKC8vJxhw4Y1yT1p0iQ2b95McnIylZWVxMfHExkZyf79+3+Ve9q0aaxZs4ZRo0ZRXFzcJHfPnj3Jzs5mwoQJrF271vc1KSkp5OTk0KNHD2w2Gy6Xi06dOlFUVMQpp5zSJPeECRPYsWMHSUlJ1NTUEBER4cs9dOhQtmzZ4jt28uSz2bJ2KwkJDt586f/5ctfU1JCUlMSOHTuYOnUqq1atYtq0aaxevZrRo0dTVFREp06dcLlc2Gw2EhMT2b17N+PHj2+Se9y4cWRnZ9OzZ0/q6upwu92+3KNHj2bjxo2+Y0877TS2b9/uyx0ZGUl8fDyVlZUkJyezdevWn45dzYIFb/HZZ4uUvUfMnz/fd+zdd9/Nf//7X84666xjvkcsXLjQd+yDDz7Ic889x6xZs9i4cSOJiYlERBj3PeLIsQ8//DDz5s3jsssuY9mGZdT1q2OIawg1pTVMmjSJDz/8kPvuu48nn3yyye/H//vf/xgxYgQHDx7k8OHDDBs2jCVLlnDDDTfw3HPP+Y697bbb+OCDD5g0aRKlpaWEhYXRu3dv1q9fz29+8xv+/e9/+479zW9+zz333Mzgwf1N8R7Rs1dfal79kdjsCSZ9j5jMpk2bGDJkCBUVFSZ5j/Dm3rhxI0OHDqW8vJyEhATCw8Opra2lX79+7Ny5kylTprBq1Srf14wZM4aCggI6d+7sy92jRw9ycnI49dRTWbdune/YU089laysLF9uj8dDhw4dKCkpYeTIkWzatKlJ7uLiYqrLqvkk9xO/3yMGDhzoVy8O0zRN87dEhxK73UVcXD2nn/4Dy5bNUB1H/ILvJ9D7gIGQ1zWPcdXj2N19N8k7k6Gr6oQn9umSTxk0apDqGEKhwswDfP7OG7TbNJLI4ZOhT1/VkY7L5aqmQ4dPufTSmxk1KlF1nJCUZcsiPTudt4a+pWQ3wp07K/jkk1eorb2EyEhjvsGWl8Py5TB0aDX9+z/HRdfcQP8hbVXHEooc2HeAN559gzlz5pCYGPj3LbmF4zhiYyNJTMxi8+ZOqqOIY4iJiSEmJgZ+elBHQrh++93r4WD5QUbNHKU6hlBpXwX79++nU1xP2nzwrfdGzePcsqRavdxppFxyXDKrT1lNdHi00hyRkV1p08Z430T9/GkbY8dCfv5++nfuzygdipMwhwq877F6kQ8RnsDppzs5fHg4xcUHVUcJCWFhYcf8y4rOPPNM1RGEAQwYMACmTfVr228R2iLCIoiLiCMiTD4N90u/fFRdePhPa0uEPD3nQAr0Cdx22wAgkpdeylIdJSRomnbMv6zojTfeUB1BGMC2bdsgzL9tv0VoK3OU8VDBQ5Q5ylRHMZTjPed527ZtSnMJY9BzDqRAn8DUqb2Jiirkyy+dqqOElLKyMu6//37VMXT16KOPqo4gDMC3zawf236L0ObRPNS762UjlZ850SYpem7hLMxDtvJWaNiwEnJzB+DxWPMnoUajaRqff/65rvctGcGcOXNURxAG0GSbWSnR4gT6xvblpcEv0TfWuB82DaaT7TCo5xbOwjxkK2+FLrkkHre7N99+W6g6SkhYunQpZ5xxhuoYups9W54tLmDatGlNf0FKtBAn5c/23L9aWyIk6TkHUqBP4vbbhwMOXnutVHUUy8vPz6d79+6W3sL7iKeeekp1BGEAa9as+fUvSokWx5Bly2LC1glk2UL7Mzn+lGc4ztoSIUfPOZACfRLdurWhY8ddrFoVrzqK5W3bto3CwkKWLFlCSUkJO3bsUB1JN1dddZXqCMIARo06zqMMpUSLX+gR1YOH+zxMj6geqqMo4295hhOsLRFS9JwDKdB+mDjxENXVwzl0yKE6iqXNmjWL//u//6OhoQGHw2HZJ3AArFy5UnUEYQDFxcXH/5dSosXPdIzqyKyus+gY1VF1FCWaU57hJGtLhAw950AKtB+uvbYH0IZXXtmlOorlRUVFcc8997BmzRpOOeUU1XF0079/f9URhAF06NDhxAdIiRY/Oew6TEZtBoddh1VHCbrmlmfwY22JkKDnHEiB9sOsWcmEh1fx4YeyoYoIDJfLpTqCMACPx49HkkmJFkCZs4z7Cu6jzBlaz4FuSXkGP9eWsDw950AKtB8iI8NJSsphx46eqqMIi6isrFQdQRhAXV2dfwdKiQ55g+IG8d2o7xgUN0h1lKBpaXmGZqwtYWl6zoEUaD+lpYVhtw9hx44q1VGEBYwbN051BGEAPXs245tyKdEhLSosio5RHYkKi1IdJShaU56hmWtLWJaecyAF2k933JEMwIsv5ihOIqzgs88+Ux1BGEB2c0uwlOiQVe4o569Ff6XcUa46iu5aW56hBWtLWJKecyAF2k8jRnQlLi6LJUvCVEcRFnDXXXepjiAMYMKECc3/IinRIcmpOSl1lOLUnKqj6CoQ5RlauLaE5eg5B1Kgm2HMmL2UlAzB5ZIPJ4jWeeaZZ1RHEAawdu3aln2hlOiQkxSbxMIhC0mKTVIdRTeBKs/QirUlLEXPOZAC3Qy//W0HNK0L7723W3UUYXKPPvqo6gjCAFJTU1v+xVKihYUEsjxDK9eWsAw950AKdDPccMNw4DCLFu1VHUWY3Jw5c1RHEAaQkZHRuhNIiQ4Zu227mb5tOrtt1vsBTqDLMwRgbQlL0HMOpEA3Q0JCNN27Z7JxY3vVUYTJ3XjjjaojCANISUlp/UmkRIeELlFduDnxZrpEdVEdJaD0KM8QoLUlTE/POZAC3UypqXYOHhzJnj2HVEcRJvbll1+qjiAMICcnQE/1kRJteZ2jOpPePZ3OUZ1VRwkYvcozBHBtCVPTcw6kQDfTzTcnAVHMn5+lOoowsTFjxqiOIAygR48egTuZlGhLq3PXseHQBurc1tggRM/yDAFeW8K09JwDKdDNdOaZ/YiMLOaLL+yqowgT279/v+oIwgBsNltgTygl2rJKHaXcnnc7pY5S1VFaTe/yDDqsLWFKes6BFOgWGDKkmOzsJNUxhIk1NDSojiAMwOVyBf6kUqItaWDsQL4c8SUDYweqjtIqwSjPoNPaEqaj5xxIgW6BCy+MweXqx7JlxaqjCJMaPHiw6gjCADp16qTPiaVEW050eDQ9Y3oSHR6tOkqLBas8g45rS5iKnnMgBboFbr99GNDIK68UqY4iTGr58uWqIwgDKCoq0u/kUqItpcJZwRMlT1DhrFAdpUWCWZ5B57UlTEPPOZAC3QK9e7ejfftdZGTEqo4iTOp3v/ud6gjCAE455RR9X0BKtGXY3XZ21O/A7jbf52+CXZ4hCGtLmIKecyAFuoUmTKilsnI49fVO1VGECb3wwguqIwgD2LBhg/4vIiXaEvrH9eedYe/QP66/6ijNoqI8Q5DWljA8PedACnQLXXNNN6At//lPpuoowoRkK28BQdxuWEq0UEBVeQbZylt4yVbeBnTllUMJC6vm/fcPqI4iTEi28hYQ5O2GpUSbWq4tl5k7ZpJry1UdxS8qyzPIVt7CS7byNqDIyHD69s1h27buqqMIE7rzzjtVRxAGMGHChOC+oJRo0+oQ1YHLu15Oh6gOqqOclOryDArWljAkPedACnQrzJzpwWYbSlbWPtVRhMm89dZbqiMIA9ixY0fwX1RKtCl1jerKjYk30jWqq+ooJ2SE8gyK1pYwHD3nQAp0K9x+ezIQzosv7lYdRZiM3J8nAJKSktS8sJRo07G5beyo24HNbdwd9oxSnkHh2hKGouccSIFuhTFjuhMbu5v//U9THUWYTH5+vuoIwgBqamrUvbiUaFMpdhTz+5zfU+ww5gZeRirPoHhtCcPQcw6kQLfSqFEVFBUNxuOREi38Fx1t3t3EROBEqG4ZUqJNo39sfz4Y9gH9Y433GDujlWcwwNoShqDnHEiBbqXLLmuHx9Odjz/OUR1FmEj37vLhUwEJCQmqI0iJNonY8FgGxg0kNtxYG3gZsTyDQdaWUE7POZAC3Uq33DICqOe//zXn9qpCjS1btqiOIAygvLxcdQQvKdGGt9e5l2fLnmWvc6/qKD5GLc9goLUllNJzDqRAt1K7djF07bqLdevaqo4iTOSiiy5SHUEYwNChQ1VHOEpKtKHVuetYeXAlde461VEAY5dnMNjaEsroOQdSoANg6lQbBw6MpKqqXnUUYRKvvvqq6gjCAAz3JxFSog1rYNxAPhnxCQPjBqqOYvjyDAZcW0IJPedACnQA3HRTXyCGl1+Wbb2Ff2QrbwEGfZyhlGhxAuXlxi/PYNC1JYJOtvI2uLS0/kRElPLpp8Z9PqcwFtnKW4CBtxv+ZYkuLVGdKOTlN+Rz0a6LyG9Q+wjM5cuNX57BwGtLBJWecxCp25lDSHh4GIMHF5KV1Ud1FGES999/v+oIwgAmT55MfX019Ua9++vcyZDgwZW5FoapDhPa2ka05awOZ9E2Qs3nbTZu9P7v0KHVjB0LdruSGH5xuaqZPHmy6hjCAPScAynQAfKb34QxZ8535OamMXhwP9VxhMHNnz9fSnSI69Ahno0btzJlSpTqKCd2nvd/NCd02LIORl2qNk+I6hbdjbt63aXktRcvhocfjufWW6NITf1USYbmWrNmK7fcEq86hlBs06ZNup1bCnSA3H//KObOPZ3ly+czePDNquMIg7vwwgtVRxCK9enTnkcfnUPHjomqo5ycy0WHuX+jz1NzoMOHcPHFqhOFHLvHTqm9lD6xfYL6LOjFi73/udPS2nP99XdQX2+OWxVPP/0C+vRprzqGUGzIkCG6nVsKdIB06NCB0047jW+//Zabb5YCHTSdgSqo/awWbgZ3Bze0Ux3q5LZu3crgwYNVxxCKVVTkMn16iuoY/nlnAVxdB5ddBh9KiQ62Qnsh6dnpvDX0LYbFB+d+mqPlGT76CKKj2wPmKKXvv78SMMnaErqpqNBvjw75EGEApaWl8f333+NyuVRHCR3hQFfQ2nq3Uo+ojYD31UbyR9euXVVHEAZgqjmIjIS334ZLL/WW6M8+U50opCTFJLFoyCKSYpKC8nq/Ls9BedmAMdXaErqJj9fvNh4p0AE0c+ZMDh48yIYNG1RHCVnOEU6YC3hUJzmxmJgY1RGEAZhuDqREKxMXEceINiOIi4jT/bXMXp7BhGtL6CIyUr8bLaRAB9D48ePp2LEj3377reooIcs+0w7ZwCeqk5xYfr7aR1EJYzDlHEiJVqK6sZoF5QuobqzW9XWsUJ7BpGtLBFxNTY1u55YCHUARERGcddZZLFmyRHWUkOXu54YzgccBTXWa45sxY4bqCMIATDsHUqKDrtZVy2f7P6PWVavba1ilPIOJ15YIqKSkJN3OLQU6wNLS0ti0aZOu3/WIk/gT8AOwWHWQ43vzzTdVRxAGYOo5kBIdVIPjBrN41GIGx+nz4WMrlWcw+doSAbNjxw7dzi0FOsDS0tLweDx89913qqOErhnAROAxDPtT6NmzZ6uOIAzA9HMgJdoSrFaewQJrSwTE1KlTdTu3FOgA6927N8OHD5f7oFUKw/tT6LXASsVZjuPxxx9XHUEYgCXmQEp0UBQ0FPDbzN9S0FAQ0PNasTyDRdaWaLVVq1bpdm4p0DpIS0vj22+/RdMM+uPPUPB/wCl4fwptQI888ojqCMIALDMHUqJ1Fx8Rz7i244iPCNxjuaxansFCa0u0yrRp03Q7txRoHaSlpbFnzx4yMzNVRwldYcAjwFJAv508W2zu3LmqIwgDsNQcSInWVY/oHjzU5yF6RPcIyPmsXJ7BYmtLtNjq1at1O7cUaB1Mnz6d2NhYuY1DtVnAEAz5U+hrrrlGdQRhAJabAynRunF4HJTaS3F4HK0+l9XLM1hwbYkWGT16tG7nlgKtg7i4OKZPny4FWrUI4I/A58BOxVl+YcWKFaojCAOw5BxIidZFgb2AizMvpsDeunugQ6E8g0XXlmi2oqIi3c4tBVonM2fOZOXKlTQ0NKiOEtquBvri3Z3QQAYOHKg6gjAAy86BlOiA6xvTlwWDF9A3pm+LzxEq5RksvLZEs3Tq1Em3c0uB1klaWhp2u13XT4AKP0QBDwHvA3mKs/yMw9H6P4YV5mfpOZASHVBtItpwattTaRPRpkVfH0rlGSy+toTfXC6XbueWAq2TESNG0KtXL7mNwwiuB7oCT6gOclR1tb7b8QpzsPwcSIkOmP2N+1m0dxH7G/c3+2tDrTxDCKwt4RebzabbuaVA6yQsLIyZM2dKgTaCOOB+YBFQqjjLT1JSUlRHEAYQEnMgJTog9jfu5/XK15tdoEOxPEOIrC1xUomJibqdWwq0jtLS0ti1axdlZWWqo4hbgQTgGdVBvL744gvVEYQBhMwcSIluteT4ZJafspzk+GS/vyZUyzOE0NoSJ7R7927dzi0FWkdnnXUWYWFhLFmyRHUU0Ra4B3gVqFKcBbj99ttVRxAGEFJzICU6qEK5PEOIrS1xXOPHj9ft3FKgddS5c2fGjx8vt3EYxV14H233/1QHgX/961+qIwgDCLk5kBLdYkX2Iq7bfR1F9qKTHhvq5RlCcG2JY1q7dq1u55YCrbO0tDSWLl2K2+1WHUV0Am4HXgIOqI3y6KOPqg0gDCEk50BKdIvEhMUwIHYAMWExJzxOyrNXSK4t8Supqam6nVsKtM7S0tI4cOAAmzdvVh1FAPwBcAIvqo0xZ84ctQGEIYTsHEiJbrbEmET+0u8vJMYc/0NRUp6PCtm1JZrIyMjQ7dxSoHU2YcIE2rVrJ7dxGEUP4EbgWaBOXYybbrpJ3YsLwwjpOZAS3SyNWiPVjdU0ao3H/PdSnpsK6bUlfMaNG6fbuaVA6ywqKoozzzxTCrSRPAQcAhaoi/D555+re3FhGCE/B1Ki/ZbXkMc5O88hr+HXO0JJef61kF9bAoDs7Gzdzi0FOgjS0tLYsGEDtbW1qqMI8G7tfQ3eR9rZ1UTQ87tiYR4yB0iJ9lPvmN48O/BZesf0bvLrUp6PTdaWAOjZs6du55YCHQRpaWm43W6WLVumOoo44o94H2f3XzUvv3fvXjUvLAxF5uAnUqJPqm1EW6a1n0bbiLa+X5PyfHyytgRAXZ1+92pKgQ6CpKQkkpOT5TYOI0kGLgOeBI59S6GunE5n8F9UGI7Mwc9IiT6hA40H+KD6Aw40eh8hJOX5xGRtCUDXJ6BJgQ6StLQ0vv32WzRNUx1FHPEIUAS8G/yXHjhwYPBfVBiOzMEvSIk+rr2Ne5lXNo+9jXulPPtB1pYA6NSpk27nlgIdJGlpaRQXF5OTk6M6ijhiNHA+MBfwBPel9Xy0jjAPmYNjkBJ9TEPjh7J+7HoKM4ZKefaDrC0BUFRUpNu5pUAHyYwZM4iOjpbbOIzmT0A28ElwXzY9PT24LygMSebgOKREH5P85Nl/srYEwOjRo3U7txToIGnTpg1Tp06VAq2zssgy398XNBRQ6awEwOFxkGXLot5dD8D+xv3k2HJgIjADip4pouJQBeB93mqWLYvD7sOA997DbNvRR+GU2EvY49gDgFtzk2XL4pDrEAC1rlqybFm+W3VKHaWUOkoB0DSNLFsWta5aXnzxRQ65DpFly8Ktee/R2uPYQ4m9xPc62bZs3/2Oh92HybJl+Z4BW+GoaLKlb44th/2N+wGod9eTZcvC4XEAUOmspKChwHdsbkMu1Y3VADS4G8iyZWH3eB9HUuWsIr8h33dsfkM+e53eD+PYPXaybFnY3DYAqhurybXl+o4tbCikwum9hk6PkyxbFnXuOt/13m3b7Tu2yF5EuaO86fV2Hb3eWbasJte7zFHW5HofdB0E4KDrIFm2LDya948QyhxllNpLfV+bZcvigMt7DY9cb5fm8l3vYnux79jdtt3UNNYAUOeu815vz0/X21lBob3w6DW05bKvcR8ANretyfXe69zb5HrnNeRR7fzpenu817vB0wDA068+3eSxZAUNBb7rfWRmj1zvfY37ml5v+9Hr3ehpbHK9axprmlzvYnuxb2ZdmqvJzB5wNb3epfZS3/X2aJ5jXu8jM1vmKGsys1m2rKMz62o6s+WO8iYzu9u22zezR6630+M8er0bS30lOnf2NVR/8WaT631kZvc69/5qZqucVcDRmW1we693dWM1uQ1Hr6Ff7xE/KbIXUeEI3nsE0OQ94s0lJdxbegtnXlki5dkPL76oeLcsYQgbN27U7dxSoINo5syZrFixAofDoTqKZb3Q6QXf388unM2ivYsAbzFMz073FYWva77mltxbvAeOgr/d+jde3fkq4P0NLj07nW112wBYWruU63Zf5zvv3NK5vFT+EuAtROnZ6Ww4vAGAlQdXkp6djhtvwZhXNo95ZfMAcOMmPTudlQdX8uijj7Lh8AbSs9N9Zeql8peYWzrX9zrX7b6OpbVLAdhWt4307HTfb6yvVr7K34r/5jv2ltxb+Lrma8BbYtKz030lYtHeRcwunO079u68u/mk2vsj9wJ7AenZ6b7S+X71+9xXcJ/v2AcLHuTdKu9N4nsce0jPTvcVvs/3fc4deXf4jv1T0Z94o/INwFv20rPT2VW/C4DFNYu5Kefoxgb/KP4HCyq8D+Kuc9WRnp3O1rqtACyrXca12df6jn2y9Eme3/M84C3m6dnprDu0DoA1B9eQnp3uK8XPlj3L02VP+742PTudFbUrANh8eDPp2em+gvRy+cs8VvKY79jrc67n2wPeb3B31O8gPTudGpe3UC+sXMhfiv7iO/bWvFv5Yv8XAOxu2E16drqvzL5d9TYPFz7sO/be/Hv5cN+HgLeEpWen+4pkr6t7cW/+vb5jHy58mLer3ga8JTI9O53dDd4i/MX+L7g171bfsX8p+gsLKxcCUOOqIT07nR31OwD49sC3XJ9zve/Yx0oe4+XylwHvN1jp2elsPuzdHXVF7QrSs4/+tO7psqd5tuxZwFu207PTWXNwDQDrDq0jPTvdV3Sf3/M8T5Y+6fvaa7OvZVmt92lDW+u2kp6dTp3LW+oXVCzgH8X/8B17U85NLK5ZDMCu+l2kZ6f7vil5o/IN/lT0J99Pou9YMIzPv/ojfPYZeQ15pGen+wrqu1Xv8mDBg77z3ldwH+9Xvw94vxlIz06nwO79huaT6k+4O+9u37F+v0cAfyv+G69WBu89AvC9R3zxbQO33RxB57axzH8xQsqzH2QrbwH6buWNJoLmhx9+0ADtu+++Ux3Fcta/u14DtI8+/Mj3a/m2fK3CUaFpmqbZ3XYtsz5Tq3PVaZqmafuc+7Td9bs1zalpWh9NK7yxUCu3l2uapmlOj1PLrM/UDrkOaZqmaTXOGi2rPst33uKGYq3MXqZpmqa5PC4tsz5TO9h4UNM0TTvQeEDLrM/UPB6PpmmaVmIv0UrsJZqmaZrH49Ey6zO1A40HtH/+85/awcaDWmZ9pubyuDRN07Qye5lW3FDse52s+iytxlmjaZqmHXId0jLrMzWnx6lpmqaV28u1woZC37G763dr+5z7NE3TtDpXnZZZn6nZ3XZN0zStwlGh5dvyfcfm2HK0KmeVpmmaZnPZtMz6TK3B3aBpmqbtdezV8mx5vmPzbHlapaNS0zRNa3A3aJn1mVq9q17TNE2rclZpOfU5vmMLbAVaucN7DR1uh5ZZn6kddh32Xe/s+mzfsYUNhdoe+56m17vx6PXOrM9scr1L7aVNrndtY62maZpW21irZdZnam6PW9M0TSu1l2olDSW+r82sz9RqGr3X8Mj1bvQ0+q53UUOR79js+mxtv3O/pmmadth12Hu93T9db0e5VtBQcPQa1udo1c5qTdM0rd5V3+R6Vzoqm1zvXFuuVuX46Xq7vdfb5rZpmqZpjzz1iJZry/Udm2/L913vIzN75HpXO6ubXu+Go9fb6XY2ud77nfubXO+ihiLfzDZ6GpvMbE1j0+td0lDiu95uj/uY1/vIzJbaS5vMbGZ95tGZbWw6s3vse5rMbHZ9tm9mj1xvh9tx9Hrbfna9D2VqVb+/VNMiI7X6z95vMrOVjspfzexex15N047OrM3lvd5Vziotx3b0Gvr1HvGTwobgvkdomndmX1uSqUXHurQLLtC0Qw12Tfjnn//8p+oIQrHy8nLt9NNP18rLy3U5f5imyWMhgsXj8dCzZ0+uvfZannzyyZN/gfDbhvc2MPHKiax/dz2nXXGa/1/4OnA9sBMYqVO4Yzh48CDt27cP3gsKQ5I5aAaXC66+Gj75BD780HszsMX9/J7n9z90445sIC48joiwCNXRDE/WlqioqOD555/n7rvvJjExMeDnl1s4gig8PJyZM2fKfdBG4cb7BI6LCWp5Bli0aFFwX1AYksxBM4TYBwt/+YHBIncOqdtTyWmQJzn5Q9aWANi+fbtu55YCHWRpaWls376dyspK1VHER0Au3udBB9npp58e/BcVhiNz0EwhUqKP9bSNXtG9eKL/E/SK7qU6ninI2hLg3chOL1Kgg+zss88GYMmSJYqThDgNeBw4Gxgf/JfPzc09+UHC8mQOWsDiJfp4j6prF9mOszueTbvIdkrzmYWsLQFQU1Oj27mlQAdZt27dSElJkds4VPsK2IH3OdAKxMXFqXlhYSgyBy1k0RJ9ouc817pq+WL/F74n8YgTk7UlACIjI3U7txRoBdLS0liyZAkeT5C3vxNeGvAYMAWYriZC586d1bywMBSZg1awWIk+2SYpFc4K/l78d9/jEsWJydoSAPHx8bqdWwq0Amlpaezbt48ffvhBdZTQtBzYgPenz2FqImzbtk3NCwtDkTloJYuUaH92GBwaN5QNYzcwNG5o0POZkawtAej6eTMp0ApMmjSJhIQEuY1DlceAFOAcdREuuOACdS8uDEPmIABMXqL93Z47LCyMyLBIwsIUfddvMrK2BEBycrJu55YCrUB0dDSnn366FGgV1gPL8D55Q+HvQ6+99pq6FxeGIXMQICYt0f6WZ/Bu+f2H/D/4tv0WJyZrSwBs3bpVt3NLgVYkLS2NtWvXcvjwYdVRQstjwDDgErUxZJtZATIHAWWyEt2c8iyaT9aWAH238pYCrUhaWhoul4vly5erjhI6tuN9+sZslE/+nDlz1AYQhiBzEGAmKdEtKc99Yvrw/wb+P/rE9NE9nxXI2hIAGRkZup1bCrQigwYNYsCAAXIbRzA9DiQBVyjOATzwwAOqIwgDkDnQgcFLdEt/8qxpGi7NhaZpuuazCllbAmDy5Mm6nVsKtEJpaWlSoINlN/Ah8DAQpTgL8MILL6iOIAxA5kAnBi3RrbltI7shm9N+OI3shmzd8lmJrC0BsHHjRt3OLQVaobS0NPLz88nPz1cdxfqeBHoA1ynO8ZOLL75YdQRhADIHOjJYiW7tPc+J0Yn8td9fSYxO1CWf1cjaEgBDh+r32Ecp0AqdfvrpREZGyk+h9VYMvAk8AMQqzvKTLVu2qI4gDEDmQGcGKdGB+MBgh8gOXNj5QjpEdgh0PEuStSUAysvLdTu3FGiF2rVrx+TJk6VA6+1poD1wi+ogR/Xo0UN1BGEAMgdBoLhEB+ppG4dch1h6YCmHXIcCms+qZG0JgISEBN3OLQVasZkzZ7Js2TKcTqfqKNZUCbwG3Au0URvl5yIjI1VHEAYgcxAkikp0IB9Vt8e5hz8W/pE9zj0By2dlsrYEQHi4fjVXCrRiaWlp1NXVsW7dOtVRrGkeEAPcqTpIU4WFhaojCAOQOQiiIJfoQD/nOTkumYxTMkiO029nNSuRtSUAamtrdTu3FGjFUlJS6NKlC0uWLFEdxXpqgJeBO4AOaqP80vTp01VHEAYgcxBkQSrRemySEhEWQUJEAhFhEa0/WQiQtSUA+vXrp9u5pUArFh4eztlnny33QevhecCN9/YNg3nnnXdURxAGIHOggM4lWq8dBvc49vBI4SPsccgtHP6QtSUAdu7cqdu5pUAbQFpaGlu3bqW6ulp1FOs4jLdA3wR0U5zlGB566CHVEYQByBwoolOJ1nN7brfm5oDrAG7NHbiTWpisLQEwZcoU3c4tBdoAZs6ciaZpLF26VHUU6/g3UAc8qDrIsc2dO1d1BGEAMgcKBbhE61meAfrG9uXlwS/TN7ZvYE9sUbK2BMCqVat0O7cUaANITExk9OjRchtHoDQA/wKuBXorznIcjz76qOoIwgBkDhQLUInWuzyL5pO1JQBSU1N1O7cUaINIS0tjyZIlaJqmOor5LQSq8W7bbVBz5sxRHUEYgMyBAbSyRAerPGfbspn4w0SybbKVtz9kbQmAjIwM3c4tBdog0tLSqKysZMeOHaqjmJsLeAq4AhikOMsJXHvttaojCAOQOTCIFpboYP7kuXtUd+7rfR/do7rr9yIWImtLAIwZM0a3c0uBNogpU6YQFxcnt3G0UvSWaCgBZqtOcmLff/+96gjCAGQODKSZJTrYt210jOrI5V0vp2NUR31fyCJkbQmAgoIC3c4tBdogYmNjmTFjhhToVopZGgMXAyNVJzmx5GTZDEHIHBiOnyVaxT3Ph92HWXVwFYfdh/V/MQuQtSUAOnfurNu5pUAbSFpaGqtXr6a+vl51FHNZCnEfxgEQuS8SHlGcxw8NDQ2qIwgDkDkwoJOUaFUfGCxzlHFv/r2UOcqC84ImJ2tLALhcLt3OLQXaQNLS0nA6nbre9G459wIzIXZNLAAaGpjgMzb79+9XHUEYgMyBQR2nRKt82saguEH8b9T/GBRn4A93GIisLQFgs9l0O7cUaAMZMmQIffv2lds4/LULeK7pL4URBvcBDhWB/HfKKaeojiAMQObAwH5Rorf8+TOlj6qLCouia1RXosKigvvCJiVrSwD06NFDt3NLgTaQsLAw0tLSpED7a8Vxfn0f8GMQc7TAV199pTqCMACZA4P7qURXTLqU0XMu4y+jP1P2nOcKRwX/KP4HFY6K4L+4CcnaEgA5OTm6nVsKtMGkpaWxe/duiouLVUcxvp7H+fVwQL9vOgPitttuUx1BGIDMgfEtXhrJwPVvs77npTyy7TKiv/lMSQ6H5qDAXoBDM/gfrxmErC0BcOqpp+p2binQBnPmmWcSEREhP4X2x/nAwGP8+qVAryBnaaZ58+apjiAMQObA2I7c83zWOZGclvs2YQHa9rslkmKT+O+Q/5IUmxT01zYjWVsCYN26dbqdO0yTre8MZ8qUKfTo0YOPP/5YdRTj+xS4FHZ3383QvUPZful2Ri8aDW1UBxNCmNkxPzDocsHVV8Mnn8CHH3oPEEIYUkVFBa+88go333wziYmJAT+//ATagNLS0vj+++91ffyKZSwEhkHtM7UANFzWYIryLNvMCpA5MKrjPm2jldt+t0aOLYfTt59Ojk2/ezqtRNaWANnKO+TMnDmTgwcPsmHDBtVRjG078BXeXQcjFWdppltuuUV1BGEAMgfGc9JH1Skq0Z2jOvP7Hr+nc5R+G0NYiawtAXIPdMgZP348HTt2ZMmSJaqjGNtcIAm4QnGOFvjkk09URxAGIHNgLH4/51lBie4c1Znfdf+dFGg/ydoSAFlZWbqdWwq0AUVERHDWWWfJBwlPJAf4AHgYMOFjUcePH686gjAAmQPjaPYmKUEu0fXuejYf3ky9W3aq9YesLQHQs+fxHtfVelKgDSotLY1NmzZRU1OjOooxPYH3UXXXKc7RQhUV8ixXIXNgFC3eYTCIJbrEUcItubdQ4ijR7TWsRNaWAKirq9Pt3FKgDSotLQ2Px8N3332nOorxFANvAg8AsYqztJDb7VYdQRiAzIF6rd6eO0glekDsAD4b/hkDYgfocn6rkbUlADwej27nlgJtUL1792b48OFyG8exPA20B0z8GZGkpCTVEYQByByo1eryfEQQSnRMeAx9YvsQEx4T8HNbkawtAdChQwfdzi0F2sCObOstj+r+mUrgNeBeTPG4uuNZtWqV6gjCAGQO1AlYeT5C5xJd6azkqdKnqHRWBvS8ViVrSwCUlOh3y5MUaANLS0tjz549ZGZmqo5iHPOAGOBO1UFa58orr1QdQRiAzIEaAS/PR+hYom1uG1sOb8HmtgXsnFYma0sAjBw5UrdzS4E2sOnTpxMTEyO3cRxRA7wM3AF0UBultebPn686gjAAmYPg0608H6FTiR4QN4D3h7/PgDi5B9ofsrYEwKZNm3Q7txRoA4uLi2P69OlSoI94AXDjvX3D5B599FHVEYQByBwEl+7l+QiFOxYKL1lbAiA1NVW3c0uBNri0tDRWrlxJQ0OD6ihqHQaeA24CuinOEgCyzawAmYNgClp5PiLAJTq3IZdzd55LbkNuYPJZnKwtAbKVd0hLS0vDbrfLByL+DdQBD6oOEhh333236gjCAGQOgiPo5fmIAJboDpEduLjzxXSI7BCweFYma0sAnHbaabqdWwq0wY0YMYJevXqF9m0cDcC/gGuB3oqzBMh///tf1RGEAcgc6E9ZeT4iQCW6a1RXbul5C12jugY2n0XJ2hIA27Zt0+3cUqANLiwsjJkzZ4Z2gV4IVOPdttsizjrrLNURhAHIHOhLeXk+IgAlusHdwK76XTS4Q/x2Pj/J2hIAAwbo96FbKdAmkJaWxq5duygrK1MdJfgagaeAK4BBirMEUHZ2tuoIwgBkDvRjmPJ8RCtLdJGjiN/t/h1FjiJd4lmNrC0BsG/fPt3OLQXaBM466yzCwsJYsmSJ6ijB9xZQAsxWHSSw2rQx8S4wImBkDvRhuPJ8RCtKdP/Y/rw39D36x/bXL5+FyNoSANE6Ln4p0CbQuXNnxo8fH3q3cbiBucDFgH7PQleiU6dOqiMIA5A5CDzDlucjWliiY8NjGRw/mNjwWH3zWYSsLQHexwHrRQq0SaSlpbF06VLcbrfqKMHzMZALPKI6SODt2LFDdQRhADIHgWX48nxEC0p0lbOKF/a8QJWzSv98FiBrSwDs3btXt3NLgTaJmTNncuDAATZv3qw6SnBowOPA2cB4xVl0cO6556qOIAxA5iBwTFOej2hmiT7sPsx3td9x2H04OPlMTtaWABg0SL8PT0mBNonTTjuNdu3ahc5tHF8D24E/qQ6ij4ULF6qOIAxA5iAwTFeej2hGiR4YN5DPR3zOwLiBwctnYrK2BMAPP/yg27mlQJtEVFQUZ555Zmh8kFADHgOmANMVZ9GJbDMrQOYgEExbno+Qbb91IWtLgGzlLX6SlpbG+vXrOXjwoOoo+loOrMf70+cwxVl0ItvMCpA5aC3Tl+cj/CjR+Q35XLrrUvIb8oOfz4RkbQmQrbzFT9LS0nC73Xz//feqo+jrMSAFOEd1EP08+KBF9iQXrSJz0HKWKc9HnKREJ0QkML39dBIiEtTkMxlZWwJgypQpup1bCrSJJCUlkZycbO37oNcDy/A+ecOiP30GeO6551RHEAYgc9AylivPR5ygRHeP7s69ve+le3R3dflMRNaWAFi/fr1u55YCbTJpaWl8++23aJqmOoo+HgOGAZeoDqKvWbNmqY4gDEDmoPksW56POE6Jtnvs5DfkY/fY1eYzCVlbAmD48OG6nVsKtMmkpaVRXFxMTk6O6iiBtx34Cu+ugxafzI0bN6qOIAxA5qB5LF+ejzhGiS60F3J51uUU2gtVpzMFWVsCYM+ePbqd2+I1xXpmzJhBVFSUNW/jmAskAVcozhEEiYmJqiMIA5A58F/IlOcjflGi+y3dyevJr9Mvpp/qZKYga0sAJCTo95kBKdAm06ZNG6ZOnWq9Av0x8D7wIBDV8tOURZb5/r6goYBKZyUADo+DLFsW9e56APY37ifHdvSn+EX2IiocFQA0ao1k2bJ8GxYcaDxAti3bd2yJvYQ9Du93tW7NTZYti0OuQwDUumrJsmX5brEpdZRS6igFQNM0smxZ1LpqiYiI4JDrEFm2LNyad3fJPY49lNhLfK+TbcvmQOMBwLuJQpYti0atEYAKRwVF9iLfsTm2HPY37geg3l1Pli0Lh8cBQKWzkoKGAt+xuQ25VDdWA9DgbiDLluX7Y+EqZ1WTT/nnN+Sz1+ndycnusZNly8LmtgFQ3VhNri3Xd2xhQyEVTu81dHqcZNmyqHPX+a73btvuJte73FHe9Hq7jl7vLFtWk+td5ihrcr0PurxPojnoOkiWLQuP5gGgzFFGqb3U97VZtiwOuLzX8Mj1dmku3/Uuthf7jt1t201NYw0Ade467/X2/HS9nRVNfvKXa8tlX+M+AGxuW5Prvde5t8n1zmvIo9r50/X2eK93g6fB+zqRdeQ15PmOLWgo8F3vIzN75Hrva9zX9Hrbj17vRk9jk+td01jT5HoX24t9M+vSXE1m9oCr6fUutZf6rrdH8xzzeh+Z2TJHWZOZzbJlHZ1ZV9OZLXeUN5nZ3bbdvpk9cr2dHufR691w9Hq/vjSX39xQTVoaLHrfRr7r6Mzude791cwe2a3vyMw2uL3Xu7qxmtyGo9fQyO8RAIewkfXqn3HPuoT431zNkO9yiI+IR5xcRESE6gjCAMLD9au5UqBNKC0tjRUrVuBwOFRHCZwjvwd3bt1pXuj0gu/vZxfOZtHeRYC3GKZnp/uKwtc1X3NL7i2+Y/9W/DderXwV8P4Gl56dzra6bQAsrV3Kdbuv8x07t3QuL5W/BHgLUXp2OhsObwBg5cGVpGen48ZbMOaVzWNe2TwA3LhJz05n5cGVFBcXs+HwBtKz031l6qXyl5hbOtf3Otftvo6ltUsB2Fa3jfTsdN9vrK9Wvsrfiv/mO/aW3Fv4uuZrwFti0rPTfSVi0d5FzC6c7Tv27ry7+aT6EwAK7AWkZ6f7Suf71e9zX8F9vmMfLHiQd6veBbyFMz073Vf4Pt/3OXfk3eE79k9Ff+KNyjcAb9lLz05nV/0uABbXLOamnJt8x/6j+B8sqFgAQJ2rjvTsdLbWbQVgWe0yrs2+1nfsk6VP8vye5wFvMU/PTmfdoXUArDm4hvTsdF8pfrbsWZ4ue9r3tenZ6ayoXQHA5sObSc9O9xWkl8tf5rGSx3zHXp9zPd8e8H5juqN+B+nZ6dS4vIV6YeVC/lL0F9+xt+bdyhf7vwBgd8Nu0rPTfWX27aq3ebjwYd+x9+bfy4f7PgS8JSw9O91XJL+u/5p78+/1Hftw4cO8XfU24C2R6dnp7G7wFuEv9n/BrXm3+o79S9FfWFjp3SyixlVDenY6O+q92xd/e+Bbrs+53nfsYyWP8XL5y4D3G6z07HQ2H/buarqidgXp2em+Y58ue5pny54FvGU7PTudNQfXALDu0DrSs9N9Rff5Pc/zZOmTvq+9NvtaltUuA2Br3VbSs9Opc3lL/YKKBfyj+B++Y2/KuYnFNYsB2FW/i/TsdN83JW9UvsGfiry7KC1eDP9Pu4Px933ORx9BiTuP9Ox0X0F9t+pdHiw4+sSF+wru4/3q9wHvNwPp2ekU2L3f0HxS/Ql3593tO9bI7xGA9z0i71oa3niF6msu5Pk191H9xZuIkysuLj75QcLyamtr9Tu5Jkznhx9+0ADt+++/Vx0lsFI1TRunaZqn+V+6/t31GqB99OFHvl/Lt+VrFY4KTdM0ze62a5n1mVqdq07TNE3b59yn7a7f7Tu2sKFQK7eXa5qmaU6PU8usz9QOuQ5pmqZpNc4aLas+y3dscUOxVmYv0zRN01wel5ZZn6kdbDyoaZqmHWg8oGXWZ2oej/f/RIm9RCuxl2iapmkej0fLrM/UDjQe0AoLC7WDjQe1zPpMzeVxaZqmaWX2Mq24odj3Oln1WVqNs0bTNE075DqkZdZnak6PU9M0TSu3l2uFDYW+Y3fX79b2OfdpmqZpda46LbM+U7O77ZqmaVqFo0LLt+X7js2x5WhVzipN0zTN5rJpmfWZWoO7QdM0Tdvr2Kvl2fJ8x+bZ8rRKR6WmaZrW4G7QMusztXpXvaZpmlblrNJy6nN8xxbYCrRyh/caOtwOLbM+UzvsOuy73tn12U2u9x77nqbXu/Ho9c6sz2xyvUvtpU2ud21jraZpmlbbWKtl1mdqbo9b0zRNK7WXaiUNJb6vzazP1GoavdfwyPVu9DT6rndRQ5Hv2Oz6bG2/c7+maZp22HXYe73dP11vR7lW0FBw9BrW52jVzmpN0zSt3lXf5HpXOiqbXO9cW65W5fjperu919vmtmmapmlb8rdoubZc37H5tnzf9T4ys0eud7Wzuun1bjh6vZ1uZ5Prvd+5v8n1Lmoo8s1so6exyczWNDa93iUNJb7r7fa4j3m9j8xsqb20ycxm1mcendnGpjO7x76nycxm12f7ZvbI9Xa4HUevt61A++YbTYuO1rRzbszR9tRVNbneR2a20lH5q5nd69iradrRmbW5vNe7ylml5diOXkMjv0domtbkPSLnUKZ2VsapWs7QBE379FNNnFhhYaHqCEKx8vJy7Z577tHKy8t1Ob8UaBNyu91a9+7dtYceekh1lMBaqnkn8n/N/9IjBXr9u+sDnUoXc+fOVR1BGIDMwfEdKc8XXKBpDofqNAbR2Khpl1+uaZGRUqJPQtaWKC8v184880zdCrTcwmFC4eHhzJw503r3QZ8JTMD7KDuLe+CBB1RHEAYgc3BsIfeBQX/Jtt9+k7UlACZPnqzbuaVAm1RaWhrbt2+nsrJSdZTACcO7ffeqn/6ysCeeeEJ1BGEAMge/JuX52AobCrkq6yoKG0ulRPtB1pYAWL16tW7nlgJtUmeffTYAS5YsUZwkwM4HRmH5n0I/+uijqiMIA5A5aErK8/HFRsQyus1oYiNi5SfRfpC1JQBSU1N1O7cUaJPq1q0bKSkp1ruNIxzvRirfAlsUZ9HRnDlzVEcQBiBzcJSU5xNLjE7kj33/SGL0T883lhJ9QrK2BEBGRoZu55YCbWJpaWksWbIEj8ejOkpgXQ4MAh5XHUQ/1113neoIwgBkDrykPJ+c0+Ok3FHue4QgICX6BGRtCYAxY8bodm4p0CY2c+ZM9u3bxw8//KA6SmBFAH8EPgEyFWfRydKlS1VHEAYgcyDl2V/59nwu2HUB+fb8pv9CSvQxydoSAAUFBSc/qIWkQJvY5MmTSUhIsN5tHADXAH3wbu9tQcOGDVMdQRhAqM+BlGf/9Ynpw/xB8+kT0+fX/1JK9K+E+toSXl26dNHt3FKgTSw6OprTTz/deh8kBIjGu633u4B+30Aqc/jwYdURhAGE8hxIeW6ehIgETmt3GgkRCcc+QEp0E6G8tsRRTqfz5Ae1kBRok0tLS2PNmjXWfLO4Ee/W3k+e7EDz0XV7UWEaoToHUp6bb3/jft7a+xb7G/cf/yAp0T6hurZEU3a7XbdzS4E2ubS0NFwuF8uXL1cdJfDigPuA/wJ71EYJtFGjRqmOIAwgFOdAynPL7GvcxysVr7Cvcd+JD5QSDYTm2hK/1q1bN93OLQXa5AYNGsSAAQOseR80wG1APPCM6iCBtXjxYtURhAGE2hxIeW65IfFDWDlmJUPih5z8YCnRIbe2xLHl5eXpdm4p0BaQlpZm3QLdDrgLWABUK84SQDfddJPqCMIAQmkOpDwHWYiX6FBaW+L4UlJSdDu3FGgLSEtLIz8/n/z8/JMfbEb34J3U51QHCZxnn31WdQRhAKEyB1KeW6/IXsT1u6+nyF7k/xeFcIkOlbUlTmz9+vW6nVsKtAWcfvrpREZGWven0J2BW4EXgYOKswSIbDMrIDTmQMpzYESHRdMnpg/RYc28gCFaokNhbYmTk628xQm1a9eOSZMmWbdAA9wP2IGXVAcJDNlmVoD150DKc+D0jOnJ35P+Ts+Yns3/4hAs0VZfW8I/spW3OKm0tDSWLVum6zMPlUoErgf+H1CvOEsA3HrrraojCAOw8hxIeQ6sRq2RA40HaNQaW3aCECvRVl5bwn+nnnqqbueWAm0RaWlp1NXV6Xq/j3IPAQeAV1UHab2PPvpIdQRhAFadAynPgZfXkMdZO88ir6EVTxUIoRJt1bUlmiczM1O3c0uBtoiUlBS6dOli7ds4koCrgacBh9oorTVx4kTVEYQBWHEOpDzro3d0b+YNmEfv6N6tO1GIlGgrri3RfL17t3K9nIAUaIsIDw/n7LPPtnaBBpgNVABvqA7SOmVlZaojCAOw2hxIedZP28i2pHZIpW1k29afLARKtNXWlmiZQ4cO6XZuKdAWkpaWxtatW6muttADk39pKDAL7/beLsVZWkHTNNURhAFYaQ6kPOvrQOMBPq7+mAONBwJzQouXaCutLWFMUqAtZObMmWiaxtKlS1VH0dcjQAHwvuogLdenTx/VEYQBWGUOpDzrr7KxkidLn6SysTJwJ7VwibbK2hKt065dO93OLQXaQhITExk9erT1b+MYC5wHPA54FGdpoXXr1qmOIAzACnMg5Tk4hsUPY2PKRobFDwvsiS1aoq2wtkTr6XkrjxRoi0lLS2PJkiXW/+OrPwGZwOeqg7TM5ZdfrjqCMACzz4GUZ4uwYIk2+9oSgTFixAjdzi0F2mLS0tKorKxkx44dqqPoazIwA3gMMOH3Ci+//LLqCMIAzDwHUp6Dq8Rewh25d1BiL9HnBSxWos28tkTgbNq0SbdzS4G2mClTphAXF2f92zjAey/0FmCJ6iDNJ9vMCjDvHEh5Dr7wsHDaRLQhPEzH37YtVKLNurZEYMlW3sJvsbGxzJgxgyVLTNgqm+ssYDzen0KbjGwzK8CccyDlWY3eMb15asBT9I7R77m2gGVKtBnXlgg82cpbNEtaWhqrVq2ivt4Ce16fSBje50KvgqidUd5fOhxmig8W3nPPPaojCAMw2xxIeVbHrblpcDfg1tz6v5gFSrTZ1pbQh54b6kiBtqC0tDScTqeu33kZxmTv/yT8JwGADn/uAPvVxfHXf/7zH9URhAGYaQ6kPKuV05DD1O1TyWnICc4LmrxEm2ltCf1s3bpVt3NH6nZmocyQIUPo1WssixZlct5556mOoy+Tfgs4c+ZM1RGEAYwaNYmdOytUxzipjRvh4YfjSUtrL+VZkZ7RPXks6TF6RvcM3oseKdFXXw2XXUbpq+9TO25S8F6/FUaNMkdOoa+BAwfqdm4p0BYUFhZG27bP8umnOt8rJ1osKyuL4cOHq44hFCotPciCBc8xYsQQ1VH8cuutUVx//R1ER7dXHSUktY9szzmdzgn+C/9UokuvuoX/5O4krHhn8DO0wK5du0lOfpk+fWReQ9m+fft0O7cUaIs6//wonnlmAGvWlDFlihRpo2nbtq3qCEKx2lobMTER1NZeQmRkV9Vxjqm8HJYvh6FDq0lN/ZT6ehsghUSFg66DrDm4hintp9A+Msj/DSIjqZ39N8K+WEjtx+2IHD4Z+vQNboZmcLmqiYl5mtpamxToEBet4x+XSYG2qDvvHM4zz7j4978LpEAbUPv28qYuvE/NiYzsSps2iaqj/EpuLrz3HgwaBGPHqk4jyp3l/Ln4z7w19K3gF2jw/iQaiIzrSZsPvoXLL4ehQ4Ofww/19d61JYSec2DSO0jFyfTr1562bTNZtixKdRRxDLt27VIdQRhAVVWV6gjH9PPyfPnlEC6/Uyg3JG4I68asY0ic4lt+pk2FYcPggw8gO1ttlhMw6toSwaXnHMjbooWNG7ef8vLh2O0u1VHEL5xzjoJ7GYXhDBo0SHWEX/lleY6IUJ1IgHcjlejwaH03UvFHWDjMmmX4Em3EtSWCT885kAJtYenpXYH2/Pe/maqjiF9YuHCh6gjCAH744QfVEZqQ8mxcZY4yHsh/gDJHmeoo3j+SMHiJNtraEmroOQdSoC3smmuGERZ2gHffrVEdRfyCbDMrQN9tZptLyrOxaZqGU3OiaZrqKF4GL9FGWltCHdnKW7RIdHQEvXpls2VLF9VRxC/INrMC9N1mtjmkPBtfn9g+PD/oefrE9lEd5SgDl2ijrC2hlmzlLVrszDNd1NcPIz//gOoo4mcefvhh1RGEAUydOlV1BCnPonUMWqKNsLaEenrOgRRoi7vjjkFABC++mKU6iviZefPmqY4gDGDdunVKX1/Ks3lk2bIYt3UcWTYDvpcbsESrXlvCGPScAynQFjd+fCIxMXl8/bVbdRTxM5dddpnqCMIAVO5GKeXZXHpE9+DRvo/SI7qH6ijHZrASLTu9CtB3DqRAh4ARI8ooKBiIx2OQD58I+emIAKCsTM0TFaQ8m0/HyI5c0uUSOkZ2VB3l+AxUolWtLWEses6BFOgQcOmlCbjdPfnqq3zVUcRP+vQx0AeBhDLt2rUL+mtKeTanQ65DLDuwjEOuQ6qjnJhBSrSKtSWMR885kAIdAm69dTjQwH/+I9+RCxHKpDyb1x7nHh4sfJA9zj2qo5ycQUq0EHqSAh0COneOp3PnXaxZk6A6ivhJaWmp6gjCAA4dCt5PE6U8m9vguMEsG72MwXGDVUfxj+ISHcy1JYxLzzmQAh0iJk+uY//+EdTUNKiOIoBJkyapjiAMoHfv3kF5HSnP5hcZFkn7yPZEhkWqjuI/hSU6WGtLGJuecyAFOkT8/ve9gDgWLJBtvY3gww8/VB1BGEBmpv7rUcqzNexx7OHRwkfZ4zDBLRw/p6hEB2NtCePTcw6kQIeIiy4aRHh4BR9/fFh1FAHcd999qiMIA9D7TyKkPFuHS3NR1ViFS3OpjtJ8Ckq0/CmfAH3nQAp0iAgPD2PgwDx+/LGX6igCePLJJ1VHEAawevVq3c4t5dla+sX245XkV+gX2091lJYJconWc20J89BzDqRAh5Bzz43A4RjMpk0VqqOEvEcffVR1BGEAqampupxXyrMwpCCWaL3WljAXPedACnQIufPOoYCH+fPzVEcJeXPmzFEdQRhARkZGwM8p5dmadtt2M2XbFHbbdquO0jpBKtF6rC1hPnrOgRToEDJ4cCfatMnk++/ld1TVrr/+etURhAGMHTs2oOeT8mxdXaO6cmfPO+ka1VV1lNYLQokO9NoS5qTnHEiBDjFjx1ZTVjYUp9OtOkpI+9///qc6gjCAvLzA/WmQlGdr6xTViSu7XUmnqE6qowSGziU6kGtLmJeecyAFOsRceWUnNK0Tb72VpTpKSBsxYoTqCMIAunXrFpDzSHm2vjp3HWsPraXOXac6SuDoWKIDtbaEuek5B1KgQ8x11w0HDvL22/tURwlpBw8eVB1BGIDdbm/1OaQ8h4ZSRyl35d1FqcNiu5jqVKIDsbaE+ek5B1KgQ0x8fBSJiVls2mSRPwY0qcOH5XncApxOZ6u+Xspz6BgUO4hvRn7DoNhBqqMEng4lurVrS1iDnnMgBToEnX66k8OHh1NSIj8FVWXYsGGqIwgD6NKlS4u/VspzaIkKj6J7dHeiwqNUR9FHgEt0a9aWsA4950AKdAi67bYBQCQvvij3QauyZMkS1RGEAeTn57fo66Q8h54KZwWPlTxGhdPCz/EPYIlu6doS1qLnHEiBDkFTp/YmKqqQL7+UP+JS5YYbblAdQRhASkpKs79GynNosnvsZNuysXssfm9vgEp0S9aWsB4950AKdIgaNqyE3NwBeDya6igh6bnnnlMdQRjA+vXrm3W8lOfQ1T+2P28OfZP+sf1VR9FfAEp0c9eWsCY950AKdIi65JJ43O7efPttoeooIUm28hbQvG1mpTyLkNLKEi1beQuQrbyFDm67bRjg5LXXLPZIJJOQrbwF+L/NrJRnkWvL5cwdZ5Jry1UdJXhaUaJlK28BspW30EH37gl06LCLVaviVEcJSbfddpvqCMIAxo8ff9JjpDwLgI5RHbm629V0jOqoOkpwtbBE+7O2hPXpOQdSoEPYxIkHqa4ewaFDDtVRQs4HH3ygOoIwgF27dp3w30t5Fkd0ierC9T2up0tUCD6erQUl+mRrS4QGPedACnQIu+66RKANr76aqTpKyJk0aZLqCMIAevfufdx/J+VZ/JzNbeOHuh+wuW2qo6jRzBJ9orUlQoeecyAFOoTNmjWY8PAqPvhANlQJttJSufdcwKFDh47561KexS8VO4q5MedGih3FqqOo04wSfby1JUKLnnMgBTqERUaGk5SUw44diaqjhJywsDDVEYRBSXkWxzIgdgAfD/+YAbEDVEdRS4dtv4VoCSnQIS4tLQy7fQg7dlSpjhJS5I8XBUC7du2a/LOUZ3E8MeExJMUmERMeozqKen6U6F+uLRGa9JwDKdAh7o47kgF48cUcxUlCizzkXwCUlZX5/l7KsziRvc69zCubx17nXtVRjOEkJfrna0uELj3nQAp0iBsxoitxcVksWaL+loL6+nq+/vprzj77bNVRdPeb3/xGdQRhAMOHDwekPIuTq3fXs+7QOurd9aqjGMcJSvSRtSVCm55zIAVaMGZMJSUlQ3C5PEpztGnThv/7v/+jsbFRaY5g+Pe//606gjCAzZs3U14u5Vmc3IC4AXw4/EMGxIX4PdC/dJwSvXnzZsXBhBHoOQdSoAWXX94RTevCe+/tVh0lZMhW3gK828wuXy7lWYhW+WWJLi2RrbwFIFt5C53deONwCDvMK28WqY4SMmQrb7Fxo3eb2V69pDyLk8tryOP8H88nryFPdRRj+nmJXrlStvIWgL5beUfqdmZhGtFxEHZaBqv2JeDRPISHGf/7KofDgcPhgMPef67z1KkN1Ey/+f1v2FmxU3UMocjGTfDcfw9z/rSJ1NdXY7erTnRiLle16gghr31Ee87rdB7tI9orzeFyVVNv5Nuwz52Ma5uTiRMmUrjyK+gyUXUiociBfQeYOFG///5+F+h3332XCRMm8PHHH3PPPffw9NNP8+ijjzJnzhyuv/56Fi9ezOjRo6mpqaG+vp6hQ4fy3Xffcd111/H888/7jr399tt59913mTZtGkVFRURERJCYmMimTZu49NJLWbBgge/Y++67j5dffpnzzz+f7du307lzZ+Li4sjJyeHMM8/kjTfe8B07e/ZsnnrqKa666ipWrlxJ//79cblcVFZWMm7cOD777DPuuusunnnmGd/X3HjjjXz55ZeMGTOG/fv309DQwODBg1m+fDm/+93veOGFF3zH3nnnnbz11lukpqaSn59PdHQ03bt3Z8uWLVx00UW8+uqrvmPvv/9+5s+fz4UXXsjWrVvp2rUrMTEx5OfnM2PGDN58801mz57N448/ziOPPMLcuXO55pprWLFiBQMHDsThcFBdXU1KSgpffPEFt99+O//6179857/pppv4/PPPGTduHHv37sXpdDJw4EAyMjJIT0/nxRdf9B171113sWjRIk4//XRyc3OJi4ujc+fObNu2jQsuuIDXXnuNz6d+jjayknMSb+Zfz2zi4osvZsuWLfTo0YPIyEgKCwuZPn0677zzDg899BBz5871nf/aa6/l+++/Jzk5mYaGBvbv388pp5zCV199xW233ca8efN8x95yyy188sknjB8/noqKCtxuN0lJSaxatYorr7yS559/nuTkZLZv387ChQupra3lnHPOITs7mzZt2tCpUyd27NjBueeeS3p6OsuXLz86oD/9/v6l/UvGrRlHROcIiouLmTp1Ku+99x4PPPAATzzxhC/Lddddx9KlSxk2bBiHDx+mtraWUaNGsXjxYm666SaeffZZ37G33norH330ERMnTqSsrAxN0+jTpw/r1q3j8ssv5+WXX/Yde8899/Cf//yHmTNnkpWVRdu2bWnfvj27du3inHPOYeHChVx717VccMYFXPnbK1m3bh3Dhw+nrKzM97idQ4cO0bt3bzIzM5k0aRKrV68mNTWVjIwMxo4dS15eHt26dcNut+N0OunSpQv5+fmkpKSwfv1637Hjx49n165d9O7d2/cw+Xbt2lFWVsbw4cPZvHmz79iJEyeydetWBg0aRFVVFbGxsURHR7Nv3z4GDBjAtm3bfMdOnTqVtWvXMnLkSEpKSujQoQMej4e6ujp69epFZmYmEydOZM2aNb/K3b17dxoaGny5CwoKGDNmDBs2bGiS+8cff6Rv377U1tYSHh5OQkIC5eXlDBs2rEnuSZMmsXnzZpKTk6msrCQ+Pp7IyEj279//q9zTpk1jzZo1jBo1iuLi4ia5e/bsSXZ2NhMmTGDt2rW+r0lJSSEnJ4cePXpgs9lwuVx06tSJoqIiTjnllCa5J0yYwI4dO0hKSqKmpoaIiAhf7qFDh7JlyxbfsZMnT6ZL1FYyMuro2TPXl7umpoakpCR27NjB1KlTWbVqFdOmTWP16tWMHj2aoqIiOnXqhMvlwmazkZiYyO7duxk/fnyT3OPGjSM7O5uePXtSV1eH2+325R49ejQbN270HXvaaaexfft2X+7IyEji4+OprKwkOTmZrVu3/nTsaq666laefvppZe8R8+fP9x17991389///pezzjrrmO8RCxcu9B374IMP8txzzzFr1iw2btxIYmIiERHGfY84cuzDDz/MvHnzuOyyy1i3bh0j+4wkKy+LJaVLmDRpEh9++CH33XcfTz75ZJPfj//3v/8xYsQIDh48yOHDhxk2bBhLlizhhhtu4LnnnvMde9ttt/HBBx8wadIkSktLCQsLo3fv3qxfv57f/OY3/Pvf//Yd+5vf/J61azcyeHA1e/YY+z1iu2czkZtjWL16E9PKi0z7HrFp0yaGDBlCRUWFSd4jvLk3btzI0KFDKS8vJyEhgfDwcGpra+nXrx87d+5kypQprFq1yvc1Y8aMoaCggM6dO/ty9+jRg5ycHE499VTWrVvnO/bUU08lKyvLl9vj8dChQwdKSkoYOXIkmzZtapL7s88+Y9y0cYStC/P7PWLgwIF+9eIwTdM0f0u0sJ4bV9/If6b+h0syLuGT1E9Ux/Gb7yfQ+4CBkNc1j3HV49jdfTfJO5Ohq+qEx7ezYicLHltA1M1RRHaVPwQKJeVlsDwDeiXC5BEuGubD+VddRv/O/VVHO6kOHeLp00ftTz9DWYOngSJ7EUmxScSFxynJUFp6kNpa428lXri/kK/e+ZA2qTuJLM+E6dOhbx/VsUSQabka9g/sXH7L5UwfNT3g55ffvUPY/B3z+c+E/zB05VA+mv6R6jjNEhMTQ0xMDDi8/5wQnqA2UDNVVVXRr2s/2iS2UR1FBEluLrz3P+8HBs+5HOxV9VTUFtN/SFtGJcpuoOLEiuxFpGen89bQtxgWP0xJhj592pvjm6iKfdTW7qH9jDG0WVsB337g/aDB0KGqk4kgatjXQFWVfpvEGf9mV6GL1WWrubPnnbTPbM+miZsMcd9zWFjYMf+yotjYWNURRBAd7znPMgfCX0mxSbw19C2SYpNURzGF2NhYCA+Tbb9DnJ7vsepbkwi68sPlnG07m4j6CDb02UBCtDF+eqtp2jH/sqLo6GjVEUSQnGiTFJkD4a+48DiGxQ9TdvuG2fjWlh/bfgvr0vM9Vgp0iHF5XIzLHIe9h52PGj9iSOchqiP52Gw2Fi5cyJdffskNN9yAx6N2Yxc97du3T3UEEQQn22FQ5kD4q9pZzfzy+VQ75Yko/miytqREhyw932OlQIeYqSunUjm+kr/u/isXDbpIdZwmsrKyyM/P5/zzz2fnzp3eDwla1IABspuY1fmzPbfMgfDXQfdBvqn5hoPug6qjmMKv1paU6JCk53usFOgQcuvqW9kwYwPnrzyfv43/m+o4vzJu3DjuvfdeXnrpJe6++27i4qz7R5Xbtm1THUHoyJ/yDDIHwn+D4gbx1civGBQ3SHUUUzjm2pISHXL0fI+VAh0iXtn5CgvGL2DwqsF8nvq56jjH1bVrV+68807efvttsi385ibbzFqXv+UZZA6E0Mtx15aU6JAiW3mLVlm3Zx239riVdtnt2DxhsyGeuHEsL730EgsWLAAgMjKS/Px8xYn0I9vMWlNzyjPIHAj/FTQUcFnmZRQ0FKiOYgonXFtSokOGnu+xxmxSImAq6yo5o+4Mwh3hrO25lnYx7VRHOq7TTz+dtm3b8vnnnzNq1CjOOecc1ZF0M3XqVNURRIA1tzyDzIHwX5uINkxqN4k2EfLseH+cdG1JiQ4Jer7HSoG2MJfHRcqPKdh72nnf9j4juo5QHemEhg8fzlVXXcVFF13E448/ToQ/DcSk1q5dqzqCCKCWlGeQORD+6x7dnft630f36O6qo5iCX2tLSrTl6fkeKwXawmasnEHFhAoeyXyEWcmz+Xv+cAAAMopJREFUVMcRPzNy5EjVEUSAtLQ8g8yB8J/D46DIXoTDY92nEwWS32tLSrSl6fkeKwXaou5YcwdrZqzhnJXn8Nhpj6mOI36hpKREdQQRAK0pzyBzIPxXYC9gVuYsCuxyD7Q/mrW2pERblp7vsVKgLej1Xa8zf9x8BqwewNepX6uOI46hQ4cOqiOIVmpteQaZA+G/fjH9eC35NfrF9FMdxRSavbakRFuSnu+xUqAtZlPFJm7sciMJuQlsOXWLYZ+4EeqsvMtiKAhEeQaZA+G/+Ih4xiaMJT4iXnUUU2jR2pISbTl6vsdKu7KQfbZ9pNamEuYKY12PdXSI7aA6kjiOuro61RFECwWqPIPMgfDfvsZ9LKxcyL5G2f7dHy1eW1KiLUXP91gp0Bbh8rgYu30sDX0beLvubUZ2lQ8nGVmvXr1URxAtEMjyDDIHwn8HGg/wdtXbHGg8oDqKKbRqbUmJtgw932OlQFvEWSvPomxSGQ/tfIjfDvmt6jjiJDIzM1VHEM0U6PIMMgfCf4PjB/P96O8ZHD9YdRRTaPXakhJtCXq+x0qBtoA/rP0DGTMyOGvFWTw58UnVcYQfJk6cqDqCaAY9yjPIHAihl4CsLSnRpqfne6wUaJN7K+stnh3zLP3W9OPb1G9VxxF+WrNmjeoIwk96lWeQORD+K7QXck32NRTaC1VHMYWArS0p0aam53usFGgT21q5lWs7XEubgjZsTdkqT9wwkdTUVNURhB/0LM8gcyD8Fxsey9D4ocSGx6qOYgoBXVtSok1Lz/dYaVwmVdNQw/T90wFY3XU1neI6KU4kmiMjI0N1BHESepdnkDkQ/kuMTuRPff9EYnSi6iimEPC1JSXalPR8j5UCbUIezcPYH8ZS37+eRbWLGNN9jOpIopnGjh2rOoI4gWCUZ5A5EP5r9DSy17mXRk+j6iimoMvakhJtOnq+x0qBNqGZGTMpmVzCH7b/gauHXa06jmiBvLw81RHEcQSrPIPMgfBfnj2P8348jzy7zIw/dFtbUqJNRc/3WCnQJvPQ+of4fsb3zFgxg3mT5qmOI1qoe/fuqiOIYwhmeQaZA+G/PjF9eGHQC/SJ6aM6iinourakRJuGnnMgBdpE3s1+l6dHPU2ftX34PvV71XFEKzQ0NKiOIH4h2OUZZA6E/xIiEpjcbjIJEQmqo5iC7mtLSrQp6DkHUqBNYkfVDq5pdw3xxfFsHSNP3DA7p9OpOoL4GRXlGWQOhP9qGmt4t+pdahprVEcxhaCsLSnRhqfnHEgLM4Faey2TqyajhWtkdMygS3wX1ZFEK3XpIv8NjUJVeQaZA+G/6sZqXix/kerGatVRTCFoa0tKtKHpOQdSoA3Oo3lI2ZxC/cB6FtYs5NTEU1VHEgFQUFCgOoJAbXkGmQPhvyHxQ1gzZg1D4oeojmIKQV1bUqINS885kAJtcOdlnEfh1ELu+uEurh1+reo4IkDGjBmjOkLIU12eQeZACL0EfW1JiTYkPedACrSBPbLhEb6d/i3TVkzj+cnPq44jAmjDhg2qI4Q0I5RnkDkQ/iu2F3Nzzs0U24tVRzEFJWtLSrTh6DkHUqAN6qOcj5g7Yi69NvRi2fRlquOIAJMtnNUxSnkGmQPhv8iwSLpFdSMyLFJ1FFNQtrakRBuKbOUdYnZV7+KK+CuIK41j6+itRIbLG6bVyBbOahipPIPMgfBfr5hezOk/h14xvVRHMQWla0tKtGHIVt4h5JDjEJMqJqFFayxvv5xubbqpjiR0MH78eNURQo7RyjPIHAj/uTQXB10HcWku1VFMQfnakhJtCHrOgRRoA/FoHsZtHMfh5MMsqFrAaT1PUx1J6OTHH39UHSGkGLE8g8yB8F9uQy5n7DiD3IZc1VFMwRBrS0q0cnrOgRRoA7kw40LypuVx25bbuHHkjarjCB317dtXdYSQYdTyDDIHwn+9onvxdP+n6RUtt3D4wzBrS0q0UnrOgRRog/jLxr/w9fSvmbRiEvOnzFcdR+istrZWdYSQYOTyDDIHwn/tIttxRsczaBfZTnUUUzDU2pISrYyecyAF2gA+zf2Ufw77Jz029WDl9JWq44ggCA+Xpac3o5dnkDkQ/jvgOsCn+z7lgOuA6iimYLi1JSVaCT3nwGATFnp279/N5TGXE1seyw8jfpAnboSIhIQE1REszQzlGWQOhP8qnZXMKZlDpbNSdRRTMOTakhIddHrOgRRoheqcdZxWehruODfftfmOHgk9VEcSQVJeXq46gmWZpTyDzIHw37D4YWxJ2cKw+GGqo5iCYdeWlOig0nMOpEAr4tE8jNswjoPDDvJSxUtM6T1FdSQRRMOGyW+CejBTeQaZAyH0Yui1JSU6aPScAynQisxaOYucaTncuOlGbht9m+o4Isg2b96sOoLlmK08g8yB8F+pvZS78+6m1F6qOoopGH5tSYkOCj3nQAq0Av/Y9A8+m/oZ41eM59Wpr6qOIxSQLZwDy4zlGWQOhP/CwsKIDosmLCxMdRRTMMXakhKtO9nK20K+yv+Kvyb/lW5burF62mrVcYQisoVz4Ji1PIPMgfBf75jePDPwGXrH9FYdxRRMs7akROtKtvK2iNyaXC6JvISYqhi2DN1CdES06khCkUmTJqmOYAlmLs8gcyD859E8OD1OPJpHdRRTMNXakhKtGz3nQAp0kNgabUwonoC7jZslsUvo3U5+ihDKDH9/ngmYvTyDzIHw3+6G3UzaNondDbtVRzEF060tKdG6kHugTc6jeTh13anUjqjluT3PMb3PdNWRhGLJycmqI5iaFcozyBwI//WM7sk/+/2TntE9VUcxBVOuLSnRAafnHEiBDoLfrvwtWdOzuHbDtdx1yl2q4wgDqKyUzRBayirlGWQOhP/aR7bnvM7n0T6yveoopmDatSUlOqD0nAMp0Dp7YssTfDTlI1JWpPDfaf9VHUcYRHx8vOoIpmSl8gwyB8J/B10H+V/N/zjoOqg6iimYem1JiQ4YPedACrSOFhcsZvag2XT5oQvrpq1THUcYSGSkbNneXFYrzyBzIPxX7iznT0V/otxp0B32DMb0a0tKdEDoOQdSoHVSWFvIRWEXEb0vmi3J8sQN0dT+/ftVRzAVK5ZnkDkQ/kuOS2b1KatJjjPhvb0KWGJtSYluNT3nQAq0DmyNNk7NPxVXexeLIxfTt31f1ZGEwQwYMEB1BNOwankGmQPhv4iwCOIi4ogIs9AC0JFl1paU6FbRcw6kQOtg4tqJ1Iyu4ZniZzij3xmq4wgD2rZtm+oIpmDl8gwyB8J/ZY4yHip4iDJHmeoopmCptSUlusX0nAMp0AF25cor2Zm6k6vWXcV9Y+9THUcYlCm2mVXM6uUZZA6E/zyah3p3vWyk4ifLrS0p0S0iW3mbxL9++BfvTX6P0RmjeXv626rjCAMzzTazioRCeQaZA+G/vrF9eWnwS/SNlVsC/WHJtSUlutlkK28TWFq0lAeTHqTT9k5smLJBdRxhcNOmTVMdwbBCpTyDzIEQerHs2pIS3Sx6zoEU6AAoPljM+Z7ziayNZPPAzcRGxqqOJAxuzZo1qiMYUiiVZ5A5EP7LsmUxYesEsmxZqqOYgqXXlpRov+k5B1KgW8nusjMudxyNnRr5ki/p36G/6kjCBEaNGqU6guGEWnkGmQPhvx5RPXi4z8P0iOqhOoopWH5tSYn2i55zIAW6lSatmcT+Mft5ouAJ0vqnqY4jTKK4uFh1BEMJxfIMMgfCfx2jOjKr6yw6RnVUHcUUQmJtSYk+KT3nQAp0K/xu5e/YlrqNy9ZcxkMpD6mOI0ykQ4cOqiMYRqiWZ5A5EP477DpMRm0Gh12HVUcxhZBZW1KiT0jPOZAC3ULPbXuONye9yYiVI/gg9QPVcYTJeDzyKCoI7fIMMgfCf2XOMu4ruI8ypzwH2h8htbakRB+XnnMgBboFVpSs4A99/kDHnR3ZOGmj6jjChOrq6lRHUC7UyzPIHAj/DYobxHejvmNQ3CDVUUwh5NaWlOhj0nMOpEA3U9mhMs5xnkPk4Ug29d9EfFS86kjChHr27Kk6glJSnr1CfQ6E/6LCougY1ZGosCjVUUwhJNeWlOhf0XMOpEA3g9PtJGV3Co6uDj7zfMbAjgNVRxImlR3Cb2xSno8K5TkQzVPuKOevRX+l3FGuOoophOzakhLdhJ5zIAW6GSavmkx1SjWP5z3OeQPOUx1HmNiECRNUR1BCynNToToHovmcmpNSRylOzak6iimE9NqSEu2j5xxIgfbT9auuZ8uMLVy6+lJmj5utOo4wubVr16qOEHRSnn8tFOdAtExSbBILhywkKTZJdRRTCPm1JSUa0HcOpED7Yf6O+bx+2usMXTmUD6d/qDqOsIDU1FTVEYJKyvOxhdocCBEssraQEo2+cyAF+iRWl63mzp530j6zPZsmbiI8TC6ZaL2MjAzVEYJGyvPxhdIciNbZbdvN9G3T2W3brTqKKcja+kmIl2g950Da4AmUHy7nbNvZRNRHsKnvJhKiE1RHEhaRkpKiOkJQSHk+sVCZA9F6XaK6cHPizXSJ6qI6iinI2vqZEC7Res6BFOjjcHlcjMsch72HnY8aP2Jwp8GqIwkLycnJUR1Bd1KeTy4U5kAERueozqR3T6dzVGfVUUxB1tYvhGiJ1nMOpEAfx9SVU6k8tZK/7f4bFw26SHUcYTE9evRQHUFXUp79Y/U5EIFT565jw6EN1LlDbIOQFpK1dQwhWKL1nAMp0Mdw6+pb2TBjAxeuupC/jv+r6jjCgmw2m+oIupHy7D8rz4EIrFJHKbfn3U6po1R1FFOQtXUcIVai9ZwDKdC/8MrOV1gwfgGDVw3m09RPVccRFuVyuVRH0IWU5+ax6hyIwBsYO5AvR3zJwFjZwMsfsrZOIIRKtJ5zIAX6Z9btWcetPW6lXXY7Nk/YLE/cELrp1KmT6ggBJ+W5+aw4B0If0eHR9IzpSXR4tOoopiBr6yRCpETrOQfSEH9SWVfJGXVnEO4IZ32v9bSLaac6krCwoqIi1RECSspzy1htDoR+KpwVPFHyBBXOCtVRTEHWlh9CoETrOQdSoPE+cSPlxxTsPe28b3ufYV2GqY4kLO6UU05RHSFgpDy3nJXmQOjL7razo34HdrdddRRTkLXlJ4uXaD3nQAo0MGPlDComVPBo1qPMSp6lOo4IARs2bFAdISCkPLeOVeZA6K9/XH/eGfYO/eP6q45iCrK2msHCJVrPOQj5An3HmjtYM2MN5648l39O+KfqOCJEWGGbWSnPrWeFORDCiGRtNZNFS7Rs5a2T13e9zvxx8xmwegBfpX6lOo4IIWbfZlbKc2CYfQ5E8OTacpm5Yya5tlzVUUxB1lYLWLBEy1beOthUsYkbu9xIQm4CW07dIk/cEEE1YcIE1RFaTMpz4Jh5DkRwdYjqwOVdL6dDVAfVUUxB1lYLWaxE6zkHIdkaq+qrSK1NJawxjHU91tEhtoPqSCLE7NixQ3WEFpHyHFhmnQMRfF2junJj4o10jeqqOoopyNpqBQuVaD3nIOQKtMvjImVHCg19G3in/h1Gdh2pOpIIQUlJSaojNJuU58Az4xwINWxuGzvqdmBzyw57/pC11UoWKdF6zkHIFeizVp7Fnkl7eGjnQ1w+5HLVcUSIqqmpUR2hWaQ868NscyDUKXYU8/uc31PsKFYdxRRkbQWABUq0nnMQUgX6D2v/QMaMDM5ecTZPTnxSdRwRwiJM1EClPOvHTHMg1Oof258Phn1A/1h5jJ0/ZG0FiMlLtJ5zEDIFelHmIp4d+yz91vTjf6n/Ux1HhLiEhATVEfwi5VlfZpkDoV5seCwD4wYSGx6rOoopyNoKIBOXaD3nICQK9NbKrfy+4+9pk9+GrSlb5YkbQrny8nLVEU5KyrP+zDAHwhj2OvfybNmz7HXuVR3FFGRtBZhJS7Sec2D5JlnTUMP0/dMJ08JY3XU1neI6qY4kBEOHDlUd4YSkPAeH0edAGEedu46VB1dS565THcUUZG3pwIQlWs85sHSB9mgexv4wlvr+9bxx8A3GdB+jOpIQAGzZskV1hOOS8hw8Rp4DYSwD4wbyyYhPGBg3UHUUU5C1pROTlWg958DSBXpmxkxKJpdw3/b7uHrY1arjCOFj1G1mpTwHl1HnQAizk7WlIxOVaNnKuwUeXPcg38/4ntNXnM6/Jv1LdRwhmjDiNrNSnoPPiHMgjCm/IZ+Ldl1EfkO+6iimIGtLZyYp0bKVdzO9m/0uz4x+hj5r+/Bd6neq4wjxK5MnT1YdoQkpz2oYbQ6EcbWNaMtZHc6ibURb1VFMQdZWEJigROs5B5Yr0DuqdnBNu2uIL45n6xh54oYwpk2bNqmO4CPlWR0jzYEwtm7R3bir1110i+6mOoopyNoKEoOXaD3nwFLtstZey+SqyWjhGhkdM+gS30V1JCGOaciQIaojAFKeVTPKHAjjs3vs5NpysXvsqqOYgqytIDJwidZzDixToD2ah5TNKdQPrGdhzUJOTTxVdSQhjquiokJ1BCnPBmCEORDmUGgv5IrsKyi0F6qOYgqytoLMoCVazzmwTIE+L+M8CqcWcvcPd3Pt8GtVxxHihOLj45W+vpRnY1A9B8I8kmKSWDRkEUkxSaqjmIKsLQUMWKL1nANLFOhHNjzCt9O/ZdqKaTw3+TnVcYQ4qcjISGWvLeXZOFTOgTCXuIg4RrQZQVxEnOoopiBrSxGDlWg958D0BfqjnI+YO2IuvTb0Ytn0ZarjCOGXmpoaJa8r5dlYVM2BMJ/qxmoWlC+gurFadRRTkLWlkIFKtJ5zYOoCvat6F1fEX0FcaRxbR28lMly+4xTmkJSUFPTXlPJsPCrmQJhTrauWz/Z/Rq2rVnUUU5C1pZhBSrSec2DaAn3IcYhJFZPQojWWt19OtzbyaB9hHjt27Ajq60l5NqZgz4Ewr8Fxg1k8ajGD4warjmIKsrYMwAAlWs85MGWB9mgexm0cx+Hkw7xS9Qqn9TxNdSQhmmXq1KlBey0pz8YVzDkQIpTI2jIIxSVazzkwZYG+MONC8qblcduW27hh5A2q4wjRbKtWrQrK60h5NrZgzYEwv4KGAn6b+VsKGgpURzEFWVsGorBE6zkHpivQf9n4F76e/jWTVkxi/pT5quMI0SLTpk3T/TWkPBtfMOZAWEN8RDzj2o4jPkIez+YPWVsGo6hE6zkHpirQn+Z+yj+H/ZPEjYmsnL5SdRwhWmz16tW6nl/KsznoPQfCOnpE9+ChPg/RI7qH6iimIGvLgBSUaD3nwDQFOmtfFpfHXk5seSxbR8oTN4S5jR49WrdzS3k2Dz3nQFiLw+Og1F6Kw+NQHcUUZG0ZVJBLtJ5zYIoCXeesY1LZJNyxbr5r8x09EuQ7cGFuRUVFupxXyrO56DUHwnoK7AVcnHkxBXa5B9ofsrYMLIglWs85MHyB9mgexm0Yx8FhB3m58mWm9J6iOpIQrdapU6eAn1PKs/noMQfCmvrG9GXB4AX0jemrOoopyNoyuCCVaD3nwPAFetbKWeRMy+HGTTdyy6hbVMcRIiBcLldAzyfl2ZwCPQfCutpEtOHUtqfSJqKN6iimIGvLBIJQovWcA0MX6H9s+gefTf2M8SvG8+rUV1XHESJgbDZbwM4l5dm8AjkHwtr2N+5n0d5F7G/crzqKKcjaMgmdS7Sec2DYAv1V/lf8NfmvdNvSjdXT5NO0wloSExMDch4pz+YWqDkQ1re/cT+vV74uBdpPsrZMRMcSreccGLJA59bkcknkJcRUxfDDsB+IjohWHUmIgNq9e3erzyHl2fwCMQciNCTHJ7P8lOUkxyerjmIKsrZMRqcSreccGK5A2xptTCiegLuNmyWxS+jZtqfqSEIE3Pjx41v19VKeraG1cyCEODZZWyakQ4nWcw4MVaA9modT151K7Yhant/zPNP7TFcdSQhdrF27tsVfK+XZOlozByK0FNmLuG73dRTZi1RHMQVZWyYV4BKt5xwYqkD/duVvyZqexXUbruPOU+5UHUcI3aSmprbo66Q8W0tL50CEnpiwGAbEDiAmLEZ1FFOQtWViASzRes6BYQr0E1ue4KMpHzFuxThen/a66jhC6CojI6PZXyPl2XpaMgciNCXGJPKXfn8hMUY+HOcPWVsmF6ASreccGKJALy5YzOxBs+n6Q1fWTpM/dhHWN27cuGYdL+XZmpo7ByJ0NWqNVDdW06g1qo5iCrK2LCAAJVrPOVBeoAtrC7ko7CKi90WzOXmzPHFDhITsZrwRSHm2rubMgQhteQ15nLPzHPIa8lRHMQVZWxbRyhKt5xwoLdC2Rhun5p+Kq72LxZGL6dtetigVoaFnT/+eLiPl2dr8nQMhesf05tmBz9I7prfqKKYga8tCWlGi9ZwDpQV64tqJ1IyuYV7JPM7od4bKKEIEVV1d3UmPkfJsff7MgRAAbSPaMq39NNpGtFUdxRRkbVlMC0u0nnOgrEBfufJKdqbu5Op1V3PvmHtVxRBCCbfbfcJ/L+U5NJxsDoQ44kDjAT6o/oADjQdURzEFWVsW1IISreccKCnQ//rhX7w3+T1OyTiFt6a/pSKCEEp16tTpuP9OynPoONEcCPFzexv3Mq9sHnsb96qOYgqytiyqmSVazzkIeoFeWrSUB5MepPO2zqyfsj7YLy+EIRQVFR3z16U8h5bjzYEQvzQ0fijrx65naPxQ1VFMQdaWhTWjROs5B0Et0MUHiznfcz5RB6LYMngLsZGxwXx5IQxj9OjRv/o1Kc+h51hzIIRoPVlbFudnidZzDoJWoO0uO+Nyx9HYsZGvwr+iX/t+wXppIQxn48aNTf5ZynNo+uUcCHE8JfYSbsu9jRJ7ieoopiBrKwT4UaL1nIOgFehJayaxf8x+nih8grOTzg7WywphSD/fXlTKc+iS7YaFvyLCIugY2ZGIMHmD8IesrRBxkhJt+q28f7fyd2xL3cZv1/yWh1IeCsZLCpOor6/n66+/5uyzQ+ubqiPbi0p5Dm2y3bDwV6+YXjze/3F6xfRSHcUUZG2FkOOVaJvd3Ft5P7ftOd6c9CYjM0byXup7er+cMJk2bdrwf//3fzQ2htb2tKeddhrlZVKeQ91pp52mOoIwCbfmps5dh1uTx7P5Q9ZWiPlliX7hBVi23DsH8/4f6PBhQl0L9IqSFfyhzx/ouLMjGyZv0POlhDCV7du3szxDynOo2759u+oIwiRyGnJI3Z5KTkOO6iimIGsrBIWHwyWXQGQk9O8PaTO9c9CpE1x0UcBfLjLgZ/zJjz9kcGXMGbRpDGNlhyXER8Xr9VIiBDkcDhwOBxz2/nOdx7vb0P7O+VRkO6BSYbiTWLupkKSkJOzdXYydVo+9SnUioYKr2kVSUpLqGMIkekX34on+T9ArWm7h8EdSUhKuahf11KuOIoKpogLa9YaxM9DyvXPA1b+B1z+FDRsggH8y4XeBfvfdd5kwYQIff/wx99xzD08//TSPPvooc+bM4frrr2fx4sWMHj2ampoa6uvrWbftTRrCNJa/o/Fh3njsnTvzcteu3Pboo6w/cIDp06dTVFREREQEiYmJbNq0iUsvvZQFCxb4znvffffx8ssvc/7557N9+3Y6d+5MXFwcOTk5nHnmmbzxxhu+Y2fPns1TTz3FVVddxcqVK+nfvz8ul4vKykrGjRvHZ599xl133cUzzzzj+5obb7yRL7/8kjFjxrB//34aGhoYPHgwy5cv53e/+x0vvPCC79g777yTt956i9TUVPLz84mOjqZ79+5s2bKFiy66iFdffdV37P3338/8+fO58MIL2bp1K127diUmJob8/HxmzJjBm2++yezZs3n88cd55JFHmDt3Ltdccw0rVqxg4MCBOBwOqqurSUlJ4YsvvuD222/nX//6l+/8N910E59//jnjxo1j7969OJ1OBg4cSEZGBunp6bz44ou+Y++66y4WLVrE6aefTm5uLnFxcXTu3Jlt27ZxwQUX8Nprr/mOfeCBB3jhhRe4+OKL2bJlCz169CAyMpLCwkKmT5/OO++8w0MPPcTcuXN9X3Pttdfy/fffk5ycTENDw/9v7/6DqqrzP44/LyCgAiKgCAqyYoomav4E80dua1NT7mZIo2ZlY67Zt8zNdtdp3N3ZXWerrdHcRnT74WjrYm2ru266/VKTMFERJSgk/I0IjIqhIHIRvN8/LDYt7aKc+7nn+nrMOOnMufe+Zjrv+3lzOO/zoaqqigEDBrB+/XpmzZrFwoULm4+dOXMma9euZejQoVRUVNDU1ERCQgLZ2dk0NjayYMGC5mNnz57NihUr+MlPfkJxcTHt27cnIiKCgoIC7rrrLqZOncrHH3/8vxP0xMX/PN9zGR3f6Iifnx/V1dXEx8fz+eefM2LECLZu3cqYMWPIyspi4MCBHDx4kKioKBoaGqivr6dz587s37+fQYMGsX379uZjhwwZQlFREd26dePMmTMAhIWFUVZWxs0330xubm7zsSkpKezevZvExEROnjxJYGAgwcHBHD9+nJ49e7Jnzx6GjxvOJ1s/4b6o+8h5M4e+fftSVlZGWFgYAGfOnKFbt24UFRWRmpp6Se5bbrmF/fv307lzZ+rr62loaCAqKooDBw58J/fQoUP54osvvjd337592bVr13dy9+zZk+PHjxMcHExgYCAnT56kR48e5OfnNx87cuRItm3bRr9+/SgtLSU8PJwLFy5QW1tL165dKSoqIiUlhU8//fQ7uaOjozl37lxz7oMHDzJw4EB27NhxSe7PP/+c+Ph4qqur8fPzIyQkhPLycvr06XNJ7tTUVHbt2kWvXr2orKykXbt2BAQEUFVV9Z3co0aN4tNPPyU5OZkjR45ckjs2Npbi4mKGDRvGtm3bml8zaNAgSkpK6NKlC3V1dTQ2NhIREcHhw4cZMGDAJbmHDRtGQUEBCQkJnDp1Cn9//+bcSUlJ5OXlNR87YsQICnIL8A/055P3P+FE9xP6jviB74jJkyeTkZHh9nfE8uXLm4/95S9/yeLFi0lLS2Pnzp3ExMTg7+/PkSNHGDlyJG+99RbPPPMMzz//fPNrpk2bxkcffUSfPn2oqamhurqa5ORk3nvvPWbMmMHLL7/cfOxjjz3GP//5T1JSUigrK8PlchEXF0dOTg73338/S5cubT72qaee4o033uCOO+5g7969hIaG0qFDB7744gvuvPPOS3L/+te/ZuHChaSnp5OTk0NcXBz55HP06FFSU1N55513ePrpp3nhhRcuWY/ff/99br75Zk6fPk1NTQ19+vThww8/ZPr06SxevLj52FmzZvGPf/yD1NRUjh49isPhoFu3bmzfvp2JEyeybNmy5mPnzJnDa6+9xl133UVhYSHh4eGEhoayd+9exo0bx4oVK5qPnTdvHi+99BKTJk1i69atdO/enaamJioqKlrURyQlJbFx40amTZvGX/7yl+ZjH3/8cVavXs2oUaO+t494c8mbVJ2u4sScE7b+jsjNzaV3795UVFQ05z516hQJCQkUFBQwcuRIsrOzGTVqFFu3bqV///4cPnyYiIgIGhsbqaurIyYmhi+//JKhQ4deknvw4MEUFxcTGxtLbW0tTU1Nzbn79+/Pzp07m48dPnw4n332WXPugIAA2rVrR2VlJb169WL37t2X5N65cydJSUmUl5cTEhLSvB53796dwsJCbr31VrKzs7+zHkdGRjbn7tKlCyUlJQwZMoScnJxL1uO9e/c2575w4QLh4eGUlpbSr18/cnPLGTPmYbIevJh7+/bt3D7+dtb6+dF+0yYi/Px+8DsiMTHRrb7Y4XK5XO420S1VU3+Gyvc2cWz5ckK3bePmU6cIBo75+3MwMZGAu++mz5NPEv6jH1kVQbyc0+lkzZo1zU3CfffdR1BQkFuvczqdcBJIhJ29P2LclxP5b+oTDBwcDF74iPGycsj6GKKTGlnfvZxZMx4gUuf+DS1/Wz4Ppj1oOobYQHVjNZ+c/oTRHUYTHhBuOo7X+9uavzFwxEDTMcTTzpyBqVNh/ny+6nETr77wKi/ecQcxTz0Fx45Bu9a7G8KyWzgAQoPDCJ0wgZsmTACg7uRJcjMyqPvXv+hWVETiokU0LVpEYUgIVUOGEPXAA/R56CH8AwOtjCVeJCgoiClTpjBlypQWvy4oKAicF//d3v9iUYSf9icmuD20b+2k12ffPnj/64HBUbecJbumA71Df0RMTLLpaGJQfXy96QhiExUNFfz+yO9ZlbRKDbQbkuKTSNb3640nBnj8t3D/Y1SMH0+7iAiYPx9efbVVm2fw8E6E7aKiGPrb3zJmzx4SnU6ObdvGpw8+SG2HDtyyZQv9ZszgTHAwOXFxZE+bRkVurifjiVjiO4+q84PKSi++SVs8Jj8/33QEsYmktknsuGUHSW21lbc7VFs3sEcegZISSEm5uNauXw/p6a3+MZZegf4hXVNT6ZqaCkBjfT2FK1dSlZlJVF4efVeuxG/lSvYFBXGsXz9C09LoO3MmbSMiTEaWVuJwONw+1sK7jCx3pec89+rVy2ww8Qrjx483HUFswuFwEGB2ybYV1dYNrnt3eOABelVWQqdOlnyER69AX01AcDDJM2dyW1YW/WprqS4pYdvs2VTGx9N7zx4GP/ssREayKyqKLffey/7//AfXhQumY8s1crlcbv+xq6ttkrJ7925zwcRrvP7666YjiE0cdR7lFwd+wVHnUdNRbEG1JWDtWus1DfTlIm66iRGLFzOqpIQu58+zb+1adtxzDw6Xi5R16+j5s59RHhhIdu/e5Dz9NNWHDpmOLC1w+Q6Ex48fZ9WqVWRmZjJ37lwaGxsNJ7w+P7TDoLaZFYD58+ebjiDik1RbAj6wlff1cvj5cdOECdz27rsMrqriwokT7PrjH9mfnEzs4cOkLlpEaI8eFIaGsmXsWD5//XWaGhpMx5aruHwHws2bN1NdXc2UKVM4f/48GzduNJzw2rmzPbe2mRWABQsWmI4gNhEXFMeixEXEBcWZjmILqi0Ba9daWzTQl2sXFcWQ+fM1jOhDJk2axBNPPAFcHLBLSrLnoIw7zTPAiBEjPBtMvNIzzzxjOoLYhMvlotHVaOvb2jxJtSVg7Vprywb6cl1TUxn95puklpXR/tw5Cpct47NRowj96ituXbmSmGHD2BcczJYhQ8h77jnOnTplOrJcwYYNG0hPT7flDm3uNs8AO3fu9Fww8VqvvPKK6QhiE8Xnihm+ZzjF54pNR7EF1ZaAtWutTzTQ36ZhRPvKzc0lOjqa9PR0ioqKTMdpkZY0z4Btr7BL67r33ntNRxCbiAmM4Xfdf0dMYIzpKLag2hKwdq31uQb6cu4OI36SlETO3LkaRvQQp9NJZmYmhw8fZvXq1WRlZTF9+nTmzZvH6NGjbfVrypY2zwDl5eXWBxOvl5eXZzqC2ER4QDg/jfypNlFxk2pLwNq19oZ6qOQ3w4jf3hlx17JlnF2z5uLOiAsX0rRwoXZG9IDv24GwoKDAYKJrcy3NM0BISIi1wcQWunTpYjqC2MSZxjPsqNnB8NDhhAWEmY7j9VRbAtautT5/BfpqWjSM+MgjGkaUS1xr8wzg53dDl558LSDghrqGIdfhWMMx5h2ax7GGY6aj2IJqS8DatVar+LdcdRhxxQoNI0qz62meAaqrqy3JJfZySLeMiZt6te1F1oAserXVLqbuUG0JWLvWqoG+Ag0jypVcb/MM0L1799YPJrYzevRo0xHEJvwd/oT4h+DvuIYvnBuQakvA2rVWDbSbNIwo0DrNM0BhYWHrBhNbyszMNB1BbOKY8xjPHnqWY07dwuEO1ZaAtWutGuhrcLWdEbseOkTqwoXaGdEHtVbzDHDrrbe2XjCxrV/96lemI4hNNLma+KrxK5pcTaaj2IJqS8DatVYNdCvQMKLva83mGSA7O7t1gomtPffcc6YjiE3EB8ez9KalxAfHm45iC6otAWvXWo2pWqBraipdU1MBaKyvp3DlSqoyM4nKy6PvihX4rVjBvqAgjvXrR2haGn1nzqRtRITh1HIlrd08A4wZM+b630Rsb/78+aYjiPgk1ZaAtWutrkBbTMOI9mZF8wyQlZXVOm8ktrZgwQLTEcQmiuuKSdmTQnGdtvJ2h2pLwNq1Vg20h2kY0T6sap4BBg4c2HpvJrb18MMPm44gNhHdJpqnuz1NdJto01FsQbUlYO1aqwbaIA0jei8rm2eAgwcPtu4bii1t2rTJdASxiY5tOnJ/p/vp2Kaj6Si2oNoSsHatVQPtRTSM6B2sbp4BIiMjW/9NxXZ69dKmGOKemqYask9nU9NUYzqKLai2BKxda9VAezHtjOh5nmieARobG615Y7GVc+fOmY4gNlHmLGPOgTmUOctMR7EF1ZaAtWutGmib0DCi9TzVPAPU1dVZ9+ZiG1VVVaYjiE30bNuT95Pfp2fbnqaj2IJqS8DatVYNtE1pGLF1ebJ5BujSpYu1HyC2MGDAANMRxCbaONrQqU0n2jjamI5iC6otAWvXWjXQPuCKw4j9+2sY0Q2ebp4BSkpKrP8Q8Xrr1683HUFsosJZwR+O/IEKZ4XpKLag2hKwdq1VA+2DmocRd+++6jDitvj4G34Y0UTzDDBkyBDPfJB4tVmzZpmOIDbhdDk5WH8Qp8tpOootqLYErF1r1UDfAK40jBh26tT3DiPWV1ebjuwRpppngJycHM99mHithQsXmo4gNpEQnMCK3itICE4wHcUWVFsC1q61aqBvMJcPI57ev59tc+ZcMozo6tixeRjxwPr1PjmMaLJ5Bm3lLRdpu2ERa6i2BLSVt1ioY2IiIxYtuuIwYuL48T43jGi6eQZt5S0XabthcVdJXQljPxtLSZ3mJ9yh2hLQVt7iITfCMKI3NM+ge6DlopkzZ5qOIDYR2SaSR7o8QmQbbcLkDtWWgO6BFkN8bRjRW5pngL1795r7cPEaa9euNR1BbCKyTSQPRT+kBtpNqi0Ba9daNdDiNjsPI3pT8wwQGxtrNoB4haFDh5qOIDZxtuksu2p2cbbprOkotqDaErB2rVUDLdfETsOI3tY8A9TW1pqOIF6gokLP9BX3lDpLmblvJqXOUtNRbEG1JWDtWqsGWlqFtw4jemPzDHDBB59sIi3X1NRkOoLYRI/gHvy777/pEdzDdBRbUG0JWLvWqoGWVuctw4je2jwDhIeHm44gXiAhIcF0BLGJIL8g4oLjCPILMh3FFlRbAtautWqgxXLfN4y47aGHrjyMuGvXdX+mNzfPAKWl+jWsQHZ2tukIYhOVDZX8+eifqWyoNB3FFlRbAtautWqgxeO6pqYyauXKKw8jDh16XcOI+w55d/MM0K9fP9MRxAtMnjzZdASxibqmOvJq8qhrqjMdxRZUWwLWrrVqoMWo6x1GLK+EB4B5X/87H3jrX97dPAPkevkj/8QzMjIyTEcQm+jRtgdv932bHm11D7Q7VFsC1q61aqDFq7RkGHHrL57h9p81UH8f/N+ci68/GwLt23l38wzaylsu0nbDItZQbQlYu9YGuHOQy+WipqbGshAiVxJ9++1E3347ANVVVRS/8QZ1775LVFERX7ycT138cV56CQq2ngQgPLmeY7XVZJ2Etl46a1Pd1MSmHTu4Y9gwaoK8NKR4REZGBo8//rjpGGIDpedL+dNXf+LZjs8S3ybedByvp9qSkydPsmnTJiZPnkz79u1b9NrQ0FAcDsdVj3G4XC7XD73RmTNn6NChQ4s+XERERETEbk6fPk1YWNhVj3GrgdYVaPE2TqeTPXucTJwIH3wAAQEVDBs2jJd+9yb/XR/Fb34DQYGmU36/s3V1jJs4kby8PEJCQkzHEUNqa2sZPHiwzgORVqbaEvjfeXD06NEfbIYv12pXoEW81YxHYf0GSEsrY8mSOAIDj/LK4m78/DHTya7sm9/ouPMTrvgunQci1lBtCVh/HmiIUGzt1dcgIwMqv3406jvv4NXNs4iIiNifGmixNYcDJkyAl1+++O9Bg4zGERERkRuAGmjxCUFfP80iyAZPtQgKCuLRRx+1RVaxjs4DEWuotgSsPw/UQItPsFsDnZKSYousYh2dByLWUG0JWH8eaIhQfILdhkbKy8uJjY01HUMM03kgYg3VloC154GuQIsYsHz5ctMRxAvoPBCxhmpLwNrzQFegxSfY7Qq0iIiI2JeuQIsYsGDBAtMRxAvoPBCxhmpLwNrzQFegxSfY7Qq00+nUgIvoPBCxiGpLwNrzQFegRQxYvHix6QjiBXQeiFhDtSVg7XmgBlrEQ86ePcuGDRsYN24caWlppuOIIToPRKxTV1fH8uXLCQ8PZ/r06Vy4cMF0JDGktraWzZs3U1paasn7q4EW8ZD27dtz9913c/78eRITE03HEUN0HohYZ+/evRw4cIAZM2ZQWFiI0+k0HUkMWL58OS+++CIffPCBZT9E6R5o8Qkul4uamhpCQ0NxOBym41zVbbfdxpYtW0zHEMN0HohY48SJE7z99tuEh4czdepU03HEIIfDwaFDh0hISGj199YVaPEJDoeDsLAwr2+eRUTEWp06deKJJ57g73//O8XFxabjiI9SAy0iIiI+YcmSJfz1r38FICAggAMHDhhOJL5KDbSIhzidTjIzMzl8+DCrV6/WvXk3KJ0HItYZO3YsoaGhrFu3juTkZO68807TkcRH6R5oEREREfE5ugdaRERERMRLqIEWsZjD4XD7j/g+/b8XsY7qSwBWr17NrFmzAJg3bx4ZGRmt/hm6hUNEREREpAV0BVrEYt/eeQ7g+PHjrFq1iszMTObOnUtjY6PhhOJJ3+yU9u6772qnNBGLlJWVMXfuXNMxxIepgRax2Ld3ngPYvHkz1dXVTJkyhfPnz7Nx40bDCcWTvtkp7Z577tFOaSIWcLlcrFu3jqqqKtNRxIcFmA4gcqOZNGlS898rKytJSkoymEY8bfDgwcTHx7NkyRJmz55N27ZtTUcS8SkfffQRP/7xj8nNzTUdRXyYrkCLGLJhwwbS09MtebyOeDftlCZijQMHDhAdHa0fTMVyaqBFDMjNzSU6Opr09HSKiopMxxEP0k5pItbJz8/n0KFDfPjhh5SWllJQUGA6kvgo3cIhYjGn08maNWuad56LjY3lySefpHPnzjQ0NLB06VLTEcWDxo4dS35+vnZKE7FAWloa58+fJyMjA6fTiR40JlbRY+xERERERFpAt3CIiIiIiLSAGmgRERERkRZQAy0iIiIi0gJqoEVEREREWkANtIiIiIhIC6iBFhERERFpATXQIiIiIiItoAZaRERERKQF1ECLiIiIiLSAGmgRERERkRZQAy0iIiIi0gL/D1wgO+EQyubhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "Graphics object consisting of 71 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:57,941 Plotting completion diagram with perturbation... done\n", + "INFO: 2023-09-20 09:43:57,942 Finding epsilon interval for perturbation...\n", + "INFO: 2023-09-20 09:43:57,943 Finding epsilon interval for perturbation... done. Interval is [-3/13, 3/13]\n", + "INFO: 2023-09-20 09:43:57,944 Plotting perturbation...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAALkCAYAAADwEE0uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1zV1f/A8dcFVJbg3iguFPfK2bCsNDNnS/1mZlpWmiucqCi4NXflRsu0TDAz08yJmluciIjg3soQ2dzfH/fHjauojHs/nzvez8eDR9zLvee8ufnm3Pc953OORqvVahFCCCGEEEIIIYRR2KkdgBBCCCGEEEIIYU2k0BZCCCGEEEIIIYxICm0hhBBCCCGEEMKIpNAWQgghhBBCCCGMSAptIYQQQgghhBDCiKTQFkIIIYQQQgghjEgKbSGEEEIIIYQQwoik0BZCCCGEEEIIIYxItUJbq9USFxeHVqtVKwQhhBBCCCGEEMLoVCu04+PjcXd3Jz4+Xq0QLFZwcLDaIQghsiG5KYQQtk3GASHMl9L5qdGqNKUcFxeHu7s7sbGxuLm5qRGCEEIIIYQQQghhdHKNtgUKCAhQOwQhRDYkN4UQwrbJOCCE+VI6P2VG2wI9fPgQV1dXtcMQQjxGclMIIWybjANCmC+l81NmtC3QkiVL1A5BCJENyU0hhLBtMg4IYb6Uzk8ptC3QW2+9pXYIQohsSG4KIYRtk3FACPOldH46KNqbMIpTp05Rs2ZNtcMQQjxGclMIIWybrYwDKSkppKWlqR2GELkSHh5OxYoVc/RYBwcHChYsmK/+pNC2QEWKFFE7BCFENiQ3hRDCttnCOJCSksKZM2fIyMhQOxQhcqVChQqEhYXl6LF2dnbUrl07X8W2FNoWqHDhwmqHIITIhuSmEELYNlsYB9LS0sjIyMDT0xMnJye1wxHC6BITE4mOjiYtLU0KbVsTFhZG8+bN1Q5DCPEYyU0hhLBttjQOODk54ezsrHYYQphMbGwsSUlJFCpUCBcXl1w/3yiboT18+JBu3bpx+fJlYzQnnuONN95QOwQhRDYkN4UQwrbJOCCE9di0aROrVq3il19+ISEhIdfPz3ehvXz5cmbMmEFQUJBcq6GQFStWqB2CECIbgYGBaocghBBCRTIOCGE9XFxcKFiwIHFxcSQnJ+f6+fkutPv06cOECRPy24zIAT8/P7yqexESEsKDBw/UDkcI8RhfX1+1QxBCCKEiGQeEsB6FChWiUKFCeX6+YudoJycnExcXZ/Alcu7+/fv4+/sTcSGCbdu2cf36dbVDEkI8JiAgQO0QhBBCqEjGASFEpjwV2mvWrCEyMpLp06eTnJys/6Myf/58rl+/zrJlyzh8+DBbt24lKCiIs2fP0rlzZ9zd3fVfHh4eACxevJiTJ0+yceNG/vzzT44dO8aiRYu4c+eOvt2AgAAePXrErFmzCA8P59dff2X79u3s37+fwMBArly5YvDY9PR0pkyZwqVLl/jxxx/Zu3cvu3btYu3atURERDBjxgySkpIMnnPz5k2WLFnC4cOH2bJlC8HBwZw+fZr58+cTGxtr8NiYmBgWLFjAqVOn2LBhA5s3b+bo0aMsXryYW7duGTw2MTGRWbNmERERwS+//MKOHTvYt28fq1at4vLly0yaNImMjAwCAgLIyMhg0qRJXL58mVWrVrFv3z527NjBL7/8wr179yjgUED//2Dx4sUEBARw69YtFi9ezNGjR9m8eTMbNmzg1KlTLFiwgJiYGINYYmNjmT9/PqdPnyY4OJgtW7Zw+PBhlixZws2bNw0em5SUxIwZM4iIiGDt2rXs2rWLvXv38uOPP3Lp0iWmTJlCenq6wXOuXLlCYGAg+/fvZ/v27fz666+Eh4cza9YsHj16ZPDYO3fusGjRIo4dO8aff/7Jxo0bOXnyJAsXLuT+/fsGj42Li2PevHmcPXuWoKAgtm7dyuHDh1m2bBnXr183eGxycjLTp08nMjKSNWvWsGvXLkJCQvjpp5+Ijo5m6tSppKWlGTzn6tWrrFixggMHDrBt2zbWrVvHuXPnmD17Ng8fPjR47N27d/nhhx8IDQ1l06ZN/PHHH4SGhvL9999z7949g8fGx8czZ84czp49y/r16/n77785ePAgy5cvfyLu1NRUpk2bxsWLF1m9ejV79uxhz549rF69mosXLzJt2jRSU1MNnnP9+nWWL1/OwYMH+fvvv1m/fj1nz55lzpw5xMfHGzz23r17fP/994SGhvLHH3+wadMmQkND+eGHH7h7967BYx8+fMjs2bM5d+4c69atY9u2bRw4cIAVK1Zw9epVg8empaUxdepUoqOj+emnnwgJCWHXrl1P/RuRGXd2fyPmzZtHXFycwWPv37/PwoULLeZvxMiRI1X7GxEREcGsWbNITEw0aF/+RsjfCPkbYT5/IzIfK38jrPdvRJMmTaz+b8SePXsQwhaEh4fz8OFDTpw4Afz3NyKnNFqtVmuMQDQaDVFRUXh6emb78+TkZIPA4uLi8PDwIDY2Fjc3N2OEYNW0Wi2OBR1JSUsBwMG+ABEXzj/19RZCKG/q1KmMHDlS7TCEEEKoxBbGgUePHhEWFoa3t7fF7joeGBjI4MGDiYmJUTsUkzPl72qtr2Pmv/Ho6GhiYmKIj4+nV69eFCtWLFftKLZ0vFChQri5uRl8iZy7c+eOvsgGSEtPZfy48SpGJIR43Icffqh2CEIIIVQk40D+9e7dG41Go/8qXrw47dq14+TJk0br44MPPuD8+fNGa8+YAgMDKVKkiNphPMHT05M5c+YY3KfU6xgUFETbtm0pUaIEGo2G0NBQk/dpDIoV2iJ/Ll26pP/e3s4egB9//JHTp0+rFZIQ4jF79+5VOwQhhBAqknHAONq1a8eNGze4ceMG27dvx8HBgQ4dOhitfScnJ0qVKmW09owlNTXVrNt7nFKvY0JCAq1atWLq1Kkm78uY8l1or1mzhi+++AKAkSNH8t133+U7KPGk6Oho/feNmzQGQIuWUSNGqRSREOJxlSpVUjsEIYQQKpJxwDgKFSpEmTJlKFOmDA0aNGDEiBFcuXKFO3fu6B8zYsQIvLy8cHZ2pkqVKowdO9agsDxx4gSvvvoqhQsXxs3NjcaNG3PkyBEg+1njjRs30qRJExwdHSlRogRdu3Z9anx+fn40aNCARYsW4eHhgbOzM++9994TS6hXrFiBt7c3jo6O1KxZ06BOio6ORqPR8Ouvv9K6dWscHR356aef+OSTT4iNjdXP6Pv5+QG6y3Q3bNhg0H6RIkX0R8o9rb1MGzZswMvLC0dHR9544w2uXLmi/1lkZCSdOnWidOnSuLq68sILL/DPP//of966dWsuXbrEkCFD9HE97XX8/vvvqVq1KgULFqRGjRr8+OOPBj/XaDQsXbqULl264OzsTPXq1dm4ceNTX2uAjz76iHHjxvH6668/83HmJt+Fdvfu3fn+++/RarWsXbuWL7/80hhxicdkndF+9dVXKVW8NACbNm/i33//VSssIUQW6enpaocghBBCRTIOGN/Dhw9ZvXo11apVo3jx4vr7CxcuTGBgIGfPnmXu3LksWbKE2bNn63/es2dPKlSowOHDhzl69CgjR46kQIEC2XXBn3/+SdeuXXn77bc5fvw427dvp0mTJs+M68KFC/z666/88ccfbNmyhdDQUL766iv9z5csWcKYMWOYNGkSYWFhTJ48mbFjx7Jy5UqDdkaMGMHXX39NWFgYbdq0Yc6cObi5ueln9L/55ptcvV5Z22vbti2gu+Z40qRJrFy5kn379hEXF2dwmcPDhw9p3749//zzD8ePH6dt27a88847XL58GdAt3a5QoQITJ07Ux5Wd4OBgBg0axLBhwzh9+jSff/45n3zyCTt37jR43IQJE3j//fc5efIk7du3p2fPnty/fz9Xv6clcFA7AJEzWQttJycnAqb489lnnwHgM8SHkH9D9J8uCSHU8bSBRwghhG2QccA4Nm3ahKurK6BbNly2bFk2bdqEnd1/c4RZzyz39PRk2LBh/PLLLwwfPhyAy5cv4+PjQ82aNQGoXr36U/ubNGkSH374IRMmTNDfV79+/WfGmJSUxMqVK6lQoQKgO33p7bffZtasWZQpUwZ/f39mzZqlnxmvXLkyZ8+eZdGiRXz88cf6dgYPHmwwe+7u7o5Go6FMmTLPfpGe4vH2QLeEfMGCBTRr1gyAlStX4u3tzaFDh2jatCn169c3+H0DAgIIDg5m48aNDBgwgGLFimFvb0/hwoWfGdfMmTPp3bu3fuJ16NChHDhwgJkzZ/Lqq6/qH9e7d2+6d+8OwOTJk5k/fz6HDh2iXbt2efqdzZVco20hoi5G6b9/4403+OSTT6hSsQoA+w7uY+vWrWqFJoT4f02bNlU7BCGEECqSccA4Xn31VUJDQwkNDeXgwYO8+eabvPXWWwYTT7/99hsvvvgiZcqUwdXVlbFjx+pnYEFX5PXt25fXX3+dqVOnEhkZ+dT+QkNDadOmTa5irFixor7IBmjRogUZGRmEh4dz584drly5wqeffoqrq6v+KyAg4Ik4njdznlvZtefg4GBwf82aNSlSpAhhYWGA7sOM4cOHU6tWLYoUKYKrqyvnzp0zeD1zIiwsjFatWhnc16pVK30/merVq6f/3sXFhcKFC3P79u1c9WUJpNC2EJHhuqR0sC9ASEgIDg4OTJ3534YA3wz+hoyMDLXCE0IA69evVzsEIYQQKpJxwDhcXFyoVq0a1apVo2nTpixbtoyEhASWLFkCwIEDB/jwww9566232LRpE8ePH2fMmDGkpPx3Qo+fnx9nzpzh7bffZseOHdSqVYvg4OBs+3Nycsp3zJkrSzUajf49+ZIlS/QfGISGhnL69GkOHDjwxO+a0/YfP5U5u83OntZeditfM+/z8fFh/fr1TJo0iZCQEEJDQ6lbt67B65lTj/ej1WqfuO/xJfxZXzNrIoW2BdBqtVy+qtuwoGypsgwePBiAbt26Ub+ObpnHmfAz/PLLL2qFKIQABg0apHYIQgghVCTjgGloNBrs7OxITEwEYN++fVSqVIkxY8bQpEkTqlevbjDbncnLy4shQ4bw999/07VrV1asWJFt+/Xq1WP79u25iuny5ctcv35df/vff//Fzs4OLy8vSpcuTfny5bl48aL+A4PMr8qVKz+z3YIFC2Z7rX/JkiUNLk2IiIjg0aNHOYo1LS1NvxEcQHh4ODExMfpl9SEhIfTu3ZsuXbpQt25dypQpY7AR87Piysrb2/uJnff379+Pt7d3juK0NlJoW4CYmBgeJScAULV6FWbMmAGAnZ0dM76doX/cyG9G5umTJyGEcWTmphBCCNsk44BxJCcnc/PmTW7evElYWBgDBw7k4cOHvPPOOwBUq1aNy5cvs3btWiIjI5k3b57BbHViYiIDBgxg165dXLp0iX379nH48OGnFnzjx49nzZo1jB8/nrCwME6dOsX06dOfGaOjoyMff/wxJ06cICQkhK+//pr3339ffw2zn58fU6ZMYe7cuZw/f55Tp06xYsUKvv3222e26+npycOHD9m+fTt3797VF9OvvfYaCxYs4NixYxw5coT+/fs/dXO3xxUoUICBAwdy8OBBjh07xieffELz5s31lzpUq1aNoKAgQkNDOXHiBD169HhihtnT05M9e/Zw7do17t69m20/Pj4+BAYG8sMPPxAREcG3335LUFBQrjd0e9z9+/cJDQ3l7NmzgO6DgtDQUG7evJmvdk1NCm0LkPUTuirVqhhs/vD666/zyouvAHD5+mWWLVumeHxCCJ2suSmEEML2yDhgHFu2bKFs2bKULVuWZs2acfjwYdatW0fr1q0B6NSpE0OGDGHAgAE0aNCA/fv3M3bsWP3z7e3tuXfvHr169cLLy4v333+ft956y2Czs6xat27NunXr2LhxIw0aNOC1117j4MGDz4yxWrVqdO3alfbt2/Pmm29Sp04dg+O7+vbty9KlSwkMDKRu3bq88sorBAYGPndGu2XLlvTv358PPviAkiVL6gv+WbNm4eHhwcsvv0yPHj345ptvcHZ2zsnLibOzMyNGjKBHjx60aNECJycn1q5dq//57NmzKVq0KC1btuSdd96hbdu2NGrUyKCNiRMnEh0dTdWqVSlZsmS2/XTu3Jm5c+cyY8YMateuzaJFi1ixYoX+/1tebdy4kYYNG/L2228D8OGHH9KwYUN++OGHfLVrahrt44v9FRIXF4e7uzuxsbG4ubmpEYLF2LBhA126dAF0/8g1Go3BH/JDhw7pdxEsUaQk0Vejcny9hxDCeAICAuRNlhBC2DBbGAcePXpEWFgY3t7eOS70rI2fnx8bNmwgNDRU7VCECWT+G4+OjiYmJob4+Hh69epFsWLFctWOzGhbgKwz2pUqVaJPnz4GP2/atCmdO3YG4G7MHebNm6dkeEKI//d4bgohhLAtMg4IITJJoW0Bsm5GUKlSJf76668nHjN56mQ0Gt3/zsn+U6zy0HchzF12uSmEEMJ2yDgghMgkhbYFyFpoe3p6Gpw9l8nb25tPevcG4GFiPFOnTn3iMUII08ouN4UQQtgOGQdsg5+fnywbF88lhbYFiDynO0PbTmNP+fLlnzpb7TfBjwL2BQGYO3se165dUyxGIQSykkQIIWycjAPWqXfv3nTu3Nni2n7csmXLePPNNxXpK6927dqFRqMhJiYmX+14enoyZ84cQLeLfcWKFTl69Gj+A8wFKbQtwKUrlwEoU6IMDg4OJCQkZPs4Dw8PBg4aAEBKWjIT/LLfWVEIYRpPy00hhBC2QcYB86Bk8ZpT0dHRaDSaJ2bC586dS2BgoMn7T05OZty4cQa7s9uKQoUK8c033zBixAhF+5VC28zFx8cTlxALQOUqngD6w+WzM3r0aFwcXQFYtmw558+fN3mMQgidZ+WmEEII6yfjgLrS09OfOP/ZnNrLjru7O0WKFDFpHwDr16/H1dWVl1566amPSUlJMXkcaunZsychISGEhYUp1qcU2mbO4AxtryoA/PPPP099fPHixRk5RvdpTYY2nTGjxpg2QCGE3rNyUwghhPWTcSDnWrduzYABAxgwYABFihShePHi+Pr6kvXk4ZSUFIYPH0758uVxcXGhWbNm7Nq1S//zwMBAihQpwqZNm6hVqxaFChXik08+YeXKlfz+++9oNBo0Gg27du3KdklyaGgoGo1Gvx9Sdu1lfS8+YcIESpUqhZubG59//rlBYbplyxZefPFF/e/SoUMHIiMj9T/PPD+7YcOGaDQa/dnSj8++Jycn8/XXX1OqVCkcHR158cUXOXz4sP7nmb/H9u3badKkCc7OzrRs2ZLw8PBnvt5r166lY8eOBvdl9j1lyhTKlSuHl5cXANeuXeODDz6gaNGiFC9enE6dOhnsGbVr1y6aNm2Ki4sLRYoUoVWrVgav08aNG2nSpAmOjo6UKFGCrl276n/2008/0aRJEwoXLkyZMmXo0aMHt2/ffmbs+/fv5+WXX8bJyQkPDw++/vprg9Ujt2/f5p133sHJyYnKlSuzevXqJ9ooXrw4LVu2ZM2aNc/sy5ik0DZzWf/Renp6ArqkeJbBgwdTzL04AL8F/ab49QhC2Krn5aYQQgjrJuNA7qxcuRIHBwcOHjzIvHnzmD17NkuXLtX//JNPPmHfvn2sXbuWkydP8t5779GuXTsiIiL0j3n06BFTpkxh6dKlnDlzhnnz5vH+++/Trl07bty4wY0bN2jZsmWOY3q8vVKlSgGwfft2wsLC2LlzJ2vWrCE4OJgJE/67TDMhIYGhQ4dy+PBhtm/fjp2dHV26dNHPiB86dAjQfRhz48YNgoKCsu1/+PDhrF+/npUrV3Ls2DGqVatG27Ztn7j+f8yYMcyaNYsjR47g4ODw3KPlQkJCaNKkyRP3Z/5e27ZtY9OmTTx69IhXX30VV1dX9uzZw969e3F1daVdu3akpKSQlpZG586deeWVVzh58iT//vsvn332GRqNBoA///yTrl278vbbb3P8+HH9BwKZUlJS8Pf358SJE2zYsIGoqKhn5s2pU6do27YtXbt25eTJk/zyyy/s3buXAQMG6B/Tu3dvoqOj2bFjB7/99hvfffddtsV706ZNCQkJeebrZFRalcTGxmoBbWxsrFohWISFCxdqAS2gXbp0qVar1Wr9/f2f+7z58+frn/faK6+ZOkwhhDZnuSmEEMJ62cI4kJCQoD1y5Ig2ISEhy51arfZoDr6yPOWVV17Rent7azMyMvT3jRgxQuvt7a3VarXaCxcuaDUajfbatWsG/bdp00Y7atQorVar1a5YsUILaENDQw0e8/HHH2s7depkcN/OnTu1gPbBgwf6+44fP64FtFFRUc9tr1ixYga/8/fff691dXXVpqenZ/s63b59WwtoT506pdVqtdqoqCgtoD1+/PhTY3348KG2QIEC2tWrV+t/npKSoi1Xrpx2+vTpBr/HP//8o3/Mn3/+qQW0iYmJ2cby4MEDLaDds2fPE32XLl1am5ycrL9v2bJl2ho1ahj8f0lOTtY6OTlpt27dqr13754W0O7atSvbvlq0aKHt2bNntj/LzqFDh7SANj4+3uD3y/z/9NFHH2k/++wzg+eEhIRo7ezstImJidrw8HAtoD1w4ID+52FhYVpAO3v2bIPnzZ07V+vp6fncmDL/jf/222/apUuXamfPnq29d+9ejn+nTDKjbeYeP9oLwNfX97nP++yzz6hQxgOAHbt3sH37dlOEJ4TIIie5KYQQwnrZ7DhwDmicg69zhk9r3ry5fiYUoEWLFkRERJCens6xY8fQarV4eXnh6uqq/9q9e7fBkuyCBQsa9Vi1p7VXv359nJ2dDWJ9+PAhV65cASAyMpIePXpQpUoV3Nzc9EvFL1++nOO+IyMjSU1NpVWrVvr7ChQoQNOmTZ+4tjhrjGXLlgV46hLsxMREABwdHZ/4Wd26dSlYsKD+9tGjR7lw4QKFCxfWv+bFihUjKSmJyMhIihUrRu/evWnbti3vvPMOc+fO5caNG/rnh4aG0qZNm6f+jsePH6dTp05UqlSJwoUL65fQP+11Onr0KIGBgQb/Btq2bUtGRgZRUVGEhYXh4OBgMGtes2bNbK97d3Jy4tGjR0+Nzdik0DZzl6L/WzpeqVIlAAICAp77vIIFCzJlxmT9bZ+hww2ueRFCGF9OclMIIYT1stlxoCZwNAdfudgrLiMjA3t7e44ePUpoaKj+KywsjLlz5+of5+TkZFCsP42dna7syfp+ODU19YnH5bS9TJmPfeedd7h37x5Llizh4MGDHDx4EMjdBmOZsT3ev1arfeK+AgUKPBHD0zZuK168OBqNhgcPHjzxMxcXF4PbGRkZNG7c2OA1Dw0N5fz58/To0QOAFStW8O+//9KyZUt++eUXvLy8OHDgAKB7/Z4mISGBN998E1dXV3766ScOHz5McHAw8PTXKSMjg88//9wglhMnThAREUHVqlWf+ppl5/79+5QsWfK5jzMWKbTN3IVzF/Tfe3joZqi//PLLHD23e/fueFf3BuD4yWP6f8hCCNPIaW4KIYSwTjY7DjgDjXLw5Wz4tMziLOvt6tWrY29vT8OGDUlPT+f27dtUq1bN4KtMmTLPDKdgwYKkp6cb3JdZYD0++5pTJ06c0M8MZ8bq6upKhQoVuHfvHmFhYfj6+tKmTRu8vb2fKGozZ40fjyuratWqUbBgQfbu3au/LzU1lSNHjuDt7Z3jWB9XsGBBatWqxdmzZ5/72EaNGhEREUGpUqWeeN3d3d31j2vYsCGjRo1i//791KlTh59//hnQzbQ/bSXtuXPnuHv3LlOnTuWll16iZs2az90IrVGjRpw5c+aJWDJfK29vb9LS0jhy5Ij+OeHh4dmew3369GkaNmz43NfAWKTQNnPR/78ZWsmipShUqBBAjnfLs7e3Z/q30/W3RwwbQVpamvGDFEIAOc9NIYQQ1knGgdy5cuUKQ4cOJTw8nDVr1jB//nwGDRoEgJeXFz179qRXr14EBQURFRXF4cOHmTZtGps3b35mu56enpw8eZLw8HDu3r1Lamoq1apVw8PDAz8/P86fP8+ff/7JrFmzchxrSkoKn376KWfPnuWvv/5i/PjxDBgwADs7O/3u3IsXL+bChQvs2LGDoUOHGjy/VKlSODk5sWXLFm7dukVsbOwTfbi4uPDFF1/g4+PDli1bOHv2LP369ePRo0d8+umnOY41O23btjUo4J+mZ8+elChRgk6dOhESEkJUVBS7d+9m0KBBXL16laioKEaNGsW///7LpUuX+Pvvvzl//rz+g4Dx48ezZs0axo8fT1hYGKdOnWL6dF09UrFiRQoWLMj8+fO5ePEiGzduxN/f/5nxjBgxgn///ZevvvqK0NBQIiIi2LhxIwMHDgSgRo0atGvXjn79+nHw4EGOHj1K3759s51ZDwkJ4c0338ztS5dnUmibscTERO7H3QPA07OS/v5nnX/3uLfffpvmLzQH4EL0BVatWmXcIIUQernJTSGEENZHxoHc6dWrF4mJiTRt2pSvvvqKgQMH8tlnn+l/vmLFCnr16sWwYcOoUaMGHTt25ODBg/pVnk/Tr18/atSoQZMmTShZsiT79u2jQIECrFmzhnPnzlG/fn2mTZuWq6X+bdq0oXr16rz88su8//77vPPOO/j5+QG6Zelr167l6NGj1KlThyFDhjBjxgyD5zs4ODBv3jwWLVpEuXLl6NSpU7b9TJ06lW7duvHRRx/RqFEjLly4wNatWylatGiOY81Ov3792Lx5c7YFflbOzs7s2bOHihUr0rVrV7y9venTpw+JiYm4ubnh7OzMuXPn6NatG15eXnz22WcMGDCAzz//HNAd27Zu3To2btxIgwYNeO211/TL6EuWLElgYCDr1q2jVq1aTJ06lZkzZz4znnr16rF7924iIiJ46aWXaNiwIWPHjtVflw66fyceHh688sordO3alc8++0y/W3ymf//9l9jYWN599928vHx5otGqdOFuXFwc7u7uxMbG4ubmpkYIZi88PJyaNXUXs3T/sDs/r9Etydi4ceMT5+A9y969e/V/+MuUKEvUlYvZboYghMif3OamEEII62IL48CjR48ICwvD29vbYHOw3GrdujUNGjRgzpw5xgtOPNP777+vX/Jta9577z0aNmzI6NGjn/vYzH/j0dHRxMTEEB8fT69evShWrFiu+pQZbTOW9QztSllmtO3t7XPVzosvvshbb74FwM27N/juu++ME6AQwkBuc1MIIYR1kXFAmLMZM2bg6uqqdhiKS05Opn79+gwZMkTRfqXQNmNZj/bK3HEcMFgqkVNTZ0xFg243vonj/Z+7bEQIkXt5yU0hhBDWQ8YBYc4qVaqkv7bZlhQqVAhfX99n7ohuClJom7GsM9qZZ2gDHD58ONdt1atXj+7duwMQ+zAmV5s/CCFyJi+5KYQQwnrIOJBzu3btsuhl461bt2bw4MFGbzcwMDDbM6Aft2zZsnxv7BUdHY1Go8nV7usLFiyw+ssjjEUKbTNmsHQ8y4x2165d89Sef4A/DnYOAMyYNpNbt27lL0AhhIG85qYQQgjrIOOA+TJVYayG5ORkxo0bx9ixY/PVjoeHBzdu3KBOnTo5fk6/fv04fPhwjnYwt3VSaJuxC+GR+u+zFtqLFi3KU3tVqlTh8y90OwImpSTmaqdFIcTz5TU3hRBCWAcZB8xPamqqWbeXF+vXr8fV1TXfu9zb29tTpkwZHBwccvycQoUK0aNHD+bPn5+vvm2BFNpmLPpiNABFCxcz2NXR19c3z22OHTsWx4K66xN++O4HoqKi8hWjEOI/+clNIYQQlk/Ggfzx9PTE39+fHj164OrqSrly5Z4o6GJjY/XHN7m5ufHaa69x4sQJ/c/9/Pxo0KABy5cvp0qVKhQqVIiPP/6Y3bt3M3fuXDQaDRqNhujo6GyXaW/YsAGNRvPM9jIPbUpLS2PAgAEUKVKE4sWL4+vrS9YDnVJSUhg+fDjly5fHxcWFZs2asWvXLoP+AgMDqVixIs7OznTp0oV79+4993Vau3btE8u3e/fuTefOnZk8eTKlS5emSJEiTJgwgbS0NHx8fChWrBgVKlRg+fLl+uc8vnR8165daDQatm/fTpMmTXB2dqZly5aEh4cb9NWxY0c2bNhAYmLic2O1ZVJom6mUlBRu39ct7a5YsaLBz/IzE126dGm+GT4MgLSMNHzHyIAghLHIKhEhhLBtMg7k34wZM6hXrx7Hjh1j1KhRDBkyhG3btgGg1Wp5++23uXnzJps3b+bo0aM0atSINm3acP/+fX0bFy5c4Ndff2X9+vWEhoYyb948WrRoQb9+/bhx4wY3btx47lncWT3eXqaVK1fi4ODAwYMHmTdvHrNnz2bp0qX6n3/yySfs27ePtWvXcvLkSd577z3atWtHREQEAAcPHqRPnz58+eWXhIaG8uqrr+bo31BISAhNmjR54v4dO3Zw/fp19uzZw7fffoufnx8dOnSgaNGiHDx4kP79+9O/f3+uXLnyzPbHjBnDrFmzOHLkCA4ODvTp08fg502aNCE1NZVDhw49N1abplVJbGysFtDGxsaqFYJZi4yM1AJaQPtut3cNfpaQkJCvtmNiYrTuru5aQKtBoz1x4kS+2hNC6OQ3N4UQQlg2WxgHEhIStEeOHDH8XRMStNqjR5//9ZzXp1KlStp27doZ3PfBBx9o33rrLa1Wq9Vu375d6+bmpk1KSjJ4TNWqVbWLFi3SarVa7fjx47UFChTQ3r592+Axr7zyinbQoEEG961YsULr7u5ucF9wcLA2a4n0rPa8vb21GRkZ+vtGjBih9fb21mq1Wu2FCxe0Go1Ge+3aNYPntWnTRjtq1CitVqvVdu/ePdvf9/GYsnrw4IEW0O7Zs8fg/o8//lhbqVIlbXp6uv6+GjVqaF966SX97bS0NK2Li4t2zZo1Wq1Wq42KitIC2uPHj2u1Wq12586dWkD7zz//6J/z559/agFtYmKiQX9FixbVBgYGPjVOS5b5b/y3337TLl26VDt79mztvXv3ct2OzGibqaedoQ3w/fff56ttd3d3xvrpNk/QomXUcNs7tF4IU8hvbgohhLBsNjsOnDsHjRs//+vcOQBWr16Nq6ur/iskJETfVIsWLQyabtGiBWFhYQAcPXqUhw8fUrx4cYPnR0VFERlpuLdRyZIljfbrPa295s2bGywzb9GiBREREaSnp3Ps2DG0Wi1eXl4Gse7evVsfa1hYWLa/77NkLtd2dHR84me1a9fGzu6/8q506dLUrVtXf9ve3p7ixYtz+/btZ/ZRr149/feZR9Y9/hwnJycePXr0zHZsXc6vfBeKynqGdtajvQA6dOiQ7/a//PJLZk6dxc27N9i8dTN79+7lxRdfzHe7QtgyY+SmEEIIy2Wz40DNmnD0aM4eh+4a32bNmunvLl++/DOfllnMZmRkULZs2SeucwYMrrV2cXF5fiyAnZ2dwTXVkP1mZzltL6uMjAzs7e05evQo9vb2Bj9zdXUFeKLvnChevDgajYYHDx488bMCBQoY3NZoNNnel5GR8cw+sj4n62uf1f379436YYY1kkLbTD3taC+AEydOUKNGjXy17+TkRMBUf/r27QuAzxAf9h/ab/CpnBAid4yRm0IIISyXzY4Dzs7QqFGOH164cGEKFy6c7c8OHDjwxO2a/1+gN2rUiJs3b+Lg4PDERNTzFCxYkPT0dIP7SpYsSXx8PAkJCfpiOjdnSmcXa/Xq1bG3t6dhw4akp6dz+/btp+4OXqtWrWzbeN7vUatWLc6ePZvvc7TzKjIykqSkJBo2bKhK/5ZClo6bqawz2o8X2sWLFzdKHx9//DFVK1UF4MCRA2zevNko7Qphq4yVm0IIISyTjAP5t2/fPqZPn8758+dZuHAh69atY9CgQQC8/vrrtGjRgs6dO7N161aio6PZv38/vr6+HDly5Jntenp6cvDgQaKjo7l79y4ZGRk0a9YMZ2dnRo8ezYULF/j5558JDAzMcaxXrlxh6NChhIeHs2bNGubPn6+P1cvLi549e9KrVy+CgoKIiori8OHDTJs2Tf+e++uvv2bLli3633fBggVs2bLluf22bdtW1XOsQ0JCqFKlClWrVlUtBksghbaZuhhxUf/944W2k5OTUfpwcHBg2qxp+ts+Q3yeu5RECPF0xspNIYQQlknGgfwbNmwYR48epWHDhvj7+zNr1izatm0L6JYxb968mZdffpk+ffrg5eXFhx9+SHR0NKVLl35mu9988w329vbUqlWLkiVLcvnyZYoVK8ZPP/3E5s2bqVu3LmvWrMHPzy/Hsfbq1YvExESaNm3KV199xcCBA/nss8/0P1+xYgW9evVi2LBh1KhRg44dO3Lw4EH9jufNmzdn6dKlzJ8/nwYNGvD333/n6Ii4fv36sXnzZmJjY3McqzGtWbOGfv36qdK3JdFo83JxgBHExcXh7u5ObGwsbm5uaoRg1jzKeHD11lVcnQoT/yjO4GeBgYH07t3bKP1otVqaNGjCsZPHAPjpp5/o2bOnUdoWwtYYMzeFEEJYHlsYBx49ekRYWBje3t44OzsbtW1PT08GDx7M4MGDjdquNXr//fdp2LAho0Ypu6nx6dOnadOmDefPn8fd3V3RvpWS+W88OjqamJgY4uPj6dWrF8WKFctVOzKjbYbS09O5cecGAJU8Kj7x8zZt2hitL41Gw4zZM/S3R/mMIiUlxWjtC2FLjJmbQgghLI+MA0IpM2bM0G+qpqTr16+zatUqqy2yjUkKbTN0/fp10jN0mzVUrfHktQ8rV640an+vvfYar7V+DYArN66wZMkSo7YvhK0wdm4KIYSwLDIOCKVUqlSJgQMHKt7vm2++qV/KL55NCm0zZHC0V2XPJ36ek2s3cmvajP+u1R4/xo+HDx8avQ8hrJ0pclMIIYTlkHEgf6Kjo61i2binpydz5swxert+fn40aNDguY8bO3aswbXiatm0aRMNGza02T2gpNA2Q1mP9sru6IKAgACj99mkSRO6de0GwL3Yu8ydO9fofQhh7UyRm0IIISyHjAOWyVSFsRpu3brF3LlzGT16tNqh0KFDBzQaDT///LPaoahCCm0z9KwztAGTbXowafIk7DT2AEwJmMq9e/dM0o8Q1krpDUmEEEKYFxkH8q5169a5OlrLGIy9L5E57HO0bNkyWrRoketzxk3lk08+Yf78+WqHoQoptM2QwdLxbJJk+vTpJum3Ro0a9OnzCQAJSQ+ZMmWKSfoRwlqZKjeFEEJYBhkHTEej0fD999/z1ltv4eTkROXKlVm3bp3BY65du8YHH3xA0aJFKV68OJ06dTJ4X927d286d+7MlClTKFeuHF5eXrRu3ZpLly4xZMgQNBoNGo0GyH6Z9pw5cwzem2fXXqb4+Hh69OiBq6sr5cqVe6LYjI2N5bPPPqNUqVK4ubnx2muvceLECYPHTJ06ldKlS1O4cGE+/fRTkpKSnvs6rV27lo4dOxrc17p1awYOHMjgwYMpWrQopUuXZvHixSQkJPDJJ59QuHBhqlatyl9//aV/Tnp6Op9++imVK1fGycmJGjVqGKx4TUpKonbt2gZL1KOionB3dzfY76ljx44cOnSIixf/O7rYVkihbYaiIqP032c3o92jRw+T9T3ebzwFHQoBMG/OfK5cuWKyvoSwNqbMTSGEEOZPxgHTGjt2LN26dePEiRP873//o3v37oSFhQG6I5leffVVXF1d2bNnD3v37sXV1ZV27doZzDRv376dsLAwtm3bxqZNmwgKCqJChQpMnDiRGzducOPGjVzF9Hh7mWbMmEG9evU4duwYo0aNYsiQIWzbtg3QHa/79ttvc/PmTTZv3szRo0dp1KgRbdq04f79+wD8+uuvjB8/nkmTJnHkyBHKli3Ld99998xYHjx4wOnTp2nSpMkTP1u5ciUlSpTg0KFDDBw4kC+++IL33nuPli1bcuzYMdq2bctHH33Eo0ePAMjIyKBChQr8+uuvnD17lnHjxjF69Gh+/fVXABwdHVm9ejUrV65kw4YNpKen89FHH/Hqq68anLFdqVIlSpUqRUhISK5eV2sghbYZijwfCYBjQadsz2vbs2ePyfquUKECXw/W7WCYmp6C33g/k/UlhLUxZW4KIYQwf7Y6Djx6BMeOPf/r/2u4PHvvvffo27cvXl5e+Pv706RJE/1M8dq1a7Gzs2Pp0qXUrVsXb29vVqxYweXLl9m1a5e+DRcXF5YuXUrt2rWpU6cOxYoVw97ensKFC1OmTBnKlCmTq5geby9Tq1atGDlyJF5eXgwcOJB3332X2bNnA7Bz505OnTrFunXraNKkCdWrV2fmzJkUKVKE3377DdDNnvfp04e+fftSo0YNAgICqFWr1jNjuXTpElqtlnLlyj3xs/r16+Pr60v16tUZNWoUTk5OlChRgn79+lG9enXGjRvHvXv3OHnyJAAFChRgwoQJvPDCC1SuXJmePXvSu3dvfaEN0KBBAwICAujXrx9DhgwhMjKSpUuXPtF3+fLlDVYW2AoptM1MRkYG125dB6BieQ/98pWsKleubNIYRo0ahatTYQBWBAZy7tw5k/YnhLUwdW4KIYQwb7Y6Dpw7B40bP/8r61vKyZMn4+rqqv8KCQmhf//+T9yXVYsWLZ64nTmjffToUS5cuEDhwoX1zy9WrBhJSUlERkbqn1O3bl0KFixotN/9ae09L9aHDx9SvHhxg983KipKH2tYWFi2bTxLYmIioJttfly9evX039vb21O8eHHq1q2rv6906dIA3L59W3/fDz/8QJMmTShZsiSurq4sWbKEy5cvG7Q7bNgwatSowfz581mxYgUlSpR4om8nJyf9TLktcVA7AGHo9u3bpKbplrdU9XryDG2AtLQ0k8ZQrFgxRvmOZMyYMWi1GYweOZqgDUEm7VMIa2Dq3BRCCGHebHUcqFkTjh7N2eMy9e/fn/fff19/u2fPnnTr1o2uXbvq7ytfvvxz28yclMrIyKBx48asXr36iceULFlS/72Li8vzAwXs7OzQarUG96Wmpj7xuJy293isZcuWNZhpz1SkSJEct/e4zCL3wYMHBr8z6GaoH48l631ZYwPd0vUhQ4Ywa9YsWrRoQeHChZkxYwYHDx40aOf27duEh4djb29PREQE7dq1eyKu+/fvPxGPLZBC28xkXVZRuWr2n4revHnT5HEMGjSIb2fM5l7MXYJ/D+bw4cO88MILJu9XCEumRG4KIYQwX7Y6Djg7Q6NGuXtOsWLFDC6RdHJyolSpUlSrVu2pzzlw4AC9evUyuN2wYUMAGjVqxC+//KLfXCw3ChYsSHp6usF9JUuW5ObNm2i1Wn0RGhoamuM2Dxw48MTtmv//SUOjRo24efMmDg4OT90d3NvbO9vf91mqVq2Km5sbZ8+eNdiYLS9CQkJo2bIlX375pf6+rCsDMvXp04c6derQr18/Pv30U9q0aWOwxD1zRUHm/ydbIkvHzczzjvYCaNy4scnjcHFxYeKkCfrbw4cNN3mfQlg6JXJTCCGE+ZJxwLTWrVvH8uXLOX/+POPHj+fQoUMMGDAA0M2IlyhRgk6dOhESEkJUVBS7d+9m0KBBXL169Zntenp6smfPHq5du8bdu3cB3U7dd+7cYfr06URGRrJw4UKDXbmfZ9++fUyfPp3z58+zcOFC1q1bx6BBgwB4/fXXadGiBZ07d2br1q1ER0ezf/9+fH19OXLkCKCb9Fq+fLnB73vmzJln9mlnZ8frr7/O3r17cxzn01SrVo0jR46wdetWzp8/z9ixYzl8+LDBYxYuXMi///7LqlWr6NGjB++++y49e/Y02HzuwIEDFCpU6LnL3q2RFNpmJuuM9tMK7Q0bNigSS9++falYriIAu0J28c8//yjSrxCWSqncFEIIYZ5kHDCtCRMmsHbtWurVq8fKlStZvXq1fvbU2dmZPXv2ULFiRbp27Yq3tzd9+vQhMTHxuTPcEydOJDo6mqpVq+qXOHt7e/Pdd9+xcOFC6tevz6FDh/jmm29yHOuwYcM4evQoDRs2xN/fn1mzZtG2bVtAt0x78+bNvPzyy/Tp0wcvLy8+/PBDoqOj9ddKf/DBB4wbN44RI0bQuHFjLl26xBdffPHcfj/77DPWrl2rXwKeV/3796dr16588MEHNGvWjHv37hnMbp87dw4fHx++++47PDw8AF3hHRMTw9ixY/WPW7NmDT179sTZ2Tlf8Vgijfbxiw8UEhcXh7u7O7Gxsble3mHNvvzyS77//ntA9wlQs2bNnnhMUlJStpscmMKaNWv0R1XUr1Of4yePZ7tBmxBC2dwUQghhfmxhHHj06BFhYWF4e3srWjxpNBqCg4Pp3LmzYn1aIq1WS/PmzRk8eDDdu3dXNZY7d+5Qs2ZNjhw5YlEbBWb+G4+OjiYmJob4+Hh69eqV7WlQzyIz2mYm+mK0/vunzWjPnDlToWh0n6bVrlEbgBOnT7B+/XrF+hbC0iiZm0IIIcyPjANCbRqNhsWLF5vFxnxRUVF89913FlVkG5PMaJsZr8peRERHUNChEEkpiWYxe/zXX3/Rvn17AKpUrEJ4ZDgODrKPnhBCCCGErZEZbWHtZEbbCmm1Wq5c123WUK50uacW2QEBAUqGRbt27WjVvBUAFy9fJDAwUNH+hbAUSuemEEII8yLjgOlotVo6d+6Mn58fDRo0yNVzW7duzeDBg40aT07i2LdvH3Xr1qVAgQKqf0DQu3dv1WOwNVJom5F79+6RlKI7aL6qV5WnPq5v375KhQToPkGcPmu6/rbvyLEkJiYqGoMQlkDp3BRCCGFeZBwwvW+++Ybt27fn6jlBQUH4+/ubKKKnGzp0KA0aNCAqKkqxiaro6Gg0Gs0TR5HNnTtXJssUJoW2Gcl6tFeVak8vtP/44w8lwjHQsmVLOrTvAMCtezdZuHCh4jEIYe7UyE0hhBDmQ8YB09FqtaSlpeHq6krx4sVz9dxixYpRuHBhE0X2dJGRkbz22mtUqFCBIkWKKN5/Vu7u7qrHYGuk0DYjOTlDG8j1chljmTJtChp0y9n9/fyJiYlRJQ4hzJVauSmEEMI8yDiQc8nJyXz99deUKlUKR0dHXnzxRYNzmnft2oVGo2Hr1q00adKEQoUKERIS8sSS7bS0NL7++muKFClC8eLFGTFiBB9//LHBMunHl457enoyefJk+vTpQ+HChalYsSKLFy82iG/EiBF4eXnh7OxMlSpVGDt2LKmpqTn63TJnle/du0efPn3QaDQEBgYSGBj4RLG7YcMGg8tFM3+/H3/8EU9PT9zd3fnwww+Jj4/XPyYjI4Np06ZRrVo1ChUqRMWKFZk0aRKAfuOxhg0botFoaN26NfDk0vGcvv7bt2+nSZMmODs707JlS8LDw3P0GggptM1K1jO0PT09n/q4e/fumT6YbNSpU4f//e9/AMQlxDFjxgxV4hDCXKmVm0IIIcyDjAM5N3z4cNavX8/KlSs5duwY1apVo23btty/f/+Jx02ZMoWwsDDq1av3RDvTpk1j9erVrFixgn379hEXF5ej88xnzZpFkyZNOH78OF9++SVffPEF586d0/+8cOHCBAYGcvbsWebOncuSJUuYPXt2jn43Dw8Pbty4gZubG3PmzOHGjRt88MEHOXou6GbCN2zYwKZNm9i0aRO7d+9m6tSp+p+PGjWKadOmMXbsWM6ePcvPP/+sP3/70KFDAPzzzz/cuHGDoKCgbPvI6es/ZswYZs2axZEjR3BwcKBPnz45/j1snRTaZiSnM9pqXh890X8iDna6Hce/nfEtN27cUC0WIcyN7F0ghBC2TcaBnElISOD7779nxowZvPXWW9SqVYslS5bg5OTEsmXLDB47ceJE3njjDapWrZrtkvH58+czatQounTpQs2aNVmwYEGOlki3b9+eL7/8kmrVqjFixAhKlCjBrl279D/39fWlZcuWeHp68s477zBs2DB+/fXXHP1+9vb2lClTBo1Gg7u7O2XKlMHJySlHzwXdjHVgYCB16tThpZde4qOPPtJflx4fH8/cuXOZPn06H3/8MVWrVuXFF1/U7w9QsmRJAIoXL06ZMmWy3Sk7N6//pEmTeOWVV6hVqxYjR45k//79JCUl5fh3sWVyRpMZiboYpf/+WYV29erVlQgnW56ennzx1RfMnz+fpNQk/P39+e6771SLRwhzomZuCiGEUJ+tjgNNmjTh5s2bz31cmTJlOHLkCJGRkaSmptKqVSv9zwoUKEDTpk0JCwt7ou2niY2N5datWzRt2lR/n729PY0bNyYjI+OZsWSdHddoNJQpU4bbt2/r7/vtt9+YM2cOFy5c4OHDh6SlpSl2JLGnp6fBNeVly5bVxxYWFkZycjJt2rTJc/u5ef2zvk5ly5YF4Pbt21SsWDHP/dsKmdE2I5HhkQDY29lTrly5pz5u586dSoWULV9fXxwL6j6VW7xoMZGRkarGI4S5UDs3hRBCqMtWx4GbN29y7dq1535lFuNarRbgiaNstVrtE/e5uLg8t//s2nmeAgUKPNFGZnF+4MABPvzwQ9566y02bdrE8ePHGTNmDCkpKc9t91ns7OyeiC27676fFVtuZsafJjevf9ZYMn/2vA8xhI4U2mbk8tUrAJQtWRZ7e/unPq5Xr15KhZStUqVKMXykDwDpGen4jvFVNR4hzIXauSmEEEJdtjoOlClThvLlyz/3q0yZMgBUq1aNggULsnfvXn0bqampHDlyBG9v7xz36+7uTunSpfXXJQOkp6dz/PjxfP0++/bto1KlSowZM4YmTZpQvXp1g0s886pkyZLEx8eTkJCgv+/xY7iep3r16jg5OT31iLOCBQsCutfhaYz1+otnk0LbTMTGxvIwUbeb4LOO9gLdtShqGzZsGEUKFwVg7S9rc/1HQghrZA65KYQQQj22Og4cOXKEq1evPvfryJEjgG6W+osvvsDHx4ctW7Zw9uxZ+vXrx6NHj/j0009z1ffAgQOZMmUKv//+O+Hh4QwaNIgHDx48MTObG9WqVePy5cusXbuWyMhI5s2bR3BwcJ7by9SsWTOcnZ0ZPXo0Fy5c4Oeff8712daOjo6MGDGC4cOHs2rVKiIjIzlw4ID+2upSpUrh5OTEli1buHXrFrGxsU+0YczXXzydFNpmwuAM7erPLrR9fdWfQXZzc2P8xHH62yOHj1QxGiHMgznkphBCCPXIOJBzU6dOpVu3bnz00Uc0atSICxcusHXrVooWLZqrdkaMGEH37t3p1asXLVq0wNXVlbZt2+Lo6Jjn2Dp16sSQIUMYMGAADRo0YP/+/YwdOzbP7WUqVqwYP/30E5s3b6Zu3bqsWbMGPz+/XLczduxYhg0bxrhx4/D29uaDDz7QX8Pt4ODAvHnzWLRoEeXKlaNTp07ZtmGs1188nUabk4sYTCAuLg53d3diY2MV21jAnG3cuFGfCOPHj39m0gUEBJjFH/KkpCSqVqrG9dvXANi9ezcvv/yyylEJoR5zyU0hhBDqsIVx4NGjR4SFheHt7Y2zs7Pa4TwhIyMDb29v3n//ffz9/dUOR1igzH/j0dHRxMTEEB8fT69evbLdwf1ZZEbbTGSd0X7WGdoAAwYMMHE0OePo6MikaQH62z5Dh+do8wkhrJW55KYQQgh1yDigvEuXLrFkyRLOnz/PqVOn+OKLL4iKiqJHjx5qhyZsnBTaZiKnZ2gD/PTTT6YOJ8c++ugjvKp4AXDo6EE2bdqkckRCqMecclMIIYTyZBxQnp2dHYGBgbzwwgu0atWKU6dO8c8//8imXkJ1UmibieioaP33z5vRfuWVV0wbTC7Y29szbdY0/e3hQ4c/c5dDIayZOeWmEEII5ck4oDwPDw/27dtHbGwscXFx7N+/Xy5lFGZBCm0zceH/z9C209hRoUKFZz7W3M6t7tSpE00aNAHg3IVz/PzzzypHJIQ6zC03hRBCKEvGASFEJim0zUTm0vGSRUs9cUj94zLPxzMXGo2GGbNn6G+PHj6a5ORkFSMSQh3mlptCCCGUJeOAECKTFNpmICEhgZiHDwCoXLXycx9funRpU4eUa61bt+b1V18H4OrNqyxatEjliIRQnjnmphBCCOXIOCCEyCSFthm4fPmy/vuqXs8+Qxvg6NGjpgwnz6bN/O9abb+xE4iPj1cxGiGUZ665KYQQQhkyDgghMkmhbQaio6P13z9vIzTgqQfPq61Ro0a89+57ADyIu8/s2bNVjkgIZZlrbgohhFCGjANCiExSaJuB3BztBbBkyRJThpMvkyZPwk5jD8C0ydO5c+eOyhEJoRxzzk0hhBCmJ+OAECKTFNpmIOuMdk4KbV9fXxNGkz/Vq1enb99PAXiUnMDkyZNVjkgI5ZhzbgohhDA9GQeEEJkc1A5AwKXo/2a0c7J0PCAgwKz/kI/3G0/gipWkpCWzYP5ChgwZQsWKFdUOSwiTM/fcFEIIYVq2NA4kJiaqHYIQJmGsf9sarVarNUpLuRQXF4e7uzuxsbG4ubmpEYLZaNqoKYePHwZ0/2MdHR2f+fjExEScnJyUCC3PRowYwfTp0wHo/XFvVgSuUDkiIUzPEnJTCCGE6djCOJCSksKZM2fIyMhQOxQhTEar1XLx4kXi4+OJj4+nV69eFCtWLFdtSKFtBkoWLcXdmDsUdy/B3ZjnX9M8a9Yshg0bpkBkeffgwQMqVahE/KN4NBo7Tp8+Ra1atdQOSwiTsoTcFEIIYTq2Mg6kpKSQlpZGbGwsmzZtwsXFhUKFCqkdlhDPdPLkSerVq5ejx6anp5OWlkZiYmKeC21ZOq6y5ORkfXHtmYPrswE6duxoypCMomjRoowZN4aRI0ei1WYwesRoNvyxQe2whDApS8hNIYQQpmMr40DBggUpWLAgSUlJJCQkkJqaKoW2MHtubm7ExMTk6jnJycl57k8KbZUZnKFdo2qOnnPs2DGqV69uqpCMZuDAgcya/i137t/m902/c/DgQZo1a6Z2WEKYjKXkphBCCNOwtXGgUKFCuLm5ERcXR0pKitrhCPFMly9fxt7ePtfPc3Nzy9MHSVJoqyzr0V6elT1z9JySJUuaKBrjcnZ2xn/yRPr37w+AzxAfdu/bjUajUTkyIUzDUnJTCCGEadjaOODi4sIHH3yQr1k/IZSyb98+WrVqlevnFSpUCBcXl1w/TwptleX2DG3Aopbm9OnTh6kBU4m+Gk3IvyFs27aNN998U+2whDAJS8pNIYQQxmeL44CLi0ueihAhlFasWLFcX2edH3KOtsqynqGdk6O9ACIjI00TjAkUKFCAqTOn6m/7DPGRXSqF1bKk3BRCCGF8Mg4IYb6Uzk8ptFWWlxnt1q1bmyga03jvvfeoW6suACfPnmTdunUqRySEaVhabgohhDAuGQeEMF9K56cU2iq7EH5B/31OC+0ff/zRVOGYhJ2dHTO+naG/PfKbkaSmpqoYkRCmYWm5KYQQwrhkHBDCfCmdn3KOtsrKlSzPjbvXcXcpQszDBzl6TkZGBnZ2lvUZiVar5ZUXXyFkfwgAP/zwA59//rnKUQlhXJaYm0IIIYxHxgEhzJfS+Sl/CVSUlpbGrXu3AKjo4ZHj502ePNlUIZmMRqNh+qzp+ttjR43j0aNHKkYkhPFZYm4KIYQwHhkHhDBfSuenzGirKDo6msqVKwPQpUsXgoKCcvQ8S/60tNM7ndi4aSMAU6dOZcSIESpHJITxWHJuCiGEyD8ZB4QwXzKjbUMMztDO4Y7jAFOmTDFBNMqYPHUyGo3un92kiZN48CBny+WFsASWnJtCCCHyT8YBIcyX0vkphbaKsh7tldON0AA++ugjE0SjjNq1a9Pr/+OPfxTPtGnTVI5ICOOx5NwUQgiRfzIOCGG+lM5PKbRVlNcZ7V27dhk/GAVN9J+Ig30BAOZ8O4fr16+rHJEQxmHpuSmEECJ/ZBwQwnwpnZ9SaKsoL2doA1StWtUU4SimYsWKDBj4FQDJqclMnDBR5YiEMA5Lz00hhBD5I+OAEOZL6fyUQltFkRGR+u9zM6OdnJxsgmiUNXr0aJwdXQBYsmQpERERKkckRP5ZQ24KIYTIOxkHhDBfSuenFNoqunghCgAXR1eKFCmS4+fduXPHRBEpp2TJkowYNRyADG06vqN9VY5IiPyzhtwUQgiRdzIOCGG+lM5PKbRVkpGRwY3bumuTPcpXyNVzGzVqZIqQFDdkyBCKuhUD4NfffuX48eMqRyRE/lhLbgohhMgbGQeEMF9K56cU2iq5ceMGaelpAFSrWS1Xz924caMpQlJc4cKF8fMfr7894hs5U1tYNmvJTSGEEHkj44AQ5kvp/NRotVqtoj3+v7i4ONzd3YmNjcXNzU2NEFS1f/9+WrVqBcCAAQOYP39+jp+bmJiIk5OTqUJTVHJyMlUrVeParasA7Ny5k9atW6sblBB5ZE25KYQQIvdkHBDCfCmdnzKjrZKsZ2jnZiM0gFmzZhk3GBUVKlSIydMn6W9/M8QHlT77ESLfrCk3hRBC5J6MA0KYL6XzU2a0VTJlyhRGjx4NwLp163j33XdVjkg96enp1K5Rm/DIcACCg4Pp3LmzukEJIYQQQgghRB7JjLZK8jOjHRAQYNxgVGZvb8/0b6frbw8fOpz09HQVIxIib6wtN4UQQuSOjANCmC+l81NmtFXy5utvsm37NgBu375NyZIlc/zcW7duUbp0aVOFpgqtVkvzJs05dOwQACtWrKB3797qBiVELlljbgohhMg5GQeEMF9K56fMaKskMuIiAIUKFKJEiRK5eu7vv/9uipBUpdFomDF7hv72mBFjSEpKUjEiIXLPGnNTCCFEzsk4IIT5Ujo/pdBWgVar5doN3S7bFcp6oNFocvX8xo0bmyIs1b388su8+fqbAFy/fZ0ffvhB5YiEyB1rzU0hhBA5I+OAEOZL6fyUQlsFd+7cITk1GYCqNark+vm3bt0ydkhmY/rM/67VnjBuInFxcSpGI0TuWHNuCiGEeD4ZB4QwX0rnpxTaKsi6EVqVqrkvtFNSUowYjXmpX78+H37wIQAx8Q/49ttvVY5IiJyz5twUQgjxfDIOCGG+lM5PKbRVcOnSJf33lSpVyvXzq1atasxwzE7ApADs7ewBmD51Brdv31Y5IiFyxtpzUwghxLPJOCCE+VI6P6XQVkF+C+3du3cbMxyzU7VqVT77/DMAEpMfMWnSJJUjEiJnrD03hRBCPJuMA0KYL6XzU473UsGAAQNYuHAhAPv376dFixa5en5MTAxFihQxQWTm48aNG1SpVIWk1CQc7AsQceF8rs8bF0JptpCbQgghnk7GASHMl9L5KTPaKoiOitZ/n5cZ7QULFhgxGvNUtmxZhvoMBSAtPZXx48arHJEQz2cLuSmEEOLpZBwQwnwpnZ8yo62CmlVrEn4xHAf7AiSnJGFnJ593ZCcmJoZKFSoRlxCHBg0nT52kTp06aoclhBBCCCGEEM8kFZ7CtFotV67pztAuV7pcnorsgIAAY4dllooUKYLveF8AtGgZNXyUyhEJ8Wy2kptCCCGyJ+OAEOZL6fyUGW2FPXjwgGLFigHQ+uXW7Ny9M9dtxMbG4u7ubuzQzFJiYiKeHpW5fU937t2+ffto2bKlylEJkT1byk0hhBBPknFACPOldH7KjLbCsp6hXbV63raYX7VqlZGiMX9OTk4ETPHX3/YZ4oNKnw0J8Vy2lJtCCCGeJOOAEOZL6fyUQlth+T3aC+DVV181VjgW4ZNPPqFKxSoA7D+0ny1btqgckRDZs7XcFEIIYUjGASHMl9L5KYW2wrLOaOf1uKqIiAjjBGMhHBwcmDpzqv62zxAfMjIyVIxIiOzZWm4KIYQwJOOAEOZL6fyUQlthxpjRdnJyMlY4FqNbt27Ur1MfgDPhZ/jll19UjkiIJ9libgohhPiPjANCmC+l81MKbYVlndHOa6FdvHhxI0VjOezs7Jg5e6b+9shvRpKSkqJiREI8yRZzUwghxH9kHBDCfCmdn1JoK+xC2AUA7DT2lC9fPk9thIaGGjEiy/H666/T+qXWAFy+fplly5apG5AQj7HV3BRCCKEj44AQ5kvp/JTjvRTm7lqEuIRYypUsz7XbV/PUxs2bNylTpoyRI7MMhw8fpmnTpgCUKFKS6KtRuLi4qByVEDq2nJtCCCFkHBDCnCmdnzKjraD4+HjiEmIBqFK1cp7bWbp0qbFCsjgvvPACXTp1AeBuzB3mzZunckRC/MeWc1MIIYSMA0KYM6XzU2a0FXT69Gnq1q0LQK9evVi5cqXKEVmmc+fOUatWbbTaDFydCnPpajTFihVTOywhhBBCCCGEAGRGW1HG2HEcICAgwBjhWKyaNWvySe/eADxMjGfq1KnPfoIQCrH13BRCCFsn44AQ5kvp/JQZbQUtXLiQAQMGALBs2TL69OmTp3aSkpJwdHQ0ZmgW58qVK1StXI3U9BQKOhTiYnRknjeXE8JYJDeFEMK2yTgghPlSOj9lRltBxprRnj9/vjHCsWgeHh4MHKT70CIlLRm/8X7qBiQEkptCCGHrZBwQwnwpnZ9SaCsoOipa/72np2ee2+ncuXO+Y7EGo0ePxsXRFYDly1cQHh6uckTC1kluCiGEbZNxQAjzpXR+SqGtoAvhkQBo0ODh4ZHndo4ePWqskCxa8eLFGTlmBAAZ2nTGjBqjckTC1kluCiGEbZNxQAjzpXR+SqGtoMyl4yWKlqRgwYJ5bkfOZ/zP4MGDKeZeHID1wes5cuSIyhEJWya5KYQQtk3GASHMl9L5KYW2QhITE7kfdw+AypU989WWg4ODESKyDq6urkwI8NPfHvHNCPWCETZPclMIG9C7N9SoAersJSvMnIwDQpgvpfNTCm2FXL58Wf99Va+q+WorKioqv+FYlc8++wyPsrql+Dt272D79u0qRyRsleSmEDbgwAE4fx4OH1Y7EmGGZBwQwnwpnZ9SaCskOjpa/71nPme0X3755fwFY2UKFizIlBlT9Ld9hg5HpVPrhI2T3BTCyt2+rSuyy5WDkSNlVls8QcYBIcyX0vkphbZCjHW0F8DPP/+c33CsTvfu3anlVQuA4yePERwcrHJEwhZJbgph5TZuBI0GpkyBnTvhn3/UjkiYGRkHhDBfSuenRqvS1F9cXBzu7u7Exsbi5uamRgiKGjNmDJMnTwbgr7/+ol27dnluKz09HXt7e2OFZjX+/PNPOnToAEA1z2qERYTJtVJCUZKbQli5t9+Ghw9h1y5o1QpSUuDQIbCTeQuhI+OAEOZL6fyUkUEhxjpDG2DKlCnPf5ANat++PS1eaAHAhegLrFq1SuWIhK2R3BTCisXF6Wawu3bVzWpPnQpHj8L69WpHJsyIjANCmC+l81NmtBXSvElzDh49CEBCQgLOzs4qR2Sd9u7dy0svvQRAmRJlibpyEUdHR5WjEkIIYfHWroXu3eHSJahYUXdf+/Zw4QKcOQMFCqgbnxBCCLMiM9oKifr/Ge2ihYvlu8gOCAgwQkTW6cUXX6R92/YA3Lx7g++++07liIQtkdwUwooFBUHjxv8V2QCTJ0NEBAQGqhaWMC8yDghhvpTOT5nRVkBKSgqOhRzRoqVBnYYcP3UsX+1duXIFDw8PI0VnfU6ePEmD+g3QosXdtQiXrkbj7u6udljCBkhuCmGlEhOhZEkYPVr3lVWPHrB7t25m28lJnfiE2ZBxQAjzpXR+yoy2Aq5evYoW3ecZ1Wrk7wxtQM6Jfo569erRvXt3AGIfxjBr1iyVIxK2QnJTCCv1zz+QkKC7Pvtx/v66Y78WLFA+LmF2ZBwQwnwpnZ9SaCvAmGdoA3h5eeW7DWvnH+CPg51ux/EZ02Zy69YtlSMStkByUwgrFRQENWvqvh5XtSp89pnuyK+YGMVDE+ZFxgEhzJfS+SmFtgKMeYY2QGJiYr7bsHZVqlTh8y8+ByApJRF/f3+VIxK2QHJTCCuUlqY7Pzu72exMvr6QnAwzZigXlzBLMg4IYb6Uzk8ptBVgMKOdz6O9AO7du5fvNmzB2LFjcSyou15u0feLuHjxosoRCWsnuSmEFdqzB+7ff3ahXbYsDB4Ms2fDjRuKhSbMj4wDQpgvpfNTCm0FGHtGu379+vluwxaULl2ab4YPAyAtI42xvmNVjkhYO8lNIaxQUJBup/FGjZ79OB8fcHTUXbMtbJaMA0KYL6XzUwptBVw8/99MqjEK7U2bNuW7DVvxzTff4O6q23F8zZo1nDx5UuWIhDWT3BTCymRkQHAwdOkCGs2zH1ukCIwaBUuW6HYgFzZJxgEhzJfS+SnHeymgQmkPrt2+SmFnN+ISYvPd3qNHj/J9FrctmTVrFt988w0A7du2588tf6ockbBWkptCWJmDB6F5c9i1C1555fmPT0yEatV0j/35Z5OHJ8yPjANCmC+l81NmtE0sLS2Nm3d112tVrGCcc9u+/fZbo7RjK7766ivKlCgLwOatm9m7d6/KEQlrJbkphJUJCtKdn/3iizl7vJMT+PnBmjUQGmrKyISZknFACPOldH7KjLaJXb58Wb9cvFPHTmz4fYO6Admo5cuX8+mnnwLQvElz9h/aj+Z5ywCFEELYLq0WvLygdWvdcvCcSkuD2rV1x35t3myy8IQQQpg3mdE2sawboRnjDG2AgIAAo7RjS3r16kU1z2oAHDhygM3y5keYgOSmEFbkzBndtdZduuTueQ4OEBAAf/0Fu3ebJjZhtmQcEMJ8KZ2fUmibmLF3HAf4/PPPjdKOLXFwcGDarGn62z5DfMjIyFAxImGNJDeFsCJBQVC4MLRpk/vndusGjRvrNkdTZ+GgUImMA0KYL6XzUwptEzP2GdoAQUFBRmnH1nTp0oWG9XTHs4RFhLFmzRqVIxLWRnJTCCsSHAwdOkChQrl/rp0dTJkC//4Lf/xh/NiE2ZJxQAjzpXR+SqFtYqaY0X7hhReM0o6t0Wg0zJw9Q397lM8oUlJSVIxIWBvJTSGsxMWLus3McrtsPKvXX4fXXoPRoyE93WihCfMm44AQ5kvp/JRC28QuRvx3hraxZrRv3LhhlHZs0WuvvcZrrV8D4MqNKyzJzQY3QjyH5KYQViI4WDeT/dZbeW9Do9HNap85A6tXGy82YdZkHBDCfCmdn1Jom1jk/xfaToWcKVq0qFHaTJdPxvNl2oz/rtUeN2Y8Dx8+VDEaYU0kN4WwEsHB0LYtuLrmr52mTXXXa48bB8nJxolNmDUZB4QwX0rnpxTaJpSRkcH129cB8ChXwWjHSRlrZtxWNWnShG5duwFwP/Yec+bMUTcgYTUkN4WwAjduwP79+Vs2nlVAAFy5AosWGac9YdZkHBDCfCmdn1Jom9CtW7dITdNdA1ytRjWjtRsSEmK0tmzVpMmTsNPYAzB10jTu3r2rckTCGkhuCmEFfv9dt5nZO+8Yp72aNeGTT3QFd3y8cdoUZkvGASHMl9L5KYW2CRmcoV3F02jtdu/e3Wht2aoaNWrQp88nACQkPWTKlCkqRySsgeSmEFYgOBhat4bixY3X5vjxEBcH335rvDaFWZJxQAjzpXR+SqFtQqY42gvgu+++M1pbtmy833gKOuiObZk/dwFXrlxROSJh6SQ3hbBwDx7Ajh3GWzaeycMDBgyAmTPhzh3jti3MiowDQpgvpfNTCm0TMsXRXgC+vr5Ga8uWVahQga8HDwQgNT0Fv/F+6gYkLJ7kphAWbtMmSEuDzp2N3/aoUbol6ZMnG79tYTZkHBDCfCmdn1Jom5CpCu2AgACjtWXrRo0ahatTYQBWBAZy7tw5lSMSlkxyUwgLFxwMzZpB+fLGb7t4cfDxge++gyzvD4R1kXFACPOldH5KoW1CFyONf4Y2wNdff220tmxdsWLFGD12FABabQajR45WOSJhySQ3hbBgCQmwZQt07Wq6PgYPhiJFwM/PdH0IVck4IIT5Ujo/pdA2oYvhukK7oEMhSpUqZbR2AwMDjdaW0CVdiaIlAQj+PZjDhw+rHJGwVJKbQliwrVshMdH412dn5eoKY8fCqlVw5ozp+hGqkXFACPOldH5KoW0iWq2WKzd0m2uVL1PeaGdoA7z++utGa0uAi4sLEydN0N8ePmy4itEISya5KYQFCw6GOnWgenXT9vPZZ1CxIsi1vFZJxgEhzJfS+SmFtoncu3ePpJQkAKp6VTFq23IdsfH17duXSuV119HvCtnFP//8o25AwiJJbgphoVJS4I8/TLtsPFPBguDvDxs2wIEDpu9PKErGASHMl9L5KYW2iWTdCK1y1cpGbdvFxcWo7QkoUKAAU2b8d5b2N0O+QavVqhiRsESSm0JYqF27IDZWmUIboHt3qFsXRo4EGWusiowDQpgvpfNTCm0TMdUZ2qDbwEsY3wcffEDtGrUBOHH6BOvXr1c5ImFpJDeFsFBBQVC5MtSrp0x/9va6Y75274a//1amT6EIGQeEMF9K56cU2iZiqqO9AE6ePGnU9oSOnZ0dM2bP0N8eMWwEaWlpKkYkLI3kphAWKD1dt4y7a1cw4n4qz/X229Cqle587YwM5foVJiXjgBDmS+n8lELbREw5o/3WW28ZtT3xn3bt2tGqeSsALl6+yIoVK1SOSFgSyU0hLNCBA3DrlnLLxjNpNDB1Khw/DuvWKdu3MBkZB4QwX0rnpxTaJhIdFa3/3tgz2suXLzdqe+I/Go2G6bOm62/7jhpLYmKiihEJSyK5KYQFCgqCMmWgeXPl+37xRejQQbcDeWqq8v0Lo5NxQAjzpXR+arQq7fgUFxeHu7s7sbGxuLm5qRGCSdX2qs3ZiLPY29mTnJKMvb292iGJXHjn7XfYtHkTANOnT8fHx0fliIQQQhidVgtVqkC7dvD99+rEcPIkNGig6//zz9WJQQghhNHJjLaJXL56GYBypcoZvcgOCAgwanviSVOmTUGD7lq9gAkBxMTEqBuQsAiSm0JYmBMnIDpa+WXjWdWrBz17woQJ8OiRenEIo5BxQAjzpXR+SqFtAjExMTxMfAgY/2gvQGZXFVCnTh3+97//ARCXEMeMGTOe8wwhJDeFsDhBQVCkCLRurW4cEybA3bswb566cYh8k3FACPOldH5KoW0CWXccr+pV1ejtz5071+htiidN9J+Ig30BAL6d8S03btxQOSJh7iQ3hbAwQUHwzjtQoIC6cVSpols2Pm0aPHigbiwiX2QcEMJ8KZ2fUmibgCmP9gLo1q2b0dsUT/L09OTLr74AICk1CX9/f5UjEuZOclMIC3L+PJw5A126qB2JTuaGaNOmqR2JyAcZB4QwX0rnpxTaJmDqQvvQoUNGb1Nkb8yYMTgVcgZg8aLFREZGqhyRMGeSm0JYkOBgcHKCtm3VjkSndGkYMgTmzoVr19SORuSRjANCmC+l81MKbRMw5RnaAGXLljV6myJ7pUqVYvhI3fUc6Rnp+I7xVTkiYc4kN4WwIEFB8NZb4OysdiT/+eYbXTyygspiyTgghPlSOj+l0DaBrIW2KWa05agwZQ0dOpQihYsCsPaXtYSGhqobkDBbkptCWIirV+HQIfNZNp7J3R1Gj4alSyEiQu1oRB7IOCCE+VI6P6XQNoEL53TLi+00dlSoUMHo7Wddmi5Mz83NjfETx+lvjxw+UsVohDmT3BTCQmzYAA4O0KGD2pE86csvoWxZGDtW7UhEHsg4IIT5Ujo/pdA2gcuXdWdolypWmgIm2Mn0xRdfNHqb4tn69+9PuVLlAdi6bSt79uxROSJhjiQ3hbAQQUHQpo3uaC9z4+QEfn7wyy9w7Jja0YhcknFACPOldH5KoW1kCQkJxDzUHc3hWcXTJH2sXbvWJO2Kp3N0dGTStP8OufcZOhytVqtiRMIcSW4KYQHu3oU9e8xv2XhWH38MNWrolpELiyLjgBDmS+n81GhVqhbi4uJwd3cnNjYWNzc3NUIwibNnz1K7dm0A/ve///Hjjz8avY+0tDQcHByM3q54tvT0dGp51eL8xfMA/P7773Ts2FHlqIQ5kdwUwgKsWAGffgrXr0OZMmpH83Tr18O778KOHfDqq2pHI3JIxgEhzJfS+Skz2kZm6qO9AKZOnWqSdsWz2dvbM23Wf+ebDh86nPT0dBUjEuZGclMICxAcDK1amXeRDdC1K7zwAowaBbKCymLIOCCE+VI6P6XQNjJTH+0F4OsrR0yppVOnTjRp0ASA8MhwVq9erXJEwpxIbgph5uLj4e+/zXvZeCaNBqZOhYMH4fff1Y5G5JCMA0KYL6XzUwptI1NiRjsgIOD5DxImodFomDF7hv726OGjSU5OVjEiYU4kN4Uwc3/9BcnJllFoA7z2Grzxhu5abVlBZRFkHBDCfCmdn1JoG9mlaNMX2r179zZJuyJnWrduzeuvvg7AtVvXWLRokcoRCXMhuSmEmQsOhoYNoXJltSPJucmTISwMVq1SOxKRAzIOCGG+lM5PKbSN7MK5C/rvK1asaJI+tm3bZpJ2Rc5NnzVd/73f2AnEx8erGI0wF5KbQpixpCTYtMlyZrMzNWkC770H48frfgdh1mQcEMJ8KZ2feSq0b9++zbx589i+fTtLly41dkwWLfr/l44Xdy+Bo6OjSfrw9vY2Sbsi5xo2bMj7774PwIO4+8yePVvliIQ5kNwUwoxt3w4PH+o2GbM0/v66XdK//17tSMRzyDgghPlSOj/zVGhPmzaN+vXr06ZNG86fP09ERISx47JISUlJ3I25A5huIzRAZk/NxKQpk7C3swdg2uTp3LlzR+WIhNokN4UwY8HB4OUFtWqpHUnu1agBffrApEkQF6d2NOIZZBwQwnwpnZ95KrSrV69OTEwMALGxsRw/ftyYMVmsK1eu6L+vVqOqyfrJfO2FuqpVq0bfvn0BeJScwOTJk1WOSKhNclMIM5WWptu5u0sX3W7elmjcOEhIgFmz1I5EPIOMA0KYL6XzM0+Fdv/+/XF0dGTfvn04ODhQqFAhY8dlkQx2HPc0zUZoAHXr1jVZ2yJ3xo0fR6ECun//C+Yv5PLlyypHJNQkuSmEmdq7F+7etcxl45kqVICBA3WF9u3bakcjnuLq1ato5dxzIcyS0u/T8lRob968meTkZFq1akVcXBytW7d+7nOSk5OJi4sz+LI2SpyhDfDXX3+ZrG2RO+XKlWPw0MEApKWnMn7ceHUDEqqS3BTCTAUHQ/nyuo3FLNnIkeDgoFtCLszK7t27KVumLEOHDmXq1KlqhyOEyIbS79PyVGifO3eOw4cP07VrV7p168b8+fMB3dlk169fZ9myZRw+fJitW7cSFBTE2bNn6dy5M+7u7vovDw8PABYvXszJkyfZuHEjf/75J8eOHWPRokXcuXNHf9ZZQEAAjx49YtasWYSHh/Prr7+yfft29u/fT2BgIFeuXDF4bHp6OlOmTOHSpUv8+OOP7N27l127drF27VoiIiKYMWMGSUlJBs+5efMmS5Ys4fDhw2zZsoXg4GBOnz7N/PnziY2NNXhsTEwMCxYs4NSpU2zYsIHNmzdz9OhRgoOD9a9RpUqVCAgIIDExkVmzZhEREcEvv/zCjh072LdvH6tWreLy5ctMmjSJjIwMAgICyMjIYNKkSVy+fJlVq1axb98+duzYwS+//EJERASzZs0iMTGRBw8e6GO5desWixcv5ujRo2zevJkNGzZw6tQpFixYQExMjEHcsbGxzJ8/n9OnTxMcHMyWLVs4fPgwS5Ys4ebNmwaPTUpKYsaMGURERLB27Vp27drF3r17+fHHH7l06RJTpkwhPT3d4DlXrlwhMDCQ/fv3s337dn799VfCw8OZNWsWjx49MnjsnTt3WLRoEceOHePPP/9k48aNnDx5koULF3L//n2Dx8bFxTFv3jzOnj1LUFAQW7du5fDhwyxbtozr168bPDY5OZnp06cTGRnJmjVr2LVrFyEhIfz0009ER0czdepU0tLSDJ5z9epVVqxYwYEDB9i2bRvr1q3j3LlzzJ49m4cPHxo89u7du/zwww+EhoayadMm/vjjD9q3b6+f1Q5cuZKzZ88SEBBAfHw8c+bM4ezZs6xfv56///6bgwcPsnz58ifiTk1NZdq0aVy8eJHVq1ezZ88e9uzZw+rVq7l48SLTpk0jNTXV4DnXr19n+fLlHDx4kL///pv169dz9uxZ5syZQ3x8vMFj7927x/fff09oaCh//PEHmzZtIjQ0lB9++IG7d+8aPPbhw4fMnj2bc+fOsW7dOrZt28aBAwdYsWIFV69eNXhsWloaU6dOJTo6mp9++omQkBB27drFmjVriIyMZPr06SQnJz8Rd3Z/I+bNm0dcXJzBY+/fv8/ChQst5m9Ev379nvk3YvHixdy6dcugXVP8jcjavvyNUP9vRGhoKN9//z337t0zeKz8jVDob4RWS0BgII86dGDW7Nlm/T7iuX8jtm1jR7du7Fu4kFWzZsnfCDP4GzFx4kQCAgJo0+Z1bt66CcDYsWM5fvy4/I2wlL8RmM/7iHz/jZD3Ec/8G9GiRQuj/I3IKY1WofUtycnJBoHFxcXh4eFBbGwsbm5uSoRgch999BE//fQTAGfOnKGWiTZcCQgIwNfX1yRti7yZNm0aI0eOBKBTh05s+GODugEJVUhuCmGGDh+Gpk1hxw549VW1o8m/hASoWhXatoWVK9WOxqadOHGCT3v35WjokSd+tnr1anr06KFCVEKIp1H6fZpihfbj4uLicHd3t6pCu2Wzlvx76F8AHj58iIuLi8oRCaU8evQIT4/K3Lmvu27uwIEDNGvWTOWohBBCMHo0LF4MN2/qll1bg+++gwED4ORJqFNH7WhsTkJCAn5+fnw7azYZ2nT9/e3atmPL1i0AVCxXkYioCAoWLKhWmEIIleVq6bhGo8nxly2KvqjbDM3dpYhJi+zM5QvCfDg7O+M/eaL+ts8QH9kMxQZJbgphhoKCoGNH6ymyAfr2hcqVYcwYtSOxOX/99Rc1q9Vk5syZ+iK7euXq7Nmzh7+2/IVnJU8ALl+/zLJly1SMVAjxOKXfp8mMtpGkpqbiWMiRDG0G9bzrceLsCZP1dffuXUqUKGGy9kXepKam4lXFi+ir0QBs2bKFtm3bqhuUUJTkphBmJixMd272H39Ahw5qR2NcP/8MPXvCvn3QsqXa0Vi9mzdv8vXAr1n32zr9fQXsCzLObyzDhw/Xz1xv27aNN998E4ASRUoSfTVKVjgKYSaUfp+WqxnthIQE/vzzT9544w1At1x2+fLl/PHHH3z66adkZGSYJEhLcO3aNTK0ut+/ak3TnaEN8Ntvv5m0fZE3BQoUYOrM/3Ya9RniY9M5YYskN4UwM0FB4OoKr7+udiTG9+GHUL++bidyWUFlMhkZGSxatIjqVbwMiuxXXnyF02dP4evra7A8PDIyki6dugBwN+YOc+fOVTxmIUT2lH6flqtC28XFhbfffpvU1FQAwsLCiIyMpEOHDpw6dSpXu7BZm6xHe1WuXNmkfTVv3tyk7Yu8e++996hbS3dG36mwU6xbt+45zxDWRHJTCDMTFATt24Ojo9qRGJ+dHUyZAiEhsGWL2tFYpdOnT9OyaUv69+/Pw8R4AIq4FmHlypXs3LMTLy+vJ57TvHlzJk+djEaje4s92X8K9+7dUzRuIUT2lH6flqfjvTI1btyYwYMHs3DhQr7++mucnJyMFZfFuXTpkv77SpUqmbSvq1evmrR9kXd2dnbMnD1Tf3vkNyP1H0wJ6ye5KYQZuXQJjh2Drl3VjsR02rWDl1+GUaNAVlAZTWJiIqNHj6ZB/QYcPHpQf//HvT4mIiqCXr16PXU/oqtXr1KzZk0+6d0bgISkh3KuthBmQun3afkqtAFKlizJgAEDWL16NefOnTNGTBZJyUJbNtkyb2+88QYvt3oZgOir0SxfvlzliIRSJDeFMCPBwVCwILz1ltqRmI5Go5vVPnEC1q5VOxqrsG3bNmpWq6k7wzdDt9lZlYpV2LlzJ4ErA597fWfmOOA3wY8C9rol5fPmzJcPYoUwA0q/T8tXob1w4UIWLVoEgIODA5GRkUYJyhJlXTru6elp0r48PDxM2r7IH41Gw/RZ0/W3x44ax6NHj1SMSChFclMIMxIUBG+8AVaw4eoztWyp21V97FhISVE7Got1+/ZtenTvwZtvvsnl65cBcLAvwPjx4zkTfobWrVvnqJ3MccDDw4OBgwYAkJKWzAS/CSaJWwiRc0q/T8tVoZ2cnMzPP/9MdHQ0a9as4cUXX6Rw4cL8/vvv1K1bl3bt2pkqTrN3MeKi/ntTz2j/+++/Jm1f5F+zZs3o1KETAHce3Gb+/PkqRySUILkphJm4dQv27rXuZeNZTZoEUVGwdKnakVgcrVbLsmXLqF6lOmvWrtHf36p5K06dPomfnx+OubjGP+s4MHr0aFwcXQFYvnwF4eHhxgtcCJFrSr9Pk+O9jKRi2YpcuXkFVydX4h/Fm7Sve/fuUbx4cZP2IfLv7Nmz1KlTF602g8LOhbl09RJFixZVOyxhQpKbIjuPHsGpU9CsmdqR2JAlS6B/f7h5E0qWVDsaZXz8MWzdCpGRIMdJ5ci5c+fo27sv+w7u09/n5uLG7Hmz6d27N3Z2uV/4+fg4EBAQwNixYwHo1qUbvwXJ6RRCqEXp92n5vkZb6I5+uHHnBgAe5U2/JOH77783eR8i/2rVqsXHvXoBEP8onmnTpqkckTA1yU2RncGDoXlz3WW0QiFBQbpNwmylyAaYMAHu3wc5Tuq5kpKSGD9+PHVr1zUosnt070HExQj69OmTpyIbnhwHBg8eTPEiuuu61wev58iRI3kPXAiRL0q/T5MZbSO4du0aFSpUAKDD2x34Y9MfKkckzMXly5epWqUaaempFCpQiIvRFylXrpzaYQkhFNSpE2zeDL176yZahYnFxuoK7Jkz4euv1Y5GWYMGQWAgXLwIsromWzt37qRv775cvJzlkr/ylViyYglvvPGGSfpcuHAhAwbortd+7ZXX2L5ru0n6EUKYF5nRNgKDM7SrmPYMbdAtQxKWoWLFigwY+BUAyanJTJwwUeWIhClJborHJSbCP//oTmFavhxs+HAO5fz5J6SmQpcuakeivDFjID0dZAXVE+7evcvHvT7mtdde0xfZ9nb2jBo1irCIMKMV2dmNA/369cOjbEUAduzewfbtUmgLoQal36dJoW0ESh7tBTBo0CCT9yGMZ/To0Tg76q6XW7JkKRERESpHJExFclM87u+/dddoT5kCFSqAr6/aEdmAoCB44QWwxVMASpWCYcNg/nyQ46QA3WZnq1atolrl6qz6cZX+/maNm3Hi5AkmT56Mk5OT0frLbhwoWLAgU2ZM1t/2GeIjx0EKoQKl36dJoW0ESh7tBbBs2TKT9yGMp2TJkowYNRyADG06Y0aPUTkiYSqSm+JxQUFQqxbUqQMTJ8L69XD4sNpRWbHERPjrL9uczc40bJhuM7SJsoLq/PnzvPryq3z88cfEPowBwNWpMD/88AP7D+2ndu3aRu/zaeNA9+7dqeVVC4Djp44THBxs9L6FEM+m9Ps0KbSNQOkZ7TfffNPkfQjjGjJkCEXdigGw7rd1HDt2TOWIhClIboqsUlNh48b/Tpj63/90RfeoUerGZdUylxDYyrFe2XFz0y0hX74cbPQ4qeTkZPz9/alTqy679+7W3//+u+8TcfE8n3/+eZ43O3uep40DdnZ2TP92uv72iGEjSEtLM0kMQojsKf0+TQptI4iKjNJ/r0ShHRYWZvI+hHEVLlwYP//x+tsjvhmhYjTCVCQ3RVa7d0NMzH81n709TJ4M27frrtsWJhAcrPs0o0YNtSNR1xdfQLly8P/HStmSkJAQ6nrXZdy4caSmpwBQoUwFNm/ezC/rfqFMmTIm7f9Z40D79u1p8UILAC5EX2DlypUmjUUIYUjp92lSaBvBhfBIABwLOFKiRAmT91e4cGGT9yGM7/PPP6d8ad3u9P/s/IedO3eqHJEwNslNkVVQEFSqBA0a/Hdfx466o75GjgS5RNPIMpcQ2PKy8UyOjrql4+vWgY0cJ3X//n36ftqXl19+mYgo3V4odhp7fHx8OHfhHG+99ZYicTxrHNBoNAaz2r4jfUlMTFQiLCEEyr9Pk0I7n7RaLdduXgOgfNkKaDQak/fp7u5u8j6E8RUqVIjJ0yfpb/sMHS6boVgZyU2RKSMDNmzQzWZnHRY0Gpg6FY4e1V2vLYxo92548MC2l41n9dFHutn90aPVjsSktFotP//8M9WreLFs+X/XXzaq35hjx48yffp0XFxcFIvneePAiy++SPu27QG4efcm3333nRJhCSFQ/n2aFNr5dPv2bVLSkgGoVrOqIn2eOXNGkX6E8fXs2ZOa1WoCcDT0CL///rvKEQljktwUmQ4ehBs3sq/5XnlFd9zXmDEgl2gaUXCwbglBw4ZqR2Ie7O1h0iTYtk13vYIVioyM5I3X3qBnz57cj70HgLOjCwsWLODQ0YPUr19f8ZhyMg5MmT4FDbpP4PzH+xMbG2vqsIQQKP8+TQrtfMq6EZoSZ2gDtGvXTpF+hPHZ29sbLBsbPnQ46enpKkYkjElyU2QKCtKdtNSiRfY/nzwZzp+HwEBFw7JeGRm6QrtLF8MlBLauUydo1ky3A58VraBKTU1lypQp1KpZm+27/vsQoUunLkREnuerr77C3t5eldhyMg7Uq1eP7t27AxCbEMvMmTNNHZYQAuXfp0mhnU9ZC20ljvYCWL58uSL9CNPo0KEDzRo3AyAiKoIff/xR5YiEsUhuCtDVM0FB0LmzblIxOw0bwocfgp+f7kQqkU/PWkJgyzKvVTh8WPeP0gr8+++/1KtVj9GjR+tXFJYtWY6NGzcStCGIcuXKqRpfTscB/wB/HOwcAJg5bSa3bt0yZVhCCJR/nyaFdj5lPUNbiR3HAXx9fRXpR5iGRqNhxuwZ+ttjRowhKSlJxYiEsUhuCoBTp+DixefvyeXvD7duwcKFysRl1YKDdUsIWrZUOxLz07o1tG1r8dcqxMTE0P/z/rRq2YpzF84BoNHYMXjwYM5fDOedd95ROUKdnI4DVapU4fMvPgcgKTUJf39/U4YlhED592lSaOeT0mdoAwQEBCjSjzCdl156ibZvtAXg+u3r/PDDDypHJIxBclOAbuLQzQ1ee+3Zj6tWDfr21S0jj4lRJDTrlLmEoFOnpy8hsHWTJ+vO1LbA46S0Wi2//vor1at4sWjxIrTolsDXr1OfI0cOM3v2bFxdXVWO8j+5GQfGjh2LY0EnABZ9v4iLFy+aKiwhBMq/T9NoVdr2OC4uDnd3d2JjY3Fzc1MjBKN4u/3bbP5rMwDXr1+nbNmyJu8zNTWVAgUKmLwfYVonTpygwf+f+1OkcFEuXY226FwQkptCp359qFsXfvrp+Y+9cQOqVoWhQ0E+p8mjkyd1L/pff+l2mRPZ+/BD2LdPtzmAk5Pa0eRIdHQ0/T/rz9ZtW/X3ORVyZsq0yXz11Vc4ODioGF32cjsOjBs3Tj+b3aN7D1b/vNpUoQlh85R+nyYz2vkU+f9naBewL0Dp0qUV6fPbb79VpB9hWvXr1+fDDz4EICb+gfx/tQLy/1BcuKCr+3J6lHPZsjB4MMyeDTdvmjQ06xUcnLMlBLbO31/3yY4FHCeVlpbGzJkz8fbyNiiyO7TvQHjEOQYNGmSWRTbkfhwYNmwY7q5FAFizZg0nT540QVRCCFD+fZoU2vmg1Wq5cu0qAOVKl8fOTpmX87333lOkH2F6AZMCsLfTLXWcPnUGt2/fVjkikR+SmyI4GBwdczexOnw4FCokM9p5FhQEHTpAwYJqR2Leqlf/71oFMz5O6tChQzSo0wAfHx+SUnX7l5QuXoagoCD++PMPPDw8VI7w2XI7Dri7uzNuwlgAtGgZOXykKcISQqD8+zQptPPhwYMHPEpOAKBq9SqK9fvvv/8q1pcwrapVq/LZ558BkJj8SK7xtXCSmyI4WFdku7jk/DlFisDIkbBoEURGmiw06xQZqVtCILuN58y4cfDoEZjhcVJxcXEMHDiQ5s2acyZcd9atBg0DBgzg/MVwuuR0mYjK8jIOfPnll5Qpobv08K+tf7F3715jhyWEQPn3aVJo54PBGdrVlDlDGzD7T3NF7owdOxbHAo4AfL/we4Od7IVlkdy0bdevw7//5nzZeFYDBug2zR43zvhxWbW8LCGwZeXKwaBB8O23ui3vzYBWqyUoKIjqVbxYsGCBfrOz2jVqc+DgAebPn29R+5fkZRxwdHRk0rT/Pmj3GeKDSlsoCWHVlH6fJoV2PmQtiJQ6Q1tYn7JlyzLUZygAaRlpjBsr77SFsEQbNoCDg24Vc245O8P48fDzzxAaauzIrFhQkO7oqtwsIbB1I0boltmbwQqqK1eu0PHtjnTr1o3b93SFv2MBR2bOnEno6VCaNm2qcoTK6dWrF9U8qwFw4MgB/vzzT5UjEkLklxTa+aDG0V6gG5iEdfHx8cHNRfeJ/U8//cTp06dVjkjkheSmbQsOhldfhWLF8vb8Tz7RXUY7Zoxx47JaN27olhDIsvHcKVpUV2wvWqQ78F0F6enpzJkzB69qNdj01yb9/e3eaEfY+TCGDRtmtpudPU9exwEHBwemzZqmv+0zZDjp6enGCksIgfLv06TQzoeshbaSM9otWrRQrC+hjCJFiuA73hfQbYYyavgolSMSeSG5abvu34edO/O2bDxTgQK6ScbNm2HPHuPFZrU2bNCdm52XJQS27uuvoUQJ3TIKhR07dozGDRozZMgQklISAShRtCS//vorm7dutvgVgvkZB7p06UKjeo0AOHchjDVr1hgrLCEEyr9Pk0I7H6KiovTfKzmjvW7dOsX6EsoZMGAApYuXAWDTX5vYv3+/yhGJ3JLctF1//AEZGdC5c/7aefddaNQIRo0CuUTzOYKC8reEwJZlXquwerVuMzkFPHz4kCFDhtCkyQucOH0C0G121v/z/kRcPM97772HRqNRJBZTys84oNFomDF7hv72KJ9RpKSkGCMsIQTKv0/TaFXabSEuLg53d3diY2MtapOLrOrWrMvp8NPYaexJTklSbJmT0oetC+UsXbqUfv36AdCyaUv2HthrFW88bIXkpu3q3Bnu3IF9+/Lf1t9/6y473rgR3nkn/+1Zpfv3oXRpmDcPvvhC7WgsU2oq1KoFNWvqPikyoT/++IPPP+3PjTvX9ffVrObN8lXLrG4lkDHGgTavtmHHrh0AzJ8/nwEDBhgjNCFsntLv02RGOx8uXbkMQJmSZRS9lmjatGnPf5CwSL1796ZKRd1RcfsP7WfLli0qRyRyQ3LTNj18CFu35m/ZeFZvvKGbqB09GuQSzafYtAnS0qBTJ7UjsVyZ1yps2gQmOk7q2rVrdOnUhY4dO+qL7IIOhZgyZQonz56wuiIbjDMOTJvxXxvjff14+PBhvtsUQij/Pk1mtPMoPj5eH/eLzV8k5N8QlSMS1uK3337jvffeA3THm5w8exI7O/lMTAhz9dtv8N57cOECVK1qnDYPHoTmzWHVKvjoI+O0aVU6d4bbt0EuscmfjAxo0kS3lDwkBIy0gio9PZ0ffviB4d+M4FFSgv7+Nq3bsHjZYqpUqWKUfqzZu93eZX3QegD8/f3x9fVVOSIhRG7Ju/c8yroRWtUaRnpnlUMBZnAkhzCdbt26Ub9OfQDOhJ/hl19+UTkikVOSm7YpOBjq1zdekQ3QrJluhnzcOEhONl67ViEhQbeEQHYbzz87O5gyRXfNg5GOkzpx4gRNGzdjwIAB+iK7mHtxVq9ezbYd26y+yDbWODB5ymTsNPYATJ00jbt37xqlXSFsmdLv06TQzqOsZ2gruREaQJ8+fRTtTyhLo9Ewc/ZM/e2R34yUzVAshOSm7UlJ0a28Nday8awmTYLLl2HxYuO3bdG2bIGkJNO86LbozTehdWvdDnz5uFYhISEBHx8fGjVszLETR/X3f9rnUyIunqdHjx42seeIscYBLy8vPv1U11ZC0kOmTJlilHaFsGVKv0+TQjuP1DpDG5Drdm3A66+/TuuXWgNw+fplli1bpm5AIkckN23Pjh0QF2eayVVvb+jdG/z9IT7e+O1brKAgqFfPuEsIbJlGo5vVPn0a8nic1F9//UXNajWZOXMmGVpdsV69cnX27NnD0mVLKWZDO8MbcxwY7zeegg6FAJg/d4HiZwALYW2Ufp8mhXYeZZ3RVvrMx9q1ayvan1DH9FnT9d+PGz2ehISEZzxamAPJTdsTFKSr9+rUMU3748frCvk5c0zTvsUx5RICW9a8ue6697Fjda9xDt28eZP333uf9u3bc/XmVQAK2BfE39+f0+dO89JLL5koYPNlzHGgfPnyDBryNQCp6Sn4jfczWttC2CKl36dJoZ1Hl6LVm9GOjY1VtD+hjhdeeIEunXRvJu/G3GHevHkqRySeR3LTtqSnw4YNutlsU62IrVgRvvoKZszQHR9m80y5hMDWBQTk+FqFjIwMFi1aRPUqXqz77b9zaV958RVOnz2Fr68vBQsWNGW0ZsvY48DIkSNxdSoMwIrAQM6dO2fU9oWwJUq/T5NCO48uhEcCoEGDh4eHon3HyxpCmzF56mQ0Gl2aTvafwv3791WOSDyL5KZt2b9fV/yauuYbNUr3X7lEk/+WENStq3Yk1qd2bejVS3etwjOOkzp9+jQtmrakf//+PEzU/c0r4lqElStXsnPPTry8vJSK2CwZexwoVqwYo8fq/ghotRmMHjnaqO0LYUuUfp8mhXYeRV+KBqBksVKKf2rr7e2taH9CPTVr1uST3r0BeJgYL5uhmDnJTdsSFARly0LTpqbtp0QJ8PGBhQt1E442Kz0dfv9dt2zcBjbVUoWfH8TEZHutQmJiIqNGjaJB/QYcOnpQf//HvT4mIiqCXr162cRmZ89jinHg66+/pkTRkgAE/x7M4cOHjd6HELZA6fdpUmjnQWJiIg/idDOLnp7KLhsH+PvvvxXvU6jHb4IfBex1H+bMmzOfq1evqhyReBrJTduh1eoK7S5ddCckmdqQIeDurquDbNb+/bqzs2XZuOlUqgRffqm7ViHLcVLbtm2jZrWaTJ06lfQM3WZnVSpWYceOHQSuDKREiRJqRWx2TDEOuLi4MHHSBP1tn6E+aLVao/cjhLVT+n2aFNp5kHXH8Wo1qine/6effqp4n0I9Hh4eDBw0AICUtGQm+E14zjOEWiQ3bcfx47rZZaVqPldX3T5VK1fC2bPK9Gl2MpcQNGumdiTWbfRoyMiAqVO5ffs2Pbr34M033+Tydd1yCgf7AowfP54z4Wd49dVXVQ7W/JhqHOjbty+Vyusmd3bv3c0///xjkn6EsGZKv0+TQjsPDI72UmFGe+7cuYr3KdQ1evRoXBxdAVi+fAXh4eEqRySyI7lpO4KCoGhRePll5fr87DPd5mi+vsr1aTa0WggO1u2MrcQSAltWsiQZQ4eybO5cqntWY83a/478atW8FadOn8TPzw9HR0cVgzRfphoHChQowJQZ/10+5jPEh4yMDJP0JYS1Uvp9moxWeZC10Fb6aC8AX5t8l2XbihcvzijfkQBkaNMZM2qMyhGJ7Ehu2o6gIOjYEQoUUK7PQoVg4kRdvXnw4PMfb1WOH4dLl2TZuALCwsJo/c8/9E1LI+7/Nztzc3Fj2bJl7Nm3h5o1a6ocoXkz5TjwwQcfULuG7niiE2dOsH79epP1JYQ1Uvp9mhTaeZD1DG2lj/YCCAgIULxPob5BgwZRvIjuOrj1wes5cuSIyhGJx0lu2oZz5yAsTJ2ar0cP3ZndI0fqJnltRnCwbgnBK6+oHYnVSkpKYvz48dSvX5+Q/fv19/fo3oOIixH06dMHO1lN8FymHAfs7OyYMXuG/vaIYSNITU01WX9CWBul36fJX8w8UPMMbYAvvvhC8T6F+lxdXZkQ4Ke/PeKbEeoFI7IluWkbgoPBxQXeeEP5vu3tYfJk2LULtm1Tvn/VBAXBO+8ou4TAhuzcuZP69eszceLELIVbVaZO/ZvVP6+mVKlSqsZnSUw9DrRr145WzVsBEHUlisDAQJP2J4Q1Ufp9mhTaeXDh/AX992oU2r/++qvifQrz0K9fPzzK6s5t37F7B9u3b1c5IpGV5KZtCAqCt94CJyd1+u/QAVq10p2vbROXaIaH63aAk2XjRnf37l169+7Na6+9xvnz5wFwcHCgVavRFClyiqFDVfg0ycKZehzQaDTM+Pa/WW3fUWNJTEw0aZ9CWAul36dJoZ0H0VG6Ge2ibsVwUuGdVosWLRTvU5iHggULGm6GMnS4HPFhRiQ3rd/ly3DkiLo1n0YDU6fCsWPw22/qxaGY4GBwdoY331Q7Equh1WpZuXIlNWvWZOXKlfr7W7ZsSWhoKDExk+jY0UkWEOSBEuNAixYteOftdwC4fe8WCxYsMHmfQlgDpd+nSaGdSykpKdy5fxsAz0qeqsRw5coVVfoV5qF79+7U8qoFwPGTxwgODlY5IpFJctP6bdigW73cvr26cbz4Irz9tm4Hcqu/RFPtJQRW5vz587Rp04bevXtz7949ANzd3fnhhx8ICQmhQIHanDkjCwjySqlxYMq0KWjQABAwIYCYmBhF+hXCkin9Pk0K7Vy6cuUKWnQziNVqVFUlBo1Go0q/wjzY2dkx/dvp+tsjho0gLS1NxYhEJslN6xccDK+/Du7uakeiu1b7wgVYsULtSEzoyhU4fFiqPiNITk7G39+fevXqsXPnTv39H374IefOnePzzz/Hzs5OFhDkk1LjQO3atfnoo48AiEuIY/r06c95hhBC6fdpUmjnktpnaANUqFBBlX6F+Wjfvj0tXtAtf7kQfYFVq1apHJEAyU1rd+cO7NljPjVfvXq6XcgnTIBHj9SOxkQylxC8/bbakVi0kJAQGjZsyLhx40hOTgZ0x5Nu3ryZNWvWUKZMGf1jZQFB/ig5DkyYOAEHe936/m9nzubGjRuK9S2EJVL6fZoU2rmU9WgvNc7QBjhw4IAq/QrzodFoDGa1x4zwlc1QzIDkpnXbuFH3344d1Y0jq4kT4fZtmD9f7UhMJCgI2rQxjyUEFuj+/fv069ePl19+mbCwMADs7e0ZPnw4p0+f5q233jJ4/NWrcOiQ+XyYZImUHAc8PT358ivdLsrJqUn4T/RXrG8hLJHS79Ok0M4lgxltFXYcB3j33XdV6VeYlxdffJH2bXUXit68e4PvvvtO5YiE5KZ1Cw7WXRttTicdVakCn3+u2xztwQO1ozEyc1tCYEG0Wi2rV6+mZs2aLF26VH9/06ZNOXr0KNOmTcPFxeWJ58kCgvxTehwYM2YMToWcAVi8eDGRkZGK9i+EJVE6P6XQzqWshbZaM9o//PCDKv0K8zNl+n+bofj7+RMbG6tyRLZNctN6xcXpzq02x5rP1xdSUsDqLtH84w/Qas1rCYEFiIyMpF27dvzvf//jzp07ABQuXJgFCxawf/9+6tev/9TnygKC/FN6HChVqhTDR/oAkJ6RzphRYxTtXwhLonR+arQqnQ0UFxeHu7s7sbGxuLm5qRFCnrzU8iX2/rsX0P0OhQsXVjkiYet69ujJz2t+BsDX1xd/f1k6JoSxrV0L3btDdDSotJjpmXx94dtvdZujlSundjRG0qGD7hOOPXvUjsQipKamMnPmTCZOnEhSUpL+/m7dujFv3jzKPecfxt27UKYMfP899Otn6miFMcXFxVGpgicx8bplLcePH6dBgwbqBiWEkBnt3IqKjAagsLObakV2QECAKv0K8xQwKQAHOwcAZk6bya1bt1SOyHZJblqv4GBo3Ng8i2wAHx/d5lVW8zmbOS8hMEP79++nUaNGjB49Wl9ke3h4sHHjRn777bfnFtmgW0CQkSELCPJLjXHAzc2N8RPH6W+P8BmheAxCWAKl81MK7VxIS0vjxh3djo6VPCqqFsfgwYNV61uYn8qVK9P/y/4AJKUmyYy2iiQ3rVNSEvz5J3TponYkT+fuDqNGwZIlEBGhdjRG8NdfuvXwnTurHYlZi4mJ4YsvvqBVq1acPn0a0B0BOWTIEM6ePcs777yT47aCgnR7EJQubapobYNa40D//v0pV6o8AH//8ze7d+9WJQ4hzJnS+SmFdi5cv36dDG06AFVVOkMbYMmSJar1LcyTr68vjgV1Z7Es+n4RFy9eVDki2yS5aZ22bYOEBPOfXP3qK93S33Hjnv9YsxcUBI0agUp7oZg7rVbLr7/+ire3t8E1h40bN+bw4cN8++23uLq65ri9+HhZQGAsao0Djo6OTJr232ydz9DhqHR1qBBmS+n8lEI7F7JuhFa5SmXV4nj8OA4hSpcujc+IbwBIy0hjrO9YlSOyTZKb1ik4GGrWBG9vtSN5Nicn8PPTXU9+/Lja0eRDUhJs3ixV31NER0fToUMHPvjgA27evAmAq6src+bM4cCBAzRq1CjXbf71FyQnywICY1BzHPjoo4/wquIFwOFjh/jjjz9Ui0UIc6R0fkqhnQtZz9BW62gvgFOnTqnWtzBfw4YNw921CABr1qzh5MmT6gZkgyQ3rU9aGvz+u3kvG8+qd2+oUQNGj1Y7knz45x94+NByXnSFpKWlMXPmTGrXrs3mzZv193fs2JGzZ88yaNAgHBwc8tS2LCAwHjXHAXt7e6bNmqa/PXzocNLT01WLRwhzo3R+SqGdC+ZwhjZAkSJFVOtbmC93d3fGTdDNZGvRMmr4KJUjsj2Sm9Znzx64f99yJlcdHGDSJNiyBXbtUjuaPAoK0n1aYO5LCBR06NAhmjRpgo+PD48ePQKgfPnyBAUF8fvvv+Ph4ZHnti1hDwJLovY40KlTJ15o+AIA4ZHhrF69WtV4hDAnSuenFNq5kHVGW60ztAE5Ukw81ZdffkmZEmUB2Lx1M3v37lU5ItsiuWl9goPBw0O347il6NoVmjTRbY5mcZdopqXBxo26X0KjUTsa1cXFxTFw4ECaN2/OiRMnANBoNAwcOJCzZ8/SxQjV8fbtugUElvJhkrlTexzQaDTMmD1Df3v08NEkJyerGJEQ5kPp/JRCOxeiLkTpv1dzRjssLEy1voV5e2IzlCE+shmKgiQ3rUtGhq7Q7tLFsmo+jQamToUDB3Q1q0UJCYF792x+elWr1RIUFIS3tzcLFizQ/x2vX78+Bw4cYN68ebi5uRmlL1lAYFzmMA688sorvNHmDQCu3brGokWLVI5ICPOgdH5qtCq9C4+Li8Pd3Z3Y2FijDRam5lm+MpeuR+NcyIWHifFoVHrndfXqVSpUqKBK38L8paWl4V3dmwvRFwDYtGkTb7/9tspR2QbJTety6BA0a6Zbgv3KK2pHk3tvvAHXr8PJk2Bvr3Y0OTRwIGzYAJcvW9anG0Z05coVBgwYwMYsn5I4OzszceLEfF2HnZ20NChbFvr2hSlTjNasTTOXceD48eP6jfGKuhXj0tVo1WfbhVCb0vkpM9o5lJGRwfVb1wDwKF9BtSIbIDAwULW+hflzcHAw2AzFZ4gPGRkZKkZkOyQ3rUtQEJQsqTtb2BJNngxnz8KPP6odSQ5lLiGw0WXjaWlpzJkzB29vb4Miu3379pw5c4Zhw4YZtcgG2LsX7t6VZePGZC7jQMOGDfngvQ8AeBB3n9mzZ6sckRDqUzo/ZUY7h27cuEG5cuUAaN+uPX/+9afKEQnxdFqtlsYNmnD85DEAfvzxR/73v/+pHJUQlkOr1S2nffllWLpU7Wjy7r33dDPz4eHg6Kh2NM+RuYRg505o3VrtaBR19OhRPvvsM44dO6a/r0yZMsybN493333XZB/uf/217rMNG15AYNUuXLhAzRo1Sc9Ix7mQC9FXoihZsqTaYQlhM2RGO4eyboRWuap6Z2gDBAQEPP9BwqZpNBpmZtkMZZTPaFJSUlSMyDZIblqPs2chIsLyZ/oCAuDaNfjhB7UjyYGgIChRwnKXEOTBw4cPGTJkCE2bNtUX2RqNhi+++IKwsDDee+89kxXZWq1l7kFg7sxpHKhWrRp9+/YF4FFyApMnT1Y5IiHUpXR+yox2Dq1du5bu3bsDMH36dHx8fFSLJS0tzejLx4R1avNqG3bs2gHA/PnzGTBggMoRWTfJTevh7w8zZsCdO1CokNrR5E+/frrLniMjwWyH28wlBC+9BMuWqR2NIv744w+++uorrly5or+vTp06LF68mBYtWpi8/8OHoWlTm1xAYFLmNg5cv36dKp5VSE5NxsG+ABciI1Td0FcINSmdnzKjnUNZz9BW82gvgJkzZ6rav7Ac02dO138/3tePhw8fqhiN9ZPctB5BQfD225ZfZAOMHw/x8fDtt2pH8gzWsoQgB65du0a3bt3o2LGjvsh2dHRkypQpHDt2TJEiG2xyAYEizG0cKFeuHIOHDgYgLT2V8ePGqxuQECpSOj+l0M6hrEvH1f4k8MMPP1S1f2E5GjduzLvd3gXgfuw95syZo25AVk5y0zpERUFoqPXUfBUq6DbznjULbt9WO5qnCAqCwoWhTRu1IzGZ9PR0FixYgLe3N0FBQfr733zzTc6cOcPIkSMpUKCAIrFotbqXvGNHMKPJV6tgjuPAiBEjKOysW86y6scfOXPmjMoRCaEOpfNTCu0cirpoHmdoA+zdu1fV/oVlmTR5EnYa3dk+UydN4+7duypHZL0kN61DcLBuJvutt9SOxHhG/h979x0eRbXGcfy7KSTU0KSD9C6gCAqKigioSFEsyEVFBQURpJgQQqgJBAhNRYoKgooFdUMTEBAUBBEEQUpoofeehEBCyt4/RpYEA6TszpnZeT/P43Oza7Lzk8ubs++eM+cEg5eXthO5IUVFwdNPm2DHtpzZtm0bTZs2pXfv3sTHxwNQokQJ5s6dy7Jly6hcubKueaKjYe9ez/kwyUiMOA4UKVKEwUNDAHA40ggJDlGcSAg19K5PabSzKGZPDAB5fPwoUaKE0iyqG31hLtWrV+fNN98AICHxMhFyWKrbSG16BrsdWrWCAgVUJ3GdYsUgKAimTYN0C7SM4eBB+Ptvj+z6EhISCAoKomHDhmzcuNH5fLdu3YiOjqZz585KjguNitL+fnvwAgJljDoO9O7dm7uKau9fFy5eyIYNGxQnEkJ/etenNNpZ4HA4OHbiGABlS5VVeoY2aMvPhMiOYcOHkcdHu9n0ow+mZNh8R7iO1Kb5nToF69d7ZM9H375QpAgMH646yU3mz/e8JQTA0qVLqVu3LpGRkc7fDbVq1WLNmjV8+umnFC1aVFm263sQeOgCAqWMOg7ky5ePsNEjnY8D+weiaD9kIZTRuz6l0c6C8+fPk5icCEDVGlUUp9HO9BYiO8qWLct7/foAkJx6jeHDhqsN5KGkNs1vwQJtiXXbtqqTuF7+/DB0KHzxBezYoTpNOnY7tGyp3aPtAU6ePEmnTp14+umnnfu7+Pn5ERYWxtatW2nWrJnSfIcOwZYtnvlhkhEYeRx44403qFReO6L29z9+Z/ny5YoTCaEvvetTGu0sMNIZ2gCNGzdWHUGYUHBwMAXyam9kP589m927dytO5HmkNs3PbodHH9WWWnuibt2gUiUIDVWd5F+nT8O6dR7R9aWlpTF9+nRq1arFd99953z+8ccf559//iE0NJQ8efIoTKjx0AUEhmHkccDX15cx48c4Hwf2CyQtLU1hIiH0pXd9SqOdBemP9jLCvTc//vij6gjChIoWLUrIkEGAbIbiLlKb5nbpEqxa5RE93y3lyaOdEb5gAfzxh+o0eMwSgh07dtCsWTN69uxJbGwsAMWKFWPOnDmsXLmS6tWrK054g4ctIDAco48Dzz//PPXq1Adge/R2vv/+e8WJhNCP3vVpcyi6QSMuLo6AgABiY2MpVKiQighZNmHCBN5//30A5s6dS+fOnZXmSUpKws8TDncVuktISKBi+Uqcu3gWgI0bN9KoUSPFqTyH1Ka5ffUVvPIKHDsGZcuqTuM+aWlw771QuDD8+iso3XbkySfh2jXtEw4Tunr1KmFhYURGRpKSkuJ8vmvXrkRGRlK8eHGF6f7r9GkoXRpmzoTXX1edxjOZYRxYvnw5rVu3BqBiuYrsPbBXt6PlhFBJ7/qUGe0sMNqMdmRkpOoIwqTy58/PyFEjnI+DBgQpTON5pDbNLSoKHnjAs5ts0CaQIyJgzRr4+WeFQS5dgl9+Me0SghUrVlC3bl0iIiKcTXb16tVZtWoVn3/+ueGabICFC7UPVky+gMDQzDAOtGzZkkceegSAQ8cOMWvWLMWJhNCH3vUpM9pZ0K5tOxYtXgTAsWPHKOvp78KER0tOTqZapWocPq59gLR8+XJatmypOJUQal25AsWLaztyB1ng8yeHQ7sXPS5O2xjLS8XH7nPnQpcucPQolCunIEDOnDlzhn79+vH11187n8uTJw+DBg0iODgYfwNv5f3UU5CUZNoFBMKF/vzzTx588EEA7ipSgkPHDpIvXz7FqYTwLDKjnQX7d+8HwMfbh9KlSytOA+Hh4aojCBPz9fUlIvLGWdqB/WUzFFeR2jSvn3+Gq1fh2WdVJ9GHzabNam/bBun27dKX3Q6NG5umyU5LS2PmzJnUrFkzQ5P9yCOPsG3bNoYPH27oJjs21tQLCEzDLOPAAw88QPu27QE4e/EMH330keJEQrif3vUpM9pZUDBfQS5fvUz5UuU5cvKI6jicOHGCMmXKqI4hTCwtLY16teuxc89OAObNm8cLL7ygOJX5SW2a16uvwt9/w/btqpPoq1072LkToqO1jdJ0c30JwbBhMHCgjhfOmejoaN5++23Wrl3rfK5IkSKMHz+erl274qVkSUD2fP01/O9/pltAYDpmGgd27dpF3br34HCkUTBfQQ4fO0yRIkVUxxLCbfSuT+OPDIpdunSJy1cvA1C5amXFaTRLly5VHUGYnJeXF5GTbtynMnBAMMnJyQoTeQapTXO6dg0WLbLmTN+oUXDwoLY5lq6WLzfFEoLExESGDRtG/fr1MzTZXbp0Yffu3bzxxhumaLLBdAsITMtM40Dt2rV57dVXAYi/Es+YMWPu8BNCmJve9WmO0UGh9BuhVa5mjEa7Xr16qiMID/Dkk0/ycJOHATh49ACzZ89WG8gDSG2a06+/avtyGbznc4t77tFukx45EhISdLyw3Q516oCBjr262erVq6lfvz4jR450fhBZpUoVli9fzpdffkmJEiUUJ8y6q1dh6VJrfpikN7ONAyNGjsDHW9txfPLEDzh+/LjiREK4j971KY32HaRvtCtWrKguSDoXLlxQHUF4AJvNxrgJ45yPQwcN4erVqwoTmZ/UpjlFRUGlSlC/vuokaowYAefPw4cf6nTB5GRDLyE4d+4cXbt25fHHH2fv3r0A+Pj4EBISwvbt2025eeTy5dpqfSt+mKQ3s40DFSpU4N3evQC4lpLEyBEjFScSwn30rk9ptO/g0KFDzq+NcLQXaGchC+EKTZo0oW0b7ZyXM+dPM2XKFMWJzE1q03xSU7VG+7nnFJ8nrVClStCjB4wdC7q8BzHoEgKHw8GcOXOoWbMmc+bMcT7ftGlTtm7dyqhRo8ibN6/ChDlnggUEHsOM40BISAj5/PMD8NlnM9m3b5/iREK4h971KY32HRjtDG2AmjVrqo4gPEjE2AhsaB1G+IhwLl26pDaQiUltms+GDXD6tOF6Pt0NHgwpKVqz7XZ2O1SsCA0a6HCxrNm7dy8tWrSga9eunD9/HoCAgACmT5/O2rVrqVOnjuKEOZecrJ2fbfW/43ox4zhw1113MXCQdq5hmiOVwSGDFScSwj30rk9ptO/g4MGDzq+NsnR85cqVqiMID1KnTh1eeeUVAOIS4oiMjLzDT4hbkdo0n6goKFUKmjRRnUStkiVhwABt+bhbb9FMS4P58w2zhCApKYmwsDDq1avH6tWrnc936tSJ3bt38/bbb5tms7Nb+e03bQGBQVfqexyzjgP9+vWjSKGiAHz/w/ds2bJFcSIhXE/v+pTjve6gfu36/BP9D142LxKTEvH19VUdibi4OEP/mQnzOXToENWqViclNRl/X38OHD5giDPjzUZq01wcDqhSBVq3hmnTVKdRLy4OKleGjh1hxgw3XWT9enjoIVi7Fh5+2E0XyZq1a9fy1ltvsXv3budzFStWZOrUqTz11FMKk7nWO+9oG6EdOGCIzzY8npnHgY8++og+ffoA8ETzJ1ixaoXiREK4lt71ae6PaXVw5OhRAEoWK2WIJhvgQ912rBFWUbFiRd7p1ROAxOREwsLCFCcyJ6lNc9m2TTvaSpbUagoV0paQz5wJ/+4B5np2uzZ9rnAJwYULF+jWrRuPPPKIs8n29vYmKCiIHTt2eFSTfX0BwbPPSpOtFzOPA2+99RblSmnnv61cvTLDKg8hPIHe9Skz2reRkJBAgQIFAGjSuAnr/1yvOJEQ7nPmzBkqVqjE1aQreHt5s2fvHqpUqaI6lhBuM2yYtlT69GnIk0d1GmNITNQ2zGrSBL77zsUv7nBA1arQsiVMn+7iF8/K5R18/fXX9OvXj7Nnzzqfb9y4MZ988gn1PXDb+T/+gKZNDbGAQJjEl19+yav/nq3dsMH9bNqyEZt8SiNEjsiM9m2k3witSnXjNBzh4eGqIwgPVKJECYKCAwFITUsldHCo4kTmI7VpLnY7PPOMNNnp+ftrx33NmwebN7v4xf/5R1u/rGAJQUxMDE8++SRdunRxNtkFCxZkypQprF+/3iObbDDEAgLLMfs40LlzZ2pWrQXA5q1/sWDBAsWJhHAdvetTGu3bSH+0l1E2QgN45513VEcQHqp///4ULlgEgG+/+5atW7eqDWQyUpvmsW8f7NghG0Rl5pVXoFYtGDTIxS9st0NAADRv7uIXvrVr164RERFB3bp1Wb58ufP5jh07Eh0dTa9evfD29tYtj54cDm2zv/btwUP/Ew3J7OOAt7c34ybeOH4gqH8QqampChMJ4Tp616c02rdhxKO9AL755hvVEYSHKlSoEMNGDnU+Hhg4UGEa85HaNI+oKMibV9sITWTk4wOjRsGKFfDLLy584agoaNtWtyUE69evp2HDhoSEhJCYmAhA+fLlWbhwIT/88ANly5bVJYcq27dDTIx8mKQ3TxgHnnnmGR5o+AAA+w7u48svv1ScSAjX0Ls+pdG+jfSNtpFmtJs1a6Y6gvBgPXr0oEwJ7Q3o8pXL+e233xQnMg+pTfOw2+HJJyFfPtVJjKlDB2jcWJvVdslOLvv2aZ2fDsvGL126RM+ePXnooYfYsWMHAF5eXvTr149du3bRtm1bt2cwAgULCASeMQ7YbDYiJ9046jMkaLDzwyohzEzv+pRG+zYOHTzk/NpIM9rpl7QL4Wr+/v6MGnvjHpbA/kEo2jPRdKQ2zeH4cfjzT5npux2bDcaMgU2btInoXNNhCYHD4WDevHnUqlWL6ek2W2vYsCGbNm1i4sSJzg1OrSAqSvYgUMFTxoFmzZrRuqVWryfPnmCanIEoPIDe9SmN9m3E7Ilxfl2+fHmFSTLy1PvJhHG88sorVK9cHYBNWzayaNEixYnMQWrTHObP15ZHP/OM6iTG1rw5tGqlHfmVkpLLF4uK0pYQ5M/vkmw3O3ToEM888wwvvfQSp06dAqBAgQJMnjyZDRs2cN9997nluka1f7+295x8mKQ/TxoHxkbeuFd7xNCRxMXFKUwjRO7pXZ/SaN/GwX8/9She+C78/f3VhkmndOnSqiMID6dthjLO+Vg2Q8kaqU1zsNvh8cehcGHVSYxv9GjYvRu++CIXL3L8OGzY4JZl48nJyURGRlK7dm2WLFnifL5du3bs2rWL9957Dx8fH5df1+hkDwJ1PGkcqF+/Pp1e6gRA7OVLTJgwQXEiIXJH7/qURvsWEhMTOR97DoCKBlo2DrBp0ybVEYQFtGvXjkb3NgJgT8we5s6dqziR8UltGt/58/DbbzLTl1UNG8KLL2pnjuf4Fk03LSHYuHEjjRo1IigoiKtXrwJQtmxZ7HY7CxYsMNRKNL1FRWlNtpsWEIjb8LRxIHxUON5e2izguDGRnDlzRnEiIXJO7/qURvsWjh496vy6as2qCpP813PyDlHo4L+boYSQlJSkMJHxSW0a36JFkJamHXkksiYsDE6ehKlTc/gCUVHaOvQiRVySJy4ujt69e/Pggw+ybds2QPt91bt3b3bt2sWzCs7pNpITJ+CPP+TDJFU8bRyoUqUKb739FgCJ166a/pxwYW1616c02reQ/mb5uysaa0Z7xowZqiMIi3j00Udp+XhLAI6fPi5/9+5A/nyMz26Hpk2hVCnVScyjenXo1k1bRh4bm80fPn8efv3VJV2fw+HAbrdTq1YtpkyZ4tyksX79+mzYsIEPP/yQQoUK5fo6Zid7EKjliePA0KFD8ffVbqGc9vE0j9nwTViP3vUpjfYtGPUMbYDQ0FDVEYSFjB1/YzOU4UNGEB8frzCNsUltGtvly7B8ucz05cTQoZCQANm+RdNFSwiOHDlChw4d6NixIydOnAAgX758jB8/nr/++ovGjRvn6vU9iYsXEIhs8sRxoFSpUgwIGgBASloKQ4cMVZxIiJzRuz6l0b6F9J/WGekMbUCW7Qhd3Xvvvbz4/IsAXIy7wKRJkxQnMi6pTWNbuhSSknQ5ytnjlCkD770HEyfC6dPZ+MGoKGjSBHK4AU1KSgqTJ0+mdu3aLFy40Pn8008/zc6dOxkwYIAlNzu7lQsXYPVq+TBJJU8dBwIDAymUPwCAr776ynlGvRBmond9SqN9C0ae0e7fv7/qCMJiRkWMcm6GMnb0OM6ePas4kTFJbRqb3Q4NGkClSqqTmNPAgeDrC6NGZfEHLl+Gn3/Ocde3efNmHnjgAfr160dCQgKgzazNmzePxYsXG+5DcCOQPQjU89RxICAggCHDtdlABw4GBQ1SnEiI7NO7PqXRvoWYvTfO0DZaoz1t2jTVEYTFVK1alW7dugFwJSmB0aNHK05kTFKbxpWUBD/9JDN9uVGkiNZsT58OBw9m4QeWLcvREoLLly/Tr18/GjduzJYtWwBts7OePXsSHR3NCy+8gM1my8F/gefL5QIC4QKePA706tWLksW0DS4WL13M+vXrFScSInv0rk9ptG/hYMwhAAoXKEJ+g52P8YzscCIUGDpsKH6+fgBM+ehjjhw5ojiR8UhtGtcvv0B8vDTaudWnDxQvrt2zfUd2O9SvD5UrZ/n1Fy5cSO3atZk8eTJpaWkA1K1bl3Xr1jF16lQKy+Hnt5SQkKsFBMJFPHkcyJs3L+FjwpyPA/sFOjclFMIM9K5PabQzkZyczJkL2k1oFQx4Duf140yE0FOZMmXo278vACmpybIZSiakNo0rKgqqVYPatVUnMbd8+bQme+5c+Oef23xjUhIsXpzlru/48eN07NiR9u3bO4/X9Pf3JyIigi1bttCkSRMXpPdsy5ZpZ53LHgRqefo40LVrVypX0D48W79xPcuWLVOcSIis07s+pdHOxLFjx0hzaJ+kV61lrDO0AYoVK6Y6grCogQMHUjBfQQC++PJLdu7cqTiRsUhtGlNqqnbk0XPPgaw4zr0339QmqQcPvs03rVqVpSUEqampTJkyhVq1amG3253Pt2rVip07dxIcHIyvr6+Lknu2HCwgEG7g6eOAj48PYyfcOI0ksF+gc/WJEEand31Ko52J9BuhGXGzlbx586qOICyqSJEiDB6qvbt2ONIICQ5RnMhYpDaN6fff4dw5melzFV9fCA/XJqx///0W32S3Q9WqUKfOLV9n27ZtNG3alN69ezuPDSxRogRz585l2bJlVJaOMcuuXcvWAgLhRlYYBzp27Ej9ug0A2LlnJ99++63aQEJkkd71KY12JozeaO/du1d1BGFhvXv3pkTRkgAsXLyQDRs2KE5kHFKbxhQVBWXLQqNGqpN4jhdf1HZwDw6G/9yimZoKCxbccglBQkICQUFBNGzYkI0bNzqf79atG9HR0XTu3Fk2O8umVasgLk4+TDICK4wDNpuN8ZMinY8HBQ7i2rVrChMJkTV616c02plIf4a20XYcB2jRooXqCMLC8uXLR1jESOfjwP6yGcp1UpvG43Bok6vPPgteMuK5jJcXRETAunWwZMlN/3LdOjh7NtPp1SVLllCnTh0iIyNJTU0FoFatWqxZs4ZPP/2UokWL6pDe81xfQFC3ruokwirjwBNPPMFjzR4D4MiJI3z22WdqAwmRBXrXp7ztyISRz9AGmDNnjuoIwuJef/11KpXXDiP+/Y/fWb58ueJExiC1aTybN8PRozLT5w6tW8Ojj8KgQdrZzU52O5Qpk2EJwcmTJ3nppZdo06aNc4z18/MjLCyMrVu30qxZM53Tew7Zg8BYrDQOjJswzvn10MHDnOfdC2FUetenzaFoKiouLo6AgABiY2MpVKiQigi39OjDj7Jm3RoALl68KMeJCJGJefPm8dJLLwFwT6172LpjK14yZSgMZvBg7dzn06fBx0d1Gs+zYYN2bvNXX8H//oe2hKBiRWjbFqZMIS0tjU8++YTg4GBiY2OdP/f4448zbdo0qlevriy7p1i7Fh55BP74Ax58UHUaYTXPdXiOqAVRAIwaNYqQENm7RYjr5F1xJg7GHASgQN4Chmyyw8PDVUcQgueff556tesBsD16O99//73iROpJbRqP3Q7t20uT7S4PPggdOsCQIdqGXGzZAkeOwLPPsmPHDpo1a0bPnj2dTXaxYsWYM2cOK1eulCbbRa4vIGjcWHUSAdYbB0aPGY3NprUTo8MiOH/+vOJEQtya3vUpM9o3SU1Nxd/Pn5TUFGpXq83OvcY7vig1NRVvb2/VMYRg+fLltG7dGoCK5Sqy98BeSx/FI7VpLNHR2rnZCxdqE6zCPXbuhHr14MMPodeJwVydNo2w7t2JnDiRlJQU5/d17dqVyMhIihcvrjCtZ7m+gOCZZ+Djj1WnEWDNcaDbm92YOWsmAO+//z6RkZF3+Akh1NC7PmVG+yYnT54kJVV7Y1ClRhXFaTI3bty4O3+TEDpo2bIljzz0CACHjh1i1qxZihOpJbVpLFFRkD8/tGypOolnq1MHXn0VwsJg4Zx51E1JIWLcOGeTXb16dVatWsXnn38uTbaL/f23toBAjvUyDiuOA8NHDMfXOw8AH07+iGPHjilOJETm9K5PabRvkuFor0oV1QW5jc6dO6uOIASgHfGRfjOUIYOGcuXKFYWJ1JLaNBa7Hdq0AX9/1Uk837vvnuHsmc60P76fA/+eiZ0nTx6GDRvGtm3baN68ueKEnsluh6JFtXu0hTFYcRwoV64cffr2BuBaShIjho9QnEiIzOldn9Jo3yT90V5GPEMbYM2aNaojCOH0wAMP0P6Z9gCcvXiGjz76SHEidaQ2jePwYW3Hcdlt3L3S0tKYOXMmLVvWJM3xjfP5Rx55hG3btjF8+HD85ZMOt7HbtdsiLHzHjuFYdRwYNGgQ+f0LADBr1ufs2bNHcSIh/kvv+pRG+yZGP9oLoFKlSqojCJHB6LE3NkMZNXIUFy9eVJxIDalN45g/H/LkgaefVp3Ec0VHR/PYY4/RrVu3dDVfhNatZ7J69Wpq1qypNJ+n271b24dAlo0bi1XHgWLFijEoNBiANEcqgwcNVpxIiP/Suz6l0b5JhqXjBp3RTr+5jBBGULt2bV579VUA4q/EM2bMGMWJ1JDaNA67Xbs320B7bXqMxMREhg4dSv369Vm7dq3z+S7A+23s/PrrGxw/Lm8v3E32IDAmK48D7733HsUKa/sw/Bj1I3/99ZfiREJkpHd9ykh4kwP7Dzi/NuqM9qlTp1RHEOI/RowcgY+3tn5x8sQPOH78uOJE+pPaNIYzZ+D332XZuDusWrWKevXqERYWRnJyMgBVqlRhec+efJknD0Nn3EfBgjBCbtF0O7sdnnoK8uZVnUSkZ+VxoECBAowIH+58PPD9gerCCJEJvetTGu2bxOzVGm1/X3+KFSumOE3mGjZsqDqCEP9RoUIF3u3dC9A2Qxk5YqTiRPqT2jSGhQu1/23XTm0OT3Lu3Dm6du1KixYt2LdvHwA+Pj6EhISwfft2Wu7aBU88QcGyhQgNhc8/15Y2C/c4cgT++kuWjRuR1ceB7t27U750BQBW/baKX375RXEiIW7Quz6l0U7H4XBw/JQ2C1e+THlsNpviRJmbP3++6ghCZGrw4MHk888PwGefzXS+IbcKqU1jsNu1XZjvukt1EvNzOBzMmTOHmjVrMmfOHOfzTZs2ZevWrYwaNYq88fGwdq1zCUGPHlCuHISGqkrt+a7vQdCmjeok4mZWHwfy5MlDRORo5+P3+76Pw+FQmEiIG/SuT2m00zlz5gzXUpIAqFyjsuI0t9a7d2/VEYTIVPHixQkO0ZaKpTlSGRxirc1QpDbVi42FX36RZeOusHfvXlq0aEHXrl05f/48AAEBAUyfPp21a9dSp04d7RtvWkLg5wcjR8KPP8KmTSqSe76oKGjRQvYgMCIZB+Dll1+mdvXaAGzdsRW73a44kRAavetTGu100m+EVrmKcRvt8ePHq44gxC3169ePIoWKAvD9D9+zZcsWxYn0I7Wp3pIlcO2aNNq5kZSUxMiRI7nnnntYvXq18/lOnTqxe/du3n77bby80r19iIqCZs2gRAnnU126QO3aMGiQnsmt4exZWLNGlo0blYwD4OXlxbiJ45yPBw4YaOlN4oRx6F2f0mink/4MbaNuhAYQKuvxhIFZeTMUqU317Ha4/34oX151EnNau3YtDRo0YNiwYVy7dg3QTuBYsmQJ33zzDaVKlcr4A7GxsHLlfz7Z8PaG0aO11QUrV+qV3hpkDwJjk3FA8/TTT9OkURMAYg7HZLj1RAhV9K5PabTTMcPRXgDh4eGqIwhxW2+99RblSpUDYOXqlRlmxTyZ1KZaV6/C0qUy05cTFy5coFu3bjzyyCPs/ncXM29vb4KCgtixYwdPPfVU5j94myUE7dpBkyYQHAxyi6brREXBww9nWEAgDETGAY3NZiNyUqTzcWhwKFevXlWYSAj961Ma7XTMMqPdrVs31RGEuC0/Pz9Gj7uxGUpg/yBLbIYitanWihWQkCCNdnY4HA7mzp1LzZo1mTlzpvP5xo0bs3nzZsaOHUv+/Plv/QJRUdCwIVSo8J9/ZbPBmDGwebN2v7bIvbg47e+5/B03LhkHbnjooYdo86S2Y9+pc6eYOnWq4kTC6vSuT2m00zl04JDzayM32osWLVIdQYg76ty5MzWr1gRg89a/WLBggeJE7ie1qZbdDrVqQY0aqpOYQ0xMDK1bt6ZLly6cPXsWgIIFCzJlyhTWr19P/fr1b/8CV69qM9q36foeeUQ763nwYJBbNHPv+gKCDh1UJxG3IuNARhHjIrChneITNiyM2NhYxYmEleldn9JopxOzNwYAX588lCxZUnGaW2vQoIHqCELckbe3d4bNUIL6B5GamqowkftJbaqTnAyLFslMX1Zcu3aNiIgI6taty4oVK5zPd+zYkejoaHr16oW3t/edXyiLSwhGj4a9e2H27FwGF84FBAaeC7A8GQcyuueee+jcuTMAsQmxslmcUErv+pRG+18Oh4Mjx48CUKZEmYw7qhrM9WNWhDC6Z555hgcaPgDAvoP7+PLLLxUnci+pTXXWrIELF6TRvpP169fTsGFDQkJCSExMBKB8+fIsXLiQH374gbJly2b9xaKioGZN7Z/baNAAXn4Zhg/XJsFFziQmwk8/yd9xo5Nx4L/CwsPw8fIBYPzY8Zw+fVpxImFVetencbtJnV28eJGrSVcAqFq9iuI0tyebSQizuHkzlMEDBzvf3HsiqU11oqK0Wb5771WdxJguXbpEz549eeihh9ixYwegHcHTr18/du3aRdu2bbP3gsnJ2vbXWez6Ro6E06fh44+zm1xcd30BgRxdZ2wyDvxXpUqV6PFODwASkxMJCwtTnEhYld71KY32v9JvhFapaiV1QbKgWrVqqiMIkWXNmjWjdcvWAJw4c4Lp06crTuQ+UptqpKVpjfazz2obcIkbHA4H3333HTVr1sxQew0bNmTTpk1MnDiRAgUKZP+Fs7mEoGpV6N5dW0Z+6VL2LyduLCCoVUt1EnE7Mg5kLjQ0FP88eQGYMW0GBw4cUJxIWJHe9SmN9r/SH+1l5I3QAMsclSQ8x9jIsc6vRwwdSVxcnMI07iO1qcbGjXDihCypvdnBgwdp06YNnTp1ci7VLFCgAJMnT2bDhg3cd999OX/xqChtp/FsvMaQIdry58jIO3+vyCglBRYskL/jZiDjQOZKlixJ4MD3AUhJS2FI6BDFiYQV6V2f0mj/yyxnaAO8+uqrqiMIkS3169en00udALgUf5EJEyYoTuQeUptqREXBXXdB06aqkxhDcnIykZGR1KlTh6VLlzqfb9euHbt27eK9997Dx8cn5xfI4RKC0qWhb1+YPBlOnsz55a3o+gICWTZufDIO3NqAAQMIKFAYgG+++YZ//vlHbSBhOXrXpzTa/zLLGdoAH330keoIQmRb+KhwvL20nYzHjYnkzJkzihO5ntSm/hwO7VivDh0gKxtle7qNGzfSqFEjgoKCnPeilS1bFrvdzoIFCyhfvnzuL7JpU46XEAQFgZ8fhIfnPoaVREVB+fLajuPC2GQcuLWAgACGjtBmsh04GBg4UHEiYTV616c02v9K32gbfUY7NDRUdQQhsq1KlSq83eNtABKvXSXcA99pS23qb8cO2L9fltTGxcXRu3dvHnzwQbZt2wZomxH27t2bXbt28awrp0Ltdm0JwUMPZftHCxeG4GD45BOIiXFdJE92fQHBc8/JHgRmIOPA7b3zzjuUKl4agGXLl7F27VrFiYSV6F2f0mj/a3/0fgC8vbwpU6aM4jS354kNirCGIUOG4O/rD8C0j6dl+IDLE0ht6i8qCgoVgscfV51EDYfDgd1up1atWkyZMgWHwwFot2ts2LCBDz/8kEKFCrnyglqj3b59jpcQvPsulCgBQ4e6LpYn27QJjh+XZeNmIePA7fn7+zNq7I0/o6D+Qc7fW0K4m971KY32v44c087QLlW8NN4GX3/47rvvqo4gRI6UKlWKAUEDAG0zlKFDPOudttSm/ux2eOYZyJNHdRL9HTlyhPbt29OxY0dOnDgBQL58+Rg/fjx//fUXjRs3dv1Fd+7M9RKCfPlg2DD4+mvYutV10TzV9T0IHn5YdRKRFTIO3Nmrr75K1YpVAdjw1wZ++uknxYmEVehdn9Jooy25i7+i7YJcuYqxj/YC+Oqrr1RHECLHAgMDKZQ/AND+Ll8/09cTSG3q68AB2LbNesvGU1JSmDx5MrVr12bRokXO559++ml27tzJgAEDcrfZ2e3Y7VCwYK6XELzxBlSvDoMHuyiXh3LBAgKhMxkH7szHx4exE26cRhLYL4jU1FSFiYRV6F2f0miTccfxytUrK0ySNY8++qjqCELkWEBAAEOGa/fIOHAwKGiQ4kSuI7Wpr6go8PeHJ59UnUQ/mzdv5oEHHqBfv34kJCQA2kqRefPmsXjxYvfvMXJ9CYGfX65exsdH2xBtyRJtR22RuV27YN8+WTZuJjIOZM2zzz7LffW13f1274/mm2++UZxIWIHe9SmNNuY62gsgRnaQESbXq1cvShYrBcDipYtZv3694kSuIbWpL7sdWreG/PlVJ3G/+Ph4+vXrR+PGjdmyZQugbXbWs2dPoqOjeeGFF7C5e6csFy8h6NhR20V70CBt5lb81/UFBC1aqE4iskrGgayx2WyMnxTpfDwocBDXrl1TmEhYgd71KY025jraCyCPFW9GFB4lb968hI8Jcz4O7BfoEZuhSG3q5+RJWL/eGjN9CxcupE6dOkyePJm0tDQA6taty7p165g6dSqFCxfWJ0hUlDaT7aIlBF5eEBGh/f+4eLFLXtLj2O3Qpk2uFxAIHck4kHXNmzenxWPap0jHTh3jk08+UZxIeDq961MabTLOaJuh0S5ZsqTqCELkWteuXalcQbtVY/3G9SxbtkxxotyT2tTPggXaPatt26pO4j7Hjx+nY8eOtG/fnqNHtQ07/f39iYiIYMuWLTRp0kTfQNeXEBQo4LKXfOIJ7XbvkBCQWzQzOnhQ2yzOansQmJ2MA9kzdvyNe7WHhQ7n8uXLCtMIT6d3fUqjDRw+ZK6l45s3b1YdQYhc++9mKIHO2TqzktrUj90OzZtD0aKqk7heamoqU6ZMoVatWtjtdufzrVq1YufOnQQHB+Pr66tvqJMn4Y8/XL6EwGbTZrV37NB2IRc3XF9A8NRTqpOI7JBxIHsaNmzI8x2fB+BC7HkmT56sNpDwaHrXp82haL1mXFwcAQEBxMbGuvaMzxy495772Lrjb2zYSExKNPyyn9OnT8snpsIjOBwO7q13L9t2bAPg66+/5uWXX1acKuekNvVx8aJ2DvMHH8A776hO41pbt27l7bffZuPGjc7nSpQowaRJk3j55Zfdfx/2rUyfrh2Affo0FCvm8pfv2BG2bIHdu2WZ9HUPP6x9kLRwoeokIjtkHMi+vXv3UqtmbdIcqeT3L8ChowcpXry46ljCA+ldnzKjDRw+os1olyha0vBNNsCnn36qOoIQLqFthjLe+Tj4/WBTb4YitamPxYshJQU6dFCdxHUSEhIIDAzk/vvvz9Bkd+vWjejoaDp37qyuyQZtCcFjj7mlyQZtB/IjR2DGDLe8vOmcOqXduy7Lxs1HxoHsq169Om+++QYACYmXiYiIUJxIeCq969PyM9pXrlwh/79b1j7Q8AE2/LVBWRYhrKr5I835de2vAHz88ce842nTlMKlnn1Wm1j1kM3qWbJkCe+8806G/UJq1arFjBkzaNasmcJk/7q+hGDyZOjVy22XefNNWLQIYmK0nbatbMYM7Y/aTQsIhDCc48ePU7liFa6lJOHrnYeYg/spX7686lhC5IrlZ7SPHDni/LpK9SoKk2RdeHi46ghCuNS4CeOcXw8dPMx5PrDZSG26X0IC/PyzZ+w2fvLkSV566SXatGnjbLL9/PwICwtj69atxmiyQbclBMOGQVwcTJrk1suYgt0Ojz4qTbYZyTiQM2XLluW9fn0ASE69xrChwxQnEp5I7/q0fKOd4QztShXVBcmGAQMGqI4ghEs1atSI5zpoayTPXzrHBx98oDhRzkhtut/PP8PVq+ZutNPS0pg+fTq1atVi3rx5zucff/xx/vnnH0JDQ411G1NUFDz4IJQt69bLVKigzeKOHw9nz7r1UoZ26RKsWiXLxs1KxoGcCw4OpkBebTnL7DlziI6OVpxIeBq969PyjbbZztAGmDp1quoIQrjc6DGj8bJ5a1+HRXD+/HnFibJPatP97HaoVw+qVlWdJGd27NjBww8/TM+ePYmNjQWgWLFizJkzh5UrV1K9enXFCW+SkADLlun2ycagQdr/WvkWTU/cg8BKZBzIuaJFixIyRPsl4HCkERIcojiR8DR616flG+0MM9omONoLoF27dqojCOFyNWrU4PXXuwLaZihjxoxRGygHpDbd69o1rQkx42z21atXCQkJ4d577+WPP/5wPt+1a1d2797Nq6++qnazs1vReQlB8eIQGAgff6xtjmZFdjs88IDbFxAIN5FxIHf69OlD8SJ3ATB/4fwMm0MKkVt616flG+1DBw85vzbLjPaWLVtURxDCLYaPGI6vt7Zk9sPJH3Hs2DHFibJHatO9Vq+G2FjzLaldsWIFdevWJSIigpSUFEDbZXfVqlV8/vnnxj7GJioK7rkHqlXT7ZL9+kHhwjB8uG6XNIwrV7QFBGb7Oy5ukHEgd/Lnz8/IUSOcjwP7B6Jo32bhgfSuT8s32jF7Y5xfV6hQQWGSrLvrrrtURxDCLcqVK0efvr0BuJaSxIjhI+7wE8YiteledjtUqaL1fWZw5swZ/ve//9GqVSsOHDgAQJ48eRg2bBjbtm2jefPmihPewbVr2jbgOi8hKFAAhgyBOXNg1y5dL62cJ+xBYHUyDuRet27duLusNvm1Zt0aVq5cqTiR8BR616flG+1Dh7Sl40ULFSNv3ryK02SNn5+f6ghCuM2gQYPI718AgFmzPmfPnj2KE2Wd1Kb7pKbCggVaA2LEFdbppaWl8dlnn1GzZk2+/vpr5/OPPPII27ZtY/jw4fj7+ytMmEUKlxC89Za2OVpoqO6XVspuh7p1dV1AIFxMxoHc8/X1Zcz4G7ePBfYLJC0tTWEi4Sn0rk9LN9rXrl3j7IUzgHmWjQPExMTc+ZuEMKlixYoxKDQYgDRHKoMHDVacKOukNt3njz+0M4WNvqQ2Ojqaxx57jO7du3Px4kUAihQpwsyZM1m9ejU1a9ZUnDAboqKgcmVt9zmd5ckDYWFahD//1P3ySlzfg8Dof8fF7ck44BovvvgidWvWBWDbzm38+OOPihMJT6B3fVq60T569CgOtPs+qtU0zxa2jz32mOoIQrjVe++9R7HC2n2rP0b9yF9//aU4UdZIbbqP3Q6lS2ubRBlRYmIiQ4cOpX79+qxdu9b5/P/+9z92797NG2+8gZeXiYbc1FSYP1/pEoKXX9ZuEwgOBivcovnrr9rRXrJs3NxkHHANLy8vIidFOh8PHDCQ5ORkhYmEJ9C7Pk006rtehqO9KppnRvvLL79UHUEItypQoAAjwoc7Hw98f6C6MNkgtekeDoc2s9mhAxixV121ahX16tUjLCzM+UawSpUqLF++nK+++ooSJUooTpgDBlhC4O0No0drDeiKFcpi6CYqCipVgvr1VScRuSHjgOu0bt2ah5s8DMDBoweZPXu22kDC9PSuT5tD0VZ+cXFxBAQEEBsbS6FChVREYNasWbz55psATJkyhV69einJkV1paWnmmhkRIgeuXbtG1YpVOXryKAArV66kRYsWilPdntSme/z9N9x3n9ZsPfGE6jQ3nDt3jvfff585c+Y4n/Px8SEoKIjQ0FDT7PuRqQED4Ouv4fhxpZ9uOBzQrJm2QdimTcb8oMUVUlO147y6dIHx41WnEbkh44Br/fHHHzRt2hSAEsVKcujoQXP/bhVK6V2flv5NYMYztAFGjx6tOoIQbpcnTx4iIiOcjwP7Bxn+iA+pTfeIioIiReDRR1Un0TgcDmbPnk3NmjUzNNlNmzZl69atjBo1ytxvBB0Oba2+AZYQ2GwwZgxs2QLff680iltt2KAtIJBl4+Yn44BrNWnShLZt2gJw5vxppkyZojiRMDO969PSM9qvvfYaX3zxBQDbt2+nbt26SnJkl3xaKqwiLS2Ne2rdw6692hk/P/zwAx07dlSc6takNt2jbl1o2FA77km1vXv30qNHD1avXu18LiAggLFjx9K9e3fP+P//+hKC5cuhZUvVaQB45hnYs0c77svXV3Ua13v/fZg7V/kCAuECMg643s6dO7mn7j04cFAofyEOHztM4cKFVccSJiQz2jo6sO+A82sz7ToeERFx528SwgN4eXkxbuI45+OBAwaSkpKiMNHtSW263t69sHOn+p2Yk5KSGDlyJPfcc0+GJrtTp07s3r2bt99+23PeXEdFQeHCYKBNnUaPhpgYmDVLdRLXM9ACAuECMg64Xp06dXjllVcAiEuIY9y4cXf4CSEyp3d9WnpGu2yJcpw4e5xC+QOIvXxJSYacOHLkCBUqVFAdQwhdOBwOHnrwIf7Y+AcAn332mXNvBaOR2nS9sWNh5Eg4dw5UrcZes2YNb7/9Nrt373Y+V7FiRaZOncpTTz2lJpQ71a2rzWj/u+LLKLp0gVWrYP9+yJdPdRrX2boV7r0Xfv4ZWrVSnUbklowD7nHo0CGqVa1OSmoyfr5+HDx8kNKlS6uOJUxG7/q07GenKSkpnDp3CoAK5corTpM9v/76q+oIQujGZrMROfHGER+hwUO4evWqwkS3JrXpenY7PPWUmib7woULdOvWjUcffdTZZHt7exMUFMSOHTs8s8k2yhKCTIwcCWfPwkcfqU7iWgZcQCByQcYB96hYsSLv9OoJQFJyEiNHjFScSJiR3vVp2Ub7xIkTpDlSAahayzxnaIN2bIwQVvLQQw/R5sk2AJw6d5KpU6cqTpQ5qU3XOnYMNm7Uv+dzOBzMnTuXmjVrMnPmTOfzjRs3ZvPmzYwdO5b8+fPrG0ovUVHapxoGnFqtXBneflvbHO3iRdVpXMduh7ZtIU8e1UmEK8g44D6DBw8mr5+2nOXTTz9l//79ihMJs9G7Pi3baKc/Q9tMO46Ddq+gEFYTMS4CGzYAwoaHERsbqzjRf0ltutb8+drGV23a6HfNmJgYWrduTZcuXTh79iwABQsWZMqUKaxfv576nn7I8fUlBAZdmz1kCCQng6fcorlvH+zYIbuNexIZB9ynRIkSBAUHApCalkpoSKjiRMJs9K5PyzbaZj3aC3C++RPCSu655x46d+4MQOzlWMYb8LBZqU3XstuhRQsICHD/ta5du0ZERAR169ZlxYoVzuc7duxIdHQ0vXr1wtvb2/1BVFK1hCAbSpaEfv3ggw/gxAnVaXLv+gKC1q1VJxGuIuOAe/Xv35/CBYsA8N3337F161a1gYSp6F2flm20089om2nHcYD77rtPdQQhlAgLD8PHyweA8WPHc/r0acWJMpLadJ1z5+C33/Tp+davX0/Dhg0JCQkhMTERgPLly7Nw4UJ++OEHypYt6/4QRjB/Pvj46LuEIAfef19rTsPCVCfJPYMvIBA5IOOAexUqVIjhYcOcjwcGDlSYRpiN3vVp2UY7/Yy22RrthQsXqo4ghBKVKlWixzs9AEhMTiTMYO+0pTZdZ9Ei7dijdu3cd41Lly7Ro0cPHnroIXbs2AFoR8r169ePXbt20bZtW/dd3IiuLyEw+Pm0AQEQEgKffqotvTar48fhzz9l2binkXHA/Xr06EGZEtoHoMtXLue3335TnEiYhd71adnjvVo81oJVv60CtJ1lixQponuGnLp69Sp5VZ1zI4Rip0+fpmKFSiReu4qPlw979u2hcuXKqmMBUpuu1LYtxMbCmjWuf22Hw8G8efN47733MqyKaNiwIZ988ok1Z6TOnYNSpWDqVHjrLdVp7ujqVaheHR5+GL75RnWanPn4Y+jbV9tJ3eCfbYhskHFAH3PmzKFr164ANLqvMX/+tQGbzaY2lDA8vevTsjPa+/fFAJDPLz+FTTbCTZgwQXUEIZQpWbIkgQPfByAlLYUhoUMUJ7pBatM14uNh+XL3LBs/ePAgbdq0oVOnTs4mO3/+/EyaNIkNGzZYs8kGbQlBWhq0b686SZbkzQvDh8O338Lff6tOkzN2Ozz+uDTZnkbGAX106dKF6pWrA7Bpy0YWLVqkOJEwA73r05Iz2mlpafjn8Sc5NZkalWuyOyZa1+sLIXInNjaWu8tVJPbyJWzY2LptK/Xq1VMdS7jIvHnw0ktw8CC4aq/K5ORkJk+ezLBhwzKcw96uXTumTJlC+fLlXXMhs2rbFi5dgrVrVSfJspQUqFsXKlWCpUtVp8me8+e1jd0+/lg7skwIkX0LFiygQ4cOANSoUoOde3Z6/qaVwlQsOaN96tQpklOTAaha03znHYaHh6uOIIRSAQEBDB2hzWQ7cDAoaJDiRBqpTdew2+G++1zXZP/555/cf//9BAUFOZvssmXLYrfbWbBggTTZ8fGwYoXpbhb28YFRo2DZMvj1V9VpssdkCwhENsg4oJ927drR6N5GAOyJ2cPcuXMVJxJGp3d9WrLRznC0V6WK6oLkUPfu3VVHEEK5d955h1LFSwOw5Ocl/P7774oTSW26QmIi/PSTa5aNx8XF8e6779KkSRP++ecfAGw2G71792bXrl08a7LG0m2WLoWkJNM12qD9Pbn/fggO1jbPMwu7HZo21W6LF55FxgH92Gw2IidFOh+HBIXIOebitvSuT2m0TXaGNmhLZYSwOn9/f0aNvfHJZGC/QBTdCeMktZl7v/wCly/nrudzOBzY7XZq1arFxx9/7Px7Ub9+fTZs2MCHH36oZBNOw7Lb4d57tTXYJmOzwZgx2u7dZik/d+5BINSTcUBfjz76KC1btATg+OnjzJgxQ3EiYWR616clG20zn6EN2s64Qgh49dVXqVapGgAb/trATz/9pDSP1Gbu2e1QowbUqpWznz9y5Ajt27enY8eOnDhxAoB8+fIxfvx4/vrrLxo3buzCtB7g+hICE85mX9eiBTzxhHbkV2qq6jR3tmyZaRcQiCyQcUB/YyPHOr8ePmQE8fHxCtMII9O7Pi3ZaJt9Rjv9cTRCWJmPjw9jJ9wYYAP7BZGq8J221GbupKTAwoXaTF92T2lJSUlh0qRJ1K5dO8Pus08//TQ7d+5kwIAB+Pj4uDixB7i+hMDk06ujR0N0NHz5peokd2a3Q4MGplxAILJAxgH93Xvvvbz0wksAXIy7wMSJExUnEkald31astE+EHPA+bUZZ7SvXbumOoIQhtGhQwfuq68dybR7fzTfKDxUV2ozd37/XTvOObszfZs3b+aBBx6gf//+JCQkAFCqVCnmzZvH4sWLTfmBqm7sdu1A6tq1VSfJlUaN4PnnYdgwbZLeqJKSXLcHgTAmGQfUCB8djreXtuP42IhxnD17VnEiYUR616clG+2YPVqj7efrx1133aU4TfZVqWK+ndKFcBebzcb4SeOdjwcFhih7oyO1mTt2O5Qrp21ulRXx8fH069ePxo0bs2XLFkD7+9CzZ0+io6N54YUXsGV3atxKri8hePbZ7C8hMKDwcDh+HKZPV53k1n75RbtHWxptzyXjgBpVq1alW7duAFxNusKoUaMUJxJGpHd9Wq7RdjgcHD95DICypcqZ8k3Yb7/9pjqCEIbSvHlzWjzWAoBjp47yySefKMkhtZlzDgdERWW951u4cCF16tRh8uTJpKWlAVC3bl3WrVvH1KlTKVy4sHsDe4LrSwg8pOurUQPeeEM78isuTnWazNntUK2a6RcQiNuQcUCdocOG4ufrB8DHU6ZmuFVUCNC/Pi3XaJ87d47EZG1dWZXqlRWnyZkuXbqojiCE4Ywdf+Ne7WGhw7l8+bLuGaQ2c+6vv+DYsTv3fMePH6djx460b9+eo0ePAtoO9BEREWzZsoUmTZrokNZDREVlbwmBCQwdqt1ybsRbNFNTtZ3Rc7IHgTAPGQfUKVOmDP0G9AMgJTWZYUOHKU4kjEbv+rRco53+063KVc3ZaE+ZMkV1BCEMp2HDhjzf8XkALsSeZ/LkybpnkNrMObsdiheHhx/O/N+npqby0UcfUatWLex2u/P5Vq1asXPnToKDg/H19dUprQdwOLQ/9A4dwMtz3gqUKwe9e8OECXDmjOo0GeV0DwJhLjIOqDVw4EAK5deOb/ziyy/ZuXOn4kTCSPSuT88ZXbPI7Ed7AYSGhqqOIIQhjRo9Ci+bthnKmFFjOXfunK7Xl9rMmes9X7t2kNnG4Fu3bqVp06b06dPHeWxLiRIlmDt3LsuWLaNyZXN+aKpUVpcQmFBwMHh7azuRG4ndDmXLahu3Cc8l44BahQsXZvDQwQA4HGmEBIcoTiSMRO/6tFyjnX5G26yNdnh4uOoIQhhS9erVefPNNwBISLxMRESErteX2syZ6GjYu/e/PV9CQgKBgYHcf//9bNy40fl8t27diI6OpnPnzqbcZ8MQoqKgWDFo1kx1EpcrWhSCgmDaNEj32bpS6fcg8KAFBCITMg6o9+6771KiaEkAFi5eyIYNGxQnEkahd31a7te92c/QBujdu7fqCEIY1rDhw8jjo22G8tEHU5z38epBajNn7HYoWBBatLjx3JIlS6hTpw7jx493no1eq1Yt1qxZw6effkrRokUVpfUADgf8+OOtlxB4gPfegyJFYPhw1Uk0mzfD0aOybNwKZBxQL1++fIRFjHQ+DuwfiMPhUJhIGIXe9Wm5RvvggYPOr806o/3FF1+ojiCEYZUtW5b3+vUBIDn1GsOHDdft2lKbORMVBU8/Df7+cPLkSV566SXatGnj/GDUz8+PsLAwtm7dSjMPnIHV3a2WEHiQ/Pm1jdG++AJ27FCdRvswqWhReOQR1UmEu8k4YAyvv/46lcpXAuD3P35n+fLlihMJI9C7Pi3XaMfsiQHAx9uH0qVLK06TM82bN1cdQQhDCw4OpkDeggB8Pns2u3fv1uW6UpvZd+gQbNkCHTqkMX36dGrVqsW8efOc//7xxx/nn3/+ITQ0lDx58qgL6kmioqBAAXjiCdVJ3KpbN6hUCQYPVp1E+yNv395jFxCIdGQcMAZfX1/GjB/jfBzYL9B5FKSwLr3r03KN9pFj2jLS0iXK4GXSG6X27dunOoIQhla0aFFChgwCtM1QBg0cpMt1pTazb/588PXdwaRJD9OzZ09iY2MBKFasGHPmzGHlypVUr15dbUhPY7ffWELgwfLkgbAwWLgQ1q9XlyM6GnbvlmXjViHjgHE8//zz1KtTH4Dt0dv5/vvvFScSquldn+bsNHPo0qVLJCRqZ+tWrlJJcZqcy5s3r+oIQhjee++9x11FSgAwf+H8DJtpuYvUZvZcvXqViRNDSEm5l40b/3A+37VrV3bv3s2rr74qm5252vUlBB68bDy9Tp2gXj1tJ3JVt2ja7dpS9pYt1Vxf6EvGAePw8vIicuI45+Pg94NJTk5WmEiopnd9WqrRTr8RWpXqVRQmyZ1ixYqpjiCE4eXLl4+Ro0c4H+uxGYrUZtYtX76cahWqcfRoBA5HCqDtGr9q1So+//xzihcvrjihh5o/X5vqfeop1Ul04eUFERGwdi0sW6YmQ1QUtGnj8QsIxL9kHDCWli1b8shD2uYIh44dYubMmYoTCZX0rk9LNdqecIY2aGfKCiHu7M033+Tuslqtr1m3hpUrV7r1elKbd3b69Gle7vQyrVu35vi54wD4evkwbNgwtm3bJvc3upvdrk2tFiqkOolunnpKO8Vs0CDQ+xbNw4e1Hcdl2bh1yDhgLDabjXETbsxqDwkZypUrVxQmEirpXZ+WarQ94WgvgLZt26qOIIQp/GczlP7u3QxFavPW0tLS+Oyzz6hepTrffvet8/mHipfinyIBDH//ffxlys+9Tp+G33+3zLLx62w2GDMGtm2D777T99pRUdoCgqef1ve6Qh0ZB4zngQceoH3b9gCcu3iWDz/8UHEioYre9WmpRttTZrQ/++wz1RGEMI0XX3yRujXrArBtxzZ+/PFHt11LajNz0dHRNGvSjO7duxOXEAdAofyFmDlzJmv+XEfN+Hj44APFKS1g4UKt67RgI9C0qXZseGgoXLum33Wjoiy3gMDyZBwwpoixEdhsWtszOmw0Fy9eVJxIqKB3fdocik5wj4uLIyAggNjYWArpNAI999xzREVFAXDw4EFTz2oLIbJu2bJlPPXvPamVyldmT8xufH19FafyfImJiYwePZqIURGkpKU4n3+508tM/mAyJUpom9XRty98/jkcOAByf6P7PPUUJCbC6tWqkyixY4e2MdrHH0PPnu6/3pkzUKoUfPopvPmm+68nhLi9N15/g89nfw5AUFAQY8eOVZxIeDpLzWjH7NbO0PayeVOuXDnFaXIuPDxcdQQhTKV169Y83ORhAA4ePcDs2bPdch2pzRtWrVpF7eq1CQsLczbZd5e9m+XLl/P1N1/faLIBQkK0m2fHjLnFq4lci42FX36x3LLx9OrWhVdegZEjISHB/de7voCgXTv3X0sYh4wDxjV8xHB8vfMAMHniBxw/flxxIqE3vevTUjPahQsUITbhEqWLl+HEWfMWV2JiotzLKEQ2/fHHHzRt2hSAEsVKcujoQZcf8yC1CefOnaN/v/58+dWXzue8vbwJGhjEkCFDbv1nPny41mjv3w8m/iDUsL7+Gv73PzhyBMqXV51GmUOHoHp1GDFC2xzNnZ5+Gq5cgV9/de91hLHIOGBs/fv3Z9KkSQC81f0tZnwyQ3EioSe969MyM9qXL18mNuESAJWqVFSaJbc++ugj1RGEMJ0mTZrQto12b+qZ86eZMmWKy69h5dp0OBzMnj2bqpWqZWiyH2j4ANv+2cbo0aNv/8HGgAFQsKDWAQnXs9uhUSNLN9kAFStqy8bHjoULF9x3ndhYWLnS0gsILMvK44AZhISEkM8/PwCffTaTffv2KU4k9KR3fVqm0faUM7QBOnTooDqCEKYUMTYCGzYAwkeEc+nSJZe+vlVrc+/evTzW7DFef/11Yi9fAqBA3oJMnz6d9RvXU6dOnTu/SMGC2k5Vs2bB7t3uDWw1V6/C0qXS9f1r8GBISdGabXdZsgSSk+VYLyuy6jhgFsWLFyc4ZCAAaY5UBocMVpxI6Env+rRko23mHccBNm/erDqCEKZUp04dXnnlFQDiEuKIjIx06etbrTaTkpIYOXIkdWrXZc26Nc7nX3z+RfYd2Mvbb7+Nl1c2hpkePbRl46GhbkhrYcuXa2uYpesDoEQJbQHFhx+Cu27RtNvh/vstv4DAkqw2DphRv379KFKoKADf//A9W7ZsUZxI6EXv+rRko2323cZLlSqlOoIQpjVi5Ah8vLUdxydGTuTkyZMue20r1eaaNWuoW7Muw4YNIyU1GYBypcqzZMkSvvv+u5z9Wfj5aTtV/fgjbNrk4sQWZrdD7dpQo4bqJIYxYADkz++eOxWuXtVmtGUBgTVZaRwwqwIFCjAifLjz8cD3B6oLI3Sld31aptH2lDO0AXx8fFRHEMK0KlasyDu9tLN9EpMTGTlypMte2wq1eeHCBd58400effRR9h/aD2gnOQQGBrJ7f7TzGLUc69JFawrdvVOVVSQnw6JF0vXdpFAhbQn5rFmwZ49rX3vFCm0BgfyRW5MVxgFP8NZbb1GulLbx5srVK1lt0WMPrUbv+rRMo334kOfMaB88eFB1BCFMbfDgweT1ywfAp598yv79+13yup5cmw6Hg7lz51K1UjVmfT7L+fx99Ruy5e/NjBs3jvz58+f+Qt7eMHq0dhTVypW5fz2r++03uHhRlo1nomdPKFMGhgxx7eva7VCrliwgsCpPHgc8iZ+fH6PHjXY+DuwfhKKDmISO9K5PyzTa+3ffeCNd3uQ3TT3yyCOqIwhhaiVKlGDgoCAAUtNSGTLYNe+0PbU2Y2JieKL5E3Tp0oWLcdpWzfn88zNlyhQ2bv6T+vXru/aC7drBgw9CcDDIG5/csdvh7rvh3ntVJzEcf39t6fj338Nff7nmNZOTtfOzZTbbujx1HPBEnTt3pmbVWgBs3voX8+fPVxtIuJ3e9WmZRvvQv/doFy98F35+forT5M7XX3+tOoIQpte/f38KFywCwLfzvmXr1q25fk1Pq81r164xevRoatesw6rfVjmff7b9s+zdv4devXrh7e3t+gvbbNqZ2ps3a/dri5xJS4P587XZbJtNdRpDeuUVbfY5JMQ1r7dmjbaAQBpt6/K0ccCTeXt7M27ijeMHBg4YSEpKisJEwt30rk+bQ9E6ibi4OAICAoiNjaVQoUJuvVZiYqLz/NZGDRqx8e+Nbr2eu6Wmprrnza0QFvPBBx/Qt29fAFo90YqfV/ycq9fzpNpct24db772JntibtzAWvquMsyYOZ22bdvqE+Kpp+DAAdi5E+S+x+z74w9o2lTr/po1U53GsK5/FrFyJbRokbvX6tULfvoJDh6UzzasypPGAStwOBw0adSEPzf/CcCsWbN4/fXXFacS7qJ3fVpiRvvIkSPOr6vUMPcZ2gARERGqIwjhEXr06EGZEmUBWL5yOb/99luuXs8TavPSpUu8/dbbPPzww84m22bzom/fvuw9sEe/Jhu0e7X37oXZs/W7piex27WzrJo2VZ3E0Nq3hwce0Pbfy83UQ1oaREXJAgKr84RxwEpsNhuRk24c9Tl4YCiJiYkKEwl30rs+LdFoZzjaq1JFdUFcJFTOmBXCJbTNUEY5H+d2MxQz16bD4eC7776jaqVqfPLpJ87n69etz19/bWLSpEkUKFBA31D33gudOsHw4dqZSSLrHA6t62vfXttgTtzS9TsVNm3S/shyauNGOHlSlo1bnZnHAatq1qwZrVu2BuDk2RNMmzZNcSLhLnrXpyUabU862gsgPDxcdQQhPEaXLl2oXrk6AJu2bGTRokU5fi2z1ubBgwd5stWTdOrUifOXzgHgnycvkyZN4q+//+K+++5TFy4sDE6fho8/VpfBjLZvh5gY6fqy6LHHoHVr7civnN6iabfDXXfJAgKrM+s4YHXjxo/DhrYUZcTQkcTFxSlOJNxB7/q0RKOdfkbbExrt1157TXUEITyGthnKOOfjoP5BpKam5ui1zFabycnJjBs3jlo1arF85XLn8888/Qx79++hb9++6s+ErVoVunXTlpFfuqQ2i5lERWmHRT/+uOokpjF6NOzeDV98kf2fdTi0RrtDB1lAYHVmGweEpl69enTq1AmA2MuXmDBhguJEwh30rk/LNdpmP0Mb4JdfflEdQQiP0q5dOxrd2wiAPTF7mDt3bo5ex0y1+eeff9KgbgMGDhxIUnISACWLlcJut7Pop0XGOgZxyBBITITx41UnMQ+7HZ55BvLkUZ3ENO67D156CYYN0/66ZceOHdoCAjmuXJhpHBAZhY8Kx9tL+6Rs3JhIzpw5oziRcDW969MSjfb+PTHOrytUqKAwiWtUr15ddQQhPMrNm6GEBIWQlJSU7dcxQ23GxcXRq1cvmjzYhF17dwFgw8a7777L3gN7eNaInUKZMtC3L0yaBKdOqU5jfDEx8M8/smw8B8LCtPusp07N3s/Z7bKAQGjMMA6IzFWuXJm3e7wNQOK1q3IbgAfSuz4t0WgfOnAIgCIFi5I/f361YVzgqmwKJITLPfroo7R8vCUAx08fZ8aMGdl+DSPXpsPh4Mcff6Ra5epMnToVB9qmb3Vq1GHDnxv46KOP3H7UYq4EBYGfH8gbnzuLigJ/f3jySdVJTKdatRt3KsTGZv3noqK0BQR+fu7LJszByOOAuLMhQ4bg7+sPwLSPp2XY50mYn9716fGNdnJyMmcunAY8YzYb4Pz586ojCOGRxo4f6/x6+JARxMfHZ+vnjVqbR44coe3TbXn++ec5c177fejv68/48ePZumMrjRs3VpwwCwoXhuBgmDFDO1tb3Jrdru3s5QEfLKswdCgkJEBWb9GMiYFt22TZuNAYdRwQWVOqVCkGBA0AICUthaFDhipOJFxJ7/r0+Eb72LFjpDnSAKhSo7LiNK5Rv3591RGE8Ej33nsvLz7/IgAX4y4wceLEbP280WozJSWFSZMmUaNaTX5a9pPz+SdbPkn03mgGDBigfrOz7Hj3Xe1c6CFDVCcxrhMn4I8/ZNl4LpQpA++9BxMnahve34ksIBDpGW0cENkXGBhIofwBAHz11Vfs2LFDcSLhKnrXp8c32uk3QqtUqZLCJK6zePFi1RGE8FijIkY5N0MZGzGOs2fPZvlnjVSbmzdvpmH9hvTv35/Ea9pSqeJF7mLevHks+XmJOTeGzJdP26nq669h61bVaYxpwQLw8dHWMYscGzgQfH2zdqdCVJS2gEDvY+aFMRlpHBA5ExAQwJDh2nnLDhwMChqkOJFwFb3r0+MbbU87QxugZ8+eqiMI4bGqVq1K9+7dAbiadIVRo0Zl+WeNUJvx8fH07duXRo0a88+ufwBts7Meb/dg34G9vPDCC9hsNsUpc+H117UbaQcPVp3EmOx27VDookVVJzG1IkW0ZvtOdyqcPAnr18uycXGDEcYBkXu9evWiZLFSACxeuph169YpTiRcQe/69PhG29OO9gKyvZxVCJE9Q4cNxc9X29Xo4ylTM/weuR3Vtblw4UJqVKnJBx98gOPfW2ZqVq3FuvXrmDZ9GoULF1aazyWuTzMuWQJr1qhOYywXLsDq1bJs3EX69IHixbVFFLcyf752bnbbtrrFEganehwQrpE3b17Cx4Q5Hwf2C8ThcChMJFxB7/q0ORT9rYmLiyMgIIDY2Fi37nT7+uuvM3v2bAC2bdtGvXr13HYtIYTnGDRoEGPGjAHgtVdfY/ac2WoD3cbx48fp1aMXCxYvcD6Xx8ePEWHDGTBgAL6+vgrTuUFaGjRqpN0Y+/vvYOYZelf64gt47TU4fly70Vjk2owZ0LOndqdCZm8fWrUChwNWrNA9mhDCzVJSUqhRpQYHjmjLWn766SeefvppxamEmXj8jPaBfTfWfHnK0nE5108I9xs4cCCF8mkfAn7x5Zfs3Lnzjj+jd22mpqby0UcfUb1qjQxNdovHWhC9ZxfBwcGe12QDeHlBRIS2Zlfuh7zBbocmTaTJdqE33oAqVTK/U+H6AgJZNi7Sk/donsPHx4exE26cRhLYL5C0tDSFiURu6V2fHt9oH4w5CECBvAUJCAhQnMY13n77bdURhPB4hQsXZvAw7d21w5FGSHDIHX9Gz9rcunUrjRs2pk+fPlxJTACgaEAx5s6dy4pVK6hc2TNOWbilli2heXMICYHUVNVp1EtIgJ9/lmXjLnb9ToXFi7XFE+ktXgwpKdChg5JowqDkPZpn6dixIw3uuReAXXt38e233ypOJHJD7/r06EY7NTWVE2dOAFChXHnFaVzHbrerjiCEJbz77ruUKFoSgIWLF7Jhw4bbfr8etZmQkMD7779Pw/vuZ8u2Lc7n33zjTfYd2Evnzp3NvdlZVtls2qz2jh3aLuRWt2wZJCbK9KobvPAC3Huvdox7+pvtoqJkAYH4L3mP5llsNhvjJ0U6Hw8KHMS1a9cUJhK5oXd9enSjffLkSVLTtJmOqjWrKk7jOo0aNVIdQQhLyJcvH2ERI52PA/vffjMUd9fmkiVLqFGlBhMmTCDNof1uq1apGmvWrOGzmZ9R1Go7TT/wgNZYDh0KSUmq06hlt2s3EVepojqJx7l+p8K6ddoefKAtIFi2TD7XEP8l79E8T4sWLWj+SHMAjpw4wmeffaY4kcgpvevToxvt9Ed7VaxUUVkOVzt58qTqCEJYxuuvv06l8pUA+P2P31m+fPktv9ddtXny5Eme7/g8bdq04fjp4wD4euchLCyM7dHbadasmVuuawrh4XDkCHzyieok6ly7pq1jlmXjbtOqlXZq2qBB2l58soBA3Iq8R/NMY8ffuFd76OBhJCQkKEwjckrv+vToRjv9kTyeshEaaEvihRD68PX1Zcz4Mc7Ht9sMxdW1mZaWxvTp06lepQY/2n90Pv/ow4+yY9d2QkND8fPzc+k1Tad2bW2n7bAwiI9XnUaNVasgLk66Pje6fqfC9u3wzTfasvF77oGqnrNYTriIvEfzTI0aNeK5DtqHmecvneODDz5QnEjkhN71aZlG21PO0AbP+m8Rwgyef/556tXWzvbZHr2d77//PtPvc2Vtbt++nQcbNaFnz55cvqo1kIULFGbOnDmsXrOa6tWru+xapjd8uNZoTp6sOokadru2ZPyee1Qn8WgPPqhtfBYaCosWyQICkTl5j+a5Ro8ZjZfNW/s6LILz588rTiSyS+/69OhGO/3ScU+a0V67dq3qCEJYipeXF5HpNkMJfj+Y5OTk/3yfK2rzypUrBAcHc2+De9m0ZaPz+ddefY19B/fx6quvWmOzs+yoUAF69YLISDh3TnUafaWmwoIFWtcnfy/cLjwcDh/WPteRRltkRt6jea4aNWrw+utdAUhIvMyYMWNu/wPCcPSuT5vjdjv7uFFcXBwBAQHExsZSqFAht1yjZYuWrFy1EoBz585RrFgxt1xHbxcuXLDepkdCKOZwOHis2WOsWbcGgOnTp//nmIjc1uby5cvp/np3jpw44nyucoXKfDb7M5o3b57j17WEc+egcmXo3h0mTFCdRj9r18Ijj2hnijdpojqNJdSsCTExcPUq+PioTiOMRt6jebZjx45RuWIVklOvkcfHj5iD+ylXrpzqWCKL9K5Pj57R3r8nBgD/PHk96pfe1KlTVUcQwnJsNhvjJoxzPh4yaChXrlzJ8D05rc3Tp0/zcqeXad26tbPJ9vH2ZdiwYezcs1Oa7KwoXhwCA2HKFG1zNKuw26F0aW0HdqGLpUvhl1+kyRaZk/donq1cuXL06dsbgGspSYwYPkJxIpEdetenx85oOxwO/PPk5VpKEtXursbeQ3tdfg0hhPU82+5Z5i+aD0BERATBwcE5fq20tDRmzZrFgL4DiEuIcz7/0IMP8dnnn1GzZs3cxrWWy5e1We1nnoFZs1SncT+HAypVgjZt4OOPVacRQghLOH/+PHeXq0hC4mW8bN7sit5JjRo1VMcSBuSxM9pnzpzhWop2rmqVGp51rmh4eLjqCEJY1uixo7HZtF+do8NGc/HiRee/y05t7tq1i2ZNmtG9e3dnk10ofyFmzpzJmnVrpMnOiQIFYMgQmDMHdu1Sncb9/v5bu2FYdhsXwjDkPZrnK1asGINCtQ/Z0xyphASHKE4kskrv+vTYRjv9RmiVqlRSF8QN+vTpozqCEJZVq1Ytur72GgDxV+IzbIaSldpMTEwkNDSU+vfUZ/3G9c7nX+70MvsO7OONN97Ay8tjfzW731tvaZujhYaqTuJ+djsUKQKPPqo6iRDiX/IezRree+89ihUuDoB9vp1NmzYpTiSyQu/69Nh3c556tBfA7NmzVUcQwtKGjxiOr3ceACZP/IDjx48Dd67NVatWUbt6bUaNGkVKWgoAd5e9m+XLl/P1N19TokQJt+a2BD8/GDlSO+j4zz9Vp3GvqCho1w58fVUnEUL8S96jWUOBAgUYET7c+Xjg+wPVhRFZpnd9emyj7alHewE88cQTqiMIYWkVKlTg3T69AG0zlJEjRgK3rs1z587x6iuv0qJFCw4ePQiAt5c3gwYNInpfNC1bttQnuFV07gx160JwsHYfsyfavVtbHi/LxoUwFHmPZh3du3enQpkKAKxes5qVK1cqTiTuRO/6zFWjfezYMQYMGOCqLC6Vfkbb0xrt3bt3q44ghOWFhISQzz8/AJ99NpN9+/b9pzYdDgezZ8+maqVqfPnVl87nH2j4ANv+2cbo0aPJmzevrrktwdsbRo+GX3+FFStUp3GPqCjIlw9atVKdRAiRjrxHs448efIQERnhfBzYLxBFe0yLLNK7PnPcaDscDhYsWMD58+ddmcdlDh045Pza05aO58+fX3UEISyvePHiBIdoS8XSHKkMDhmcoTb37NnDow8/yuuvv07s5UsAFMhbkOnTp7N+43rq1KmjIrZ1PPMMNG0KgwZBWprqNK4XFQVPPQXyQY0QhiLv0aylU6dO1K5eG4CtO7Zit9sVJxK3o3d95rjRXrFiBY8//rgrs7jU/j37AfD1yeNx9z160pngQphZv379KFJIq8fvf/ieM2fOkJSUxMiRI6lb5x7Wrl/r/N4Xn3+RfQf28vbbb8tmZ3qw2WDMGNiyBX74QXUa1zpyBDZtgueeU51ECHETeY9mLV5eXkROinQ+HjhgICkpKQoTidvRuz5z9G4vJiaGkiVLGnbJo8Ph4OiJYwCULVnW497U/vPPP6ojCCH472YoQ0KHULdmXYYNG0ZKajIA5UqVY8mSJXz3/XeUKlVKUVKLatYMnn5a24E8OVl1GteZP1/bAK1NG9VJhBA3kfdo1vPUU0/RtHFTAGIOxzBnzhzFicSt6F2fOepAt27dysGDB1m+fDlHjhwx3C+VCxcucDXpCgBVqlVWnMb1nnrqKdURhBD/euuttyhTogwAh48cZv8hbTWNl82bwMBAdu/fLTWr0ujRsG8ffP656iSuExUFLVpAQIDqJEKIm8jve+ux2WyMmzjO+Tg0OJSrV68qTCRuRe/6zFGj3bFjR9q0acPVq1dJSkrK0o3/SUlJxMXFZfjHXdJvhFbZAxvtWbNmqY4ghPiXn58fTzyZcRfL++rfx5a/NzNu3Di5X0+1+vW1XchHjIArV1Snyb2zZ2HNGlk2LoRByXs0a3rooYdo86S2yujUuVNMnTpVcSKRGb3rM0eN9jfffMORI0dISkpi1apVLFq0CIDw8HBOnDjBzJkz2bRpEz///DN2u51du3bRoUMHAgICnP+UL18egE8++YR//vmHhQsX8tNPP7FlyxZmzJjB2bNnCQ8Pd77ulStXmDBhAnv27GHevHn88ssvrF+/ntmzZ3P06NEM33vgwAFn1gsXLvD777/z66+/8u2337Jv3z4iIyNJTEzM8DOnTp3i008/ZdOmTSxbtoyoqCh27NjBRx99RGxsbIbvvXTpElOmTGH79u3Mnz+fJUuWsHnzZj755BNOnz6d4XuvXr3KhAkT2LdvH9999x2rVq1i3bp1fPHFFxw5coRRo0aRlpZGeHg4aWlpjBo1iiNHjvDFF1+wbt06Vq1axXfffce+ffuYMGFChk/IwsPDOX36NJ988gmbN29myZIlzJ8/n+3btzNlyhQuXbqUIUtsbCwfffQRO3bsICoqimXLlrFp0yY+/fRTTp06leF7ExMTiYyMZN++fXz77bf8+uuv/P7773z55ZccPnyYiIgIUlNTM/zM0aNHmT17NuvXr+eXX35h3rx57NmzhwkTJnDlypUM33v27FlmzJjBli1b+Omnn1i4cCH//PMPH3/8MRcuXMjwvXFxcXz44Yfs2rULu93Ozz//zKZNm5g5cyYnTpzI8L1JSUmMGzeOmJgYvvnmG3799VfWrl3LV199xaFDhxgzZgwpKSkZfubYsWN8/vnnbNiwgRUrVvD999+ze/duJk2axOXLlzN877lz55g+fTpbt25l8eLFLFq0iK1btzJt2jTOnz+f4Xvj4+OZPHkyu3bt4scff2T58uX8+eefzJo16z+5k5OTGTt2LAcOHGDu3LmsWbOGNWvWMHfuXA4cOMDYsWNJTk7O8DMnTpxg1qxZ/Pnnnyxfvpwff/yRXbt2MXnyZOLj4zN87/nz55k2bRpbt25l0aJFLF68mK1btzJ9+nTOnTuX4XsvX77MpEmT2L17N99//z0rVqxgw4YNfP755xw7dizD96akpDBmzBgOHTrEV199xdq1a/n111/55ptviImJYdy4cSQlJf0nd2a/Iz788EPi4uIyfO+FCxf4+OOPXf47IjU1lYiICA4fPsyXX36Z698R48ePx9vbG4CaNWvy07KfWLt2rbLfEelfX35HnCC8ZEk4c4bwZ581/++IWbOYm5bGmhIl5HeEiX5HGO19hPyOcN/7iAceeEDeR1j0d8RzL9z4ADR0UOh/all+R6j/HdGuXTuX/I7IKptDp33ok5KSMgSLi4ujfPnyxMbGUqhQIZdea9KkSfTv3x+AL7/8ki5durj09VULDw8nNDRUdQwhRDoLFy5kxYoVfPTRR6qjiMy8+y7MnQsHDkCRIqrT5Nwzz0BcnDarLYQwHHmPZm1d/teFuV/PBSA0NJSwsDDFiUR6etdnthptm82W5Re+08vGxcUREBDglka7b9++fPDBBwCsXbuWhx9+2KWvr1pSUhJ+fn6qYwghbiK1aWCnTkGVKtCnD0RE3Pn7jSguDu66C8aOhb59VacRQmRCxgFrO3jwINWrViclLQV/X38OHT1EyZIlVccS/9K7PrO1dNzhcGT5H5UOHjjo/Pruu+9WmMQ9rn+IIIQwFqlNAytVCvr1gw8+gBMnVKfJmaVL4do1ePZZ1UmEELcg44C1VapUiR7v9AAgMTmRkSNHKk4k0tO7PrPVaCckJPDTTz/RsmVLAK5cucKsWbNYtGgRb775JmlpaW4JmV0xe2IA8PbypkyZMorTuF7Hjh1VRxBCZEJq0+ACAyFvXjDrUj67He67DzzwA2QhPIWMAyI0NBT/PNoRyDOmz8iwd5RQS+/6zFajnT9/ftq0aUPyv+eRRkdHExMTwzPPPMP27duzdXO4Ox05dhSAUneVdm5Q5Ek2btyoOoIQIhNSmwYXEACDBsGnn2pHfplJYiIsWSK7jQthcDIOiJIlSxI48H0AUtNSCR0s9+wbhd71maNdx69r2LAhffv25eOPP6ZPnz7kzZvXVblyLC4ujvgr2tFhlStXUpzGPUqXLq06ghAiE1KbJtCrl7aMfOhQ1UmyZ+VKuHxZGm0hDE7GAQHw/vvvE1CgMADffvst27ZtUxtIAPrXZ64abYC77rqLd999l7lz57J7925XZMqV9GdoV6lRRWES9/HEWXohPIHUpgnkzQvDh8O338Lff6tOk3V2O9SoAbVqqU4ihLgNGQcEQKFChRg2UvtA14GD4KBgxYkE6F+fuWq0P/74Y2bMmAGAj48PMTExLgmVG4cOHXJ+7YkboUHGDxOEEMYhtWkSXbtC9eoQEqI6SdakpMDChTKbLYQJyDggruvZsyel79L2ilq2fBlr165VnEjoXZ/ZarSTkpL4+uuvOXToEN988w0PP/wwBQsWZMGCBdxzzz08+eST7sqZZen/ACtWrKguiBt52nFlQngKqU2T8PGBUaNg2TL49VfVae5s7Vo4f152GxfCBGQcENf5+/szamy483FQ/yDlJzNZnd71ma1G28/Pj86dO3Po0CFefvll6tevT+fOnWnfvj2jR482xHKZ9I22p85of/vtt6ojCCEyIbVpIh07QsOG2uZoRn/jY7dDuXJw//2qkwgh7kDGAZHeK6+8QrVK1QDY8NcGfvrpJ8WJrE3v+rQ5FH20EhcXR0BAALGxsRQqVMhlr/vC8y/ww48/ABATE0PlypVd9tpGkZKSgo+Pj+oYQoibSG2azMqV0LIlzJ8P7durTpO5tDSoUEH7YEDO5xXC8GQcEDeLioriuX9v/alZtRY7dm83xOSkFeldn7neDM1o9v97hraXzYty5copTuMeY8aMUR1BCJEJqU2TeeIJaNFCu1c7NVV1msz99RccPy7LxoUwCRkHxM06dOjAffUbArB7fzTffPON4kTWpXd9etyMdtFCxbgYf4GSRUtx6vxJl72uEEIID7RpEzRuDLNnw2uvqU7zX8HBMHMmnDyp3VsuhBDCdFavXs3jjz8OQLlS5Yg5HEOePHkUpxLu5lEz2leuXOFi/AUAKlWuqDaMG4WHh9/5m4QQupPaNKFGjeD557VztZOSVKfJyOHQ7s9u316abCFMQsYBkZnmzZvT4rEWABw7dYxPPvlEcSJr0rs+ParRPnLkiPPrKtU98wxtgK5du6qOIITIhNSmSYWHa8uzp09XnSSjXbtg3z5ZNi6Eicg4IG5l7Pixzq+HhQ7n8uXLCtNYk9716VGNdoYztCt65o7jACtWrFAdQQiRCalNk6pRA15/XWu44+JUp7nBboeCBbX7yIUQpiDjgLiVhg0b8nzH5wG4EHueyZMnqw1kQXrXp0c12lY4QxugVq1aqiMIITIhtWliw4ZBfDxMnKg6yQ1RUdCmDfj7q04ihMgiGQfE7YwaPQovm7bjeMSoMZw7d05xImvRuz49qtHOMKPtoWdoA8THx6uOIITIhNSmiZUrB717w4QJcOaM6jRw8CD8/bcsGxfCZGQcELdTvXp13nzzDQCuJCYwevRoxYmsRe/69KhG+/Aha8xoX7p0SXUEIUQmpDZNLjgYvLzACG98oqLAzw+eekp1EiFENsg4IO5k2PBh5PHxA2DKhx9n2GNKuJfe9elRjXbM3hjn1xUqVFCYxL3uuece1RGEEJmQ2jS5YsUgKAimTYN0K6SUiIqCVq20e7SFEKYh44C4k7Jly9K3/3sAJKdeY/iw4WoDWYje9elRjfbBg4cA7Sxtfw++p23p0qWqIwghMiG16QHeew+KFIHhw9VlOHUK1q2TZeNCmJCMAyIrgoODKZhP+yB19pw5REdHK05kDXrXp8c02klJSZy7eBbw7GXjAN27d1cdQQiRCalND1CgAAwZAl98ATt2qMmwYIG2hL1tWzXXF0LkmIwDIiuKFClCyJAQAByONEKCQxQnsga969NjGu2jR4/iwAFA1Rqee4Y2IMcBCGFQUpseont3qFgRQkPVXD8qCh55BIoXV3N9IUSOyTggsqpPnz7cVaQEAPMXzmfjxo2KE3k+vevTYxrtDEd7VaqoLogOQlW9+RNC3JbUpofIkwfCwrSZ5T/+0Pfaly7BL7/Ac8/pe10hhEvIOCCyKl++fIwcPcL5OLB/IA6HQ2Eiz6d3fXpko+3JR3sBhIeHq44ghMiE1KYHefllqFdP24lczzc+ixdDSgp06KDfNYUQLiPjgMiON998k7vLan3LmnVrWLlypeJEnk3v+vSYRtsqZ2gD9OjRQ3UEIUQmpDY9yPVjvtasgZ9/1u+6UVHQuLF2rrcQwnRkHBDZ4evry5jxY5yPA/sFkpaWpjCRZ9O7Pj2m0c6wdNzDN0P74YcfVEcQQmRCatPDPP00PPwwDBoEerzxuXIFli6VZeNCmJiMAyK7XnzxRerWrAvAtp3b+PHHHxUn8lx616fHNNoxe26coe3pM9oPPvig6ghCiExIbXoYmw3GjIGtW2HePPdf7+ef4epVOdZLCBOTcUBkl5eXF5GTIp2PBw4YSHJyssJEnkvv+vSYRvvggUMABOQvTIECBdSGcbNjx46pjiCEyITUpgd66CHtmK3QUHD3G5+oKKhTB6pXd+91hBBuI+OAyInWrVvzcJOHATh49CCzZ89WG8hD6V2fHtFop6SkcOrcKQAqlC+vOI37yY6EQhiT1KaHGjUKDhyAmTPdd43kZFi0SJaNC2FyMg6InLDZbIybMM75OHTQEK5cuaIwkWfSuz49otE+fvw4aY5UAKrU9OwztAHKW+DDBCHMSGrTQ91zD3TpAiNGQEKCe67x66/a0V7SaAthajIOiJxq0qQJbdu0BeDM+dNMmTJFcSLPo3d9ekSjnX4jtEqVKilMoo8/9D7XVQiRJVKbHmzECDh/Hj780D2vb7dDxYpQv757Xl8IoQsZB0RuRIyNwIYNgPARo7h48aLiRJ5F7/r0iEbbSkd7gbY7oRDCeKQ2PVilStCjB4wdCxcuuPa109Jg/nxtNttmc+1rCyF0JeOAyI06derwyiuvABB/JY7IyMg7/ITIDr3r0yMabSsd7QUwbdo01RGEEJmQ2vRwgwdDSorWbLvShg1w6pQsGxfCA8g4IHJrZNhIfLx9AZg4fiInT55UnMhz6F2fHtdoW2FGOzQ0VHUEIUQmpDY9XMmS0L+/tnz8+HHXva7drr12kyaue00hhBIyDojcuvvuu+n17jsAJCUnMXLESMWJPIfe9ekRjXbMPuucoQ0QHh6uOoIQIhNSmxYwYADkzw8jXfTGx+HQGu0OHcDLI4ZkISxNxgHhCoMHDyavXz4APv30U/bv3684kWfQuz5tDkXnEMTFxREQEEBsbCyFChXK1WvdXbYiR04cJr9/AeKvxGHz8Hvc4uPjKViwoOoYQoibSG1axMSJEBQEu3bl/szrbdugQQP4+Wdo1col8YQQ6sg4IFxlxIgRDB8+HICXXniJb+d9qzaQB9C7Pk3/8XlaWhonTp8AoHzZch7fZAPMdOdZrkKIHJPatIh33oHSpWHIkNy/lt0OAQHw2GO5fy0hhHIyDghX6d+/P4ULFgHgu++/Y+vWrWoDeQC969P0jfapU6dISU0GoGrNqorT6KOVzHoIYUhSmxbh768d9zVvHmzenLvXstuhbVvIk8c12YQQSsk4IFylYMGCDA8b5nw8MHCgwjSeQe/6NH2jnWHH8UoV1QXRUXR0tOoIQohMSG1ayKuvQs2aEBKS89fYtw927IBnn3VdLiGEUjIOCFfq0aMHZUqUBWD5yuX89ttvihOZm971afpG22pnaANy748QBiW1aSE+PjBqFCxfDqtW5ew1oqIgb15o3dq12YQQysg4IFzJz8+P0eNGOR8H9g9C0fZaHkHv+jR9o221M7QBAgICVEcQQmRCatNinn0WGjeGQYO03cOzy26HJ5/UdjEXQngEGQeEq3Xp0oXqlbWNNzdt2ciiRYsUJzIvvevT9I22FWe0d+7cqTqCECITUpsWY7PBmDGwcSPMn5+9nz1+HP78U5aNC+FhZBwQrubt7c24ieOcj4P6B5GamqowkXnpXZ+mb7QPHjjo/NoqM9pPPvmk6ghCiExIbVpQ8+basVyDB0NKStZ/bv58bfn5M8+4LZoQQn8yDgh3aNeuHY3ubQTAnpg9fPXVV4oTmZPe9Wn6RjtmzwEA/Hz9KF68uOI0+pg1a5bqCEKITEhtWtTo0RAdDV98kfWfiYqCxx+HIkXcl0sIoTsZB4Q72Gw2IidFOh+HBA0mKSlJYSJz0rs+bQ5Fd9THxcUREBBAbGwshQoVytFrOBwO8vrlJSk5icoVqhBzeL+LUwohhBBZ8NJLsH69tpO4v//tv/f8eShZEqZMgR499MknhBDC9Fo90YoVv6wAYPLkybz33nuKE4nbMfWM9rlz50hK1j7NqVq9iuI0+gkPD1cdQQiRCalNCwsLg5MnYerUO3/vokWQlgbt27s/lxBCVzIOCHcaN/7GvdrDh4wgPj5eYRrz0bs+Td1op98IrVKVSuqC6GzgQDmwXggjktq0sOrV4c03tWXksbG3/96oKGjaFEqX1iebEEI3Mg4Id2rQoAGdXuwEwKX4i0ycOFFxInPRuz5N3Whb8WgvQIpKCIOS2rS4oUMhIQEmTLj191y+DD//LLuNC+GhZBwQ7hY2KgxvL28AxkaM4+zZs4oTmYfe9ekxjbZVjvYCeOGFF1RHEEJkQmrT4sqWhT59YOJEOH068+9ZuhSSkqTRFsJDyTgg3K1q1ap0794dgKtJVxg1apTiROahd32autG24hnaAH/88YfqCEKITEhtCgYO1I7tutUbn6goaNAAKlfWNZYQQh8yDgg9DB02FD9fPwA+njI1w+SjuDW969PcjfbBQ86vrbR0vHz58qojCCEyIbUpKFpUa7anT4eDBzP+u6QkWLxYZrOF8GAyDgg9lC5dmn4D+gGQkprMsKHDFCcyB73r09SN9v7d2nFePt6+lCpVSnEaIYQQAm35eLFiMOymNz6//ALx8fDcc2pyCSGE8BgDBw6kUH7tiOQvvvySnTt3Kk4kbmbqRvvo8WMAlClRBi8vU/+nZMvRo0dVRxBCZEJqUwCQP7+2MdpXX8H27Teej4qCqlWhTh112YQQbiXjgNBL4cKFGTx0MAAORxohwSGKExmf3vVp2u700qVLJCReBqByVesc7QXQpEkT1RGEEJmQ2hRO3bpp92EP1t4EkZoK8+drs9k2m9JoQgj3kXFA6Ondd9+lRNGSACxcvJANGzYoTmRsetenaRvt9BuhVa5mrU1lvv/+e9URhBCZkNoUTr6+EBYGixbBunXw++9w7pwsGxfCw8k4IPSUL18+wiJGOh8H9g/E4XAoTGRsetenzaHo/424uDgCAgKIjY2lUKFC2f75BQsW0KFDBwBGjhzJkCFDXJzQuJKTk/H19VUdQwhxE6lNkUFaGjRsCAUKwH33wQ8/wNGjYKFbnYSwGhkHhN6Sk5OpUaUGB49qG3AuXbqUJ598UnEqY9K7Pk072lv1aC+AsWPHqo4ghMiE1KbIwMsLIiK02exvvtF2G5cmWwiPJuOA0Juvry9jxo9xPg7sF0haWprCRMald32adka7f//+TJo0CYDffvuNRx55xNURhRBCiNxxOOD++2HLFlixAp54QnUiIYQQHiYtLY17693HPzu3AfDNN9/QqVMnxamEaT9at/KMdnh4uOoIQohMSG2K/7DZoEsXbSfymjVVpxFCuJmMA0IFLy8vxk+KdD4Ofj+Y5ORkhYmMSe/6NO2Mdr1a9di+ezteNm+SriXi4+PjhpTGdOLECcqUKaM6hhDiJlKb4pYcDtltXAgLkHFAqOJwOGj+SHN++/03AKZNm0aPHj0UpzIWvevTtDPaR/49B61U8VKWarIBli1bpjqCECITUpvilqTJFsISZBwQqthsNsZNGOd8PCRkKFeuXFGYyHj0rk9TNtqXL18mNuESABUrW2vZOECdOnVURxBCZEJqUwghrE3GAaFS48aN6dCuAwDnLp7lww8/XAz2KwAAMWZJREFUVBvIYPSuT1M22ocPH3Z+XbVGVYVJ1IiNjVUdQQiRCalNIYSwNhkHhGqjx4zGZtNavNFho7l48aLiRMahd32avtG22kZoAPHx8aojCCEyIbUphBDWJuOAUK1WrVp0fe01AOKvxDNmzJg7/IR16F2fpmy0rbzjOGgFJIQwHqlNIYSwNhkHhBEMHzEcX+88AEye+AHHjx9XnMgY9K5PUzba6We0K1asqC6IIsuXL1cdQQiRCalNIYSwNhkHhBFUqFCBd/v0AuBaShIjR4xUnMgY9K5PUx7v9dKLLzHv+3kA7Nu3j6pVrXWfdnx8PAULFlQdQwhxE6lNIYSwNhkHhFGcO3eOu8tX5EpiAl42b3bviaZatWqqYymld32ackY7Zk8MADZslC9fXnEa/X3wwQeqIwghMiG1KYQQ1ibjgDCK4sWLExwyEIA0RyqDQwYrTqSe3vVpyhntYoWLcyH2PHcVKcGZC6fdlFAIIYQQQgghzOny5ctUKHs3F+MuAPDXX3/RsGFDxamsw3Qz2omJiVyIPQ9AxYrW2wgNIDw8XHUEIUQmpDaFEMLaZBwQRlKgQAFGhA93Ph74/kB1YQxA7/o03Yz23r17qVGjBgAvd3qZr7/52l0RDev8+fMUK1ZMdQwhxE2kNoUQwtpkHBBGk5SURNWKVTl26hgAv/zyC48//rjiVGroXZ+mm9HOcLSXRWe0582bpzqCECITUptCCGFtMg4Io/Hz8yMiMsL5OLB/EIrmWZXTuz5N12hb/WgvgCZNmqiOIITIhNSmEEJYm4wDwohefvllalXTzpDesm0z8+fPVxtIEb3r03SNdoYZ7butOaN99OhR1RGEEJmQ2hRCCGuTcUAYkbe3N+MmjnM+HjhgICkpKQoTqaF3fZqu0U4/o23VRttms6mOIITIhNSmEEJYm4wDwqjatGnDg/c/CMC+g/v48ssvFSfSn971abpGO2bvAefXVm20y5UrpzqCECITUptCCGFtMg4Io7LZbEROinQ+HjwwlMTERIWJ9Kd3fZqu0T4YcxCAIgWLki9fPsVp1NiwYYPqCEKITEhtCiGEtck4IIzs4Ycf5slWTwJw8uwJpk2bpjiRvvSuT1Md73Xt2jXy+uclzZFGgzoN+HvH325OaUznzp2jePHiqmMIIW4itSmEENYm44Awun/++YcG9RvgwEFAgcIcOX44W0ctm5ne9WmqGe1jx46R5kgDoErNKorTqDN9+nTVEYQQmZDaFEIIa5NxQBhdvXr16NSpEwCxly8xYcIExYn0o3d9mmpGe/Xq1c4D1gcMGMD48ePdGVEIIYQQQgghPMqBAweoXq06qWmp+OfJy+GjhyhRooTqWB7HVDPacoa2Jjw8XHUEIUQmpDaFEMLaZBwQZlC5cmXe7vE2AInXrlrm763e/52mmtEePnw4I0aMAGDhwoW0bdvWnREN6/LlyxQoUEB1DCHETaQ2hRDC2mQcEGZx6tQpKlWoRGJyIj5ePuyL2efxE5l616fMaJvQp59+qjqCECITUptCCGFtMg4IsyhVqhQDggYAkJKWwpDQIYoTuZ/e9WmqRjtmb4zza6ueoQ3w1FNPqY4ghMiE1KYQQlibjAPCTAIDAymUPwCAuXPnsn37dsWJ3Evv+jRVo339DO0CeQtaZhv6zHh6EQhhVlKbQghhbTIOCDMJCAhgyPBQABw4GBQ0SHEi99K7Pk3TaKempnLy7EkA7i5fQXEatQoXLqw6ghAiE1KbQghhbTIOCLPp1asXpYqXAuCnZT+xbt06xYncR+/6NE2jfeLECVLTUgGoUsO6Z2gDFCxYUHUEIUQmpDaFEMLaZBwQZpM3b17Cx9zYjTuwXyCK9sp2O73r0zSNdvqN0CpVrqQwiXrR0dGqIwghMiG1KYQQ1ibjgDCj1157jSp3axOZf2z6g6VLlypO5B5616dpGu1Dhw45v7byRmgALVu2VB1BCJEJqU0hhLA2GQeEGfn4+DB2wljn48B+gaSlpSlM5B5616dpGu30M9pWb7Rnz56tOoIQIhNSm0IIYW0yDgizeu6552hwz70A7Nq7i2+//VZxItfTuz5tDkWL8OPi4ggICCA2NjZLO4i/9dZbzrPPNm/ezH333efuiEIIIYQQQghhCb/88gtPPPEEABXKVGDfwX3kyZNHcSrzMs2M9oH9B5xfW31GOzw8/M7fJITQndSmEEJYm4wDwsxatGhB80eaA3DkxBE+++wzxYlcS+/6NM2MdqVylTl0/CB5/fKRcPUyNptNh5TGlJKSgo+Pj+oYQoibSG0KIYS1yTggzG7Tpk00btwYgGKFi3P42CHy58+vOJVr6F2fppjRTktL4/jp4wCUK13O0k02wPjx41VHEEJkQmpTCCGsTcYBYXaNGjXiuQ7PAXD+0jk++OADxYlcR+/6NMWM9qlTpyhdujQAT7Z6kqU/e+aW81l16NAhKlasqDqGEOImUptCCGFtMg4IT7Bnzx5q16pDmiOV/P4FOHzsEMWKFVMdK9f0rk9TzGin33G8ctXKCpMYw++//646ghAiE1KbQghhbTIOCE9Qo0YNXn+9KwAJiZeJiIhQG8hF9K5PUzTacoZ2RvJnIIQxSW0KIYS1yTggPMXwEcPx9dZ2HP/wg484duyY4kS5p3d9mqLRTj+jLctxIDU1VXUEIUQmpDaFEMLaZBwQnqJcuXL06dsbgOSUawwfNlxtIBfQuz5N0WjLjHZGJ0+eVB1BCJEJqU0hhLA2GQeEJwkJCaFA3oIAzPr8c3bv3q04Ue7oXZ/maLQPHHJ+LY02zi33hRDGIrUphBDWJuOA8CRFixZlUGgwAA5HGoMHDVacKHf0rk9TNNoxe2MAyOPjR8mSJRWnUe/HH39UHUEIkQmpTSGEsDYZB4Snee+99yhWuDgA9vl2Nm3apDhRzuldn4Y/3svhcJDPPz+J165SsWwlDh47oGNKY0pKSsLPz091DCHETaQ2hRDC2mQcEJ5o6tSp9OrVC4DmjzRn1W+rFCfKGb3r0/Az2hcuXCDx2lUAqtaoojiNMURGRqqOIITIhNSmEEJYm4wDwhN169aNCmUqALB6zWpWrlypOFHO6F2fhp/R3rx5M/fffz8A3bt355NPPtErohBCCCGEEEJY3tdff83//vc/ABrUbcCWf7Zgs9kUpzI2w89opz/aSzZC04SHh6uOIITIhNSmEEJYm4wDwlN16tSJ2tVrA7B1x1bsdrviRNmnd32aqtGWM7Q1b7zxhuoIQohMSG0KIYS1yTggPJWXlxeRk24svR44YCApKSkKE2Wf3vVp+EZbztD+r6VLl6qOIITIhNSmEEJYm4wDwpM99dRTNG3cFICYwzHMmTNHcaLs0bs+jd9oHzzk/FpmtDX16tVTHUEIkQmpTSGEsDYZB4Qns9lsjJs4zvk4NDiUq1evKkyUPXrXp+Eb7f279wPg7eVN6dKlFacxhgsXLqiOIITIhNSmEEJYm4wDwtM99NBDtHmyDQCnzp1i6tSpihNlnd71afhG+8ixowCUvqsM3t7eitMYQ0JCguoIQohMSG0KIYS1yTggrCBiXAQ2tB3Hw4aFERsbqzhR1uhdn4ZutGNjY7l8NR6AylUrKU5jHDVr1lQdQQiRCalNIYSwNhkHhBXcc889dO7cGYDYhFjTnB+vd30autFOv+N45WqVFSYxFrMeEi+Ep5PaFEIIa5NxQFhF+KhwfLx8AJgwbgKnTp1SnOjO9K5P0zTashHaDV27dlUdQQiRCalNIYSwNhkHhFVUrFiRnr16ApCYnEhYWJjiRHemd30autGWo70y9+GHH6qOIITIhNSmEEJYm4wDwkpCQ0Pxz5MXgBnTZ3DgwAHFiW5P7/o0dKMtM9qZCw0NVR1BCJEJqU0hhLA2GQeElZQoUYKg4EAAUtNSCR1s7L//etensRvtQzcabZnRviE8PFx1BCFEJqQ2hRDC2mQcEFYzYMAAAgoUBuDbb79l27ZtagPdht71aXM4HA5dr/ivuLg4AgICiI2NpVChQpl+T4O697Jt51a8bF4kJiXi6+urc0pjunDhAkWLFlUdQwhxE6lNIYSwNhkHhBVNmjSJ/v37A/BkqydZ+vNSxYkyp3d9GnpG+8iRIwCUKFpSmux0vvnmG9URhBCZkNoUQghrk3FAWFHPnj0pfVcZAJYtX8batWsVJ8qc3vVp2EY7ISGBi/EXAKhYSZaNp9esWTPVEYQQmZDaFEIIa5NxQFiRv78/o8beWJYd1D8IRYumb0vv+jRso319Nhugao2qCpMYT/rd2IUQxiG1KYQQ1ibjgLCqV155hWqVqgGw4a8N/PTTT4oT/Zfe9WnYRjv9juN3V5QZ7fS8vb1VRxBCZEJqUwghrE3GAWFVPj4+jJ0w1vk4sF8QqampChP9l971adhGW87QvrXSpUurjiCEyITUphBCWJuMA8LKOnTowH31GwKwe3+04fYs0Ls+Ddtoyxnat7Zp0ybVEYQQmZDaFEIIa5NxQFiZzWZj/KRI5+NBgYNISkpSmCgjvevTsI32oYOHnF/LjHZGzz33nOoIQohMSG0KIYS1yTggrK558+a0eKwFAMdOHeOTTz5RnOgGvevTsI12zN4Y59cVKlRQmMR4ZsyYoTqCECITUptCCGFtMg4IAeMmjHN+PSx0OPHx8QrT3KB3fdocivZej4uLIyAggNjYWAoVKvSff1+iaEnOXjxDsYDinLt0VkFCIYQQQgghhBDZ9eILL/L9D98DMHLkSIYMGaI4kf4MOaOdlJTE2YtnAKgoy8b/Izw8/M7fJITQndSmEEJYm4wDQmhGjR6Fl03b5XvM6LGcO3dOcSL969OQjfbRo0edX1etKWdo36x///6qIwghMiG1KTJ1AHgOSFMdRAjhbjIOCKGpVq0a3bq9CcCVxARGjx6tOJH+9WnIRjvD0V5yhvZ/TJs2TXUEIUQmpDbFf1wBngKigCDFWYQQbifjgBA3DBs+jDw+fgBM+fBjjhw5ojSP3vVpyEZbjva6vWeeeUZ1BCFEJqQ2RQbJwPPAceBtYAIwVWkiIYSbyTggxA1lypShb//3AEhOvcbwYcOV5tG7Pg3faMvRXv+1bds21RGEEJmQ2hROacDrwErADkwD+gLvAt+qiyWEcC8ZB4TIKDg4mIL5CgIwe84coqOjlWXRuz4N2WhnWDoujfZ/FCtWTHUEIUQmpDYFAA6gH/A18BXQCrChzWj/D3gF+FlZOiGEG8k4IERGRYoUIWRICAAORxohwSHKsuhdn4ZstA/sPeD8Whrt/8qbN6/qCEKITEhtCgBGAR8CHwMvpnveC5gFtEbbHG2D/tGEEO4l44AQ/9WnTx/uKlICgPkL57Nx40YlOfSuT2M22jEHAQjIX5gCBQooTmM8e/fuVR1BCJEJqU3BNGAIMBLomcm/9wXmAfcBTwM79YsmhHA/GQeE+K98+fIxcvQI5+PA/oE4HA7dc+hdn4ZrtFNSUjh9/jQAd1eooDiNMbVo0UJ1BCFEJqQ2LW4e0AvoA4Te5vvyAYuA8mjLyg+5PZkQQicyDgiRuTfffJO7y2orldesW8PKlSt1z6B3fRqu0T5+/DhpjlQAqtSsojiNMc2ZM0d1BCFEJqQ2LWw50AXoDExCuyf7dgoDywB/tGb7jDvDCSH0IuOAEJnz9fVlzPgxzsfv932ftLQ0XTPoXZ82h4p5eyAuLo6AgABiY2MpVKiQ8/nffvuNxx57DIB+/foxceJEFfGEEEKIrPkTaAE8AixAWx6eVTHAQ0BZYDVQ6PbfLoQQQphVWloaDeo2YHv0dgC+++47XnzxxTv8lHkZbkZbztC+s/DwcNURhBCZkNq0oF1o91rXB34ge002QBW0HchjgPZAokvTCSF0JuOAELfm5eVF5KRI5+Pg94NJTk7W7fp616fhGm052uvOBg0apDqCECITUpsWcxht2XcZYDHavdc5UR/tnu0NwMtAikvSCSEUkHFAiNtr1aoVzZo0A+Dg0YN8/vnnul1b7/o0XKMtM9p3Nm7cONURhBCZkNq0kLNoTbYv2ox0kVy+XjPge7SGuwfaWdxCCNORcUCI27PZbIybeKNOhoQM5cqVK7pcW+/6NFyjfWC/nKF9J507d1YdQQiRCalNi4gHngIuASvQZrRd4Rngc2AmIJNiQpiSjANC3NmDDz5Iu2faAXDm/GmmTJmiy3X1rk/DNdox+7RGO79/AQoXLqw2jEGtWbNGdQQhRCakNi0gEegA7EObya7q4td/BW3X8rHAeBe/thDC7WQcECJrRo8Zjc2mtaLhI0Zx8eJFt19T7/o0VKOdlpbGyTMnAChftrziNMZVqVIl1RGEEJmQ2vRwqcD/gPVoS7wbuOk6fYEQIBBthlsIYRoyDgiRNXXq1OHVV14BIP5KHJGRkXf4idzTuz4N1WifPHmSlFRtF5iqcob2LaWkyE45QhiR1KYHc6DdO70A+A7tKC93CgfeArr9e00hhCnIOCBE1o0YOQIfb+24jonjJ3Ly5Em3Xk/v+jRUo51+I7RKleUTwVs5deqU6ghCiExIbXqwwcBnaPdPt9PhejZgKvAc8BLwmw7XFELkmowDQmTd3XffTa933wEgKTmJkSNGuvV6etenYRtt2Qjt1ho2bKg6ghAiE1KbHmoiEIF2z/RrOl7XG/gKeBhoC/yt47WFEDki44AQ2TN48GDy+mnnY3766afs37/fbdfSuz4N1WjLGdpZM3/+fNURhBCZkNr0QHOAAUDwv/+rNz8gCqgJPIm2CZsQwrBkHBAie+666y4GDgoCIDUtldCQULddS+/6tDkcDiWndcbFxREQEEBsbCyFChUCoEePHsyYMQOATZs2cf/996uIZniJiYn4+/urjiGEuInUpodZBDwLvA58gracW5VzaDPbScA6XHekmBDCpWQcECL74uPjqVD2bi7FazuP//333zRo0MDl19G7Pg01oy1naGfN+PFy5osQRiS16UHWAC8C7YFpqG2yAYoDy4EUoDVwQW0cIUTmZBwQIvsKFizI8LBhzscDAwe65Tp616ehZrSr3F2VA0di8Pf150rSFWw21e9shBBCWM5W4FGgIbAEMNLkVDTQDKgOrADyq40jhBBCuEJSUhKVK1ThxJnjAPz66688+uijilPljmFmtB0OB8dPHgOgbOly0mTfRnh4uOoIQohMSG16gP1o90JXA+ZjrCYboBZa8/8P8DxwTW0cIURGMg4IkTN+fn6MHjfK+TiwXyCung/Wuz4NM6N95swZSpYsCUCrJ1rx84qfVcQyhVOnTlGqVCnVMYQQN5HaNLmTwEOAL/A7cJfaOLe1Engardn+CgN9bC6Etck4IETOpaamUqdGHfbE7AG0zcvat2/vstfXuz4NMzSnP9qrctXKCpMY36JFi1RHEEJkQmrTxC6i3ft8De1eaCM32QBPAF8D3wLvAUo+MhdC3EzGASFyztvbm3ETxzkfB/UPIjU11WWvr3d9GqbRlqO9ss4du/AJIXJPatOkrqCdU30crck2yxD0PNpGbVOAMMVZhBCAjANC5Fbbtm1pdF9jAPYe2MtXX33lstfWuz4N02inn9GuWLGiuiAmcP78edURhBCZkNo0oWTgBbQN0JYAtZWmyb63gXBgGDBVcRYhhIwDQuSSzWZj/KRI5+OQoMEkJSW55LX1rk9DNtoyo317V69eVR1BCJEJqU2TSUM7I3sFYAceUBsnx0KAvsC7aEvJhRDKyDggRO498sgjtHqiFQAnzhxn+vTpLnldvevTMI32wQMHnV9Lo3171apVUx1BCJEJqU0TcQD90O5z/hJopTZOrtiACcD/gFcB2UtUCGVkHBDCNcZGjnV+PXzICOLj43P9mnrXp2Ea7Zg9MQD4ePvKbo13sHr1atURhBCZkNo0kVHAh8DHwEuKs7iCFzAL7QOD54ANauMIYVUyDgjhGg0aNKDTi50AuBR/kYkTJ+b6NfWuT0Mc71WwYEEK5C3IlaQEKpS5m8PHD6mIZBqxsbEEBASojiGEuInUpklMB3oCI4EhirO42hW03dN3AWuAOmrjCGE1Mg4I4Tr79++nZo2apKalktcvH4ePHuKuu3J+LIje9WmIGe1Lly5xJSkBgCrV5GivO/noo49URxBCZEJq0wTmAe8AvYFQxVncIR+wCCiH1nAfvv23CyFcS8YBIVynatWqdO/eHYCrSVcYNWpUrl5P7/o0xIz2gQMHuPfeewF48803+eyzz1REEkII4clWAG3Qdhn/EoN81OwmJ4GHAR9gLVBCbRwhhBAiJ06ePEmluyuRlJyEj7cv+2P2mWY/L0O8zZAztLMnPDxcdQQhRCakNg3sT+BZ4AlgNgYZ/dyoNNqZ4LHAU0Cc2jhCWIWMA0K4VunSpek3oB8AKanJDBs6LMevpXd9GmJG+/PPP6dv374AfPHFF7zyyisqIpnGpUuXKFy4sOoYQoibSG0aVDTa7G5NtFntfGrj6Gob8ChwH9o54f5q4wjh6WQcEML1Ll26xN3l7iYuIQ6bzYvt2/+hTp3sb0Kid30a4jN9mdHOnq+++kp1BCFEJqQ2DegI2k7cZYDFWKvJBqiPds/2H0BnIEVtHCE8nYwDQrhe4cKFGTx0MAAORxqDBg7K0evoXZ+Ga7QrVqyoLIdZPProo6ojCCEyIbVpMGfRmmwftLOli6iNo0wz4HtgIdAD7QxxIYRbyDgghHv07t2bEkVLArDop0X88ccf2X4NvevTEI12zG7tDG0vmzdlypRRnMb4YmJiVEcQQmRCatNA4oGngYtoy8WtPrQ8g3bO9kwgZxMBQogskHFACPfImzcv4WPCnI8D+weS3Tug9a5PQzTah48eAaBU8VL4+PgoTmN8efLkUR1BCJEJqU2DSAI6AHvRZrKrKk1jHK8CE4GxwHjFWYTwUDIOCOE+r7/+OpUraEdBr9uwjp9//jlbP693fSpvtOPj44lLiAWgcpVKitOYQ8mSJVVHEEJkQmrTAFLR7kVej3ZvcgOlaYynHxACBAKfK84ihAeScUAI9/Hx8WHM+DHOx4H9AklLS8vyz+tdn8ob7aNHjzq/rly9ssIk5rF582bVEYQQmZDaVMwB9AQWAN8Bj6iNY1jhwFtAN7Q/KyGEy8g4IIR7dezYkfp16wOwY/cO5s2bl+Wf1bs+DdVoy0ZoWdO+fXvVEYQQmZDaVGww8CnafcjtFGcxMhswFe1c8ZeA39TGEcKTyDgghHt5eXkROTHS+Tj4/WCSk5Oz9LN616fyRvvIkSPOr+Vor6z59NNPVUcQQmRCalOhiUAE2r3HrynOYgbewFy088XbAn+rjSOEp5BxQAj3e+KJJ3j0YW0H8cPHDzNz5sws/Zze9WlzZHe7NheJi4sjICCAPn368OGHHwKwcuVKWrRooSKOEEIIs/oCrbkORmu2RdbFA4+jnTf+O1BNbRwhhBAiKzZu3MgDDzwAQPEid3H42CHy5cunOFVGyme0jx6RpePZFR4erjqCECITUpsKLALeQLvfeLTiLGZUEFiKdsZ4K+CE2jhCmJ2MA0Loo3HjxnRo1wGAcxfPOidub0fv+lQ+o12vdn3+2bUNGzYSkxLlWIQsuHr1Knnz5lUdQwhxE6lNna0BWqOdl/0dIKdD5twR4CGgMNo920WVphHCtGQcEEI/0dHR1KlTF4cjjYL5CnL42GGKFClyy+/Xuz7Vz2j/e4b2XUVKSJOdRVOnTlUdQQiRCalNHW1Fu7e4Cdq9xtJk504FYDlwEngGSFAbRwizknFACP3UqlWLrq9pG7PEX4lnzJgxt/1+vetT+Yz2dY3va8yfm/9UEcV09u3bR7VqciOdEEYjtamTGLTZ13LAKqCQ2jgeZSPaPdvN0I7+ks+/hcgWGQeE0NeRI0eoWrkayanXyOPjx4FDMZQtWzbT79W7PpXPaF9XpXoV1RFMY8uWLaojCCEyIbWpg5NASyAA7d5iabJdqzEwH/gF6AqkqQwjhPnIOCCEvipUqMC7fXrx//buP8jrqt7j+HNjbQ1YSXBDSRQlLZ1RMm9lo6E0IOSGP/Ju8iO6lt1Ep1soOVhw6+pdMdOrmSJ6xR0mYyk0kwRTURO9TjN2vQrOBS62w6+EBJFYZGNZdvf+cYBR/EK78N3POZ/9Ph//sMjy/b5mnTfvfe85n3MAdu5q5oZ/u2G/n5t1fSYzaA86YVDsCLlRVVUVO4KkAqzNLraF8Ez2TsI2Z7/cXWM4YTv+L4HvAlH2vUn5ZB+Qsjd16lR6Hd4bgAceqGPlypUFPy/r+kxm0PYO7Y6rqKiIHUFSAdZmF2oiPJP9BmHItmV0rRpgJnA38O+Rs0g5Yh+QstevXz+unzoFgLb2Vqb+YGrBz8u6PpMZtL3aq+MaGhpiR5BUgLXZRVoIg9+rwOPAqVHTlI4rgVrgR4DnO0kdYh+Q4pg0aRJ9+/QD4OFfP8zLL7/8vs/Juj6TGbRd0e648847L3YESQVYm12gjXBP9iLgEeCzceOUnB8Qto9/m7CVXNIB2QekOHr37s0Ntf+29/dTvjflfZ+TdX0mM2gfd9xxsSPkxoMPPhg7gqQCrM0iaweuJTwv/CBwftw4JakMuB0YD3wNeDJuHCl19gEpnm9961sce/SxADzz3DM8++yz7/nzrOszieu9jqzsy9uNm2PEyKW2tjY+8IFkfkYiaTdrs8huAqYRti1fFTlLqWsBLgF+TziR/Ky4caRU2QekuH7xi18wYcIEAD415Ez++5U/UlZWBmRfn9H+Jdi5c+fej9023jnTp0+PHUFSAdZmEd1LGLJvxCE7BYcB84AzgGrgf+PGkVJlH5DiGjt2LKecdAoA/7PkZR599NG9f5Z1fUZb0V6yZAmf/OQnAaj5xxrmPTQvRoxc8qelUpqszSJ5CLiM8FzwnYTty0rDX4Fzgc3Ai3j6u7QP+4AU34IFCxg9ejQAJ51wEstWLqO8vLx0VrTXrVu39+PjB9mpO+Pmm2+OHUFSAdZmESwiPA88FvgpDtmp+TDwBFBBeGZ+Y9Q0UnLsA1J81dXVnPUP4Rmn11e9vvfZ7KzrM9qgvXbt2r0fu3W8c/Y8dyApLdbmIXqJ8BzwcGA2CR3Xqfc4hnCX+Vbgi0Bj3DhSSuwDUnxlZWXcesete38/dco0duzYkXl9JrGi7R3anfPcc8/FjiCpAGvzECwnDG1DgIcJzwQrXYMJJ5A3ABcDO6KmkZJhH5DScM455zDq/FEAbNi0npkzZ2Zen9EG7TVr1uz92BXtzhk8eHDsCJIKsDYP0lrCNuQBwAKgZ9w46qAhwGPAH4BxwK64caQU2AekdNxy6y2U7X4G7YYf3sjRRx+d6ftHG7RXN6ze+7GDduc0NzfHjiCpAGvzIGwiDNnlhBXSI+PGUSd9nnB43W+BiYS7z6USZh+Q0nH66aczZswYALa+89fM79Eu7+xfaG9vZ9u2bZ1+o+bm5vf849PwegMAvT7YG16FRh/y6rA1z6+hsdyvl5Qaa7OTmoBJwFuEQ9B64/O+eTQUmEEYtCuBG+LGUZH8DlhJOGVeHWYfkNIy5aIpzPvVPFrbW/ll/S/50XU/4iODPnLIr1tZWbn3fu796fT1Xo2NjfTp0+eQgkmSJEmSlEdbt27liCOOOODndHrQLsaK9o4dO7jlpluYNXsWV375Sn7y3Z90+vVKVeP2RgZeMJB1j6/jiF4H/p8rKTvW5kHaAZyOz2V3FzcC/wHcQ7imTfnzf8BI4ERgOnB43Dh5Yh+Q0rTx7Y2c+81zWb95PX9a+ieqjq865NfskhXtYvnzn//MwIEDWbduHccee2yMCLm0Z0dBR36KIik71qZEeEZ7IvAA8Gvgorhx1ElrgbMJ96U/j2cmdJJ9QErXli1b6Nu3b6b16S2lkiSpOMoIq9kXA5cBi6OmUWd4MKGkbqxHjx6Zv6eDtiRJKp4ewBzgHOBC4JW4cdQB24ALgC2EgwkHxI0jSd1BtEG7oqLiPb+qYyoqKhg2bJhfNykx1qb0LhXAb4CTgVHA63Hj6ACaCTsQVhJWsj8WNU2u2QekdMWoz2jPaPscy8F788036d+/f+wYkvZhbUr7eIuwst0MvIgrpalpBb4CPE4YsofGjdMd2AekdGVdn24dz6H58+fHjiCpAGtT2sdRwFPALsJJ1lvixtG7tANXAfOBX+GQXST2ASldWdeng3YOnXnmmbEjSCrA2pQKOI4wbG8AvgRsjxtHu00F7iecEH9h5CzdiH1ASlfW9emgnUNvvvlm7AiSCrA2pf04hbA9eQlQA7TEjVPybgduBm4D/ilylm7GPiClK+v6dNDOoZ07d8aOIKkAa1M6gM8AjwJPA5cDbTHDlLCfA5OB63f/qqKyD0jpyro+HbRzaPDgwbEjSCrA2pT+juGEq7/mApMIzwkrO48B3wC+CUyPnKWbsg9I6cq6Ph20c2L79u0sXLiQESNGsHjx4thxJL3LnvqsqamJHUVKXw0wE7gLqI2cpZQ8Tzhh/CLC178sbpzupqmpibq6Ou6++26uuOIK2trcsiGl5J133mHChAmsXbs2s/d00M6JXr16UV1dTUtLC1/96ldjx5H0Lnvq86ijjoodRcqHKwlD9g8JQ5+61qvAaOBzhB0F5VHTdEvLly+noaGBH//4x7z22ms0NzfHjiRpt7q6Om699VaWLFmS6Q/BvEc7Z8477zyGDx/OtGnTYkeRtI8TTjiBVatWxY4h5UM7cA3wM8JW8svixum2GoCzgWOBZwG/5eoymzZt4utf/zpjxoxxUURKUFlZGatWrWLQoEGZvJ8r2jnkkC2l6fjjj48dQcqPMsLp1+OBCYQrwFRcG4ARQB/gdzhkd7GqqioWLFjAnDlzWLFiRew4kiJz81AO1dbWOmxLCVqzZk3sCFK+fACoA7YAlwDPAGdFTdR9bAFGAjuB3wNVceN0dzNmzKC8vJxNmzZRXl5OQ0MDn/jEJ2LHkhSRK9o50dzcTH19PatXr+aYY47x2R8pIXvqs7W1lblz51qfUmccBswDzgCqgWVx43QLTYRnst8g7BRws02XGzZsGJWVlZx44omcdtppjBo1KnYkSZE5aOdERUUF48aNY/Xq1TQ1NVFRURE7kqTd9tTnddddx9ixY61PqbN6AguAjwLnA24OOXgthJPdXwUeB06NmqZknHrqqYwbN47Nmzczffp0evToETuSpMgctHNo2LBhsSNIKsDalA7Bh4EngQ8Shu2NUdPkUxvhnuxFwCPAZ+PGKUX2AUl7+Ix24srKOn7RZaQD5KWSt786tSalTjqGMCSeDXyR8GyxB3h1TDtwLeH6rrmEH1YoM/YBKV1z587l+eefB+D6669n6NChXH311V3+vl7vlUNPPPGEz/5ICbI2pSJZApwLfIqw/fnwuHFy4SZgGnAPcFXkLCXMPiClK+v6dOt44rZv387ChQsZMWIEABs3buSll16ivr6eyZMns2vXrsgJJTU1NVFXV8eyZcu44ooraGtrix1JyrchwGPAH4BxgK3uwO4lDNk34pAd2a5du5g8eXLsGJIK6NevX6bv56CduF69elFdXU1LSwsAzz77LMuXL2fcuHG0tLTw9NNPR04oafny5TQ0NNC7d29ee+01Tx2XiuHzhNPIfwtMJGyN1vs9BFwN/Ath2FY07e3t1NfXs3nz5thRJBXw6quvZvp+Dto5M2bMGO644w4A/vKXv3hHo5SAM888k0mTJvHWW2/xne98hw996EOxI0ndw2jCPdsPAN+PnCVFi4DxwFjgp0DHj3VRF1i0aBETJ06MHUPSfowePTrT93PQzqFZs2axcOFCampqGDRoUOw4koCqqira2tqYM2cOK1asiB1H6j6+BtwO3ALcFjlLSl4CLgGGA7PxO7rIGhoa6N+/P/Pnz48dRdJ+zJo1K9P385/lHBo5ciT9+/enpqaGZcuWxY4jlbwZM2Zw3333MW3aNMrLy2loaIgdSeperiGsaF9HGCpL3XLCqexDgIeBw+LGUdiSumrVKj7+8Y+zdu1ali5dGjuSpH1Mm5bt8zUO2olrbm6mvr6e1atXM3fuXBYvXszo0aP3Hk3vtRFSfMOGDaOyspLx48dz2mmneeKs1BVuAv4Z+CZQyouGawlXdw0AFgA948ZRcOmll1JdXc38+fNpbm72+zMpQbW1tZm+n9d75dCOHTs4/HDvOpFSY21KXawVuIwwYD5JuAKslGwiHBLXDLxIGLaVFPuAlK6s69MV7Ry66667YkeQVIC1KXWxHsAc4BzgQuCVuHEytQ24ANhCOATNITtJ9gEpXVnXp4N2Dl188cWxI0gqwNqUMlAB/AY4GRgFvB43TiaagYuBlcATwMeiptEB2AekdGVdnw7aOfTyyy/HjiCpAGtTykgl8DhwJOF55fVx43SpVsIVXi8S7hQ/I24cHZh9QEpX1vXpoJ1DRx99dOwIkgqwNqUMVQFPAbuAkYQt1d1NO3AV8Cgwj9J7Jj2H7ANSurKuTwftHCovL48dQVIB1qaUseMIw/YG4EvA9rhxim4acD8wi/BMupJnH5DSlXV9Omjn0KpVq2JHkFSAtSlFcAphG/kSoAZoiRunaO4ApgO3AZfHjaKOsw9I6cq6Ph20c2jo0KGxI0gqwNqUIvkM4YC0pwlDaVvUNIfu58C1wBRgcuQs6hT7gJSurOvTQTuH6uvrY0eQVIC1KUU0gnD111xgEuH55jx6DPgGcAVwc+Qs6jT7gJSurOuzrL29PUoramxspE+fPmzdupUjjjgiRoTcam1tpUePHrFjSNqHtSkl4F7CAWI3Av8aOUtnvUA4Rf2LhMPPfNw3d+wDUrqyrk9XtHPo5pv9EbeUImtTSsBEoBb4ITAzcpbOWEI40O1zQD0O2TllH5DSlXV9uqItSZK6l3bgGuBnhK3kl8WN83c1AGcDHwV+D/htkSTlnivaOVRbWxs7gqQCrE0pEWXA7cB4YALhCrBUbSA8X94H+B0O2TlnH5DSlXV9uqKdQ+vWrWPgwIGxY0jah7UpJaYFuISwSvwMcFbcOO+zBTgXeBt4ETg+bhwdOvuAlK6s69MV7Rx65plnYkeQVIC1KSXmMMKhYmcA1cCyuHHeowkYDbxBWHF3yO4W7ANSurKuTwftHDr55JNjR5BUgLUpJagnsIDw/PP5wJq4cYCw0v4V4BVgIXBq3DgqHvuAlK6s69NBO4f+9re/xY4gqQBrU0rUh4EngQ8Shu1NEbO0Ee7Jfgp4hPS2s+uQ2AekdGVdnw7aObR58+bYESQVYG1KCTsGWARsJdxT3RghQztwLTAHeBAYGSGDupR9QEpX1vXpoJ1DQ4YMiR1BUgHWppS4wYSV7T8BFwM7Mn7/6cCdwAzSv3JMB8U+IKUr6/p00M6hBQsWxI4gqQBrU8qBIcBjwB+AccCujN73PmAacANwVUbvqczZB6R0ZV2fXu+VQ01NTfTs2TN2DEn7sDalHHmMcPXX5cD9hLu3u8pDhBXsbxNWtLvyvRSVfUBKV9b16Yp2Dt1+++2xI0gqwNqUcmQ0UAc8APygC99nETAeGAv8FIfsbs4+IKUr6/p0RVuSJJWuOwgHlN0GTC7ya78EfAEYCjxKOPVcklQSXNHOodra2tgRJBVgbUo5dA3wfeB7wOwivu5y4ALgdMLWcYfskmAfkNKVdX26op1DmzZtoqqqKnYMSfuwNqWcageuJGwlfwS48BBfby1wNuH+7sVA30N8PeWGfUBKV9b16Yp2Dj3yyCOxI0gqwNqUcqoMmEm48usrhOH4YG0CzgfKCVeJOWSXFPuAlK6s69NBO4c+/elPx44gqQBrU8qxHsAc4BzCivYrB/Ea2wjbxbcATwEDipZOOWEfkNKVdX06aOfQhg0bYkeQVIC1KeVcBfAb4GRgFPB6J/5uM+G6sJXAE8BJRU+nHLAPSOnKuj4dtHOotbU1dgRJBVibUjdQCTwOHEnYAr6+A3+nlXCF138BvwXO6LJ0Spx9QEpX1vXpoJ1DgwYNih1BUgHWptRNVBG2fu8CRhK2gu9PO3A1YSX8V8C5XZ5OCbMPSOnKuj4dtHPohRdeiB1BUgHWptSNHEcYtjcAXwKa9vN504D/BGYBF2UTTemyD0jpyro+vd4rh95++2369vUYUyk11qbUDb0EfAEYCswHDnvXn90BXAvcSriHWyXPPiClK+v6dEU7h+65557YESQVYG1K3dBnCNvCnwYuB9p2//efE4bsKThkay/7gJSurOvTFW1JkqS/5yHgMuDbwHDgy4TB+37CPdySJL2LK9o5VFtbGzuCpAKsTakbqwHuAe4CLiXctX0vDtl6D/uAlK6s69MV7RxqbGz0ayYlyNqUSsD5wB+BtYSrwKR3sQ9I6cq6Pl3RzqHZs2fHjiCpAGtTKgFPAm/gkK2C7ANSurKuTwftHBo+fHjsCJIKsDalElAG9IwdQqmyD0jpyro+HbRzaMWKFbEjSCrA2pSk0mYfkNKVdX06aOdQr169YkeQVIC1KUmlzT4gpSvr+nTQzqEsL1qX1HHWpiSVNvuAlK6s69NBO4eWLl0aO4KkAqxNSSpt9gEpXVnXp9d75dD69esZMGBA7BiS9mFtSlJpsw9I6cq6Pl3RzqG6urrYESQVYG1KUmmzD0jpyro+XdGWJEmSJKmIXNHOodra2tgRJBVgbUpSabMPSOnKuj5d0c6h5uZmKioqYseQtA9rU5JKm31ASlfW9emKdg7deeedsSNIKsDalKTSZh+Q0pV1fTpo59Cll14aO4KkAqxNSSpt9gEpXVnXp1vHJUmSJEkqomiDdnt7O9u2baOyspKysrIYESRJkiRJKrpog7YkSZIkSd2Rz2hLkiRJklREDtqSJEmSJBWRg7YkSZIkSUXkoC1JkiRJUhE5aEuSJEmSVEQO2pIkSZIkFZGDtiRJkiRJRfT/jNhoMiizW7gAAAAASUVORK5CYII=\n", + "text/plain": [ + "Graphics object consisting of 25 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:58,173 Plotting perturbation... done\n", + "INFO: 2023-09-20 09:43:58,174 Thus the function is NOT extreme.\n", + "INFO: 2023-09-20 09:43:58,180 Finite dimensional test: Solution space has dimension 1.\n", + "INFO: 2023-09-20 09:43:58,196 Finding epsilon interval for perturbation...\n", + "INFO: 2023-09-20 09:43:58,197 Finding epsilon interval for perturbation... done. Interval is [-16/13, 24/65]\n", + "INFO: 2023-09-20 09:43:58,197 Plotting perturbation...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAALkCAYAAADwEE0uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xN5x/A8c/NXhJ7jyBCUptabY3SosOsXVfppGZVUdTeVatoSytaRO36qVK0apUSNVqxc2PFliAiJDm/P47c5mbem9yZfN+vV17k3nOe872X55zznGd8NYqiKAghhBBCCCGEEMIsnGwdgBBCCCGEEEIIkZtIQ1sIIYQQQgghhDAjaWgLIYQQQgghhBBmJA1tIYQQQgghhBDCjKShLYQQQgghhBBCmJE0tIUQQgghhBBCCDOShrYQQgghhBBCCGFG0tAWQgghhBBCCCHMyGYNbUVRuHfvHoqi2CoEIYQQQgghhBDC7GzW0L5//z5+fn7cv3/fViE4rA0bNtg6BCFEOqRuCiFE3ibXASHsl7Xrp0axUZfyvXv38PPzIyYmBl9fX1uEIIQQQgghhBBCmJ3M0XZAkyZNsnUIQoh0SN0UQoi8Ta4DQtgva9dP6dF2QA8ePMDHx8fWYQghUpG6KYQQeZtcB4SwX9aun9Kj7YAWL15s6xCEEOmQuimEEHmbXAeEsF/Wrp/S0HZArVu3tnUIQoh0SN0UQoi8Ta4DQtgva9dPF6seTZjFiRMnqFKliq3DEEKkInVTCCHyNnu6Djx+/JiEhARbhyGE3Th9+jRly5Y1alsXFxfc3NxydDxpaDug/Pnz2zoEIUQ6pG4KIUTeZi/XgcePH/Pvv/+SlJRk61CEsBulS5cmPDzcqG2dnJx45plnctTYloa2A8qXL5+tQxBCpEPqphBC5G32ch1ISEggKSkJf39/PD09bR2OEA4lLi4OnU5HQkKCNLTzmvDwcBo0aGDrMIQQqUjdFEKIvM3ergOenp54eXnZOgwhHFJMTAyPHj3C3d0db29vk/c3y2JoDx48oGPHjly8eNEcxYksvPTSS7YOQQiRDqmbQgiRt8l1QIjcY/PmzXz//ff8+OOPxMbGmrx/jhva3333HTNnzmT9+vUyD8RKli5dausQhBDpCAkJsXUIQgghbEiuA0LkHt7e3ri5uXHv3j3i4+NN3j/HDe0+ffowfvz4nBYjjDBu3DgqVQpkz5493L1719bhCCFSGT16tK1DcDyKYusIhBDCbEaPGmXrEIQQZuLu7o67u3u297daHu34+Hju3btn8COMd+fOHSZOnMi5c2fZvn07V69etXVIQohUJk2aZOsQHMuSJeDmBn/9ZetIhBAi53r3ZpKbG8gITyEE2Wxoh4aGcv78eWbMmEF8fLz+5nL+/PlcvXqVb7/9lkOHDrFt2zbWr1/PyZMnadeuHX5+fvqfMmXKAPDNN99w/PhxNm3axM8//8yRI0f4+uuvuXnzpr7cSZMm8fDhQ2bNmsXp06dZvXo1O3fuZP/+/YSEhHDp0iWDbRMTE5k6dSqRkZH88MMP7N27l127drFq1SrOnj3LzJkzefTokcE+165dY/HixRw6dIitW7eyYcMG/vnnH+bPn09MTIzBttHR0Xz55ZecOHGCjRs3smXLFsLCwvjmm2+4fv26wbZxcXHMmjWLs2fP8uOPP/Lbb7+xb98+vv/+ey5evMjkyZNJSkpi0qRJJCUlMXnyZC5evMj333/Pvn37+O233/jxxx+5ffs2ri7/rV331VffMGnSJK5fv84333xDWFgYW7ZsYePGjZw4cYIvv/yS6Ohog1hiYmKYP38+//zzDxs2bGDr1q0cOnSIxYsXc+3aNYNtHz16xMyZMzl79iyrVq1i165d7N27lx9++IHIyEimTp1KYmKiwT6XLl0iJCSE/fv3s3PnTlavXs3p06eZNWsWDx8+NNj25s2bfP311xw5coSff/6ZTZs2cfz4cRYsWMCdO3cMtr137x7z5s3j5MmTrF+/nm3btnHo0CG+/fZbrl69arBtfHw8M2bM4Pz584SGhrJr1y727NnD8uXL0el0TJs2jYSEBIN9Ll++zNKlSzlw4ADbt29nzZo1nDp1itmzZ/PgwQODbW/dusVXX33F0aNH2bx5M//73/84evQoixYt4vbt2wbb3r9/nzlz5nDy5EnWrVvHr7/+ysGDB/nuu+/SxP3kyROmT5/OhQsXWLFiBbt372b37t2sWLGCCxcuMH36dJ48eWKwz9WrV/nuu+84ePAgv/76K+vWrePkyZPMmTOH+/fvG2x7+/ZtFi1axNGjR/nf//7H5s2bOXr0KF999RW3bt0y2PbBgwfMnj2bU6dOsWbNGrZv386BAwdYunQply9fNtg2ISGBadOmodPpWL58OXv27GHXrl0ZniOS407vHDFv3jzu3btnsO2dO3dYsGCBw5wjRowYYbNzxNmzZ5k1axZxcXEG5dv1OeLQIU4nJDBrwgQ5R8g5Ik+cI5K3lXNELr2PuHSJugkJrJkyxebniCNHjiCEyJnTp0/z4MEDjh07Bvx3jjCWRlHMM25Po9EQERGBv79/uu/Hx8cbBHbv3j3KlClDTEwMvr6+5gghV1MUBQ83Nx4nJADg4uzK2XNnMvy+hRDWN23aNEaMGGHrMBzHjBkwahTUqAGHD9s6GiGEyJnOnZm2fj0j3n4bvv7apqE8fPiQ8PBwgoKC8sSq4yEhIQwePJjo6Ghbh2Jxlvyseel7zExy/dHpdERHR3P//n20Wi0FCxY0qRyrDR13d3fH19fX4EcY7+bNm/pGNkBC4hM+/nic7QISQqTRtWtXW4fgWCIjoWRJCAuDf/+1dTRCCJEzFy/StVIl+PFHePTI1tHYjbfeeguNRqP/KVSoEK1ateL48eNmO0aXLl04c+aM2cozp5CQEPLnz2/rMNLw9/dnzpw5Bq9Z43t88uQJw4cPp1q1anh7e1OyZEm0Wm2unBZrtYa2yJnIyEj931006p/r1n3PiRP/2CgiIURqe/futXUIjkWng6pVoUAB+OEHW0cjhBA5o9Oxt0wZiImB//3P1tHYlVatWhEVFUVUVBQ7d+7ExcWF1157zWzle3p6UrRoUbOVZy5Pnjyx6/JSs8b3+PDhQ44cOcKYMWM4cuQI69ev58yZM7Rp08aix7WFHDe0Q0ND6du3LwAjRoxg4cKFOQ5KpKXT6fR/r+1f7unfFN55R1Y5FsJelCtXLuuNxH8iI6FCBejWDZYvh8REW0ckhBDZExcH169Trm5dqF8fvv/e1hHZFXd3d4oXL07x4sWpWbMmw4cP59KlS9y8eVO/zfDhwwkMDMTLy4sKFSowZswYg4blsWPHaNasGfny5cPX15c6depw+Om0o/R6jTdt2kTdunXx8PCgcOHCdOjQIcP4xo0bR82aNfn6668pU6YMXl5edOrUKc0Q6qVLlxIUFISHhwdVqlQxaPfodDo0Gg2rV6+madOmeHh4sHz5cnr37k1MTIy+R3/cuHGAOu1248aNBuXnz59fnyIuo/KSbdy4kcDAQDw8PHjppZe4dOmS/r3z58/Ttm1bihUrho+PD88++yw7duzQv9+0aVMiIyMZMmSIPq6MvsdFixZRsWJF3NzcqFy5Mj+kejCu0WhYsmQJ7du3x8vLi0qVKrFp06YMv2s/Pz+2b99O586dqVy5Mg0aNGD+/PmEhYVx8eLFDPdzRDluaHfr1o1FixahKAqrVq2iX79+5ohLpJKyR7tZuw6U9FD//tdfP7Fz5582ikoIkVKiNBSNpyhqj7a/P2i1cOUK/P67raMSQojsedpASCxaVD2n/fIL3Lhh46Ds04MHD1ixYgUBAQEUKlRI/3q+fPkICQnh5MmTzJ07l8WLFzN79mz9+z169KB06dIcOnSIsLAwRowYgaura7rH+Pnnn+nQoQOvvvoqf//9Nzt37qRu3bqZxnXu3DlWr17N//73P7Zu3crRo0f58MMP9e8vXryYUaNGMXnyZMLDw5kyZQpjxoxh2bJlBuUMHz6cgQMHEh4eTvPmzZkzZw6+vr76Hv2PP/7YpO8rZXktW7YE1F7hyZMns2zZMvbt28e9e/cMpq89ePCAV155hR07dvD333/TsmVLXn/9dX1Ddv369ZQuXZoJEybo40rPhg0bGDRoEEOHDuWff/7h/fffp3fv3vye6no9fvx4OnfuzPHjx3nllVfo0aMHd+7cMfozJj+IsMch9jmi2EhMTIwCKDExMbYKwaH0799fARRAGTdunPJNg9r630uXbqwkJSXZOkQh8ryVK1faOgTHceuWooCirFmjKElJihIYqChvvmnrqIQQInu2bVMUUFbOmaOe31xdFWX2bJuFExsbqxw+fFiJjY21WQzJevXqpTg7Oyve3t6Kt7e3AiglSpRQwsLCMt1vxowZSp06dfS/58uXTwkJCUl326VLlyp+fn763xs2bKj06NHD6BjHjh2rODs7K5cuXdK/9ssvvyhOTk5KVFSUoiiKUqZMmTTX+YkTJyoNGzZUFEVRIiIiFECZM2dOprElA5QNGzYYvObn56csXbo0y/IA5cCBA/rXwsPDFUA5ePBghp8xODhYmT9/vv73cuXKKbNT/R9NHWujRo2Ud99912CbTp06Ka+88orB5xg9erT+9wcPHigajUb55ZdfMowlpbi4OKVOnTom/XtZWnL9Wbt2rbJkyRJl9uzZyu3bt00uR+ZoO4iI8xf0f3/ppZfoPXoCgfnU3y9f3s1XX22zUWRCiGT16tWzdQiOI3mUjr8/aDRqD9D69XD/vk3DEkKIbImMBCcn6rVsCYUKwWuvyfDxFJo1a8bRo0c5evQoBw8e5OWXX6Z169YGIzbXrl3L888/T/HixfHx8WHMmDEGQ4k/+ugj3nnnHVq0aMG0adM4f/58hsc7evQozZs3NynGsmXLUrp0af3vDRs2JCkpidOnT3Pz5k0uXbrE22+/jY+Pj/5n0qRJaeLIqufcVOmV5+LiYvB6lSpVyJ8/P+Hh4QDExsbyySefEBwcTP78+fHx8eHUqVMmD80ODw/nueeeM3jtueee0x8nWfXq1fV/9/b2Jl++fNwwYkTHkydP6Nq1K0lJSbly+rE0tB3E+dOnAXB1dmbPnj24tGzJJO//Vm4fNmwECQlJtgpPCAGsW7fO1iE4juR1J5Lntb/5Jjx8qDa2hRDC0eh0UKoU65LnpvbqBX//DSdO2DQse+Ht7U1AQAABAQHUq1ePb7/9ltjYWBYvXgzAgQMH6Nq1K61bt2bz5s38/fffjBo1isePH+vLGDduHP/++y+vvvoqv/32G8HBwWzYsCHd43l6euY45uR5yxqNhqQk9R578eLF+gcGR48e5Z9//uHAgQNpPqux5Supsiynt9hZRuUlx5fea8OGDWPdunVMnjyZPXv2cPToUapVq2bwfRor9XEURUnzWuoh/Cm/s4w8efKEzp07ExERwfbt23NlRippaDsARVG4dPUKACWKFGXw4MHg4kLHHu9Sp4j6Hz029hgffvijDaMUQgwaNMjWITiOyEjw9ITChdXfy5WDZs2kB0gI4ZgiI6Fcuf+uA61bqz3bklEhXRqNBicnJ+Li4gDYt28f5cqVY9SoUdStW5dKlSoZ9HYnCwwMZMiQIfz666906NCBpUuXplt+9erV2blzp0kxXbx40SDF1J9//omTkxOBgYEUK1aMUqVKceHCBf0Dg+Sf8uXLZ1qum5tbumu4FClSxGBu9NmzZ3n48KFRsSYkJOgXggM4ffo00dHRVKlSBYA9e/bw1ltv0b59e6pVq0bx4sUNFlbOLK6UgoKC0mRU2b9/P0FBQUbFmZHkRvbZs2fZsWOHwVz93EQa2g4gOjqa2Kf5GCtUqsTMmTMBcOrVi6lP/nsStmTJaKKiTH9SJYQwj+S6KYyQvBBayqfiWq26IFouW3VUCJEHPD2n6a8Dbm6SUSGF+Ph4rl27xrVr1wgPD2fAgAE8ePCA119/HYCAgAAuXrzIqlWrOH/+PPPmzTPorY6Li6N///7s2rWLyMhI9u3bx6FDhzJs8I0dO5bQ0FDGjh1LeHg4J06cYMaMGZnG6OHhQa9evTh27Bh79uxh4MCBdO7cmeLFiwNqj/rUqVOZO3cuZ86c4cSJEyxdupQvvvgi03L9/f158OABO3fu5NatW/rG9IsvvsiXX37JkSNHOHz4MB988EGGi7ul5urqyoABAzh48CBHjhyhd+/eNGjQQD+FLSAggPXr13P06FGOHTtG9+7d0/Qw+/v7s3v3bq5cucKtW7fSPc6wYcMICQnhq6++4uzZs3zxxResX7/e5AXdUkpISOCNN97g8OHDrFixgsTERP3/jez0uNszaWg7gJRP9CpUCmD06KcpvapVo0W5GrxY0R2ApKQLvPHGt7YIUQgB/9VNkbWnvT8GOnYEDw/1xlQIIRzJ03OawXVAq4WoKEiRVimv2rp1KyVKlKBEiRLUr1+fQ4cOsWbNGpo2bQpA27ZtGTJkCP3796dmzZrs37+fMWPG6Pd3dnbm9u3baLVaAgMD6dy5M61bt2b8+PHpHq9p06asWbOGTZs2UbNmTV588UUOHjyYaYwBAQF06NCBV155hZdffpmqVasazBt+5513WLJkCSEhIVSrVo0mTZoQEhKSZY92o0aN+OCDD+jSpQtFihTRN/hnzZpFmTJlaNy4Md27d+fjjz/Gy8vLmK8TLy8vhg8fTvfu3WnYsCGenp6sWrVK//7s2bMpUKAAjRo14vXXX6dly5bUrl3boIwJEyag0+moWLEiRYoUSfc47dq1Y+7cucycOZNnnnmGr7/+mqVLl+r/3bLj8uXLbNq0icuXL1OzZk39/4sSJUqwf//+bJdrjzRK6skBVnLv3j38/PyIiYnJlWPyzWnjxo20b98eUCuFRqP570Q+ezZ/fTGM+peTn5YWZ/v2c7RoYdz8ECGE+UyaNEka28aqVQsaNIBFiwxff/NNOHwYwsMNe7uFEMJePX6sToX5+msmXbv233VAUSA4GGrXhhUrrBrSw4cPCQ8PJygoyOjGW142btw4Nm7cyNGjR20dirADyfVHp9MRHR3N/fv30Wq1FCxY0KRypEfbAaTs0S5Xrhx9+vT5783u3akXBR3qPl2CnGu8+eY80llLQQhhYQZ1U2ROp0vbow3qAkKnT8OhQ1YPSQghsuXyZUhKgtT3aBqNek7bsAHu3bNdfEIIm5CGtgNIuXhBuXLl+OWXX/57s1gxaNWKSQWL4vS08+f69elMm2Z8knghhHkY1E2RsZgYiI5Ov6H94otQsqQsiiaEcBzJHSKp79EAevSAR49AslIIkedIQ9sB6CJ0+r/7+/sb5KoDQKsl6Nfz9G6ePJwhhokTp3PpktVCFEJA2rop0pcyh3Zqzs7q8PHQUHU4phBC2LvkDpGyZdNeB8qUUR8gysNDuzZu3DgZNi7MThraDuD8KTWHtrOTE6VKleLOnVS91a+/Dn5+jK3bEPenixU+eTKP99+/YuVIhcjb0tRNkb4UvT/p6tkT7tyBn3+2XkxCCJFdkZFQvDh4eKR/HdBqYdeu/xrkwiLeeust2rVr53Blp/btt9/y8ssvW+VY2bVr1y40Gg3R0dE5Ksff3585c+YA6sr0ZcuWJSwsLOcB2glpaDuAi5fVrunihQrj4uJCbGys4QaentC5M2VWnaD/q8m92o/45ZcJbNli3ViFyMvS1E2RvshINfXN05QpaVStqi4eJD1AQghHEBmpH6GT7nWgQwfw9paMCqlYs/FqLJ1Oh0ajSdO7PXfuXEJCQix+/Pj4eD777DODFdfzCnd3dz7++GOGDx9u61DMRhradu7+/fvExD4AwP9p+oDkZPQGevUC3UVGdnkTX0/1JY3mW95//wxP0/UJISws3bop0tLpoGxZcMrkEtSrl9qjnUFuTyGEsBspFndM9zrg46OmL/z+e3Ul8jwuMTExTU5neyovPX5+fuTPn9+ixwBYt24dPj4+vPDCCxluk9tyTafUo0cP9uzZQ3h4uK1DMQtpaNs5gxzalQMB2JFePsZGjaBCBQrtiGFYezVdmqIkcvXqGKZMsUqoQuR56dZNkVZ6ObRT69pVvSH98UfrxCSEENmV4pyW4XVAq4WzZyGLXM72pmnTpvTv35/+/fuTP39+ChUqxOjRo0mZHfjx48d88sknlCpVCm9vb+rXr8+uXbv074eEhJA/f342b95McHAw7u7u9O7dm2XLlvHTTz+h0WjQaDTs2rUr3SHJR48eRaPR6BcHTq+8lPfL48ePp2jRovj6+vL+++8bNEy3bt3K888/r/8sr732GufPn9e/n5wTu1atWmg0Gn2+6NS97/Hx8QwcOJCiRYvi4eHB888/z6EU2TKSP8fOnTupW7cuXl5eNGrUiNOnT2f6fa9atYo2bdoYvJZ87KlTp1KyZEkCA9X2wJUrV+jSpQsFChSgUKFCtG3b1mAB5V27dlGvXj28vb3Jnz8/zz33nMH3tGnTJurWrYuHhweFCxemQ4cO+veWL19O3bp1yZcvH8WLF6d79+7cuHEj09j3799P48aN8fT0pEyZMgwcONBghMeNGzd4/fXX8fT0pHz58qxIJ+VdoUKFaNSoEaGhoZkey1FIQ9vOpawQ/k+HJb311ltpN9Ro1JP46vUMHvAxRZ+mJk9KWs306WGcOmX5WIXI69KtmyItnS79hdBSKloUWreW4eNCCPuWmAiXLunPaRleB5o2hdKlHfKctmzZMlxcXDh48CDz5s1j9uzZLFmyRP9+79692bdvH6tWreL48eN06tSJVq1acfbsWf02Dx8+ZOrUqSxZsoR///2XefPm0blzZ1q1akVUVBRRUVE0atTI6JhSl1e0aFEAdu7cSXh4OL///juhoaFs2LCB8ePH6/eLjY3lo48+4tChQ+zcuRMnJyfat2+v7xH/66+/APWBSVRUFOvXr0/3+J988gnr1q1j2bJlHDlyhICAAFq2bJlmjv6oUaOYNWsWhw8fxsXFJcs0oHv27KFu3bppXk/+XNu3b2fz5s08fPiQZs2a4ePjw+7du9m7dy8+Pj60atWKx48fk5CQQLt27WjSpAnHjx/nzz//5L333kOjUVMU/fzzz3To0IFXX32Vv//+W/9AINnjx4+ZOHEix44dY+PGjURERGR6j3PixAlatmxJhw4dOH78OD/++CN79+6lf//++m3eeustdDodv/32G2vXrmXhwoXpNt7r1avHnj17Mv2eHIZiIzExMQqgxMTE2CoEh7BgwQIFUABlyZIliqIoysSJE9Pf+Px5RQFFWfGtMr+Pl34/T8+XlGbNFCUpyYqBC5EHZVg3haEiRRRlwoSst1uzRj2nhYdbPiYhhMiOixfV89TPPyuKksV1YMQIRSlQQFEePbJ4WLGxscrhw4eV2NjYFC8qihJmxE+KXZo0aaIEBQUpSSluIocPH64EBQUpiqIo586dUzQajXLlyhWD4zdv3lwZOXKkoiiKsnTpUgVQjh49arBNr169lLZt2xq89vvvvyuAcvfuXf1rf//9twIoERERWZZXsGBBg8+8aNEixcfHR0lMTEz3e7px44YCKCdOnFAURVEiIiIUQPn7778zjPXBgweKq6ursmLFCv37jx8/VkqWLKnMmDHD4HPs2LFDv83PP/+sAEpcXFy6sdy9e1cBlN27d6c5drFixZT4+Hj9a99++61SuXJlg3+X+Ph4xdPTU9m2bZty+/ZtBVB27dqV7rEaNmyo9OjRI9330vPXX38pgHL//n2Dz5f879SzZ0/lvffeM9hnz549ipOTkxIXF6ecPn1aAZQDBw7o3w8PD1cAZfbs2Qb7zZ07V/H39zc6NktIrj9r165VlixZosyePVu5ffu2yeVIj7adSzkEJLlHe/To0elvXKECPP88fL+a9z78CP8i6lOruLjt/P77TlautHCwQuRxGdZN8Z+HD+Hmzax7tAFeew3y53fIHiAhRB6RKl1hptcBrRbu3oXNmy0fV3pOAXWM+Ek1CrJBgwb6nlCAhg0bcvbsWRITEzly5AiKohAYGIiPj4/+548//jAYku3m5mbWFJgZlVejRg28vLwMYn3w4AGXnua8PX/+PN27d6dChQr4+vrqh4pfvHjR6GOfP3+eJ0+e8Nxzz+lfc3V1pV69emnmFqeMsUSJEgAZDsGOi4sDwMPDI8171apVw83NTf97WFgY586dI1++fPrvvGDBgjx69Ijz589TsGBB3nrrLVq2bMnrr7/O3LlziYqK0u9/9OhRmjdvnuFn/Pvvv2nbti3lypUjX758+iH0GX1PYWFhhISEGPwfaNmyJUlJSURERBAeHo6Li4tBr3mVKlXSnffu6enJw1yywJQ0tO1cZIqGdrmn838mTZqU8Q69esH27bgV6sLEzq76lwsUGMmQIQo5XIVfCJGJTOumUGWV2islDw91rvYPP4CFF7oRQohsSb5PM+YeLSgInn3Wdg8PqwBhRvyYsK5nUlISzs7OhIWFcfToUf1PeHg4c+fO1W/n6elp0FjPiNPTRTKVFHPAnzx5kmY7Y8tLlrzt66+/zu3bt1m8eDEHDx7k4NM586YsMJYcW+rjK4qS5jVX1//uxZPfy2jhtkKFCqHRaLh7926a97y9vQ1+T0pKok6dOgbf+dGjRzlz5gzdu3cHYOnSpfz55580atSIH3/8kcDAQA4cOACo319GYmNjefnll/Hx8WH58uUcOnSIDRs2ABl/T0lJSbz//vsGsRw7doyzZ89SsWLFDL+z9Ny5c4ciRYpkuZ0jkIa2nTsX/t+iCWXKlAGgX79+Ge/QqRO4usKarXTTfkC1ss4A3L17iPv3NzBqlEXDFSJPy7RuCpUpDW1Qe4AuX1Zz0AohhL2JjIRChdT0XRhxHdBqYcsWdWSPtXkBtY348TLcLblxlvL3SpUq4ezsTK1atUhMTOTGjRsEBAQY/BTPKIXjU25ubiQmJhq8ltzASt37aqxjx47pe4aTY/Xx8aF06dLcvn2b8PBwRo8eTfPmzQkKCkrTqE3uNU4dV0oBAQG4ubmxd+9e/WtPnjzh8OHDBAUFGR1ram5ubgQHB3Py5Mkst61duzZnz56laNGiab53Pz8//Xa1atVi5MiR7N+/n6pVq7Ly6fDW6tWrs3PnznTLPnXqFLdu3WLatGm88MILVKlSJcuF0GrXrs2///6bJpbk7yooKIiEhAQOHz6s3+f06dPp5uH+559/qFWrVpbfgSOQhradi7yk3pQWLVAQd3d3gMxX4vPzg3btYNkynIOHMqXzf08EfX1HsXBhAikWRRRCmFFuWSXTonQ6cHaGUqWM275BAwgIkOHjQgj7lGpxxyyvA127qn+uWmWxkMzt0qVLfPTRR5w+fZrQ0FDmz5/PoEGDAAgMDKRHjx5otVrWr19PREQEhw4dYvr06WzZsiXTcv39/Tl+/DinT5/m1q1bPHnyhICAAMqUKcO4ceM4c+YMP//8M7NmzTI61sePH/P2229z8uRJfvnlF8aOHUv//v1xcnLSr879zTffcO7cOX777Tc++ugjg/2LFi2Kp6cnW7du5fr168TExKQ5hre3N3379mXYsGFs3bqVkydP8u677/Lw4UPefvtto2NNT8uWLQ0a8Bnp0aMHhQsXpm3btuzZs4eIiAj++OMPBg0axOXLl4mIiGDkyJH8+eefREZG8uuvv3LmzBn9g4CxY8cSGhrK2LFjCQ8P58SJE8yYMQOAsmXL4ubmxvz587lw4QKbNm1i4sSJmcYzfPhw/vzzTz788EOOHj3K2bNn2bRpEwMGDACgcuXKtGrVinfffZeDBw8SFhbGO++8k27P+p49e3j55ZdN/erskjS07VhcXBy3n1bwcil6fzLLrQeoT0v/+QfO3ubVDj15ror6dO7GjVOUKfM9ffuqi2QKIcwry7op1N6f0qXBxcW47ZMzKqxdCw8eWDY2IYQwVap0hVleBwoXhldfhWXLLByY+Wi1WuLi4qhXrx4ffvghAwYM4L333tO/v3TpUrRaLUOHDqVy5cq0adOGgwcP6kdiZuTdd9+lcuXK1K1blyJFirBv3z5cXV0JDQ3l1KlT1KhRg+nTp5s0Lat58+ZUqlSJxo0b07lzZ15//XXGjRsHqMPSV61aRVhYGFWrVmXIkCHMnDnTYH8XFxfmzZvH119/TcmSJWnbtm26x5k2bRodO3akZ8+e1K5dm3PnzrFt2zYKFChgdKzpeffdd9myZUu6DfyUvLy82L17N2XLlqVDhw4EBQXRp08f4uLi8PX1xcvLi1OnTtGxY0cCAwN577336N+/P++//z6gpm1bs2YNmzZtombNmrz44ov6YfRFihQhJCSENWvWEBwczLRp0/j8888zjad69er88ccfnD17lhdeeIFatWoxZswY/bx0UP+flClThiZNmtChQwfee+89/Wrxyf78809iYmJ44403svP12R2NknIShBXdu3cPPz8/YmJi8PX1tUUIdu/06dNUqaJOlOnWtSsrnz4l3bRpU5ocewYSEtQb2W7dYNx77P0imBcmqG8VLVqaGzfOMn++BylW3BdCmEGWdVNA9+5w9appQ8F1OihfXu3V7tnTUpEJIYTpKldWF2582utq1HVg/Xro2FHtFHnmGYuE9fDhQ8LDwwkKCjJYHMxUTZs2pWbNmsyZM8d8wYlMde7cWT/kO6/p1KkTtWrV4tNPP7VpHMn1R6fTER0dzf3799FqtRQsWNCkcqRH246lzKFdLsWwJGdn58x3dHGBHj1g5UrwCuD55u14ta46d+jGjcs0aLCQUaMgxfQXIYQZZFk3hdpoNnZ+djJ/f2jSRIaPCyHsS1JSmh5to64Dr74KBQuqCz0KkcrMmTPx8fGxdRhWFx8fT40aNRgyZIitQzEbaWjbMV06K44DBsMwMqTVwo0b8OuvEDycKR1j9Sv9nTkzBVfXGIYONXfEQuRtRtXNvC7VTanRtFrYuVNdGE0IIezBjRsQH29wTjPqOuDurs7VXr5c5vKJNMqVK6ef25yXuLu7M3r06ExXRHc00tC2Yyl7tP1T9GgfMmY1sxo1oHp1tQeocAOq121Kj2bqcIc7d27z3HOzCA2FHTvMHbUQeZdRdTMvi49Xh40bk0M7tTfeUG9OV6wwe1hCCJEtyR0ipt6jgfrw8MoV+P13s4dlTrt27XLoYeNNmzZl8ODBZi83JCQk3RzQqX377bc5XthLp9Oh0WhMWn39yy+/lKlsdkAa2nbMYOh4iqelHTp0MK4ArRZ++gnu3oXgEYx//TauruoCRDt3fkGDBtf58EP13lcIkXNG18286tIl9c/s9Gj7+kL79uoCQrZZWkQIIQylk67Q6OtAvXoQGOhQi6JZg6UaxrYQHx/PZ599xpgxY3JUTpkyZYiKiqJq1apG7/Puu+9y6NAho1YwF5YjDW07dv7Ufzm0Uza0v/76a+MK6N4dnjyBNWugxMtUqFyT919VhzTFxsZSocJkLlyAp6v5CyFyyOi6mVcl35Rmp0cb1IeH4eEQFma2kIQQItsiI9W0qil6No2+DiRnVFi/Hu7ft0x8DuTJkyd2XV52rFu3Dh8fnxxnJHF2dqZ48eK4GJutA3UYdvfu3Zk/f36Oji1yRhradkwXEQFAwXy+BitGjh492rgCSpSAli3V4eMaDQSPYPTLl/D2Vuc+rFnzFW+/HcHkyXD+vNnDFyLPMbpu5lU6nXouyiLlS4ZatFDPa7IomhDCHqSzuKNJ14GePeHhQ7Wx7UD8/f2ZOHEi3bt3x8fHh5IlS6Zp0MXExOjTN/n6+vLiiy9y7Ngx/fvjxo2jZs2afPfdd1SoUAF3d3d69erFH3/8wdy5c9FoNGg0GnQ6XbrDtDdu3Khfeyij8pITKyUkJNC/f3/y589PoUKFGD16NCmTLj1+/JhPPvmEUqVK4e3tTf369dmVKjNGSEgIZcuWxcvLi/bt23P79u0sv6dVq1alGb791ltv0a5dO6ZMmUKxYsXInz8/48ePJyEhgWHDhlGwYEFKly7Nd999p98n9dDxXbt2odFo2LlzJ3Xr1sXLy4tGjRpx+vRpg2O1adOGjRs3EhcXl2WswjKkoW2nHj9+zPW7dwAom+qm1JR8gmi1sG+f2pIu05FipSoy5A1/QH3aFxPzGcWLQ//+MhpTiJwyqW7mRZGRakPZzS17+ydnVAgNhcePzRubEEKYKp3FHU26DpQtC82aOeTDw5kzZ1K9enWOHDnCyJEjGTJkCNu3bwdAURReffVVrl27xpYtWwgLC6N27do0b96cO3fu6Ms4d+4cq1evZt26dRw9epR58+bRsGFD3n33XaKiooiKisoyF3dKqctLtmzZMlxcXDh48CDz5s1j9uzZLFmyRP9+79692bdvH6tWreL48eN06tSJVq1acfbsWQAOHjxInz596NevH0ePHqVZs2ZG/Tvv2bOHunXrpnn9t99+4+rVq+zevZsvvviCcePG8dprr1GgQAEOHjzIBx98wAcffMCl5OlWGRg1ahSzZs3i8OHDuLi40KdPH4P369aty5MnT/jrr7+yjFVYiGIjMTExCqDExMTYKgS7dv78eQVQAOWNjh0N3ouNjTW+oIcPFcXXV1E++0z9/cxXSvQSjVKwQH4FUDQajTJ37jEFFGXNGjN+ACHyIJPqZl7Us6eiNGqUszKOH1cUUJSffjJPTEIIkV3BwYoyYIDBSyZfB5YuVRSNRlEiI80X19M4Dh8+bBhPbKyihIVl/ZPFZyhXrpzSqlUrg9e6dOmitG7dWlEURdm5c6fi6+urPHr0yGCbihUrKl9//bWiKIoyduxYxdXVVblx44bBNk2aNFEGDRpk8NrSpUsVPz8/g9c2bNigpGzGZFZeUFCQkpSUpH9t+PDhSlBQkKIoinLu3DlFo9EoV65cMdivefPmysiRIxVFUZRu3bql+3lTx5TS3bt3FUDZvXu3weu9evVSypUrpyQmJupfq1y5svLCCy/of09ISFC8vb2V0NBQRVEUJSIiQgGUv//+W1EURfn9998VQNmxY4d+n59//lkBlLi4OIPjFShQQAkJCckwTpG+5Pqzdu1aZcmSJcrs2bOV27dvm1yO9GjbqYxyaAMsWrTI+II8PaFTJ/VpaVISVOiFX4GifNqzCqA+ddy+fRRt2sDgwTJNSIicMKlu5kXZTe2VUrVqULOmLCAkhLAtRUn3nGbydaBjR/DwUFN9WdqpU1CnTtY/p04BsGLFCnx8fPQ/e/bs0RfVsGFDg6IbNmxIeHg4AGFhYTx48IBChQoZ7B8REcH5FHMVy5UrR5EiRcz28TIqr0GDBgbDzBs2bMjZs2dJTEzkyJEjKIpCYGCgQax//PGHPtbw8PB0P29mkodre3h4pHnvmWeewcnpvyZYsWLFqFatmv53Z2dnChUqxI0bNzI9RvXq1fV/T04rl3ofT09PHj58mGk5wnKMn1UvrCplDm3/VA3t1157zbTCtFr49lt1CPkLL0CVIfR7MIY5pUpw+UoUmzdvZs2avezY8Txjx8IXX+Q8fiHyIpPrZl4TGQnPPZfzcrRaGD4c7tyBggVzXp4QQpjqzh2IjU2zuKPJ14F8+aBDB7VDZORIdR0LS6lSxbjFJKuonTFt2rShfv36+pdLlSqV6W7JjdmkpCRKlCiRZp4zYDDX2tvbO+tYACcnJ4M51ZD+YmfGlpdSUlISzs7OhIWF4ezsbPCej48PQJpjG6NQoUJoNBru3r2b5j1XV1eD3zUaTbqvJSUlZXqMlPuk/O5TunPnjlkfZgjTSI+2ncootRdgsJiEUZ5/HsqX/28OUKW+eHp6Me7t/56EzZkzgjFjFObNA1OLF0KoTK6beUlCAly+nPMebVAzKiQlwY8/5rwsIYTIjuQOkZzeowH06gWnT4OxObizy8sLatfO+ufpArz58uUjICBA/+Pp6akv6sCBAwZFHzhwgCpPG+i1a9fm2rVruLi4GOwfEBBA4cKFMw3Rzc2NxMREg9eKFCnC/fv3iY2N1b9mSk7p9GKtVKkSzs7O1KpVi8TERG7cuJEm1uLFiwMQHBycbhlZfY7g4GBOnjxpdJzmdv78eR49ekStWrVsFkNeJw1tO5WyRzt1Q7tQoUKmFebkpK5suXo1xMWBqy9U6kevKnupHFgJgH379lGlyhYqV4a+fdV7WCGEaUyum3nJlSuQmGiehnaxYtCqlUMuICSEyCXSyaEN2bwOvPgilCzpUOe0ffv2MWPGDM6cOcOCBQtYs2YNgwYNAqBFixY0bNiQdu3asW3bNnQ6Hfv372f06NEcPnw403L9/f05ePAgOp2OW7dukZSURP369fHy8uLTTz/l3LlzrFy5kpCQEKNjvXTpEh999BGnT58mNDSU+fPn62MNDAykR48eaLVa1q9fT0REBIcOHWL69Ols2bIFgIEDB7J161b95/3yyy/ZunVrlsdt2bKlTfNY79mzhwoVKlCxYkWbxZDXSUPbTl04c1b/99QN7ZRPFI3Wsyfcuwc//aT+XnkQLpoEJvf9bzXEzz4byYIFSfz5pzrSXAhhmmzVzbwi+eFhdnNop6bVwoEDcOaMecoTQghT6HRqz2+qHtpsXQecneHNNx0qo8LQoUMJCwujVq1aTJw4kVmzZtGyZUtAHca8ZcsWGjduTJ8+fQgMDKRr167odDqKFSuWabkff/wxzs7OBAcHU6RIES5evEjBggVZvnw5W7ZsoVq1aoSGhjJu3DijY9VqtcTFxVGvXj0+/PBDBgwYwHvvvad/f+nSpWi1WoYOHUrlypVp06YNBw8e1K943qBBA5YsWcL8+fOpWbMmv/76q1Fp3N599122bNlCTEyM0bGaU2hoKO+++65Nji1UGiU7Ew/M4N69e/j5+RETE4Ovr68tQrBrZYqX4PL1a+Tz8uJeiqEyoObye+utt0wv9LnnwM8Pnj6h41A/lMg11J9ejkOH1Tk7y5cvZ/v2HmzapI5ikmkdQhgv23UzL/j+e3V4ZGysflhijsTFqanC+vcHSasmhLC2QYNg+3ZINTQ429eBf/5RF3tcvx7at89xeA8fPiQ8PJygoCC8zHHOTcHf35/BgwczePBgs5abG3Xu3JlatWoxcuRIqx73n3/+oXnz5pw5cwY/Pz+rHjs3SK4/Op2O6Oho7t+/j1arpaCJ68JIj7YdSkxMJOqmumpg2VKl07zfvHnz7BWs1cK2bXDtmvp70MdontxhWv//FicaM2YMkyerT1M/+SR7hxEir8p23cwLIiOhaFHzNLJBzajQuTP88IPMdRFCWF9kZLojdLJ9HahaVZ0f7UDDx0XWZs6cqV9UzZquXr3K999/L41sG5OGth26evUqiU9vHCtWqZzm/WXZTWvTuTO4usLKlervPhWgbBdezL+Jl1q0ACAiIoKNGxczbRqEhECKTA5CiCxku27mBTqdeeZnp9SrF1y8CLt3m7dcIYTISgbntBxdB3r1gp9/hlu3sl+GsCvlypVjwIABVj/uyy+/rB/KL2xHGtp2yCC1V/nyad43Zl5IugoUgDZtDJ+WBg+HWB1TBjTRvzRx4kS6dn1AgwbqwmjpZFAQQqQj23UzLzBHDu3UGjWCChWkB0gIYX0ZnNNydB3o2lXNz23nGRV0Ol2uGDbu7+/PnDlzzF7uuHHjqFmzZpbbjRkzxmCuuK1s3ryZWrVqZZlOTJhOGtp2KGVqr9Q5tAEm5WQ+olar5u9KTj9RoAaUaE1dl9V06tQJgOvXrzN//lwWLYLwcJg9O/uHEyIvyVHdzO10OvMthJZMo1HPaWvWwMOH5i1bCCEyEhMD0dHpntNydB0oWhRat5aHhxmwVMPYFq5fv87cuXP59NNPbR0Kr732GhqNhpXJI16F2UhD2w5llkMbyNmCCi1bqiucpTyJPzMCok8wsX8LnJ2dAZgxYwZlytxm4EAYP/6/LBZCiIxZe7ETh5GUBJcumb9HG9SMCg8ewIYN5i9bCCHSk0FqLzDDdUCrhb/+glOnclaOhTRt2tSk1Frm8NjMK7Gbu7zs+Pbbb2nYsGG6HWq20Lt3b+bPn2/rMHIdaWjbIYOh4+lUwBkzZmS/cFdX6N4dVqyAhAT1tSIvQOGGVI5fTp8+fQB1Vfhp06YxYQLkz68urimEyFyO6mZudu2amrLGEjcUFSrA889LD5AQwnqSG9rmvkcDeP119cbLQc9pGo2GRYsW0bp1azw9PSlfvjxr1qwx2ObKlSt06dKFAgUKUKhQIdq2bWtw7/vWW2/Rrl07pk6dSsmSJQkMDKRp06ZERkYyZMgQNBoNGo0GSH+Y9pw5cwzun9MrL9n9+/fp3r07Pj4+lCxZMk1jMyYmhvfee4+iRYvi6+vLiy++yLHkUaFPTZs2jWLFipEvXz7efvttHj16lOX3tGrVKtq0aWPwWtOmTRkwYACDBw+mQIECFCtWjG+++YbY2Fh69+5Nvnz5qFixIr/88ot+n8TERN5++23Kly+Pp6cnlStXZu7cufr3Hz16xDPPPGMwRD0iIgI/Pz8WL16sf61Nmzb89ddfXLhwIcvYhfGkoW2HIs6d1/89vR7t7t275+wAvXrB9etqWgpQh18Gj4Cbe/jsw9Z4eHgAMH/+fKKjLzFnjpp++3//y9lhhcjtclw3c6vkGyhL9GiDek7bsQOuXLFM+UIIkZJOB25ukE5O6BxfB9zd1bnaDpxRYcyYMXTs2JFjx47x5ptv0q1bN8LDwwE1bVKzZs3w8fFh9+7d7N27Fx8fH1q1amXQ07xz507Cw8PZvn07mzdvZv369ZQuXZoJEyYQFRVFVFSUSTGlLi/ZzJkzqV69OkeOHGHkyJEMGTKE7U/vjxVF4dVXX+XatWts2bKFsLAwateuTfPmzblz5w4Aq1evZuzYsUyePJnDhw9TokQJFi5cmGksd+/e5Z9//qFu3bpp3lu2bBmFCxfmr7/+YsCAAfTt25dOnTrRqFEjjhw5QsuWLenZsycPn06XSkpKonTp0qxevZqTJ0/y2Wef8emnn7J69WoAPDw8WLFiBcuWLWPjxo0kJibSs2dPmjVrZpBju1y5chQtWpQ9sgqyeSk2EhMTowBKTEyMrUKwW/4lSymA4unmriQlJaV5//vvv8/ZAZKSFKVqVUXp2jXFa4mKsjlYUXa9rgwbNkwBFEB5++23laQkRWnZUlHKlVOUBw9ydmghcrMc183cauVKRQFFsdT5PjpaUdzdFWXGDMuUL4QQKQ0dqigBAem+ZZbrwP796jlz585sFxEbG6scPnxYiY2NTfGaooSFZf2TYpc0mjRpoixdujTD9wHlgw8+MHitfv36St++fRVFUZRvv/1WqVy5ssH9bXx8vOLp6als27ZNURRF6dWrl1KsWDElPj7eoJxy5cops2fPNnht7NixSo0aNQxemz17tlKuXDn975mV16pVK4PXunTporRu3VpRFEXZuXOn4uvrqzx69Mhgm4oVKypff/21oiiK0rBhw3Q/b+qYUvr7778VQLl48aLB602aNFGef/55/e8JCQmKt7e30rNnT/1rUVFRCqD8+eefGZbfr18/pWPHjgavzZgxQylcuLAyYMAApXjx4srNmzfT7FerVi1l3LhxGZablyTXn7Vr1ypLlixRZs+erdy+fdvkcqRH284kJSVx9cZ1AMqULKkfGpNS+XRWIjdJ8gJCGzeqC3oAaJwgaDhc+R8j+rbV591bunQpp0+f4ssv1dGfstaTEBnLcd3MrXQ6NeuBr69lyvfzg3btYNkydcVeIYSwpEwWdzTLdaBBAwgIUM9pZnTqFNSpk/VPyunhU6ZMwcfHR/+zZ88ePvjggzSvpdSwYcM0vyf3aIeFhXHu3Dny5cun379gwYI8evSI8+f/G9FZrVo13NzczPbZMyovq1gfPHhAoUKFDD5vRESEPtbw8PB0y8hMXFwcgH4EaUrVq1fX/93Z2ZlChQpRrVo1/WvFno6iuHHjhv61r776irp161KkSBF8fHxYvHgxFy9eNCh36NChVK5cmfnz57N06VIKFy6c5tienp76nnJhHi62DkAYunHjBo+fzp2umGIOSUoJyXOrc6JHDxgxQl2t95131Nf8u8Hx0RSM+ppPPvmEUaNGkZSUxOjRo1m7di2ffgoTJ6prDwUH5zwEIXIbs9TN3MgSqb1S02rh1Vfh77+hdm3LHksIkbdFRkKNGum+ZZbrQHKHyPTpsGAB+PjkvEygShUICzNuu2QffPABnTt31v/eo0cPOnbsSIcOHfSvlSpVKssykzuOkpKSqFOnDitWrEizTZEiRfR/9/b2zjpQwMnJCSXVA9Yn6eSlNba81LGWKFGCXbt2pdkmf/78RpeXWnIj9+7duwafGcDV1TVNLClfSxkbqEPXhwwZwqxZs2jYsCH58uVj5syZHDx40KCcGzducPr0aZydnTl79iytWrVKE9edO3fSxCNyRnq07UzKxSDKB1RMd5tr167l/EAlS0KLFoaLbTi5QtDHELmSQe+01z81W7duHYcOHWL4cChfHvr1k04jIdJjlrqZG0VGWmYhtJReflmdL+mgCwgJIRxIJuc0s10HevaE2FizZlTw8lKfQ2b14+X13z4FCxYkICBA/+Pp6UnRokXTvJbSgQMH0vxe5WnrvXbt2pw9ezZNGQEBAfrRlBlxc3MjMTHR4LUiRYpw7do1g8b20aNHjf5Osor12rVruLi4pIk1ubEcFBSUbhmZqVixIr6+vpw8edLoODOyZ88eGjVqRL9+/ahVqxYBAQEGIwOS9enTh6pVq/L999/zySefpDl28oiCWrVq5Tgm8R9paNuZrFJ7AdSpU8c8B+vVC/bsgZQrDFZ8B9wK4H1xEZ999pn+5ZEjR+LuDgsXwh9/qGt0CCEMma1u5jY6neV7tF1c1JE6K1dCOr0ZQghhFrGxcPNmhuc0s10H/P2hSROHfHi4Zs0avvvuO86cOcPYsWP566+/6N+/P6D2iBcuXJi2bduyZ88eIiIi+OOPPxg0aBCXL1/OtFx/f392797NlStXuHXrFqCu1H3z5k1mzJjB+fPnWbBggcGq3FnZt28fM2bM4MyZMyxYsIA1a9Yw6GmqnRYtWtCwYUPatWvHtm3b0Ol07N+/n9GjR3P48GEABg0axHfffWfwef/9999Mj+nk5ESLFi3Yu3ev0XFmJCAggMOHD7Nt2zbOnDnDmDFjOHTokME2CxYs4M8//+T777+ne/fuvPHGG/To0cNg8bkDBw7g7u6e5bB3YRppaNuZlD3aGTW0N27caJ6DtWunDkdavvy/11y8IHAgnF/CO2+2pUKFCoC6WuOOHTto0UJdDPPjj+HpgotCiKfMVjdzE0WxztBxUIda3rwJ27ZZ/lhCiLwpee6rpe/RQD2n7dwJWTRA7c348eNZtWoV1atXZ9myZaxYsYLgp3MOvby82L17N2XLlqVDhw4EBQXRp08f4uLi8M1iHY8JEyag0+moWLGifohzUFAQCxcuZMGCBdSoUYO//vqLjz/+2OhYhw4dSlhYGLVq1WLixInMmjWLli1bAuow7S1bttC4cWP69OlDYGAgXbt2RafT6Ud9dunShc8++4zhw4dTp04dIiMj6du3b5bHfe+991i1apV+CHh2ffDBB3To0IEuXbpQv359bt++Tb9+/fTvnzp1imHDhrFw4ULKlCkDqA3v6OhoxowZo98uNDSUHj164JVyOIPIMY2SemKDldy7dw8/Pz9iYmKyrFh5Sb9+/Vi0aBGgPl2qX79+mm0ePXqU7gIK2dKnD+zeDWfPqnOCAOLvwE9lofIQQk8G61NV1KlTh0OHDnHtmoYqVaBbN/jqK/OEIURuYNa6mVvcuKEO6V6/Htq3t/zxatSAwEB1/QkhhDC3X36BV15RHyCWLZvmbbNeB+7dU8+fY8eq6+qY4OHDh4SHhxMUFGTVxpNGo2HDhg20a9fOasd0RIqi0KBBAwYPHky3bt1sGsvNmzepUqUKhw8flkVdn0quPzqdjujoaO7fv49Wq6VgwYImlSM92nZGd/6/YdwZ9Wh//vnn5jugVgvnz8P+/f+95l4QAt6HM1/SpcMr1Hi64EdYWBjr1q2jRAl19fFvvoFUay0IkaeZtW7mFsnTYazRow3qOW3TJrh71zrHE0LkLZGR4OysrnWTDrNeB3x91QeU338vi+PkMhqNhm+++cYuFlGNiIhg4cKF0si2AGlo25lzp08D4O7qqh+Wktro0aPNd8DGjdUb4NRzgKoMgcRYnC4sYerUqfqXR40aRUJCAv36Qa1a8MEHYAfnCCHsglnrZm6R3NC29GJoybp3V09Kq1db53hCiLwlMhLKlFHXhUiH2a8DvXpBeLhxy4ULh1KjRg169uxp6zCoV68eXbp0sXUYuZI0tO2IoihcjooCoGTRYunm0AaYZM5k1k5O6sqWP/4Ijx7997pXafDvCae+oNVLzWjcuDEAZ86cISQkBGdnddj4sWNq5gkhhJnrZm6h06lrQRQoYJ3jlSgBLVs65AJCQggHkMXijma/DjRvrp7XHOScpiiKXQ0bb9q0KYMHDzZ7uSEhIUal+Pr22295+eWXzX58czD2M+QGJ06coHTp0sTGxlr1uNLQtiO3b98m7nE8ABUqVcpwu3eS816bS8+eEBMD//uf4etBwyAuCk3kCoNe7XHjxhEXF8ezz6o92mPGwNWr5g1JCEdk9rqZGyQvhJbBg0OL0GrV6TDnzlnvmEKIvCGLxR3Nfh1IzqgQGgopVonOrSzVMLaF+Ph4PvvsM4NFxyxl3Lhx1KxZ0+LHcVTVqlWjXr16zJ4926rHlYa2HUmZ2qtCpYAMt/tf6gZxTgUGQoMGsGyZ4et+VaBMezg5g0YN6tOmTRsArly5woKn3dhTpoCnJwwZYt6QhHBEZq+buYFOZ71h48natlXnNjpID5AQwoFkcU6zyHVAq4Vbt9SF2HKpJ2ZOy2ju8rJj3bp1+Pj48MILL9g6FAH07t2bRYsWpcnFbknS0LYjxuTQBizzxEqrha1b4fp1w9eDhsP9M3B5I5MnT9YPZ58yZQrR0dHkzw+zZqnTIX/91fxhCeFI5GlyOqyV2islT0/o1Al++AFymDpFCCH04uMhKirTc5pFrgPVqkHNmnbz8NDf35+JEyfSvXt3fHx8KFmyJPPnzzfYJiYmhvfee4+iRYvi6+vLiy++yLFjx/TvJ/fAfvfdd1SoUAF3d3d69erFH3/8wdy5c9FoNGg0GnQ6XbpDnDdu3GgwxTK98pITKyUkJNC/f3/y589PoUKFGD16NCmTLj1+/JhPPvmEUqVK4e3tTf369dm1a5fB8UJCQihbtixeXl60b9+e27dvZ/k9rVq1St9Jleytt96iXbt2TJkyhWLFipE/f37Gjx9PQkICw4YNo2DBgpQuXZrvvvvOYL/hw4cTGBiIl5cXFSpUYMyYMfqHCSEhIYwfP55jx47pv7eQkBAAoqOjee+99yhWrBgeHh5UrVqVzZs3G5S9bds2goKC8PHxoVWrVkQ9ncaabOnSpQQFBeHh4UGVKlVYuHChwXfXv39/SpQogYeHB/7+/gajYFOzxOdXFIUWLVrQqlUr/b9rdHQ0ZcuWZdSoUfoyWrZsye3bt/njjz8yjM/cpKFtR1Lm0PbP5GmpMZXbZF26qKtohoYavl64HhR7EU5Oo+ozz+gXbbh79y4zZ84E1BFNzZrBhx8aTvMWIq+xSN10ZMk5tK3dow3qw0OdDvbutf6xhRC506VL6p/WvkcDdVG0//0P7tyxTPkmmjlzJtWrV+fIkSOMHDmSIUOGsH37dkBt+Lz66qtcu3aNLVu2EBYWRu3atWnevDl3UsR/7tw5Vq9ezbp16zh69Cjz5s2jYcOGvPvuu0RFRREVFaXP/WyM1OUlW7ZsGS4uLhw8eJB58+Yxe/ZslixZon+/d+/e7Nu3j1WrVnH8+HE6depEq1atOHv2LAAHDx6kT58+9OvXj6NHj9KsWTOj5uLv2bOHunXrpnn9t99+4+rVq+zevZsvvviCcePG8dprr1GgQAEOHjzIBx98wAcffMCl5P9vQL58+QgJCeHkyZPMnTuXxYsX64dBd+nShaFDh/LMM8/ov7cuXbqQlJRE69at2b9/P8uXL+fkyZNMmzYNZ2dnfbkPHz7k888/54cffmD37t1cvHjRIA/54sWLGTVqFJMnTyY8PJwpU6YwZswYlj0dBTtv3jw2bdrE6tWrOX36NMuXL8+0DWOJz6/RaFi2bBl//fUX8+bNA9T84sWKFWPcuHH6Mtzc3KhRowZ79uzJ8t/ObBQbiYmJUQAlJibGViHYnYEDByqAAih79uzJcLv169dbJoCOHRWlVq20r1/9VVFWoChRO5SIiAjF1dVVARQvLy/l6tWriqIoSni4ori6KsrYsZYJTQhHYLG66aju3FEUUJQff7T+sRMTFaV8eUV5+23rH1sIkTtt366e086dy3ATi10Hrl1TFGdnRVm40KjNY2NjlcOHDyuxsbFmD6VcuXJKq1atDF7r0qWL0rp1a0VRFGXnzp2Kr6+v8ujRI4NtKlasqHz99deKoijK2LFjFVdXV+XGjRsG2zRp0kQZNGiQwWtLly5V/Pz8DF7bsGGDkrIZk1l5QUFBSlJSkv614cOHK0FBQYqiKMq5c+cUjUajXLlyxWC/5s2bKyNHjlQURVG6deuW7udNHVNKd+/eVQBl9+7dBq/36tVLKVeunJKYmKh/rXLlysoLL7yg/z0hIUHx9vZWQkNDMyx/xowZSp06dQw+f40aNQy22bZtm+Lk5KScPn063TKWLl2qAMq5FP+fFyxYoBQrVkz/e5kyZZSVK1ca7Ddx4kSlYcOGiqIoyoABA5QXX3zR4PvNjKU+v6IoyurVqxV3d3dl5MiRipeXV7qfu3379spbb72VZZzJ9Wft2rXKkiVLlNmzZyu3b9825iMakB5tOxJxIesc2gCVMlkoLUe0Wvj7bzhxwvD14i2gQG04OQ1/f3/69u0LqE/Bkp/oVakCw4bB1Knw9AGgEHmOxeqmo7J2Du2UkjMqrF4NcXHWP74QIveJjFQXdsykl9Vi14FixaBVq5wNH094CHeOZP2T8BCAFStW4OPjo/9J2RPYsGFDg6IbNmxIeHg4AGFhYTx48IBChQoZ7B8REcH58+f1+5QrV44iRYpk//OkklF5DRo0MBhm3rBhQ86ePUtiYiJHjhxBURQCAwMNYv3jjz/0sYaHh6f7eTMT9/S64+Hhkea9Z555Bien/5pgxYoVo1q1avrfnZ2dKVSoEDdu3NC/tnbtWp5//nmKFy+Oj48PY8aM4eLFi5nGcPToUUqXLk1gYGCG23h5eVGxYkX97yVKlNAf9+bNm1y6dIm3337b4LuZNGmS/rt56623OHr0KJUrV2bgwIH8asQ8Ukt9/k6dOtGhQwemTp3KrFmz0v3cnp6ePHz4MMsYzSX9JIDCJs6fUnNoOzs5UbJkyQy3+/3336latar5A2jVCgoXVk/iT4eFA+pF5ZkRsLcz3D7MqFGj+Pbbb4mNjeWbb77ho48+omLFiowaBStXqkPIt22z7iLDQtgDi9VNR5U8HcYWQ8dBbWhPmAAbN0K3braJQQiRe+h0ULIkuLlluIlFrwNarTrV7/RpqFzZ9P3vnYKtdbLerlUYFKxNmzZtqF+/vv7lUqVKZbpbcmM2KSmJEiVKpJnnDBjMtfb29jYqbCcnJ4M51ZD+YmfGlpdSUlISzs7OhIWFGQypBvDx8QFIc2xjFCpUCI1Gw927d9O85+rqavC7RqNJ97Wkp2uMHDhwgK5duzJ+/HhatmyJn58fq1atYtasWZnG4OnpmWWc6R03+fMmH3/x4sUG/w8A/XdVu3ZtIiIi+OWXX9ixYwedO3emRYsWrF271qRjmuPzP3z4UP/veDaDXr87d+4YPFiwNGlo25FLV68AUKJI0TSVPSWtVmuZANzc1JvR5cvVrmmXFP89SncAnwA4OZ2iL6xh6NChTJgwgYSEBD777DNWrFiBlxd8+SW89praidSli2XCFMJeWaxuOqrISPDwgKJFbXP8gABo1Eh9eCgNbSFEThmxuKNFrwNt2oCfn7rQY3bydftWURvRxmyHOi82X7586W5y4MCBNL9XqaLuV7t2ba5du4aLi0uW83VTc3NzS7MqdJEiRbh//z6xsbH6xnTKOdhZSS/WSpUq4ezsTK1atUhMTOTGjRsZrg4eHBycbhlZfY7g4GBOnjyZ4zza+/bto1y5cgYLe6VcQDn5eKm/t+rVq3P58mXOnDmTaa92RooVK0apUqW4cOECPXr0yHA7X19funTpQpcuXXjjjTdo1aoVd+7coWDBgiYfMz3GfH6AoUOH4uTkxC+//MIrr7zCq6++yosvvmiwzT///MMbb7xhlriMIUPH7URMTAz3nw5lqJDFk5bUKzuaVa9ecO0a7Nxp+LqTMwR/ApfWwb0zDB06lMKFCwOwcuVK/Qnv1VehfXs13de9e5YLUwh7ZNG66YhskUM7tV691JQIqVZRFUIIkxmxuKNFrwMeHmovRnYzKrh4QcHaWf+4eGVZ1L59+5gxYwZnzpxhwYIFrFmzhkGDBgHQokULGjZsSLt27di2bRs6nY79+/czevRoDh8+nGm5/v7+HDx4EJ1Ox61bt0hKSqJ+/fp4eXnx6aefcu7cOVauXKlfVdsYly5d4qOPPuL06dOEhoYyf/58fayBgYH06NEDrVbL+vXriYiI4NChQ0yfPp0tW7YAMHDgQLZu3ar/vF9++SVbt27N8rgtW7ZkrxkW5AwICODixYusWrWK8+fPM2/ePDZs2GCwjb+/PxERERw9epRbt24RHx9PkyZNaNy4MR07dmT79u36nmdjYk82btw4pk6dyty5czlz5gwnTpxg6dKlfPHFFwDMnj2bVatWcerUKc6cOcOaNWsoXrx4mlXiLf35f/75Z7777jtWrFjBSy+9xIgRI+jVq5fBiAKdTseVK1do0aKF2WLLijS07YRBDu3AzOf3jB492nKB1K4NwcHpzwEqrwXP4hA+E19fX4MnSyn/Pneu2sgeM8ZyYQphjyxaNx2RTmeb+dkpdeoErq7qvBYhhMgJI85pFr8OaLVw8SLs3m3Z42Rh6NChhIWFUatWLSZOnMisWbNo2bIloA773bJlC40bN6ZPnz4EBgbStWtXdDodxYoVy7Tcjz/+GGdnZ4KDgylSpAgXL16kYMGCLF++nC1btlCtWjVCQ0MNVpPOilarJS4ujnr16vHhhx8yYMAA3nvvPf37S5cuRavVMnToUCpXrkybNm04ePCgfsXzBg0asGTJEubPn0/NmjX59ddfjfp3fvfdd9myZQsxMTFGx5qetm3bMmTIEPr370/NmjXZv38/Y1LdZHfs2JFWrVrRrFkzihQpQujTLELr1q3j2WefpVu3bgQHB/PJJ5+YlEf6nXfeYcmSJYSEhFCtWjWaNGlCSEgI5cuXB9Th9dOnT6du3bo8++yz6HQ6tmzZYjAHO6ey+vw3b97k7bffZty4cdSuXRuAsWPHUrJkST744AP9dqGhobz88suZroNlbholOxMPzODevXv4+fkRExODr6+vLUKwK5s2baJt27aA+p8jsxPIpEmTLHsinz4dxo9Xe7ZT/9uEfw7HPoU2ETxyKkTlypX1ixH88ccfNG7cGIDPP4fhw+HQIbXtLkReYPG66Wjq1FF/vvnGtnF07qzOaUyRw1UIIUySkKD2KC9YAO+/n+FmFr8OKIo6LaZJE0iVazilhw8fEh4eTlBQEF5eWfdQm8Lf35/BgwczePBgs5abG3Xu3JlatWoxcuRIW4eSp8XHx1OpUiVCQ0N57rnnstw+uf7odDqio6O5f/8+Wq3W5OHw0qNtJ1L2aGc1n6V///6WDaZHDzUhdnoLGQS8B87ecGo2Hh4ejB8/Xv/WyJEj9QsoDBqkdoz37QsmPDgTwqFZvG46Gp3OdguhpaTVwvHjYMKcPiGEMHD5snpDY+t7NI1GPaetWQOxsZY9lsixmTNn6hdVE7YTGRnJqFGjjGpkm5M0tO1EyoZ2VkMali9fbtlgSpeG5s3THz7u6guBH8K5ryH+Dj179iQ4OBiA/fv3s3nzZnUzV/jqK/jrL1i82LLhCmEvLF43HcmDB3Dnju2HjgO0bAlFiuQsLY4QIm8zMl2hVa4DPXuq59iNGy1/LJEj5cqVY8CAAbYOI88LDAzk/UxGoliKNLTthC4iQv/3rHq0mzRpYuFoUBcQ+uOP/9LzpFR5ICgJcHYhzs7OTJ48Wf/Wp59+qp/78dxz0KcPjBwJ169bPmQhbM0qddNRJN+U2kOPtqurOlJnxQp1+KcQQpjKyIa2Va4DFSrACy/Y7OGhTqeTYeNCGEEa2nYiOYe2k0ZD6dKlM9/2aZJ4i2rfHry91VRfqXkUhQpvw+m5kPCQtm3b6vPr/fPPP6xMsejQ9Ong5ATDhlk+ZCFszSp101EkP6Szhx5tUIda3rihrkAuhBCm0unUVIVZ5Ca22nVAq4UdO+DKFescz0Tjxo2jZs2aJu3TtGlTszfgjYlj3759VKtWDVdXV9q1a2fW45vqrbfesnkMwnykoW0nIp8uKFa0QME0SdtTc3Nzs3xA3t7wxhvq09L01ssLGgqP78L579BoNEybNk3/1meffUZ8fDwAhQvDjBlqJopduywfthC2ZJW66SgiI8HFBUqUsHUkqpo1oWpVGT4uhMgeI3JogxWvA3aeUeHjjz9mZ+pUsVlYv349EydOtFBEGfvoo4+oWbMmERERJqUNywmdTodGo0mTD3zu3LlWi0FYnjS07UBsbCx3H9wHoHyFCllun1VqBLPRauHsWThwIO17PuWhXFc49TkkPaFp06b6tA46nY6vv/5av2nv3tCoEfTrB48fWyd0IWzBanXTEeh0ULYsODvbOhJV8gJCGzdCdLStoxFCOBojF3e02nXAzw/atYNly9LvELERRVFISEjAx8eHQoUKmbRvwYIFyZcvn4Uiy9j58+d58cUXKV26tFnzP2eHn5+fzWMQ5iMNbTuQnB4LoELlwCy3DwsLs2Q4/2naFMqUybgHKHg4xEZC5I8ATJkyRf/WpEmTuH9ffXjg5ASLFsGZMzBrlqWDFsJ2rFY3HYGRvT9W1aMHPHmirtYrhBCmMPKcZtXrgFYL//4Lf/9tsUPEx8czcOBAihYtioeHB88//zyHDh3Sv79r1y40Gg3btm2jbt26uLu7s2fPnjRDthMSEhg4cCD58+enUKFCDB8+nF69ehkMk049dNzf358pU6bQp08f8uXLR9myZfkmVbrI4cOHExgYiJeXFxUqVGDMmDE8efLEqM+W3Kt8+/Zt+vTpg0ajISQkhJCQkDSN3Y0bN6LRaPS/J3++H374AX9/f/z8/Ojatav+3hcgKSmJ6dOnExAQgLu7O2XLltWva5Sch7pWrVpoNBqaNm0KpB06buz3v3PnTurWrYuXlxeNGjXi9OnTRn0HwrKkoW0HdCkWHMtqITRAn2/b4pyc1JUtV62Cp0PBDeSvBiVfhZPTQEmidu3adOnSBVCTx8+ePVu/afXqMHgwTJwIKdZ9EyJXsVrddASRkfaxEFpKJUvCSy/J8HEhhGmSkuDiRaPOaVa9Drz8MhQrZtFz2ieffMK6detYtmwZR44cISAggJYtW3Lnzp00202dOpXw8HCqV6+eppzp06ezYsUKli5dyr59+7h37x4bjVg1fdasWdStW5e///6bfv360bdvX06dOqV/P1++fISEhHDy5Enmzp3L4sWLDe4/M1OmTBmioqLw9fVlzpw5REVF6e9jjXH+/Hk2btzI5s2b2bx5M3/88YfBVMqRI0cyffp0xowZw8mTJ1m5cqV+xMNff/0FwI4dO4iKimL9+vXpHsPY73/UqFHMmjWLw4cP4+LiQp8+fYz+HMJypKFtB0xJ7QWw2Jr5snr2VIdZPk3blUbwCIj5F65uAWDixIk4Px0q+vnnn3Pz5k39puPGQaFCMHCgXY1yEsJsrFo37Z1OZ3892qD2AO3dC7JwnRDCWFFR6mgYe7tHc3FRR+qsXKnGl4W6detSunTpLH/q1q0LqFMbFy1axMyZM2ndujXBwcEsXrwYT09Pvv32W4OyJ0yYwEsvvUTFihXTHTI+f/58Ro4cSfv27alSpQpffvmlUUOkX3nlFfr160dAQADDhw+ncOHC7Eqx6M/o0aNp1KgR/v7+vP766wwdOpTVq1dnWS6As7MzxYsXR6PR4OfnR/HixfHMYrG7lJKSkggJCaFq1aq88MIL9OzZUz8v/f79+8ydO5cZM2bQq1cvKlasyPPPP88777wDQJEiRQAoVKgQxYsXp2DBgmnKN+X7nzx5Mk2aNCE4OJgRI0awf/9+Hj16ZPRnEZYhDW07kLJH25iG9ujRoy0YTSpVqkC9euocoPQUfR6KPKf2agOVKlXSn0Tu37/P1KlT9Zv6+MDcuWqb/aefLB65EFZn1bppz+Li1Jx+9tjQbtdOPRlJznMhhLGMTO0FNrgOaLVw8yZs25blpteuXePKlStZ/ly7dg1Qe2yfPHnCc889py/D1dWVevXqER4eblB2cuM8PTExMVy/fp169erpX3N2dqZOnTpZxpyyd1yj0VC8eHFu3Lihf23t2rU8//zzFC9eHB8fH8aMGWMwJdOS/P39DeaUlyhRQh9beHg48fHxNG/ePNvlm/L9p/yeSjxdhDTl9yRsQxradiDSxKHjkyZNslww6dFq4Zdf1NQ46QkeATf3wY29gLrquIeHBwALFiwwOOG1bw+vvKL2aj94YPHIhbAqq9dNe5Vc5+1t6DiAl5e6Wm9GGRWEECI1E9IVWv06UKOGOj8vow6RFIoXL06pUqWy/ClevDigLmwGGMxNTn499Wve3t5ZHj+9crKSOhOPRqMhKSkJgAMHDtC1a1dat27N5s2b+fvvvxk1ahSPc7jyrpOTU5rY0pv3nVlspvSMZ8SU7z9lLMnvJccibEca2nbg/Okz+r+XLVs2y+2HDh1qyXDS6tpVXbF31ar03y/5CvhV1fdqlyxZkkGDBgHw+PFjxo0bp99Uo4H589WHrxMmWDpwIazL6nXTXpnQ+2MTWi1cuAD79tk6EiGEI4iMhAIFwNc3y01tch3QamHTJrh7N9PNDh8+zOXLl7P8OXz4MAABAQG4ubmxd+9efRlPnjzh8OHDBAUFGR2en58fxYoV089LBkhMTOTvHC7itm/fPsqVK8eoUaOoW7culSpVMpiOmV1FihTh/v37xMbG6l9LnYYrK5UqVcLT0zPDFGfJaeASExMzLMNc37+wHWlo24HkoeOF/fLre4Izs3DhQgtHlEqhQvDaaxkvtqFxUlcgv/oz3D0OqKtAJs+9WbZsGSdPntRvXqECjB4Ns2fDP/9YOnghrMfqddNeRUaqiymWLm3rSNLXuLH6EEAWRRNCGMOExR1tch3o0QMSEsDIucnG8vb2pm/fvgwbNoytW7dy8uRJ3n33XR4+fMjbb79tUlkDBgxg6tSp/PTTT5w+fZpBgwZx9+7dND2zpggICODixYusWrWK8+fPM2/ePDZs2JDt8pLVr18fLy8vPv30U86dO8fKlStNzm3t4eHB8OHD+eSTT/j+++85f/48Bw4c0M+tLlq0KJ6enmzdupXr168TExOTpgxzfv/CNqShbWPx8fHcjFafQJYzojcboE2bNpYMKX1aLYSFqWkk0lOuC3iXg/AZABQoUIARI0YA6tCV1HOWPv4YKlaEvn3VxTyFyA1sUjftkU4HpUpBqmF1diM5o8Lq1ep8ciGEyIwJizva5DpQvDi0bGmRh4fTpk2jY8eO9OzZk9q1a3Pu3Dm2bdtGgQIFTCpn+PDhdOvWDa1WS8OGDfHx8aFly5ZGdTBlpG3btgwZMoT+/ftTs2ZN9u/fz5gxY7JdXrKCBQuyfPlytmzZQrVq1QgNDTUYnWmsMWPGMHToUD777DOCgoLo0qWLft60i4sL8+bN4+uvv6ZkyZIZrlZvru9f2IZGMWaChAXcu3cPPz8/YmJi8DViKE5udfbsWQID1dzZnTt14kcjnkb++OOPJqUfMIvHj6FECXjnHZg+Pf1tTn8JRwbD62fBpzwPHz4kICCAqKgoQJ1LU79+ff3mv/0GzZvDd99B795W+AxCWJhN6qY9evNNtQdozx5bR5KxM2egcmX48Ufo3NnW0Qgh7FlQkNqQnTMny01tdh1YtQq6dYOzZyEggIcPHxIeHk5QUBBeXl7WjycLSUlJBAUF0blzZyZOnGjrcIQwkFx/dDod0dHR3L9/H61Wm+7q8JmRHm0bSzmXxP9p8vqsJKcEsCo3N/UEvnw5ZDSfpGIfcCsI4Z8D4OXlxdixY/VvjxgxwmBxiRdfVEc7DRsGt29bNHohrMImddMe6XT2uRBaSoGB0KCBUQsICSHyMEUxaei4za4Dbduqc8jtdEpMZGQkixcv5syZM5w4cYK+ffsSERFB9+7dbR2aEBYjDW0bMzWHNoC7u7ulwsmcVgtXr6pd0elx8YLKg+DCdxB3HYA+ffoQEBAAwK5du9i+fbvBLrNmqdOKno4yF8Kh2axu2pvISPtdCC0lrVZNifM0lY0QQqRx86Y6xcTe79E8PdXROT/8YJdz8pycnAgJCeHZZ5/lueee48SJE+zYsUMW9RK5mjS0bUxnYmovUPPq2cSzz6p5tTN7WhrYDzQucGYeoKYbSJnqYuTIkQbpBooVgylTYMkS2L/fYpELYRU2q5v25PFj9YGcvfdoA3TpAs7OEBpq60iEEPYquUPE3u/RQH14qNNBilWq7UWZMmXYt28fMTEx3Lt3j/3799O4cWNbhyWERUlD28ay06PdtGlTC0WTBY1GPYmvXw/376e/jVsBqPQBnFkAT+4B0KlTJ2rVqgXAkSNHWLNmjcEu778PdeuqC6MlJFj0EwhhUTarm/bk8mW1N8URerQLFoTXX7fboZZCCDtgQg5tsPF14LnnoHx5OacJYSekoW1j506d1v/d2Ib2Dz/8YKlwstajhzqEat26jLepPAQS4+Ds14A6XGjq1Kn6t0ePHs2TJ0/0vzs7w1dfqam+5s2zWORCWJxN66a9sPcc2qlptXD0KBw/butIhBD2KDISfHzUPNpGsOl1IGVGhUePbBeHEAKQhrbNRUZEAJDfxwcfHx+j9hk5cqQlQ8pc2bLQrFnmT0u9SkJ5LZz6AhLVE/3LL7+sf8p77tw5vvvuO4Nd6tSBfv1g7Fi1Q0wIR2TTumkvknt/jExXaHOtWkHhwtIDJIRIX/Lijkbme7b5daBnT3XU4a5dto1DCCENbVtKSEjg+h11ue0ypcoYvd+UKVMsFZJxtFr4/ff/eq7SEzQMHl2HCPXJrkajMejVHj9+PA8fPjTYZdIk9aHx4MGWCFoIy7N53bQHkZFqTtcc5Ea1quSMCitWyNwVIURaJi7uaPPrQECAOoR882bbxiGEkIa2LV2+fJnEpwuDBQRVMXq/Tz/91FIhGadjR/DyUm9MM+IbCGU6wskZkKSmA2vQoAHt2rUDICoqivnz5xvs4ucHX3yhjkr/5RdLBS+E5di8btoDE9Lg2I1evdSVx3fssHUkQgh7Y+I5zS6uA1otHDhg6yiEyPOkoW1Dhjm0/Y3eL2XPsE34+KiN7e+/V/NLZiR4ODw4B5fX61+aNGkSTk7qf7tp06Zx9+5dg126doXmzaF/f3UquBCOxOZ10x7odI4zPztZ7doQHCzDx4UQhhTF5HOaXVwHOnUCFxdbRyFEnie10IZSpvYydiE0gJ49e1ogGhNptWquxr/+gvr109+mUF0o3gL+nQZl3gCNhmeeeQatVktISAjR0dHMmDHD4KKk0cDChVCtmpr2a+JEK30eIczALuqmrUVGQr16to7CNMkZFcaNg3v3wNfX1hEJIexBdLQ639nR7tEKFIAmTQCIk14LIUxmrnojDW0bMujRNmFY0q5du9BqtRaIyATNmkGpUmoPUEYNbYDgEfBbC7i2A0q8BKjzs1euXMnjx4+ZO3cuAwYMoGTJkvpdAgNh+HCYNg3efBMqV7b0hxHCPOyibtpSYiJcuuR4Q8dBzagwciSsWQNvv23raIQQ9iC5Q8TR7tEAl9atcYqPN+jUEUIYT1EUEhMTc1SGNLRtKDs5tAEqVqxoiXBM4+ystoIXL1YnVru7p79dsRehYF04OU3f0C5btiwffvghs2fPJi4ujokTJ7Jo0SKD3UaOVKeA9+unTps0crFPIWzKLuqmLV29qi4o5mhDxwFKl1bnrXz/vTS0hRCqbKQrtJfrgNtLL/FMrVokdOlCzDvvsHnzZry9vXHP6H5NiDzg+vXrFCtWzKhtExMTScjhIqnS0Lah82fO6v9uSo92fHy8BaLJBq0Wpk+HLVugffv0t9Fo1F7tvW/Arb+gsDqkdOTIkSxZsoT79++zePFiPvroIypVqqTfzdMTFiyA1q1h5Uq1s0kIe2c3ddNWkm9KHbFHG9RF0Xr2hIgIKF/e1tEIIWwtMlLNoFC0qNG72M11wNUVt5dewu3LL3n0/vvExsby5MkTaWiLPO369esm14Gc1GlpaNtQxLlzAPh4eJI/f36j97t586aFIjJRcDDUrav2AGXU0AYo3Q7yBUL4dHhhHQBFihTh448/ZuzYsSQmJvLZZ58RGhpqsFurVvDGG/DRR/Dqq2DCVySETdhN3bSV5CGKjtijDep5zNsbli+HMWNsHY0QwtaSF0IzYVidXV0HtFqYMwf3ffvw9fXl3r17PH782NZRCWEz0dHRFChQwOT9fH19s/WQSqMomS0bbTn37t3Dz8+PmJgYfPPgwjNJSUm4u7mRkJhIlQoVCT9/zuh9z549a9D7a1Pz58PQoeqQ0cKFM97u/Ldw8F149ST4qanM7t+/T8WKFfUXpSNHjlCrVi2D3a5cgSpV1GvFggUW+xRCmIVd1U1bmDwZZs+GW7dsHUn2vfUW7NsHZ87InBUh8roOHSA2FrZtM3oXu7oOKApUrw7PPEPst9/aT2+7EDYSERFB+WyMWHN3d8fb29vk/aRH20aioqJIeDrBPqCK8Tm0ATZt2sTQoUMtEZbpunZVu5xXrVJzcmXE/004PhbCZ0CD7wDIly8fo0ePZtCgQYCae/KXVAm0S5WCCRPUtvxbb8Gzz1rqgwiRc3ZVN21Bp3PcYePJtFpYtgz+/BMaNbJ1NEIIW9LpTL7xsKvrQHJGhTFj8P7qK7wLFrR1RELY1NKlS6lTp47Vjid5tG3EYMXxCqY9WenXr5+5w8m+IkXglVeyzj/r7A5VPgLdcoi9pH/5/fff1y8Et3XrVnbt2pVm1wED1AeyffuqixoLYa/sqm7aQmSk4w4bT9a0KZQpIzm1hRDZOqfZ3XWgRw948kTNqCBEHmft+ikNbRtJmW7BlIXQAGbNmmXeYHKqVy84dAjCwzPfLuBdcPGBU7P1L7m7uzNhwgT97yNGjCD1bAYXF1i0CMLC1D+FsFd2VzetLTLS8Xu0nZzUBdF+/BEePbJ1NEIIW7l/H+7cMfmcZnfXgZIl4aWX5OGhEFi/fkpD20aym9oLYPTo0eYOJ2defRUKFIAffsh8O9d8ENgfzn8D8bf1L/fo0YNnnnkGgIMHD/LTTz+l2bVhQ3j3XRg1CqKizBq9EGZjd3XTmpKSckePNqgN7eho2LzZ1pEIIWwlG6m9wE6vA1ot7N0L58/bOhIhbMra9VMa2jaSkx7tSZMmmTeYnHJ3V+dq//BD1mO7AweAkgRn/lvZzNnZmSlTpuh///TTT9NNED9tGri5qfO1hbBHdlc3renGDYiPzx0N7SpVoF49da62ECJvymZD2y6vA+3agY9P1h0iQuRy1q6f0tC2kYhz/z1VNLVH+9133zV3ODmn1cLly5DOHGsDHkWg4jtwZh4kxOpffv3112nYsCEA4eHh/JDOxaBgQfj8cwgNhR07zBm8EOZhl3XTWpIfHjr60PFkWi388ov6AEEIkffodODqCiVKmLSbXV4HvLygUyd1+Lhtkg0JYResXT+loW0jF86eBcDd1ZXCmaXFSkd6Q6ttrn59qFTJuDlAQUPhcbSa8uspjUbDtGnT9L+PHTuWR+nMj9RqoXFj+PBDtfNMCHtil3XTWrLZ+2O3unZV52uHhto6EiGELURGqgsjOjubtJvdXgd69YKICDV9oRB5lLXrpzS0bUBRFC5fUycalylREo2JuVqtuSy90TQa9SS+bh08eJD5tt7loFx3CP8ckp7oX27cuDGtW7cG4OLFi3z11VfpHmbhQrhwAWbMMOsnECLH7LJuWktkJPj5Qf78to7EPAoVgtdekwWEhMirsrm4o91eB154QX0QKuc0kYdZu35KQ9sGbt68SfwTtYFZITDQ5P2vX79u7pDM4803ITYWNmzIetvgT+DhJdAZ9hZNnTpV//fJkydz7969NLs+84w6T3vyZFnXQ9gXu62b1qDT5Z7e7GRaLRw5Av/8Y+tIhBDWls1zmt1eB5IzKqxeDXFxto5GCJuwdv2UhrYNpFwIrUJARZP3f/z4sRmjMaNy5dQctMYsIJS/KpR6HcKnq4ujPVWjRg26d+8OwK1bt/jiiy/S3X3MGCheHPr3l+lGwn7Ybd20htyy4nhKr7yiLg4hPUBC5D3ZPKfZ9XWgZ0+IiYFNm2wdiRA2Ye36KQ1tG8hJai+AihVNb5xbjVYLv/0Gly5lvW3wCIg5CVcMU+hMmDABFxcXQM13dyOdxYi8vWHePNi6VR2tLoQ9sOu6aWk6Xe5ZCC2Zmxt06wbLl2edUUEIkXvExcH169k6p9n1dSAwEBo0kIeHIs+ydv2UhrYN5LSh/ccff5gzHPPq2BE8PGDFiqy3LdIIirwA/0416JauWLEi7733HgAPHjwwSP2VUps26s/gwXD/vjmCFyJn7LpuWpKi5M4ebVAfHkZFwc6dto5ECGEtFy+qf+a2ezRQ19PZtg2uXbN1JEJYnbXrpzS0bSAnObQB3nzzTfMFY26+vtChg/EpJIJHwO0DcHOPwcujR4/Gy8sLgEWLFhl8ZynNmwd378LYsTkNXIics+u6aUl37qjrM+S2Hm2AZ59V82pLD5AQeUdyh0huu0cD6NxZXUldMiqIPMja9VMa2jaguxCh/3t2erS//PJLc4ZjflothIfD4cNZb1uyNeSvBv9OM3i5RIkSDB48GFDnU4wbNy7d3cuVg88+Uxvcx47lMG4hcsju66alJD8Iy4092hqNek5bv16GzgiRV+h06uJhpUqZvKvdXwcKFoTXX5eHhyJPsnb91CiKbZaSunfvHn5+fsTExODr62uLEGymSoWKnI64gKuzM48eP8bJKZc970hMVHNPduwI8+dnvb1uJezvAa3/hgI19S9HR0dToUIF7t69i0aj4fjx41StWjXN7o8fQ61aamahvXvVa6MQworWr1fr+40bUKSIraMxv4sX1Z6tb7+F3r1tHY0QwtJGjYIffvhvCHlus2kTtG2r9lBUr27raITItaRJYmWKonA56ioAJYsWy1Yje9KkSeYOy7ycndVUX6Ghais4K2U7g3d5ODnd4OX8+fMzcuRIQP3eRo0ale7ubm6waBH8+ad6HyyErdh93bQUnQ68vKBwYVtHYhlly0KzZtIDJERekYPFHR3iOtCqlXq+lnOayGOsXT+loW1l0dHRxD56BED5gIBslTFgwABzhmQZWi3cvg2//JL1tk4uEDwMLq6G+4aJsfv370/JkiUB2LRpE/v370+3iMaN1fU9hg+HmzdzHL0Q2eIQddMSkhdC02hsHYnlaLWwa9d/czeFELlXDhZ3dIjrgJsbdO+uLlybkGDraISwGmvXT2loW1nKRb0qBlbKVhnfO8ITyKpVoXZt45+Wln8L3AtD+OcGL3t6ehrMzx4xYgQZzXaYOVP985NPshGvEGbgEHXTEiIjc+dCaCl17Kj22i9fbutIhBCWloNzmsNcB7RadeXxHTtsHYkQVmPt+ikNbSvLaWovgGbNmpkrHMvSauF//1N7trPi4gmVB8OFpRBnmHKid+/eBAYGArBnzx62bt2abhFFisC0aRASAnv2pLuJEBblMHXT3HS63LkQWko+Pmpj29iMCkIIx/T4MVy5ku1zmsNcB2rXhuBgGT4u8hRr109paFtZTlN7AZw9e9Y8wVhat26QlAQ//mjc9pX6gpMbnJ5r8LKLi4vBnIqRI0eSlJSUbhHvvAMNGkDfvvDkSbYjFyJbHKZumltuzaGdmlYLZ87AwYO2jkQIYSmXL6sP07J5TnOY60ByRoUNGyAmxtbRCGEV1q6f0tC2MnP0aHt6eporHMsqWhRatzb+aalbfrWxfXYhPDY86Xfs2JE6deoAcOzYMX7MoPHu5KQujBYeDrNn5yR4IUznMHXTnGJiIDo69w8dB3VBtFKlpAdIiNwsuUMkm+c0h7oO9OgB8fGwdq2tIxHCKqxdP6WhbWW6CJ3+79ltaBcqVMhM0VhBr15q78/p08ZtX2UwJD6Cc18ZvOzk5MS0af/l2h49ejSPM1jRvGZNGDgQxo+XdYuEdTlU3TSX5EqWF3q0nZ2hZ09YtUq9ORVC5D7J57QyZbK1u0NdB0qXhhYt5OGhyDOsXT+loW1l58JPAeDs5ESpUqWyVcbRo0fNGJGFvfYa5M+v5qM0hmcJqPAWnJqtNrhTaNGiBc2bNwfgwoULfJtJLq8JE9TDDhqUvbCFyA6HqpvmknxTmhd6tEFtaN+9Cz//bOtIhBCWEBkJJUqAh0e2dne464BWC7t3Q0SErSMRwuKsXT+loW1ll65cAqB4ocK4uLhkq4zXX3/dnCFZlocHdOmiNrQzmFedRtAwiL8JF5aleWvq1Kn6v0+YMIHY2Nh0i8iXD+bMgZ9+UtdjE8IaHKpumotOp6aKKVbM1pFYR3Aw1K0rPUBC5FY5XNzR4a4D7duDt7dkVBB5grXrpzS0rej+/fvEPG0Ylq9QIdvlLFmyxFwhWYdWCxcvwh9/GLd9vgAo8waEz4Akw/yOzz77LB07dgTg2rVrzJs3L8Ni3ngDWraEAQMgg/a4EGblcHXTHCIjoWxZdYGEvEKrVXu0b960dSRCWMy9e8YlDcl1cri4o8NdB7y91Rsmyagg8gBr1888dGdkeykXQqtQOTDb5YwePdoc4VhPw4YQEGBaD1DwcHhwAS6tS/PWpEmTcHp6Uz99+nTu3LmTbhEaDXz5pZomMsWi5UJYjMPVTXPQ6fLOsPFkXbuqf65aZds4hLCgmjWhcuU82PbK4TnNIa8DvXrBuXPw55+2jkQIi7J2/ZSGthWZY8VxwCDVlUNITiGxdq3xXcsFa0Pxl+HktDRX+SpVqtC7d28AYmJimD59eobFBATAp5/C55/DyZPZ/gRCGMXh6qY55JXUXikVKQKvvirDx0Wu9fvv6pTd27dh9WpbR2NFiYlqeq+8dI8G0KSJuvibnNNELmft+ikNbSsyRw5tgI8//jjnwVjbm2/CgwewcaPx+zwzAu4ehahf07w1duxY3N3dAZg3bx5XrlzJsJjhw6F8eejXLw8+mRdW5ZB1M6ciI/NejzaoDw8PH5YneCLXefxYvV4+9xy0bQtDhqjDyPOEq1chISFH5zSHvA44OakLPf74Izx6lPX2Qjgoa9dPaWhbkbl6tOfPn2+OcKyrfHlo3BiWpV3gLENFm0KhemqvdiplypShf//+ADx69Ijx48dnWIy7OyxcqE4RN3bxcyGywyHrZk7ExqrzlPNajzaoPdoFCshJReQ6n38OZ8/CokUwbx7ExMCYMbaOykqSO0Ty2j0aqA3t6GjYvNnWkQhhMdaun9LQtiJditQJOenRbteuXc6DsQWtFnbsgEx6nw1oNBA8Am7sglsH0rw9cuRIfH19Afjuu+84nUmu7hYt1GmVH38MGUzpFiLHHLZuZtfFi+qfebGh7e6unlR++EEdbipELhARARMnqr3Y1aqp6xyOG6eud3LkiK2js4LkDpEcnNMc9jpQpQrUq2dah4gQDsba9VMa2lZ0/pTaENRoNJQpUybb5YSFhZkrJOt64w315nTFCuP3Kd0WfCun26tdqFAhhg0bBkBiYiJjsnjk/sUXEB+vztkWwhIctm5mV3LvT14cOg7qw8MrV9QJrUI4OEVRs3QUKQJjx/73+uDBala7vn3zwDMlnQ4KF1ZX4s4mh74O9OoFv/wCN27YOhIhLMLa9VMa2lYUeUnt/SmSvwBubm7ZLqd48eLmCsm6/PzUfI3Llhk/WVrjBEHD4fJPEJN2LuTgwYMpWrQoAGvWrOHw4cMZFlWihLr6+DffwMGD2foEQmTKYetmdkVGgrMzlCxp60hso359CAyUBYRErrBxo5q1bu5c8PH573VXV3UY+V9/weLFNgvPOsywuKNDXwe6dFHna4eG2joSISzC2vVTGtpWEhcXx+2YGCBnw8YBXFxczBCRjWi16uJBf/9t/D7+PcCrNJyckeYtHx8fg57sT7Poru7XD2rVgg8+UNc7EcKcHLpuZkdkpLpSbV773MmSMyqsW6cu9iiEg3rwAAYOVJceSG9k5fPPQ+/eMHIkXL9u9fCsxwyLOzr0daBQIXjtNXl4KHIta9dPaWhbycXkuYxAxRzk0AaISDHX2+G0aAHFi5s2B8jZDaoMBd0KiL2Y5u333nuP8uXLA7B9+3Z27tyZcVHO8NVXcOwYLFhgcvRCZMqh62Z26HR5c352Sm++CQ8fwvr1to5EiGwbP15N5TV/vvr8KD0zZqidnU9nbOVOZjinOfx1QKtVJ+T/84+tIxHC7KxdP6WhbSUGqb2eNgqzq3HjxjmMxoZcXKBHD1i5Ep48MX6/iu+Aqy+c+iLNW25ubkycOFH/+8iRI1EyGZr+7LNqj/aYMWomDyHMxaHrZnbkxRzaqZUrB02bygJCwmGdOAGzZ8Po0WqCkIwULgzTp6vr/+3aZbXwrCcpSV3gMSfntDvHaFz8X1CSzBeXtb3yitqzLb3aIhey9n2aNLStxFypvQBWrlyZ03BsS6uFW7dg61bj93H1gcABcG4xPLqV5u1u3bpRvXp1AA4dOsSGDRsyLW7KFPD0VFdWFcJcHL5umkqny7sLoaWk1aoLol1MO+JGCHuWlKQuclapkpqVIyt9+kDDhuo0rMePLR+fVV2/rq6YmpNz2pFBrFwyHWIvmy0sq3Nzg27dYPnyPLD6nchrrH2fJg1tKzFnQ/uTTz7JaTi2Vb061Kxp+tPSQDVvNme+TPOWk5MTU6ZM0f8+atQoEjKZhJ0/P8yaBatXw6+/mhaGEBlx+Lppivh4iIqSHm1QMyp4eJiWUUEIOxASAvv2wcKFavsqK05O6vSrM2fUa2iuktPUXooCDy7wSRsXOLfIfHHZglarnt8zmYonhCOy9n2aNLStxFw5tAGmTp2aw2jsgFYLmzbB3bvG7+NRGALehTPz4UnahYdeeeUVnn/+eQBOnTrF91k05Hv0gGbN4MMP4dEjk6IXIl25om4a69Il9U/p0YZ8+aBDB/XhobEZFYSwsdu34ZNP1GUGmjUzfr/q1WHQIDXftqNPRzaQ04b27YPw8BJTd1WBswvhcYz5YrO2unXVvNoyfFzkMta+T5OGtpWcP31W//eyZcvmqKzRo0fnNBzb69ZNHZL044+m7VflI3hyD84vSfOWRqMxqEBjx47lUSYtaI1GfYofGQnT0qbpFsJkuaJuGit53Qnp0VZptXDqFGSSYlAIezJ8uHoZ/vxz0/cdNw4KFlRXKs81z5Z0OjUNaf782dw/FDxLMHrOFkh8BOe+Mmd01pWcUWH9erh/39bRCGE21r5Pk4a2leh06mPfgr6+eHl55aisSZMmmSMk2ypeHFq2NP1pqXdZNd3XqVmQmHaC2PPPP89rr70GwOXLl1m4cGGmxVWpoq6gOnUqnD2b6aZCZClX1E1jRUaqN2Nlytg6EvvQvDmUKCGLogmHsG8ffPutul5JsWKm758vn5pve/Nm+Okn88dnEzlZ3DEpES6uhrJdmDR7GZTvBadmqw1uR/Xmm+pwv7VrbR2JEGZj7fs0jZLZ8swWdO/ePfz8/IiJicHX19cWIVjN48eP8fDwQFEUaj1TlSP/nMhReZcuXaJMbri5/fFH6NpVnexVqZLx+8WchJ+fgQZLocJbad4+fvw4NWvWRFEUChUqxPnz5/Hz88uwuIcP4Zln1BC2bcs4tYkQWck1ddMYY8bA0qVw2YEX/TG3Tz5RWy9RUcZNeBXCBp48gTp11GUF/vxTTXuZHYqi5t3+5x84eRJ8fMwbp9W98gq4umbvycG1nfBbC3j5IJfiSlDG7xFsrgzPLoJK75s/Vmtp0UId9vD777aORAizsPZ9mvRoW8Hly5f16aYqVqmc4/IyyxPtUNq0UYdp/fCDafv5BUPptnByeropNKpXr06PHj0AuH37NrOyWLHFywu+/BK2b1cXRxMiu3JN3TSGpPZKS6uFO3dgyxZbRyJEhubNg3//VRc1y24jG9SH0l9+CTdvwoQJ5ovPZnJyTotcBT4VoNCz6nXAtxKUfQPCZ0BSxguz2j2tVs3llmJBXyEcmbXv06ShbQXmzKENEBgYmOMy7IKnJ3TurDa0k0zMORk8Au6dgsub0n17/PjxuLq6AvDFF19w/fr1TIt79VVo315N93XvnmmhCJEs19RNY0RGykJoqVWtCrVrywJCwm5dugRjx6qLgNaunfPyKlSAUaPUPNz//JPz8mxGUbJ/Tkt8DJfWQbmuoNH8dx0IHgEPLqjvOaoOHdTeiOXLbR2JEGZh7fs0aWhbgTlTewHExcXluAy7odWqC5Ds2WPafoUbQNEmcHJquiuxVKhQgfffV4drxcbGGjUnY+5ctZE9ZoxpoQiRLFfVzazodNKjnR6tVp24evu2rSMRIo3Bg9X51RMnmq/MYcOgYkU1H7epz8ztxu3bEBubvXNa1DZ4fBfKdQNSXAcK1obiL8PJaY67YpyPD3TsKBkVRK5h7fs0aWhbgUGPthl6gG7nphu4556D8uWz1wMUPAJu/wU3/kj37dGjR+Pt7Q3A119/zYULFzItrkwZdSXVL7+EI0dMD0eIXFU3M5OQAFeuSEM7Pd26qa2NVatsHYkQBrZsUReRnj1bnbVlLu7uagaPvXsdeC3AnKT2igwFv6qQvyqQ6jrwzAi4e1RtjDsqrVZdS+fgQVtHIkSOWfs+TRraVmDuHu0aNWrkuAy7kZxCYs0adVUyU5RoCflrwL/p58QrVqwYQ4YMAeDJkyeMHTs2yyIHDYLgYPXJfGKiaeEIkavqZmYuX1YriAwdT6toUWjdWoaPC7vy8CH076+ubdWli/nLf/FF6N5d7d12yOeNyR0ipp7TEmLh8k/qsPGnDK4DRZtCoXpqr7ajatYMSpeWc5rIFax9nyYNbSu4cPqM/u/maGhv3rw5x2XYFa1WzdNo6kqfGo3aq33tV7iTfhf0xx9/TMGCBQFYsWIFx48fz7RIV1d1gZi//oLFi00LR4hcVzczkpPen7ygVy/1JHLqlK0jEQJQ03hduQILFlgus8asWepglxEjLFO+RUVGqnORCxUybb8rmyHxoUFD2+A6kHyfcuMPuPmnmYK1MmdnNdXXqlUQH2/raITIEWvfp0lD2woing5Z9vXyNksqs759++a4DLtSoQI8/3z2xpyVfUNd6fPk9HTf9vPz49NPPwVAURRGjRqVZZHPPQd9+sDIkZDFGmpCGMh1dTMjyb0/0tBO32uvQf78pmdUEMICTp2CGTPUBrAl1wEqXhwmT4YlS2D/fssdxyJ0OrU329SnEJGhao91vor6l9JcB0q3Bd/KEJ7+fYpD6NkT7t6Fn3+2dSRC5Ii179OkoW1hCQkJRN26CUCZUqXMUuYXX3xhlnLsilar5te6etW0/ZxcIOgTuLQW7p1Nd5MPP/yQ0qVLA+qTrL1792ZZ7PTp4OSkDoMTwli5sm6mJzJSHSLt6WnrSOyTh4c6Pjc7GRWEMCNFgX79oGxZ9eGxpX3wAdStq/755Inlj2c22Unt9Tgarv6iXwQtWZrrgMYJgoarQ8xjTuYsTlsJDlb/YWX4uHBw1r5Pk4a2hV29epXEpzdaAUFVzFLm6NGjzVKOXenUSR23vXKl6ftW6AXuReDU5+m+7eHhwfjx4/W/jxgxQp/XPCOFC6s9AD/8oKaQFMIYubJupkdyaGdNq1VzKckJRNjQypXw++/qkHEPD8sfz9kZFi1SU33Nm2f545lNds5plzZA0hMo29ng5XSvA/49wLMUnJyRgyBtTKtVe7Rv3rR1JEJkm7Xv06ShbWEpF0IzRw5twKhUVQ4nf35o21YdPm5qCglnD6gyBC6EQFxUuptotVqqVFEfdOzbt48tW7ZkWWzv3tCokdob8PixaSGJvClX1s30JA+zFBlr2BACAqQHSNhMdDR89JH6HLtlS+sdt25d9bo5dqz6rMkhZOecFhmqphn1KmnwcrrXAWc3CBoKuhUQezHbYdpUt6c995JRQTgwa9+nSUPbwsy94jigzw+d6/TqpT4GP3bM9H0DPlAb3KfmpPu2i4sLkydP1v8+cuRIkrIY0unkpD6ZP3NGXeRFiKzk2rqZmvRoZy05o8LatWp+XiGsbNQodbXx2bOtf+xJk9QUzIMHW//YJouOhpgY085pcdfh+k7w75bmrQyvAxXfBdd8cMpBpxgVLgyvvioPD4VDs/Z9mjS0LczcObQB1q9fb5Zy7M7LL6vzPrOzKJqbH1TqB2cXqfOm0tG+fXueffZZAE6cOEFoaGiWxVavrt4oTJwIERGmhyXyllxbN1NKSoKLF6VH2xhvvqk2sjdssHUkIo85dEh9UDxxIphpeRiT5M8PX3yh5u02YgCZbSV3iJhyTru0FnCCMh3TvJXhdcDVBwIHwLnF8OiWyWHaBa0WDh+Gkw4611zkeda+T5OGtoVZokc7ubGY67i4QI8e6qSy7KyiUnkQJD1WG9vp0Gg0TJv2Xy7LMWPG8NiIMeHjxqkZPwYONH1Uu8hbcm3dTCkqSq2f0qOdtfLloXFj6QESVpWYqC5GVqOGmjvbVrp1g+bN1RgePrRdHFnKTrrCyFAo8TK4p00Hlul1IHAAoMCZL02L0V68+ioUKCAZFYTDsvZ9mjS0LezCmf9WwjZXj3ZUVPrzkHMFrRZu3IBffzV9X8/iUKE3nJ4DCXHpbvLiiy/y0ksvARAREcFiI5Jl+/jA3LmwebPpqb5F3pKr62YyyaFtGq0WduyAy5dtHYnIIxYuhL//Vnu0XVxsF4dGoy7CduWKmsfbbkVGgpsbFCtm3PaxF+HmvjSrjSfL9DrgUVgdQn5mPjx5kI1gbczdHbp2VRvaiYm2jkYIk1n7Pk0a2hZ24dw5ALzc3SlQoIBZykzMzSe3GjWgWrXs9wAFfQzxtyAiJMNNpqS44k+YMIEHD7K+2LVvD6+8ovZqG7G5yKNydd1MJjm0TfPGG+rN6YoVto5E5AFRUTB6NLz7LjRoYOtooHJl+OQTNYvHqVO2jiYDOp16PnMy8pY4cpW6Jkzptum+neV1IOgjeHIPzi8xLU570auX+vTk999tHYkQJrP2fZo0tC0oKSmJqzeuA1C6REk0Go1ZyjVXz7hd0mjUk/hPP6kLlJgqX0U11cbJmZCUkO4mdevWpVOnTgDcuHGDOXPmGBXW/PlqVosJE0wPS+QNubpuJouMVIcO+vraOhLH4OenPqn7/nuZeyIs7qOP1Oc6U6faOpL/fPoplCmjrkRul1XA1MUdI1dBydfUhc3SkeV1wLsc+HeHU7Mg0QFTmtSrB4GBMiVGOCRr36dJQ9uCrl+/zuMEtbEXULmy2crds2eP2cqyS927q3NAV6/O3v7BwyE2Ai6uyXCTiRMn4uzsDMDMmTO5dSvrhUkqVFB7CmbPVhdHFyK1XF83QVJ7ZYdWqy4edOSIrSMRudj27WrmpZkzoWBBW0fzH09PdQj577+rS7DYHVPOafdOw92/011tPJlR14Hg4fDwMkTa4xeSheSMCuvWyRA/4XCsfZ8mDW0LMsihXbGC2crt1i3jE3yuUKKEugJ5dp+WFqgJJVrByWkZPj6vXLkyffr0AeDevXsGi6Rl5uOPoWJF6NtXXXxZiJRyfd0ESe2VHS1aQPHi2cuoIIQRHj2CDz9U197Tam0dTVqtWqmzKD76KHuD1SzKlHOaLhRcfaHkKxluYtR1wC9YHXp+cjooDngz8eab6gp369bZOhIhTGLt+zRpaFuQJVJ7ASxcuNBsZdktrRb27YPz57O3f/AIiD4OUVsz3OSzzz7Dw8MDgC+//JJLly5lWay7u7rQzN69cs8s0soTdVMa2qZLzqgQGgpGZDoQwlQzZqgpKBcuVDsc7dGcOWrbbNQoW0eSQmws3Lpl3DlNUdTVxku3V+doZ8Do60DwCLh3Ci5vMjJYO1KuHDRrJsPHhcOx9n2aNLQtyBKpvQBGjx5ttrLsVtu2kC9f9lNIFG0MhRrAvxlPVCtdujQDBgwAID4+nvHjxxtV9IsvqvfMw4bB7dvZC0/kTrm+biqK2tCWoeOm02rVG/qtGT/8EyI7zp1TV/UeOhSeecbW0WSsVCl1jZNFi9Q833bBlBzad4/C/TNQrmummxl9HSjcAIo2gZNT7XTyeha0WnU+wMWLto5ECKNZ+z5NGtoWZKmG9qRJk8xWlt3y8oLOnbO/gJBGA8+MgJt71DQcGRgxYgR+fn4ALF26lFNGLos6axYkJMCIEaaHJnKvXF83b96EuDjp0c6O6tWhZk3pARJmpShqnurixWHMGFtHk7UBA9Sq0LevnWSHMiVdYWQouBeG4s0z3cyk60DwCLj9F9zYZfw+9qJjR/DwkIwKwqFY+z5NGtoWdOHcf8OezTl0fODAgWYry65ptepYuL17s7d/qdfVeVAnp2e4ScGCBRk+fDigrhJv7JOuYsXUHoQlS2D//uyFJ3KfXF83k6fDSI929mi18L//wZ07to5E5BJr18K2bTBvHnh72zqarLm4qD3aYWHqnzan06lBlSyZ+XZKkrraeNlO4OSa6aYmXQdKtIT8NeBf49aJsSv58kGHDpJRQTgUa9+nSUPbgi6cOQOAu6srRYsWNVu5ISEhZivLrj3/vHpDn90eII0TBA2HK/+D6IyXCR84cCDFixcHYN26dRwyckzb++9D3brqk/mE9DOJiTwm19dNU3p/RFrduqndeD/+aOtIRC5w7x4MHgxt2qg/jqJhQzXP96hRat5vm4qMhNKl1cZ2Zm7uh4eXoFzWCymZdB3QaNRe7Wu/wh0HzEqg1aoJ0u1mLoAQmbP2fZo0tC1EURQuRV0FoFSx4mbLoQ3QokULs5Vl15ycoGdPNc1XXFz2yvDvBl5l4OSMDDfx9vbms88+0/8+cuRIo4p2doavvlJTfc2bl73wRO6S6+tmZCT4+Kh5tIXpiheHli1l+Lgwi7Fj1RW8HfH6M20auLmp88ptytjFHSNXgVdpKPJclpuafB0o+wb4VMh09J3dat5cHQ0g5zThIKx9nyYNbQu5ffs2j56uLluhUiWzlm3sPOJcoWdP9bH9pmyuyunkCkEfq7kqYyMz3Oydd96hYsWKAOzcuZMdO3YYVXydOtCvn3rDc/ly9kIUuUeur5vJ+WbtdVljR6DVwoED8HTEkxDZcfSo2sAeO9YxB5gULKjm+w4NBSMvt5ZhTA7tpAS4tAbKdlFHymXB5OuAkwsEDYNLa+HeWdP2tTVnZzXVl2RUEA7C2vdp0tC2kJQLoZUPqGjWsr0dYSKWuVSqBI0a5expacW3wS0/hM/KcBNXV1cmTpyo/33EiBEoRs45mjRJ7eQbPDj7IYrcIdfXTUntlXNt2oCfX/YzKog8LylJnbIUFARDhtg6muzr1QteeEHN/x0fb6MgjDmnXf8NHt1QR8gZIVvXgQpvgXsROPW56fvaWs+e6roTW7bYOhIhsmTt+zRpaFuIpXJog7qAV56i1aqrvVy7lr39XbwhcCCcXwKPbma4WZcuXahRowYAYWFhrFu3zqji/fzgiy9g3Tr45ZfshShyh1xfN43p/RGZ8/RUMyr88IPaYhLCREuWqIMiFi0C18zX5bJrGo36GS5cUPOAW92jR+ok8azOaZGhkK8SFKhtVLHZug44e0DlwXAhBOJsPXHdRFWrQu3aMnxcOARr36dJQ9tCLJXaC+D48eNmLc/ude6sDk9auTL7ZQR+qA75OjM/w02cnJyYOvW/vNujRo0iwchVzrp2Vacq9e+f/enkwvHl6rqZnENberRzTqtVv8vdu20diXAwN26oaSXfekvtDXZ0zzwDH30EkyfD+fNZb29Wly6pf2Z2TkuMh0vr1dzZRk6ZyfZ1oFJftcF9ak729rclrRY2b4bbt20diRCZsvZ9mjS0LcSSPdqtW7c2a3l2r0ABdbhlTp6WuheCiu/BmS/hyf0MN2vVqhWNGzcG4MyZMyxdutSo4jUaWLhQnac9ZUr2wxSOLVfXzehouH9fGtrm8NxzUL689AAJk33yifqnTXqALeSzz9SUmf37WzlLlDFZFK7+Ak/uGbXaeLJsXwfc/NTG9tlF8Dg6e2XYSrdu6j/eqlW2jkSITFn7Pk0a2haii4jQ/93cPdrfffedWctzCFotHDum/mRX0EeQ8ADOLc5wE41GY9CrPW7cOOKM7KIODIThw2H6dDh9OvthCseVq+um5NA2H41GPaetWQMPH9o6GuEgdu+GZcvUa0yRIraOxny8vdWF3bZuVadgWY1Op9bFMmUy3iYyVM1z7RdkdLE5ug5UHgRJj9XGtiMpWhRat5aHh8LuWfs+TaMYu+KTmd27dw8/Pz9iYmLw9fW1RQgW9UylQE6eO4uzkxPxjx/j7Oxs65Ac25MnUKqUenP6eQ4WCznQB6K2QZsL4Oye4WZt27Zl09OVzmfMmMGwYcOMKj4uTp2u5O+vrqQqizOLXGPjRmjfXl0roVgxW0fj+C5cgIoVYcUK6N7d1tEIO/f4MdSqpa4Jsnevmv0yt2nTBo4cgfBwyJfPCgccMwaWLs04ZciTB7C+KFQbC8HDrRDQU399AJc3QBsduHha77g5tXYtdOqk/gNWqWLraISwC7nwVG0fLl5RT9wlixQ1eyN70qRJZi3PIbi6qjejy5eDkfOm0xU0TF1oRLci080mT56sz30+depUoqOjjSre0xMWLIDfflOzXYi8JVfXTZ0OPDzUnguRcxUqwPPPSw+QMMrs2epIqUWLcmcjG9Re7Tt31JRlVpHV4o5XNkFinJrWywQ5vg4EDYP4WxARkrNyrO211yB/fsmoIOyate/Tcunp2raio6N58HS4sblTewFG967mOlotXL8O27dnvwy/ICjdDsJnQFJihptVrVqVnj17AnD37l1mzpxp9CFatYI33lAXeDGyfS5yiVxdN5MXQpNhGuaj1arns6tXbR2JsGORkTBhAgwcCE8TY+RK/v7qfO1583I2S8xoWS3uqAuFwg3Bx9+kYnN8HchXEcp2hpMz1RzejsLDA7p0kYwKwq5Z+z5NGtoWkHLF8YqBgWYvf+7cuWYv0yHUqqUuUZrTHqDg4XDvNFz5KdPNxo8fj5ubGwBz5swhKsr4lBtz5kBsLIwenZNAhaPJ1XVTVhw3v06d1NE6KzIfYSPytoED1TVBx4+3dSSW99FHULmymifc4m21zM5p8Xfg2jaTFkFLZpbrQPBwiI2Ai2tyXpY19eqlrua+a5etIxEiXda+T5OGtgVYMrUXQMeOHc1epkPQaNST+MaNEBOT/XIK14dizeDfqZkucerv70/fvn0BePjwoUnDTUqVUnsgFi6Ew4ezH6pwLLm6bkoObfPLnx/atVNXuLLNcinCzm3apP7MmWOlecs25uamXjf//BO+/daCB3ryRJ2bndE57dI6UBKhbCeTizbLdaBATSjRCk5Oc6xzQ4MGEBAgU2KE3bL2fZo0tC3A0g3tv/76y+xlOowePdRVYdauzVk5wSPgzmG4/lumm3366af4+PgA8M0333DehESfAwZA9erwwQeQmPEodZGL5Oq6KT3alqHVwr//wtGjto5E2JnYWPU60qoV5OZneKk1aaJWi+HD4eZNCx3kyhW1yzyjc1rkKijaDDyLm1y02a4DwSMg+riaYsxRJGdUWLtW/Q8shJ2x9n2aNLQtwJI5tAFKlChh9jIdRsmS0KKF2gOUE8VfggK11KfFmShatChDhw4FICEhgc8++8zoQ7i4qAvXhIXBV1/lKFrhIHJt3bx/X12lSHq0ze/ll9UF5qQHSKTyf/bOO7zG843jn5ONEHtHbUkoVUUpqpSiahSlyqH9aWsURa3Yq7Frj7a6lBi1FUVpqdEqNZPYib1JCImM9/fHk5wmapyc845zTp7Pdbkqcd77uWme91n38/2OGQPXrsGsWZlPGiFVFiXVN1x1nmZX+OAyXN0OxTNeNg4qjgP560Cel585T3E4OnQQi+xVq4zORCL5D3rP0+RCWwMiz0Zafq/FiXamtwozm2HnTmGPYysmk9gtvrIVbj69trtv377kzZsXgMWLF3MwAydPNWrAhx9CcLBwRZK4Ni7bN1OrdOSJtvp4eIhKnUWLRDmrRIIocpgyRYwdpdTXVHV48ueHkBD47jsx3KtO6jutWLHH/NkycPMA/7dtCq3aOGAyQflBcH0nXN+lTkw9KFEC6tSx/0BEItEAvedpcqGtAacjIgBwM5koWrSo6vHTlqZnSlq0AF9fYfVlD/6twLc0hE146sdy5MjBkCFDLF+n/b01jB8v7p2lHIxLXBiX7Ztyoa0tZrOokf3lF6MzkTgAigLduwsHOM1OdJ2ADz+E6tWFMJrqe1BRUWI1n+UxPtVRS8T9aK9cNoZWcRwo8hbkCHzmPMXh6NQJfv31yR7lEolB6D1PkwttDTh3/jwABXLnwdPTU/X4tWrVUj2mU5Etm1Dr/eEH+0RC3NwhaIAQPYk58dSPdu3alWIpO98bNmxgx44dVjeTO7cog1u8WIw7EtfFZftmZKRQx3bV0nijeeEFIeggy8cliB+DHTuEKJi3t9HZGIebm7h+FR4ufMRV5UnijvfOws29NqmNp6LqOGByEwrkF9fBnaPqxdWa1q3FD690VJA4GHrP0+RCW2ViY2O5fe8uAMVLlNCkjSVLlmgS16kwm+H0aSFNag8lzELsJPzpPtk+Pj6MSuOtMnjwYJQMLPI7dYLatcUpRXy8zdlKHByX7ZtRUeDvD65aGu8ImM1CXvr2baMzkRjIrVvw2Wfw7rtQv77R2RhP5cpCEG7UqH8La1ThSeKOUUvAPSsUbWZzaNXHgefehaz+EDZR3bhakiMHtGxp/4GIRKIyes/T5EJbZdJ5aAeU06SNzz77TJO4TkWdOuJulb13gNy9oVwfOPs93L/41I927NiRoKAgAHbv3s26deusbsZkEjvzZ878K/IicT1ctm9Kay/tad9e1McudzLfXImqDB4sjDWmTjU6E8dh9GjhhNe7t4pBn/ROiwoVi2yPbDaHVn0ccPeCgH4QtRhineh6ktkMYWFw4IDRmUgkFvSep8mFtspobe0FMH68kylQaoGbG3TsCEuXQlycfbHKfCx2sI9Pe+rH3N3dGTdunOXr4OBgkjLg21W+PPTtC+PG2afjJnFcXLZvSmsv7SlUSCiQSwGhTMvevfDll2KMKJhxVymXJUcOUTq+Zg1kYH/7ySQnw/nz/32n3TkGd47Ac+3sCq/JOFC6C3j6QfgU9WNrxeuvix9k+U6TOBB6z9PkQltltLb2Ahg6dKgmcZ2Ojh0hOtr+kdczB5TtASfnwcOnl202b96c6tWrA3Ds2DEWZfD+0fDhQn/lk09kNZUr4rJ9Uy609cFsht274dQpozOR6ExiInTtClWqCPEvSXratBH7UD17qmDPfPmyqB559J0WtQQ8cwohNDvQZBzwyAblesHpryFOK3NxlfHwEFZfoaGiTEMicQD0nqfJhbbK6HGiPXbsWE3iOh3lysHLL6sjIFS2FyiJcGLOUz9mMpnS7YYNHz6c+Axcus6WDWbMgI0bYeVKm7OVOCgu2TcfPICrV2XpuB60aCGO7xYuNDoTic7MmgWHD8O8eVIK4XGYTDB7trDJtPs1+zgPbUURZeP+b4srZXag2ThQ9hPABCdmahNfC8xmuHEDNm0yOhOJBNB/niYX2ioTleZEW6uFdufOnTWJ65SYzWLVevWqfXGyFICSH8Dx6ZB4/6kfrVu3Lm+88QYgNlbmz5+foaaaN4e33hL3ze7etTljiQPikn3z3DnxX3mirT1ZsvzrqJCcbHQ2Ep24eBGGDRMn2S+9ZHQ2jkvp0uIO++TJ4uqvzTzOrvDW33DvNBS3XW08Fc3GAe88UPojODELEpxk8vD888JVQToqSBwEvedpcqGtMqcijlt+n2oHpTZbtmzRJK5T0ratuK8dGmp/rMDP4OEtOPPtMz8aEhJi+f3YsWO5m8EV84wZQl125MiMJilxZFyybz7u9EeiHWaz+DfftcvoTCQ60aePqHZKIwEieQIDB4pXUffudly/iowUvpvZs//7vagl4JMf8te1O0dNx4GAvpB4D059pV0bamM2iyt+t24ZnYlEovs8zaaF9rVr15gxYwa//vorX3/9tdo5OTWppeN5/XLi4+OjSRuBgYGaxHVKcucWx8Nq7Jb6loBibYXVV3LCUz9auXJl2rUTginXr1/niwyafBYvLu5rT58uygUlroFL9s2oKLGZVaSI0ZlkDmrVEi8IKSCUKfjlFyE0P2WKUNaWPB0fH+Ev/vvvdtyweFRzQkmGqKVQ7B1w87A7R03HgWz+ULwDREyBJCfxCm3fHpKShHitRGIwes/TbFpoT5gwgUqVKlG/fn1OnDjByZMn1c7LKYmLi+P6HSGmVVzDMsuMnp66PGYz/PMPHDlif6yggcI+I2rZMz86ZswYPDzEoDx58mSuX8+YQEnfvuKaedeuskrUVXDJvhkVJRbZnp5GZ5I5SHVUWLZM3I+XuCwPHkCPHlCvnliLSKyjQQNRzPbZZzYekj660L62Ex5cFH7VKqD5OBDYHx5chsiMibEaRoEC0KiRLB+XOAR6z9NsWmiXKVOGO3fuABAdHc0///yjZk5Oy/nz5y2/18pDG7D820tSaNwY8uZVR0AoV0Uo3ATCxotd7qdQunRpunTpAoiOm7ac3Bq8vMTO/J498M03NmcscSBcsm9KD239MZuFgMOaNUZnItGQ8eOFBMLs2ULsS2I9U6cKZ8/gYBsefvSdFhUK2Z6DvDVUyU3zccAvEIq2gPCJkGy9xaihmM3Cv+7ECaMzkWRy9J6n2bTQ7tq1Kz4+PuzatQsPDw+8ve1TaHQV0imOazgxff755zWL7ZR4ecG778KPPwqPFHsJGgTRR+HShmd+dNiwYWTJkgWA2bNncy5VOMpKXn1VjD8DBwphTolz45J9U1p76U/p0lCzpjwBcmFOnBAL7QEDICDA6Gycj8KFhfr4l1/Cn39m4EFFSf9OS06A8z+Ja2Mq7XZcuHABRWv/zqCBEHMcLqzWth21eOst8POTjgoSw9F7nmbTQnvDhg3Ex8fzyiuvEBMTQ926dZ/5THx8PDExMel+uRp6eGgDbNy4UbPYTovZLLwxf/3V/lj5akHemuJU+xkULlyY3r17A/Dw4UNG2qBuNmmSGPsHDMjwoxIHwyX7pjzRNgazWVzgvXLF6EwkKqMoomS8SBEYMsTobJyX7t2FoHXXrhnYY792TRyFp77TrmyF+JuqqI3//vvvFClShL59+6azAdWEvNWhwGsp1XcaL+rVIEsWeOcdsdCWd+UkBqL3PM2mhXZERAT79u3j7bffplWrVsycKTz9xo4dy6VLl1iwYAH79u3jl19+YeXKlYSFhdGiRQv8/Pwsv/z9/QH48ssvOXz4MGvXruXnn3/mwIEDzJ8/n+vXr1u8zsaOHcv9+/eZMmUKx48fZ9myZfz666/s3r2b7777jvPnz6f7bFJSEiEhIURFRbFw4UL++OMPfvvtN5YsWcLJkyeZNGkScXFx6Z65cuUKX331Ffv27WPTpk2sWrWKo0ePMnPmTKKjo9N99s6dO8yaNYsjR46wevVqNmzYwP79+1m1apXl3+i5555j7NixPHjwgClTpnDy5EmWLl3Ktm3b2LVrFz/88APnzp1j3LhxJCcnM3bsWJKTkxk3bhznzp3jhx9+YNeuXWzbto2lS5dy8uRJpkyZwoMHD7h9+7Yll6tXr/Lll1+yf/9+NmzYwOrVqzly5AizZs3izp076fKOjo5m5syZHD16lFWrVrFp0yb27dvHV199xZUrV9J9Ni4ujkmTJnHy5EmWLFnCb7/9xh9//MHChQuJiooiJCSEpKSkdM+cP3+e7777jt27d/Prr7+ybNkyjh8/zpQpU7h//366z16/fp358+dz4MABfv75Z9auXcvhw4eZPXs2t27dSvfZmJgYZsyYQVhYGCtXruSXX35h3759LFiwgEuXLonPVqnC2Hz5iP/2WyZOnMjp06cJDQ3lt99+Y+fOnfz4449ERkYyfvx4EhMT08W/cOEC3377LXv37mXLli0s/+knIrw68MUPu7h3dnO6z964cYN58+Zx8OBB1q9fz7p162jcuLHlVPu7774jLCzMokQ+bdo0wsLCWLFiBZs3b+bPP//km2+++Tdv4MsvxzJ2bALffjuBZcvOsGjRInbs2MGOHTtYtGgRZ86cYcKECSQkJKTL5dKlS3zzzTf8+eefbN68mRUrVhAWFsa0adO4e/duus/evHmTuXPncvDgQdatW8f69es5ePAg8+bN48aNG+k+e+/ePb744gsiIiJYvnw5W7ZsYe/evXz77bdcuHAh3WcTExMZP348kZGR/Pjjj+zcuZPffvuN0NBQTp8+zcSJE4mPj/9P3o97R8yYMYOYmJh0n7116xazZ892mnfEhx9++NR3xJdffsnVq1fTxdXiHZE2vl3viHXr2HfxIl9FRTn/OyLls/Hx8fa/I5YvJyIigi+++IJ79+498x1x8OBB5s6dy82bN9N99qnviNq1GWsywaJFjB07loSEBCZMmMCZM/Id4czvCIC2bceydesd3nhjFqdOOfk7wsB5xO3b12nYcD4HDx6ge3cr3xHbt7MS+OXiRfGOmDmaSwmlGDtrnc3viNGjRzN27Fhef/11Ll26BMDw4cP5559/tH1H5P6QsQv+hqvbnOMdUaUK30ZFcWHFCvmOsGOtId8R9s0jatSooco8wmoUnYiLi1Oio6Mtv86fP68ASnR0tF4paE6HDh0UQAGUY8eOadbOmDFjNIvt1ISEKEqWLIqixs9UcpKirC+vKNvftOrj48ePt/y/b9myZYabS0pSlOrVFaVCBUV5+DDDj0scBJfrm6dPKwooyubNRmeSOWndWlEqVjQ6C4mK3LmjKAULKsrbbxudievQtauiZM+uKBcvWvHhZcvEO+3mTUVJuK8oS30V5fAom9s+ePCgUr16dcv4n/bXokWLbI5rFcnJirKhsqL8+rq27ahFcrKilCypKO+/b3QmkkyM3vM03Xy0vb29yZEjR7pfrsbp4/+KPDyn4Z3GoUOHahbbqenQQZSErVhhfyyTm7irfelnuP1s/62ePXtSqFAhAFatWsWfGbo0JoSG586FsDCYNs2WhCWOgMv1TemhbSydOgn/v0OHjM5EohLDhgmdO/meV4/PPxeVyX36WPHhyEjhn50rl9BhSbwHz7XLcJuxsbEMGDCAKlWqpBvvGzdubPn9sGHDePjwYYZjW43JJOYpV7bCzb+1a0ctTCZxJWb5crh/3+hsJJkUvedpGVpom0wmq39lRqLOngUgp68v2bJl06yd1PIFySMULQr166vnP/tcW6FEGj7xmR/NmjUrI0aMsHw9aNCgDIuhVK4MPXvCyJFCiVbifLhc30wVeEy56iPRmTfegHz5pCiai3DggFAYHzVKdik1yZULJk8WjnibNz/jw6lCaCaTUBvP9SLkKJuh9jZu3EiFChWYNGkSSUlC9TswMJAdO3awYcMGSpYsCcCZM2dYsGCBLX8l6/FvBb6lIGyCtu2oRceOcO8erF5tdCaSTIre87QMLbQVRbH6V2YjISGBKzeFbHSxosU0batr166axndqzGb4/fd/T+Lswc0TAj6DqCVw7+wzP/7BBx9QunRpAH777Tc2P3PE/y+jR0POnJCiryZxMlyub0ZGQqFC4ONjdCaZE09PYbC8aJE6jgoSw0hKEqJd5ctDr15GZ+N6dOgAdesKkbm4uKd8MFXcMSEGLq7PkAjalStXaNeuHU2aNLGI33p7ezNmzBgOHjxI7dq1AZg3b57lmdGjRxMbG5vhv4/VuLlD0AA4vwJinMA6q2RJqFVLbh5KDEPveVqGFtqxsbH8/PPPNGjQAID79+/zzTffsG7dOv73v/+RnImVBC9evEhyygaDlh7aAD/99JOm8Z2ali0hWzZh9aUGpT4Ar1wQPuWZH/X09Ey3UzZ48OAM94kcOeCLL8Rm7/r1GU1WYjQu1zeltZfxmM1w9aoVR3USR+bLL2HfPnFFyNPT6GxcD5MJ5swRr6ynCn6nvtPOr4bkeGHr9QySk5OZP38+AQEBLF261PL9evXqcfjwYYYOHYqXl5fl+6dPn6ZVq1aAWJxPnz7d1r+WdZQwg08BCJ+kbTtq0akTbNkCKcJxEome6D1Py9BCO1u2bLz55pskJCQAEB4ezunTp2natClHjhzJmAqbi5HW2qtEyRKatvXyyy9rGt+p8fWFVq3EbqkalRUeWaFcbzizAOKuPfPjbdq0oXLlygD8888/LF++PMNNtmkDDRuKMnJ5jcm5cLm+KRfaxlO5sjgGlSdATsvVqzB4MPzvf/DKK0Zn47oEBsJnn0FICJw8+ZgPpPXQjloirDyzPb2G/+jRo9SuXZuuXbsSHR0NQJ48efj+++/ZunUrZcv+t+z85ZdfZuzYsbi5iSn2hAkTuHnzpt1/vyfi7gMBfeDs93D/onbtqEWbNmK3adEiozORZEL0nqfZJYZWpUoVPv30U2bPnk2vXr0sFkeZkajUu4xoK4QGcOHCBU3jOz2dOolRNoOCZE+kbA8wecDxGc/8qJubWzr/zKFDh1o2pqzFZBL3+C5fBle78uvquFzflB7axmMyiXfa6tVw547R2Uhs4LPPwMMDJjjJNVpnZuhQKFxYlJD/Z6/99m2hRPdcbriyBZ57ctn4gwcPGDJkCJUrV2b37t2W73fu3JmIiAjMZvMT9YguXLhAQEAA77//PgAxMTFM0Pp/fpmu4J4Vjk/Tth018PODFi2Enk4mvGoqMRa952l2q47ny5ePTz75hEWLFhEREaFGTk6JngvtzHgHPkPUrSuUZtQSRfPKBaU/hhOzxb2uZ9CgQQNee+01AE6dOsU333yT4SZLlxYnIJMnQ3h4hh+XGIRL9c3ERLhwQZ5oOwLvvQcJCeBqVxMyAdu3i5tMEydCnjxGZ+P6ZM0KM2eKyuRlyx75w9R5Wq6TgALFWj82xpYtW6hQoQKff/45iSnaCGXLlmX79u18++235M2b96k5pI4DI0aMwNvbG4CZM2dqO8H3zAFlusPJefDwtnbtqIXZDMeOwcGDRmciyWToPU+za6E9e/Zs5s+fD4CHhwenT59WJSlnJG3peHGNT4D8pVzp03FzE8ooS5aAWtcZAvpAUiyc+vKZHzWZTISEhFi+HjVqFPdtqAEfOFCscbp3l5u+zoJL9c1Ll8RiW55oG0/hwvD667J83Ml4+FC8v195BTp3NjqbzEPTpuLAtE8fiEm7N546T0vYAQXqg0/+dM9du3aNDh060LBhQ86cOQOAl5cXI0aM4NChQ9StW9eq9lPHAX9/fz755BMA4uLiGD16tB1/Kyso1xuURDgxR9t21KBhQyhQQL7TJLqj9zwtQwvt+Ph4Fi9eTGRkJKGhodSqVYvs2bOzZs0ann/+eRo1aqRVng7PmTQXgrQ+0d6zZ4+m8V2Cjh1FmaVaimJZiwjBkYipkPTsxXv16tVp2bIlAJcvX2bmzJkZbtLHR4i7/PabetpuEm1xqb6ZevojT7QdA7MZdu6ElAWAxPGZPFncYpo7V+z/SvRj+nSIjha+5RaioqCwD9zZm05tXFEUFixYQEBAAIvS3BuuU6cOhw4dYuTIkfhkwHkh7TgwePBgcuTIAcA333zD8ePHbf9LPYssBaDkB3B8OiQ6uMCLh4eo1Fm0SFTrSCQ6ofs8TTGI6OhoBVCio6ONSkFV/AsUUgDFN0sWzdu6ceOG5m24BFWrKkqzZurFi45QlEUmRTn5lVUfP3bsmOLm5qYASs6cOZVbt27Z1GzbtoqSL5+i2Pi4REdcqm8uXKgooCj37hmdiURRxP8HX19FGTnS6EwkVnDmjKL4+CjKZ58ZnUnmZeJERXFzU5T9+1O+8emnitIpn6KEeitK/B1FURQlPDxcqVOnjgJYfuXKlUtZsGCBkpSUZFO7j44DY8aMscRu06aNPX+lZ3P3jKIsdleU47O0bUcNDh4UY8y6dUZnIslE6D1Pk3usKpCcnMzlG0KR2r9wEc3bmzt3ruZtuASdOsGGDXD9ujrxcpQD/7chfCIkJz3z40FBQXTq1AmAO3fuMHHiRJuanTpV+IIGB9v0uERHXKpvRkZC3rzCLk9iPNmyCbVetRwVJJqhKMI1Il8+GDHC6GwyL59+CkFB0K2b8DEnMhJejIfCTYhL9mbEiBFUrFiRHTt2WJ7p0KEDERERfPDBBxbV8Izy6Djw6aefUqBAAQCWL1/O33//bePfyAp8SwjLsvBJkOzgJ8WVKkHFirJ8XKIres/T5EJbBS5fvkxiklh4lSqnrYc2CCVriRW0bSsUe0ND1YsZNBDunoQLK636+MiRIy3+mtOnT+eSDb6RhQsL9fH58+GvvzL8uERHXKpvSmsvx8NsFqXjaVSQJY7H6tXw88+ifNnX1+hsMi+enqJs/6+/4KuvgOgTkDeG7RcrUKlSJUaPHm1xBSlVqhSbN29m4cKF5M+f/+mBn8Gj44Cvry/D0tSwB2u9ax40EGKjIOpRNTgHxGyGtWuFIrxEogN6z9PkQlsF0nlolyqpeXtjpeeTdeTNC2++qe5uaZ6qQkTl2HirTpWKFStGjx49AGEXMmbMGJua7d4dXngBunYV+lQSx8Sl+qa09nI86tSBYsXkCZADc+8e9Oolhp4WLYzORlKrFrz/vnDxiPS7TOe5btRrP4YTJ04AQsg3ODiYI0eO0KBBA1XafNw48OGHH1KiRAlAqJr/+uuvqrT1WHJVhMJNIGw8KMnataMG7duLO9rLlxudiSSToPc8TS60VUBPay+A3r17a96Gy2A2w/79wkZCLcoPgtsH4MpWqz4+ePBgsmfPDsBXX33FyTTCedbi4QHz5gknjDlOICiaWXGpvilPtB0PNzch9Lh0KTx4YHQ2kscwahTcvCkspp5gsyzRmQkTFBIefseLm6P5/o9/F541a9bk4MGDjBs3jixZsqjW3uPGAS8vr3Qb7YMHD9bWZihoEEQfhUsbtGtDDQoVgjfeUM+OVSJ5BnrP0+RCWwX0tPYCWLBggeZtuAxNmkDu3LBwoXoxC9SH3FXEbrEV5MuXj88++wyApKSkdCVkGaFaNfj4Yxg6VDgvSRwPl+mbyclw7pxcaDsiHTsKOeV164zORPIIR47AF1+Id3TK4aXEYE6cOEG7dq8Te/99bt8Xi2w/Pz/mzZvHzp07KV++vOptPmkcePfdd6lYsSIA+/btY9WqVaq3bSFfLchb0+p5iqGYzeI6zKlTRmciyQToPU+TC20V0PtEu2HDhpq34TJ4e8O77wp/rKRnC5hZhckEQYPh6ja4Yd2l6T59+pAvXz4Ali5dyoEDB2xq+vPPIUsW6NvXpsclGuMyffPqVeFBL0vHHY9y5eDll2X5uIORnCxEt8qUgZR9VYmBxMfHM2bMGCpWrMi2bdss3/fL3prDhyP4+OOPbRY7exZPGgfc3Nz4/PPPLV8PGTKERK3ugplM4lT7+i649oc2bahF8+aQI4e6ByISyRPQe54mF9oqcPbUacvv9Vhoh4eHa96GS2E2w8WLkGawtZuiLSB7WQifYNXHs2fPnk6AwVYxlFy5hDfr0qWwZYtNISQa4jJ9U3poOzZmM2zaJDZEJA7Bd9/Brl3iak+K/qXEIHbu3EnlypUZPnw48fHxABTP68aSRtm5d38ZixYV1LT9p40DTZo0oVatWgBERETwvZYl00XeBL/yjn+qnSXLv44KyQ5+p1zi9Og9T5MLbRU4nSKq4ePlRd68eTVvL/W+r8RKqlYVp0BqngC5uUPQADi/CqIjrHrk448/tmzE/PLLL2zfvt2mpjt0gLp1hUBaXJxNISQa4TJ9M/U6jFxoOyZt24r72osXG52JBHEne8AA8W5+7TWjs8m83Lp1iw8//JA6depYJtPu7u4M6NmBoxOSaZuYnd69TYwZA2fPapfH08YBk8lESEiI5euRI0fyQCu9BZObUCC/9DPcPqxNG2phNotx5w8HP32XOD16z9PkQttOFEXh4tUrABQtWAiTDuonfn5+mrfhUphM4iW+ciXcvate3OIdIEsh4VdpBd7e3owePdryta1iKCaTODWJioIJ1h2oS3TCZfpmVBT4+UHOnEZnInkcuXPDW2/J8nEHYeBAcTNp8mSjM8mcKIrC4sWLCQwM5Ouvv7Z8v1q1auzfv58J5txkU3xAKcfIkaL79OqlnR39s8aBWrVq0bRpUwAuXLjAHC0VTp9rB1mLQfhE7dpQg1q1hLCBfKdJNEbveZpcaNvJtWvXiE/1YdTBQxvgmJoK2pmFDh2ESu9K6/yvrcLdGwL6QuRCuH/Bqkfee+89KlSoAMCff/7JmjVrbGo6MFDcA/z8c7BBxFyiES7TN6XiuONjNgsbgsMOflLl4uzaBQsWiHdxgQJGZ5P5OH36NI0aNeK9997j2rVrgDixmjVrFrt376bS8xXg3DKI8INixcmeXfibr18PNg6/z8SacWDcuHGWg5nPP/+c6OhobZJx84TAzyBqCdzT8BjfXlIdFZYtk44KEk3Re54mF9p2klYITQ8PbYBGjRrp0o5LUayYqOlTe7e09Efgng0ivrDq4+7u7unEUIKDg0myUaRt6FAoXBh69NBuZ16SMVymb0oPbcencWPIm1cKCBlIQoIQQKtaFT76yOhsMhcJCQmEhIRQoUIFNm/ebPl+q1atiIiIoEePHri7u8O13yHuCvz20PJOe/tt0X169RK+52pjzThQsWJF3nvvPUCUvE/Wshyi1P/AKxeET9GuDTXo2FFUHWq1AyKRoP88TS607STtQlsPay+Ab775Rpd2XA6zGbZvF7ZFauGZHcp+AqfmQ/wtqx5p2rQpNWvWBIQow0IbJ8pZswqv1i1bxCawxHhcpm/KE23Hx8vrX0cFrZSLJU9lxgw4dgzmzQN3d6OzyTzs2bOHF198keDgYOJShEr8/f1Zu3YtP/30E4ULF/73w1GhkK0E/H3b8k4zmWDWLLh+HdLc5lINa8eBUaNG4enpCcDUqVO5qpW4oUdWKNsLziyAuGvatKEGpUtDzZqyfFyiKXrP0+RC207SemjroTgOpFOvlmSAt98W6pY//qhu3HK9QEmGE7Ot+rjJZGL8+H9VQEeMGGGZLGSUpk2hRQvo0wdiYmwKIVERl+ibiiJPtJ0FsxmuXIGtW43OJNNx/jyMGCEqil580ehsMgd37tyhW7duvPLKKxw9ehQQlll9+vQhLCyMt956K/0DSQ/h/ArwTbHzSfNOK1kShgwRvucpoVTD2nGgZMmSfPzxxwDcv3+fsWPHqptIWsr2AJMHHJ+hXRtqYDbDL7/A5ctGZyJxUfSep8mFtp3o7aENaPsydmWyZxeL7R9+ULfW2iefKM06MR0SY616pHbt2jRp0gSAc+fOMW/ePJubnz4doqNh2DCbQ0hUwiX65s2bcP++PNF2BqpUEYIN8gRIdz79VAwpY8YYnYnroygKy5YtIzAwkHnz5llERKtUqcK+ffuYOnUqvr6+/33wymZ4eBviXhBfP/JO698fSpUS5f9qukplZBwYOnQo2bJlA2D+/PmcOXNGvUTS4p0bSn8sDgQSHHhX/p13wNNTOipINEPveZpcaNvJ2dP/vhT1Kh0fOHCgLu24JGYzHD8O+/apGzegHzy8A6etL0lJe1d73LhxxNh4JF2sGIwcKUrhDhywKYREJVyib0oPbech1VFh1SpZ0qIjGzYIXc0vvhDi/BLtiIyMpGnTprRt25YrV4TDi6+vL9OmTWPv3r28+LRygshQ4SN90U2IbRUpku6Pvb2Fg8cff4CadtYZGQcKFChA3759AXHvfMSIEeol8igBfSApFk59qV0b9pIrFzRrJjcPJZqh9zxNLrTt5PTx4wB4urtTQCfJ0alTp+rSjktSr54YbNV+ifsWh+fehfDJkJxg1SOVKlWiffv2ANy4ccOu/6+ffgpBQWJn3kZtNYkKuETfTL0OI0vHnYMOHSA+Hn76yehMMgX378Mnn8Drrws7c4k2JCYmMnnyZMqXL8+GDRss32/WrBlhYWH07t0bDw+PpwS4DxfXiHE5MhKKFhUnpY9Qrx60by9Ot2/eVCf3jI4D/fr1I0+ePAAsWrSIw1o5CWQtAiXMEDEVkuK1aUMNzGbhpnDokNGZSFwQvedpcqFtB4qicOHyJQCKFCiIm5s+/5xt2rTRpR2XxN1dTExDQ8XkVE2CBsD9c2IX3UpGjx5tmSxMmTLFYk+SUTw9Ye5c+Osv+Oorm0JIVMAl+mZUlFDaS5n4SRycokWhfn15AqQTn38OFy/C7NmioECiPn/99RcvvfQS/fv35/79+wAUKVKElStXsmbNGvz9/Z8d5OI6cZXruXbPFHecMkXoCQ4apE7+GR0H/Pz8CA4OBsS8csiQIeok8jgC+8ODK3DWgd0K3ngD8uWT7zSJJug9T5MLbTu4ffs2sSkiViVLl9at3T179ujWlkvSsSPcuiXq/9Qk5/NQuCmETxDiaFZQqlQpPkrxhbl37x7jxo2zuflateCDD2DwYNBKvFTydFyib6YKoclVhPNgNsPvv8NZB/bJdQEiImDiRLEgK1vW6Gxcj5iYGHr16sXLL7/MoZTTTJPJRM+ePQkLC6Nly5bWB4taArmrQvZSzxR3LFgQxo2Dr7+G3bvt+zuAbeNA9+7dKVq0KADr16/njz/+sD+Rx5GjHPi/DeETIdlBy988PUWZwaJF0lFBojp6z9PkQtsO0nlol9FvoW3Vbq7kyZQvL0SEtNgtLT8IosPg4nqrHxk6dChZs2YFYO7cuemU7DPKhAniKlr//jaHkNiBS/RNae3lfLRsCdmyqe+oILGgKNC9u9DEGDzY6GxcC0VRWLlyJYGBgcycOdMidlapUiX27t3LjBkzyJEjh/UBH96BSxug+LviayveaV27wksvietX9q7tbBkHfHx8GDVqlOXrQYMGWf4dVCdoINw9CRdWahNfDTp1EicGaTzSJRI10HueJhfadpB2QaSXEJpEJcxm+PlnuHFD3bj5XoF8teBYiNXK5oUKFeLTTz8F7BdDyZtXnLgsXAi//WZzGElmRi60nQ9fX2jVSn1HBYmFxYth+3ZRMu7jY3Q2rsP58+dp0aIFrVq14tIlcRUva9asTJ48mb///ptq1arZEHSV0Eop9g48fAiXLj3znebuLq5fHTki/NGNwGw2ExAQAMCuXbv4+eeftWkoT1UoUB+OjXfc98ULL0CFCrJ8XOL0yIW2HRhh7QViYJLYybvvigFmyRL1YwcNgpt74fpOqx/p378/uXLlAmDhwoUWj1BbeP99qFlTnL48fGhzGIkNuETflB7azkmnTnDqFOzda3QmLsedO9C3L7RpI66PSuwnKSmJadOmERgYyNq1ay3fb9KkCceOHaNfv35PFzt7GlGhkL+OEP86f16M9Va80156SYybI0bAhQu2NQ22jwMeHh7pro8NHjyYJK3UTcsPgtsH4MpWbeLbS6qjwurVogNKJCqh9zxNLrTtIO1CW88T7Ro1aujWlsuSLx80aaLNbmnhJuK+9rHxVj+SM2dOBqfUI9orhuLmJnbmT5wQIi8S/XD6vnnnjjBllyfazkfduuDvL0+ANGDIEKE2/sUXRmfiGhw4cIDq1avTp08fYmNjAShYsCDLli1j/fr19s2n4q7B1V+F2jhk2K5w7FhxCyOlyMwm7BkHWrZsSdWqVQE4evQooaHWi6tmiAL1IXcVCLN+nqI7770HCQnSUUGiKnrP0+RC2w7OnvlXeEbPE+3ly5fr1pZLYzYLP+3wcHXjmkziVPvyRrhtvT3FJ598QpEUn8+1a9ey2w5VlooVxURhzBipj6QnTt83Uyel8kTb+XBzE44KS5ZAikinxH727RMbl2PG/MeGWZJB7t27R9++falatSr79+8HhNhZt27dCA8Pp02bNpjsFWE8txxwg2KtxdepV/yKFbPq8Zw5YepUWLECNm60LQV7xgGTycT48f8ufocNG8ZDLUrTUucpV7fBjb/Uj68GhQsLHz01Tc4lmR6952kmRTO1hacTExODn58f0dHRGRO5cCCeLxfA0RPHcXdzIy4+3vYypwySkJCA52P8ICUZJD4eChUSKiiff65u7OREWFcG8taAVxZb/djXX3/Nhx9+CEDt2rX5/fffbZ543LsHgYHiqtPatVJEWg+cvm+uXQvNm4s7jYUKGZ2NJKNERIhOv3w5tG5tdDZOT1ISVK8u/rtvH+g0xLsk69ato0ePHunKNitUqMCXX36p7gnTllrg6Qd1U+43jxghPC9T7n9bg6JAgwZik/roUciSJWMpqDEONGzYkC1btgAwc+ZMPvnkE7viPZbkJPg5UFTg1V6hfnw1WLxYnGyfOgWlShmdjcQF0HueJk+07eBcyiWegnny6rbIBpgwYYJubbk03t7Qrp1QDku2zo7Latw8hF/luaVw74zVj3Xu3JmyKb4xO3fuZNOmTTan4OsL06fD+vWwZo3NYSQZwOn7ZlQUeHlBgQJGZyKxhYAAqFZNlo+rxNy5cOCA+K9cZNvGxYsXadWqFc2aNbMssn18fAgJCeHAgQPqLrJjz8H1XcI7OxUbxB1NJiF6d+GCbXvwaowDn6dpeMyYMdy7d8/umP/BzR0CBwjxuOgI9eOrQYsWYjIjHRUkKqH3PE0utG3k7t27xNwXd4tKlCypa9tDhw7VtT2XxmwWo+n27erHLvk+eOWB8MlWP/I4MZRkOzYBWrYUV9F79RIn3BJtcfq+GRkpJqVucmhwWsxmUfN67ZrRmTg1ly+Lu9kffggvv2x0Ns5HUlISs2fPJjAwkJUr/7WRatiwIceOHWPQoEHqnypFLQV3Hyja4t/v2SjuWK4cDBggLDOPH8/Ys2qMAy+99BJt2rQB4Nq1a0ybNs3umI+lREfIUhDCJ2kT316yZhUqhNJRQaISes/T5GzKRtIKoZUKKKdr22PHjtW1PZemenUoU0abEyCPLBDwKZz+Bh5ctfqxVq1aUaVKFQAOHTrE0qVLbU7BZIKZM+H6dRg92uYwEitx+r4prb2cn7ZtRcfXwlEhE9Gvnyh6CgkxOhPn49ChQ9SsWZNPPvmEu3fvApA/f34WLVrEpk2bKKnV4URUKBRuCp7Z03zP9ndacLDQF+zePWNrPLXGgbFjx+Lu7g7ApEmTuKG2HSmAuzcE9IXIhXDfDql1LTGb4cwZsEO3RiJJRe95mlxo20haD209hdAAPvjgA13bc2lSLSRWrNDmyLdMd3DzguPTM5BSejGUoUOH2iWGUrIkDB0qFHPtcA2TWIHT901p7eX85M0Lb74pBYTsYOtWCA2FSZMgd26js3EeYmNjGTBgAFWqVOGvv/4V2OrSpQvh4eG0b9/efrGzJxFzHG7/A8Xf/fd7iYnC3svGd1qWLDBrFmzbJn4erEWtcaBs2bL873//A4SuUdp5gaqU/hjcs0GEg8rq16kjNkvkO02iAnrP0+RC20aM8tAG7Lq3K3kMHTpAbCysWqV+bK+cUKYrnJwND6Otfuz111+nfv36AJw5c4YFCxbYlcZnnwkdkW7d1L+OLvkXp++b8kTbNTCbxeViubOWYeLjoUcPMbc3m43OxnnYuHEjFSpUYNKkSRbv58DAQHbs2MFXX31Fbq13LKKWgEd2KNT43+9duiSU7Ox4pzVuDK1aCR91a+2c1RwHhg8fjo+PDwCzZs3SxgPYMzuU/QROzYf4W+rHtxc3N+jYEZYtgwcPjM5G4uToPU+TC20bSXuiraeHNkD58uV1bc/lKV5ceNBqJSBU7lNIihODWAYISVOzOHr0aIvfqC14e8OcOfDHH3JTWEucum/GxsKNG3Kh7Qq8+aY4il240OhMnI6JE0WV6pw50qnBGq5cuUK7du1o0qSJZV7k7e3NmDFjOHjwILVr19Y+CUURZeP+LcWVrVQy6KH9JKZNE69Ha692qjkOFClShF69egEQHx/PqFGjVIudjnK9QEmGE7O1iW8vHTtCdDSsW2d0JhInR+95mlxo20iUgaXj0dHWn4xKrMRshl9/FWVmapO1MJToJMqykqz3t61atSqtWrUCxGRmxowZdqVRr55wyejfH27etCuU5Ak4dd+UHtqug5cXvPuuUOpNOV2UPJvTp2HcOHE/25n3zPQgOTmZ+fPnExAQkE5HpF69ehw+fJihQ4fi5eWlTzK3D4rS8efeTf/91HmanXO0okVh1Cix+fL338/+vNrjwMCBA/Hz8wPg22+/JSJCA4Vwn3xQ6n9wYjok2r6prxllywpVQumoILETvedpcqFtI6cjhAylyWTC399f17ZTxUUkKtKqFfj4wKJF2sQP7A9xV+FMxo6Tx44di1uKAvSECRO4dcu+sq4pU8S1tUGD7AojeQJO3TdVOv2ROAhmsyid3bbN6EycAkWBTz6BggVh2DCjs3Fsjh49Su3atenatatl0ponTx6+//57tm7darGo1I2oUPDOCwXrP/L9KKFZkC2b3U306gXPPw9duz5770rtcSB37twMHDgQEBscmqkmB/SDh3eEgKsjYjbDpk1w1XpxWYnkUfSep8mFto1EnhOT0vw5c+m3a5tCYGCgru1lCnLkEF5YWllI5CgDxVpD+ERITrT6sYCAAN5//31A7MLZK4ZSoIDwBf36ayngqQVO3TcjI4VZcOHCRmciUYOqVYVHkbwrYhUrVog5/IwZqqzLXJIHDx4QHBxM5cqV2Z1mAOncuTMRERGYzWbtxM6ehJIsbL38W4PbI3ZhKoo7engIP/X9+2HevKd/VotxoFevXhQsWBCAFStWsG/fPtXbwLe4qAoInwzJCerHt5e2bcHdHRYvNjoTiROj9zxNLrRt4MGDB9yKiQHgOQPKLDdv3qx7m5kCsxnCw8VIqgVBA+HeGTi/IkOPjRgxAm9vbwBmzpzJhQv2WXB8/DG89JIQRku0fs0vsQKn7ptRUaJG0sPD6EwkapDqqLByJThzpYUO3L0Ln34KzZqJX5L/smXLFipUqEBISAiJKQNH2bJl2bZtG99++y158+Y1JrEbe+D+ufRq46moLO5YsyZ06SJsv65cefLntBgHsmXLxvDhwy1fDxo0CEWLQ4GgAeLfMzIDMut6kTs3vPWWLB+X2IXe8zS50LaBtIrjpXX20AYsdg8SlXn9dShUSLuXeO4qULABhI3P0Km5v78/n3zyCQBxcXGMttMQ291d7MgfPSpObyTq4dR9UyqOux4dOkBcnDiulTyRESPg9m35Pnwc165do0OHDjRs2JAzZ84A4OXlxYgRIzh06BCvvfaasQlGhkLWopCv1n//TIN32vjxQgKhX78nf0arcaBLly6UKlUKgG3btrF161b1G8n5vPAiD58gqgUcDbMZDh6Ew4eNzkTipOg9T5MLbRtIZ+1lwIn29OnWezJLMoC7u5iYLl4MdvhWP5WgQUK45XLGdtQGDx5Mjhw5APjmm284fvy4XWlUqQLdu4sJpp0H5JI0OHXflB7arkexYvDaa/IE6CkcOiQW2MOHy32mtCQnJ7NgwQICAgJYlEa7pE6dOhw6dIiRI0dabKcMIzkRzi+HYm3B9Mh0NjlZLLRVfqflySOU6RcvFvqpj0OrccDT05MxY8ZYvh48eDDJWvh1lh8E0WFwcb36se2lUSNx7146KkhsRO95mlxo20Dahbbe1l6AdkIYErFbevMmbNyoTfwCr0HuquJUOwPkyZOHAQMGAJCUlMQwFdR6xo4FX19RMilRB6fum/JE2zUxm2H79n/F7iQWkpPFFZpy5aBPH6OzcRzCw8OpW7cuXbp04fbt2wDkypWLBQsWsH37dgICAgzOMIWr2yHuGjzX7jF/dlVsmGvwTuvUCWrVEpvV8fH//XMtx4G2bdtSqVIlAPbv388KLapV8r0iKgSOhWijWWMPaR0V5N03iQ3oPU+TC20biDTQ2guEErVEIypUgMqVtTsBMpmg/GC49hvc2JuhR3v37k2BAgUAWL58OX9b4zPyFPz8YOpUUVWq1b5CZsNp+2ZcHFy+LE+0XZG334asWcXEVJKOBQtgzx4hcqWzpqlDEhcXx4gRI6hUqRI7d+60fL9Dhw5ERETwwQcfWFwwHIKoUPAtLa5lPUrqPE2Dd5qbm/iZOXMGJk36759rOQ64ubkREhJi+XrIkCEkJGggXBY0CG7uhes7n/1ZvenUSVyS16J0XuLy6D1Pc6A3pvNgpIc2QLdu3XRvM1NhNsO6dWCnldYTKdoccpSDsAkZeszX1zfdSXZwcLDdqbRrB/XrC1ubBw/sDpfpcdq+meofL0+0XY/s2cViWytHBSfl+nUYOFDM2evUMTob49m+fTuVKlVi9OjRloVbqVKl2Lx5MwsXLiR//vwGZ/gISfFwfqUQQXuc0rnGdoUVKogqiHHjxII7LVqPA40aNaJOyg/tyZMn+e6779RvpHAT8KsAx+xzOtGEF1+EoCB5JUZiE3rP0+RC2wZOHT9h+b0RC+1ly5bp3mamon17UVO4dKk28U1uEDgQLqyG6PAMPfrhhx9SokQJQKjA/vqkS2LWpmKCOXPEPe3PP7crlAQn7pvSQ9u16dQJTpyAv/4yOhOHIeUmzmNPJDMTN27coHPnztSrV48TJ8TcxsPDg+DgYI4cOUKDBg0MzvAJXNoICdGPLxsH8U7z8xO/NGL4cMiXT2xUp93D0nocMJlM6aw+R44cyQO1d8pNJnGqfXkj3D6kbmx7SXVUWLUKUhyAJBJr0XueJhfaNhB19iwAuXPkIEuWLLq3X6NGDd3bzFTkzw+NG2vrP1v8PchSRPhqZwAvL6//iKHYa/FRtqw42ZkwAezUWMv0OG3fjIwUkxd/f6MzkWjBa69BkSLyBCiFnTvhu++EgnS+fEZnYwyKovD9998TEBDA92nGupo1a3Lw4EHGjRtnyPzGaqKWQM6K4Bf0+D/XQdzR11cI6W3cKFz0UtFjHKhRowbNmzcH4NKlS8yaNUv9Rp5rC9mKZ7j6Thfee09ckP/pJ6MzkTgZes/T5EI7gzx8+JBrd4Q4SPFixpz+nE8t85Roh9kMf/6p3crT3QsC+8HZHyE2Y/8/3333XSpWrAjAvn37WLVqld3pDB4s1ljdu8vqUntw2r4ZFQWFC8uLqq5KqqPCkiWPV2/KRCQkCAG0l18WnsiZkRMnTlC/fn06d+7MzZs3AfDz82PevHns3LmT8uXLG5zhM0i4BxfXwnOP8c5ORSdxx+bNoWlT6N37X7t6vcaBcePGYUopmw8JCeHOnTvqNuDmAYGfwbmlcO/Msz+vJ0WLintvcvNQkkH0nqfJhXYGOX/+vOUEsZQBHtqA5cUq0ZC33hIlZ1paSJT6EDyzQ8TUDD3m5ubG52nqvIcMGUKineqbWbLA7NmwbRuEhtoVKlPjtH1TWnu5Ph07Ct2Jn382OhND+eILCA8XYlaOpOulB/Hx8YwZM4aKFSuyfft2y/fbtWtHREQEH3/8sWOJnT2Ji2sh6cGTy8ZBt3eayQQzZ4quNXJk6vf0GQfKly+P2WwG4Pbt20zS4h5EyffBKw+ET1Y/tr106gS//w4pVaYSiTXoPU9zgjeqY2G0hzZA0aJFDWk3U+HjA23bioW2Fj6VAJ6+ULYnnPoS4m9m6NEmTZpQq1YtACIiIvhBhV3dRo2gdWvo2xfU3hjPLDht35TWXq5P+fJQpUqmPgGKioJRo6BXL3jhBaOz0ZedO3dSuXJlhg8fTnxKVUPx4sXZsGEDoaGhFCxY0OAMM0BkKOR5GXyLP/7PFUXXd1rx4jBsGEyfDocP6zsOjBw5Eq+USqRp06Zx+fJldRvwyArlesPpb+DBVXVj20vLlpAtm3RUkGQIvedpcqGdQdJaexnhoQ2wd2/GbKEkNtKpE5w7Bzt2aNdG2Z6AAicydr/KZDKls/gYMWKEKmIo06ZBbCw4sx20kTht35QL7cxBp07iRPvGDaMzMYTevSFnThg92uhM9OPWrVt8+OGH1KlTh/BwIb7p7u7OgAEDOHr0KI0bNzY4wwwSfwuu/CLUxp/EzZtw/76u77R+/YTeSdeusHu3fuNA8eLFLSrK9+/f18a6qGwPcPOC49PVj20P2bKJ0wHpqCDJAHrP0+RCO4OkO9E2aGLaunVrQ9rNdNSoAaVKaSuK5pNXlJAfnwGJsRl6tFatWjRt2hSACxcuMGfOHLvTKVJETELnzAE7bbozJU7ZNxMShOy8LB13fdqllNouWWJsHgawbh2sWSM2E7NnNzob7VEUhUWLFhEQEMDXX39t+X61atXYv38/EyZMIFu2bAZmaCPnV4KSBMXeefJnNPTQfhJeXmLc3LMH4uP1HQeCg4Px9fUF4Msvv+T06dPqNuCVE8p0hZOz4WG0urHtxWyGU6fAWTe5Jbqj9zxNLrQzSNqFtlEn2vPmzTOk3UxHqoXETz+JY16tCOwLCTFw6qsMP5pWDOXzzz8nOtr+QbBnT6hYUezMJyXZHS5T4ZR98+JFcT1Cnmi7PvnyQZMmma58PDZWvNfeeEMcgLk6p0+fplGjRnTo0IHr168DkD17dmbNmsXu3bupVKmSwRnaQVQo5H8Nsjyl1N0gu8K6dYUUwpAh83QtGsmfPz/9+vUDIDExkWHDhqnfSLlPISkOTs1XP7Y91K0rlFwz2TtNYjt6z9PkQjuDnDbYQxtgqKzr1Y8OHeDePVi9Wrs2sj0HxdtDxBRIepihRytWrMh7770HiBLByZPtFyzx8BBCQfv3gzOuG43EKfumAac/EgMxm2HfPqEIlkkYOxauXIFZs8T+qauSkJBASEgIFSpUYPPmzZbvt2rVioiICHr06IG7u7uBGdrJg8twdfvTRdBAvNOyZYM8eXRJKy2TJ4O391CLT7te9O3bl7x58wIQGhrKwYMH1W0ga2Eo0QkivhALbkfBzU3sbixZAnEOlJfEYdF7niYX2hkk8oywOMiRNRvZDao/0+QOjuTxlCwJtWtrv1saOADuX4CoxRl+dPTo0Xh6egIwdepUrl61X7CkRg348EMIDhYTVIl1OGXfTD39KVbM2Dwk+tC0KeTKlWlOgMLCxOInOBhKlzY6G+3YvXs3L774IsHBwcSlLDj8/f1Zu3YtP/30E4ULFzY4QxU4t1xYThVr9fTPpWpOGLCrkj8/1K49lm+/hT/+0K/dHDlyMGTIEMvXwcHB6jcS2B/irsJZB3t3dOwoFFzXrzc6E4kToPc8TS60M0BiYiKXb4gyrGIGqgt/+umnhrWdKenUCbZuFSW2WpGzPBRpBmETQMmYynmJEiXo2rUroK4Yyvjx4t5ZSkWaxAqcsm9GRYnZYZYsRmci0QNvb3FX+8cfXf5uiKJA9+5QogQMHGh0Ntpw584dunXrxiuvvMLRo0cBYQHZp08fwsLCeOuttwzOUEUiQ6FQI/DK9fTPGSzu+OOPn1KtmvBrT0jQr92uXbtSLGXDdOPGjfz+++/qNpCjDBRrDWETIdk+S1FVCQiAatUyzeahxD70nqfJhXYGuHTpEkkpVk9GeWgDfPVVxu/ySuygdWux4ly0SNt2ggZBTARcWJvhR4cMGWIRtpk/fz5nUiov7CF3bpg0CRYvhl9/tTtcpsAp+6b00M58mM1CAO+334zORFMWLhQ2u3PmiP0FV0JRFJYtW0ZgYGC6O4dVqlRh3759TJ061SKQ5RLcOws398JzT1EbT8Xgd9qCBV8xb56oppg2Tb92fXx8GDVqlOXrwYMHo6itxh00EO6dhvMr1I1rL2YzbNwI164ZnYnEwdF7niYX2hkgrRBaiZIlDcvD6ew4nB0/P2jRQqiPa2khka8G5K8DYSEZbqdAgQL07dsXEPf0RowYoUpKnTqJyvnu3SHFelXyFJyyb0prr8xH9epQpoxLnwDdugWffSYO719/3ehs1CUyMpKmTZvStm1brqTc7fH19WXatGns3buXF1980eAMNSBqCbhngSJWnNAb/E5r3LgxlSvDJ5/AyJHCJVQvOnbsSFBQEAB79uxh3bp16jaQuwoUbABh4x3LUqtdO3FVIBM6Kkgyht7zNLnQzgBpPbSNEkIDOHLkiGFtZ1rMZrE9/c8/2rYTNBhu/gXXMl7y1a9fP/KkiL8sWrSIw4cP252OySSE0c6cEafbkqfjlH1TnmhnPlIdFVasEGKPLkhwsNgcnDrV6EzUIzExkcmTJ1O+fHk2bNhg+X6zZs0ICwujd+/eeHh4GJihhkQtEderPJ9xSn/nDkRHG/pOSx0HxowR+/S9e+vXtru7O+PGjbN8HRwcTJLaV0SCBsHtg3B58zM/qht58gj9CS3tWCUugd7zNLnQzgCO4KENkDNnTsPazrQ0aAAFC2p/AlToDchZSewWZxA/Pz+LAIqiKOmEUeyhfHno2xfGjRMLbsmTcbq+mZwM58/LE+3MSIcOwvdq5UqjM1GdP/+EL78UauOFChmdjTr89ddfvPTSS/Tv35/79+8DUKRIEVauXMmaNWvw9/c3OEMNiQ6DO4ehuBVl4wZZe6UldRzIkQO++EKYluip09W8eXNefvllAI4dO8Yita+9FXgNcle1aZ6iKWYzHDgAKVoFEsnj0HueJhfaGSDtibZRHtqAYWrnmRoPD3jvPXFhWUt1E5NJ7BZf/gVuZfz0vHv37hRNEepbv349f6gkezp8uNDL+uQTx6oWczScrm9evix+nuVCO/NRvLjwoHWx8vHEROjaFSpXFldenJ2YmBh69uzJyy+/zKFDhwAwmUz07NmTsLAwWrZsaXCGOhAZCp5+QgjtWTjAQjvtOPDOO2KfvmdPSNkf0RyTycT48f8ugocPH068mne/TCYoPwiu/QY39qoX116aNBHiMgsXGp2JxIHRe54mF9oZ4OzJU5bfG3miHZ6J/E8dCrMZrl+HTZu0badYa/AtKRTIM8ijYiiDBg1SRQwlWzaYMUNojbjgAZhqOF3flB7amRuzGbZtE1UNLsLs2XDoEMybB85sGa0oCitXriQwMJBZs2ZZ3uOVKlVi7969zJgxgxw5chicpQ4oiigb938b3K1QtIuMFMp3BQpontqTSDsOmEziZ/LyZVFhoRevvvoqjRqJjYmoqCjmz5+vbgNFW0COcjbNUzTDywvefTdTOCpIbEfveZpcaGeAM6fEQjubjw+5cj3DXkJDGjRoYFjbmZqKFaFSJe1PgNw8hF/l+eVw99SzP/8IZrOZgIAAAHbt2pXuLp89NG8Ob70l7pvdvatKSJfD6fqmA5z+SAykVSvw8dHeUUEnLl2CYcPEiXbVqkZnYzvnz5+nRYsWtGrVikuXLgGQNWtWJk+ezN9//021atUMzlBHbu2He6esUxsH8U4rVgzcjJvePjoOlCkDgwYJP3c95/iff/655fdjx47lrpoDt8kNAgfAhdUQ7UAbzGazeBFs22Z0JhIHRe95mlxoW0lycjIXrwp1z6KFCmMymQzL5bvvvjOs7UyP2Qxr18Lt29q2U7IzeOeD8MkZftTDwyOdGMrgwYNJTs6YN/eTmDFDqPmOHKlKOJfD6fpmZKQotXO2kneJOuTIAS1bau+ooBN9+gg7+DTrC6ciMTGRadOmERgYyNq1/9o8NmnShGPHjtGvXz/XFTt7ElGh4JNf3Au2BgcQd3zcODBokNjP7N5dv65WuXJl2rVrB8D169f54osv1G2g+HuQpQiET1Q3rj1UrSp8taUomuQJ6D1PkwttK7l69SoJKaUopcqWNTSXoUOHGtp+pqZ9e1GStGyZtu24+0C5T+HMt/DgcoYfb9myJVVTjnSOHDnC4sWLVUmreHFxX3v6dFBB1NzlcLq+Ka29JGYzRETA338bnYldbN4sXstTpoCzaRIC7N+/n+rVq9OnTx9iY2MBKFiwIMuWLWP9+vWG6sIYhpIMUUuh2Dui0ssaHOCd9rhxwMdHlJD/9puobNaLMWPGWDZnJk+ezPXr19UL7u4NAX3h7I8Q6yDXT1IdFVaulKV3ksei9zxNLrStJK0QWonSpYxLBFECJDGIggXhjTf02S0t000suI9Pz/Cjj4qhDBs2jIcPH6qSVt++UK6cKM9U6aDcZXC6vukAk1KJwbz+upDmdmJRtLg46NEDXntNaFY6E/fu3aNPnz5Uq1aNAwcOAOL93a1bN8LDw2nTpo2hFXSGcv0PeHARnmtn/TMO8E570jjQsKEQR+vXT/uiuFRKly5Nly5dALh79y4hISEqN/AReGaHCAfy0XvvPfFSWLHC6EwkDoje8zS50LYSR7H2AiFwJTEQsxn27IGTJ7Vtx8tPLLZPzoWH0Rl+vF69epa7KJGRkXz55ZfqpOUFc+aIf4JvvlElpMvgdH3TAcosJQbj7i6svkJDQaXNOL0ZP16sr+bMEQdazsK6desICgpi2rRplus9FSpUYNeuXcyZM8f57ALVJjIUshaDvDWs+3xsLNy4Yfg77WnjwBdfiDVgihOnLgwbNowsWbIAMHv27HTzWbvx9IWyPeHUlxB/U7249lCsmNh1c+LNQ4l26D1PkwttK0n7YjK6hGvy5Izf25WoSLNm4m6jHhYS5XpDUjycnGPT42l3r8eMGcO9e/dUSevVV8V+w8CBYl4jEThV31QUhzj9kTgAZjPcvAkqCSfqycmTEBIC/fuLq5nOwMWLF2nVqhXNmjXjfIriu4+PDyEhIRw4cIAaNaxcWLoyyQlCEPS5dkJ4yxocRNzxaeNA4cIwZgzMny/83vWgcOHC9O7dG4CHDx8yUm2RlbI9AQVOzFI3rj2YzbB9+78/ExJJCnrP0+RC20rSlo4bfaKdKm4hMYgsWUT918KF2tdOZykkhNGOT4PEBxl+vEqVKrzzzjsAXLt2jWnTpqmW2qRJYq02YIBqIZ0ep+qb166JoxV5oi2pUEEYTzvZCZCiiJLxwoVhyBCjs3k2SUlJzJo1i8DAQFam8Uls2LAhx44dY9CgQXh6ehqYoQNxZas4IS1updo4OIxd4bPGgR49hIFJ167C910PBgwYYKmQ+OGHHzh27Jh6wX3yQqkP4fgMSIxVL649tGoFWbPqeyFe4hToPU+TC20rOXv6jOX3Ri+0//jjD0PblyB2SyMjQY//F4GfQfwNOPudTY+PGTMG9xRD2UmTJnFDpSPo/PnFSdK33+rzz+AMOFXfdJDTH4mDYDbD+vXiZNtJWLYMtmyBWbPEnNqROXToEDVr1qRnz54Wm6X8+fOzaNEiNm3aRMmSJQ3O0MGIWiJ8mnNWysAzUeDhIXZeDORZ44CHh/B5P3RICKTpQa5cuSwls8nJyeoLQgX2hYQYOPW1unFtxddXLLZ/+MElHBUk6qH3PE0utK3k9PHjAHh7epI/f35DczF6oS8BatWCEiX0EUXLXhr820DYJEjO+PZ32bJl+d///gdATExMOpE0e/nwQ6heHbp1g4QE1cI6LU7VN+VCW5KW9u1Fhc7SpUZnYhUxMcLOq2VLePNNo7N5MrGxsQwYMIAqVarw119/Wb7fpUsXwsPDad++feYVO3sSiQ/g/CrhnZ2Rf5uoKChaVOgOGIg140D16vDRR8L3PcUqXXN69uxJoUKFAFi9ejV79+5VL3i256B4e4iYAkkOovVgNsOJE5Cm30kkes/T5ELbChRF4cIVYbFUpEBBwwfFpBSbMYmBpFpILF8O9+9r317QQIg9C+eW2/T48OHD8fHxAWDWrFmWe4H24uYGc+dCWBioWJXutDhV34yMFP7ZuXIZl8OV7bDMD46FiNMQiXHkzw+NGztN+fiwYWKxPT3jpgy6sXHjRipUqMCkSZMs74bAwEB27NjBV199Re7cuQ3O0EG5tAES72ZMbRwcRtzR2nEgJETYfvXpo3FCKWTNmpURI0ZYvh40aBCKmqe9gQPg/nmIUsdO1G5eew2KFHGad5pEH/Sep8mFthXcvHmTuBQ1VqM9tAEuX864r7JEAzp2FD6Na9Zo31buylDoDQgbb1MZVJEiRejVqxcA8fHxjBo1SrXUKleGnj1h5Eg4d061sE6JU/XNVCE0IzcOz6+EpFg4NARWFoLdZriyTfjnSvTHbBYKTSkVXI7KgQOiXHzkSPD3Nzqb/3L58mXatWtHkyZNLPou3t7ejBkzhoMHD1K7dm1jE3R0okIhV2VROp6h5xxD3NHacSBXLpg8WVyB2LxZ46RS+OCDDyhTpgwAv//+O5vVbDhneSjSDMImOMY7PK2jQny80dlIHAS952lyoW0FjuShDVCtWjWjU5AAlCoFr7yi325p0CC4cxgub7Lp8YEDB+Ln5wfAt99+S0REhGqpjR4NOXNCirBppsWp+qYjnP5c2w7F2kKLc1BhKNz8E7bVh7Ul4fAIuHfm2TEk6vHWW+Dn59AnQElJ4qpKUJDjvW+Sk5OZN28egYGBLE1Tgl+vXj0OHz7M0KFD8fLyMjBDJyAhBi79LMrGM4ojvNPI2DjQsaNw8ejRQ2hTao2np2c6H+HBgwdbrOVUIWgQxETAhbXqxbQHs1mYlv/8s9GZSBwEvedpcqFtBY7koQ2wYsUKo1OQpGI2i61oPXbI8r8KeV4Wp9o2kDt3bgYOHAioL4aSI4fwB129WugpZVacqm8affpz5whEHxOqwlmLQvnB0DQCGuyCgg0h4gtYWwq21oUz30GCOtZ0kqfg4wNt2+rjqGAjX30lrlzOmweOJNB99OhRateuTbdu3YiOjgYgT548fP/992zdupWyDlAN5xRcWANJcfBc24w9FxcHV644xIl2RsYBk0n4v0dGCj94PWjdujUvvvgiAP/88w/Ll9t2Je2x5KsB+etAWIhjiJAFBcFLLzn05qFEX/Sep8mFthWkPdE22kMbsPghShyAd94Rs71Fi7Rvy2SC8oPg2g64vtumEL169aJgwYKAeNns27dPtfTatIGGDUUZuR7X1h0Rp+mbjuChHRkKXrnEojoVkwny1YTqX8LbV6DGj+DmCXs/gFUFYU9nuPq7Y5QluiqdOsH58/D770Zn8h+uXoXBg+GDD0QxkSPw4MEDgoODqVy5Mrt3//te7ty5MxEREZjNZsN1XZyKyFDIVwuyFcvYc6m6Iw6w0M7oOBAUBJ99Ju5snzypUVJpcHNzIyQkxPL10KFDSVBTzTRoENz8C645yDvEbBYn2io5rkicG73naXKhbQWOdqI9adIko1OQpJIzJzRvLtTH9di9LfIW5AgUd6BsIFu2bAwfPtzy9eDBg9XKDJNJWJVcvgxpKtMyFU7TN2/fFvoCRm0cKoqw7/FvBe5PKKX1yAol3oN6W6B5pJi8Xf8Dfq0La0vDkVFwL1LHpDMJNWqIazEOeALUv78QYJxg2+tPdbZs2UKFChUICQkhMcUQuWzZsmzbto1vv/2WvHnzGpyhkxF3A65sybgIGjiMhzbYNg4MGyZcyXr00Gcq0aBBA1577TUATp06xTfffKNe8EKNIGdFm6vvVCfVN3nJEmPzkDgEus/TFIOIjo5WACU6OtqoFKzmrTebKoACKBcuXDA6HYmjsX69ooCi/POPPu2d/k5RFqEot4/a9PjDhw+VUqVKWX6mN2/erGp6I0cqiqenooSFqRpWoiYHDoif2T//NKb963vFz/DlXzP2XHKyolzdqSh7/6coS31FjK2vKcrp7xUl4Z42uWZGRo1SFF9fRbnnOP+m27eLH9mvvzY6E0W5evWq0r59e8s7FFC8vLyUESNGKA8ePDA6PeflxDxFWeyuKA+uZvzZr75SFJNJUeLj1c9LJ9atEz/jS5bo097evXstP7+FChVSYmNj1Qt+drF4P988oF5Me2jeXFFeesnoLCSZEHmibQWnUkSjPNzdLR6ERjI2sx4XOioNGwprHL1OgJ57F7L6Q/hEmx739PRkzJgxlq/VFkMZOFBU73Xv7hhXtPTEafqm0ac/UaHgU1DoDmQEkwny14LqX6eUlv8AmGBvJ1hZEPb+D67tzHw/eGrToQPcuwerVhmdCQAPH4r3Sc2a8P77xuWRnJzMggULCAgIYPHify2M6tSpw6FDhxg5cqTFRlFiA1GhUKA++OTP+LORkcLKyQHE5mwdB5o2hRYthN1XjA5uh9WrV6dly5aAUGKeOXOmesGLtYFsJWyuvlMdsxn+/lt4kUoyNXrP0+RC2wrOX7oIQKG8+XBzM/6f7IMPPjA6BUlaPD2hfXtxTzulfFBT3L0goB9ELobYqGd//jG0bduWSpUqAbB//35VxSF8fIS4y2+/wY8/qhbWKXCavhkVBVmyQL58+rednARRS6HYO+Dmbnscj2xQoiPU/xWanYXA/nB1O2ytA+vKwNGxEJvJ/eZspWRJqF3bYcrHp0yBEydg7lxROm4E4eHh1K1bly5dunD79m0AcuXKxYIFC9i+fTsBAQHGJOYq3L8o9EeK26A2DsZrTqTBnnFg+nSIjhal5HowduxYy7x2/Pjxlp9tu3HzgKD+cH453D2lTkx7ePNN4ae2cKHRmUgMRu95mvGrRgfnzp073HvwAICSZUobnI1g48aNRqcgeZROneDaNfjlF33aK90FPHNA+FSbHn9UDGXIkCGqiqE0aCDEi/v1E9eBMwtO0zejoqBYMWM8tK/vgLgrtk+oH4dvcXh+ODQ7BfV/g/y1xf3ANcVhWwM4uwgSM6lCn6106gRbt8LFi4amcfYsjBkDn34KFSvq335cXBwjRoygUqVK7Ny50/L9Dh06EBERwQcffOAQG/BOT9RSIXxYtIWNzzvOQtuecaBYMeEPP2uW8IvXmqCgIDp16gSI+e4ENQUQSr4P3vkgfLJ6MW3F21vc1f7xR+ERKMm06D1Pk6PDM0grhFayTBkDM/mXikbMNiRPp1IleP55/U6APLJBuV5w+ishIGMDjRo14tVXRenuyZMn+e6771RMEKZOFY4rwcGqhnVonKZvGuk3GxkqSgrzVFc/tskNCrwKL38LLa/Ay99AcgLs6QCrCsGfHwnFflla/mxatxaTUz0cFZ6AokCvXpAnj1h86M327dupVKkSo0ePtmxElipVis2bN7Nw4ULy57ehxFnyeKKWQOEm4JXTtucdxEMb7B8HPv1UKJF366bPmnDkyJEWf/fp06dzUa3NNXcfKPcpnPkWHuhggfoszGa4cEGU20kyLXrP0+RC+xmkXWg7grUXwK1bt4xOQfIoJpN4ia9ZA3fu6NNm2U8AE5yw7V6VyWRKd6o9cuRIHqRUb6hB4cJCfXz+fOF7mxlwmr5p1OlP0kM4/5NQFdb6NN3TF0p2htd/g2anxYTvymbY8gqsD4BjIXD/grY5ODN+fuLCqF6OCo9hzRpYv16U0/r66tfujRs36Ny5M/Xq1ePEiRMAeHh4EBwczJEjR2jQoIF+yWQG7p6CW/uE/ogtJCSIygsHOdG2dxzw9BTXJP76S/jGa02xYsXo0aMHICo40mq42E2ZbmLBfXy6ejFtpXp1KFtWvNMkmRa952lyof0M0npoO4K1F0BsbKzRKUgex3vviQF/+XJ92vPOA6U/EgvthLs2hahRowbNmzcH4NKlS8yaNUvNDOneHV54Abp21ef6utE4Td806vTnymZ4eNs2+x578C0JFUdBszNQf5s4TT86BlYXg21vQOQSSFRvk8llMJuFeJAeNayPcO+eOM1u0gRS9Jo0R1EUvv/+ewICAvg+zWS8Zs2aHDx4kHHjxpElSxZ9kslMRC0RVVpFmtr2/IULkJzsMCfaaowDtWoJ4b/Bg4V/vNYMHjyY7NmzA/D1119zUi1Dby8/sdg+ORceRqsT01ZSD0RWrBAvGEmmRO95mlxoPwNH89AGpOiKo1KokFAg11NAKKCvWGSfsn3be9y4cZhSThdDQkK4o+KJvIcHzJsHBw8KgTRXxyn65t274uK8Ee+zqCXgFwQ5n9e/bUgpLX8Nav4gVMurfw1J92H3u6K0/K+ucGOvLC1PpUEDKFjQEFG00aPh+nWYOVMfKYETJ05Qv359OnfuzM2bNwHw8/Nj3rx57Ny5k/Lly2ufRGZEUYTaeJHm4JHVthip8zQXm6NNnCjE//r3VyXcU8mXLx+fffYZAElJSQxTU42tXG9IiheLbaPp0AHu34eVK43ORGIQes/T5EL7GZw9c9bye0cpHd+6davRKUiehNkMf/wBp0/r0142fyjRASKmiIHMBsqXL4/ZbAbg9u3bTJo0Sc0MqVYNPv4Yhg6FS5dUDe1wOEXfNGpSmngfLqwW5aFGiLA9imcOKPUBNNgJb52Esj3h0gbYXAN+DhK2NPdd/Af2WXh4iEqdxYtFtY5OHD0KX3wh3hklS2rbVnx8PGPGjKFixYps377d8v127doRERHBxx9/LMXOtCT6KESH2SeOmPpOK1ZMnZzsRK1xIG9emDBBCGXrca24T58+5Etxoli6dCkH1KpkyVJIXOM5Ps34yqHnnoO6dR3GUUGiP7rP04wy8I6OjlYAJTo62qgUrKJiQJACKG4mk/Lw4UOj01EURXH4f7NMTWysomTPrigjRujX5p0wRVmEopxaYHOIs2fPKl5eXgqgZM2aVbl06ZKKCSrKrVuKkj+/orRtq2pYh8Mp+ua6dYoCinLhgr7tRi4VP6cxJ/VtNyMkJynK5S2Ksus9RVnioyiL3RRlW2ORe+IDo7MzhkOHxM/L2rW6NJeUpCi1ailKuXKKEhenbVs7duxQAgICFMDyq3jx4sqGDRu0bVjyL/8MVpTluRQlMd72GCNHKkqBAurlZCdqjgNJSYpSo4aiBAYqSrwd/0TWMmPGDEtfeOONN9QLHHNSvE9PzFEvpq18842imEyKcu6c0ZlIDEDveZrcpn0G5y+cB6Bgnrx4enoanI1gxowZRqcgeRJZs0KbNmK3VK/yU79AYYkSPlF4FNtA8eLF6datGwD3799n7NixKiYo7CsnT4alS2HLFlVDOxRO0TejooTaTqFCOre7BHK/BNkdwybxsZjcoODrUPNHoVpedR4kRMOutrCqMOzrATf3Za7S8ooVhauCTgJC338vioLmzBGi51pw69YtunTpQp06dYiIiADA3d2dAQMGcPToURo3bqxNw5L0KIp4L/i3Bncv2+M4kLUXqDsOuLmJ61cnTgg/ea356KOPLNWbv/zyS7oqD7vIXhr820DYJEg2WLCldWvw8RFWX5JMh97zNJOiGDNjiImJwc/Pj+joaHLkyGFECs8kNjYW3xSp0xpVq7H7rz8NzkjiFPz+uyhN2rlTKJrowY29ouS19grwf9umENeuXaNUqVLcu3cPDw8PIiIiKFWqlGopKgrUqyd0a44cEeOcxAD694dVq+DUKf3afBgNKwtApc8hsK9+7apFzHE48z2c/QEeXAS/8qIUsngHyFLQ6Oy0Z+pUocp0+TLkzq1ZMzdvQrly0KiRNnNgRVFYvHgxffr04fr165bvV6tWjS+//JJKlSqp36jkydz4Eza/DPV+hYL1bI9Trx7kyyd2cl2Ufv2EEvmxY1CihLZtLVy40HKdrHr16uzZs8ei42IXt/6BTS9CzcX2XRVQgw4dYP9+IfboCFeZJC6LPNF+CmmF0EqVK2tgJulR+7RRojK1awv1Uz3vAOV9GfLXhWPjbT5ty58/P/369QMgMTGR4cOHq5igGMvmzBGHDxMmqBraYXCKvmnE6c+FVZD8EJ5rq2+7apGjHLzwOTSPgtd+EWJuh4bC6qLwW1M4t8JmjQSnoH17Yei7bJmmzQwaJNwJtDi5O336NI0aNaJDhw6WRXb27NmZNWsWu3fvlotsI4gKFfd3879qZxzHOtHWYhwYOVLscfXqpX1BTfv27alQoQIAf/75J2vWrFEncO7KUOgNCLN9nqIaZjNERMDffxubh0R39J6nyYX2U0hr7eUoQmgA3bt3NzoFydNwc4OOHcXuuoq+1M+k/GDhRXrV9lKvvn37kjdvXgAWL17MwYMHVUpOEBgIn30GISH6HqjqhVP0zago/W1wIkMhf23IWkTfdtXGzR0KNYRXQoVq+UuzIP4G/NFalJb/3QtuHTB+Eqk2BQvCG29ounm4ezd8/TV8/jkUKKBe3IcPHxISEkKFChXYvHmz5futWrUiPDycHj164O7url6DEutIToKopVDsHdGvbCUpCc6fdxhrL9BmHMieXfjJr18v/OW1xN3dnc8//9zydXBwMElJtl1L+w9Bg+DOYbi8SZ14tlK/vrg+JUXRMh16z9PkQvspOKK1F0BoaKjRKUieRceOEBMDa9fq12bBBpCrstgttpEcOXIwZMgQy9fBwcFqZJaOoUPF+Najh+utR5yib0ZG6nv6E3cNrv4q1MZdCa+cUKYrvLEX3gyD0h/C+Z9gUxXYWAnCp4q/u6tgNsOePaCWv24aEhOhWzd46SXhUKAWu3fvpkqVKgQHBxMXFweAv78/a9eu5aeffqJIESff+HFmrv0OcVfsfy9cviwU8TPBHO3tt6FxY3GqrbUNdNOmTalZsyYA4eHhLFy4UJ3A+V+FPNXtmqeogru7KB8PDYWHD43NRaIres/T5EL7KaRdaDvSiXbt2rWNTkHyLMqUgRo19N0tNZnEbvGVLXBrv81hunbtSrEUm5SNGzfy+++/q5UhIPTiZs6EzZth+XJVQxuOw/fNBw/g2jV9J6XnfgJMQvDIVfELhBfGQ/NzUHcD5AiEQ4NhVRH4vTmcXwVJTj6Za9YMcuTQ5J02Y4aw9Jo3T8x/7eXOnTt069aNV155haNHjwLg5uZGnz59CAsL46233rK/EYl9RC2BbCUgTzU74ziWhzZoNw6YTDBrlvCXHz1akybStGVi/Ph/F8PDhw+3bFbZGVjMU67tgOu77Y9nD2azEIbYsMHYPCS6ovc8TS60n0Lk2X89tB3pRDttSbvEgTGb4Zdf4MoV/dr0bwW+pYQHsI34+PgwatQoy9eDBw9Gbc3Epk2hRQv49FNx8O8qOHzfTJ2U6rlxGBUqqi188urXplG4eUDhxlBrKbS8DFWmw4PLsPNtWF0E9n8Ktw8anaVtZMkC77wjTH2Tk1ULe+ECjBgB3btDlSr2xVIUhWXLlhEYGMi8efMs369SpQr79u1j6tSpFoFTiYEkPRTVH8+1s1+IKvWdm0nmaCVLwpAhwmc+ZQ9JM2rXrk2TJk0AOH/+PHPnzlUncNFmkCPArnmKKlSoAC++KMvHMxl6z9PkQvspnD5+wvJ7f39/AzNJj7xP5iS0bSuOZ/QsU3Fzh6AB4hQxxvYSz44dOxIUFATAnj17WLdunVoZWpg+HaKjQWXNNUNx+L6p9+lP7Dm4/oeYUGc2vHND2e7Q6C9ockSolEctgY2Vxa+I6RB3/ZlhHIpOncTP0M6dqoX89FPw9QV79WkiIyNp2rQpbdu25UrK5qavry/Tpk1j7969vPjii/YnK1GHK5vh4W11lKejooRKWPbs9sdSCa3Hgf79oVQpcd1CxT2vx5L2rva4ceOIUWNn3OQGQQPh4lq4c8z+ePZgNouL7zdvGpuHRDf0nqfJhfZTSN31yJczFz4O5EVUSG//W4lt5Molyi118p+1UMIMPgUgfJLNITQVQ0mhWDGhpDpzJvzzj6qhDcPh+2ZUlNj8KVpUn/bOLQN3H/BvoU97jkrOClB5ErS4AK+uE1UnB/uLU+4db8OFtZCcYHSWz+aVV4S3kEonQBs3wooVwj3Mz8+2GAkJCUyaNImgoCA2pCkBbdasGWFhYfTu3RsPDw9V8pWoRGQo+AWBXwX7Yxkh7vgMtB4HvL2Fg8cff2g/vahUqRLt27cH4ObNm0xRyxLgufaQ1R/CJ6oTz1befVfsVriwNZwkPXrP0+RC+wnExcVxI/oO4Fhl4wD79u0zOgWJtZjNcOiQ+KUX7j4Q0AfOfg/3L9kcplmzZrz88ssAHDt2jEWLFqmVoYVPP4WgIH125vXA4ftmZCQUKQJ6LTwiQ6Hwm+CZQ5/2HB03DyjSFGr/JErLK0+B2CjY0VxYhR3oB3eOGJ3lkzGZxDtt+XK4f9+uUA8eCEHE+vWhnY0FD3/99RdVq1ZlwIABPEhxeChSpAgrV65kzZo1DlWJJkkh8T5cXCNE0NTwL9Zb3NEK9BgH6tUTrnv9+2t/GDt69GjLZtWUKVO4dk0FkUd3LwjoB5GLxTvQKPLnFwpzsnw806D3PE0utJ/A+fPnLb8vHVDOwEz+y9tvv210ChJradQI8uYV9xr1pExXcM8Cx6fZHOJxYijx8ep6BXt6wty58Oef8NVXqoY2BIfvm3r6zcacgNsHXE9tXC2880C5ntB4PzQ+BM+9B2cXwoaKsLEKHJ8F8Q5YztixI9y9C6tX2xVm3Di4eFGczGV0vRUTE0PPnj15+eWXOZSyiWkymejZsydhYWG0bNnSrtwkGnJxPSTGqnedxME8tEG/cWDKFKHYP2iQtu2UKlWKjz76CIDY2FjGjRunTuDSXcQmbPhUdeLZSqdOYhJy/LixeUh0Qe95mlxoP4G0l+Wfc7CypPnz5xudgsRaPD3FtvOiRWJE1K3dHFCmO5ycK+7C2cirr75Ko0aNAKHCr8XPXq1a8P77YrKgxka5kTh834yM1K/MMioUPLJD4Sb6tOfM5KoIVaZCy4tQZw1kKwYH+sCqQrCzNVz8GZJ1fH88jVKlRAm5HSdAEREwcSIMHAhly1r/nKIorFy5ksDAQGbNmmURaaxUqRJ79+5lxowZ5MghqyccmqhQyF0Vspe2P5aiOGTpuF7jQMGCYsPq66+FD72WDBs2jKxZswIwd+5cdQSlPLJBuV5w+iuIu2F/PFtp2hRy5pSn2pkEvedpcqH9BBzVQxtg6NChRqcgyQidOgnl8S1b9G23XG9x7/PEHLvCpL2rPXbsWO7evWtvZv9h4kRwcxNlcM6Mw/dNvU5/FEUIfxVtAR5ZtG/PVXDzFIq8dVZBy0vwwiS4ewp+bypKy//pb7x4EIh32pYtcCnjV1MURSiM+/vD4MHWP3fu3DlatGhBq1atuJTSbtasWZk8eTJ///031arZaRMl0Z6Hd+DSBvVOs69dg7g4hzvR1nMc6NpV+M9366btXn7BggXp06cPIHQRRowYoU7gsp8AJjgxU514tuDjI8RrVXZUkDgmes/T5EL7CaTdrXMkD20Qix2JE1G5MpQvr/9uaZYCUOoDOD5d3IuzkcqVK9Mu5RLl9evX+eKLL9TK0ELevDBhgvgnUtm2W1ccum8+fCgWRnq8z+4cgpgIdVSFMys++SCgNzQ5CI3/EYuTM9/BhgqwqZrYQIu/ZUxubdqIap3FizP86OLFsH07zJ4tHMOeRWJiItOmTSMoKIi1a9davt+kSROOHTtGv379pNiZs3Bhtdj8fa6tOvGMsCu0Aj3HAXd3cf3qyBHhR68l/fv3J3fu3AAsXLjQ4lFvF955oPRHYqGdcM/+eLZiNsP58849AZFYhe7zNMUgoqOjFUCJjo42KoWn0qFDBwVQAOXYsWNGp5OO2NhYo1OQZJQJExTFx0dR7tzRt927pxVlsZuiHJ9lV5iTJ08qHh4eCqBkz55duXbtmkoJ/ktSkqLUqKEogYGKEh+venhdcOi+eeqUooCibNmifVsHBijKT3kUJemh9m1lJhLjFeXcSkX5rZmiLHZXlFAvRdn5jqJc3KAoSQn65vLOO4pSoYKiJCdb/cjt24qSP7+itG5t3ef//vtv5cUXX7SMxYBSsGBBZdmyZUpyBtqVOAi/NlSULa+qF2/pUvFOu3VLvZgqYMQ40KOHovj6Ksr589q2M2nSJEtfbNasmTpB751TlMUeihI+VZ14tpCcrCilSytK587G5SDRBb37pzzRfgJpPbQdrXR87ty5RqcgySjvvQfx8fDTT/q261sSirUVVl922AeVLl2aLl26AHD37l1CQkLUytCCmxvMmwcnTgi7H2fEofumXh7aSrIoG/dvLUqhJerh7gX+LeHVNdDiIlQKgegw+K0JrHkODg6C6Ah9cjGb4ehROHjQ6keGDBFi5dOmPf1z9+7do0+fPlSrVo0DBw4AQuysW7duhIeH06ZNG0xqKFZL9CPuGlz9VV1xxKgo4Z+dM6d6MVXAiHFg7FjIlk04eWhJjx49KFKkCABr165ltxqXw7P5Q4kOED4FktQVXLWaVEeFn36C2FhjcpDogt79Uy60n0DkmTMA5PLNTrZs2QzOJj1NmzY1OgVJRilSBF5/3RixjaCBwj4japldYYYNG0aWlFrP2bNnc+7cOTWyS0fFitC7N4weLXS7nA2H7pup/6DFimnbzo29cP+cVBvXmiwFILAvNDkMjf4G/7fh1FfwcyD8UgNOzhd3YrWiYUNhjWPlO23fPlHiOnq0eB0+ibVr1xIUFMS0adNITrkvWaFCBXbt2sWcOXPI6WCLKomVnFsOmMC/lXoxU8UdHWzTxYhxIGdOsUG9YoXwp9eKLFmyMHLkSMvXgwYNsogS2kXgAHhwESLVtxG1mg4d4N49WLXKuBwkmqN3/5QL7ceQkJDA1VvCVsW/qOP5cB7S05NZoh6dOsGOHXD2rL7t5qoEhRpD2HihRGQjhQsXpnfv3gA8fPhQPTGURxg5EnLnhl69NAmvKQ7dN6OioFAh8PbWuJ1QyFIE8tfWth2JwGSC3FXgpZlCQK3WT+Le4989YGVB2PUuXN4MyUnqtuvpKSp1Fi+GhKdXyyQlCbGmihWhZ8/Hf+bixYu0atWK5s2bW+w1fXx8CAkJ4cCBA9SoUUPd/CX6ErUECjYAn7wqxnQ8ay8wbhx4913hS//JJ8KnXis6d+5M2RS7gJ07d7Jp0yb7g/oFCvHM8Inqv6uspUQJqFNHqo+7OHr3T7nQfgwXLlwgOWVBUjowwOBs/kuePHmMTkFiCy1agK+v/p7aAOUHQ/RRofhqBwMGDLCcKP3www8cO6a+AnL27DB9OqxbB2vWqB5eUxy6b+phg5OcCOeWCbEjkxxedMfdG4q1grrrocV5qDQW7hyG7W+klJYHC39ztTCbhfLz5s1P/djcubB/v/jvo7plSUlJzJo1i8DAQFauXGn5fsOGDTl27BiDBg3C01NeQXBqYs/B9T/UF0d0QGsvMG4cMJmEyOCFC5DGLER1PDw80nlpDx482FJ9YhdBAyHmOFw0cOA3m2HrVrh40bgcJJqid/+UM6HHkNbaq3iJ4sYl8gSyWCPVKnE8smWD1q3FbqkapVYZIV8tyFtTnGrbQa5cuRg0aBAAycnJmtkkvP02NG4sTrWd6bqUQ/fNyEjtT3+ubhd3MdWy75HYTpZCEPgZNDkKb/wlbMNOzoX15WDzK6LM/GG0fW1UqgTPP//UE6DLl8Xd7A8/YCH/qAAA9oBJREFUhEcPpQ8dOkTNmjXp2bOnxTYwf/78LFq0iE2bNlGyZEn78pM4BlFLwd0HijZXL6ai6PNOswEjx4Fy5WDAAOHicfy4du20atWKKlWqAKIfL1myxP6geV+G/HXhmH3Vd3bRurWo+lpkYAm7RFP07p9yof0Y0i20HXC39MQJFU8kJPpiNsPp07Bnj77tmkwQNEicKlz7w65QPXv2pHDhwgCsXr2avXv3qpFhOkwmmDVLHJaNHq16eM1w6L6pR5ll1BLwLQW5X9K2HYn1mEyQpypUnQNvX4ZXloKnH+zrCqsKwe4OcGWrELGzJbbZLEpPbt9+7Ef69QMvLxifZo8vNjaWAQMGUKVKFf766y/L97t06UJ4eDjt27eXYmeuRFQoFH4TPHOoF/P2bXGf1gEX2kaPA8HBwqe+e3ft1qsmk4nxaTr1sGHDePjwof2BgwbBrX1i09YI/PygZUv4/nvjFvsSTdG7f8qF9mNI66HtaIrjAPXr1zc6BYmtvPqqEKMy4g5QkTfBrzyETbArTNasWdPdz1ZNDOURSpYUJ2FTpwpxY2fAYftmYqLwCNVy4zApHs6vECJocpHkmLj7wHPvwGsboPk5eH4E3PobtjWANcXh0DC4eypjMd97T9zRXr78P3+0dSuEhsLkyUJ3AWDDhg2UL1+eSZMmkZQk7mIGBgayY8cOvvrqK4tPr8RFiDkOt/9RXxwxdZ7mgIchRo8DWbKIjept20T/04rXX3/d8nc9c+YMX3/9tf1BCzWEXC/YXX1nF2YzhIVBiuOBxLXQu3/KhfZjSHui7YgL7e+//97oFCS24uYGHTvC0qUQF6dv2yY3cQfq0nq4c8SuUO+//z5lypQB4Pfff2fzM+5o2kr//lCqlLY782risH3z0iWhSKXl++zyJkiIVv8epkQbshYR74M3w6HhHijcBE7MhHVlYEsdOP0NJNx9dpxChYQC+SObh/Hx0KOH0BYym+Hy5cu0bduWN9980zLGent7M2bMGA4ePEjt2lI8zyWJWgIe2cXPl6pxdbIrtAFHGAcaN4ZWraBvX7hzR7t20lp9jh49mlh773qlVt9d2QK39tuZnY28/joULChF0VwUvfunXGg/htMnHNdDG9DsXqxEJzp2FCPfunX6t/1cO8haDMIm2hXG09OTsWPHWr5WTQzlEby9Yc4c2LlTVHI5Og7bN1MnpVqe/kQtgZzPg1+Qdm1I1MdkEncjq82Dlpeh5mJwzwJ/dhGq5Xs6iTLOp5WWm82wa5e4FpPCxIlw5gzMmpXM/PnzCAwMZNmyfy0G69Wrx+HDhxk6dCheXl5a/g0lRqEoomzcvyV4qHwvMipKHN3my6duXBVwlHFg2jShcaJlOlWrVqVVK2HZdvXqVaZPn25/UP/W4gqSndV3NuPhYbWjgsT50Lt/yoX2Yzh7SkwWfLNkcUjPzrQLHIkTUq4cVK9uzG6pm6cQSIoKhXuRdoVq3bo1L774IgD//PMPyx9TOqoG9epB+/bidPvmTU2aUA2H7Ztae2gnxsKFtdI729nxyCIqEur9Ai3OQYUhcGMP/FoP1paCwyPh3pn/Pte8ubALSHFUOH0axo0Ds/koXbvWplu3bkRHC+G1PHny8P3337N161aLRZDERbl9UJSOayGOmCqE5oDXVBxlHChaFEaNEpvVf/+tXTtjx47FzU0sJyZMmMBNewdqN3cIGgDnfoKYkypkaAOdOsGNG6CGdZnEodC7f5oULS5XWkFMTAx+fn5ER0eTI4eKAhl2kpSUhI+3N4lJSQSVLsOxk44nbpSUlIS7u7vRaUjsYc4cIal96RLkz69v24n3hdXPc+2E964dbN68mTfeeAOA0qVLExYWpokVz5UrEBAA77wDX36penjVcNi+OXas8Ey7fl2b+JGhsLs9NDsDviW0aUNiDIoiFttnvhNVC4l3If+rULKzOHny9BWf+9//YPt2lJOneKNxPH/+OYb79yeRmJhoCdW5c2cmTZpE3rwqeilLHJd/BsKZBaJSwk3lcaFlS2EW7YALIUcaBxIToUoVYXv/55+gVVoffvih5Y52//79mTjRvqo5kuJgTQko8hZUN2jQr1xZ3F376Sdj2pdogt79U55oP8Lly5dJTBFoKVWunMHZPB67X2AS42nbVtzX1lKp5El4ZIWyveD018KKyQ4aNGjAa6+9BsCpU6f45ptv1MjwPxQsKE7IvvpKf8H2jOCwfTMyUuOy8VDIU10usl0Rkwny1RST3bevQI0fweQBez+AVQVh7/twbYe4EnP2LMM/+JYtWyoQExNiWWSXLVuWbdu28e2338pFdmZBSRYbM/5t1F9kg/bvNDtwpHHAw+NfH/t587RrZ8SIEXh7ewMwc+ZMLly4YF9Adx8I6ANnv4f7l1TI0AbMZnHF79YtY9qXaILe/VMutB8hnbVXScecNLZv397oFCT2kicPvPWWcRePy/YAkzscn2FXGJPJlE4MZdSoUdy/f9/e7B5L167w0kvQrZvYpXdEHLZvamnt9fC2EEKTZeOuj0dWKPEe1N8Kzc8K0aJrO2Hrq1yL6ky7kt6M/aELIMrLvby8GDFiBIcOHbJsyEkyCTf2wP1z2okj6mFXaCOONg7UrAldugjbrytXtGmjaNGi9OzZE4C4uDhGq+HLWaar0Is4Ps3+WLbw7rtCRDSNtoTE+dG7f8qF9iOktfZyRA9tgB07dhidgkQNzGb45x84Yp8CuE1454bSH8OJ2ZAQY1eo6tWr07JlS0BUhMycaV85+pNwdxc784cPg0ZN2I3D9s2oKO1Of86vBCVJ2EZJMg/ZnoMKQ0l+8zgLrg4goOdllp6Jt/xxnWrlOLR/DyNHjsTHx8fARCWGELUEshSBfLXUjx0TI3y05RzNasaPF372/fpp18agQYMsV0G/+eYbjh8/bl9AzxxQpjucnCs2dPWmYEF44w2pPu5i6N0/5UL7ERzd2gugRAnHPGmXZJDGjcXJdoqAkO4E9IGkWDhl//2ntGIo48eP5/ZtbQbFl14SVl/Dh4O9lWla4JB9MzlZ29OfyFDIXxeyFNImvsRhCQ8Pp+5rr9Gl70Ru330IgK+HJws+LMz2nscJCKsr1Muv/eEc/nwSdUhOhHPL4Lm2wlZSbRzY2gsccxzIk0c4ASxeDL/+qlUbeRgwYAAg7sEOGzbM/qDlekNyglhsG0GnTuK+2kmDRNkkqqN3/5QL7UdIVzruoLuliY5aNyvJGF5eojTpxx9FeZLeZC0KxTtCxFRIin/2559CUFAQnTp1AuDOnTtMmKCdLcfYsZAtG/Tpo1kTNuOQffPqVXj4UJtJ6YMrcG27NqrCEoclLi6O4cOHU6lSJXbu3Gn5vp9fB8IrvsgHFyrh1uIMBPaDK7/C1tqwriwcHQex5wzMXKILV7cL/Q+trpM4+ELbIccBxJqxVi2xWR1v35D/RHr37k2BAgUAWL58OX/bK3eepQCU+gAipkHiA/sTzChvvQV+fvJU24XQu3/KhfYjnDl5yvJ7Rz3RvqLVJRuJ/pjNcPmydlvMzyKwv1gsnbX/VH3kyJEWP9zp06dz8eJFu2M+jpw5YepUIQTqaIKzDtk3U6/DaLFxeG65uOvv30r92BKHZNu2bVSsWJExY8aQkOIxmy9fKWAza9cupOiHneGXX+BeFnh+BDQ7DfW3Q75X4NjnsKY4bGsAkYuFA4LE9YgKFT7IuatoEz8yUshoF3LMKhqHHAcQ+qtz5wp/+0mTtGnD19c33Ul2cHCw/UEDP4OHN+GMNmKrTyVLFmF3snChqA6TOD1690+50H6EMynlIT5eXuTJk8fgbB5PlSoaDV4S/XnpJQgMNE4UzS8A/FtC+ERItu9UvVixYvTo0QMQJ15jxoxRI8PH8u67UL8+9OghHF4cBYfsm1qe/kSFQsE3xJ1/iUtz48YNOnfuTP369TmZMk56eHjw6afBJCQcoVOnBtSpg3BU8PAQNaogSocL1IUa3wnV8pe/geSHsPs9WFUI/vwIru+RpeWuQlK80G147l3tPK6joqBYMbFydEAcchxIoUIFUQ02bpxYcGvBhx9+aCnP3bJlC7/ae5DgWxKKtYXwSaKMXG/MZvEzl6Z6R+K86N0/HfMtZRCKonDxqtjp8C9UGJNWg4SdrF692ugUJGphMomX+KpVQuDFCIIGwd2TcGGV3aGCg4PJnj07AF9//bVlQq42JhPMni3uaacRPTcch+ybUVGiDMDPT9249yKFsrBWqsISh0BRFL7//nsCAgL4Ps2GYM2aNTl48CB37ozDZMry7wlZrlzQrNnjSy09swv/7dd/h7dOQblP4cpm2FIT1gfAsRC4r00ljEQnLm+ChGht3wtaijuqgEOOA2kYPhzy5YNPPtFmf8vLyyvdRvugQYNQ7G0oaCDERkGUAQrgr7wCJUvK8nEXQe/+KRfaabh27RrxKaVwJcuWNTibJ5NqoSBxEd57D+LiYMUKY9rPUxUK1Iew8XaPunnz5qV///6AimIoT6BcORgwACZMgBMnNGsmQzhk34yM1Og0e4mwXinSTP3YEofgxIkT1K9fn86dO3Pz5k0A/Pz8mDdvHjt37uTWrfJ8951QNM6XL82DZjMcOiR+PYnspaDiKGh2Bur9KnzYj46BNcVgeyOIXAJJcZr+/SQaEBkKOSuCX5CGbUQ67P1scNBxIA2+vjBjBmzcCCtXatPGu+++S8WKFQH4+++/WWlvQ7kqQaHGqsxTMkzqgcjy5aCRfalEP/Tun3KhnYa0QmglS5cyMJOnM3nyZKNTkKiJvz/Uq2fsbmn5QXBrP1y1/654nz59yJcy6166dCkHDhywO+aTCA6GokWFuIsjVJ46ZN/USnE8agkUeQs8fdWPLTGU+Ph4Ro8ezfPPP8/27dst32/Xrh0RERF8/PHHJCW50a0bvPyy8OhNR6NGkDevde80kxsUrAc1fxCl5dW+hMRY2P0urCwEf3WDG386RgeXPJ2Ee3BxrfbiiA7soQ0OOg48QvPm0LQp9O4Nd++qH9/NzY3PP//c8vWQIUPsF6EqPwiij8KlDXZmZwMdO4p/KAevVpA8G737p1xopyGth7ajCqEBDB061OgUJGpjNsNvv/17n1ZvCtQXwjXHxtsdShMxlCeQJQvMmiW05JYs0awZq3HIvhkZqX6ZZXQ43DmknaqwxDB27tzJCy+8wIgRI3j4UFh2FS9enA0bNhAaGkrBggUB+OILCA8X4kr/uSrr6Qnt28OiRZCRybVnDij1P2iwE5qegLI94NJ62Pwy/FwewibC/Usq/U0lqnNxHSQ90Hahff8+XLvm0KXjDjkOPILJBDNnwq1bMHKkNm00adKEWrWEj/rx48fTXT2xiXy1IW8NcaqtNyVLCsl2WT7u9OjdP+VCOw3OYO0FwrNY4mK8/bbwrDLKU9tkEne1r/4KN/fZHe6jjz6y9KFffvkl3amY2jRuDK1aQd++EB2tWTNW4XB9U1G0Of2JCgVPPyjcWN24EsO4desWXbp0oU6dOkRERADg7u7OgAEDOHr0KI0b//v/OioKRo2CXr3ghReeELBTJ2Ett2WLbQnlKAOVxkKzSHhtM+SqDEdGwBp/+O1NoXhvpy2hRGWiQiHPy+CroU/tuRR7OAc+DHG4ceAJFC8Ow4bB9Olw+LD68U0mE+PH/7soHjlyJA/sUS9Nnadc/wOu/aFChhnEbBbvs0tys8+Z0bt/yoV2GpzlRLvLf+r0JE6Pr69YLf7wg3ElkkVbQvYyEGa/B7a3tzejR4+2fD148GD7xVCewrRpcO8eGH2Q4HB98+ZNcQKk5sahooh7mP4twd1bvbgSQ1AUhUWLFhEQEMCCBQss369WrRr79+9nwoQJZMuWLd0zvXsLfb00Xfy/VK4M5cvbfwLk5g6FGsAri6DlFag6Fx7ehj/eEarl+z6Bm3/L0nKjib8lhNC0FkdMPRBx4MMQhxsHnkK/flC2LHTtqo171SuvvMJbb70FwIULF5gzZ459AYs0Fff/VZinZJg2bUS1TqqjgsQp0bt/yoV2GiJP/+t14MgL7XXr1hmdgkQLzGY4eRL+/NOY9t3cIXCAsGaJOW53uPbt21OhQgUA/vzzT9asWWN3zCdRtKg4YZszB/bv16yZZ+JwfTN181DN99ntA3DvlCwbdwFOnz7NG2+8QYcOHbh+/ToA2bNnZ9asWezevZtKlSr955l162DNGrG5lWIw8HhSBYRWr1av1MTLD0p/BA13Q9MIKP2xcEv4pSpseB7CJ8MDx/QwdnnOrwQlCYq10badyEhwd4ciRbRtxw4cbhx4Cl5eYtzcswe+0cimety4cRYXn88//5xoe94HJjdxqn1pPdw5olKGVpIzJ7RoIexY5cae06J3/5QL7TScTpEu9vLwoECBAgZn82ReeGKtnsSpqVtXrBiNvANUoiNkKSj8Ku3E3d09nRhKcHAwSUn2eXU/jV69hEdo166gYTNPxeH6phYe2pGh4JMfCtRTL6ZEVx4+fEhISAgVKlRgS5rS7latWhEeHk6PHj1wd3f/z3OxsdCzJ7zxBrRubUVD770H8fFCrVdtcpSDF0Kg+Tmouwn8KsChobC6KPz2FpxbAUkP1W9X8niilkD+upClkMbtRIlFtoeHtu3YgcONA8+gbl2h9TVwINy4oX78559/ng4dOgDiiordYlTPtYOsxYRmg96YzXD0KBw8qH/bElXQu3/KhXYKiqJw/pLw7yycvwBu/1F3cRxSbVYkLoa7O3ToIFS94g26e+juDQF94ewPcP+C3eGaNm1KzZo1AQgPD2ehhnfQPTyEMNPff8P8+Zo181Qcrm9GRoq7/3nyqBNPSYZzS8G/Dbg57kRX8mR2795NlSpVCA4OJi5O2Gf5+/uzdu1afvrpJ4o85aRw7Fi4ckUIEKYcUD2dIkXg9de13Tx0c4fCb0CtJfD2ZXhpFsRfhz9aw+rC8HcvuHVAnkBpyYMrcG27PlUuWog7qozDjQNWMHmyKB0fMECb+KNGjcLT0xOAqVOncvXqVduDuXlC4GdCE+BepDoJWkvDhpA/vxRFc2L07p+Ou5rUmdu3b3M/ZXFTqkwZg7N5OnaJSUgcG7MZbt+G9euNy6H0R+CeDSK+sDvUo2IoI0aMsEzutaBmTWE1FBwsFgR643B9M1UIzapVkRVc/0NswGht3yNRnTt37tCtWzdeeeUVjh49CggLnj59+hAWFma5R/kkwsLEZDw4GEqXzkDDnTrBzp1w5syzP2svXrmgTFd4Yy+8eQxK/k+Ipm2qAhtfEO+0uGva55HZOLcMTO7g/7b2bTm4tRc44DhgBfnzQ0gIfPst/KGBzliJEiXo2rUrAPfv37dfkKrU/0R/j5iiQnYZwMNDVOosXgwJCfq2LVEFvfunXGinkFYIrUSZjMwi9KeMg28ESOwgMBCqVjV2t9Qzh7DVOTVfCNzYSe3atWnSpAkA586dY968eXbHfBrjxwu9ks8+07SZx+JwfTMqSt3Tn6glkNUf8tVUL6ZEUxRFYenSpQQEBKTre1WqVGHfvn1MnToVX9+ne6ErivCqL1FClJdmiBYthNjjjz9mPHl78AuCyhOgxXl49WdRan5wEKwqAjtawPnVsrRcLSJDoeAb4J1b+7bUfqdpgMONA1by0UdQrRp066bNGnLIkCEWYcX58+dzxp7NN4+sULYXnP5a/80zs1lYzG3erG+7ElXQu3/KhXYKaa29HFkIDdDUKkniAJjNsGEDpIgTGUK5XkLY5sRsVcKlvas9btw4YmJiVIn7OPLkgYkThYXvtm2aNfNYHK5vRkaqd/qTnCBOB59rJwRpJA7P2bNnefPNN2nXrp2lVNPX15dp06axd+9eXnzxRaviLFwIv/8uRJO8Myo0ny2buNBtlKOCmwcUaQK1lkHLS1BlGty/CDtbwuoisL8P3D6kf16uwr2zcHOv9mrjAA8fCmslOUfTBDc3mDdPVK9Mm6Z+/AIFCtC3b18AEhISGDFihH0By/YQlRTHZ6qQXQZ44QWoWFGIokmcDr37p5wtpeAsHtoAZrPZ6BQkWtIupSx3yRLjcvDJL8ouT0yHxFi7w1WqVIn27dsDcOPGDaZM0bbcq1MnqFVLnMLped3d4fqmmmWWV36F+BtSbdwJSEhIYNKkSZQvX56NGzdavt+sWTPCwsLo3bs3HlaKSd26JapD2rUT161twmyG06dh924bA6iEdx4xOW+0D5ocgRKdIGqxKCvfWBmOz4A4DdSgXJmopeCeBYo0076t8+fFZo2DL7QdbhzIAJUrwyefwMiR/1qWq0m/fv3Ik6IZsmjRIg7bY+DtnVs4D5yYBQl3VcrQSsxmWLtWXPWTOBV690+50E7BWTy0AWbO1Hn3TqIvefPCm28aL7YR2A8e3oHT6nh+jB492jK5nzJlCteuaVfu5eYmhNFOn4ZJ9guoW41D9c07d4Stklobh1FLIHtZyPWCOvEkmvDXX39RtWpVBgwYYLmLVqRIEVauXMmaNWvw9/fPULzgYLFZNXWqHUm9+ioUK2b8Oy0tOSvAi5OhxQV4dR34loR/PhMCajvehgvrRBWH5OlEhYpFtufTrx+oQuo8zcEPQxxqHLCBMWPAzw9691Y/tp+fH8HBwYC41pL6e5sJ6ANJseKqm560by/q67VwVJBoiu79UzGI6OhoBVCio6ONSiEdzZs1VwAFUM6dO2d0OpLMzsqVigKKcuyYsXnsek9RVhVTlKSHqoTr0aOHpZ/16tVLlZhPo39/RfHxUZTTpzVvyvE4eFD8DO3ZY3+sxAeKsiyHohwaYX8siSZER0crn3zyiWIymSx9zGQyKT179rR5nN27V1FMJkWZMUOFBIcMURQ/P0V58ECFYBrx4LqiRMxQlA2VFWURirIiv6Ls76sot48YnZljcueY+Hc6t0qf9hYsEO+0uDh92svELFki/qnXrVM/9oMHD5SiRYta3lM7duywL+CeDxRlZSFFSdT556JRI0V55RV925Q4HfJEO4VT4REAuLu5UbhwYYOzeTp2qzVKHJ8mTSB3buNPgIIGwv1z4jRTBYYOHUrWrFkBmDt3brpKEi0YPhzy5ROlcHpcD3Wovpl6HUaN059LGyAhRp97mJIMoSgKK1euJDAwkFmzZqGk/KBXqlSJvXv3MmPGDHLkyJHhuImJwpO+cmVxBcNuOnYUFRbr1qkQTCN88kK5ntD4ADQ+CM+9B2cXwobnYdNLcHwWxDufdZNmRC0BTz8o3Fin9qKgcGEbhAL0xaHGARt55x1o0AB69oT799WN7ePjw6hRoyxfDx482PLesonA/sJi7qx29qGPxWyGXbtE6ZzEadC7f8qFdgrnLwrP4EJ58+Hu7m5wNk/nk08+MToFidZ4e4tLkT/+CElJxuWR83ko/CaETRAeynZSsGBB+vTpA6gkhvIMfH1hxgzYuBFWrtS0KcDB+mZkpPg5yp9fhVihkKuyUG6WOAznzp2jefPmtGrVikuXLgGQNWtWJk+ezN9//021atVsjj17Nhw6JMSRVBkSy5WD6tWdR0AoVyWoMlWUltdZLdT2D/SBVYVhZxu4+DMkJxqdpXEoingv+L8N7jotfNUUd9QQhxoHbMRkEu+Ay5dBi3WJ2WwmICAAgF27dvHzzz/bHswvAPxbQvhESNZxvtSiBeTIYfyBiCRD6N0/5UIbiImJIea+EHwqUbKkwdk8mx/1tkmRGIPZDBcvgtEKpuUHQ/QxMbFUgf79+5M7t7CBWbhwocXTVyuaN4emTcV9s7sa66U4VN+MihL3Yt3sfM0n3IVL66V3tgORmJjItGnTCAoKYl2aE+ImTZpw7Ngx+vXrZ7XY2eO4dAmGDRMn2lWrqpFxCmYzbNoEKQroToG7FxRtDnVWQcuL8MIEuHsCfm8Kq/3hnwEQHWZ0lvpzaz/cO6WvOKITeGiDg40DdlCmDAwaBJMnQ3i4urE9PDwYN26c5evBgweTZM+hQuBAuHsSLqxSITsryZIF2rQRC+1k+w8iJPqgd/+UC23SK46XLFfWwEys49VXXzU6BYkeVKsmToGMPgHK9wrkqwVhIarUX/v5+TF48GBAlL0OGTLE7phPw2SCmTOFevLIkZo25Vh9MzJSnbLxC2sgKU4utB2E/fv3U716dfr06UNsrNggLliwIMuWLWP9+vWquGb06SPmkGlc+dShXTux8RMaqnJgnfDJDwGfQpND0OgAFHsHznwDP5eHX6rDybnwMJOoEEeFin+PAq/p16Za7zSNcahxwE4GDRJ7G927q3/9qmXLlpaqm6NHjxJqz3shbzUoUA/CxutrI2g2i5/LXbv0a1NiF3r3T7nQxrmsvQBOy/sgmQOTSbzEV67U/ij2WQQNght74PofqoTr0aMHRYoUAWDt2rXs1tj2p3hxcUI3fTrY4ybyLByqb6p1+hMVKjZbshWzP5bEZu7evUufPn2oVq0aBw4cAMBkMtGtWzfCw8Np06YNJpPJ7nY2b4Zly2DKFMiZ0+5w6cmdG956yzVKLXNXhpemQ4tLUHsF+BSAv3vCykLwR1u4tEnfMlY9UZKFrZd/G+FTrgeJiXDhglOcaDvUOGAnPj6ihPy338RNNjUxmUyMHz/e8vWwYcN4+PCh7QGDBolKi6u/qpCdldSqJSYYrvBOyyTo3T/lQhvnsvYC8PLyMjoFiV506CCUSPS4YPw0CjcBvwpit1gFsmTJwsg0x8uDBg2yTwzFCvr1g7JlRTmsVlVeDtU3o6LsP/2JvwmXN0MxeZptJGvXrqV8+fJMmzaN5JQf3goVKrBr1y7mzJlDTpVWxHFx0KMHvPYavPeeKiH/i9kM//wDR45o1IDOuHuJe8qvroUWF6HSOHHV5rfGsKYYHBwM0RFGZ6ku1/+ABxf1FUe8dEnolTjBYYhDjQMq0LChEEfr10992+jXXnuNhg0bAmIu/uWXX9oerODrkOtFOKbOPMUq3NyE0OOyZZBipyhxbPTun3KhTfoTbWdYaBcoUMDoFCR6UayYmPUavVtqMond4ksb4LY6R8KdO3embFlxVWPnzp1s2rRJlbhPwstLeGvv2QPfqGMN/h8cpm/GxsKNG/af/pxfASRDsTaqpCXJGBcvXqRVq1Y0b96c8+fPA0KxNyQkhAMHDlCjRg1V2xs/XuzPzJkjurwmNG4MefIY/07TgiwFILAfNDkCjf6Goi2Fv+/PgfBLDTj1JTy8Y3SW9hMZKsTh8qr78/f0NiPFf+UczRC++EJsxNlre/04Pk9zR2XMmDHcu3fPtkAmk9CUufor3NynUnZWYDZDTAysWaNfmxKb0bt/yoU2EJXmRNsZSsf3799vdAoSPTGbhSDauXPG5vFcW8hWXCiQq8DjxFCSNRYUefVV8c85cKBYh6qNw/TN1M1DeyelkaFQoL5YQEh0IykpiVmzZhEYGMjKNNUsDRs25NixYwwaNAhPT09V2zx5EkJCoH9/SBED1gYvL3j3XVGHmuiiqt0mE+SuAlVnQcvLUGs5eOeBfd1gVSHY1V5UijhjaXlyApxfLjQbTDpOIVPfacUc/wqLw4wDKlK4MIwZA/Pnw19/qRu7SpUqvPPOOwBcu3aNadOm2R6saEvIXka1eYpVlC4NNWu65uahC6J3/5QLbf710DaZTBQtWtTgbJ5N8+bNjU5BoietWgllIqOVTN08IPAzOLcE7p1RJWSrVq2oUqUKAIcOHWLp0qWqxH0akyYJrZQBA9SP7TB9M3Xz0J6Nw/sX4drv+qoKSzh48CA1a9akZ8+e3E3RZsifPz+LFi1i06ZNlNTAGUNRRMl44cKgsTahoFMnuHIFftXxLqVRuHtDsdZQd72wCnt+NNw+CNvfgLXF4dAQiDlhdJbWc+VXcaVE7/dCZCTkywfZsunbrg04zDigMj16QKVK4vqV2ntkY8aMsVjrTpo0iRu27oS7uUPgADi/EmKOq5jhMzCb4ZdfxHtN4tDo3T/lQhuIOi9OCgvkyu0Ud2u++uoro1OQ6En27PD222K3VE81zcdR8n3wygPhk1UJ96gYytChQ+0TQ7GC/PnFyd2338If6mi7WXCYvhkVBR4eYuVkK+eWgZun8CeVaE5sbCz9+/fnpZde4q80R0ZdunQhPDyc9u3bqyJ29jiWLYMtW2DWLMiaVZMm0lOlCgQGZr4ToCyFIKg/vHkMGv4JRd6CE3NgfTnYUgtOfQ0JMUZn+XSiQiFHOcj1gs7tOoe1FzjQOKAyHh4wbx4cPCiul6hJ2bJl+d///gcIy92084IMU6IjZCkI4ZNUys4K3nlH/AMtXqxfmxKb0Lt/mhStFYieQExMDH5+fkRHR5MjRw4jUgDg/v37ZEvZIa3+4kvs3a/jvQ6JxFq2bBGKJH/+KWy/jOToODg6BppHqVZS/Prrr/NryunW7Nmz6d69uypxn0Rysqj0io2FAwdA5Spc4xk0SKyezthRefBLdbEwqLNatbQkj2fDhg107949nV5IYGAg8+fPp3bt2pq2HRMjSsVffllnzcXx42H0aHECZOAcwHCS4oSF3pnv4MpmcPMG/1ZQsrOwztKzPPtZJD6AlQUgoC9UHKlv2w0aCBn85cv1bVfyH7p2FevJiAj79nIf5eLFi5QuXZq4uDi8vb05efIk/v7+tgULnwyHgqHZWchaRL0kn0abNuIOzsGD+rQncQoc6A1uDOfS3HstVa6MgZlYz9ixY41OQaI39eqJEc0RToDKdhcnncenqxYyJCTE8vvRo0db/IG1ws1NCKOFhYE918EexWH6ZmSkfac/d0/Dzb9k2bjGXL58mbZt2/Lmm29aFtne3t6MGTOGgwcPar7IBmF7FxMjrO905b33hLrSTz/p3LCD4e4j9C9e2wjNz0GF4XBrH2x7HdaUgMPDRX90BC5vhMS7+qqNp2LvO01HHGYc0IiQEGH71bevunGLFClCr169AIiPj0/nTJJhSn8E7tkg4gt1krOGTp3g0CHxS+Kw6N0/M/1CO52HdokSBmZiPf369TM6BYneuLsLq6/QUNC4tPqZeOWCMl3h5Gx4GK1KyKpVq9K6dWsArl69ynQdZv2VK0PPnjBypHo6cw7TN+0ts4xaAh7ZoEhT9XKSWEhOTmbevHkEBgaybNkyy/fr1avH4cOHGTp0qC7XmA4cEOXiI0eCrQdHNuPvLzYQHWHz0FHIWgTKD4I3w6HhHijcSGxorisNW+rA6W8h4a5x+UWGQq7KonRcT5KTxUvaSRbaDjMOaESuXDB5MixdKort1GTgwIH4+fkB8N133xEeHm5bIM8cULaHUP2Pv6Vihk/hjTeEjoB8pzk0evfPTL/QdjYPbYA5al+OkTgHZjPcugU//2x0JlCujyh5PDVftZBjx461iKFMmDCBmzdvqhb7SYweLaoRe/dWJ57D9M3ISPuE0KJCoUgzsdiWqMrRo0epVasW3bp1IzpabFTlyZOH77//nq1bt1os77QmKQm6dYOgIPV+/jNMp07w++//ivdJBCYT5H0Zqs2Hlleg5mJx8v3n/2BlQdjTCa7+Boq2Lg3pSIiBS+uNqXK5ckVsMDuBKww40DigIR07CheP7t1FYYpa5M6dm4EDBwJiQ3Lo0KG2ByvXC5REOKnT/w9PT2jfHhYtcl1HBRdA7/6Z6Rfa6U60neQl3qxZM6NTkBhB+fJCRMgRdkuzFoYSZlGWlaTOKFuuXDnef/99QGg4TJigvT1HjhzCH3T1ali/3v54DtE34+LExNTWjcM7RyH6mCwbV5kHDx4QHBxM5cqV2bNnj+X7nTt3JiIiArPZrJnY2eP46ith0zNvnoEaBS1bChVpox0VHBmPLKJUu95moYtRYQhc3w2/vgZrS8HhkXDvrPZ5XFgj3vXPtdW+rUdRy65QJxxiHNAYk0kIokVGgtpDda9evShYsCAAK1euTCcOmSF88kPJ/4mqkMT7Kmb4FMxmuHpV/aN+iWro3T8z/UI78uy/A5SznGgfOHDA6BQkRmE2ixNtLUygM0pgf4i7CmfVW/iPGDECb29vAGbOnMmFCxdUi/0k2rQROnM9e8J9O8dih+ib58+L/9q6cRgVKq4HFHpDtZQyO1u2bKFChQqEhISQmHLSUbZsWbZt28a3335L3rx5dc3n6lUYPBg++ABeeUXXptPj6yvsCx3BUcEZyOYP5YPhrRPQ4A8o+DpETIW1JWHra3Dme0jUSN8iagnke4X/s3fe4VEVXRx+N5UQIPQaQgktoVkQRcWGoIgUBels8FOUJkhP6CWU0LsgiqhgQBBBRBAREKSIIj0JPQm9k9ASSLLfH5OERFJ2N7u37M77PDxkd++d+4tyZufMOXMO3ir0sdaZo62J7wEFCAyEgQPFme2TJ203rre3NyNHjkx/HRwcjNV1mwMGwIObcOpLG6nLhSefhFq1tBEQkWSJ0vbp9I72qWOP+lf6+anwBWIFJUqUUFuCRC3atxcLUgX6TedKoWqiOm7EZEhJtsmQvr6+fPLJJwAkJCQwduxYm4ybEwYDzJsHFy9CXmtkaMI209JwrVmUmkxiQV2+Nbhqv9Wh1rly5QqdOnWiSZMmnE6tAO/h4cGoUaM4ePAgr776qiq6Bg0SBQEVSBrJHaNRVOrds0dtJfrBYBBO77OL4N2L0OBbMLjCnq4itXzP/+DKdtttXiReh4ub1MtyiY4WZ3xSz+5qHU18DyjEiBFQurTosW3LvbIPP/wQf39/ALZu3crmzZutG6hAJajQXlQhT3loO4HZYTCIOW3NGoizTQ0biW1R2j6d3tGOSV2UFivkg5eXl7pizCQt4idxQkqWhKZNtbNbWjMY7pyCsz/YbMjg4OD0ln+LFy/m2LFjNhs7O6pUERG+qVPB2toroBHbjIkRX/a+vpbfe30v3DktFiYSq0lJSeGLL76gRo0afJehr+pLL73EwYMHGT16NPny5VNF27Zt8O23MHkyKBxIz5pXXhH/VrUyp+kNN2+o1BkabYaW0RAwGK78AZtfFkXUDo+DuzG5DpMjsauAFPB7zxaKLUdHPbRBI98DCpE/P8yZA5s22bbzmru7e6bq0CEhIaSkWFmTIHAI3IsVm8hK0KmTqCkgW9FpEqXt06kd7QcPHnDl1k0AKugkmg1w6pRGWn1I1CEoSByujIpSWwkUfRpKN4aISTbbzi5WrBiDBw8GIDk5mREjRthk3NwYMkSs5Xr2tP5X0YRtRkdDuXJgTdXqmOWQrzSUfMXWqpyGyMhIXnnlFbp168bNm+L7pUiRInz55Zds3bqVGjVqqKbtwQPx7/v55yG1HIL6uLqKykrLl0Niotpq9I13Bag9ApqfhNe3Q8mXITIM1laE3xvBmaXWnVWNCYdSjcSZVzXIa3FHhdHE94CCNG8OLVvCp5+KVoG2om3btjzxxBMA7Nu3jx9+sHJDv3BtKNsMIsKUKSBYtiy8/rrcPNQoStunUzvaZ8+eTT/3USVAvcWPpbzyyitqS5CoydtvizQ6rUzigcFwcz9csl3xj759+1KqVCkAVq5cyT///GOzsbMjXz5R3GXbNutrM2nCNq2N/qQkQ+wK8GsLLq621+XgJCQkMHLkSOrWrcuOHTvS3+/UqRNRUVH873//w8VF3a/cadPg+HHRQ15lKZnp0gVu3bJNRUKJyGgp2RCeWyyqlj+3RDgYu7uI1PK/usHVnebtKN47L9LQ1SyOqLOItia+BxRm9myRKZ3haHWecXFxYeLEiemvhw0bxsOHVqZ/BwaLIp/nFeraYjTCjh2QemRIoh2Utk8tfdUqTqbWXjraLf3222/VliBRE09PcVb7229Ff1G1KfUqFH1GRLVtRIECBTJFsocOHWqzsXOicWNo1w4GDIDUYKRFaMI2Y2Ksi/5c3Q73L4oKxxKL2LJlC3Xq1GHcuHHpC0F/f382bdrE0qVLKVlSpUhgBs6cgXHjRNSpTh211fyHgAB45hntbB46Eu4FoHIQvL4VWpwWxaEubYbfXoR11eDIeLh7Nvv7Y78HF3co/45ymjNiMlk/p6mEJr4HFMbPD0aNEmnk+/fbbtw33niDl19+GYATJ06wZMkS6wYq+aKoaxAxUZnCi++8I4o9yo4KmkNp+3RqRztjay+9VBwHcVZF4uQYjXDunAi/qo3BIM5qX94K1/6y2bDdunWjUqVKgKja/Pvvv9ts7JyYPl10yLLGt9eEbUZHWxf9iVkO3hWh2LO2VuSwXLt2ja5du9KoUSNOnDgBgJubG0OHDuXw4cM0btxYZYUCkwn69IFixWD0aLXVZIPRCL/8Alevqq3EcSlQCWqPghanoNFW4XgcnQBrK8CWJhD9HSTdz3xPdDiUfQs8CqsimWvXRDsIuUbTPP36iT2zHj1sFwMwGAyZotqjR4/m/v37OdyRA4EhcG03XP3TNuJyIn9+0dJEdlTQHErbp3S0U9FLD22ACRMmqC1BojbPPQdVq2onAuTbCgpVF2egbISHhwfjxo1Lfx0SEmJ9iw8LKFtWVB9fuFAchbcE1W3z4UM4f97yRWnyA1HwqEJ7sXEiyRGTycSSJUuoUaMGX3/9dfr7zz//PAcOHGD8+PGaKq65dq3Iyp41SwRZNEn71H974eFqK3F8DC5Q6hVosATevQTPfil6ZO/qBD+Whr0fw9XdEH8CbvytbnFEnbX2Ag18D6iEu7s4lvLXX7Boke3GbdCgAS1btgTgwoULzJ0717qByr4FPrVsmn2XI0YjnDoFu3Yp8zyJWShtnwaTEivXLIiPj8fHx4e4uLj0CsNKExQUxDepjsrhw4epVauWKjosJSUlRfWzfhINEBoKkybBpUvaWD2fWgx/fQDNIsAnwCZDpqSk8OSTT3Lo0CEAVq1aRevWrW0ydk4kJUH9+uLnvXvBzc28+1S3zTNnoHJl+PVX0RzcXM6vhz/ehqYHoYjW8oq1xfHjx+nevTtbt25Nf8/Hx4ewsDC6deumubn5zh3R77Z2beFsa3of5Z13RB94BWoySLLg9kk4843ox30vFjyLw8N4aHMT3PKro2nVKhEZvHZNpGToANW/B1Tm/fdFd6tjx0SjFFtw9OhRateujclkokiRIpw+fZrChQtbPtCZZbC7szLfdSkpUKkSvPmm2LmXaAKl7dN5ZwLg9PET6T/rKXU8YxqNxInp3Bnu3oUff1RbiaBiJ/AqB5GTbTaki4tLpt3HYcOGkZSUZLPxs8PNDRYsgAMHRIE0c1HdNq2N/sSEg0+gqM4qyZLExETGjh1L7dq1MznZ7du3Jyoqio8//liTi+uxY0U29pw5GneyQUSA9u2Do0fVVuKcFKwCdcZCyzPw2mbRgcC7snpONog5zdsbihZVT4OFqP49oDKTJ4u5ZtAg241Zs2ZNjEYjADdv3mTKlCnWDVShnTgiZcPsu2xxcRGFHlesEOfRJJpAafvU3qpAQc6klnj38famYMGCKqsxny5duqgtQaIFKlaEl1/WTvq4qyfU6C9ayORUXMdC3nrrLRo2bAjAsWPHMqXq2pP69eHjj2H4cLhwwbx7VLfNNEfbknaFSffg3Frwk2nj2bF9+3aeeOIJRo0axYMHDwBx3OiXX34hPDyc0qVLq6wwa44cgRkzxL/hypXVVmMGb70lHConLCalKQwuULoRNDsMzSPV1ZJWCE1Hc5Pq3wMqU6IEhIWJpckff9hu3NGjR+OR2rZyxowZXLx40fJBXNwgYCDELoc7ClQENxpFOfZ16+z/LIlZKG2fTutoJyUlcen6NQDKl/NVWY1lbNNCASyJNjAa4fffRWE0LVClG7gXhKjpNhvSpsVQLGTCBPDygv79zbtedduMjoZSpYRoc7mwHpLuyGrjWXDjxg0+/PBDXn75ZaJS+9a7uroyePBgjhw5QtOmTVVWmD0pKaIokb8/DByothozydhRITlZbTUSLWBtcUcVUf17QAN88AE0aCDmoNS9yTxTsWJFevToAcD9+/cz1XCxiMrvg0cxiJxmG2E5Ua2aqKmjUIBAkjtK26fTOtoXLlwgObUsYpUA25wnVQp/f3+1JUi0Qps2ogH0smVqKxG4F4RqveHk55B43WbDvvDCCzRv3hyAc+fOMd+SfO48UKQITJ0qMr9+M6NNuOq2aU2/2ehwKFpPpI1KAFHsbNmyZdSoUYMvv/wy/f369euzb98+wsLC8Pb2VlFh7nz9Nfz5pzj64OmpthoLMBpFCsmWLWorkWgBnfXQBg18D2gAFxdRGO34cdHJw1YMHTqUAqk1aRYtWsTJkyctH8QtP1TvC6cXw/3LthOXHUYjbNwIlxV4liRXlLZPp3W0M/bQrlipomo6rCExMVFtCRKtUKiQKCD09dfaaSFR7RPABMetrAyaDePHj8eQmj44YcIE4uLibDp+dnTuDK+8Aj175n7MSnXbjI62rN/sgzi48AtUkNHsNE6dOsUbb7xB586duZraaqpgwYLMnTuXXbt2UbduXZUV5s716+J8ZKdO8NpraquxkPr1oXp17RyJkaiLpXOaBlD9e0Aj1K0r2gqOHSv+N9qCkiVLMmDAAEBkpo4cOdK6gar1BIMbHJ9tG2E50a6d2HmQHRU0gdL26bSOtl5bewHpiz+JBBC7pZGRooiQFshXAvw/hGOzIemuzYatXbs2nTt3BkRK79SpU202dk4YDCIqGBMjzp3lhOq2aWn059waSHkAFdraTZJeePDgARMnTqRWrVr8liF9oXXr1kRGRtKrVy9cXV1VVGg+wcGicv40BTIjbY7BIOa01avh9m211UjU5NYtiI/XXURb9e8BDTFmjCi70KeP7cbs378/xYsXByA8PJwDBw5YPohHEajaHY7PE5X17UnRotC8udw81AhK26fTOtoZI9p6qjgO8NRTT6ktQaIlGjWCMmW0NYkHDICHcXDyC5sOO2bMGNzd3QGYPn06lxVKxQoIEOdcJ06EnDLVVLXN5GSIjbUs+hMTDiUbQn591amwNbt27eLpp59m6NChJKSmLZQvX56ffvqJVatWUa5cOZUVms+uXfDFF6K+QKlSaquxks6d4d494WxLnJe0dZrOgiFyjfaIggVh5kxRC2ztWtuMWahQIYYPH57+eujQodYNVL0fJN+HEwtsIywngoJg/344fNj+z5LkiNL26bSOdsaItt4c7Z9++kltCRIt4eYmckTDw21XdSSveFeACh0hahok205TpUqV6N69OwD37t0jNDTUZmPnxvDhYj+jV6/ss/RVtc2LF0UY09z5LOEqXNrs1Gnjt27donv37rzwwgscOXIEEC3l+vXrR0RERHpdAL2QlCSKD9WrJyrm6xY/P3j1VVlAyNmxtl2hysg1WmZatxatpPv0ER1JbUH37t3xS+2usWHDBv6wprx5/rJQyQhRMyDZzu233nwTihfXVkDESVHaPp3W0T5z4lFYSm+p4z179lRbgkRrGI1w7ZoouKEVAofAvbMiampDhg0bll6IauHChZw+rUCLDiB/ftGLeNMmWLky62tUtU1LF6Wxqb9E+db20aNhTCYTK1asoEaNGixcuDD9/aeffpq///6b6dOnpxfc0ROzZ4uWXgsWgE6y3LPHaIStWx/9u5Y4HzExopJfyZJqK7EIuUbLjMEAc+fClSvivLYt8PT0ZGyGwUJCQjBZU6cmYBAkXIYzdnaAPTygQwdYulTsiEpUQ2n7dFpH+9SJEwB458tH4cKF1RVjIdN0efBOYldq14Ynn9RWBKhwTSjXAiLCwJRis2FLlSpF/9R+Ww8fPmTUqFE2Gzs33n4bWrWCTz8VRwf/i6q2mZZmaa6jHbMcSjcWZ+qdiDNnztCsWTPat2+ffvTA29ubGTNmsGfPHt2mfZ47B6NGiaJ9Tz+tthob0Lq12N3SSkcFifKktfZy0ddSVa7RHsffH4YOFRXIU5OH8kznzp0JDAwEYPfu3ayzpld1oWpiszliMqTYuaWg0QiXLomWrBLVUNo+DSartoDyTnx8PD4+PsTFxVGoUCFFn52SkkI+Dw8eJidTo7I/kaesaA8gkWiNmTNh8GAxkRctqrYawdXd8Nvz8NIa8G1ps2Hj4uLw9/fn+vXrGAwGDhw4QJ06dWw2fk7Exooz2926if/kmmHCBFH96roZbdXunoW1fvDc11DZaH9tGuDhw4fMnDmTUaNGZerD3qJFC+bOnUv58uVVVJd32rSBnTshKgp8fNRWYyO6dIG//xbFHlM7DkiciNatRUG8TZvUViKxAYmJUKeOqB3xxx+2Mem1a9fSqlUrAGrWrMnBgwctL1p5/R/49Rl4YYV9C4OaTFCzpgiKyA1Ep0Ff24Q24tKlSzxMFjtX/tWrq6zGcpQ8lyrRER06QEqKaPqsFUo0gJIvwdGJNm0/5uPjk14AxWQyMWzYMJuNnRt+fjB6tEgj378/82eq2qYlbXBiV4CLJ5RvZUdB2uGvv/6iXr16DB48ON3JLleuHKtXr2bt2rW6d7I3bIAffhDRIodxskFEgI4dE862xPnQYWsvkGu07PD0FB08duywXfJdixYteO655wA4evQoy6xxYIvVg9KvQ8Qk+7ZJNRhEUbQff8w6JU6iCErbp1M62plae1WupKIS6+jWrZvaEiRapFQpUXBDa8U2AoPh+l9wZbtNh+3Zsye+vqJa9s8//8yff/5p0/Fz4tNPITBQFJ5KyZAVr6ptWtLaKzocyjUDd2WziZQmPj6e3r1706BBAw4dOgSAwWDgk08+ISIignfeeUdlhXnn/n3o3Vs0H2jfXm01Nua116BsWW0diZEoh6XtCjWCXKNlT6NGIiYwaJB5yVe5YTAYmDRpUvrrkSNHWtcnOTAEbu6HS7/lfm1e6NQJEhJg1Sr7PkeSLUrbp3S0dbhbutZWPRIkjofRCHv2wPHjait5RJk3oXAdsVtsQ/Lly8eYMWPSXwcHB1tXDMUK3N3hs8/gr79g0aJH76tqm+YuSuOPw81/HbrauMlkYvXq1QQEBDBv3rz0fxd169Zlz549zJ49W/EjS/ZiwgRxPnv+fAfMrnZ1Fa2+li8XeacS5+HOHeGJ6dDRlmu0nJk+XTRICQmxzXgvv/wyb775JiDW9xkLXJpNqVeh6DM2X6c8hq+v2G3QWkDEiVDaPp3S0dZzD20QlXElkixp0ULkjmppEjcYRFT74ka4ecCmQxuNRgICAgDYuXMn69evt+n4OfHii/D++xAcLKqpgoq2aTIJR9ucjcOY5eBWEMo2s7ssNYiNjaVly5a0bt2aCxcuAJA/f36mTp3KP//8Q/369VVWaDuOHYOwMBgyBKpVU1uNnTAa4cYN+OUXtZVIlCQtIKLDYIhco+VM6dIwfrzYpN692zZjTpgwIf3n0NBQbt++bdkABgPUDIbLW+HaX7YRlR1GoziknsEXkSiH0vbplI623iPaaZVyJZLHyJcP2rWDb7/NnNOsNn7vgXclOGrb3WI3NzfGjx+f/jokJITkZDtXDs3A5MmiIO6gQeK1arZ55YpIR8tt49BkEu3WfFuBm5ci0pQiKSmJGTNmEBgYmKn67FtvvcXRo0cZMGAAbm5uKiq0LSaTqDBevrztIkOapGZNUUZdS5uHEvuj0x7aINdo5tCjhzDrHj1s0+3qySefpH3q2ZmrV68yffp0ywfxbQWFqotOKfbknXfA21u0+pIojtL26ZSO9umTp9J/1mNE+8GDB2pLkGgZo1GUxt5u2zPRecLFDQIHwdmVcNu2Vf5btWqVHqU8cuQI4eG27dudE8WLi4jiN9+IDWrVbDNtZzy3jcNbByE+Cio41mHeffv28eyzz9K/f3/u3r0LQOnSpfn+++/5+eefdbmhmhvh4bBlC8ybB16OtWfyOEYjrF8P166prUSiFNHR4OYmzujrDLlGyx1XV1iwAA4dEoVFbcG4cePSN1OnTp3K1atXLRvA4AIBg+HcjxAXaRtRWVGggGgT8c039i2+JskSpe3TOR3t1POrnu7ulCihvx6y/v7+akuQaJnnn4fKlbUXAarUFTyLQ+RUmw7732IoI0aMUHQi/d//oEEDsTPv56eSbZob/YlZDp7FoExj+2tSgNu3b9OvXz/q16/Pv//+C4h/Dz169CAyMpL33nsPg8MdXIZbt6B/f7FWSz2a6Ni0by8WpMuXq61EohQxMSJdw9JWTRpArtHMo1498b05cqSoM5FXqlSpwocffgjAnTt3MqWTm03FTuBVDiKn5F1QThiNcOKEqKkjURSl7dPpHG2TycS5SxcB8C1dRpeLsD/++ENtCRItYzCISXzlSkiN7mkCNy+o/imc/gruX7Tp0K+++ipNmjQBRA2Gzz//3Kbj54SLi9iZP34cRo9WyTZjYqBgQShcOPtrTCbhaJdvAy7uikmzFz/99BM1a9Zk5syZpKQek6hVqxY7d+5k/vz5FM7pv4XOGT5cmLam+rjbk5IloWlT7W0eSuyHTiuOg1yjWcL48SKLul8/24w3YsQIvFJTfObPn5/pqKhZuHpCjf4QvRTunrWNqKx45RWxkSTnNMVR2j6dztG+du0aCanRrspVq6qsxjo6d+6stgSJ1unSRVRtXbNGbSWZqdpD9G8+NsvmQ2fcvR43bhx37tyx+TOyo04d6NsXfvutszr1TdL6zea0cXhtN9yN0X218fPnz9O6dWtatmzJ2bNiIZQvXz4mTpzIv//+S4MGDVRWaF/++UdUGB87FsqVU1uNggQFiX7akXZM6ZRoB5320Aa5RrOEwoVh2jTR7WrjxryPV7ZsWT799FNApAiPHj3a8kGqdAO3AhA1I++CssPFRXZUUAml7dPpHO2Mu1uVq1ZRUYn1zJ07V20JEq1TuTI0bKi93VKPwsLZPvEZPIiz6dBPP/00bdu2BeDKlSvMVDjcN3o0uLvPpU8fRR8rMCf6ExMOXmWhxIvKaLIxycnJzJkzh4CAAFavXp3+fpMmTTh69CjBwcG4u+s/Up8TycnQvbvY2PnkE7XVKMzbb4tV+bffqq1EogQ6jmjLNZpldOwIr70GvXrB/ft5H2/w4MEUKVIEgG+++YajR49aNoB7QajWG059Dok2aPadHUajOAf088/2e4bkMZS2T6dztPXe2gtg+PDhakuQ6AGjETZvhvPn1VaSmRqfQnKCcLZtzLhx43BNPdM3ZcoUrilYPKlgQfjqq+GsWweKt1HNLfqTkgSx34NfO3DR35nHAwcO8Pzzz9OnT5/0ti0lS5Zk2bJlbNy4kcqVK6usUBkWLIB9+0QPdwcqoG4enp7irPa334odB4njkpAAly7pNqIt12iWYTCIoo5nz8LEiXkfr3DhwgQHBwOQkpJi3f+Pap+AKQWOz8u7oOyoUQPq14evv7bfMySPobR9Op2jnTGirVdHOzQ0VG0JEj3w3nvg7g7ffae2ksx4lYHKXeHYTEiywfZ1BqpVq8YHH3wAQHx8fKYiaUoQERFK06bQp4+Cx+PTemjnNJ9d2QYJV6CivtLG7969y6BBg6hXrx579+5Nf//DDz8kMjKSjh076rLOhjVcugRDh0K3bqL4nlNiNIqqSdu2qa1EYk9iY8Xfco3mNNSoAYMHiy4eqfWK80Tv3r0pm1qxfs2aNeyxtOhYvhLg/yEcnw1JdvwyNxphwwbRolOiCErbp1M72npt+fKJ0+UMSqzCxwdatRK7pVprIREwCBKvwhnb7+SOHDmSfPnyASJFKO0crxL06fMJc+eK78yxYxV66M2b4jx+TovS6HAo4A9F6ykkKu/88ssv1KxZk6lTp6b3Rg8ICGD79u0sWrSIokWLqqxQWQYMAA8PUHjvSFs89xxUraq9IzES26LjHtog12jWMmyYqDvRs2felyz58+dn1KhR6a+Dg4MxWTpowAB4cAtOfpE3MTnRrp0I6cuOCoqhtH06naN95tTp9J/1GtH+Ri4yJOYSFARHj8L+/WoryUzBKqL6deQUkdZsQ8qVK0ef1IPSiYmJjBkzxqbj58Q333xD5cpiwTB9Ohw5osBDc+uhnZwIZ1eL3tk6iP5evHiRdu3a0axZs/SNUU9PT8aNG8eBAwdo2LChygqV5/ffRWLKlCngZPsLmUnrqPDDD2JzSeKYREeLYlG+vmorsQq5RrMOLy+YO1fMd7bwO99//32qphY9/uOPP9i0aZNlA3hXgAodIWoaJNupZWjx4tCsmdw8VBCl7dPpHO1Tx44B4ObqSpkyZVRWYx2vvvqq2hIkeqFxYyhVSpuTeGAw3DkNsatsPvSQIUPw8fEB4KuvviIqKsrmz8iKNNscNAj8/W2zM58ruUV/Lv4KD29pvtp4SkoKCxYsICAggO+//z79/ddee41Dhw4xfPhwPDw8VFSoDomJ4t9Rw4Zi38zp6dxZnMv48Ue1lUjsRUwMlC0rUjh0iFyjWc9bb8G770L//qJOWF5wd3fPlCYcEhKS3grSbAIHw72zopiovTAaRfENS4u2SaxCaft0Okf7bGphqLIlSuLios9f/8SJE2pLkOgFNzfo1EmEwx4+VFtNZoo+CWXegIhJNvdGixYtypAhQwDhwA0bNsym42dHmm16eooWTDt2KFDnJDpahAJKlMj685hwKFwbCte0sxDrOXLkCC+++CI9evQgLk5Uoy9WrBhff/01mzdvplq1aiorVI8pU+D0aVEATQcJCfanYkV4+WVZQMiR0XFrL5BrtLwycybcvg22qFnVpk0bnnrqKQD279/PypUrLRugcC0o1xwiwkRxNHvQrJlIVdJiQMQBUdo+9elpWsmtW7e4kyCKL1Wq4q+yGuvx8vJSW4JETxiNcPUq/Pqr2koeJzAYbh0UUVcb07dv3/SsldWrV2cqpmUvMtrma6+JtiWDBsF1O3YISS+ElpUXlnQXzv2k2Wj2/fv3GTp0KE8++SS7d+9Of79r165ERUVhNBqdpthZVpw+DePHi+hOTe3ukyiP0QhbtogyxRLHQ8etvUCu0fJK+fIwZozYrP7nn7yN5eLiwsQMpcyHDx/OQ0uDDoEhEB8J59flTUx2eHhAhw6wdKnsqKAAStunUznaGQuh+es4QlKsWDG1JUj0RN26ovGuFiNAJV+GYs+KqLaNyZ8/PyNHjkx/bVUxFAv5r21OmyYSCUJC7PjQnBal59ZB8j2o0M6OAqxj06ZN1KpVi4kTJ5KUJM7pV6tWjS1btvDVV19RvHhxlRWqi8kEvXtDyZKQ4Z+xBKBNG8iXD5YtU1uJxB7o3NGWa7S806cP1KoF3bvn3fds3LhxerrwyZMn+fLLLy0boEQDKPkSHJ1ov7NgRiNcuCA2ECV2RWn7dCpH2xF6aIPoKSuRWERQEPz0k6hQrSUMBhHVvvIHXN2d+/UW8sEHH+DvL7JXtm7dyubNm23+jIz81zZLlxYRyUWLYLftfz1BTmmWMeFiI6OAdvpMX758mU6dOvHGG29w+rQoTunh4cGoUaM4ePCgPN+YyurVouvL7Nng7a22Go1RqBC8845ItdRaRwVJ3nj4EM6f13XquFyj5R13d3FcZt8+WLAgb2MZDIZMUe0xY8Zw7949ywYJDIbrf8GV7XkTkx3PPAPVq8v0cQVQ2j6dytF2hNZeAM2bN1dbgkRvdOwISUmQociUZvBtAYVq2CWqbZNiKBaQlW127w716kGPHuJ/gc3JLvrz4CZc3KCZtPGUlBS++OILAgIC+C5Db/eXXnqJgwcPMnr06PS2bM7O7dvQty80bw4tW6qtRqMYjRAZKVbiEsfh3DlISdF1RFuu0WzDCy/ABx/A0KFw6VLexnr22Wd55513ALh06RKzZ8+2bIAyb0LhOnZZpwAi6BAUJHZYb9+2zzMkgPL26VSOtqNEtL/4wo49/SSOSenS8MYb2twtNbhA4BA4/xPcsn3VzbZt2/LEE08AsG/fPn744QebPyONrGzT1VXszB86BHPm2PiB8fEiSyGrjcOzq0XrtAptbfxQy4mMjOSVV16hW7du3EzNqihSpAhffvklW7dupUaNGior1BajR8ONGyKaLcmGRo2gTBltHomRWE9u7Qp1gFyj2Y6wMBHdHjAg72ONHz8+vQhyWFhY+neRWaRl313cCDcP5F1MVnTqBPfvi/aFEruhtH06l6N9Jjr9Zz072sNtUYpR4nwYjbBrF5w8qbaSx6nQEfL7QuRkmw/932Iow4YNs7wYiplkZ5v16okWTSNHioCNzciptVfMcij1Cnip18YwISGBkSNHUrduXXbs2JH+fqdOnYiKiuJ///ufbrs/2ItDh2DWLPFvRce+hv1J66gQHg4P7NTjVqI8aXOan5+6OvKAXKPZjmLFYPJk0Tjl99/zNlZAQABdu3YFRHHksLAwywbwew+8K4kK5PbAzw9efVWbAREHQmn7dKoVzqko0UPb1cUFX19fldVYT8ZUWInEbFq2FGcbtTiJu3pAjQEQ/R3cjcn9egt54403ePnllwHR2mHJkiU2fwbkbJuhoeKsbb9+Nnxgdo72/UtweYuqaeNbtmyhTp06jBs3Ln1jw9/fn02bNrF06VJKliypmjatkpIijhpUry4qjUtyIShIlPTfsEFtJRJbERMDpUqJYnc6Ra7RbEvXriKNvGdPSEzM21ijRo3C09MTgFmzZnE+teWvWbi4QeAgiP0ebp/Km5DsMBph69ZH3+0Sm6O0fTqVox17LhaAUkWL4ebmprIa6xk4cKDaEiR6xMsL2raFb78VK3qt4f8huBeCyOk2H/q/xVBGjx7N/fv3bf6cnGyzcGGYPh1WrYKNG230wOhokVdX5j9R69iVgAuUb22jB5nPtWvXCAoKolGjRun9Kt3c3Bg6dCiHDx+mcePGimvSC4sXi6J58+eLji+SXKhVC558UpubhxLr0HkPbZBrNFvj4iKOX50+DVOm5G0sPz8/evXqBYiMq3Hjxlk2QKWu4FkcIqfmTUh2vPsu5M8vOyrYEaXt02kc7Tt37nDrzh0AKlbWTgVea5hj84OeEqfBaBQLmT//VFvJ47gXgGqfwKlFkHDN5sM3aNCAlqmVpS5cuMDcuXNt/ozcbLNDB3G0tFcvcRQrz8TEiHSz/6Zfx4RDmTfAs6gNHmIeJpOJJUuWUKNGDb7J4Pg8//zzHDhwgPHjx8v+sjlw7RoMGSJMNDX5QmIORiOsWycOtUv0j85be4Fco9mD2rVFNtj48cLhzgshISEULFgQEOd10zaEzcLNC6p/Cqe/EpljtqZgQWjdWnZUsCNK26fTONqZemhX128PbYBWrVqpLUGiV154ASpV0m4EqFpvwADH7TMRjh8/HoPBAMDEiRO5deuWTcfPzTYNBpg3T5zTzhBgt56soj93ouHabkXTxo8fP06jRo14//33uX79OgA+Pj4sWLCAHTt2ULNmTcW06JXBg8W6Kq8RG6ejQweRobN8udpKJLbAASLaco1mH0aOhBIloHfvvPmgxYsXZ9CgQQAkJyczYsQIywao2gNcPODYLOtF5ITRCMeOwd699hnfyVHaPp3S0dZzITQQlZMlEqtwcYEuXUSbLzukTueZfMWhSjfhaD+8Y/Pha9asidFoBODmzZtMsbFXY45tVq8unKqwMDh+PI8PzCr6E7sCXL3A1/59oRITExk7diy1a9dm69at6e+3b9+eqKgoPv74Y1nszAz+/BO++kpsvsij6xZSqhS8+aZ2Nw8l5pOcDGfP6j6iLddo9qFAAdGJYcMG0QUrL/Tr148SJUoAsGLFCv7991/zb/YoLJztE/PhQVzehGTFq69CuXJyTrMTStun06yAHKWHNkDp0qXVliDRM0aj6NO4Zo3aSrKmRn94eFukkNuB0aNH45F6AHbmzJlcvHjRZmOba5tDh4KvryjukqfssKwc7ehwKNdcpOLbke3bt/PEE08watQoHqRWfa5YsSK//PIL4eHhcp4yk4cPRY/1Z5+Fbt3UVqNTgoLgr79EFEiiXy5ehKQk3Tvacu6zHy1bwttvQ9++eWs3XaBAgUyR7KFDh1o2QI1PITkBTnxmvYjscHWFzp1Flk5eq79JHkNp+3QaR9tRemgDui7kJtEA/v4ihVyru6XeflCxE0ROg2Tbt+2pWLEiPXr0AODevXuWF0PJAXNt08sL5s4V7Uqszni9dw+uXMmcZhkXCbcOQoX2Vg6aOzdu3ODDDz/k5ZdfJioqCgBXV1cGDx7MkSNHaNq0qd2e7YjMnAkREaLYjwz+W0nz5uDjIwo9SvSLA/TQBrlGsycGA8yZI0oyjB6dt7E++uij9MDbr7/+mikrK1e8ykDlrnBsJiTZITvQaBS/5C+/2H5sJ0dp+3Sar/WYDI623iPaZ86cUVuCRO8YjbBpk4ggaJHAwXD/PETbp/Lm0KFDKVBARHwXLVrESRv1FrfENps2FTVP+veHOGuyz2JFF4VM0Z+Y5aJye1nbO7smk4lly5ZRo0YNvvzyy/T369evz759+wgLC8Pb29vmz3VkYmPFYvGTT0TxbImV5MsH7dppt6OCxDyya1eoM+Qazb5UrAgjRsCsWXDokPXjeHp6Mnbs2PTXISEhmCxJMQsYBIlX4czX1ovIjsBAqFdPuwERHaO0fTqNo30yMir95/Lly6uoJO+89NJLakuQ6J333hNtob77Tm0lWeMTCL6tIDIMTLZfOJcsWTK9xUNSUhIjR460ybiW2ubMmXDnDgwfbsXD/hv9MZlEtfHy74KrbXvQnjp1ijfeeIPOnTtz9epVAAoWLMjcuXPZtWsXdevWtenznIW+fUXbtwxrPYm1GI1i5+KPP9RWIrGW6GgoVkwcxtUxco1mfwYMgGrVoHv3vO2tdezYkVq1agHw119/scaSI3UFq0D5NhA5BVKSrBeRHUYjrF8vWlJIbIbS9uk0jnZMavSnROEi6c3q9cp3WnWOJPqhSBFo0ULbu6WBQyD+GJxba5fh+/fvT/HixQEIDw/nwIEDeR7TUtv09YUxY0TfZIvrc8TEiLNc5cqJ1zf/hdsnbFpt/MGDB0yYMIFatWrx22+/pb/funVrIiMj6dWrF66urjZ7njPx88+iTMKMGVCokNpqHIDnnxfHYrQ8p0lyxgFae4FcoymBh4f43ty9GxYvtn4cV1dXJkyYkP562LBhJCVZ4DQHBsOd0xC7ynoR2dG+vdhAlx0VbIrS9mkwWZQnYTvi4+Px8fEhLi6OQnZeZSQkJKT3b32m7pPsPWBBdUENkpycLBe3kryzfr2oKrJ/PzzxhNpqsmbzq5B8D5rsEYezbMysWbP49NNPAWjatCm/5PE8lDW2mZQETz8tFg579gjf2SyGDoVlyx6lW/47EM58A+9cAJe8n0HauXMnH3/8MUePHk1/r3z58sybN4/mzZvneXxn5t49qFlTRGQ2brTLP23nZOxY0R/t0iWQxxj0xxtviP9veS0prTJyjaYcaUHfY8cgdd/cYkwmEy+++CK7du0CYPHixbz//vvmD7D1TdFTu+l+20/mLVuKI36y1ZfNUNo+nSKiHZt2lhHwr6HvHtog+v9KJHmmSRPRS0jLEaDAYLi+F65ss8vw3bt3x8/PD4ANGzbwRx7TTq2xTTc3UQjrn39g4UILbszYb9aUItp6+b2XZyf71q1bdO/enRdffDHdyXZxcaFfv35ERERIJ9sGhIaKtdO8edLJtimdO4uzGFrtqCDJGQfooQ1yjaYkU6eK1PHBg60fw2AwMGnSpPTXo0aNIiEhwfwBAoNFEdKLv1ovIjuMRvj7b4iMtP3YTorS9ukUjnam1l6VKqmoxDYMt+pAp0TyH9zdoWNHERW1JFVKSco0gSJPwFH7TIx5LobyH6y1zeefhw8/FEHqS5fMvCljmuXVnXDvXJ7Sxk0mEytWrKBGjRoszODxP/300/z9999Mnz49vYCcxHoiI8XiMCQEqlRRW42DUbkyNGyo7c1DSdaYTOKMvQOkjss1mnKULAkTJ8JXX8Gff1o/TsOGDXnrrbcAOHv2LJ99ZkHbrpIvQ7FnIWJS7tdayttvi6N+sqOCzVDaPp3C0Xak1l4AoaGhakuQOApGo2gRtWmT2kqyxmAQu8WXfoMblh5iNo/OnTsTGBgIwO7du1m3bp3VY+XFNidNEnsfqTXacidj9CcmHPKXhxLPW/XsM2fO0KxZM9q3b8/ly5cB8Pb2ZsaMGezZs4ennnrKqnElmTGZRO/0ChVgyBC11TgoRiNs3gznz6utRGIJly9DQoJDRLTlGk1ZPvoI6teHHj3g4UPrx5k4cSKG1BSj8ePHEx8fb96NaeuUK3/A1d3WC8gKT09xVvvbbyE52bZjOylK26dTONoZI9qO4GgHBQWpLUHiKDzxBNSqpe0IUPnWUMAfIsLsMvx/i6EMHTqUZCu/0PJim8WKweTJIsFgy5ZcLn7wQOQeV6ggqp3GroQK7cBg2ZT+8OFDJk+eTM2aNdmwYUP6+y1atCAyMpJPP/1U9oS1IUuXwrZtoohPPtsWhpek8d57ouDBMvu0BpTYCQdp7QVyjaY0Li6wYAFERIhOHtZSp04dOnbsCMD169eZNm2a+Tf7toBCNUSnFFtjNMK5c+LLQ5JnlLZPp3O09d5DG+D3339XW4LEUTAYIChInGm8dUttNVnj4ib6VcaugvgTdnlEixYteO655wA4evQoy6xcpOfVNoOC4MUXRdQzMTGHC8+eFeHRChXg0u+QeM3itPG//vqLevXqMWTIEO7fvw9AuXLlWL16NWvXrtV9G0StcfOmaEnTrh00bqy2GgfGxwdatYKvvxY2ItEHDuRoyzWa8jz5JPTuDaNHixMI1jJ27Nj0zeVp06Zx5coV8240uIhOKefWQlyE9QKy4tlnoWpVbQdEdITS9ukUjvapqGPpP6cVPtIz1arpv6CbREN07CjyrVauVFtJ9lQOgnwlRb9KO/DfYigjR44kMUdPN2vyapsuLqIw2qlT4hxvtmTsoR0TDgWrQZEnzXpGfHw8vXv3pkGDBhw6dAgQv/8nn3xCREQE77zzTp5+B0nWDB0qMmOnT1dbiRNgNIrw1v79aiuRmEt0tOhzV7iw2kryjFyjqcO4cWKfrW9f68eoXLkyH3/8MQB3795l/Pjx5t9coSPk94WIydYLyAqDQcxpP/wgij1K8oTS9ukUjnb0mTMAFC1YCG8HaPmRFn2SSGxC2bIixKbl3VLXfFCjH5z5Gu5dsMsjXn75Zd58801AZMEstKgEuMAWtlmrFvTrJypTnz6dzUVp0Z+yJeDcjyKanUv5apPJxA8//EBAQADz5s1LL/pWt25d9uzZw+zZs+3eatFZ2btXVJQPDRXmJrEzjRtDqVLantMkmUkr7ugAZfjlGk0dChWCGTNEgt7PP1s/zvDhw8mfPz8An332WaY6Tzni6gE1BkD0Mribh7B6VnTpAnfvwo8/2nZcJ0Rp+3R4R/vhw4dcvnEdAD8HSYW8fv262hIkjobRKEp2njqltpLsqdJdONzHZtrtERnPaoeGhnL79m2L7reVbY4cCSVKwCefZJP9Gh0tPLbrW+BhPFRon+N4sbGxtGzZkjZt2nDhgtioyJ8/P1OnTuWff/6hfv36NtEteZykJOjeXZRD6NlTbTVOgpsbdOoE332Xt+pIEuVwkNZeINdoatK2rdhn++QTuHfPujFKly5Nv379AOFDjBo1yvyb/T8E90IQZePUpQoV4JVXxJEYSZ5Q2j4d3tE+d+4cKakr1crVq6usxjbUrVtXbQkSR6NVKyhYUFRr0ioePlC1J5z4DB7ctMsjnnzySdq3F07r1atXmW5hnq+tbLNAAZg9G375JZsN7LToT0y4aH/mUyPLcZKSkpgxYwaBgYGZqqm/9dZbHD16lAEDBshiZ3Zm/nw4cEAU65H/qRXEaISrV2HjRrWVSMwhY7tCnSPXaOphMMC8eaJWaF6KSw8aNIiiRYsC8O2333LkyBHzbnQvANU+gZOLIOGa9QKywmgUlVLPnrXtuE6G0vbp8I52xkJolSrrv4c2wM95yYmRSLIif35Rrfebb7RdQKh6X0h5KJxtOzFu3Lh053Pq1KlcvXrV7HttaZstW4oWmn37ZnEsKyYGKpeF8+uyLYK2b98+nn32Wfr378/du3cBsVP//fff8/PPPztEYUitc+ECDB8OH38s2s9IFKRuXfFHpo9rH5PJoRxtuUZTl6pVIThY1DmJjLRuDB8fH0JCQgBx7GrYsGHm31ytt/j7+BzrHp4drVuLdhWyo0KeUNo+Hd7RdrQe2gA9evRQW4LEETEaxaHgnTvVVpI9XqWh8vsQNROS7HPOpkqVKnTr1g2AO3fuZEonzw1b2qbBAHPmwPXropJqJqKjoXYiJCeItl4ZuH37Nv369aN+/fr8+++/qWMZ6NGjB5GRkbz33nvpvUIl9qV/f/DyAgv+CUlsidEIP/0kSr5LtMuNG2I30UE2/+QaTX2Cg8W+Tc+e1scOevXqRbly5QD46aef2Gnu2ihfcajSTTjaD21YvKxQIXjnHe0HRDSO0vbp8I62o7X2AixOZ5VIzKJhQ/HNpPUIUMBAeHAdTn9lt0eMGDECLy8vAObPn59pHskJW9tmxYowYoToDZpaIFwc+j13DkpHQ/HnwfvRBuJPP/1EzZo1mTlzJikpKQDUqlWLnTt3Mn/+fAo7QEVfvfDbb7BihYiqFCmithonpWNHYS/ff6+2EklOOFBrL5BrNC2QL59IId+2zfoTcV5eXozOsMsdHBycXkQ0V2r0h4e34dQi6x6eHUFBIky/b59tx3UilLZPg8nsfzW2JT4+Hh8fH+Li4uxa6fb9999nyZIlABw8eJA6derY7VkSie4ZMUKEUS9eFKE4rbKzI1zbDc1PiD7bdmDo0KFMnDgRgK5du/LVV/Zz7HPiwQNRSKtIEdixA1zOxkCtirDQFZ6eCdV7c/78eT755BN+zHCgO1++fIwaNYoBAwbg7u6uinZnJSEBatcGX19xpE4mEKjIW2/BrVuwa5faSiTZsXq1SIu9ckVUgZRIbES7drB1Kxw7Zt2GZ1JSEjVr1uT48eMArF+/nrfeesu8m3d3hUubocVpUZHcFiQnQ/nywl7m2Dg1XWIXHD6iffrEifSfHSV1PDQvFR4kkpzo0gXi4kS6pZYJHAJ3oyHWfpGqwYMHUyT1m/mbb77h6NGjud5jD9v08BAFtXbtgq++QkR/ngEwkVzuXebMmUNAQEAmJ7tJkyYcPXqU4OBg6WSrQFiY+N80f750slXHaITduyHDWkCiMWJixMZu8eJqK7EJco2mHWbMEBufQ4dad7+bm1umXtohISHp2WK5EjgY7p8X7b5shasrdO4M4eFiF15iMUrbp8M72mdOinZFBb3y4+Pjo7Ia2/Dxxx+rLUHiqFSrBg0aaD99vEhdKNMUIibZ7axS4cKFCQ4OBiAlJYXhw4fneo+9bPOVV8QeyODBcO3IJXgeDsQ/zfON3qFPnz7pbchKlizJsmXL2LhxI5UrV7aLFknOnDwJEyfCwIEQEKC2GgktW4qzjd9+q7YSSXY4UA9tkGs0LVG2LIwbBwsXwt691o3RunVr6tWrB8ChQ4dYvny5eTf6BIJvK4gMA5OZzrk5GI2ieMuGDbYb04lQ2j4d2tFOTk7mwtUrAJRPLWjgCKxevVptCRJHxmiEX3+FS5fUVpIzNYPh1mG4YL8vm969e1O2bFkA1qxZw549e3K83p62OXUqpKTA2GX5GLQf6vXex94MK4cPP/yQyMhIOnbsKIudqYTJBL16QZkyotq4RAN4eYnmut9+KwxIoj0cqIc2yDWa1ujVSzQg6N5dlGywFIPBwKRJk9JfjxgxggfmRpMDh0D8MTi31vIHZ0etWvDkk9oPiGgUpe3ToR3tixcvkpz6xVolIOs+s3rkmWeeUVuCxJFp21akJ4WHq60kZ0o0hOINIGKi3R6RP39+Ro0alf46t2Io9rTNkiWhU6dfWPJvV6b+AsnJYm4LCAhg+/btLFq0KL3vp0QdVq6ETZvE0bn8+dVWI0nHaBTO3J9/qq1EkhUO1NoL5BpNa7i5wYIFcOCAOM5jDY0aNeL1118H4PTp03zxxRfm3Vj8OSj5iu2z74KCYN06UbFfYhFK26dDO9oZW3tVrOQYPbRBbCBIJHajaFFo3lz7u6UGAwQGw9U/4Yr9FtDvv/8+VatWBeCPP/5g06ZN2V5rL9u8ePEibdu2Zd68ZtxOEK2KPD09GTduHPv376dhw4Z2ea7EfOLj4dNPoVUr0f9coiFeeAEqVYKvv1ZbiSQrHCyiLddo2uPZZ+Gjj0Sm0YUL1o2RsdXn2LFjuXv3rnk3BgbD9b1wZZt1D86KDh1Eho65aeySdJS2T4d2tDO25HGUQmggUuIlErtiNIrt3/SeUhql3NviHFREmN0e4e7unql4Rk7FUGxtmykpKSxYsICAgABWrlyZ/n6pQjXp2/cQw4cPx9PT06bPlFjHyJGijuCsWWorkTyGi4socrByJdy7p7YaSUbi40VVeLlGk9iZiRNF26/+/a27/5lnnqFNmzYAXL58mVnmTvZlmkCRJ+DopFwvNZuSJaFpU+0HRDSI0vbpNI62o/TQBsf6XSQapWlTUQFW65O4wQUChsCFn8V5bTvRpk0bnnrqKQD279+fyenNiC1t8/Dhw7z44ov06NGDuLg4AIoVzs/XH0Dnep8zb141zp612eMkeWD/fpEuPno0+PmprUaSJUYj3L4Na214VlKSdxyshzbINZpWKVJE1DpZsQJ++826MUJDQ3F1dQUgLCyM69ev535TWvbdpU1w41/rHpwVRiP89ZfoXSYxG6Xt06Ed7Yyp444U0d6xY4faEiSOjrs7dOwIy5ZZVz1ESSp2gPzlIWKy3R7h4uKS3lMbYPjw4Tx8+PCx62xhm/fu3SMkJISnnnqK3bt3p7/ftWtXomaXxZgPRn4UR6FC0Ldvnh8nySMpKdCjBwQGitRxiUbx9xcp5FrfPHQ20tZpDuScyjWadunSBV5+GXr2FG2/LKV69eq8//77AMTHxxMWZmY2XfnWUMDfttl3zZtD4cKyo4KFKG2fDu1op7X2AsfaYezQoYPaEiTOgNEoKo9v3qy2kpxxcYeAgRATDnei7faYxo0b8+qrrwJw8uRJFi9e/Ng1ebXNTZs2Ubt2bSZNmkRS6gZHtWrV2LJlC1/NGEBx15OwCwoFlGPGDPjxR1i/Pk+PlOSRRYtEUOGzz8T+lETDGI2iWp08Q6sdYmLAwwNKl1Zbic2QazTtYjCIgmjR0WCuj/xfRo0alX5ka86cOZw7dy73m1zcIGAQnF0F8Sese/B/yZcP2rWTHRUsRGn7dGhH+9Tx4wB4eXg6VDXe+daWTZRILOGpp0SYTg8RIP8PwKMwRE2z2yMMBkOmqPaYMWO495/zntba5uXLl+nUqRNvvPEGp0+fBsDDw4NRo0Zx8OBB4eDHhAP54TBQoQJt20LjxtC7tzx2qhZXrkBwMLz/Prz4otpqJLny3ntiN2TZMrWVSNKIjhbnLVwcZzkq12jaJjAQBg4UZ7ZPnrT8fl9fXz755BMAEhISGDt2rHk3Vg4CzxIQNdXyh2aH0QixsfDHH7Yb08FR2j4Nppx61diR+Ph4fHx8iIuLo1ChQjYf32Qy4eXpSeLDh1StUJHj0Wds/gyJxOEJCxMHTy9dAh8ftdXkzOGxotVXyxjIV9Juj2ndunV6H8aJEycSHBxs9VgpKSksXryYwYMHc/PmzfT3X3rpJRYuXEiNGqltCU0mWFcFLhWFISch9doTJ6B2bRgwAMaPt/53klhHUBD8/LM4Ile8uNpqJGbRti1ERopCj7LfvPq8956Yz7SeOSVxKO7dEw539eqwcaPlU8H169epXLky8fHxuLq6cvToUapXr577jRFhcGgktIwGrzJWac+EyQRVq0LDhvDVV3kfT2JzHGcL8T9cuXKFxNQzlP7Vq6msxrZkrIAskdiVzp0hMRFWrVJbSe5U6wUGVzg2x66PCQ0NxSU1+hIWFpbJQbbENiMiInjllVfo1q1b+hhFihThyy+/ZOvWrY+cbIDrf8Od03CmdKaiQVWriojqlCnCd5Aoxx9/iGSPsDDpZOuKoCA4cgQOHlRbiQQcroc2yDWaHsifXxSw3LRJNCOwlGLFijF48GBAVLEePny4eTdW6Q6u+SBqpuUPzQqDQUS1V60Cc9uNOTlK26fDOtoZC6FV8vdXT4gd6NOnj9oSJM5CuXLw+uv6SB/3LAb+H8HxufDwtt0eExAQQNeuXQG4detWpmIo5thmQkICI0aM4IknnshUlKNTp05ERUXxv//9L92RTycmHPKVgoMPHysaFBws1qk9e4rNbYn9efBAFEBr0AD+9z+11UgsokkT0RpHD3OaM+BgPbRBrtH0QvPm0LKlKGIZH2/5/X379qVUqVIArFq1ir///jv3mzx8oGpPOPEZPLhl+UOzoksXuHMH1qyxzXgOjtL26bCOtqO29gJYsmSJ2hIkzoTRCNu3wxkdHL8I6A/Jd+Hk53Z9TMZiKLNmzeL8+fNA7ra5ZcsW6tSpQ2hoaHrVcn9/fzZt2sTSpUspWTKLlPeUZIhdAX5tITr2sehPvnwwbx5s2yaPnirF9Olw/DgsWOBQR0udg4wdFbLoHCBRkHv34OpVh4toyzWafpg9G+LiYORIy+8tUKAAI0aMSH89dOhQ826s3hdSHsAJG50VrlQJXnoJvv7aNuM5OErbp8MuERy1tRfA66+/rrYEiTPxzjvg7Q1Ll6qtJHfy+0LFzhA1HZIT7fYYPz8/evXqBYgI9bhx44DsbfPatWsEBQXRqFEjTpwQFUfd3NwYOnQohw8fpnHjxtk/7OoOuH8RKrTPNvrTpIk4ejpgQPrxbYmdiI6GsWNFa7U6ddRWI7EKo1FUstu0SW0lzk1aQMTBgiFyjaYf/Pxg1CiRRr5/v+X3d+vWjcqVKwOwefNmNptTa8CrNFR+X6SPJ923/KFZYTSKOgepm/6S7FHaPvPkaJ87d44BAwbYSotNyRjRdjRHOyoqSm0JEmfC2xvatBGplnrITQ4YLBzTaPtuDISEhFCwYEEAvvjiC06cOPGYbZpMJpYsWUKNGjX4JkOq6vPPP8+BAwcYP348Xl5eOT8oJhy8K4KpCty/n230Z8YM8fGwYXn6tSS50KcPFC0qagRKdMoTT0CtWjJ9XG3S1mlyjSZRkX79ICBAHAeytEuWh4dH+kY7iHWBWTWmAwbCg+tw2kYFzNq0AU9PmdZmBkrbp9WOtslkYu3atVy/ft2WemxG9KnT6T87Wuq4t7e32hIkzkZQkOiDsXu32kpyx6cGlH8HIiaLtGs7Ubx4cQYNGgSIYigjRozIZJvHjh3jtdde4/3330+fJ318fFiwYAE7duygZs2auT8k+QHErhLR7NhY8V42i9KyZWHcOJHOvHdv3n43SdasXQvr1sGsWZC6xyLRIwaDmNPWroVbt9RW47zExICrq6gF4kDINZq+cHeHzz6Dv/6CRYssv799+/bUSU1v+ueff9K7kuRIQX/waweRUyAlyfKH/hcfH2jVSqSP6yEgoiJK26fVjvZvv/3Ga6+9ZkstNuXksWMAeLi5ZX3uUcc4Uk9wiU54+WUoX14/EaCAIXD7OJxbY9fH9OvXjxIlSgCwYsUK0e0gMZGxY8dSp04dtm3bln5t+/btiYqK4uOPP3682Fl2XNoMD248ShuHHNMse/WCunXFznyy/fYYnJK7d0U0u2lTePddtdVI8kzHjuKMtjUlhyW2IToafH3BzU1tJTZFrtH0R8OG0LWrKC565Ypl97q4uDBx4sT018OGDSMpyQznOXAI3I2G2O8te2B2BAVBRIR1OfBOhNL2aZWjferUKUqVKpV7yqNKmEwmzl28AEC5UqXNX9TqhEOHDqktQeJsuLiIypYrVkBCgtpqcqd4fSj1GkRMsuvu7n+LoYwcOZInnniCUaNG8eDBA0Bk1Pzyyy+Eh4dTunRpyx4QEw6FAqBwHRH98fYWecvZ4OYmItr798N8G9VZkQjGjhULsLlzZftlh6BsWWjcWBYQUhMHbO0Fco2mVyZPFnN7aqKaRTRt2pSGDRsCIpvta3PmlSJ1oUxT261TXn8dSpeWc1ouKG2fVnmgBw4c4MyZM2zatInY2FjNTSo3btzgXqIohFS5ShWV1diepk2bqi1B4ox06SLSLH/+WW0l5hEYDDf+gcu/2/UxH330EeXLlwdEEca08z+urq4MHjyYI0eOWGezSfdERL5CB/Htn1YILRcv79ln4aOPYPhwuHjR8sdKHufIEVFpfNgwSK17I3EEjEbYuRNOnVJbiXPigK29QK7R9EqJEhAWJhL3/vjDsnsNBkOmqPbo0aO5f9+MQmc1g+HWYbiwwUK1WeDmBp06wXffyY4KOaC0fVrlaLdu3ZpmzZpx//59EhMTzTr4n5iYSHx8fKY/9iJjIbTK1ara7TlqsXjxYrUlSJyRGjWgfn397JaWfh2KPAVHJ9n1MZ6enrz66quZ3qtfvz779u0jLCzM+vNAF9ZD0h2RNg4WRX8mThR1Ufr3t+7RkkeYTKJHub+/dZEOiYZp1Uoctv/2W7WVOCcOGtGWazT98sEH0KCBOH6VmpRmNi+88ALNmzcHRLHo+eaklZVoCMUbiKi2LTAa4do12LjRNuM5IErbp1WOdnh4OLGxsSQmJrJlyxbWrVsHQGhoKBcuXODLL7/k77//5tdff2X16tVERETQqlUrfHx80v+kRYA+//xzDh06xE8//cT69ev5999/WbhwIVevXiU0NDR93Hv37jFt2jSOHTvG999/z++//86uXbtYsmQJZ8+ezXTt6dOPCqHduHGDP//8k23btrF8+XJOnDjBlClTSEhIyHTPpUuXWLRoEX///TcbN27kxx9/5MiRI8yZM4e4uLhM1966dYu5c+dy+PBh1qxZwy+//MK+ffv4/PPPuXz5cqZr79+/z7Rp0zhx4gQrVqxgy5Yt7Ny5k2+++YbY2FjGjx9PSkoKoaGhpKSkMH78eGJjY/nmm2/YuXMnW7ZsYcWKFZw4cYJp06Zl2iELDQ3l8uXLfP755+zbt49ffvmFNWvWcPjwYebOncutW7cyaYmLi2POnDkcOXKEH3/8kY0bN/L333+zaNEiLl26lOnahIQEpkyZwokTJ1i+fDnbtm3jzz//5NtvvyUmJoaJEyeSnJyc6Z6zZ8+yZMkSdu3axe+//87333/PsWPHmDZtGvfu3ct07dWrV1m4cCH//vsv69ev56effuLQoUPMmzePGzduZLo2Pj6e2bNnExERwerVq/n111/5+++/+fLLL7lw4UKmaxMTE5k8eTKnTp0iPDycbdu2sWPHDpYuXUp0dDSTJk0iKSkp0z3nzp3jq6++Ys+ePfz222+sXLmSqKgoZsyYwZ07dzJde+3aNRYsWMCBAwf4+eefWbduHQcOHOCzzz7j+vXrma69ffs2M2fOJCIigh9++IFNmzbx119/sXjx4sd0P3z4kLCwME6fPs2yZcvYvn0727dvZ9myZZw+fZqwsDAePnyY6Z4LFy6wePFi/vrrLzZt2sQPP/xAREQEM2fO5Pbt25muvX79Op999hkHDhxg3bp1/Pzzzxw4cIAFCxZw7dq1TNfeuXOHGTNmEBUVxcqVK/ntt9/Ys2cPX331FedatCB0/Xq4coXQ0FCSkpKYNGkS0dHRLF26lB07drBt2zbCw8M5deoUkydPJjEx8THdWc0Rs2fPJj4+PtO1N27cYN68edbNEVu2sOv+Oyz5/nfOHvo507XJyclMnDiRmJgYvv322zzPEVOnTsUt9ZxhjRo1WLt2LTt27MjbHLEwjNik2oyf872YI/buJcXPz6w5Yt68UKZOheXLQ/n+ezlH5GWOaN06lB07ztGixVfs3y/niFzniHPnMl2r6Tli9252vfQSS+bN42xsrF3nCK2tIzKOr8o64vhxJl64QHL58rqfI/67jnj22WflHKHTOSIh4R4NGog5omvXnH2NrOaIVq1akcaIESMes+XH5og1azji0oE5S3cQd+rXvM8RXl6s8PNjy9Sp+p8j7LSOaNGihU3mCLMxKURCQoIpLi4u/c/Zs2dNgCkuLs7mz5o+fboJMAGmb7/91ubjq824cePUliBxVq5dM5nc3U2mmTPVVmIeyUkm09oqJtP21nZ/1Nq1a029e/e2zWCJt0ymcE+TKWLqo/cKFTKZwsLMHiIlxWR6+WWTqWpVk+n+fdvIcjauXTOZihc3mTp2VFuJxG5s22Yygcm0Y4faSpyLEyfEf/fNm9VWYnPkGk3/9OtnMnl5mUxnzlh+b5cuXdJ9kOHDh+d+Q0qyyfRzoMm0rbnlD8uK6dNNJg8Pk+nGDduM52AobZ8WRbQNBoPZf/6Lp6cnhQoVyvTHXmRMHXe01l5AekshiURxihWDt9/WT/VxF1cIHAxnV0P8Mbs+qkWLFkydOtU2g51bAykPoEI78frWLYiPtyjN0mAQBdHOnBFFXiSWExIijrpNm6a2EondaNhQ2JVejsQ4Cg7aQxvkGs0RGDNG1B3t08eae8fg7u4OwPTp07l8+XLONxhcRKeU8+vg1hEr1P6HDh1E25EVK/I+lgOitH1a5GibTCaz/6jJmQyp4xUccBKfNWuW2hIkzozRCP/+KypE6YFKRvAqLfpV2hmb2WZMOJRsCPl9xWszWntlRWAgDBwIEyaINugS89m1S/RUHT9eFHKVOChpHRW+/x7MKV4ksQ3R0WI3MPUYoSMh12j6p2BBmDkT1q2DtWstu7dSpUp0794dgHv37jFu3Ljcb6rYAfKXhwgb7IqXLg1vvKGfgIjCKG2fFjnad+/eZf369TRu3BgQ/4AWL17MunXr+OCDD0hJSbGLSEs5FSUiV64uLpQtW1ZlNbandevWakuQODNvvSUi23qZxF09oXo/OPMN3Dtv10fZxDYTror+2WlF0CBP0Z8RI8T3bu/edu105lAkJYliOPXqQep6SeLIdOkiMkZ++kltJc5DTAyUKSOqNjoYco3mGLRuDW++KaLad+9adu+wYcPSC6EuXLgwU+2oLHFxh4CBEPMd3I3J+VpzMBph9244cSLvYzkYStunRY62t7c3zZo142Fq2fjIyEhOnTrF22+/zeHDhy07HG5Hzp4Xi+kyxUvg6uqqshrbs3fvXrUlSJwZDw+RmrR0qUhP0gNVPwbX/BA1w66PsYltnl0l/i7f5tF7MTFiQVqypMXD5c8Pc+bAr7/CqlV5l+cMzJ4Nhw/DZ5+BA36FSP5LtWqi1LBeNg8dAQetOA5yjeYoGAwwdy5cuQJjx1p2b6lSpeif2vYjKSmJkSNH5n6T/wfgURgibXBWqUUL8PGRHRWyQGn7tKrqeBpPP/00n376KfPmzaNPnz54eXnZSpfVxMfHE39PbD1VctCGp2XKlFFbgsTZMRpFk+bf7duj2ma4F4JqveDkQki8YbfH2MQ2o8OhdGPIVyLDe9FiUepi3ZTdvDm0bAmffioCd5LsOXcORo0SLb3q1VNbjUQxjEaxG3XpktpKnAMH7aENco3mSPj7w9ChMH265aflBg4cSLFixQD47rvvOHjwYM43uHlDtT5w6guR2ZYXvLygbVvhaGsk21grKG2feXK0AUqUKEHv3r1ZtmwZUVFRttCUJzIWQvOvUV1FJfbDEaP0Ep1Rr57oq62nCFC1PmBKghNm9La0kjzb5t2zcHUHVOiQ+X0bRH9mzxY11UaNytMwDs+nn4K3N6R28pA4C23bivSF775TW4lz4MARbblGcywGD4bKlcXmqyXHrwoVKsSwYcMAUeMq7eccqdZLFEc7NttKtRkwGsWG1o4deR/LgVDaPvPkaM+bN4+FCxcC4ObmxqlTp2wiKi9EpxUNwjELoUHmzQSJRBUMBjGJr14Nt2+rrcY8vEpB5f/BsVmQdM8uj8izbcZ+Dy6eUL5V5vdtEP3x8xNO9uzZcOBAnoZyWDZsgB9+ENGLwoXVViNRlKJFReqHnjYP9UpSkkgdcdCItlyjORaenqKDx44dljcn6NGjB+VTC/6tX7+eHbk5vZ7FwP8jOD4XHuZxbfXCC1CpkpzT/oPS9mmRo52YmMh3331HdHQ04eHhvPjiixQsWJC1a9dSu3Zt3nzzTXvpNBtHb+0F8OKLL6otQSKBzp0hIUFfB38DBsKDm3BqsV2Gz7NtxoRDuWYi1T3T+7aJ/vTrBwEBotCXzCbLzP37omBco0aiBIHECQkKgoMHxR+J/Th/XtT3cNBgiFyjOR5p3wuDBsH16+bfly9fPsaMGZP+OiQkJPfOTAH9IfkunPzcSrWppAVEVq6Ee/YJLugRpe3TIkfb09OTjh07Eh0dTYcOHahbty4dO3akZcuWTJgwQRPpMhkdbUeNaC9fvlxtCRKJaMvy2mv62i0tUElU846aCikPbT58nmwz/gTc2Pd42vidO+Kb3Qbzmbu7KPC1Zw988UWeh3MoJkwQQbZ588T6ROKEvPkmFC8uCwjZGwfuoQ1yjeaoTJ8ODx5ASIhl93Xp0oWAgAAAdu7cyfr163O+Ib8vVOwCUdMhOY9Fprt0EVmHlvYoc2CUts88n9HWGtFnzqT/7KiO9sCBA9WWIJEIjEbYtu3RwkkPBA4R7TNiVth86DzZZkw4uBWAss3+837qf1sbZeg0bAhdu0JwsKimKoFjxyAsTJzFq+6YpT0k5uDuDh07wrJlIr1ZYh/SjvjJNZpER5QuDePHw6JFonOWubi5uTF+/Pj01yEhISTn1rElYBDcvwjRS61Um4q/P7z4or4CInZGaft0OEc7rYe2i8GAr6+vymrsw6RJk9SWIJEI3n1X9I9amscvAyUpXFs4sxGTwGTb/GmrbdNkEo62bytw+0/3BjtEfyZPFn8PHmyzIXWLySSK3JQvL6rLSpwco1FUHv/tN7WVOC4xMVCihPjucEDkGs1x6dEDnn5a/G3JXlyrVq2oX78+AEeOHCE8PDznG3xqQPl3IGIypOSxjarRCJs2wYULeRvHQVDaPh3O0Y6JjQWgZJGieHh4qKzGPgwfPlxtCRKJoEABaN1aVAixpByn2gQGQ9xROJ9LCpeFWG2btw5BfNTjaeMgoj9ublC2bJ60ZaRECRHB/fpr+OMPmw2rS8LDYcsWkTKugQ6VErV56ikIDJQRIHviwK29QK7RHBlXV1iwAA4dgjlzzL/PYDBkcvBGjBjBgwcPcr4pYAjcPg7n1lgnNo333hPZOrKjAqC8fTqUo33v3j1u3BZNYitWqqSyGvsRKvvOSLREUBCcOAF//aW2EvMp+SKUeAEiJtp0g8Bq24wJB4+iUKZxFp/FiHCrjWtgfPABNGggduZz+753VG7dgv79oU0bcTxXIsFgEHPamjUQF6e2GsfEgVt7gVyjOTr16onvzZEjRV0Pc3n11Vdp0qQJIDokff55LsXOiteHUq+lZt/lYZ1SuDC0bKm/gIidUNo+HcrRjk2NZgP4V6+mohL70rVrV7UlSCSPeOUV8PXVXwQoMBiu7Yarf9psSKts02SCmOXg1wZc3B//3E6LUhcXURjt+HFR5MUZGT4c7t6FmTPVViLRFJ06QWKivjoq6AkHd7TlGs3xGT8evL1FJw9LmDBhQvrP48aN486dOznfEBgMN/6By1usUJkBoxGOHJEdFVDePh3K0c7UQ9uB05J+k2fHJFrC1VW0+lq+XCxO9ULZt8CnltgtthFW2ea1PaI4W1Zp42DXNMu6daFPHxg79lF9Imfhn39Eb9SxY6FcObXVSDRFuXLw+uv62zzUAykpEBvr0Knjco3m+BQuDNOmib24jRvNv+/pp5+mbdu2AFy5coWZue3yln4dijyV93XKG29AyZJyTkN5+3QoR9sZemgD6W0CJBLN0KUL3LwJubWt0BIGF1GB/MIvcPOQTYa0yjZjwsGrLJRomM3n9o3+jBkDRYsKh9tZSE6G7t2hTh345BO11Ug0idEI27dDhk4mEhtw6ZI4q+LAEW25RnMOOnYUHU579YL7982/b9y4centkCdPnsy1a9eyv9hggJrBcGkzXP/HerFubiJTZ9kyeGj71qZ6Qmn7dChHO1NE24En8du3b6stQSLJTGCgOLj09ddqK7GMCu3AuwJEhNlkOIttMyUJYr8Hv3bgksUZ7IQEsTC148ZhwYIidXrdOudptblgAezbJ1Ln3dzUViPRJO+8I4o9yp7atiVtnebAwRC5RnMODAZRRPPsWZg40fz7qlWrxgcffACIfysTc7vZ910oUCXv6xSjUfT03LQpb+PoHKXt06Ec7ZgMjrYjR7Rv3bqltgSJ5HGCguCXX+DqVbWVmI+LO9QYCLHL4c7pPA9nsW1e+QMSLkOF9ll/nlZ3ws4bh61bi2JgffqIM8uOzKVLoo1Xt26iGJxEkiXe3qJK3jffyAJCtsQO7Qq1hlyjOQ81aog2mWFhot6JuYwcOZJ8+fIBMG/evEw1ph7DxRUCB8PZHyDegof8l7p1oXZtp08fV9o+HcrRPnXs0T9APz8/FZXYl9q1a6stQSJ5nPapzuLy5erqsBT//4mK35HT8jyUxbYZEw4F/KHYM9l8rsyi1GCAuXPFZvfYsXZ9lOoMGAAeHiBb3UpyxWiEU6dg9261lTgOMTHigGuhQmorsRtyjeZcDBsmyjr07Gn+nly5cuXo27cvAImJiYwZMybnGyoZwas0RE6xXqjBIOa0tWtFyw0nRWn7dChHOy11vJiPT/pOkSOyYcMGtSVIJI9TvDg0a6a/3VK3/FC9L5xeDPcv52koi2wzORFifxDRbIMh62uio0V5cF/fPOkyB39/EemdPl0UJ3VEfv9dtBKdMkWcS5dIcuTll0VrPb3NaVrGwXtog1yjORteXmKj+vffLYszDBkyhMKFCwOwZMkSIiMjs7/Y1ROq94MzX8O989aL7dRJnNFeudL6MXSO0vbpMI52YmIiV2/dBKCin+OmJAF069ZNbQkSSdYYjaKcc0SE2koso1ovMLjB8dl5GsYi27z4Kzy8lX21cRDRn7JlRQhWAQYPhsqVLduZ1wuJieL3athQnHKQSHLFxUUUelyxQtRLkOQdB2/tBXKN5oy89Ra8+y707w9xcebdU6RIEYYMGQJASkoKw4cPz/mGqh+Da36ImmG90DJloEkT/dXTsSFK26fDONpnz57FlLoy9K9RXWU19iXXdgASiVo0awZFiugvAuRRBKp8DMfnwcN4q4exyDZjlov2YoVrZn+NwtEfT09RIGzHDsf7Hp4yBU6fFr9fdgkEEsljGI0izXLdOrWVOAZOENGWazTnZOZMuH0bcvOXM9KnTx/KlCkDwOrVq9m7d2/2F7sXEkGBkwsh8Yb1Qo1G2LlTHItxQpS2T4dxtDO19qpUSUUl9ifXXS+JRC08PaFDB1i6VPRQ0hM1+kHyPTix0OohzLbNpLtwbi1UzCGaDapEf157TbQtGTQIrl9X9NF24/RpGD9eRBtq5rCvIZE8RvXq8Oyz+ts81CImk1NEtOUazTkpX160y5w/X3S1MIf8+fMzcuTI9NfBwcHpQcMsqd4XTElwYr71Qlu2FO1GnLSjgtL26ZCOtiO39gIIDQ1VW4JEkj1GI5w/D1u3qq3EMvKXg0pBEDUdkq1LEzXbNs+tE059dtXG01BpUTptmjjGFRKi+KNtjskEvXtDyZKQYT0jkZiP0QgbNohqgRLruXZNNByWazSJg9Knj9jM7d7d/FjDBx98gL+/PwBbt25l8+bN2V+cryRU/gCOzYKke9aJzJ8f2rZ12o4KStunwzjaztJDG6B79+5qS5BIsqd+fahWTZ8RoIBBot3WGet2es22zZhwKPYsFKic/TUPH4oNCxXSLEuXFhHgRYv0X3B59WrhI82eLTo2SSQW066dOK8dHq62En3jBD20Qa7RnBl3d3E86Z9/YKGZyXHu7u6ZnL+QkBBSUlKyvyFgADy4CacWWy/UaIQzZ0QKuZOhtH06jKOdKXXcwSfxVatWqS1BIsmetBYSP/wAd+6orcYyClWD8q0hYjKkWJ76bpZtPrgJFzfkHs0+dw5SUlSL/nTvDvXqQY8ekJSkioQ8c/s29O0LzZuLbDmJxCqKFYO333a8wgVK4wQ9tEGu0ZydF16ADz4QXTwuXTLvnrZt2/LEE08AsG/fPn744YfsLy5QSawfoqZCykPrRL74otjwcsI5TWn7dBhH+1TUsfSfHT2i/dxzz6ktQSLJmc6d4d494WzrjcAhcOcknLVcu1m2efZHSEkCv7Y5X6dy9MfVVezMHzoEc+aoIiHPjB4NN26IaLZEkieMRti/Hw4fVluJfomOhgIFHL63nlyjScLCwM0NBg4073oXFxcmTpyY/nrYsGE8fJiDEx04BO7GQMwK6wSmdVT4/ntxnMOJUNo+HcbRjj5zBoDC3gUoUKCAymrsy7lz59SWIJHkTIUK8Oqr+kwfL1YPSr8OEZMsPr9klm3GhEOpVyB/2VyuS43++PlZpMGW1KsnWmKNHCkC7Hri0CGYNUtod/AkJ4kSvPWWiGw7aQEhm5BWc8LBy/7LNZqkWDGYPBmWLYMtW8y754033uDll18G4MSJEyxZsiT7iwvXhrLNUtcpOaSZ50SXLhAfDz/9ZN39OkVp+3QIRzspKYlL168BUN7XV2U19ifHioQSiVYwGkVBtNhYtZVYTmAw3NwPl36z6LZcbfP+Jbi8Jefe2WnExECpUpAvn0UabE1oqDjb3K+fqjIsIiVFpL5Xry4qjUskecbDQ78dFbSCE1QcB7lGkwi6dhVp5D17QmJi7tcbDIZMUe3Ro0dz714OBc8CgyHuKFz4xTqBVavC88/rMyCSB5S2T4dwtM+fP09yauEA/xo1VFZjf8qXL6+2BIkkd1q3Fk7ismVqK7GcUq9B0Xpit9gCcrXN2FWAC5R/N/fBNNJvtnBhmD4dVq2CjRvVVmMeixeLIm7z5wv/SCKxCUYjXLwIv/+uthJ9opE5zd7INZoERHb2Z5/ByZMwdap59zRo0ICWqQVFLly4wNy5c7O/uOSLUOIFi9cpmTAa4ddfzT9M7gAobZ8O4WhnLIRWqbJj99AG2K33MsAS56BgQXj3XX22kDAYxG7x5a1w7S+zb8vVNmPCocwb4Fks98E0FP3p0AEaNYJevbR/nOvaNRgyRKwfUrPwJBLbUK8e1KjhlAWE8oyT9NAGuUaTPKJ2bZENFhoKp0+bd8/48eMxpB6vmDhxIjdv3sz+4sBguLoTrvxpncC2bUVBlu++s+5+HaK0fTqEo+1Mrb1AVCeUSHSB0QhRUfD332orsRzfVlCwGkSEmX1LjrZ5Nwau7TIvbRw0Ff0xGGDePHFOO0NmmyYZPFis6adMUVuJxOFI66jw44/ibKPEfG7dEv/NNDKn2RO5RpNkZNQoKFECPvnEvJhDzZo1MRqNANy6dYspOX2ZlX0LfGpZH9UuUgRatHCq9HGl7dMhHG1nau0F8Nlnn6ktQSIxj0aNoGxZfU7iLq4QOBjO/QhxkWbdkqNtxiwHVy/wNaPPVHIynD2rqehP9erCiQ0Lg+PH1VaTNX/+CV99JTYDSpZUW43EIencGRIS9NlRQU2cpLUXyDWaJDMFCojCnL/8IvbozGHMmDF4pJ57mjlzJhcvXsz6QoOLqEB+YT3cPGSdQKMRDh4Uf5wApe3T4RxtZ4hoDx8+XG0JEol5uLqKhWl4ODx4oLYay6nYGbzKQqR54dEcbTNmOZR7G9zN6Ipw8aJoXq2x+WzoUPD1FcVdtHYa4OFD0fP72WehWze11UgclvLl4bXX9Ll5qCZO5GjLNZrkv7RqBc2aQd++cOdO7tdXqFCBnj17AnD//n3GjRuXw8XtwLsCRE62Ttybb4qQu5N0VFDaPh3C0T51/ET6z87gaIeGhqotQSIxny5dRDPjX6ysjKkmrp5Qoz9EL4W7Z3O9PFvbjIuCmwcsSxsHzaVZennB3LmiFtTy5WqryczMmRARIYrPuDjEN5tEsxiNsG3bI+dRkjvR0aI4ZqlSaiuxO3KNJvkvBgPMmQPXr8Po0ebdM3To0PR2xYsWLeLkyZNZX+jiDjUGis38O2csF+fuDh07isK1SUmW368zlLZPh1iOnEn9x1cgnxeFCxdWV4wC9O3bV20JEon51KoFTz2l3whQlY/A1RuiZuR6aba2GRMO7oWgbFPznqnh6E/TpqKgfP/+EBenthpBbKxYvHzyCTz5pNpqJA7Pu+9C/vxOEwGyCTEx4Ofn8D20Qa7RJFlTqRIMHy42hQ+ZkeVdokQJBg4cCIg2xiNHjsz+Yv//gUcRiJxmnTijUVQe/82ylqZ6RGn71L2jnZKSwoUrlwHwLVs2vVKfI/Pll1+qLUEisQyjEX7+WWzn6g33glCtN5z6HBJz1p+lbZpMYqfZ9x1wNbMndnQ0FCsmDndpkJkzRfqbVjIk+/YVbcjGjlVbicQpKFBA7DbpsaOCWmiouKO9kWs0SXYMHCjaV/foAaldiXOkf//+FC9eHIDw8HAOHDiQ9YVu+aF6Xzj9Jdy/bLmwJ5+EmjX1GxCxAKXtU/eO9qVLl3iYnAxAFSfooQ3QpEkTtSVIJJbRoYNYkGot39hcqvcBUwocn5fjZVna5s39cPu4+WnjoPk2OL6+MGaM6FO9b5+6Wn7+GdasgRkzoFAhdbVInIigIDhxAv4yv/2fU6PxOc2WyDWaJDs8PMT35q5donBnbhQsWDDTmeKhQ4dmf3G1XmBwg+OzLReW1lFhzRrtpKrZCaXtU/eOdqaK407QQxsgMtK8CsgSiWYoWVLkHOt1tzRfCfD/QHyBJd3N9rIsbTMmHDxLQOlG5j9PB4vSPn3EqYDu3UWRdDW4d0+kizdpAu+9p44GiZPyyitix0mvc5rS6GBOsxVyjSbJiVdfFTViBw+Ga9dyv7579+74+fkBsGHDBv7444+sL/QoAlU+FgGBh1a0H+zcWRStXbXK8nt1hNL2qXtH29l6aIPY4ZJIdIfRCHv3ir7aeiRgIDy4BaeyTzt6zDZNKSJt3O89cHEz/1k6SLN0cxOFx/75BxYuVEdDaKgo0D5vnlMc/ZRoibSOCsuXQ2Ki2mq0zZ074tiQxuc0WyHXaJLcmDpVpI4PGZL7tZ6enozNcC4qJCQEU3ZHVmr0h+T7cMKKL+WyZeH11x1+81Bp+9S9o+1sPbQBfHx81JYgkVjO22+Lg7R6LSDkXQEqdITIqZDyMMtLHrPNq7vg3jmo0N7855hMorqXDjYOn38ePvxQtP26dEnZZ0dGisVKSAhUqaLssyUSQHRUuHlTnF+QZI+GizvaA7lGk+RGqVIwYQIsXgw7d+Z+fefOnQkMDARg9+7drFu3LusL85eFSkaImg7JCZYLMxph+3Y4Y0X1cp2gtH3q3tF2xoj20aNH1ZYgkVhOvnzQrp1wtM2pAqJFAgfDvbMQ/V2WHz9mmzHhkN8XSrxg/jMuX4aEBN1EfyZNEt1BUoujKoLJJHp5V6hgXkRAIrELgYFQr57DR4DyjEbbFdoLuUaTmMNHH8Ezz4jjVw+z3rtPx9XVlQkTJqS/Hjp0KMnZndkKGAQJl+GMFUGNVq1EsUe9BkTMQGn71L2jfebU6fSfnSWi/eabb6otQSKxjqAgOHtW9KDVI4VrQbnmEBEm0sL/QybbTEmC2JUimm2wYKrVWfSnWDGYPFm04NyyRZlnLl0q/gnNny/2byQS1QgKgl9+gatX1VaiXWJixFmTMmXUVqIIco0mMQdXV1iwACIiYNas3K9v0aIFzz33HCCcxaVLl2Z9YaFqUL41REyGFAsLqHh7Q5s2Dt1RQWn71L2jffr4cQA83d3TS+A7OosXL1ZbgkRiHc89J/J89RwBCgyG+Eg4/3jqVibbvPQ7JF61rNo46M7RBuFrvPiiiDLb+7jqzZswYIBIjmjc2L7PkkhypX3qsRC9dlRQgpgYKF9eeBZOgFyjSczlqaegVy8YPVrEIHLCYDAwadKk9NcjR44kMbsv3MAhcOcknFttuaigIDh1CnbvtvxeHaC0fRpM2Z6oty/x8fH4+PgQFxdHISt7sphMJrw8PUl8+BD/8n6cjI3J/SaJRKIu48ZBWJhIkfb2VluNdfz2EqQ8gCa7s6/Cted9uLoT3j5mWaWuyZNh/Hi4dUtXFb6OHBGtOEePhmHD7PecHj1E9DwqStRukUhUp1UrOHdOVAaUPE67diLir1TKi0SiI+LioEYNaNAAVpvhFzdt2pSNGzcCMHPmTPr27Zv1hVsaQ+INePMfy9YSKSlQqRK8+aZ6lU4dCF1HtK9du0Zi6sEG/2rVVFajHKGhoWpLkEisp3NnuHsXfvxRbSXWExgM1/+CK9szvZ1um8kJcHa1iGZb6iyntcHRkZMNotVXv36iEvjp07lfbw1794rv/dBQ6WRLNITRKBrKy7O5WeNErb1ArtEkluHjAzNmiCXR+vW5Xz9x4sT0n0NDQ7l9+3bWFwYGw81/4dJmywS5uIhCjytWiHoxDobS9qlrRztjIbRKVfzVE6IwQ2T1H4meqVQJXnoJvv5abSXWU7YpFK4NEZMyvZ1umxc2iD6WlqaNgy5ae2XHyJFQooTobW3rXKmkJFE05oknRIq6RKIZmjWDIkUcuoBQntDxnGYNco0msZR27URnrd694d69nK994okn6NBBrC2uXbvG9OnTs76w1GtQtN5j6xSz6NJFhNqzq26uY5S2T1072s7Y2gvI3qgkEr0QFAS//y7SLfWIwSB2iy9uhJsH0t9Ot82YcCjyBPjUsHxsHUd/ChSA2bNFbShbJyzMnw8HDojiMW4WtCSXSOyOpyd06CCq9GVXCdhZSUgQx4R0OqdZg1yjSSzFYIB58+DCBXFyLDfGjh2LW+oX4dSpU7maVTHGtHXK5S1wba9lgqpXh2ef1Xc9nWxQ2j4dxtF2ltZeAO+9957aEiSSvNGmjVicLlumthLr8WsL3hVFBfJU3nvvPXh4G87/bFnv7DRMJl072gAtW4qW6X37wp07thnzwgUYPhw+/hjq17fNmBKJTTEa4fx52LpVbSXaIjZW/K3jOc1S5BpNYg3VqkFwMEyZApGROV9bpUoVunXrBsCdO3cytf7KhG8rKFgNIsOy/jwngoJgwwa4csXyezWM0vapa0fbGXtog2hWL5HomkKF4J139N1CwsVN9KuM/R5unwJSbfPcT5B83zpH+8YN4Z3qOEPHYIA5c+D6dVEYzRb07w9eXpDdWkIiUZ369cVKWc9HYuyBk/XQBrlGk1hPSAj4+YnjUbktjUaMGIGXlxcA8+fPzxR8TMfFFQIHw9kfIS7KMjHt2onz2t99Z9l9Gkdp+9S3o336TPrPzpQ6Xr58ebUlSCR5x2gUDST37VNbifVUfh88ikHkVCDVNmPCofjz4G3F5p8OW3tlRcWKMGIEzJwJhw7lbazffhM1WaZOFcdgJRJNYjCIOW31asiuOJEzEhMjFuu+vmorUQy5RpNYS758IoV827bcE/7KlCnDp59+CsCDBw8Ynd3OdsXO4FUGIqdYJqZoUWje3OHSx5W2T1072iejxO6Mu6srpUuXVlmNRCKxiNdfh9Kl9T2Ju3lBjU/h9Fdw/xI8iIOLv1pXBA0cKvozYIAI8PXoIbqFWENCgtjZf+UVUaxeItE0nTuLSkbm9OhxFqKjoVw5cHdXW4lEogveeAPee098h968mfO1gwcPpkjqDvQ333zD0aw6H7h6Qo3+EP0t3LOwLo7RCPv3w+HDlt0nSUfXjva5CxcAKFuyFC4uuv5VLOJsbl3tJRI94OYmFqbh4fDggdpqrKdqT3DxgGOzOHtwLZACflaeAYqJETnSxYvbVKIaeHiIAma7dsFXX1k3RliY+E8yf77uup1JnJEKFeDVV/W9eWhrdF5zwhrkGk2SV2bMEHt2w4blfF3hwoUJDg4GICUlheHDh2d9YZWPwNUbIi0sBNa0KRQr5lAdFZS2T916p7du3eJOwn0AKvk7T2svgAYNGqgtQSKxDUYjXLsGGzeqrcR6PApD1e5wYj4NShwULTW8Slk3lk57aGfHK6+ILiGDB4v/zZZw8iRMnAgDB0JAgF3kSSS2x2gUBdHSioA5O07oaMs1miSvlCsH48aJLht7cykY3rt3b8qWLQvAmjVr2LNnz+MXuReEar3h1OeQeN18IR4e0LGjQ3VUUNo+detoZyyEVrlaVfWEqMDKlSvVliCR2IbatUVjZL1HgKp/Ckn3WbnhH+vTxsEh+81OnSpSxy1pXWkyQa9eUKaMqDYukeiG1q3FQculS9VWog0ccE7LDblGk9iC3r2hbl1x/ConHzd//vyMGjUq/XVwcDCmrCqpVe8DphQ4Ps8yIUYjXLwImzdbdp9GUdo+detoO2sPbYD+/furLUEisR1GI6xbJypu65X8ZaFYPfo3Bco0tX4cB4z+lCwpItOLF8POnebds3IlbNokqpfnz29ffRKJTSlYEN59V98dFWzFgweiN5+DzWm5IddoElvg5gaffSaOSM+fn/O177//PlWriqDjH3/8wa+//vr4RflKgP+HcHw2JN01X8jTT4u0Mr0HRFJR2j5162g7a2svgLAwK/rhSSRapWNHsV27YoXaSvJG3YmE7XnB+rRxcNjoz0cfie5H3bvDw4c5XxsfD59+Cq1aiX7cEonuMBrh2DH4+2+1lajLuXMincUB57SckGs0ia147jno1k1kdl28mP117u7uhIaGpr8OCQkhJasqpAED4MEtOPWl+SLSOir8+KP4gtY5Stunbh1tZ45oZ1vsQCLRI6VKwZtv6n+3tNTLDJ//JxisnFbj4+HWLYeM/ri4iLNmEREwa1bO144cCXFxuV8nkWiWRo2gbFn9z2l5xUHaFVqKXKNJbMnEieDpCbkFYtu0acNTTz0FwIEDB/j+++8fv8i7AlToKFqSpuSy652Rzp1FG5AffrBAuTZR2j5162hHn4lO/9nZItoZd60kEofAaIQ9e+D4cbWV5Ik82aaDL0qffFKcORs9GrIr+rl/v0gXHz0a/PyUVCeR2BBXV8foqJBX0uY0JzNmuUaT2JKiRWHKFFi+HH77LfvrXFxcmDRpUvrr4cOH8zCrFLLAwXDvLESHmy/C11dsIDrA5qHS9qlbR/tkpOih7eriQrly5VRWoyz/+9//1JYgkdiW5s3Bx0f3LSTyZJsO1EM7O8aNg0KFoG/fxz9LSRFFXwIDReq4RKJrunQRdSfWr1dbiXpER0Pp0qI4nBMh12gSW2M0wksviSKhCQnZX/f666/z2muvAXDq1Cm+/DKLFPHCtaBcc4gME8XRLBGxbdujtYpOUdo+detonz0vQiKlixXHzc1NZTXKslHPrZAkkqzw8oK2bcVuaVbninRCnmwzJka00ihd2naCNEahQqI/6I8/Pu5/LFoEf/0lir+4u6ujTyKxGbVqwVNPOUQEyGocsLijOcg1msTWGAyiINqZMzB5ck7XGZg4cWL66zFjxnDv3r3HLwwMhrgIOP+z+SLeeQe8vXXfUUFp+9Slo33nzh1u3bkDQIVKlVRWozw1a9ZUW4JEYnuCgkTv2e3b1VZiNXmyzehokWLpostp2WzatoXGjUUaedr3/5UrEBwM778PL76orj6JxGYEBYkdJUubyDsKDlrcMTfkGk1iD2rWhAEDYMIEOHky++vq16/Pu+++C8ClS5eYPXv24xeVeB5KNISjE83vjlCggGhfqPOOCkrbpy5XdBkLoVWpUV1FJeoQFxentgSJxPY8/zxUrqzrCFCebNNJoj8GA8ybJyqojh8v3hs0SOwv5LRTL5HojvbtxYJU7x0VrMVJ5rT/ItdoEnsxYoRIeuvdO2dfNzQ0FJfUTfuwsDBu3rz5+EWBwXB9D1zdYb6AoCA4cUKkn+kUpe1T9462sxVCA7h9+7baEiQS25PWQmLlykehTp2RJ9t0okVp1aoigj1lithX+eYbCAuD4sXVViaR2JCSJaFpU11vHlpNcrKoeugkc1pG5BpNYi+8vWH2bPj1V1i1KvvrAgIC6Nq1KwC3bt3KuqVV2aZQuDYcnfT4Z9nxyitQvryu5zSl7VOXjrYz99AGYUASiUPSpQvcuQNr1qitxCryZJtOlmYZHCwy5Xv0gAYNQNYPkjgkRiPs3QtRUWorUZYLFyApyanmtDTkGk1iT1q0EH/69s25rfWoUaPw9PQEYNasWZw/fz7zBQaDiGpf3AA3D5r3cBcX0VFh+XJITLTyN1AXpe1Tl462M/fQBti0aZPaEiQS+1C5sjik+/XXaiuxCqtt8949uHrVqaI/+fLBBx+IX71/f4c/mi5xVt5+GwoX1nUEyCocvF1hTsg1msTezJ4NcXEwcmT21/j5+dGrVy8AEhISGDduXBYXtQXvihCRRcQ7O7p0gZs34WcLCqlpCKXtU5dLm+gzZ9J/dsaI9gcffKC2BInEfgQFwebN8N/dVx1gtW2mLUqdbOMwJAT27YM2bdRWIpHYiXz5xFntb7/VdUcFi0nLPJRrNInE5lSoIJzsOXNg//7srwsJCaFgwYIAfPHFF5w4cSLzBS5uEDAIYlfAndPmPTwgAJ55Rrebh0rbpy4d7VNRxwBRxr58+fIqq1GeWbNmqS1BIrEf770n+jt9953aSizGatt04ujPU0+prUAisTNGI5w7J3rQOgsxMVCsmKhU7GTINZpECfr1gxo1xPGr7PbwihcvzqBBgwBITk5mxIgRj19U+X3wKAYRU8x/eFAQ/PKLyMTTGUrbp8FkUqdGe3x8PD4+PsTFxVGoUCGL7i1euDDX4+IoWaQIl2/csJNCiUSiGu3bw5EjcPiwOEfk6CxcCL16QUICuLmprUYikdgSkwmqVYMXXoAlS9RWowwffSTSVfbtU1uJROKwbN8OL78MCxbAxx9nfc2dO3eoXLkyV1Od4n/++Yenn34680VHJ8DhsdAyGrxK5/7ga9egbFmYNg0++SRvv4SDo7uIdkJCAtdTS7NXqFBRXTEqERoaqrYEicS+GI1w9CgcOKC2Eouw2jajo8HXVzrZEokjktZRYdUqUezRGXCy4o4ZkWs0iVK89JIILgcHw5UrWV9ToECBTJHsoUOHPn5R1Z7g4gHHzIz2Fi8OzZrpsp6O0vapO0c7NjY2/Wdn7KEN0KNHD7UlSCT2pUkTKFVKd5O41bbpRK29JBKnpEsXuHsXfvxRbSXK4MRzmlyjSZRkyhSxl5eaIZ4lH330UXrx6E2bNrFly5bMF3gUhqo94MR8eGBmn2mjUWSsHD1qlW61UNo+dedoZ2rt5aS7pd9//73aEiQS++LmBp06iXPaDx+qrcZsrLZNJ47+SCROQcWKIsdTpwWELCIlRTjaTjqnyTWaRElKlIBJk8TU8scfWV/j6emZqep4SEgIj50crvEpJCfAyQXmPfitt6BoUVHoUUcobZ+6c7SdvbUXQIMGDdSWIJHYH6NRFNr49Ve1lZiN1bbpxNEficRpMBrh999FYTRH5soV0WPXSec0uUaTKM2HH8Jzz4nCaA8eZH1Nhw4dqF27NgB79+5lzZo1mS/wKgOVu0LUDOFw54anJ3ToAEuXQnJynvQridL2qTtHO1NE20kn8bNnz6otQSKxP3XrQp06uooAWWWbiYlw8aLTLkolEqehTRuxOF22TG0l9sWJuyiAXKNJlMfFRRREO34cpk/P+hpXV1cmTJiQ/nrYsGEkJSVlvihgECRehdNmHtszGkUr1q1brVSuPErbp+4c7YwRbWd1tA3OUIVZIgExif/0E9y8qbYSs7DKNs+eFVWJnTRDRyJxGgoVgnfeEbUn1Gn4ogxpAREnndPkGk2iBnXrQp8+MHbsIxP8L82aNeOFF14AIDIykm//m/ZdsAqUbwORkyElKYsR/sMzz0D16rqqp6O0ferO0T597Hj6z87qaPv6+qotQSJRho4dxRltnZx5s8o2nTz6I5E4FUYjREY6dturmBixqVC4sNpKVEGu0SRqMWaMODbdp0/WnxsMBiZNmpT+etSoUSQk/CdNPHAI3DkNZ3/I/YFpHRVWr4bbt/OgXDmUtk/dOdpnTp8GoGjBQuTPn19lNeqwZ88etSVIJMpQpgy88YZu0setss3oaPFlVb68zfVIJBKN8frrYl7TyZxmFU5e3FGu0SRqUbAgzJwJ69bB2rVZX/Piiy/SrFkzQKRRf/bZZ5kvKPoUlG4CEZPMy7zp3Bnu3xfOtg5Q2j515Wg/ePCAKzdvAOBX3k9lNerRpk0btSVIJMphNMKuXXDypNpKcsUq24yJEQtvT0/bC5JIJNoiraNCeHj2VYv0jpMXd5RrNImatG4Nb74potp372Z9zYQJE9JTqMePH098fHzmC2oGw80DcHFT7g/084NXX9XN5qHS9qkrR/vcuXOkpO6u+DtpD22ABQvMLL0vkTgCLVuKNEQdtJCwyjadfFEqkTgdRiNcuwYbN6qtxD44+Zwm12gSNTEYYO5cUfx/7Nisr6lTpw4dO3YE4Pr160ybNi3zBSVfgWL1RVTbHIxGURAtNtZ64QqhtH3qytHO1NqrUkX1hKjM8OHD1ZYgkSiHlxe8957YLU1JUVtNjlhlm06eZimROB21a8MTT+iqgJDZmExOP6fJNZpEbfz9YehQUYH8yJGsrxk7dixubm4ATJs2jStXrjz60GCAwGC4sg2umZFq/e67Yq22dGnexdsZpe1Tv462E0/ioaGhakuQSJTFaBSLtz//VFtJjlhlm04e/ZFInBKjURykvHFDbSW25cYNka/qxHOaXKNJtMDgwVC5MvTsmfVR68qVK/Pxxx8DcPfuXcaPH5/5At+WUKg6RITl/rCCBYWz/c03mu+ooLR96srRlj20BZ9++qnaEiQSZXnxRahUSfNngCy2zaQkOHfOqaM/EolT0rGjyNBZsUJtJbbFyVt7gVyjSbSBpyfMnw87dmSfPDN8+PD0wtKfffZZJj8LgwsEDIFzayAuMvcHGo1w7Bj8/XeetdsTpe1TV462jGgLFi1apLYEiURZXFygSxfR5uv+fbXVZIvFtnn+PCQnO3X0RyJxSkqVEhWLNL55aDGyXaFco0k0Q6NG0KEDDBoE168//nnp0qXp168fAA8fPmTkyJGZL6jYCbzKib7aufHaa1CunObnNKXtU1eO9inZQxuApk2bqi1BIlGeLl1En8bselZoAIttUy5KJRLnxWiEPXvg+PHcr9ULMTHirGbx4morUQ25RpNoienTRYODkJCsPx80aBBFixYFYOnSpRw+fPjRh64eEDAAziyFu7kUOnN1Fa2+NN5RQWn71JWjndZDu2D+/BQqVEhlNeqRyQgkEmehShV4/nlN75ZabJtpaVrS0ZZInI/mzcHHR9NzmsWkFUJLbR3kjMg1mkRLlC4N48fDokWwe/fjn/v4+BCS6oWbTCaGDRuW+QL/buBeCKKm5/6wLl1EnYb1622g3D4obZ+6cbSTk5O5eFVUxPMr56uyGnUpXLiw2hIkEnUwGuHXX+HiRbWVZInFthkTAyVKQOoZKYlE4kR4eUHbtqJ1ocY7KpiNLO4o12gSzdGjBzz9tPg7Kenxz3v16oWvr/Ct1q1bx86dOx996F4Aqn0CJxdBwrWcH1SzpniQhjcPlbZP3TjaFy5cIDn1i8iZe2gDFCxYUG0JEok6tG0L7u7w3XdqK8kSi23TydvgSCROT1CQ6D27fbvaSmyDnNPkGk2iOVxdYcECOHQI5sx5/HMvLy9Gjx6d/jo4OBhTxurh1XqLv4/Pzf1hRqOIaF/LxSlXCaXtUzeOdsZCaJUqV1ZRifpERppR/U8icUSKFIEWLTS7W2qxbcroj0Ti3Dz/vOjBo9E5zWLknCbXaBJNUq+eiGiPHCmanfyXoKAgqlcXgcw///yTDRs2PPowX3Go0g2Oz4GHd3J+UIcOosWXRjsqKG2funG0ZWuvRzRu3FhtCRKJehiNYlv24EG1lTyGxbYpF6USiXNjMIg5beVKuHdPbTV5Iy4Obt1y+jlNrtEkWmX8ePD2htRC45lwc3PL1Es7JCSElIxHWmr0h4fxcOqLnB9SogS89ZZmNw+Vtk/dONoZI9rO7mgvWbJEbQkSiXq88YaYyLNrDKkiFtlmSopIGXXyNEuJxOnp0gXu3IEff1RbSd5IW6c5+Zwm12gSrVK4MEybBqtWwcaNj3/+7rvvUq9ePQAOHTrE8uXLH33o7SfafUVNg+RcqoobjbB3L0RF2U68jVDaPg2mTEn4yhEfH4+Pjw9xcXFmVRD/6KOP0nuf7du3j6eeesreEiUSiVb59FPRQuL8eXBzU1uNdVy4IHpO/vSTqD4skUicl4YNRVHEX39VW4n1rFsnjvacPw9ly6qtRiKRZIHJBK+/LsopHDkiajJm5Pfff+f1118HoHLlykRGRuLh4SE+jIuA9TXhua+gctfsH5KYKMqd9+gBEybY5ffQC7qJaJ8+cTL9Z2ePaIeGhqotQSJRl6AguHIFNm1SW0kmLLLNtOMwTh79kUgkiDlt82bhpOqV6Gjw8BALbCdGrtEkWsZggHnz4OxZmDjx8c8bNWqU7mifPn2aL77IkCruEwi+LSEiDEw5dErw9IT27TXZUUFp+9RNRLuyb3nOnD9Hfk9P7ty/j8GJezQmJSXhptconkRiC0wmqFNHtJLImNqkMhbZZng4dOwozjWaMQdKJBIHJi4OSpWCceNg0CC11VjHwIGwdi2cOKG2ElWRazSJHhg+HKZMgcOHoVq1zJ/9/fff1K9fH4BSpUpx6tQpvL29xYfX9sCmBtDwRyjfKvsH7NkDDRrA77/Da6/Z55ewAqXtUxcR7ZSUFM5fvgSAb5myTu1kA0ydOlVtCRKJuqQVEFqzRhTf0QgW2WZMjDgwJZ1siUTi4wOtWonaE+rEP/KOLO4IyDWaRB8MGyZOr/Xs+fiU88wzz9CmTRsALl++zKxZsx59WPw5KPkyREzMea569lmoWlVzRdGUtk9dONpXrlzhQWqH9crVqqqsRn3at2+vtgSJRH06dYKHD0W1Xo1gkW3KfrMSiSQjRiMcPQr796utxDrknAbINZpEH3h5wdy5IuCcVWJgaGgorq6uAISFhXH9+vVHHwYGw/W9cOWP7B+QFhBZtUoUe9QIStunLhztjBXHK1epoqISbfDnn3+qLUEiUZ+yZUVFDw3tllpkmzL6I5FIMtKkiUgf19CcZhFyTgPkGk2iH956C959F/r3F6dXMlK9enXef/99QBz3nTRp0qMPy7wBhetCxCRypHNnuHtXUx0VlLZPXTjasod2ZuR/A4kklaAg+PNPOHVKbSWAhbYpoz8SiSQjbm4iU+e770S2jp64exeuXpVzGnKNJtEXM2fC7dvizPZ/GTVqFJ6engDMmTOHc+fOiQ8MBhHVvvgr3MghA6diRXj5ZU1tHiptn7pwtDNGtCvKSZzk5GS1JUgk2qBVKyhQAJYuVVsJYIFtmkwy+iORSB7HaBQOq97afMXGir/lnCbXaBJdUb48jBkD8+fDvn2ZP/P19eWTTz4BIDExkTFjxjz60K8NFKgsKpDnRFCQyE9Pc9JVRmn71IWjLSPambl48aLaEiQSbZA/P7z3ntgt1UABIbNt89o1uH9fLkolEklm6tYVHRW+/lptJZaRFhCRc5pco0l0R58+oolL9+7wXz80JCQEHx8fABYvXkxUVJT4wMUNAgbB2ZVw+yTZ0ro15MunmYCI0vapD0f71On0n6WjTXrJfYlEgogAnT4NO3eqrcR825Q9tCUSSXYYjfDTT3DzptpKzCc6GlxdRRljJ0eu0SR6w90dPvsM/vkHFi7M/FnRokUZPHgwILpAjRgx4tGHlbuCZwmInJL94IUKwTvvaCYgorR96sLRPnX8OACebu6UKlVKZTXq88MPP6gtQSLRDi+9JKIoGjgDZLZtyuiPRCLJjo4dISkJvv9ebSXmExMDvr7inLmTI9doEj3ywgvwwQcwdChcupT5s759+6b7X6tWreLvv/8WH7jmgxr94PQSuJ9DpNhohMjIx3PTVUBp+9S8o20ymTh74QIAZUuVcvoe2iD+wUskklRcXKBLF7EovX9fVSlm22Z0tDhbXrSoXfVIJBIdUqYMvPGGJjYPzUYWd0xHrtEkeiUsTOyVDRyY+X1vb29GjhyZ/nro0KGPPqzSXTjcUTOzH/j118W8poE5TWn71LyjfePGDe4/SATAv1o1ldVogylTckjRkEickS5dRG+KdetUlWG2baYVQpMbhxKJJCuMRti1C07mcPZRS8jijunINZpErxQrBpMnw7JlsGVL5s8+/PBDKleuDMDmzZvZvHmz+MDDB6r2hBOfwYNbWQ/s6ipafYWHw4MH9vsFzEBp+9S8o52xEFqlKv7qCdEQw7OqwS+RODPVqsFzz6m+W2q2bcpFqUQiyYmWLcXZRg1EgMxCzmnpyDWaRM907SrSyHv2hMTER+97eHgwbty49NchISGY0s5cV+8LKQ+Es50dRqMoBLthg32Em4nS9ql5Rztjay9ZCE0QGhqqtgSJRHsYjbBxI1y+rJoEs21TpllKJJKc8PISHRW+/RZSUtRWkzOJiXDhgpzTUpFrNImecXERhdFOnoSpUzN/1r59e+rUqQPAP//8w+rVq8UHXqWh8vtwbCYkZXOEr1YtePJJ1TcPlbZPXTnasoe24H//+5/aEiQS7dGunUhP+u471SSYZZuyh7ZEIjEHo1Fsyv35p9pKcubsWfG3nNMAuUaT6J/ataFfPwgNFU1d0nBxcWHixInpr4cNG0ZSUpJ4ETAQEq/BmSXZD2w0iiN+N27YR7gZKG2fmne0ZQ/tx9mgctqFRKJJihaF5s1V3S01yzZv3YL4eBn9kUgkOfPii1CpkuoRoFyR7QozIddoEkdg1CgoUQI++SRzV66mTZvSsGFDAI4dO8bXX38tPijoD35tIWIKpCRlPWjHjiJDZ8UKO6vPHqXtU/uO9pkz6T/LiLYgLW1DIpH8B6MRDhyAQ4dUebxZtilbe0kkEnPQUEeFHImJEYUdy5dXW4kmkGs0iSNQoADMmgW//AI//vjofYPBkCmqPXr0aO6nzU+BQ+DuGYhdmfWgJUtC06aqbh4qbZ+ad7RPRh4DwNXFhTJlyqisRhvcUDHlQiLRNG++CcWLi3ONKmCWbUpHWyKRmEuXLnD7NqxZo7aS7ImJEa17PDzUVqIJ5BpN4ii0agXNmkHfvnDnzqP3X3jhBZo3bw7AuXPnmD9/vvigyBNQ5k2ImJQ5DJ4RoxH27IFjx+yqPTuUtk/NO9pnL5wDoGyJkri6uqqsRhvcvXtXbQkSiTbx8IAOHWDpUkjKJnXJjphlm9HRkC8flCpldz0SiUTnVKkCzz+v7fRxWdwxE3KNJnEUDAaYMweuX4fRozN/Nn78eAypLUonTJhAXFyc+CAwGG4dgosbsx60eXPw8VEtIKK0fWra0Y6Li+P2vXsAVPKXrb3SqFGjhtoSJBLtYjTCpUuQ1uNRQcyyzZgY8POTPbQlEol5GI2waRNcvKi2kqyRxR0zIddoEkeiUiUYPhxmzsx8Kq927dp07twZEFHi9P7UJV+CYs+JqHZW5Msniteq1FFBafvUtKOdseJ45WpVVVSiLTar4EBIJLrh6achMFCVCJBZtimjPxKJxBLatgV3d1U7KuSInNMyIddoEkdj4ECoWhV69MjsG48dOxZ3d3cAZsyYwaVLl0QQoWYwXNkOV3dlPWBQEMTGwvbtCqjPjNL2qRtHWxZCe0TXrl3VliCRaBeDQUSAfvxRVPdWELNsU0Z/JBKJJRQpAi1aaDN9PCkJzp+Xc1oG5BpN4mh4eMD8+bBrF3z11aP3K1asSI8ePQC4d+/eox7V5ZpDoQCICMt6wAYNwN9flTlNafvUtKMtW3tlzezZs9WWIJFom06dIDERVq1S9LFm2aZ0tCUSiaUYjSJv88ABtZVk5vx5SE6Wc1oG5BpN4oi8+ip07gyDB8O1a4/eHzZsGN7e3gAsXLiQ06dPg8FFVCA//xPcOvr4YGkBkZUrQeEz00rbp6YdbRnRzprhw4erLUEi0Ta+vtCoEaT1d1SIXG3zzh1RVUTOZxKJxBLeeEM0tdVaVFv20H4MuUaTOCpTp4rU8SFDHr1XsmRJBgwYAEBSUhIjR44UH1ToAPnLZx/V7txZrIkU7qigtH1q29GWEe0sSU/NkEgk2RMUJM7/nDmj2CNztU3Z2ksikViDu7vI1Fm2TJWOCtmSNqf5+amrQ0PINZrEUSlVCiZMgMWLYefOR+8PGDCAYsWKAfDdd99x8OBBcPWAgIEQ8x3cjXl8sMqVoWFDxTcPlbZPTTvaJyOjAHAxGPD19VVZjXbo2bOn2hIkEu3zzjvg7S1afSlErrYpoz8SicRajEa4ckVUINcK0dFQsiTkz6+2Es0g12gSR+ajj+CZZ6B7d3j4ULxXqFAhhg0bBoDJZEr/Gf8PwKMwRE7LerCgINEh5vx5+wtPRWn71LSjHXv2LAClihZLr2ongfDwcLUlSCTax9sb2rQRu6UmkyKPzNU2Y2LAzQ3KlFFEj0QicSCeeAJq1dJW+risOfEYco0mcWRcXWHBAoiIgFmzHr3fo0cPypcvD8D69evZsWMHuHlDtT5w6gtIuPr4YG3aiEprCnZUUNo+Neto3717lxu3RcXgCjL6k4mGDRuqLUEi0QdGI5w8CXv2KPK4XG0zJgbKlxffVBKJRGIJaQWE1qyBW7fUViOQjvZjyDWaxNF56ino1QtGj4bUmCj58uVjzJgx6deEhIRgMpmgWi9RHO34nMcH8vGBVq1EPR2FAiJK26dmHe3Y2Nj0n6vUqK6iEu2RsRq7RCLJgVdeEY6tQkXRcrVN2W9WIpHkhU6dRL7mypVqKxHIOe0x5BpN4gyMGwcFC0Lfvo/e69KlCwEBAQDs3LmT9evXg2cx8P8Ijs+Fh7cfH8hohKNHYf9+RXQrbZ+adbQzVhyXEe3MuMpomERiHi4u0KULrFgBCQl2f1yutimjPxKJJC+ULQuNG2sjfTwlBWJj5Zz2H+QaTeIM+PjAjBnw44+wfr14z83NjfHjx6dfExISQnJyMgT0h6Q7cHLR4wM1bgylSys2pyltn5p1tGUP7ewpI893SiTm06WLSLP8+We7PypX25TRH4lEkleMRvjzTzh1Sl0dFy+K6Lqc0zIh12gSZ6FdO3j9dejdG+7dE++1atWK+vXrA3DkyBFxJjq/L1TsDFHTIDkx8yBubiJT57vvHlVXsyNK26dmHW3ZQzt7/v77b7UlSCT6oUYNqF9fkd3SHG0zIQEuX5bRH4lEkjdatYICBRTtqJAlsl1hlsg1msRZMBhg3jy4cAHSAtkGg4FJkyalXzNixAgSExMhYBDcvwjRyx4fyGiEq1fh11/trllp+9Ssox2dofetjGhn5t1331VbgkSiL4xG2LBBtMaxIznaZlrdCTmfSSSSvJA/P7z3nqIdFbJEOtpZItdoEmeiWjUIDoYpUyAyUrz36quv0qRJE0BkKH/++efgEwC+rSByMqQkZx6kTh2oW1eRejpK26dmHe1Tx46n/+zn56eiEu2xcOFCtSVIJPqifXux9Wrntg452qbsoS2RSGyF0QinT8POneppiI6GIkWgUCH1NGgQuUaTOBshIeDnBz17Ptr7mzhxYvrn48aN4/bt2xA4BOKPwfm1jw9iNMJPP8HNm3bVqrR9atbRTksdL+5TmHz58qmsRlsMHz5cbQkSib4oVgzeftvu6eM52mZMjCjO5utrVw0SicQJeOklEUlWsyiaLO6YJXKNJnE28uUTKeTbtsGy1Mzwp556inbt2gFw9epVZs6cCcWfhVKvwtFJj2fjdOwIycnw/fd21aq0fWrS0U5MTOTKzRsAVJDR7McIDQ1VW4JEoj+MRvj3XzhyxG6PyNE2o6OhXDlwd7fb8yUSiZOQ1lHh++/h/n11NMjijlki12gSZ+SNN8SJlgEDHgWlx40bl17le8qUKVy7dg0Cg+HG33B5a+YBSpcWg9h581Bp+9Sko302rfs5UCWghopKtEn//v3VliCR6I+33oKiReHbb+32iBxtU0Z/JBKJLenSBeLiYN06+4y/GBiZw+dyTssSuUaTOCszZojq48OGiddVq1blww8/BOD27dsinbx0YyjyJERMenwAoxF27YKTJ+2mUWn71KSjnam1l9wtfYzPPvtMbQkSif7w8IAOHUSl3uTk3K+3ghxtMyZGRn8kEontqFYNnnvO9gWEjgNtgA+ACcDhLK4xmeSclg1yjSZxVsqVg3HjYMEC2LtXvDdy5Mj0I8Dz5s0j9uxZEdW+9Bvc2Jd5gBYtRM0HO0a1lbZPTTrasrVXzrz99ttqS5BI9InRKPpQ/P67XYbP0Tajo2X0RyKR2BajUbTEuXQp72NdBnoCgcBe4HOgFtASuPafa69eFSnrck57DLlGkzgzvXuLAuI9eoiYRtmyZenbty8gjgaPGTMGyreGAlUgIizzzV5e0LatyDxMSbGLPqXtU/OOtmzt9TgHDx5UW4JEok+eeUb01bbTbmm2tvnggXDw5XwmkUhsSbt24Oqat44Kt4HRgD8QDkxCRLW7AWtTP38PeJjhHtnaK1vkGk3izLi5wWefwf79MH++eG/IkCEULlwYgCVLlhB57DgEDobYVRB/PPMARqMITPz5p130KW2fmnS0M6WOy0n8MYoVK6a2BIlEnxgMYhJfvRpu37b58Nna5rlzYndWZuhIJBJbUrQoNG9u3ebhQ2A+UAXhXPcETgMDgbRmLxWAH4A/gX4Z7pXtCrNFrtEkzs5zz0G3bjB8OFy8CEWKFGHIkCEApKSkiMrflYzgVRoip2S++cUXoVIluwVElLZPTTrapzP00JaO9uN4eXmpLUEi0S+dOkFCAvzwg82HztY2ZfRHIpHYC6MRDhyAQ4fMu94ErAJqAr2BpogI9mSgSBbXvwTMBeYh0slBzGkFCog+2pJMyDWaRAITJ4KnJ6TVHuvTpw9lypQBYPXq1ezddxCq94MzX8O9849uTAuI2KmjgtL2qUlH+8zp0wAULlCAAgUKqKxGexw/fjz3iyQSSdb4+cGrr9q+gBA52Gaaoy3bFUokElvz5ptQvLh5EaAdwPOIVHB/4ACwBMhtavoY6AH0Sh0jrRCawWCtaodFrtEkEpFsM2UKLF8Ov/0G+fPnZ+TIR20MgoODMVX5CFzzw7GZmW/u0kVkHa5ZY3NdStun5hztpKQkLt+4DoCfb3mV1WiTRo0aqS1BItE3RiNs2/bIAbYR2dpmdLToEZkvX9afSyQSibWkdVRYtgySkrK+JgJogYhOPwR+BzYAdSx4zizgBaA1EBktM3SyQa7RJBKB0QgvvQS9eolEwg8++AB/f38Atm7dyuY/9kK1XnBiATy4+ehGf3944QW7pI8rbZ+ac7TPnz9PcmqlOf8asod2Vnxth0icROJUtG4N+fOLVl82JFvblP1mJRKJPQkKEpXHN2/O/P554EOgNnAEUexsL/CaFc9wB1YC3sDOGCgr57SskGs0iURgMIiCaGfOwOTJ4O7uTmhoaPrnwcHBpFTpDaYkOD4/881GI2zaJA552xCl7VNzjnbGQmgVK1VUTYeWGT58uNoSJBJ9U6CAcLa/+Ub0g7UR2dpmdLQsGiSRSOzHU09BYOCjCFAcMBSoiqgcPgOIAtqTt5VfCWCNCRKi4a+K4ry3JBNyjSaRPKJmTRgwACZMgJMnoW3btjz55JMA/Pvvv6xavwMq/w+OzYKke49ubNsW3N3hu+9sqkdp+9Scoy17aOdOxt0giURiJUYjHD8Oe/fabMhsbVNGtCUSiT1JKyD0448QFi/OX89EVAo/CfQBPGz0LL9bwG04VAHG22hMB0Ku0SSSzIwYIU7P9e4NBoMLEydOTP9s+PDhPKzSFx7cgNNfPbqpcGFo2dLm6eNK26fmHG3Z2it3QkJC1JYgkeifV1+FcuVsWhQtS9tMToazZ2VEWyKR2I8UwLsTJCRCyEp4BziBcIR9bPystIDIhxVhBCJiLklHrtEkksx4e8Ps2fDrr7BqFTRp0oRXXnkFgBMnTvDVym3g1060+kp5+OhGo1F0UzhwwGZalLZPzTnaMqKdO5MnT1ZbgkSif1xdoXNnURIzMdEmQ2ZpmxcuiAJFcuNQIpHYg9+B+sAnvlC8ETz9DSwCytnpeWkBkbEVRGG0zojz3xJArtEkkqxo0UL8+fRTuH3bkCmqPWbMGO5V7AN3YyDm+0c3NWkCJUvaNKqttH1qztE+feJk+s8yop01HTt2VFuCROIYGI1w8yasX2+T4bK0TdlDWyKR2IODwJvA64hCZduBGUHwz3ZRfchexMSIDgqlS4rWYJURFc2v2++RekKu0SSSrJk9G27dglGj4LnnnqNVq1YAXLhwgbnL/oCyb0HEpEe1c9zdoVOnnDsqWIjS9qlBR/sEAAXyeVG4cGF1xWiU7du3qy1BInEMAgOhXj2b7ZZmaZtp0R/paEskElsQCwQBTwKngVXALqAh8M47Ik/Txh0VMhEdLeYzgwEKIFLHbyN6cz/M8U6nQK7RJJKsqVABRo4UDveBA+K8tIuLcEUnTpzIzbK9IO4IXPjl0U1GI1y5IiqQ2wCl7VNTjnZKSgoXrl4BoHw5e+U86Z9KlSqpLUEicRyMRhHRvnYtz0NlaZsxMVCsmKh0LpFIJNZyExgEVAN+BeYBRxHp24bUa7y9oU0bm3dUyMR/iztWRDj7O4D+9nnk/9u78zid6/WP469ZMrahaGyFEJVColKdRJxKjhI5WXK3b05aTpuk5dSEUg6J+kUqS6Roc067lM6pFGk5KIZBWZKdWTBz//64ZswM94x7Zu75Lvf9fj4e88DMvVzF5/5+Pt/r87kuP9EcTaR4d94JJ54It9wCJ510MoFAAIDt27cz6qUFcPTZltXO16YNtGoVsYSI0+PTUwvtDRs2sD8nB4BmJ5zgcjTetT9C2ydEBOjb136dMaPcLxVybK5Zo0JoIlJ2WcAobIv2c8D9WCXxW7At4wcLBKyPzpdfVkw8oT7TzgPGAc8Ckyrmbf1CczSR4lWqBM89B199BZMmwSOPPEKlStYSYczYsWyofSNs/gJ+/8KekN9R4a23bN95OTk9Pj210C5cCK1Js6YuRuJtGzdudDsEkeiRkgIXXxyRu6Uhx2b+NksRkdLIAaZgGez7gf5AGvAwtmW7OJ06QcOGEW+Lc0Bxn2k3530NAr6omLf2A83RRErWsSNcdRUMGQJVqjRm0KBBAGRmZvLYpK+g5smw9ImCJwwYAPv2weuvl/u9nR6fnl1oqxBa8dq1a+d2CCLR5aqr4NtvYenScr1MyLGpHtoiUhpB4H3gNOws9hnAUmyreN0wnh8fDwMHwmuvQVZWZGPbtQu2bi3+M20scBbQCztLHoM0RxM5vFGj7Nd774WhQ4dSPe943cRJk1hZ9RpYPxe2/2gPql/fKpBH4Oah0+PTUwtt9dAOz1tvveV2CCLRpXt3OOoomDq1XC9zyNjMzdXWcREJ3yKsing3rP/1l9j55xalfJ2BA22b5dy5kY0vPyFS3GdaJSzeqkBPICOyb+8HmqOJHF5KCowcCa+8AsuWpXD33XcDtrX7oRe+gWqNi2a1AwH44gtISyvX+zo9Pj210FYP7fAMHjzY7RBEoktSkp3VnjYN8upElMUhY/P3361Ht24cikhJVgH9gPbARuAd4DOgQxlf78QT4YwzIr99PJx2hSlYJfKfgWuwDH0M0RxNJDzXXw8dOlhhtFtv/TtHH300ADNmvsaSYF9YMxN257UqvPRSSE4ud0cFp8enpxba6qEdnqeeesrtEESiTyAAv/4Kn35a5pc4ZGzm79LRjUMRCeUP4A7gRKwP9iSsP3YPCiqJl1UgAO+9Zzf8IiU93Xrb1q9f8uPaYOfLZwHDI/f2fqA5mkh44uOtMNry5TBpUjLDhg078LOh//cdVDoKlj1t36haFfr0KXdHBafHZ1wwWFH9H0q2c+dOatasyY4dO6hRowYAxzdqTNq6tVSuVImMrCzi4sp7lRERCVMwCCecYLdXI5UFeu01y5Rv2wZHHhmZ1xQR/8sAxgD5OyPvwxbcVSP4Hlu22IJ41Ci4/fbIvOa998Ls2eFv33wE+AeW4b4kMiGISHS580544QX47rts/vznFqxdawUe5k++lvOqvgqXroHKdeCzz6zY44IF8Kc/uRt0mDyT0Q4Gg/y6cQMAx9arr0V2CVJTU90OQST6xMVZUbTZs2H37jK9xCFjc80aqFFDi2wRMfuxrHVzbBF6DVZJfCiRXWQD1K4Nf/lLZLePl7a440PAZcAArOd3DNAcTaR0Hn3Upkn33JPEo48+euD7Q/7vB4IkwM/P2DfOPdd2CJbjM83p8emZhfbmzZvJ3rcPgKbNm7scjbddf/31bocgEp2uvBIyMmDOnDI9/ZCxmZ6ubeMiYueU38G2VN+A9Z1ejmW1j67A9w0EYPFi+OmnyLxeaT/T4rEt5E2wjPaWyIThZZqjiZROcjKMGQPvvAM1alzJySefDMBXX3/LO791hV/Gw76dBR0VZs2CzMwyvZfT49MzC+3ChdCaNj/exUi8791333U7BJHo1LixbUsq493SQ8amWnuJyFfYwvpSoB7wLfAq0NSB9774YqhVK3JZ7bJ8plXHto7vAK7AsvpRTHM0kdK7/HK48EK4444EHnqooLDD0EnLyNm3G1a+YN8YOBB27LBVeRk4PT49s9BWa6/wnXrqqW6HIBK9AgGYNw/WrSv1Uw8Zm8poi8SuX4DLsb7SO4D3gI8BJ9u4VqoE/fqVu6MCYBmkTZvK9pnWBGv79RlwV/nC8DrN0URKLy4Onn3WPmIWLerBWWedBcDSZb8wbfnZsHw05GRD8+Zw1lllvnno9Pj0zEJbrb3Ct2VLDOy9EnFL795QuXKZWkgUGZvBoDLaIrFoEzAIaAksBF4BFgMXUf5K4mURCMCGDfDJJ+V7nbwCRWX+TOsEjAWeAV4sXyhepjmaSNkcfzwMHQqjR8dx000jD3z/oZdXkr1zA6yeat8IBOCDD2DjxlK/h9Pj05MLbWW0S5ZZxnMJIhKGGjWgV68ytZAoMja3boU9e7TQFokVu7ECZ82AGcBILKsdABLcC4vTT7e+2uXdPh5OD+3DuQW4Ke/X/5QvHK/SHE2k7O67D5o0gcmTO9KtWzcA1q5bz/OLWsOyJyE3B664AhISYMaMUr++0+PTMwvt1WmrDvxeC+2SNVexOJGKFQhYY8dvvy3V04qMTfXQFokN+4DngOOxxfUtWCXxu4HKLsaVLy7OPtPmzIFdu8r+OunpVozo2GPLEQuW0e4A9ALWlv2lvEpzNJGyS0qCCRPg88+hQ4eCs9qpr65l1+8r4Nc34aij4JJLynTz0Onx6ZmFdtrPPwNwREIC9erVczkab/v000/dDkEkunXpYv1nS/khXmRsRiL7IyLeFQRmA6cAfwMuxDLYo4BaLsYVyoABkJUFb7xR9tdYswaOOQaOOKJ8sVTCzmtXBnpiPcWjiOZoIuXTtSv07Qvjxp1K7979APhjy3ZGf94Elo603YaBACxZAj/8UKrXdnp8emKhHQwGWbf+NwAa1KlLfLwnwvKsQCDgdggi0S0hwVp9zZgBe/eG/bTAJYXGZno6VK0KR1dk7x4RccUC4Gys2FlT4DvsLHYjN4MqQaNG0Llz+baPR7K4Yx2sEvnPwLXYTYsooTmaSPmNHm3Tr8TER0lMTATgqdkb2Zy+CDZ9AhddZPOrUn6mOT0+PbGi3b59O3uysgD10A7HuHHj3A5BJPoFArBlC/z730W/vwf4EXgLeBorenQhkALjmoyDP/Iel18ILc6N6kciUiGWYv2gO2Jbxj/Bqom3cTOoMAUCMH9+wW6b0op0ccdTsZsTr2Fb7qOE5mgi5Ve/PqSmwmuvHc8ll9wAwO49mQz/oA78b6TtrOnfH6ZPh/3h9wx0enzGBYOlrPYTITt37qRmzZrs2LGDVatW0bZtWwCuu+46Jk2a5EZIIiKWWfkdO2M5oB1Ubgynz7E/p2EVhfNVxbJZzYAUYCZwOvAB0KcnZGfDe+85Gb2IVIT1wMPAZKAx8DjWE9oT6Yow7d4NdetaWd8HHij98xs2hKuustlvJD0EpGIZ7h6RfWkR8a+cHDjjDMjK2sDq1c3IzMykUqVEfnlyP42vXAhrEqBdO5tnXXSR2+GG5IlLhHpol05qpC9yIrFmH7AS+BArYnQ3cBnQGkgG6gHnAOkBWD4Xlm2xBfXNWAbmC2ADVmU4P7s9EVKvSLUtpX9HPbRFosEO4AGs0NmbwGhgGdAPj8ygSqF6dWtfWIaOCuzdC7/9VjGfaY8AlwIDsB0DPqc5mkhkJCTA88/DsmX1OeecOwDYu3c/j7xbw85qt20LJ59cqu3jTo9PT1wm1EO7dG699Va3QxDxvl3AEqxY0ZNYS5k/YwvmKkBzbMv3YGyhvAdbXD8CzAG+B9L6QUIuXD0Tpub9LJD3uHoc0hP31qduhWexrxXqoS3iW9lYz+dmwD+BO7EdLbcDSS7GVV6BAPzyC3z9deme9+uvtjiviM+0eOzztTG2LX9r5N/CSZqjiUTO6afDzTfDl1/eS82aRwEw5dNd/O/LObDzZ/tMe/NN2LEjrNdzenx6YqGtjHbpTJs2ze0QRNwXxLZzLsCyzA9hGZEO2DbuGkBbrFjRY8DXed+7HBiPZbPTgCyKz243rQPduoV9t3TatGm2oL92B2Rsh6zjIvAfKiKOycV6YJ+E7Uy5DFiBbRWv6WJckdK5s1UOL21RtIpuV1gd2zq+DduSH/6RS8/RHE0ksoYPh2rVjqRRoyEA5OYGeWB2ZVg2yjoqZGeH3VHB6fHpjYX26vQDv1dG+/DOO+88t0MQcUY21i7nPSxLfCeW8TgFqAYcgxUluhqYhPVkPQHLUk8DvsTOW++k+Ox24mFiCARg4ULrq30YB8bmoLxdOmMbR2WfWJGo9AlwBtAfaIUdC5mIfc5Ei/yOCjNn2uQ0XPk7Dxs2rJi4wD6P3wA+xW54+pTmaCKRdeSR8PTT8OOPg6lduwEAby/M4ssPX4GjgtYPLMybh06PT08stNOWWw/thPh4GjRo4HI03peWluZ2CCKRsx1YBMzCKs/eAJyPbSOsgi2cL8ayS//Czld3wjJMb2OT4T2UnN0uT+HvHj3sU37q1MM+9MDYXJ83Ka3e2M4e7inH+4tIxfoeuAjoChwBfI59trR0M6gKFAjAtm3wr3+F/5w1a6BePahcueLiAuiMbdkfixWe8yHN0UQib8AA6Ny5CvHxjxz43pCZEFw22oo0fv45rF592Ndxenx6YqG99ldL+dSrffSBXmlSvEqVKrkdgkj4coF1wGfYxOkBoC9Wnbs2cBTQHtsuOBJYDByNFRv6PyzLlA5kUnx2u2oFxl+5MlxxhS20c3NLfOiBsZmeDpUqwbv1bNvpNURVn1iRqLAWuAo7YrIKy6b+FzjXzaAc0LIltG9fuu3jThZ3HITdcL0Z+/vwGc3RRCIvLg4mTIBt266hdu0WAHy+LIcPZk+AiztasccwtoU7PT5dX2jv2rWLHXss3dOkaVOXo/GHunXruh2CSFFZWCXeuVgm4nbgL9g5x6pAIywLfR0wBavY3QrLUs8AFmL9p7dRfHY7wan/mBACAVi3znrQluDA2FyzBho1glPj7b/3dWB4RQcpImHZBtwDtMBa8Y0H/gf0pny7X/wkELCM9ubN4T0+0j20SxKH3Uw9E+iF3aj1Ec3RRCrGiSfCvfcmsmNHQeXw+2fsJXftZLj88rA6Kjg9Pl1faK9bV/AJ2vSEFi5G4h+LFi1yOwSJNUFgC7Ygnolt274WOA84Ftvi3RLrgXofVlgM4ALgCeBdrG1LJiVnt706yT3rLDj++MNmgA6MzcLZn15YtfJh2HZUEXFHFjAKOwv8HHA/VgjxFmzLeCzp29d+nTkzvMc73a6wElZTIwkrSJfh3FuXl+ZoIhXngQfgmGN6k5zcDoAl6UFmvfwUXNkHVq6EL78s8flOj09PLbRVCC08l156qdshSDTKAdYA87ACQEOAvwLtsO3dR2MZhn5YL9mfgPrY1ssXgfnYIjqD4rPbFXy8r8LExVkG6I03YE/xB64PjM2Dsz8PYtmyK7H/byLinBxsZ0kLbHHdH+s48DBW7ToWpaRA9+7hbR/PybH2Xk53hamD3Zxciu2G8snxG83RRCpO1aowfnw8u3aNOPC9YTN2s6/Oz7aT8DCfaU6PT9cX2mvXFpTkVWuv8EycONHtEMSvMrCF3ttYb9hbgW7YBLQKcBzQBavKPQPbzn0atuieBXyLbbssKbvt+qdKBbnySltkv/lmsQ85MDYPXmjHAy9jmbRLsP9/IlKxgsD72GfYVVhF8aXYVnHt7rWbh99+C0uXlvy49eth/37nF9oAp2IFLmdiu6N8QHM0kYrVvTv07NmVSpXOByBtE7w4/jEY2B9eew2ysop9rtPjMy4YPMxm9gqyc+dOatasyW233cYzzzwDwMcff0yXLl3cCEckOgSBzVhhn7RCX/l/3lDosVWwhV+zQr/mfzXGtuxJUeedB0lJ8OGHxT9mzx4ryjFlCgwcWPRn6dg2+dbYAiDWtquKOGURcC+2Q+dcrK1fB1cj8p7sbKhfH266CUaMKP5xCxZAx47wv/9ZITU3PIjd1H0H2yElIjFt3Tpo0WIhWVlnAlDvSEib/RhVuzwIr79uZ7Y9wPXc07pCGW1tHQ9Pamrq4R8k0Ws/tnD+CHgem0z2xu7818QyNWdh25SfBX7GipFdj2VVFwC/YS2nistua5EdWiAAH39s2yhDSE1NhfzPtFDZn+OwysafA3dVUIwisWwVdrylPbARW5h9hhbZoSQl2VntqVNte3hx8ntou7nr8B/YbqD+2K4ED9McTaTiNWwIjz12BlYIBzZuh2emjIMzz4BXXin2eU6PT9cz2m1Oasn3y5YSFxdHVlaW2iKEITMzkypVqrgdhlSk3RTNRBfOTK/BFttglbgbUTQbXThLXcPRqKPfjh3WS/aRR+C++w75cWZmJlXmz4eLLy6oPB7K81gBponYDRARKZ8/gFRgApACPIptF1fH0JJ99ZUVe/zoI+jaNfRjUlNh7NjwK5RXlF3YTeRs7OjSUe6GUxzN0UScsW8ftGy5jJUrTwFyObIqrEq9hqPumWJHXurUOeQ5To9P1zPaa3+zzFCdI4/SIjtMEyZMcDsEKa8glm35D1ak52EsA302lpFOxjLU+RWr/wtUA3oCz2AtaVZiVbwLZ7fvoSC7rUV25NWsCZddVmwLiQkTJtgCOyEBGjQo/nVuzvsaBHxRUcGKxIAMrHVeM+Al7PNyBVY8S4vswzvzTGjRouQCQk629ipJMrZDYStwBQU3nD1GczQRZxxxBLz88knA1QBsz4An/vsexMfBjBkhn+P0+HQ9o53vjLan8fVitUQIx4oVK2jevLnbYcjh7MWyz8Vlpgu3K6lL0ax04cx0Hbzb9ioWvf8+dOtmRYTatSvyoxUrVtB88mT7gE9PL/l19gJ/BpYD32A7E0QkPPuxozAPY3UpBmEt9I52MSa/evxxGD4cNm2y+hIHu+ACSE6G2bOdjy2UeVjryMHYsSeP0RxNxFlXXLGWWbNaANlUPgJW9jmTY5bvgxCtvJwen65ntPM1Uw/tsC1evNjtECTfDuA77NztE8CNWNXuJlixsRbYuefbsTvxWUBHbFvjm8AP2DbxkrLbWmR7S9eutn08RAZo8eLF4febrYT9u6mC7VTwUZ9YEdcEsc/SNsANWLeD5cAYtMguqyuvhIwMmDMn9M+d7qF9OOdjf99jsJstHqM5moizxo9vROXKfwMgax88uikNFi+Gnw7tp+r0+PTMQvu4Jk3cDsE3UlJS3A4hduRihcM+x7YlPogVYzkTm9QdibWO6YNVRP0GOzf2V+A54GMse52JbWd8H2stcxe2uGqFbQkX/0hMhAED4NVXYe/eIj9KSUkp3TbLFKwY3c9YizSf9IkVccVX2ML6UqAe1m7wVWz3j5Rd48bQqVPoAkK5uVbg0Qtbxwv7G1bf4ibgS5djOYjmaCLOOvpoGDlyKPlnJl/89A9+aVE9ZELE6fHpmYW2emiHLylJJaEjKhvLiPwbGAfcAfQAWmKL4GOxyd21wGTg17yf3QFMxyZ/myk5u62zgtElEIA//rBt5IUkJSWVPvvTBtvJ8BpQQocdkZj1C3A5VghrB/AedhOzXUlPklIJBODTTwu6JuTbtMnagHkpow2202s81i7xMuy67BGao4k4b/Dg2jRseA8AObnwYDVg2rRDOio4PT49s9BWa6/wpaWluR2C/2zDsh+vYYVzrgc6Y+diqwAnAd2Bu7Gscw62SB6BbVP8H9YOq3B2exhFs9va4h07WreGU0895G5p2vLlsGFD6bM/vbEjAw9g/95EBDZhZ69bYlWmXwEWAxehz9tIu/xyqFwZpk8v+n0vtPYqTiVgdt6vPbGdYx6gOZqI8+LjYdasO7DCRjDru90sytwAn3xS5HFOj0/P5NmU0Q5fp06d3A7Be3KxO9qhCo+lAdsLPfZICgqOnUXRwmPHYC2zRA4nEIAhQ2DrVqhVC4BO+QU2yvJ59hB2Zn8Atkvi5AjFKeI3u4Gn8r6OAEYCtwKV3QwqyiUnQ69edvNwyBCIy7uT4eWFNlgdk7eBc7Ab6NNw/SaM5mgi7ujQoTrnn/8g8+YNBmBozUQ+mDLFCjrmcXp8eiaj3ai4frNyiKlTp7odgjsygaXAu1gRlMFYFvpELCvdGCuScgN2sf0d25Z7DzATOz+9lUOz29dRkN3WIlvC1a+fbUmaNevAt6a+9JL9piw7dOKxLeRNgEuALeUPUcRX9mG1LY7HFte3YDdK70aLbCcEArB8uXVUyJeebm0NjzzSragOry22y+xV4EmXYyGG52giHvD66zeSkHAcAB+u2c+8f8+CXbsO/Nzp8emJ9l61atRgy44dboThS7m5ucTHe+YeSeQEscVF4RZYhbPS6ws9NomCLPTBLbGOQ5MycUb37pbR/tKq8eROnEj8TTdBVhZUqlS211yNnTs8FTvG4Jl9RyIVJAjMAYZiRSMHAo+hlndOy8mBhg0ts/3ss/a9QYPgP/+B7793N7ZwDMNunr+L3YR3SdTO0UR84vbbp/HMMwMBOKMWfDXqReKuvRZwfny69kmwt1C13sYNdTUtjeHDh7sdQtntxxYSnwAvAPdhRW5Ow7Z0pwAdsO2zY7AM9rHANVghss+wLeIZHJrdvhjLbmuRLU4JBOCrr+CXXwAYPn06NGhQ9kU2WEb7Dezf+l2RCFLEwxZgrQwvx26Ufoedxda0wHkJCdbqa8aMgo4KXmvtVZJHsUKm/YFl7oXh6zmaSBR4+ul+JCe3AmDhVnjrmVEHfub0+HQto/39999z6qmnAtDn8suZ9frrboThS56/W7qHotnowr9PxxbbYLd5GlF8Zrqmk0GLlEFmJtSvD4MHw2OPkTtwIPGrVlkGqLwmYC1sJmHHG0SiyVJgCHaztB225fd8VyMSsL6zrVrBm29Cz55w8snQpQs884zbkYVnJ3bjZi/wNdZu02Gen6OJxIBJk+Zyww09ADipOvywZCWJzZrFTkZ73bp1B37f2C93Sz1ixAiXewAFsWqw/8XOQv8DCGDFSOoD1YHWWMuNh7Aq3ZWxc6djsNYsv2BnrkNlt9uiRbb4Q5Uq8Ne/wtSpkJvLiC++iFzRoFuwHrG3ABFYt4t4wnqsjkYr4CfsXO1CtMj2ilNOgdNOs6JowaAVQ/NqIbRQamDF0bYAfSm4se8g1+doIsJ113WnUaNzAFi2G6be+3fA+fHp2um/tYV6NarieOkMHDiw4t9kH7CWomekVxX6dXehx9ahIAvdlaKZ6bq4XgFUpEIFAjBxIixYwMC9eyO3zTIOeAbL/PXCCvg1jMxLizhuB5a1/idQFRgN3IzV2xBvCQTgnntgxQrYs8c/W8fzNQNmARdiN/CfdvbtHZmjiUiJ4uLieOmlkXTpci4AD78/l36ZmY6PT09ktNVDu3Tmz58fmRfaBSzB+lCOwiY9f8YWzFWwyq8XYuef38QW12dj/X5n5z13J8Vnt+uhRbZEv3POgSZN4KWXmF+WHtolqYSd166M9YnNiNxLizhiLzAWW/z8E7gTu2F7O1pke1W/fpCbCy++aH/2YzKkC/bvbTR25t9BEZujiUi5nH/+nzjzTKuMuC4jl+eG3Of4+HQto70mvzcjymiXVrNmzcJ7YBDYyKE9pfMz05sLPbY6BVno3hTNSjdClY9FihMXZxmgUaNoFgxGPvtTh4I+sdcCM9ANLPG+XCyrOBRYg/3bfQQ4xsWYJDx16kC3bjBnjv3Zr8mQW4HvgRuBE7BCqw4Ie44mIhXuhReG06bNv4EgqROfZ0b3uY6+v2vLp/SVaQd+r4V26WRnZxf8YS9WYCxU4bFV2DnofPWxbHULoBsF272bYdW+NXkXKZtAAP7xD7KhYrI/p2JZmT5Yb/j7I/8WIhEzD7gXWIRVgZ4LtHQ1Iimtq66CPn2sDkXt2m5HUzZxwHisAvll2PEbB270FJmjiYirWrduTe/e/Zk9ezpbM/cx9eWXueCCCxx7/1JXHQ8Gg+wq1Pg7XNnZ2UU+fNq1bsPv27ZSPakKv324sdSvF5MygTkw+5vZ9K7SG9Zhra7y/wYTKaji3QTrJ90k76sxUM3xiEViR9u2zF61it4bNkDVqhXzHo9j51xnYjfLRLzkJ+xo0cdYJfFU7LiR+E9WFhx7LFSvbi2+/Ox34DzsONu/saNxFWj27Nn07t27Yt9ERMKTAav/s5p2fU4jJ5hLYnw8y37+mTp16pT7pZOTk4mLKzlLWeqF9s6dO6lZUyWhRUREREREJPbs2LGDGjVqlPgYVzLaWVlZPPH4E0x6eRI39bqJJ29/stSvF6t27tlJw4sbsu6XddSoW/Jfrog4Z+fWrTRs0oR169Yd9oO3XHZj1f2zsC26tSrurURKtA0rNvU81lbpfuAq4Ag3g5KI2bcPjoiiv8zZWK2AR7FifBVg586dNGzYsOKvAyKxZD+2i3c1dlx2daGvdIp2QqqF7eTN392bt8P39+TfOa/PeazfsJ6VK1eSkpJS7rAqJKMdKb/++uuBD6Njjz3WjRB8KX9HQTh3UUTEOY6OzVXA6cBpWF96FSsUJ2UBzwLDsTohdwN3AcluBiUShgeAEVjdgIsj//Kao4mU0W6K1pkqXG9qDbbYBkjAjsnmF2xuetDvSxh227Zto1atWo6OT03PRET8pinW9uvP2CJnjKvRSKzIAaYDw4D1WDXnh7CzryJ+8BjwI9AP+Bo40d1wRGJGEGsHHKp4cxpWSyFfNQoW0D0pupBuTJl3TSUkJJTtieWghbaIiB91xvoT34pVIr/G3XAkigWBD4D7gB+wFpDDsQ4WIn4SD0wDzgIuxRbbR7oZkEgU2Ytln4vLTGcUemxdbPF8PHAhRTPTdYiaTkiuLbSTkpKK/CrhSUpKonPnzvr/JuIxrozNQVif2JuxPrGq8CyRtghr1TUPOBf4Esf6EYtUiBrA28AZQF/gX9h21AjQHE2i3k4OXUDn/34tkJv3uESs+1FT7NpxNQUL6SZAdQdjzuPG+HTtjLbOsZTdpk2bqFu3rtthiMhBXBmbe4EuwArgG6Chs28vUWoVdp51JtYDeyTwF6ImyyDCx8BFwB3AU5F7Wc3RxNdygQ2E3t6dBmwp9NhkChbPB5+Zbogn9007PT7jHXsniZi3337b7RBEJARXxmYlrJpuEnAZkOl8CBJF/sAWHicCnwOTsF0TPdAiW6JLV+DpvK8pkXtZzdHE87KBn7G+8uOwz/xLgJOx89HHYr3nrwEmA78CJ2HV+qcDXwGbgR3Ad1jNmCewuh1dsYy1BxfZ4Pz49Oj/BilJu3bt3A5BREJwbWzWwbZCng1ch10ItSiS0sjAiuo9kffnR7DJV1V3whFxxG1Y3YEbseM3Z5b/JTVHE0/YRvGFx37Fam+AFRZrgmWhzwduoCAz3YSouwY4PT610PahTZs2uR2CiITg6tg8FXgF+CvQGhjiXijiI/uBl4GHsQzFIKyq+NEuxiTilDhgArAc2xH0LdCgfC+pOZo4IhdbMB+8iM7/87ZCjz2Sgq3dHSi61fsYIlajwA+cHp9aaPvQ3r173Q5BREJwfWz2wRZJQ4FTsDO1IqEEgXeB+4GlWLujVCyLIRJLkrDjN6dji+3PgMplfznXrwMSPTKB1YTOTK/GarSA3TA6Fvv8bo39Oy58ZrqWo1F7mtPjUwttH2rWrJnbIYhICJ4Ym//A+sT2x1rXnORuOOJBX2GVxBdgWwWnANrtKrGsHvAW8CdsG/krlPn4jSeuA+IPQay4WKjt3auA3wo9NomCQmMXUbQd1nGU6+ZQLHF6fGqh7RN79uxh/vz5jBkzhksvvZRWrVq5HZKI5Mkfn3fddRfLly93N5h4YCrWJ/YSYCFwlKsRiVf8gu12mI1lPd7D+pfqPL+I3WyajN2kbA3cXbqnZ2RkMHPmTL7++mv279/PxIkTiY9XzeGYlwOso/iWWDsLPbY2BVnojhTd4l0flbAup927dzNw4EDeeecdGjVq5Mh7aqHtE9WqVaN79+6MGjWKK6+80u1wRKSQ/PE5YsQIt0MxycA72FbIK7DKovq0j12bsJ0OL2DnT18BBhBT5/JEwtIPK452H3b85qLwn7ps2TLS0tIYOXIkF154IdnZ2VSpUqVi4hRv2UPB4vngzHQ6VgsDbKHcEFs4t8euz4Uz0zWdDDq2TJ48mTVr1vD999+Tm5t7+CdEiPpo+0ynTp3o2rUrw4YNczsUETlIkyZNWL16tdthFJgHXIBV1h3tcizivN1Yf+CnsMqyDwC3oi2GIiXJAXpiRyu+xqqRh2nz5s1cc8019O3bV0mRaBLEikUe3FM6f1G9sdBjq3BoT+n8r8ZYS05xTVxcHKtXr+a4445z5P2U4/AhLbJFvKlx48Zuh1DU+VjLpsHYVsir3QxGHLMP63/9D2A79vd/PyqIIxKOBKxFYgfs+M3XWNXmMKSkpDB37ly6detG+/btOfHEEysqSom0fcBaQm/vXoXduMxXh4JFdBeKLqrroeM4coAW2j6UmpqqxbaIB61Zs8btEA71N+B74CYsM3OWu+FIBQoCc7Bz2CuAgcBjgDNH0USiRw3gbeAMbDv5XA571GL8+PEkJiayefNmEhMTSUtL00Lba3ZRfOGxNdhuBrC/68bYwvls7LM0fyHdFDueJRIGLbR9Ijs7m9mzZ5Oenk79+vXJzs4mKSnJ7bBEhILxmZOTw4wZM+jVq5d3xmccMB5YBvQCvsHagEh0WYBVEv8KO1c6C2jjakQi/tYcG0cXYTtCniz54Z07d2bJkiUkJyeTkZHBRReV4oC3REYQ28ZdXOGxzYUeW52ChXMvim7xbogdtxEpJ53R9qFx48YxePBgt8MQkYN4emxuwoqj1cEWZarREx2WAkOwntjtsMXA+a5GJBJdxgB3Ym3wBh7+4Z6+DkSDvViBseIy05mFHluPogvowlu8U9AW7xikM9pyWJ07d3Y7BBEJwdNjsy62FfIc4HpgGppk+Nl64GGsHVFj4FWsgq3av4hE1u3Y8ZsbsOM3Z5T8cE9fB/xiO6EX0WlYq6z8otFHYD2kmwHnAddSsKBuAlRzMGaRELTQ9ri4uPBnwi5tThCJecWNU8+NybbAS0BfbFvxve6GI2WwA8ta/xOoilWTvxnwyEkFkagTBzwP/Axchh2/aRDiYX65DnhBLnazMNT27jRga6HH1qBg8Xw6RTPTDVGbQgnLjBkz+PzzzwEYMmQIHTt2ZNCgQRX+vto67kPvv/++zv6IeJBvxuYwYDi23bi7y7FIePYCz2HFzTKwraz3or6rIk7ZiPU+Pgb4jGLb5PnmOlDRsoDVhM5MrwKyCz32GIpviVUL7b6SiHF6fCqj7XF79uxh/vz5jBkzho8++ojff/+dhQsXsnXrVhYtWsQTTzxBYqL+GkXclJGRwcyZM9m+fTuvv/46EydOJD7ew3t4HwV+BPpjxbNOcjccKUEuVpBpKFYV91rgEWxiKiLOqQe8BZyLdXF4mZALwP3793PXXXfx9NNPOxicS7ZSfOGx37DiZGC9o5vmfXWl6EL6OFQzRBxTu3ZtR9/PwzNBAahWrRrdu3dn3759AMybN49ly5bRv39/9u3bx8cff+xyhCKybNky0tLSqF69Oj/++CPZ2dmHf5Kb4oGpWPXxS4Bt7oYjxZhHQXuhU7CbIxPRIlvELe2BF7HCaP889MfBYJBXX32VLVu2OBxYBcnBbvDNAyZh1df/ihVePAqoTcFn1NPAD9gNiQD2WfUp1ps6E+t88S/gGezc+1+wm7xaZIuDlixZ4uj7KRXqM3379qVTp04AbNy4UT0aRTygXbt2NGrUiIkTJ3LbbbdRpYoPZg41gHewM299sQmQrgje8ANwH/A+cCbwOZZFExH39cfG6D3AycCFBT/66KOPuPnmm5k8ebI7sZVFBrbFO1RmOh07tgKWvW+IZaHbApdTdLv3UU4GLVI2PXr0cPT9NK3yoUmTJtG2bVv69OnjWHl6ESlZSkoKubm5TJ8+nfbt2/vjJlgz4HVsongflpEQ96wFHsR2GxwPvIH1d9X5RBFveRz4Cav0vxBoAWlpadStW5cpU6a4G9vBgsAfFF94bEOhx1am4Iz0xRQ9M30cKroovjdp0iSGDRvm2Ptpoe1DF154IXFxcbRv356lS5fSsmVLt0MSiWnjx48nMTGRYcOG0aNHD9LS0vyx0AboglWuvh1oDVzlbjgxaRswAttSWRMYj7VgO8LNoESkWAnAdKADdvzma9uSmpCQwAknnMDMmTP54YcfaN26tTPx7Mdu1BXXEmtXocceTUEmuhNFz0vXQ4dKJao5ucgGLbQ9Lzs7m9mzZ5Oens6MGTNo0KABV1xxBaeccgp79+7lueeecztEkZjXuXNnlixZwoABA2jVqpX/Ks4OxrZC3oj1ie3gbjgxIwt4FqsAvxcYAtwFJLsZlIiEpSZ2/CbvjHLvd3uzL3cfPXv2JDs7O/JtvXZTdCFd+PdrsMU22EK5MZaJzj8/XTgzrUY/EsNSU1MdXWyrvZcPZWVlUblyMX0lRMQ1vh6b2cD52OTtW1RwqyLlYNmwB7HKvDcCD2HZJBHxlw+BbsDdwBPluA4EgU2E3t69Ku9n+apSNBNduCVWY7QbRqQYTs/TtEHEh8aNG+d2CCISgq/HZhIwB9vn1BOrEiuRFcQKnJ2GbdE/HVgKTECLbBG/ugB4CngSmH6Y68A+YCXwATbu7wIuw47tJAP1gT9hVbufxxbYzYCbsUrn/8HOVO/GdiG9mffeg7BaG8ejRbZICZyepymj7UMrVqygefPmbochIgeJirG5GJvo9cKKcqkQV2QswgrOfYL9/30SOMvViEQkUoLANcBMWDFxBc1PaR46M70WyM17TiKWfQ6VmW4KVHf0v0AkJjg9T9MZbR9atGiR/yfzIlEoKsbmacBLWMuvNlgLGym71cADwAysZ+zbQA90A0MkmsRhGehPYVFgEc3Juw4kU7CI7kPRRXVDNAsXcZjT8zQNcR+qV097DEW8KGrG5hXA91gG9mSszYuUzh9AKrY9NAWYCFyNrroi0aoy8DLUG1vPChs2wyp866aaiGc4PU/TJd+HEhP11ybiRVE1NlOxPrH9gK8Bn3Qrc10GMAZ4AttO+ghwB1a8SESiW2dIPCJRnRtEPMrpeZqKofnQ6tWr3Q5BREKIqrEZD0wDjgUuxXo9S/H2A5OA5tji+mrsTOZQtMgWiSFRdR0QiTJOj08ttH2oY8eObocgIiFE3disgZ0p3oxltnPcDceTglgv3TbADUBHYDkwFtsyLiIxJequAyJRxOnxqYW2D7366qtuhyAiIUTl2DwemAV8jJ3ZlgJfAedhGf96wDdY0bOmbgYlIm6KyuuASJRwenyqvZcP5eTkkJCQ4HYYInKQqB6bY7Gzxq9gPV5j2S/YlvDZWP/bJ7Aetip6JBLzovo6IOJzTo9PZbR9aMSIEW6HICIhRPXYvA3rE3sjVhwtFm0CBgEtgYXYTYfFwEVokS0iQJRfB0R8zunxqYy2iIiEJxvoDKQD3wINXI3GObuBp/K+jsD6Yt+KtfMRERERCUEZbR9KTU11OwQRCSHqx2YSMAdIAHoCma5GU/H2Ac9h59RHArdglcTvRotsEQkp6q8DIj7m9PhURtuH1q1bR8OGDd0OQ0QOEjNjcxHwJ+ByYArRt206iN1QGAqsAAYCjwGN3AxKRPwgZq4DIj7k9PhURtuHPvnkE7dDEJEQYmZstgMmY322n3Y5lkhbAJyN3URoCnyHncXWIltEwhAz1wERH3J6fGqh7UMtWrRwOwQRCSGmxmY/YAjW8us9l2OJhKXAJVgf7H3AJ9h/Vxs3gxIRv4mp64CIzzg9PrXQ9qHMzGg/GCniTzE3NlOBbtii+2eXYymr9cANQCvgJ+BVrKL4+W4GJSJ+FXPXAREfcXp8aqHtQ1u2bHE7BBEJIebGZgK2MG2AZYO3uxpN6ezAqocfD7wJjAaWYTcNdGUUkTKKueuAiI84PT41nfChNm20l1HEi2JybNYA3gZ+xxapOe6Gc1h7gbFAM+CfwJ1YJfHbsarqIiLlEJPXARGfcHp8aqHtQ3PnznU7BBEJIWbHZnPgNeBD7Ny2F+UCM4ETgb8Dl2EVxR8HaroYl4hElZi9Doj4gNPjU+29fCgjI4OqVau6HYaIHCTmx+YYLEM8BWuJ5RXzgHuxtmQ9sJ7YLV2NSESiVMxfB0Q8zOnxqYy2D40ePdrtEEQkhJgfm7cDV2PFxRa6GwoAP2DF2roAicDnwDtokS0iFSbmrwMiHub0+FRGW0REIicb6ASsAb7FCqU5bS3wIDAVK3Y2AugFxLkQi4iIiMQkZbR9KDU11e0QRCQEjU2soNgc7OpyGZDl4Htvw7aItwDeB8YD/wN6o0W2iDhC1wER73J6fCqj7UObN28mJSXF7TBE5CAam4V8C5wL9AFeoWIXulnAs8BwrKr43cBdQHIFvqeISAi6Doh4l9PjUxltH5ozZ47bIYhICBqbhbQHXsS2b1fUkagcrPDaCVi1877ASuARtMgWEVfoOiDiXU6Pz0RH300i4vTTT3c7BBEJQWPzIP2xgmT3AqcAF0bodYPAB8B9ea/fG/gI2zIuIuIiXQdEvMvp8amMtg9t2LDB7RBEJASNzRAexyp/XwH8EoHXWwT8Oe81awD/Bd5Ai2wR8QRdB0S8y+nxqYW2D+Xk5LgdgoiEoLEZQgIwHagPXALsKOPrrMYy5O2B9cDbWLuusyIQo4hIhOg6IOJdTo9PLbR96LjjjnM7BBEJQWOzGDWxhfEmoB92tjpcfwB3YOewPwMmYtvFL0GVxEXEc3QdEPEup8enFto+tGDBArdDEJEQNDZL0AJ4DTtbPTSMx2dgVcSbAZOxAmcrgOtRdRER8SxdB0S8y+nxqfZePrR161Zq1arldhgichCNzTCMxlpvTQWuDPHz/Vg7sIeAzcAtwDBA3XJExAd0HRDxLqfHpzLaPjRhwgS3QxCREDQ2w3AncBWWmf6m0PeDwLtAm7yfdQSWA2PRIltEfEPXARHvcnp8KqMtIiLOygI6AeuAb4G1wD3AAuB84Ams6JmIiIiITymj7UOpqaluhyAiIWhshqky8Ca2TfxkoANWjfw94GO0yBYR39J1QMS7nB6fymj70M6dO/X/TMSDNDZLaSYwEHgMy2gnuBuOiEh56Tog4l1Oj09ltH3o5ZdfdjsEEQlBY7OU+gK7gCFokS0iUUHXARHvcnp8aqHtQ127dnU7BBEJQWOzDCq7HYCISOToOiDiXU6PTy20fWj58uVuhyAiIWhsiojENl0HRLzL6fGphbYPVatWze0QRCQEjU0Rkdim64CIdzk9PrXQ9iEnG62LSPg0NkVEYpuuAyLe5fT41ELbh3744Qe3QxCREDQ2RURim64DIt7l9PhUey8fWr9+PQ0aNHA7DBE5iMamiEhs03VAxLucHp/KaPvQ5MmT3Q5BRELQ2BQRiW26Doh4l9PjUxltERERERERkQhSRtuHUlNT3Q5BRELQ2BQRiW26Doh4l9PjUxltH8rOziYpKcntMETkIBqbIiKxTdcBEe9yenwqo+1DY8eOdTsEEQlBY1NEJLbpOiDiXU6PTy20fah3795uhyAiIWhsiojENl0HRLzL6fGpreMiIiIiIiIiEeTaQjsYDLJr1y6Sk5OJi4tzIwQRERERERGRiHNtoS0iIiIiIiISjXRGW0RERERERCSCtNAWERERERERiSAttEVEREREREQiSAttERERERERkQjSQltEREREREQkgrTQFhEREREREYkgLbRFREREREREIuj/AWeXDuwIJoVYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "Graphics object consisting of 26 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:58,491 Plotting perturbation... done\n" + ] + }, + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "extremality_test(h, show_plots=True, show_all_perturbations=True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Here's the Gomory fractional cut. :" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mgomory_fractional\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " The Gomory fractional cut. Not minimal.\n", + "\n", + " EXAMPLES:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = gomory_fractional(f=4/5)\n", + " sage: minimality_test(h, f=4/5)\n", + " False\n", + "\u001b[0;31mInit docstring:\u001b[0m Initialize self. See help(type(self)) for accurate signature.\n", + "\u001b[0;31mFile:\u001b[0m /tmp/tmp16dmq5a1/survey_examples.sagedv82qa1w.py\n", + "\u001b[0;31mType:\u001b[0m function\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "gomory_fractional?" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], "source": [ "h = gomory_fractional()" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHUCAYAAABRQa7FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSg0lEQVR4nO3dd1iUZ9o28BNQmiBWioJYYu+KhT5GTSxRk5hiTKJuerIxPdlN4m7irsaoMRp7b9HYu8QKDh2kiKAgEpQmHaR3Zr4/3l2/JdEo+tzcM8P5Ow6P91UfZs54unB5zfDcRlqtVgsiIiIi0kvGsgMQERER0cPjMEdERESkxzjMEREREekxDnNEREREeozDHBEREZEe4zBHREREpMc4zBERERHpsSYd5rRaLUpKSsBb2xEREREpo0mHudLSUtjY2KC0tLQpn5aIiEivRUREyI5AChHRJV9mJSIi0nGFhYWyI5BCRHTJYY6IiEjHlZeXy45AChHR5UMNcyUlJQDAl0uJiIiaQJ8+fWRHIIWI6PKhhrmhQ4di2rRpOHDggNJ5iIiI6HfOnz8vOwIpRESXRtqH+NbSXbt24ZVXXmn0k5WUlMDGxgbFxcVo3bp1oz+eiIioOSopKeHXTT0XFhaGH3/8Eb/99hvc3Nzw+eefw9nZWZHHbvEwH3T58mV06tQJUVFR+Oyzz2BkZHTX62pqalBXV3fn51VVVejduzeqqqrQosVDPTXdRYsWLWBqaio7BhERCbJy5UrMmzdPdgx6SGq1GhMnTsRHH30ErVaLgoICjB49GtHR0XBwcHjkx3+ozZxWq4WRkREWLlwINzc3jBkz5g/X1NTU4OrVq9BoNI8ckv6csbEx+vfvz4GOiIhIB40ZMwYTJ07EF198cefXpk6dikGDBmHBggWP/PiNXo/t3LkTpqammDFjBoqLi+95A+C6ujpoNBp07doVFhYWjxyU7q6yshIpKSmoq6vjMEdEZKAWLFjAzZwei42NxcKFCwH8/y69vLwQEBCgyOM3+hsgxo8fDwsLCxw9ehRdunRBTk4OkpOTsWTJElRXV9+ZMDdv3gwAsLCwgKWlJX8I+vHfQXndunW4efMmNm7ciKioKPz66684evQo4uLisHr1ahQVFd3pZsGCBSguLsaqVatw5coVHDlyBKdPn0ZERAQ2bdqE7OzsBtdWVVVh6dKlSEpKwt69e6FWqxEUFISff/4ZqampWLRoEerr6xt8THp6OrZv346QkBD4+vpi//79SExMxLJly1BRUdHg2ry8PGzYsAHR0dHw8fHB8ePHERsbizVr1qCwsLDBtSUlJVi5ciXi4+Nx+PBhnDlzBhEREdiyZQsyMzMbXFtdXY0lS5YgOTkZe/bsgVqtRmBgIHbt2oWUlBR8//33qKura/AxGRkZ2LZtG8LCwnDu3DkcOHAA165dw/Lly1FWVtbg2vz8fKxfvx4xMTE4efIkTpw4gZiYGKxbtw4FBQUNri0tLcWKFSsQHx+PQ4cO4ezZswgPD8fWrVv/kLu2thaLFy/GjRs3sHv3bgQEBCAgIAC7d+/GjRs3sHjxYtTW1jb4mMzMTGzduhXh4eE4e/YsDh06hPj4eKxYsQKlpaUNri0oKMC6desQExODEydO4OTJk4iJicH69euRn5/f4NqysjIsX74c165dw4EDB3Du3DmEhYVh27ZtyMjIaHBtXV0dvv/+e6SkpGDXrl0IDAyEWq3Gnj177vo54r+5t2zZgoiICJw5cwaHDx9GfHw8Vq5ciZKSkgbXFhYWYs2aNYiNjcXx48fh4+OD6OhobNiwAXl5eQ2uraiowLJly5CYmIj9+/fD19cXISEh2L59O9LT0xtcW19fj0WLFiE1NRU///wzgoKCoFarsXfvXiQlJWHp0qWoqqpq8DHZ2dnYtGkTIiIicPr0aRw5cgRXrlzBqlWrUFxc3ODaoqIirF69GnFxcTh69Ch+/fVXREVFYePGjcjJyWlwbWVlJZYtW4akpCTs27cPfn5+CA4Oxs6dO5GWloaFCxdCo9FgwYIF0Gg0WLhwIdLS0rBz504EBwfDz88P+/btQ1JSEpYtW4bKysoGj5+Tk8PPEXr6OaKiooKfI/T4c0RrIyMcOXIEq1atwiuvvIIFCxYgNDQURUVF9/0c8SAe6mXWB1FRUYGEhAT07dsXlpaWIp6C8P//nKOjo2FiYoIXX3wRrVq1kh2LiIgUtGbNGvz1r3+VHYMaqTw3F1EqFaoTEjC1ZUv8/euvkZ6eDo1GgxMnTuDSpUtwdHR85OfhTYMNRMuWLVFSUoLq6mrZUYiISGGenp6yI1AjJezahRwnJ7gkJMDspZdw6swZREVFQa1Ww8jICKGhoYoMcsBDvGfuXt+5KmjBRw+I75cjIjJcKSkpGDRokOwY9ADqa2oQOHUq3M+cwW8WFsj28YHXpEkAANWYMTh+/DimTp2q6HM2epjj0EZERNS0TExMZEegB3ArNBR5EyfCq7gYAaNHw+3cOZhaWTW4RkSXD/0ya0ZGBj799FMlsxAREdFdKHEvMhIrZO5cWLm5oWNZGWJXrIAqNPQPgxwgpsuHGua0Wi2OHTuGgoICpfMQERHR70RERMiOQPdQnJqK4G7d4LZ6Na44O8MqORlDPvzwnteL6PKhhrlz587h8ccfVzrLQzMyMsLRo0dlxyAiIhLi2WeflR2B7uLyqlUo7dEDA1JSEPzuu3BPSYHNfY7oEtFlo4e55ORk2NnZNdmNgHNzc/H222+jS5cuMDMzg729PZ588kmEhoY2yfM3xpw5c2BkZNTgx+jRo+96bbdu3XD69OkGv/bbb7/B2toabdq0aYK0RESkLzZs2CA7Av2PmrIyqN3cMPCDD1DQqhVKAwPhvnbtA32siC4b/Q0QMTExMDExQW5uLtLS0hAbGyv0O2ymT5+O2tpa7NixA927d0dOTg58fX1RWFgo7DkfxYQJE7Bt27Y7P7/bd5nGxsaioKCgwTFotbW1eOmll+Dp6YmQkJAmyUpERPqBpz/ojhunTqHquefgXlGBgPHj4XnyJEwacUcJEV02ejM3ffp0TJ48GZWVlaiurhb63a1FRUUICgrC4sWLMWbMGDg7O2PkyJH48ssvMXny5Ht+XFxcHB5//HFYWFigffv2eOutt1BWVnbn9+fMmYOnn34a8+fPh62tLVq3bo23334bNTU1d67RarVYsmQJunfvDgsLCwwePBgHDx68b+b/bg//+6Ndu3Z/uObYsWN48sknYWZmdufX5s2bhz59+uCFF1540D8eIiJqJpQ4v5MejVajQcDLL8Nu0iRY1NYiaccOqM6ebdQgB4jp8qHeM9eyZUt8+OGHCA4OxuDBg5XOdIeVlRWsrKxw9OjRB74ZbkVFBSZMmIC2bdsiIiICBw4cwPnz5/H+++83uM7X1xcJCQm4cOEC9uzZgyNHjmD+/Pl3fn/evHnYtm0b1q1bh6tXr+Ljjz/GK6+8An9//z99frVaDVtbW/Tq1QtvvvkmcnNz/3DN8ePHMW3atDs/9/Pzw4EDB7BmzZoH+m8kIqLm5ZNPPpEdoVnLT0jAxc6d4fXLL4jq0we2GRnoN2vWQz2WkC61gpSXl2sjIyO15eXl//uLWm1U1J//+N/rtVrtwYMHtW3bttWam5tr3dzctF9++aX28uXLDa4BoD1y5IhWq9VqN27cqG3btq22rKzszu/7+PhojY2NtdnZ2VqtVqudPXu2tl27dg2yrVu3TmtlZaWtr6/XlpWVac3NzbUhISENnuf111/XvvTSS/f8b967d6/25MmT2ri4OO3x48e1gwcP1vbv319bVVV155qMjAxty5YttQUFBVqtVqvNz8/XOjk5af39/bVarVa7bds2rY2NzX3+dP+///457969W7t8+fI7j0tERIbjhx9+kB2h2bo4f742x9hYm2dkpA378stHfjwRXTb6PXOP5No1YPjwP78mKgoYNuzOT//7sm5gYCBCQ0Nx+vRpLFmyBJs3b8acOXP+8OEJCQkYPHhwg/NJ3d3dodFokJiYCDs7OwDA4MGDG5wZ6+rqirKyMqSnpyM3NxdVVVUYP358g8euqanB0KFD7xn9xRdfvPP/DxgwAC4uLnB2doaPj8+d7145fvw43N3d77z8+uabb2LmzJnw8vL68z8XIiJqtp566inZEZqdysJCXFSp4B0Xh4gOHeDs64tRCnyPgIgum3aY69Pn/4a1+13zO+bm5hg/fjzGjx+Pf/7zn3jjjTfwzTff3HWY02q19zxy7F6//vtrNBoNAMDHxwedO3du8Pv/+z63+3FwcICzszOSkpLu/NrdXmI9fvw4fvjhhzv5NRoNWrRogY0bN+K111574OcjIiLDdPnyZfTu3Vt2jGYjcd8+mMyejZHV1fB/7jl47dsHI2NljrMX0WXTDnOWlg22bg+rX79+97yvXL9+/bBjxw6Ul5ff2c4FBwfD2NgYvXr1unPd5cuXUVlZeecWK2FhYbCysoKjoyPatm0LMzMzpKWlwdvb+6FzFhQUID09/c7dnsvKynDhwoUG740LDQ1FfX39nZ8fO3YMixcvRkhIyB8GSSIiap7at28vO0KzoKmrQ8DTT8PNxwc3zc1x6+hReP/PAkYJIrps2mGukQoKCvD888/jtddew6BBg2BtbY3IyEgsWbKkwXbrf7388sv45ptvMHv2bHz77bfIy8vD3Llz8eqrr955iRX4v5dMX3/9dcybNw+pqan45ptv8P7778PY2BjW1tb47LPP8PHHH0Oj0cDDwwMlJSUICQmBlZUVZs+e/YfnLSsrw7fffovp06fDwcEBKSkp+Oqrr9ChQwc888wzAIDTp0+jZ8+e6N69+52P69u3b4PHiYyMhLGxMQYMGKDEHyERERmAprq3a3OWFRGBrCefhOr2bahdXODq6wuz1q0Vfx4RXer0MGdlZYVRo0Zh+fLlSE5ORm1tLZycnPDmm2/iq6++uuvHWFpa4syZM/jwww8xYsQIWFpaYvr06fjxxx8bXDd27Fj07NkTXl5eqK6uxowZM/Dtt9/e+f1///vfsLW1xaJFi3Djxg20adMGw4YNu+fzmpiYIC4uDjt37kRRUREcHBwwZswY7Nu3D9bW1gD+b+t2ryGUiIjoXq5fvw43NzfZMQxW6CefoM+KFXAwMsKlH36ASuDZ8yK6NNJqxdworqKiAgkJCejbt2+DbzTQBXPmzEFRUVGTHgFWX18PW1tbnDp1CiNHjlTscf/755yYmIjc3FzMmjXrrve2IyIi/ZWeng4nJyfZMQxOSUYGYr294XHjBkIdHdFHrUbbHj2EPqeILpV5Nx/dV0FBAT7++GOMGDFCdhQiItIzO3bskB3B4MRt2ICibt0w+MYNBL3xBkanpgof5AAxXer0y6yGxNbWlsexEBHRQ+HXD+XUVlQgeMIEeAYGIt7KCjhxAh4qVZM9v04c52UItm/f3qQvsRIRET0KHueljFRfXyTa2sIjMBCBY8agb14eujThIAfo0HFeRERE1HS+/PJL2RH0mlajQeCcOWg/bhysq6txbdMmqPz80MLcvMmziOiSwxwREZGOW7JkiewIeqswKQnhTk7w3LEDl3r2RLvUVAx44w1peUR0yWGOiIhIx82cOVN2BL0U9f33qOnTB72yshD2+efwvH4d1p06Sc0koksOc0RERDouICBAdgS9UlVUBP9hwzD8yy9xq00b1ERGYrSObDdFdMlhjoiISMd169ZNdgS9cf3QIaQ5OGD0pUvwf/ppDM3Jgb0CR4kqRUSXHOaIiIh0XF1dnewIOk9TVwf/Z55Bl+eeg5FWi9QDB+B95AiMW+jWXdhEdCn8v7CyslL0UzRr/PMlIjJ82dnZsiPotOzoaNwaPx7ehYXwHzIEoy5cgHmbNrJj3ZWILoUNcy1atICxsTFSUlJEPQX9h1ar5b/aiIgM2PDhw2VH0Flhf/sbei5dCkcjI0R99x28dfw2LiK6FDbMmZqaon///qirq0NxcTFOnjwJU1NT/PLLL/jLX/6Cli1binrqZqe+vh61tbWyYxARkSBHjx7F559/LjuGTinLzsYlLy94JiUhzMEBPS9cwPDevWXHui8RXQp9mdXU1BSmpqaoqqpCeXk5ysvLkZ6ejtu3b8PU1FTkUzc71dXVsiMQEZEgc+fOlR1Bp1zZsgXW77yDoXV1CJw9Gx5bt8LIWD++DUBEl03yrkAzMzO0bt0a+fn5MDMzQ2lpKYc5AVq3bg0zMzPZMYiISGE//PADz2cFUFdVhaDJk+Hh54drrVpB++uv8Bw/XnasRhHRpZFWq9Uq+oj3UF5ejvz8fPTu3RuJiYmwtrZuiqdtVszMzNCqVSvZMYiIiBSXHhCA2089hf6lpQj09IT76dNoaWkpO5ZOaLLv123VqhXq6+tRXV2Ntm3bonXr1k311ERERHptwYIFzXYzp9VoEPz22xi0eTPQogWurl0L1bvvyo710ER02WSbOQAoKSmBjY0NiouLOcwRERE9oOzsbNjb28uO0eRuJyfjmkoF14wMBHXvjkH+/mjt6Cg71iMR0aV+vFuQiIioGTtx4oTsCE3u0rJlqOrVC31v3ULIRx/BIzlZ7wc5QEyXunVbZCIiIvqDIUOGyI7QZKpLShA6diy8IiNxuU0b2J0+DbdRo2THUoyILrmZIyIi0nEFBQWyIzSJ344fx017e7hFRiJg0iQMzstDJwMa5AAxXXKYIyIi0nGGfnSjVqOB//PPo/O0aWhZX48bv/wClY+Pzp2rqgQRXRrenxIREZGB6dmzp+wIwuTGxiJ13Dh45+XBf+BAjPDzg2WHDrJjCSOiS27miIiIdNyFCxdkRxDi4j/+AeMhQ+BcUICIb7+Fd2ysQQ9ygJgueWsSIiIiHVdcXAwbGxvZMRRTnpuLKJUKXgkJCLezQ3dfX3Ts3192rCYhoktu5oiIiHTcqlWrZEdQTMKuXch1dIRLQgICZs7EyMzMZjPIAWK65GaOiIiIhKuvqUHglClwP3sWSZaWMD94EN0nTpQdyyBwM0dERKTjFixYIDvCI8kIDkacrS28zp5FsKsrHsvJabaDnIguuZkjIiLScUVFRWjTpo3sGA8l+K9/xYC1a1FqYoKC5csxeO5c2ZGkEtElN3NEREQ6bteuXbIjNFpxaiqCu3aF+9q1uOLsDOvk5GY/yAFiuuQwR0REpOO8vb1lR2iUy6tWobRHDwxITUXwe+/BPSUFNs7OsmPpBBFdcpgjIiLSccnJybIjPJCasjKoXV0x8IMPUNCqFUqDguC+Zo3sWDpFRJcc5oiIiHScqamp7Aj3dePUKfxmZwf3sDAEPPEEBuTlwdHdXXYsnSOiSw5zREREOs7Ozk52hHvSajQImDkT9pMmwaK2Fkk7dkB15gxM9GAAlUFElxzmiIiIdFxUVJTsCHeVd/UqLnbqBK89exDZrx9sMzLQb9Ys2bF0moguOcwRERHpuGnTpsmO8AcR8+cDAweie24uLs6bB6+rV9HK1lZ2LJ0noksOc0RERDpu06ZNsiPcUVlYCP9BgzDi22+R0qEDtDExGPnvf8uOpTdEdMmbBhMREdEDSdy3Dy1mzUKnmhpcfP55eO3dCyNj7oVkYwNEREQ6TvZxXpq6OqgnT0a3GTNQZ2yMW8eOwXv/fg5yD4HHeRERETVDlZWVsLCwkPLcmeHhyJkwAYOLihDg4gJXX1+Y8Wv4QxPRJUdqIiIiHbd27Vopzxvy4YewdHWFXWkpLv/wA1QRERzkHpGILlso/ohERESkqKlTpzbp85VkZCDW2xseN24gxMkJ/fz9MbRbtybNYKhEdMnNHBERkY6Ljo5usueKXbcORd26YdCNGwh68024pqSgDQc5xYjokps5IiIiHdexY0fhz1FbUYHgCRPgGRiIq9bWMDp5Eh5eXsKft7kR0SWHOSIiIh1nZmYm9PFTfX1ROm0aPMrLEfj44/Dw8UELc3Ohz9lcieiSL7MSERHpuOTkZCGPq9VoEDh7NtqPGwermhpc27wZKl9fDnICieiSmzkiIiIdp1KpFH/MgsREJI0ZA8+sLAT26oWh/v7oam+v+PNQQyK65GaOiIhIx/3888+KPl7UokWo7dcPvbKzEfbFF/BMTIQVB7kmoXSXAG8aTEREpPM0Gg2MFThtoaqoCOFjxsA7JgZR7dqh87lzsB82TIGE9KCU6vJ/cTNHRESk47777rtHfozrhw4h3d4eo2Ji4P/00xiak8NBTgIluvw9buaIiIh03KNsczR1dQh47jm4HjuGNDMzaHfvRq/p0xVOSA+KmzkiIqJmaNGiRQ/1cdnR0bhkZwfVsWMIHTYMTtnZHOQke9gu/wyHOSIiIh336quvNvpjwr74AqYuLuhcVISoRYugioqCeZs2yoejRnmYLu+HwxwREZGOU6vVD3xtWXY2Anv1wuilS3HdwQGm165h+N//Li4cNUpjunxQHOaIiIh0XI8ePR7ouitbtqDAyQlDk5IQOGcORqWno13PnoLTUWM8aJeNwZsGExER6bjq6uo//f26qioETZoEjwsXcK1VK+D0aXiOHdtE6agx7tflw+AwR0REpOPy8vLu+XtpajWKp0yBZ1kZAr284H7qFFpaWjZhOmqMP+vyYfFlViIiIh037C73g9NqNAh64w20HTMGNlVViF+/Hip/fw5yOu5uXT4qDnNEREQ67vjx4w1+fjs5GWFdusBjyxZc7tEDbW7exMC335aUjhrj910qgTcNJiIi0nGVlZWwsLAAAFxatgz2X3wBc60W1z76CK4//ig5HTXG/3apFG7miIiIdNyyZctQXVICtYsLhn72GbJsbFAVHs5BTg8tW7ZM8cd8qGGurKwM06dPR1pamtJ5iIiI6HdmDByIFDs7uEVFQT15Mobk5sJhxAjZseghzJs3T/HHbPQwt3XrVixduhSHDx+GRqP502urq6tRUlLS4AcRERE9GK1GA//nnsPPTz8NE60WN/fuherkSRi34M0o9NWCBQsUf8xGD3OvvfYa5s+ff+fne/bsQXJyMpYsWYLq6uo7IRcsWICvvvoKNjY2d344OTkBANavX4+SkpIG1xYWFmLNmjWIjY3F8ePH4ePjg+joaGzYsAF5eXkNrq2oqMCyZcuQmJiI/fv3w9fXFyEhIdi+fTvS09MbXFtfX49FixYhNTUVP//8M4KCgqBWq7F3714kJSVh6dKlqKqqavAx2dnZ2LRpEyIiInD69GkcOXIEV65cwapVq1BcXNzg2qKiIqxevRpxcXE4evQofv31V0RFRWHjxo3IyclpcG1lZSWWLVuGpKQk7Nu3D35+fggODsbOnTuRlpaGhQsXQqPRYMGCBdBoNFi4cCHS0tKwc+dOBAcHw8/PD/v27UNSUhKWLVuGysrKBo+fk5ODjRs3IioqCr/++iuOHj2KuLg4rF69GkVFRQ2uLS4uxqpVq3DlyhUcOXIEp0+fRkREBDZt2oTs7OwG11ZVVWHp0qVISkrC3r17oVarERQUhJ9//hmpqalYtGgR6uvrG3xMeno6tm/fjpCQEPj6+mL//v1ITEzEsmXLUFFR0eDavLw8bNiwAdHR0fDx8cHx48cRGxuLNWvWoLCwsMG1JSUlWLlyJeLj43H48GGcOXMGERER2LJlCzIzMxtcW11djSVLliA5ORl79uyBWq1GYGAgdu3ahZSUFHz//feoq6tr8DEZGRnYtm0bwsLCcO7cORw4cADXrl3D8uXLUVZW1uDa/Px8rF+/HjExMTh58iROnDiBmJgYrFu3DgUFBQ2uLS0txYoVKxAfH49Dhw7h7NmzCA8Px9atW/+Qu7a2FosXL8aNGzewe/duBAQEICAgALt378aNGzewePFi1NbWNviYzMxMbN26FeHh4Th79iwOHTqE+Ph4rFixAqWlpQ2uLSgowLp16xATE4MTJ07g5MmTiImJwfr165Gfn9/g2rKyMixfvhzXrl3DgQMHcO7cOYSFhWHbtm3IyMhocG1dXR2+//57pKSkYNeuXQgMDIRarf7TzxGZmZnYsmULIiIicObMGRw+fBjx8fFYuXIlP0fwc0Sz/xxxatcu/NPGBj0PHUJSx47onJmJA0lJ/Byh558jXnzxxUZ9jngQD/0NEEZGRrh58ya6du16z2uqq6sb3ByvpKQETk5O/AYIIiKiPxH+9dfosWgRNEZGSP3mG1yyt8dbb70lOxYpYOPGjYp3KXRPa2ZmBjMzM5FPQUREZDDKc3MR5e0Nr2vXEG5vjx5+fhjRty+Mo6JkRyOFDB8+XPHH5HezEhER6YD4nTuR6+gIl2vXEDBzJkbeuoUOffsCwAO/3Ea6T0SXfAclERGRRPU1NQh86im4nzuHJEtLZB87Bq+JExtcU1NTIykdKU1ElxzmiIiIJMkICkLB5MnwKilBgJsb3M6cgamV1R+u69Gjh4R0JIKILhv9MuuePXvw7rvvAgD+/ve/Y+3atYqHIiIiMnTB770Ha09PtC8vR9yqVVAFB991kAMAf3//Jk5Hoojoksd5ERERNaHi1FRc8faGe2oqgrt2xQB/f9h06fKnH1NUVIQ2bdo0TUASSkSX/AYIIiKiJhLz008o7dEDA1JTEfL++3C/efO+gxwArF69ugnSUVMQ0SU3c0RERILVlJUhZPx4eIWFIdbGBh18fODo7i47FhkIbuaIiIgEuvHrr0i2tYV7WBgCnnwSA3NzGz3IiTgCiuQQ0SU3c0RERAJoNRoEvvwyXPbuRbapKaq3bEHfV155qMcqLi6GjY2NwglJBhFdcjNHRESksLyrVxHh4ACvvXsR2a8f7G/deuhBDgB27typYDqSSUSXHOaIiIgUFDF/PjBwILrl5eHivHnwunoVlh06PNJjjhkzRqF0JJuILjnMERERKaAiPx/+AwdixLffIqVDByA2FiP//W9FHjspKUmRxyH5RHTJYY6IiOgRXduzB1mdO2PklSvwf/55uGRno+OAAYo9voWFhWKPRXKJ6JLDHBER0UOqr6mBetIkdJ85E7UmJrh17Bi89++HkbGyX17bt2+v6OORPCK65DBHRET0EDLDwxFrZwevU6cQMnIkuufm4rGpU4U8V0xMjJDHpaYnoksOc0RERI0U8uGHsHR1hV1pKS4vWwZVePg9z1VVwpQpU4Q9NjUtEV1ymCMiInpAJRkZCOrRA24rVyLe0RGWSUkY+sknwp938+bNwp+DmoaILnnTYCIiogcQu24d2n7wAWzq6hD79ttwX7tW8ffGET0M/i0kIiL6E7UVFVB7eqL/e+/htoUFiv394bF+fZMOcjzOy3DwOC8iIqImlHLuHMqfeQa9y8sRNHYsPE6eRAtz8ybPUVVVBXMJz0vKE9ElN3NERES/o9VoEDBrFjo+8QRa1dQgcetWqM6flzLIAcCqVaukPC8pT0SXLRR/RCIiIj1WkJiIpDFj4JWVhYDevTFMrUZXe3upmZ5++mmpz0/KEdElN3NERET/EblwIer69UPP7GyEffEFvK5dg5XkQQ4AoqKiZEcghYjokps5IiJq9qqKihCuUsH78mVEtm8Px7NnMXrYMNmx7rDXgYGSlCGiS27miIioWbt+8CDS7e0x6vJl+D/7LIZlZ8NehwY5AGjRgrsXQyGiSw5zRETULGnq6qCeNg3Ozz8PjZER0g8fhvehQzDWwcHp5s2bsiOQQkR0qXt/Y4mIiATLioxE5pNPQlVYCPXw4Rh9/jzM27SRHeuevLy8ZEcghYjokps5IiJqVkI//xxmI0eiU1ERohcvhioyUqcHOQD45ZdfZEcghYjokjcNJiKiZqE0MxMxKhU8k5IQ1qkTeqnVaNezp+xYD6S+vh4mJiayY5ACRHTJzRwRERm8K5s3o9DZGUOTkhA4Zw5GpafrzSAHAIsWLZIdgRQioktu5oiIyGDVVVUhaOJEeKjVSLCyQutjx+D8+OOyYxEpips5IiIySKl+fkjo2BGeajWCvL3RNy9Pbwc5EYezkxwiuuQwR0REBkWr0SDojTfQbuxYtK6qQvyGDVCp1dLOVVXC7NmzZUcghYjoksMcEREZjNvJyQjr0gUeW7Yg5rHH0C41FQPfekt2rEfm6+srOwIpRESXHOaIiMggRC9diqpevdAnMxOhn3wCz6QkWHfqJDuWInr16iU7AilERJe8aTAREem16pIShD7+OFRRUYhu2xYOZ87AdcQI2bEUVVlZKTsCKUREl9zMERGR3vrt2DGk2NnBNSoK6qeewpDcXDgY2CAHAAUFBbIjkEJEdMlhjoiI9I5Wo4H/9OlwfPppmGi1SNm3D6oTJ3TyXFUlDB48WHYEUoiILjnMERGRXsmJiUGUrS28Dx9G+KBB6JyZid4vvCA7llAnT56UHYEUIqJL3jSYiIj0RvhXX6HH999DY2SEtPnz4TJvnuxITaKiogKWlpayY5ACRHTJzRwREem88txcBPTti1GLFiHZzg7GV640m0EOAH788UfZEUghIrrkZo6IiHRa/I4dsHjzTdjW1iLq1VfhuX07jIy5iyD6L/6vgYiIdFJ9TQ3U48ej55w5qGzZErmnT8Nr585mOcjxOC/DIaJLbuaIiEjnZAQFoWDyZAwoKUGguzvcz55Fy2b8nrG8vDx07NhRdgxSgIgum98/b4iISGdpNRoEv/surD090b68HFdWrYIqKKhZD3IAcPjwYdkRSCEiujTMG/IQEZHeKU5NxVUvL7inpSGoWzcMVKvh2KWL7Fg6YYQB3gi5uRLRJTdzREQkXcxPP6GsRw/0T0tDyNy58LhxAzYc5O7IysqSHYEUIqJLbuaIiEiamrIyhIwbB6/wcMTa2ACnTsHN1VV2LJ1TX18vOwIpRESX3MwREZEUySdPItnWFm7h4QiYMAEDc3PRmYPcXXXt2lV2BFKIiC45zBERUZPSajTwnzEDDlOmwKy+Hsm7dkF16hRMTE1lR9NZgYGBsiOQQkR0yVuTEBFRk8m7cgU3x47FyNxcBPTvDxe1GpYdOsiOpfMKCwvRrl072TFIASK65GaOiIiaRMS33wKDBqFbXh4u/uMf8LpyhYPcA1q7dq3sCKQQEV1yM0dEREJV5OcjUqWC19WruGhri26+vug4YIDsWEQGg5s5IiISJmH3bmR17gyXq1cRMGMGRmRlcZB7CDzOy3DwOC8iItIL9TU1CJw2DW6nTyPZwgKm+/ejx1NPyY6lt0pKSvh100CI6JKbOSIiUtSt0FDE2drC6/RphIwahR65uRzkHtH27dtlRyCFiOiSwxwRESkm5IMPYOXmBtuyMsQuXw5VWBhMraxkx9J748aNkx2BFCKiSw5zRET0yIrT0hDUvTvcVq3CVScnWCYlYchHH8mOZTCuXbsmOwIpRESXHOaIiOiRxK5di9Lu3THw5k0Ev/MOXFNS0KZbN9mxDEqrVq1kRyCFiOiSZ7MSEdFDqa2oQPD48fAMCcGV1q0BHx+4e3jIjmWQeMNgwyGiS27miIio0W6eOYPrtrZwDwlB4LhxGJCXB0cOcsLExsbKjkAKEdElhzkiInpgWo0GAbNmwXbCBFjW1CBp+3aozp3juaqCTZw4UXYEUoiILjnMERHRAylITMTFzp3h9fPPiOrTBx3T0tBv9mzZsZqFrVu3yo5AChHRJW8aTERE9xW5cCGc/vlPtNBq8dvf/oZRixbJjkRE/8HNHBER3VNlYSH8hwyBy7x5SG/bFnXR0RzkJOBxXoaDx3kREVGTSdy/H8azZsGpuhrhzz4Lz337YNyCN0GQobq6GmZmZrJjkAJEdMnNHBERNaCpq4N6yhR0ffFFaIyMkH74MLwPHeIgJ9FPP/0kOwIpRESX/F8mERHdkRUZiawnnoDq9m2ohw+Hq58fzPhKinTTp0+XHYEUIqJLbuaIiAgAEPrppzAfORIOxcWIXrwYqshIDnI64uLFi7IjkEJEdMnNHBFRM1eamYkYb294/vYbQjt3Ru8LFzCsZ0/Zseh/ODg4yI5AChHRJTdzRETNWNzGjSh0dsaQ335D0OuvY3RaGtpxkNM5JiYmsiOQQkR0yWGOiKgZqquqglqlQt+330aJuTkKfX3hsXkzjIz5ZUEXpaamyo5AChHRJV9mJSJqZlL9/FAybRo8ysoQpFLB49QptDA3lx2L/oQHz701GCK65D/BiIiaCa1Gg8DXXkO7sWPRuqoKCRs2QHXhAgc5PbB3717ZEUghIrrkTYOJiJqBwqQkJI4ZA9dbtxDYsyeGqNWw7tRJdix6QHV1dWjB+/wZBBFdcjNHRGTgopcsQXWfPuiTmYnQzz6D5/XrHOT0zPfffy87AilERJfczBERGaiqoiKEjR0LVXQ0otu2hcPZs3BwcZEdi4gUxs0cEZEBSjpyBGkODnCNjoZ66lQMyc3lIKfHRBzOTnKI6JKbOSIiA6Kpq0PgCy9g1JEjSDczg2bnTvR+4QXZsegRZWRkwNHRUXYMUoCILrmZIyIyEDkxMYi2t4f3kSMIHzwYjpmZHOQMxLlz52RHIIWI6JLDHBGRAQj/8ku0GDYMTrdvI3LBAnjHxMCiXTvZsUghffv2lR2BFCKiS36fMxGRHivLzka0SgWvxESEOTig54ULcOndW3YsUlhpaansCKQQEV1yM0dEpKeubtuG/C5dMDwxEYGzZmFURgbac5AzSEVFRbIjkEJEdMnNHBGRnqmvqUHgpEnw8PVFYqtWgI8PPMePlx2LBBo4cKDsCKQQEV1yM0dEpEfSAwJwtUMHePr6IsjdHb1yc9GVg5zBO3XqlOwIpBARXfLWJEREekCr0SD4vfcwaMMGlJiYoHDlSgx67z3ZsaiJlJWVwcrKSnYMUoCILrmZIyLScUU3byK0a1d4bNiA2O7dYX3jBge5ZmbFihWyI5BCRHTJzRwRkQ679OOPsPviC1hqNIifOxduP/0kOxIR6Rhu5oiIdFBNWRnUo0Zh8KefIsfaGhWhoRzkmjEe52U4eJwXEVEzkHzyJGpeeAE9KisRMnEiPI8ehYmpqexYJFF+fj46dOggOwYpQESX3MwREekIrUYD/xkz0GnKFJjW1yN51y6ofv2Vgxzh4MGDsiOQQkR0yfvMERHpgLwrV3Bz7Fh45+bCf8AAjLhwAZbcxNB/jB49WnYEUoiILrmZIyKS7OI//wkMGoRueXmI+OYbeMfFcZCjBjIyMmRHIIWI6JKbOSIiSSry8xHp7Q2v+HhctLVFNz8/jOjfX3Ys0kFN+PZ2EkxEl9zMERFJkLBrF7I7d4ZLfDwCZszAiKwsdOQgR/fg5OQkOwIpRESXHOaIiJpQfU0N1BMm4LFXX0W1iQmyfXzgtWcPjIz56ZjuLTQ0VHYEUoiILnlrEiKiJnIrNBR5EydiUHExAkaNgtv58zDlEU30AAoKCtC+fXvZMUgBIrrkPwWJiJpAyNy5sHJzQ8eyMsSuWAFVWBgHOXpg69atkx2BFCKiS27miIgEKk5LwxVvb7inpCDY2RkD/P1h4+wsOxYRGRBu5oiIBLm8ejVKu3fHgJQUBL/7LtxTUjjI0UPhcV6Gg8d5ERHpgdqKCgSPHw/PkBBcad0a7X184OjhITsW6bHS0lJYW1vLjkEKENElN3NERAq6eeYMkjp2hHtICALHj8eAvDwOcvTItmzZIjsCKURElxzmiIgUoNVoEPDKK7CdMAEWtbVI2r4dqrNnea4qKeKJJ56QHYEUIqJLDnNERI8oPyEBFzt3htfu3Yjq0we2GRnoN3u27FhkQBISEmRHIIWI6JLDHBHRI4j417+gGTAAPXJyEP7ll/BKSEArW1vZscjA8P1yhkNElzyblYjoIVQWFuKiSgXvuDhEdOgAZ19fjBo0SHYsMlA2NjayI5BCRHTJzRwRUSMl7tuHW506YVRcHPynT4dLTg5sOciRQFevXpUdgRQioksOc0RED0hTVwf1U0+h64wZqDcyQsbRo/A+eJDnqpJwEyZMkB2BFCKiS34GIiJ6AFkREYixtYXKxwehLi7ompODx6ZNkx2LmomtW7fKjkAKEdElbxpMRHQfoZ98gj4rVqDKyAjZS5Zg6Kefyo5ERHQHN3NERPdQkpGBoMceg+vy5bjWuTPMr1/nIEdS8Dgvw8HjvIiImkjchg2wef99tK2rw+U33oD7hg18bxxJU1tbi5YtW8qOQQoQ0SU/MxER/Y+6qiqovb3R7513UGxujkJfX3hs2sRBjqT68ccfZUcghYjokveZIyL6j1RfX5ROmwaP8nIEqlTwOHUKLczNZcciwvPPPy87AilERJf8pyYRNXtajQaBf/kL2o8bB+vqalzbtAmqCxc4yJHOCA0NlR2BFCKiS27miKhZK0xKwnWVCp6ZmQjs2RND1Go4d+okOxZRA05OTrIjkEJEdMnNHBE1W1Hff4/qPn3QKysLYZ9/Ds/r12HNQY6I9Aw3c0TU7FQVFSFs7FiooqMR1a4dOp05g9EuLrJjEd1Tenq67AikEBFdcjNHRM1K0pEjSHNwgGt0NNTTpmFoTg4cOMiRjnN1dZUdgRQioksOc0TULGjq6uD/7LNwevZZGGm1SD1wAKqjR2Hcgi9QkO47cOCA7AikEBFd8qbBRGTwsqOjkfHEE3ApKID/kCEYdeECzNu0kR2L6IHxpsGGgzcNJiJqpLC//Q0tXVzgdPs2or77Dt6XLnGQI72zePFi2RFIISK65GaOiAxSWXY2Lnl7w/P6dYQ5OKDnhQto37u37FhERIrjZo6IDM7VbduQ36ULhl2/jsBZszAqI4ODHOk1EYezkxwiuuRmjogMRl1VFYImT4aHnx8SW7VCqyNH0HX8eNmxiB5ZZmYmOvEeiAZBRJfczBGRQUgPCEC8rS08/fwQ5OmJXrm5HOTIYJw+fVp2BFKIiC45zBGRXtNqNAh66y3YeHujbWUlrq5dC1VAAFpaWsqORqSY/v37y45AChHRJW+wRER6q+jmTcR7e8MjPR1B3btjkL8/nBwdZcciUlxxcbHsCKQQEV1yM0dEeunSjz+iomdP9MvIQMhHH8EjORmtOciRgSotLZUdgRQioktu5ohIr1SXlCB03Dh4RUTgcps2sDt9Gm6jRsmORSRU3759ZUcghYjokps5ItIbySdP4qa9PdwiIhAwaRIG5+WhEwc5agbOnj0rOwIpRESXvDUJEek8rUaDgBkzMPLAAWSamqJ2+3b0eekl2bGImkxpaSmsra1lxyAFiOiSmzki0ml5V64g0t4e3gcO4OLAgXC4dYuDHDU7P/30k+wIpBARXXIzR0Q66+I//oFuCxcCAFK++QYjvvlGciIiIt3DzRwR6Zzy3FwE9OuHkQsW4GbHjkBcHAc5atZ4nJfh4HFeRGTwEnbtgtnrr8O+pgaRL70Ez127YGTMf3dS81ZQUID27dvLjkEKENElP0MSkU6or6mBesIEPPbqq6g2MUG2jw+8fvmFgxwRgP3798uOQAoR0SXvM0dE0mUEByN/8mR4FRcjwNUVbmfPwtTKSnYsIp3h6uoqOwIpRESX/CcvEUkV/Ne/wtrDAx3KyhC3ciVUISEc5Ih+Jz09XXYEUoiILrmZIyIpilNTccXbG+6pqQh2dsYAf384OjvLjkWkk4yMjGRHIIWI6JKbOSJqcpdXrUJpjx4YkJqK4HffhXtKCmw4yBHdkyPPHTYYIrrkMEdETaamrAxqNzcM/OADFLRqhdLAQLivXSs7FpHOCwsLkx2BFCKiS96ahIiaxI1Tp1D13HPoWVGB4CeegOeJEzAxNZUdi0gv5Ofno0OHDrJjkAJEdMnNHBEJpdVoEPDyy7CbNAkWtbVI2rEDqjNnOMgRNcL69etlRyCFiOiSmzkiEiY/IQHJY8ZgVE4OAvr2xXC1Gq1sbWXHIiIyKNzMEZEQEf/6FzQDBqBHbi7Cv/oKXvHxHOSIHhKP8zIcPM6LiHReZWEhLqpU8I6LQ0SHDnD29YXtoEGyYxHptbKyMljx/osGQUSX3MwRkWIS9+3DrU6dMDIuDv7PPQeXnBwOckQK2LRpk+wIpBARXXKYI6JHpqmrg/qpp9BtxgzUGxnh1rFj8D5wgOeqEilk4sSJsiOQQkR0yc+0RPRIMsPDcbljR3j5+CDExQVdc3Lw2NSpsmMRGZS4uDjZEUghIrrkMEdEDy3k449h6eoK+5ISXP7hB6giImDG98MSKa5NmzayI5BCRHTJs1mJqNFKMjIQ6+0Njxs3EOroiD5qNYb26CE7FpHBsra2lh2BFCKiS27miKhR4jZsQFG3bhh84waC3ngDo1NT0ZaDHJFQCQkJsiOQQkR0yc0cET2Q2ooKBE+YAM/AQFy1tgaOH4eHSiU7FlGzMH78eNkRSCEiuuRmjojuK9XXF4m2tvAIDETg44+jX24uunCQI2oy27dvlx2BFCKiS940mIjuSavRIOi11zB0xw4UtGiB0vXrMeD112XHIiKi/8HNHBHdVWFSEsIdHeG5Ywcu9eqF9unpHOSIJOFxXoaDx3kRUZOI+v57dP76a5hqtbj+2WcYvWSJ7EhEzVpdXR1atODb3A2BiC65mSOiO6qKiuA/bBiGf/klbrVpg5rISA5yRDrghx9+kB2BFCKiSw5zRAQAuH7oENIcHDDq0iX4P/00hubkwH7YMNmxiAjAjBkzZEcghYjoksMcUTOnqauD/zPPoMtzz8FIq0XawYPwPnIExnxJh0hnBAUFyY5AChHRJT9bEzVj2dHRuDV+PLwLC+E/dChG+fnBnMcGEekcZ2dn2RFIISK65GaOqJkK++ILmLq4oHNREaK++w7e0dEc5Ih0VH19vewIpBARXXIzR9TMlGVn45KXFzyTkhDm4ICeFy5geO/esmMR0Z/IysqSHYEUIqJLbuaImpErW7agwMkJQ5OSEDh7NkZlZKA9BzkinTdy5EjZEUghIrrkMEfUDNRVVUE9diz6vPEGSs3MUHD+PDy3b4eRMT8FEOmDQ4cOyY5AChHRJW8aTGTg0tRqFE2div6lpQj08oL7qVNoaWkpOxYRNUJ1dTXMzMxkxyAFiOiS/ywnMlBajQZBb76JNmPGoE1lJeLXr4fK35+DHJEeWrp0qewIpBARXXIzR2SAbicn45pKBdeMDAR1745B/v5o7egoOxYREQnAzRyRgbm0bBmqevVCn1u3EPLRR/BITuYgR6TnRBzOTnKI6JKbOSIDUV1SgtCxY+EVGYmYtm3hcOYMHEaMkB2LiBSQmZmJTp06yY5BChDRJTdzRAbgt+PHcdPeHm6RkQiYPBlDcnM5yBEZkFOnTsmOQAoR0SWHOSI9ptVo4P/88+g8bRpa1tfj5t69UJ08yXNViQzMoEGDZEcghYjokp/xifRUbmwsUseNg3deHvwHDsRItRoW7drJjkVEAhQWFsqOQAoR0SU3c0R66OI//gHjIUPgXFCAiPnz4R0by0GOyICVl5fLjkAKEdElN3NEeqQ8NxdRKhW8EhIQbmeH7r6+GNG/v+xYRCRYnz59ZEcghYjokps5Ij2RsGsXch0d4ZKQgICZMzEyMxMdOcgRNQvnz5+XHYEUIqJL3pqESMfV19QgcMoUuJ89iyRLS5gfPIjuEyfKjkVETaikpIRfNw2EiC65mSPSYRnBwbjSsSO8zp5FsKsrHsvJ4SBH1AytXLlSdgRSiIguuZkj0lHB772HAevWodTEBAXLl2Pw3LmyIxERkQ7iZo5IxxSnpiK4a1e4r1uHK87OsE5O5iBH1MzxOC/DweO8iAzc5VWr0P7jj2FdX48r770H9zVrZEciIh1QWFiIdrz9kEEQ0SU3c0Q6oKasDGpXVwz84APkW1mhNCiIgxwR3bFnzx7ZEUghIrrkMEck2Y1ff8VvdnZwDwtDwJNPYmBuLhzd3WXHIiId4unpKTsCKURElxzmiCTRajQImDkT9pMnw7yuDr/9/DNUp0/DxNRUdjQi0jEpKSmyI5BCRHTJEyCIJMi7ehU3xo6FV04OAvr1w/ALF9DK1lZ2LCLSUSYmJrIjkEJEdMnNHFETi5g/Hxg4EN1zc3Fx3jx4Xb3KQY6I/pSDg4PsCKQQEV1ymCNqIpWFhfAfNAgjvv0WKR06ALGxGPnvf8uORUR6ICIiQnYEUoiILnlrEqImcG3PHrScMwedampw8fnn4bV3L4yM+W8pInoweXl56Nixo+wYpAARXfKrCZFAmro6qCdNQveZM1FrYoJbx47Be/9+DnJE1CgbNmyQHYEUIqJLbuaIBMkMD0fOhAkYXFSEgBEj4Hr+PMz4956IiBTG9QCRACEffghLV1fYlZbi8rJlUF28yEGOiB4aj/MyHDzOi0jHlWRkINbbGx43biDEyQn9/P3Rpls32bGISM9VVFTA0tJSdgxSgIguuZkjUkjsunUo6tYNg27cQNDbb8M1JYWDHBEpYt26dbIjkEJEdMmbBhM9otqKCgQ/+SQ8g4Jw1doaRidPwsPLS3YsIjIgTz31lOwIpBARXXIzR/QIUs6dQ6KtLTyCghA4diz65ebCiYMcESns8uXLsiOQQkR0yWGO6CFoNRoEzp6NDk88AauaGlzbvBmq8+fRwtxcdjQiMkDt27eXHYEUIqJLvsxK1EgFiYlIGjMGnllZCOjdG8PUanS1t5cdi4gMmIWFhewIpBARXXIzR9QIUYsWobZfP/TMzkbYF1/A69o1WHGQIyLBrl+/LjsCKUREl9zMET2AqqIihI8ZA++YGES2bw/Hs2cxetgw2bGIqJkYO3as7AikEBFdcjNHdB/XDx5Eur09RsXEwP+ZZzAsOxv2HOSIqAnt2LFDdgRSiIguedNgonvQ1NUh4Lnn4HrsGFLNzYFdu9Br+nTZsYiIiBrgZo7oLrKjo3HJzg6qY8cQOmwYumRlcZAjIml4nJfh4HFeRE0g7Isv0OuHH1BtZITMhQsx/O9/lx2JiJq5+vp6mJiYyI5BChDRJTdzRP9Rlp2NwF69MHrpUlx3cIDZtWsc5IhIJyxZskR2BFKIiC45zBEBuLJ5MwqcnDA0KQmBc+ZgVHo62vXsKTsWEREAYObMmbIjkEJEdMlhjpq1uqoqqMeMQZ8330SpmRkKzp+H57ZtMDLm/zSISHcEBATIjkAKEdEl7zNHzVaaWo3iKVPgWVaGQC8vuJ86hZaWlrJjERH9Qbdu3WRHIIWI6JLrB2p2tBoNgt54A23HjIFNVRXi16+Hyt+fgxwR6ay6ujrZEUghIrrkZo6aldvJybjm7Q2PW7cQ+NhjGHzhAro4OsqORUT0p7Kzs2VHIIWI6JKbOWo2Li1bhqpevdAnMxOhn3wCz6QktOYgR0R6YPjw4bIjkEJEdMlhjgxedUkJ1C4uGPrZZ8iysUFVeDhcly2THYuI6IEdPXpUdgRSiIguedNgMmi/HTuG+hkz0LWqCqFPPQWvI0dg3ILvLiAi/VJVVQVzc3PZMUgBIrrkZo4Mklajgf9zz6Hz00/DRKtFyr59UJ04wUGOiPTSDz/8IDsCKUREl9zMkcHJjY1F6tixGJGfD/9BgzDywgVYtGsnOxYREZEQ3MyRQQn/+msYDxkC58JCRP773/C+fJmDHBHpPRGHs5McIrrkZo4MQnluLqK8veF17RrC7e3Rw88PHfr2lR2LiEgR2dnZsLe3lx2DFCCiS27mSO/F79yJXEdHDL92DQEvv4yRt25xkCMig3LixAnZEUghIrrku8FJb9XX1CBw8mS4nz+PJEtL5J44Aa8nn5Qdi4hIcUOGDJEdgRQioksOc6SXMoKCUDB5MrxKShDg5gb3c+d4HBcRGayCggLZEUghIrrky6ykd4Lfew/Wnp5oX16OuFWroAoO5iBHRAatsrJSdgRSiIguuZkjvVGcmoor3t5wT01FULduGKhWw7FLF9mxiIiE69mzp+wIpBARXXIzR3oh5qefUNajBwakpiJk7lx43LgBGw5yRNRMXLhwQXYEUoiILnlrEtJpNWVlCBk3Dl7h4Yi1sUHHU6fQ2dVVdiwioiZVXFwMGxsb2TFIASK65GaOdNaNX39Fsq0t3MPDETBhAgbm5nKQI6JmadWqVbIjkEJEdMnNHOkcrUaDwJdfhsvevcg2NUX11q3o+/LLsmMRERHpJG7mSKfkXb2KCAcHeO3di8j+/WF/6xYHOSJq9nicl+HgcV5k0CLmz0fX+fMBADfnzcPIf/1LciIiIt1QVFSENm3ayI5BChDRJTdzJF1Ffj78Bw7EiG+/RUqHDkBsLAc5IqL/sWvXLtkRSCEiuuQwR1Jd27MHWZ07Y+SVK/B/8UW4ZGej44ABsmMREekUb29v2RFIISK65DBHUtTX1EA9aRK6z5yJGhMTZJ44Ae+9e2FkzL+SRES/l5ycLDsCKURElzwBgppcZng4ciZMgFdREQJGjoSbry9MraxkxyIi0lmmpqayI5BCRHTJNQg1qZAPP4SlqyvsSksRu3w5VOHhHOSIiO7Dzs5OdgRSiIguOcxRkyjJyEBQjx5wW7kS8Y6OsExKwpCPPpIdi4hIL0RFRcmOQAoR0SWHORIudu1aFHfrhkE3biDo7bfhmpKCNt26yY5FRKQ3pk2bJjsCKURElxzmSJjaigqoPTzQ/69/xW0LCxT7+8Nj/Xp+kwMRUSNt2rRJdgRSiIguedNgEiLl3DmUP/MMepeXI2jsWHicPIkW5uayYxERERkcrkhIUVqNBgGzZqHjE0/AsqYGiVu3QnX+PAc5IqJHwOO8DAeP8yKdVpCYiKQxYzA6KwsBffpg2IULsLK3lx2LiEjvVVZWwsLCQnYMUoCILrmZI0VELlyIun790DM7G+F//zu8EhI4yBERKWTt2rWyI5BCRHTJmwbTI6ksLMTFxx+H9+XLiGzfHk7nz2PUkCGyYxERGZSpU6fKjkAKEdElN3P00K4fPIiMTp0w6vJl+D/7LIZlZ8OOgxwRkeKio6NlRyCFiOiSwxw1mqauDupp0+D8/PPQGBkh/fBheB86BOMWXPQSEYnQsWNH2RFIISK65FdfapSsyEhkPvkkVIWFUA8fDlc/P5jxm1mIiIQyMzOTHYEUIqJLbubogYV+/jnMRo5Ep6IiRC9eDFVkJAc5IqImkJycLDsCKUREl9zM0X2VZmYiRqWCZ1ISQjt3Ru8LFzCsZ0/ZsYiImg2VSiU7AilERJfczNGfitu4EYXOzhiSlITAv/wFo9PS0I6DHBFRk/r5559lRyCFiOiSNw2mu6qrqkLQhAnw8PdHgpUVWh87BufHH5cdi4ioWdJoNDDmudYGQUSX/JtBf5Dq54eEjh3h4e+PIJUKffPyOMgREUn03XffyY5AChHRJTdzdIdWo0HwW29h8JYtKGzRAiVr1mDgW2/JjkVE1OxxM2c4uJkjYW4nJyOsSxd4bNmCmJ490S41lYMcEZGOWLRokewIpBARXXKYI0QvWYKqXr3QJzMToZ98As/r12HdqZPsWERE9B+vvvqq7AikEBFdcphrxqpLSqB2ccGwv/0NWTY2qAoPh+uyZbJjERHR76jVatkRSCEiuuQw10z9duwYUuzs4BoVBfXUqRiSmwuHESNkxyIiorvo0aOH7AikEBFdcphrZrQaDfynT4fj00/DWKtFyr59UB07xnNViYh0WHV1tewIpBARXfIreDOSExOD9HHj4F1QAP/BgzHSzw8W7drJjkVERPeRl5cnOwIpRESX3Mw1E+FffQWTYcPgdPs2IhcsgHdMDAc5IiI9MWzYMNkRSCEiuuQwZ+DKc3MR0LcvRi1ahGQ7O5hcuQKXr7+WHYuIiBrh+PHjsiOQQkR0yZsGG7D4HTtg8eabsK2tRdSrr8Jz+3YY8aaTRER6p7KyEhYWFrJjkAJEdMmv7AaovqYG6vHj0XPOHFSYmiL39Gl47dzJQY6ISE8t422jDIaILrmZMzAZQUEomDwZA0pKEOjuDvezZ9HS0lJ2LCIiIhKEqxoDodVoEPzuu7D29ET78nJcXbMGqqAgDnJERAZgwYIFsiOQQkR0yc2cASi6eRPxKhXc0tIQ1K0bBqrVsOnSRXYsIiJSSE5ODuzs7GTHIAWI6JKbOT0Xs2IFynv2RP+0NITMnQuPGzc4yBERGZhjx47JjkAKEdElbxqsp2rKyhAydiy8Ll5ErI0NcOoU3FxdZcciIiIBhg8fLjsCKUREl9zM6aHkkyeRbGsLt4sXETBxIgbm5qIzBzkiIoOVk5MjOwIpRESXHOb0iFajgf+MGXCYMgWm9fVI3rULql9/hYmpqexoREQkUE1NjewIpBARXfJlVj2Rd+UKbo4dC+/cXPgPGIARFy7AskMH2bGIiKgJ9OjRQ3YEUoiILrmZ0wMX//lPYNAgdMvLQ8Q338A7Lo6DHBFRM+Lv7y87AilERJe8NYkOq8jPR6RKBa+rV3HR1hbdfH3RccAA2bGIiKiJFRUVoU2bNrJjkAJEdMnNnI5K2L0bWZ07w+XqVQTMmIERWVkc5IiImqnVq1fLjkAKEdElN3M6pr6mBoHTpsHt9GkkW1jA7OBBdJ80SXYsIiIi0lHczOmQW6GhiLO1hdfp0wgZNQo9cnM5yBEREY/zMiA8zsuAhXzwAfqvWoUyExPk/fADhnz0kexIRESkI4qLi2FjYyM7BilARJfczElWnJaGoO7d4bZqFa526YJWSUkc5IiIqIGdO3fKjkAKEdElhzmJLq9ejdLu3THw5k0Ev/MOXG/eRJtu3WTHIiIiHTNmzBjZEUghIrrkMCdBbUUF1O7uGDB3LgpatUJpYCDc162DkTHrICKiP0pKSpIdgRQiokueANHEbp45g4rp0+FeXo7A8ePhefIkj+MiIqI/ZWFhITsCKUREl1wFNRGtRoOAWbNgO2ECLGtqkLR9O1Rnz3KQIyKi+2rfvr3sCKQQEV1ymGsC+QkJuNi5M7x+/hlRffrANiMD/WbPlh2LiIj0RExMjOwIpBARXXKYEyxywQLUDxiAx3JyEP7ll/BKSEArW1vZsYiISI9MmTJFdgRSiIguOcwJUllYCP/Bg+Hyj38grV071EVHY9R338mORUREemjz5s2yI5BCRHTJmwYLkLh/P4xnzYJTdTXCp0+H1/79/E5VIiIiEoIThoI0dXVQT5mCri++CI2RETKOHoX3wYMc5IiI6JHwOC/DweO8dFhWZCSynngCw27fhnr4cLj6+cHMwP4biYhIjqqqKpibm8uOQQoQ0SVXRgoI/fRTmI8cCYfiYkQvWQJVZCQHOSIiUsyqVatkRyCFiOiSNw1+BKWZmYjx9obnb78htHNn9PH3x7AePWTHIiIiA/P000/LjkAKEdElN3MPKW7jRhQ6O2PIb78h6PXXMTotDW05yBERkQBRUVGyI5BCRHTJzVwj1VVVIWjCBHj4+yPBygo4dgwejz8uOxYRERkwe3t72RFIISK65DDXCKl+fiiZNg0eZWUIUqngceoUWvANqUREJFiLFvxybShEdMmXWR+AVqNB4Guvod3YsWhdVYVrmzZBdeECBzkiImoSN2/elB2BFCKiS47691GYlITEMWPgeesWAnv2xBC1Gs6dOsmORUREzYiXl5fsCKQQEV1yM/cnopcsQXWfPuiTmYnQzz6D5/XrsOYgR0RETeyXX36RHYEUIqJL3jT4LqqKihA2dixU0dGIatcOnc6cgYOLi+xYRETUTNXX18PExER2DFKAiC65mfudpCNHkObgANfoaKinTcPQnBwOckREJNWiRYtkRyCFiOiSm7n/0NTVIfCFFzDqyBGkm5lBu2sXej33nOxYRERERH+KmzkAOTExiLa3h/eRIwgfMgRO2dkc5IiISGeIOJyd5BDRZbMf5sK//BIthg2D0+3biFywAN6XLsG8TRvZsYiIiO6YPXu27AikEBFdNtthriw7GwF9+mDU998jyd4eLeLj4fL117JjERER/YGvr6/sCKQQEV02y2Hu6rZtyO/SBcMTExE4axZGZWSgfe/esmMRERHdVa9evWRHIIWI6LJZ3TS4vqYGgZMmwcPXF4mtWgE+PvAcP152LCIioj9VWVkpOwIpRESXzWaYSw8IwO2nnoJnaSkCPTzgfuYMWlpayo5FRER0XwUFBbIjkEJEdGnwL7NqNRoEvfMObLy90bayElfXrIEqMJCDHBER6Y3BgwfLjkAKEdGlQQ9zRTdvIrRrV3hs2IDY7t3ROjkZg957T3YsIiKiRjl58qTsCKQQEV0a7E2DL/34I+y++AKWGg3i586F208/CX0+IiIiUSoqKmDJV5QMgoguDW4zV1NWBvWoURj86afIsbZGRWgoBzkiItJrP/74o+wIpBARXRrUZi755EnUvPACelRWImTSJHgdOwbjFs3mezyIiIioGTKIzZxWo4H/jBnoNGUKTOvrceOXX6Dy8eEgR0REBoHHeRkOEV3q/WYu78oVpDz+OEbk5cF/4ECM8PODZYcOijw2ERGRLsjLy0PHjh1lxyAFiOhSrzdzF//5T2DQIHTNz0fEt9/COzaWgxwRERmcw4cPy45AChHRpV6+DlmRn49Ib294xcfjoq0tuvn5YUT//rJjERERCTFixAjZEUghIrrUu81cwq5dyO7cGS7x8Qh46SWMyMpCRw5yRERkwLKysmRHIIWI6FJvNnP1NTUInDoV7mfO4DcLC2T7+MBr0iTZsYiIiISrr6+XHYEUIqJLvRjmboWGIm/iRHgVFyNg9Gi4nTsHUysr2bGIiIiaRNeuXWVHIIWI6FLnX2YNmTsXVm5u6FhWhtgVK6AKDeUgR0REzUpgYKDsCKQQEV3q7K1JitPScMXbG+4pKQh2dsYAf3/YODs3UVIiIiLdUVhYiHbt2smOQQoQ0aVObuYur16N0u7dMSAlBcHvvgv3lBQOckRE1GytXbtWdgRSiIgudWozV1tRgeDx4+EZEoIrrVujvY8PHD08mioeERERkd7Rmc3czTNnkNSxI9xDQhA4fjwG5OVxkCMiIgKP8zIkBnmcl1ajQeCsWRi+ezdyW7ZE5ebN6DdrVlNFIiIi0nklJSWKHYNJconoUupmLj8hARc7d4bX7t2I6tMHthkZHOSIiIh+Z/v27bIjkEJEdCltmIv417+gGTAAPXJyEP7VV/BKSEArW1tZcYiIiHTWuHHjZEegRxQQEIARI0Zg4cKFmDx5MlJTUxV7bCkvs/r064dJ8fGI6NABzr6+sB00qKkiEBER6Z3Dhw/j2WeflR2DHtKePXswc+bMBr9mamqKa9euoVu3bo/8+E26mUs6dAgAMDw+Hv7PPQeXnBwOckRERPfRqlUr2RHoEXz00Ud/+LWamhq88847ijz+Ix3npdVqUVpaes/fr66uRnV1NQAg5fx5WL/2GgDg+ubNGPr88ygtK3uUpyciImoWTE1NUVJSIjsGPaTc3Ny7/vqlS5ceqFdra2sYGRnd8/cf6WXW/75sSkRERERi3O/krEca5hqzmQOArKwsjBw5EvHx8ejcufPDPi0REVGzUVJSAicnJ6Snp/P2JHrqiy++wIYNG/7w6wcPHsT48ePv+/H328w90susRkZGD/UXy9ramn8hiYiIGqF169b82qmn1q9fj5YtW2LTpk2orq5GmzZtsHTpUkyfPl2Rx2/S72bNyMi4868LR0fHpnpaIiIivXW/ozBJf4jqUmeO8yIiIiKixmvSYc7MzKzB/yUiIqI/Z2Zmhq+//ppfOw2AqC45zBEREekwMzMztG7dml87DYCoLvkyKxERkY5T6o3yJJ+ILqUc58U3cRIREREpo0mHuf/el+5+90shIiIiogfTpMMcERERESmL75kjIiIi0mMc5oiIiHRYRkYGPv30U9kxSAFlZWWYPn060tLSFH1cDnNEREQ6SqvV4tixYygoKJAdhR7R1q1bsXTpUhw+fBgajUbRx+YwR0REpKPOnTuHxx9/XHYMUsBrr72G+fPnC3lsDnNEREQ6KDk5GXZ2drCwsJAdhXRcC9kBiIiI6I9iYmJgYmKC3NxcpKWlITY2FoMGDZIdi3QQN3NEREQ6aPr06Zg8eTIqKytRXV0N3kmM7oX3mSMiIiJqIkZGRrh58ya6du2q2GNyM0dERESkxzjMERER6SAjI6O7/iD9tGfPHrz77rsAgL///e9Yu3atYo/Nl1mJiIiI9Bg3c0RERDqqpKQEAFBaWio5CekyDnNEREQ6aujQoZg2bRoOHDggOwrpML7MSkREpKN27dqFV155RXYM0nHczBEREemoy5cvw8/PD0uXLuV95uieuJkjIiLSUVqtFkZGRli4cCHc3NwwZswY2ZFIB3EzR0REpIN27tyJffv2AQCKi4u5maN74maOiIhIB2VlZeHixYvQarXIyMjA+++/LzsS6SgOc0RERER6jC+zEhEREekxDnNEREREeozDHBEREZEe4zBHREREpMc4zBERERHpMQ5zRERERHqMwxwRERGRHuMwR0RERKTHOMwRERER6TEOc0RERER6jMMcERERkR77f6SxSiB7fTL4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "Graphics object consisting of 6 graphics primitives" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "plot_with_colored_slopes(h)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "It is not even minimal: :" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:58,698 pi(0) = 0\n", + "INFO: 2023-09-20 09:43:58,700 pi is not minimal because it does not stay in the range of [0, 1].\n" + ] + }, + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "minimality_test(h, True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "Let's consider an interesting discontinuous function. It was defined by\n", + "Let's consider an interesting discontinuous function. It was defined by\n", "Letchford and Lodi:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mll_strong_fractional\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_ll_strong_fractional\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_ll_strong_fractional(default_values=(('f', 2/3), ('field', None), ('conditioncheck', True)), names=('f',))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Letchford--Lodi's strong fractional cut.\n", + "\n", + " EXAMPLES:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = ll_strong_fractional(f=2/3)\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = ll_strong_fractional(f=2/7)\n", + " sage: minimality_test(h, False)\n", + " False\n", + "\n", + " Reference:\n", + " [78] Letchford-Lodi (2002) Thm. 2, Fig. 3 (but note this figure\n", + " shows the wrong function;\n", + " see \"ll_strong_fractional_bad_figure_3\" and\n", + " \"ll_strong_fractional_bad_figure_3_corrected\")\n", + "\n", + " [33] S. Dash and O. Gunluk (2004) Thm. 16\n", + "\n", + " Remarks:\n", + " Discontinuous, 1-slope;\n", + "\n", + " For f >= 1/2, this function is facet (extreme), and is identical\n", + " to \"drlm_2_slope_limit(f=f, nb_pieces_left=1,\n", + " nb_pieces_right=1)\".\n", + "\n", + " EXAMPLES:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: f=2/3\n", + " sage: l = ll_strong_fractional(f)\n", + " sage: d = drlm_2_slope_limit(f=f, nb_pieces_left=1, nb_pieces_right=ceil(1/f)-1)\n", + " sage: dg = automorphism(dg_2_step_mir_limit(f=1-f, d=ceil(1/f)-1))\n", + " sage: show(plot(l, color='red', legend_label='ll_strong_fractional')) # not tested\n", + " sage: show(plot(d, color='blue', legend_label='drlm_2_slope_limit')) # not tested\n", + " sage: show(plot(dg, color='green', legend_label='automorphism(dg_2_step_mir_limit)')) # not tested\n", + " sage: l == d == dg\n", + " True\n", + "\n", + " Remarks:\n", + " The function is NOT minimal for 0 < f < 1/2. It equals\n", + " \"drlm_2_slope_limit(f=f, nb_pieces_left=1,\n", + " nb_pieces_right=ceil(1/f)-1)\", except for limits at breakpoints.\n", + "\n", + " EXAMPLES:\n", + "\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: f=1/3\n", + " sage: l = ll_strong_fractional(f)\n", + " sage: d = drlm_2_slope_limit(f=f, nb_pieces_left=1, nb_pieces_right=ceil(1/f)-1)\n", + " sage: dg = automorphism(dg_2_step_mir_limit(f=1-f, d=ceil(1/f)-1))\n", + " sage: show(plot(l, color='red', legend_label='ll_strong_fractional')) # not tested\n", + " sage: show(plot(d, color='blue', legend_label='drlm_2_slope_limit')) # not tested\n", + " sage: show(plot(dg, color='green', legend_label='automorphism(dg_2_step_mir_limit)')) # not tested\n", + " sage: d == dg\n", + " True\n", + " sage: l == d\n", + " False\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ll_strong_fractional?" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "The docstring suggests a few things to try with this function. In\n", - "particular it tells us that it fails to be minimal if 0 < f < 1/2.\n", + "The docstring suggests a few things to try with this function. In\n", + "particular it tells us that it fails to be minimal if 0 < f < 1/2.\n", "Let's verify that:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:58,821 Rational case.\n" + ] + } + ], "source": [ "h = ll_strong_fractional(1/3)" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:58,829 The given function has more than one breakpoint where the function takes the value 1; using f = 1/3. Provide parameter f to minimality_test or extremality_test if you want a different f.\n", + "INFO: 2023-09-20 09:43:58,831 pi(0) = 0\n", + "INFO: 2023-09-20 09:43:58,832 pi is subadditive.\n", + "INFO: 2023-09-20 09:43:58,833 pi(2/3) + pi(2/3) is not equal to 1\n", + "INFO: 2023-09-20 09:43:58,834 Thus pi is not symmetric.\n", + "INFO: 2023-09-20 09:43:58,835 Thus pi is NOT minimal.\n", + "INFO: 2023-09-20 09:43:58,835 Plotting 2d diagram...\n", + "INFO: 2023-09-20 09:43:58,835 Computing additive faces...\n", + "INFO: 2023-09-20 09:43:58,840 Computing additive faces... done\n", + "INFO: 2023-09-20 09:43:58,843 The given function has more than one breakpoint where the function takes the value 1; using f = 1/3. Provide parameter f to minimality_test or extremality_test if you want a different f.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAALfCAYAAABb1rW9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOQklEQVR4nO3deZzNZf/H8fcYZoyZsTMoGWuoUEqoLBEp4k5ly1qplEjqTlHdpZC0Ca2WCC1KUbTIViqiKMbSZNCdJTtjm+X7++P85tyGmXGGc873us55PR8Pj/ue48w51+hKr/nOOdcnwnEcRwAAAAD8ooDbCwAAAABCCYENAAAA+BGBDQAAAPgRgQ0AAAD4EYENAAAA+BGBDQAAAPgRgQ0AAAD4EYGNkOA4jg4ePCiOdQcAAG4jsBESDh06pGLFiunQoUNuLwXwycyZM91eAuAz9itsYsJ+jWCSI0LBwYMHVaxYMR04cEBFixZ1ezkAACCMcQUbAFwwfPhwt5cA+Iz9CpuYsF+5go2QwBVs2CY9PV0FCxZ0exmAT9ivsIkJ+5Ur2ADgghdeeMHtJQA+Y7/CJibsV65gIyRwBRu2SUlJUWJiotvLAHzCfoVNTNivfrl+fuLECaWnp/vjoYCzcuzYMV144YU6duyY6z8WMlHBggUVFRXl9jJwku+++871/wAAvmK/wiYm7NdzLpETJ05o7dq1yszM9Md6gLP23nvvadu2bW4vw0gFChTQRRddRGQbpFKlSm4vAfAZ+xU2MWG/nnNgp6enKzMzU4mJiYqJifHHmgD40dGjR5WSkqL09HQC2yAZGRluLwHwGfsVNjFhv/rtZ+kxMTEqUqSIvx4OgJ8dOHBAx44dU3R0tGJjY91eTtjbvn2720sAfMZ+hU1M2K+8WBUIE3PnzlVqaqqKFi2qTp06EdkuOXhQWr1aqlChgdtLAc7o2DFp5UqpdGn2K8yXni79/LMUH+/+fuWYPiBMxMbGKioqSgcPHtTx48fdXk5YeuUV6bzzpCZNpGbNZumWW6QjR9xeFZCzmTM9+/Xqq6VWrWbp2mul3bvdXhWQs2+/lRITpTZtpJtvnqVLL5X+/NO99RDYQJiIjo5WdHS028sIW0uXSgMHSocPZ90yQLNmSUOHurgoIBfJyVL37tLevVm3DNDChdI997i5KiBnBw9K//qX9PDD0r590p49A1SvntSpk3trIrABIAimTj31ltG53A64b8YMz4/b/8ezX2fPlg4dcmNFQO4+/VSqUUMaMMDz8SuvjNbrr3tejrd+vTtr4jXYABAEp78qZ2gutwPuO3Hi1Fs8+zUjQ0pLC/pygDwdPy4VLvy/j4cOHarMTCky0r2/Y7mCDQBBcPXVp94yXJLUsWPQlwKcUfPmp94y3Ht7yZJBXw6Qp2uvlX78UZozx/Px8OHD9cwz0vnnS3XquLMm6wP7qaeeUr169fK8T69evdShQwfvx82aNdPAgQPz/JzJkyerePHi57y+M5k9e7aqVaumyMjIM64JgJ1Wr5aeeEIqWlSKiMi6tY8uvVR6/nk3VwacLiVFuvdeKTbWcwXQo4+qVJHefNPFhQE52LNHuv12qUAB6ZZbpAYNpHff7aNx46Rp007+Oze4ghLYEWlv+XzfZcuWKTIyUtdff33A1vPxxx/rmWee8X6cmJiol19+Odt9OnXqpI0bNwZsDVnuvvtu3XLLLdq2bVu2NQEIDQsXek4NqVBB2rhRSkqS3nlHeuiheVq5UipTxu0VAv+zZo3UuLHnJSK//CJt3ixNmiT17z9PGzZI1aq5vULgf7Zu9fx0cNMmzxvJ//tfqX9/qWXLedqyRbrySvfWZtxrsCdOnKj+/fvr7bff1tatW3XBBRf4/TlK+vDzrZiYmIBPpjx8+LB27dql1q1bq0KFCgF9LgDB98EHnpMYmjSRPv5Yio+XEhKkCy+UVqyo49qVFSAnixZJ7dtLVatKX3whlSvnub1XL+mii+qooHHFgHD222/S9ddLUVHS99973uQoef7OrVmzjtweLm7US0RSU1P1wQcf6N5771Xbtm01efLk0+4zcuRIJSQkKD4+XnfccYeOHTuW7fczMjI0aNAgFS9eXKVKldIjjzwix3Gy3efkl4g0a9ZMW7Zs0YMPPqiIiAhF/P9/8U5+iciGDRsUERGh9ae8FfXFF19UYmKi9/HXrVunG264QXFxcUpISFD37t21O5dDQxctWqT4+HhJ0rXXXquIiAgtWrRIe/bsUZcuXXT++eerSJEiuuSSSzRjxoxsn5uZmalRo0apWrVqio6O1gUXXKBnn33W+/v//e9/1alTJ5UoUUKlSpVS+/btlZKSkvsfPAC/GztW6tzZ8yPLzz/3xPXJ9v7v/DPAdR99JLVuLV1xhSe0s+I6C/sVJlmyRLrmGqlsWWnZsv/FdRYT9qtRgf3+++/rwgsv1IUXXqjbb79dkyZNyhbHH3zwgZ588kk9++yz+vnnn1W+fHmNHz8+22OMGTNGEydO1DvvvKPvvvtOe/fu1SeffJLrc3788cc6//zz9fTTT2v79u05jte88MILVb9+fb333nvZbp8+fbq6du2qiIgIbd++XU2bNlW9evX0888/a/78+dq5c6duu+22HJ+3cePG2rBhgyRp1qxZ2r59uxo3bqxjx46pfv36mjt3rn7//Xf17dtX3bt3108//eT93CFDhmjUqFEaNmyY1q1bp+nTpyshIUGSdOTIETVv3lxxcXFasmSJvvvuO8XFxen666/XidPfFg7AzxxHeuwx6YEHpAcf9BzDFxV1+v1SU1ODvzggB+PGSbfd5nnD7RdfeN4rcCr2K0wxa5bUqpVUv760eLFUvvzp9zFivzrnKDU11fn555+d1NTUXO+jE2/69FiNGzd2Xn75ZcdxHCctLc0pXbq08/XXX3t/v1GjRs4999yT7XOuvPJKp27dut6Py5cv74wcOdL7cVpamnP++ec77du3997WtGlTZ8CAAd6PK1Wq5Lz00kvZHnfSpElOsWLFvB+/+OKLTpUqVbwfb9iwwZHkrF271nEcxxk2bJjTqlWrbI+xbds2R5KzYcOGHL/effv2OZKchQsX5vj7WW644QbnoYcechzHcQ4ePOhER0c7b731Vo73feedd5wLL7zQyczM9N52/PhxJyYmxvnyyy/zfB6Epqx/Rz/66CPn7bffdl566SVnz549bi8rJJ044Tg9ezqO5DgvvJD3fbP+7gDckpnpOI895tmvDz7oOBkZud+X/QoTjB/vOBERjtOpk+McO5b7/UzYr8Zcwd6wYYOWL1+uzp07S5IKFiyoTp06aeLEid77JCUlqVGjRtk+7+SPDxw4oO3bt2e7rWDBgrr88svPeX2dO3fWli1b9OOPP0qS3nvvPdWrV0+1a9eWJK1cuVILFy5UXFyc91fNmjUlScnJyT4/T0ZGhp599lnVqVNHpUqVUlxcnL766itt3bpVkufP4Pjx42rRokWOn79y5Ur98ccfio+P966jZMmSOnbsWL7WASB/UlOlDh2k997zvHP9oYfyvv8333wTlHUBOUlPl+64Q3ruOWn0aOnFFz2nMOSG/Qo3OY40bJjUr5/np4PTp0t5DSY2Yb8a85aFd955R+np6TrvvPO8tzmOo0KFCmnfvn0qUaKEi6uTypcvr+bNm2v69Olq2LChZsyYobvvvtv7+5mZmWrXrp1GjRqV4+f6asyYMXrppZf08ssv65JLLlFsbKwGDhzofXnHmd54mZmZmePLWSSpDMcVAAGxe7d0443S2rWe11u3anXmz+nVq1fA1wXkJDXVM0L6yy+ld9/1vCnsTNivcEt6unTPPZ7Tl0aOlB555MxH75mwX424gp2enq53331XY8aM0a+//ur9tXr1alWqVMkbi7Vq1fJeQc5y8sfFihVT+fLls92Wnp6ulStX5vn8UVFRysjIOOM6u3Xrpvfff18//PCDkpOTvVfbJemyyy7T2rVrlZiYqGrVqmX7FRsb69OfgyQtXbpU7du31+233666deuqSpUq2rRpk/f3q1evrpiYGC1YsCDHz7/sssu0adMmlS1b9rR1FCtWzOd1APBNSop01VWe48wWLfItriXp1VdfDeSygBzt3i21aOHZq3Pn+hbXEvsV7jhyRLr5ZmnyZM+vf//bt3OtTdivRgT23LlztW/fPt1xxx26+OKLs/265ZZb9M4770iSBgwYoIkTJ2rixInauHGjnnzySa1duzbbYw0YMEAjR47UJ598ovXr16tfv37av39/ns+fmJioJUuW6L///W+up35I0s0336yDBw/q3nvvVfPmzbNdbb/vvvu0d+9edenSRcuXL9eff/6pr776Sn369PEp3rNUq1ZNX3/9tZYtW6akpCTdfffd2rFjh/f3CxcurH//+9965JFH9O677yo5OVk//vij98+oW7duKl26tNq3b6+lS5dq8+bNWrx4sQYMGKC//vrL53UAOLPVq6VGjTxXWJYtk/LzarShQ4cGbmFADlJSPGcG//mn53z21q19/1z2K4Jtzx6pZUtpwQLPhMaePX3/XBP2qxGB/c4776hly5Y5XmHt2LGjfv31V61atUqdOnXSE088oX//+9+qX7++tmzZonvvvTfb/R966CH16NFDvXr1UqNGjRQfH69//etfeT7/008/rZSUFFWtWjXPl1EULVpU7dq10+rVq9WtW7dsv1ehQgV9//33ysjIUOvWrXXxxRdrwIABKlasmArk9cK2UwwbNkyXXXaZWrdurWbNmqlcuXLZplBm3eehhx7SE088oVq1aqlTp07atWuXJKlIkSJasmSJLrjgAt18882qVauW+vTpo6NHj6poTm8NB3BWTh4gs2xZ/gdwDB8+PDALA3Jw8gCZ77/3HMeXH+xXBNPJA2QWLpTatMnf55uwXyMc55RDovPpyJEjSkpKUq1atVSkSBF/rQuAn2T9O5qSkqL9+/fr0KFD6tGjh08Dl5CznAbI5NfevXv5Z4CgyG2ATH6wXxEsJw+Q+fLL08+49oUJ+9WIK9gAYIszDZDx1akDpIBAONMAGV+xXxEMZxog4ysT9iuBDQA+8HWAjK+uueYa/y0OyIEvA2R8xX5FoPkyQMZXJuxXAhsAziAtTerdWxoxQnrhBWnMmLzPDPZFSkqKX9YGnMpxpMcfl+6/Xxo40HMu+7l8MyixXxFYEyZIt97qmSVwrt8MSmbsVwI7RKWkpCgiIkK//vqrz5/TrFkzDRw4MGBrysuiRYsUERFxxhNfgGDL7wAZX0VGRvrngYCT5HeAjK/YrwiE/A6Q8ZUJ+9WYwN61a5fuvvtuXXDBBYqOjla5cuXUunVr/fDDD24v7ay4HYwVK1bU9u3bdfHFFwfsOdz+GoFA271buvZaz48rP/9cOuXwoHOSnwFUgC+yvhmcOtUzQGbwYP89NvsV/paeLt11lzR8uGeAzEsv+eebQcmM/WrMJMeOHTsqLS1NU6ZMUZUqVbRz504tWLBAe/fudXtpAXXixAlFnevP7nIQGRmpcmf7bhYASknxvDls3z7Pm8Pyc8a1L1asWKHLLrvMvw+KsLV7t9S2rfT7754BMvk549oX7Ff405EjnjeLf/GFZ4BMfs649oUJ+zWgV7CdTEd7Pl2nzY9+qe1vrVDG4eM53m///v367rvvNGrUKDVv3lyVKlVSgwYNNGTIEN14442SpD59+qht27bZPi89PV3lypXTxIkTJXle4tC/f38NHDhQJUqUUEJCgt58802lpqaqd+/eio+PV9WqVTVv3jzvY2Rdhf3yyy916aWXKiYmRtdee6127dqlefPmqVatWipatKi6dOmiI0eO/O9rcxw9//zzqlKlimJiYlS3bl199NFHkjwvz2jevLkkqUSJEoqIiPCO7WzWrJnuv/9+DRo0SKVLl9Z1113n09d2sgMHDigmJkbz58/PdvvHH3+s2NhYHT58OMeXiCxevFgNGjRQdHS0ypcvr0cffVTp6em5/vObNm2aLr/8csXHx6tcuXLq2rWr97ztvL7GvP5ssnzxxReqUaOGYmJi1Lx5cyNeLwVkOZcBMr66+eab/f+gCEvnMkDGV+xX+Mu5DJDxlRH71TlHqampzs8//+ykpqae9nub+n3q/FDmWe+vX69+w0k/dPy0+6WlpTlxcXHOwIEDnWPHjuX4PN9//70TGRnp/P33397bPv30Uyc2NtY5dOiQ4ziO07RpUyc+Pt555plnnI0bNzrPPPOMU6BAAadNmzbOm2++6WzcuNG59957nVKlSnnXu3DhQkeS07BhQ+e7775zVq1a5VSrVs1p2rSp06pVK2fVqlXOkiVLnFKlSjkjR470Pvdjjz3m1KxZ05k/f76TnJzsTJo0yYmOjnYWLVrkpKenO7NmzXIkORs2bHC2b9/u7N+/37vGuLg45+GHH3bWr1/vJCUl+fS1napjx47O7bffftptXbp0cRzHcTZv3uxIcn755RfHcRznr7/+cooUKeL069fPSUpKcj755BOndOnSzpNPPun9/KZNmzoDBgzwfvzOO+84X3zxhZOcnOz88MMPTsOGDZ02bdo4juPk+TXm9WfjOI6zdetWJzo62hkwYICzfv16Z9q0aU5CQoIjydm3b1+OXy/OXta/ox999JHz9ttvOy+99JKzZ88et5dlrG+/dZyiRR3nssscZ8eOwD3PM888E7gHR9hYvdpxypd3nMqVHWfjxsA9D/sV/rBli+PUrOk4pUs7zk8/Be55TNivAQvs1PW7ssV11q/tE3/O8XE++ugjp0SJEk7hwoWdxo0bO0OGDHFWr16d7T61a9d2Ro0a5f24Q4cOTq9evbwfN23a1Ln66qu9H6enpzuxsbFO9+7dvbdt377dkeT88MMPjuP8L7C/+eYb731GjBjhSHKSk5O9t919991O69atHcdxnMOHDzuFCxd2li1blm19d9xxhzdwsx731GBs2rSpU69evdO+/jN9baf6+OOPnbi4OO+f+4EDB5zChQs7n3/+ueM4pwf2Y4895lx44YVOZmam9zHGjRvnxMXFORkZGd61nRzYp1q+fLkjyRv9OX2NvvzZDBkyxKlVq1a2tfz73/8msAOEwPbd++87TlSU47Rs6TgHD7q9GiBvCxd6vhm89FLH2b7d7dUAeVuzxnEqVHCcxETH2bDB7dUEXsBeInI8ZX/Ot2/el+PtHTt21N9//63PPvtMrVu31qJFi3TZZZdp8uTJ3vvceeedmjRpkiTPmyI///xz9enTJ9vj1KlTx/v/IyMjVapUKV1yySXe2xISEryfn9vnJSQkqEiRIqpSpUq227I+Z926dTp27Jiuu+46xcXFeX+9++67Sk5Ozu2PxOvyHH7e7MvXdrIbb7xRBQsW1GeffSZJmjVrluLj49WqVasc75+UlKRGjRopIiLCe9tVV12lw4cP66+//srxc3755Re1b99elSpVUnx8vJo1ayZJ2rp1a67r8uXPJikpSQ0bNsy2lkaNGuX6mEAw+GuAjK9MGOULe/lrgIyv2K84F/4aIOMrE/ZrwN7kGHfFeYqIjpRzPCPb7UWvScz1cwoXLqzrrrtO1113nZ544gndeeedevLJJ72v7e3Ro4ceffRR/fDDD/rhhx+UmJh42mHihQoVyvZxREREttuyoi4zMzPXzzv1c7Juy/qcrP/9/PPPdd5552W7X7QP58vExsaedpsvX9vJoqKidMstt2j69Onq3Lmzpk+frk6dOqlgwZz/kTqOky1os27L+tpOlZqaqlatWqlVq1aaNm2aypQpo61bt6p169Y6ceJEruvy5c8m63kBE2SdGTxihDRokOdoM3+9kz0vgwYNCvyTICSNGyf17+/5hnDy5HM/49oX7FecrVmzPCcwXXWV9Mkn537GtS9M2K8B+89IoZJFVGV0GxWI+f/gi5ASel2m4i2r+vwYtWvXVmpqqvfjUqVKqUOHDpo0aZImTZqk3r17+3vZPq8rOjpaW7duVbVq1bL9qlixoiR5TwbJyMjI66G8zuZr69atm+bPn6+1a9dq4cKF6pbHGWK1a9fWsmXLssXtsmXLFB8ff1oIS9L69eu1e/dujRw5Utdcc41q1qx52lX/nL5GX/5sateurR9//DHbY536MRAMgRgg46sJEyYE54kQMgIxQMZX7FecDX8PkPH9ed3frwE9pq9M5zoqcX11HV61XYWrlFDhxBI53m/Pnj269dZb1adPH9WpU0fx8fH6+eef9fzzz6t9+/bZ7nvnnXeqbdu2ysjIUM9AvPXUB/Hx8Ro8eLAefPBBZWZm6uqrr9bBgwe1bNkyxcXFqWfPnqpUqZIiIiI0d+5c3XDDDYqJiVFcXFyej5vfr61p06ZKSEhQt27dlJiYqIYNG+Z63379+unll19W//79df/992vDhg168sknNWjQIBXIoSguuOACRUVFaezYsbrnnnv0+++/65lnnsl2n5y+Rl/+bO655x6NGTNGgwYN0t13362VK1dmeykQEAypqZ4x0l995QkVf55x7YtTTw4C8pKeLvXtK02a5Pkpiz/PuPYF+xX54TjSE094zrgeMMB/A498ZcJ+DfiXW7B4jIpfWyXXuJakuLg4XXnllXrppZfUpEkTXXzxxRo2bJjuuusuvfbaa9nu27JlS5UvX16tW7dWhQoVAr38XD3zzDN64oknNGLECNWqVUutW7fWnDlzVLlyZUnSeeedp//85z969NFHlZCQoPvvv/+Mj5nfry0iIkJdunTR6tWr87x6nbWeL774QsuXL1fdunV1zz336I477tDQoUNzvH+ZMmU0efJkffjhh6pdu7ZGjhypF1544bTHzOlrPNOfzQUXXKBZs2Zpzpw5qlu3rl5//XU999xzZ/x6AX8J5AAZX61evTr4TworBXKAjK/Yr/BVIAfI+MqE/RrhnOMLYo8cOaKkpCTVqlVLRYoU8de68ny+ChUqaOLEiWacc+hHofy1wT1Z/46mpKRo//79OnTokHr06KGSJUu6vTRXnDxA5osvAnPGtS8WLFigFi1auPPksMbJA2RmzQrMGde+YL/CFycPkHnnncCcce0LE/arMZMczyQzM1M7duzQmDFjVKxYMd10001uL8lvQvlrA0yyerV0/fVSkSKed7JXq+beWmJiYtx7clghJcWzX/fu9QyQueIK99bCfsWZ7NkjtWvn+Xt2zhypTRv31mLCfg3yRfuzt3XrVp133nn64IMPNHHixFxPy7BRKH9tgCkWLpSaNJEqVHA/riVp48aN7i4ARluzRmrcWDpxQvr+e3fjWmK/Im9bt3qmiW7a5Pm71s24lszYr9YEdmJiohzH0bZt21y57J/T6HF/CcTXFsj1Arb54APPlcAGDTxnBv//cfiucvvHlzDXokWeM4PLlfN8M1i9utsrYr8id7/9JjVqJB075vlmsEEDt1dkxn41KrB37Nih/v37q0qVKoqOjlbFihXVrl07LViwwO2lBcWiRYsUERGhiIgIFShQQMWKFdOll16qRx55RNu3b/fLY+/fv/+c19mrVy/vOgsVKqQqVapo8ODB2Y5UBEwR7AEyvpoyZYrbS4CBgj1AxlfsV+Qk2ANkfGXCfjUmsFNSUlS/fn19++23ev755/Xbb79p/vz5at68ue677z63lxdUGzZs0N9//60VK1bo3//+t7755htdfPHF+u2339xemtf111+v7du3688//9Tw4cM1fvx4DXbjre1ALhxHeuwx6YEHpAcf9JzAEKwzg32R2wk+CF/jxnmOjuzYMbhnBvuC/YpTzZoltWol1a/vOZGpfHm3V/Q/JuxXYwK7X79+ioiI0PLly3XLLbeoRo0auuiiizRo0KBsQ0i2bt2q9u3bKy4uTkWLFtVtt92mnTt3en//qaeeUr169TRx4kRdcMEFiouL07333quMjAw9//zzKleunMqWLatnn3022/NHRERowoQJatOmjWJiYlS5cmV9+OGHea553bp1uuGGGxQXF6eEhAR1795du3fvluS5YhwVFaWlS5d67z9mzBiVLl36jFejy5Ytq3LlyqlGjRrq3Lmzvv/+e5UpU0b33ntvtvtNmjRJtWrVUuHChVWzZk2NHz8+x8dLSUlR8+bNJUklSpRQRESEdzrm/PnzdfXVV6t48eIqVaqU2rZt69O49+joaJUrV04VK1ZU165d1a1bN82ePfuMnwcEg5sDZHxlwihfmMHNATK+Yr/iZG4NkPGVCfs1IP/JSUtL0/bt2/P8lZaW5r3/3r17NX/+fN133305jhEvXry4JM+I7Q4dOmjv3r1avHixvv76ayUnJ6tTp07Z7p+cnKx58+Zp/vz5mjFjhiZOnKgbb7xRf/31lxYvXqxRo0Zp6NChp00PHDZsmDp27KjVq1fr9ttvV5cuXZSUlJTj17h9+3Y1bdpU9erV088//6z58+dr586duu222yRJzZo108CBA9W9e3cdOHBAq1ev1uOPP6633npL5fP5bV5MTIzuueceff/9995pim+99ZYef/xxPfvss0pKStJzzz2nYcOG5fhjkYoVK2rWrFmSPFfHt2/frldeeUWSZyT6oEGDtGLFCi1YsEAFChTQv/71r9NGyfuyxpP/mQJuyToz+L33PKHy0ENuryhnQ4YMcXsJMEB6unTHHdJzz3kGyAR7IIev2K+QPN8MDhsm9evn+eng9OlSdLTbqzqdCfs1IMdV7N69W2+++Wae9+nbt683NP/44w85jqOaNWvm+TnffPON1qxZo82bN3vHbk+dOlUXXXSRVqxYoSv+/23WmZmZmjhxouLj41W7dm01b95cGzZs0BdffKECBQrowgsv1KhRo7Ro0aJs0w9vvfVW3XnnnZI8w1K+/vprjR07NscrwxMmTNBll12WbUDKxIkTVbFiRW3cuFE1atTQ8OHD9c0336hv375au3atunfvrn/9618+/AmeLuvPJiUlRWXLltUzzzyjMWPGeM/Lrly5statW6c33njjtCmQkZGR3jOPy5Yt6/2GRZI6duyY7b7vvPOOypYtq3Xr1uniiy/2aW3Lly/X9OnTjXhTAcLb7t3SjTdKa9d6Xm/dqpXbK8rd888/b8R/BOCe1FSpUyfpyy89A2S6d3d7RbljvyI9XbrnHs/51iNHSo88IkVEuL2qnJmwXwMS2KVLl1bfvn3PeJ8sWbNuIs7wTyopKUkVK1b0xrUk1a5dW8WLF1dSUpI3sBMTExV/0juZEhISFBkZmW0keEJCgvdqcJZGjRqd9nFup3CsXLlSCxcuzHH8eXJysmrUqKGoqChNmzZNderUUaVKlfTyyy/n+fXl5eQ/o3/++Ufbtm3THXfcobvuust7n/T0dBUrVixfj5ucnKxhw4bpxx9/1O7du71Xrrdu3ZpnYM+dO1dxcXFKT09XWlqa2rdvr7Fjx57FVwb4x8kDZBYtcm+AjK+6du3q9hLgopMHyMyd694AGV+xX8PbyQNkJk92b4CMr0zYrwEJ7EKFCuXrZRDVq1dXRESEkpKS1KFDh1zv5zhOjhF+6u2FChXK9vtZp12cepsvL4PILfozMzPVrl07jRo16rTfO/lrX7ZsmSTPy2D27t2b40tgfJH1UpXExETvut966y1deeWV2e4XGRmZr8dt166dKlasqLfeeksVKlRQZmamLr74Yp04cSLPz2vevLkmTJigQoUKqUKFCqf9+QLBZNIAGV8tWbJE3U2+ZImAMWmAjK/Yr+HLpAEyvjJhvxrxSq+SJUuqdevWGjduXI5HvWUdLVe7dm1t3bpV27Zt8/7eunXrdODAAdWqVeuc13Hqa7J//PHHXF+2ctlll2nt2rVKTExUtWrVsv3Kiujk5GQ9+OCDeuutt9SwYUP16NEj369tlqSjR4/qzTffVJMmTVSmTBklJCTovPPO059//nnac1euXDnHx4j6/3fMZGRkeG/bs2ePkpKSNHToULVo0UK1atXSvn37fFpTbGysqlWrpkqVKhHXcJVpA2R8ldu/qwhtpg2Q8RX7NTyZNkDGVybsVyMCW5LGjx+vjIwMNWjQQLNmzdKmTZuUlJSkV1991fvSjZYtW6pOnTrq1q2bVq1apeXLl6tHjx5q2rSpLvfDz4M//PBDTZw4URs3btSTTz6p5cuX6/7778/xvvfdd5/27t2rLl26aPny5frzzz/11VdfqU+fPsrIyFBGRoa6d++uVq1aqXfv3po0aZJ+//13jRkz5ozr2LVrl3bs2KFNmzZp5syZuuqqq7R7925NmDDBe5+nnnpKI0aM0CuvvKKNGzfqt99+06RJk/Tiiy/m+JiVKlVSRESE5s6dq3/++UeHDx9WiRIlVKpUKb355pv6448/9O2332rQoEFn94cHuMDEATK+Sk9Pd3sJCDITB8j4iv0afkwcIOMrE/arMYFduXJlrVq1Ss2bN9dDDz2kiy++WNddd50WLFjgDcuIiAjNnj1bJUqUUJMmTdSyZUtVqVJF77//vl/W8J///EczZ85UnTp1NGXKFL333nuqXbt2jvetUKGCvv/+e2VkZKh169a6+OKLNWDAABUrVkwFChTQs88+q5SUFO+bPcuVK6e3335bQ4cOPeN0xQsvvFAVKlRQ/fr1NXLkSLVs2VK///57trXceeedevvttzV58mRdcsklatq0qSZPnpzrd23nnXee/vOf/+jRRx9VQkKC7r//fhUoUEAzZ87UypUrdfHFF+vBBx/U6NGjz+4PDwgyUwfI+GrHjh1uLwFBZOoAGV+xX8OLqQNkfGXCfo1wst49d5aOHDmipKQk1apVS0WKFPHXuoIuIiJCn3zySZ6vAQdslPXvaEpKivbv369Dhw6pR48e3pNlbJN1ZvCIEdKgQZ6jzUw81uxMNm3apOo2XcLEWRs3Turf3/MN4eTJ5p1x7Qv2a/iYNUvq1k266irpk0/MO+PaFybsVwv/swQgXNkwQMZXDGYKfTYMkPEV+zU8mD5Axlcm7NeAnCICAP6WmuoZI/3VV55Q6dbN7RWdm/79+7u9BARQerrUt680aZLnpyyDB7u9onPDfg1tjiM98YQ0fLg0YIC5A498ZcJ+tfiPz3dZUxXzkjUl8mwtWrRIERER3hNPbLdhwwaVK1dOhw4d8un+c+fO1aWXXnpWp6T4U5MmTTR9+nSf7nv8+HFdcMEFWrlyZYBXlbd33nlHrfIxEWXw4MF64IEHArgi8+zeLV17rbR4sef11rbHtSS98MILbi8BAZI1TXTqVM8AGdvjWmK/hrL0dOmuuzxxPXKk9NJLdse1ZMh+dc5Ramqq8/PPPzupqam53mfNmjXn+jTnZM+ePc7Bgwf99nhNmzZ1BgwYkO2248ePO9u3b3cyMzP99jyBsHjxYqdt27ZO+fLlHUnOJ598kuP9Onbs6Dz99NPejxcuXOhIOu3X448/7r3PpZde6kydOtXva164cKFz0003OeXKlXOKFCni1K1b15k2bdpp95szZ45TvXp1JyMjw3tbpUqVTlvzeeed5/39V155xWnRooXf1+w4jtO3b1+nSpUqTuHChZ3SpUs7N910k5OUlJTtPseOHXMqVKjgLFmyxHvbk08+meOf9ddff+04juPs3LnTiYuLc/7880+f1pH17+hHH33kvP32285LL73k7Nmzx39faIBt3uw4NWo4TpkyjrNihdurAfL2zz+Oc+WVjhMb6zjz57u9GiBvqamO066d40RGOs7kyW6vJrRY/T3KmYahZClZsmS2yY6BEBUVpXLlyp1xGqXbUlNTVbduXb322mu53uevv/7SZ599pt69e5/2exs2bND27du9vx599FHv7/Xu3Tsg0xyXLVumOnXqaNasWVqzZo369OmjHj16aM6cOdnu9+qrr6p3797ZJnZK0tNPP51tzb/88ov397p166alS5d6B/n4U/369TVp0iQlJSXpyy+/lOM4atWqVbazyGfNmqW4uDhdc8012T73oosuyrbm7du3q0mTJpI84+5btWql119/3e9rNs3q1Z5jotLTPe9kN306Y34MHz7c7SXAz1JSPGcG//mn58xg06cz5gf7NfTs2SO1bCktWOAZIGP6dMb8MGK/nmuh++sKdtOmTZ377rvPue+++5xixYo5JUuWdB5//PFsV4QrVarkPPPMM07Pnj2dokWLOj169HAcx3E++ugjp3bt2k5UVJRTqVIl54UXXjjtsU++4nz8+HHn4YcfdipUqOAUKVLEadCggbNw4cJsn/Pdd985TZo0cWJiYpzixYs7rVq1cvbu3ev07NnztCuLmzdv9l7h3bdvn/cxzrSuSpUqOc8++6zTu3dvJy4uzqlYsaLzxhtvZFvnfffd55QrV86Jjo52KlWq5Dz33HO5/hn27NnTad++vfPUU085ZcqUceLj452+ffs6x48fz/H+yuUK9pgxY5zLL7882205fX2nSklJcSQ5ycnJud7nVFmPO3fuXKdOnTpOdHS006BBgzPumRtuuMHp3bu39+N//vnHiYiIcH7//fds96tUqZLz0ksv5flYzZo1c4YNG+bzmrMe9+mnn3a6dOnixMbGOuXLl3deffXVPD9n9erVjiTnjz/+8N7Wrl07Z/Dgwdnu9+STTzp169bN87EmT57sVKxY0ae12noF+9tvHadoUce57DLH2bHD7dX43/bt291eAvxo9WrHKV/ecSpXdpyNG91ejf+xX0PLli2OU7Om45Qu7Tg//eT2avzPhP1q1BXsKVOmqGDBgvrpp5/06quv6qWXXtLbb7+d7T6jR4/WxRdfrJUrV2rYsGFauXKlbrvtNnXu3Fm//fabnnrqKQ0bNkyTJ0/O9Xl69+6t77//XjNnztSaNWt066236vrrr9emTZskSb/++qtatGihiy66SD/88IO+++47tWvXThkZGXrllVfUqFEj3XXXXd4rixUrVjztOXxd15gxY3T55Zfrl19+Ub9+/XTvvfdq/fr1kjxXZD/77DN98MEH2rBhg6ZNm6bExMQ8/wwXLFigpKQkLVy4UDNmzNAnn3yi//znP2f+wz/JkiVLzmpwT6VKlVS2bFktXbo035/78MMP64UXXtCKFStUtmxZ3XTTTUpLS8v1/gcOHMh2zNx3332nIkWKnNVEzwYNGpzVmkePHq06depo1apVGjJkiB588EF9/fXXOd43NTVVkyZNUuXKlbPtl6VLl57Vn3WDBg20bds2bdmyJd+fawObB8j46tSfwMBeNg+Q8RX7NXTYPEDGV0bs13MtdH9ewa5Vq1a2K9b//ve/nVq1ank/rlSpktOhQ4dsn9e1a1fnuuuuy3bbww8/7NSuXTvbY2ddwf7jjz+ciIgI57///W+2z2nRooUzZMgQx3Ecp0uXLs5VV12V51pPfQ32qVd4fVlXpUqVnNtvv937cWZmplO2bFlnwoQJjuM4Tv/+/Z1rr73W59d19+zZ0ylZsmS2fxYTJkxw4uLisr0uOYtyuYJdt27dbK+/Pvnri42NzfZr9+7d2e536aWXOk899ZRP6z35cWfOnOm9bc+ePU5MTIzz/vvv5/g5H374oRMVFZXtavVLL73kVKlS5bT7VqpUyYmKisq25ldeeSXbfV555RUnMTHR5zVnPe7111+f7bZOnTo5bdq0yXbbuHHjnNjYWEeSU7NmzWxXr/ft2+dIyvb6a8fxXMEuUKBAtjVfccUV2e5z4MABR5KzaNGiM67VtivYr77qOBERjtO1q+Pk8sOXkLB8+XK3lwA/+PBDx4mKcpwWLRznwAG3VxM47NfQsHix4xQr5jj16jnO33+7vZrAMWG/GnUFu2HDhtlew9yoUSNt2rQp22tWT73al5SUpKuuuirbbVddddVpn5dl1apVchxHNWrUUFxcnPfX4sWLlZycLOl/V7DPha/rqlOnjvf/R0REqFy5ctq1a5ckqVevXvr111914YUX6oEHHtBXX311xuetW7dutoE/jRo10uHDh7Vt2zaf13706FEVLlw4x99bunSpfv31V++vEiVKZPv9mJgYHTlyxOfnOnmdWUqWLKkLL7wwx9dFL1q0SL169dJbb72liy66yKc1P/zww9nW3KNHD7+vOevjU9fcrVs3/fLLL1q8eLGqV6+u2267TceOHfOuWVKO677wwguzrXnWrFmnrVnSWa3bVI4jPfaY9MAD0oMPek5gsPXMYF/s2bPH7SXgHI0b5zk6smNHu88M9gX71X6zZkmtWkn163tOZCpf3u0VBY4J+9W6c7BjY2Ozfew4zmlvLHTyGE6ZmZmpyMhIrVy5UpGRkdl+Ly4uTtL/4uVc+LquQoUKZfs4IiLCe9TdZZddps2bN2vevHn65ptvdNttt6lly5b66KOP8r2e/Lz5snTp0tq3b1+Ov1e5cmUVL14818/du3evypQpk9/l5ejUNS9evFjt2rXTiy++eFok57Xm0qVLq1q1ark+TyDXXKxYMRUrVkzVq1dXw4YNVaJECX3yySfq0qWLSpUqpYiIiBzXHRUVdcY1S/Lbut2WluY5JmrKFM8AmYcecntFgZf1DRbs4zjS0KHSc895vhl84QX7jzU7E/ar3SZMkO67z/MN4ZQpUnS02ysKLBP2q1F/Jfz444+nfVy9evXTQvhktWvX1nfffZfttmXLlqlGjRo5ft6ll16qjIwM7dq1S9WqVcv2q1y5cpI8V5UXLFiQ63NGRUXleHX8XNaVm6JFi6pTp05666239P7772vWrFneuMrJ6tWrs22sH3/8UXFxcTr//PN9fs5LL71U69at8/n+WY4dO6bk5GRdeuml+f7ck//Z79u3Txs3blTNmjW9ty1atEg33nijRo4cqb59++a45h07duQa2Xn5/fffz3nNWR+fvOacOI6j48ePS/Lso9q1a5/Vn/Xvv/+uQoUKZbuKb6vUVKl9e+m99zwDZMIhriW5PsYXZyc9XbrjDk9cjx5t/0AOX7Ff7eQ40rBhUr9+np8OTp8e+nEtmbFfjfprYdu2bRo0aJA2bNigGTNmaOzYsRowYECen/PQQw9pwYIFeuaZZ7Rx40ZNmTJFr732mgbncrJ/jRo11K1bN/Xo0UMff/yxNm/erBUrVmjUqFH64osvJElDhgzRihUr1K9fP61Zs0br16/XhAkTtHv3bklSYmKifvrpJ6WkpGj37t05DlfJ77py8tJLL2nmzJlav369Nm7cqA8//FDlypXL8wryiRMndMcdd2jdunWaN2+ennzySd1///3eo+sOHz7sfdmBJG3evFm//vqrtm7d6n2M1q1b64cffjjjNxGn+vHHHxUdHX3aSyd88fTTT2vBggX6/fff1atXL5UuXdo7+Ccrrh944AF17NhRO3bs0I4dO7J9o3HppZeqTJky+v777/P93EuXLs3XoJcs33//vZ5//nlt3LhR48aN04cffujdr3/++adGjBihlStXauvWrfrhhx902223KSYmRjfccIP3MVq3bn3aN2K+rvmaa67xy09b3JQ1QGbp0tAZIOOrhQsXur0E5NPJA2SmTg2NATK+Yr/a5+QBMqNGhcYAGV8ZsV/P9UXc/nyTY79+/Zx77rnHKVq0qFOiRAnn0UcfPe2YvpyOXMs6Dq9QoULOBRdc4IwePfq0xz75TYknTpxwnnjiCScxMdEpVKiQU65cOedf//pXtnUuWrTIady4sRMdHe0UL17cad26tfcNjBs2bHAaNmzoxMTE+HRMX27ryunrqVu3rvPkk086juM4b775plOvXj0nNjbWKVq0qNOiRQtn1apVuf4ZZh3T98QTTzilSpVy4uLinDvvvNM5duyY9z65DYzp2bOn9z7p6enOeeed58w/aUqCL8f09e3b17n77rtPW1PTpk1z/Zysx50zZ45z0UUXOVFRUc4VV1zh/Prrr9keI6c1n/q4jz76qNO5c+dst53pmL5ly5Y5xYsXd44cOXLamjZv3pzr51WqVMn5z3/+49x2221OkSJFnISEBOfll1/2/v5///tfp02bNk7ZsmWdQoUKOeeff77TtWtXZ/369dkeJykpyYmJiXH279/vvc2XY/pq1KjhzJgxI8/7ZDH1TY4nD5D5+We3VxN8J/8zh/nCfYAM+9UuJw+QmTLF7dUEnwn7NSiB7YucTubwl4YNG2abOBiqsgLbH8aNG+e0atXK5/vv2rXLKVmy5GnTBZs2ber9hiEnvoS7r3bs2OGUKlXKSUlJ8flzbrnlFufZZ5/NdtukSZOcatWqOSdOnMj183w5X9tXt956a57nm59q7ty5Tq1atZy0tDSf7m9iYP/6q+OUK+c4Vao4zqZNri7FNc8884zbS4CPUlIc58ILPd8MGnA4gSvYr/bYvdtxGjVynCJFHOeLL9xejTtM2K8h/cOC48eP6+eff9batWtD4rWqwdS3b181adJEhw4d8un+mzdv1vjx41W5cmXvbYcOHVJycnK+XhZzLhISEvTOO+9ke7lLXo4fP666devqwQcfzHb7/Pnz9dxzz532BtRAGT16tPcNtr7IOlO7YEHr3qMsyTPhrkkTqUIFz5nBebyXM6QNHTrU7SXAB2vWeM4MPnHCc2bwFVe4vSJ3sF/tsHWrZ5ropk2ev2vbtHF7Re4wYb+GdGDPmzdP1157rdq1a6dbbrnF7eVYpWDBgnr88cd9HjHfoEEDderUKdtt8fHx2rZtW77i8Vy1b9/+tLHjuYmOjtbQoUNPex3zzJkzdeuttwZieTmqVKmS+vfv7/P9b7vtNl155ZUBXFHghMMAGV8ZMcoXeQqHATK+Yr+aLxwGyPjKhP0a4Th5nGnngyNHjigpKUm1atXKdv5yqEhMTNTAgQM1cOBAV9fx1FNPafbs2d43JwK+yvp3NCUlRfv379ehQ4fUo0ePbJMwg2HsWGnAAKlLF2nSpNA+49oX+/fvz/MNy3DXRx953nR7zTXSxx+H9hnXvmC/mm3JEummm6TKlT1nsofyGde+MGG/GnMFu1evXoqIiDjt1x9//BGU5588eXKO/zBWrFiR47FwwTZ48OA8jw4ETBVuA2R8NW3aNLeXgFyE0wAZX7FfzRVOA2R8ZcJ+NSawJen666/X9u3bs/06+TW9bihTpowRV+bj4uJUqlQpt5cB5EtamtS7tzRihGcYx5gx4XNM1Jk0bdrU7SXgFI4jPf64dP/90sCBnnPZ+WbQg/1qpgkTpFtv9RwfyTeD/2PCfjXqP3XR0dEqV65ctl+RkZHq1auX90zkLAMHDlSzZs28Hzdr1kwPPPCAHnnkEZUsWVLlypXTU089le1z9u/fr759+yohIUGFCxfWxRdfrLlz52rRokXq3bu3Dhw44L1ynvW5iYmJevnll72PsXXrVrVv315xcXEqWrSobrvtNu3cudP7+0899ZTq1aunqVOnKjExUcWKFVPnzp3zfLNg1tXz2bNnq0aNGipcuLCuu+66bOPNsx4XsEW4DpDxVXJysttLwEnCdYCMr9ivZgnXATK+MmG/htRfH1OmTFFsbKx++uknPf/883r66af19ddfS/KMSG/Tpo2WLVumadOmad26dRo5cqQiIyPVuHFjvfzyyypatKj3ynlOJ184jqMOHTpo7969Wrx4sb7++mslJyef9ua+5ORkzZ49W3PnztXcuXO1ePFijRw5Ms+1HzlyRM8++6ymTJmi77//XgcPHlTnzp3994cDBFE4D5DxVRSXRo0RzgNkfMV+NUc4D5DxlQn7NSDnfB05Iq1fn/d9ataUTn3lxdy5c7OdONGmTRt9+OGHPj9vnTp19OSTT0ryjMl87bXXtGDBAl133XX65ptvtHz5ciUlJalGjRqSpCpVqng/t1ixYoqIiPCOS8/JN998ozVr1mjz5s2qWLGiJGnq1Km66KKLtGLFCl3x/+c3ZWZmavLkyd4TOLp3764FCxbo2WefzfWx09LS9Nprr3lPh5gyZYpq1aql5cuXq0E4vxUY1klJkVq3lvbt85zCUL++2ysyU0I4H6FikN27pbZtpd9/l+bO9exdnI79aoYjR6TOnT0vB5kyRerRw+0VmcmE/RqQwF6//sz/UV25Urrssuy3NW/eXBMmTPB+HBsbm6/nrVOnTraPy5cvr127dkmSfv31V51//vneuD4bSUlJqlixojeuJal27doqXry4kpKSvIGdmJiY7Xi7k9eRm4IFC+ryyy/3flyzZk3v4xLYsMXq1Z5j+IoUCe8zrn2xcuVK1ee7D1dt2eIJ6r17PWcGh+sZ175gv7pvzx6pXTvP37Nz5oTvGde+MGG/BiSwa9b0BPSZ7nOq2NhYVcvhv8gFChTQqacJpqWlnXa/UweDREREKDMzU5JOO+v4bDiOo4iIiDPentc68pLTY+d0G2CihQs9P2avVs1zdcWACwhGa9++vdtLCGtr1ni+GSxc2HNmcDifce0L9qu7tm71fDO4e7fn71quu+XNhP0akFftFCniuTqd16/8HMxRpkwZbd++Pdtt+T0Puk6dOvrrr7+0cePGHH8/KipKGRkZeT5G7dq1tXXr1mxvPly3bp0OHDigWrVq5Ws9p0pPT9fPP//s/XjDhg3av3+/aub0nQhgGAbI5N9bb73l9hLCFgNk8o/96h4GyOSfCfvVipfFX3vttfr555/17rvvatOmTXryySf1+++/5+sxmjZtqiZNmqhjx476+uuvtXnzZs2bN0/z58+X5HlZx+HDh7VgwQLt3r1bR44cOe0xWrZsqTp16qhbt25atWqVli9frh49eqhp06bZXt5xNgoVKqT+/fvrp59+0qpVq9S7d281bNiQl4fAeGPHel4TeMstnjc0+jj8M+yZMMo3HH30kedK4BVXeEI7j7fd4CTsV3csWeL5ZrBsWc83g+fwKtewYsJ+tSKwW7durWHDhumRRx7RFVdc4Z1El1+zZs3SFVdcoS5duqh27dp65JFHvFetGzdurHvuuUedOnVSmTJl9Pzzz5/2+REREZo9e7ZKlCihJk2aqGXLlqpSpYref//9c/4aixQpon//+9/q2rWrGjVqpJiYGM2cOfOcHxcIFAbInBsTRvmGGwbInD32a/AxQObsmbBfGZVugMmTJ2vgwIHav3+/20tBCArEqPS0NM8xUVOmeAbIcMZ1/h09etQv7w3BmTmONHSo54zrBx/07FmONcsf9mtwTZgg3Xef5xvCKVM44zq/TNiv/BUDIF8YIOMf48ePd3sJYYEBMv7Bfg0OBsj4hwn7NSCniAAITbt3SzfeKK1b53m9datWbq/IXjfddJPbSwh5qalSp07Sl196XsJ0++1ur8he7NfAS0+X7rlHeucdzwCZhx+WOEjs7JiwX/k+3gC9evXi5SEwXkqKdNVV0ubNnjeHEdfnZtWqVW4vIaTt3i21aOHZq3PnEtfniv0aWEeOSDffLE2e7HlJyCOPENfnwoT9yhVsAGfEABn/K1OmjNtLCFkMkPE/9mvgMEDG/0zYr1zBBpCnhQulJk2kChWIa3+K5oWVAbFmjefM4BMnPGcGE9f+wX4NjK1bpauvljZt8vxdS1z7hwn7lcAGkCsGyAROcnKy20sIOQyQCRz2q/8xQCZwTNivBDaAHDFAJrCaNWvm9hJCCgNkAov96l8MkAksE/YrgQ0gGwbIBMfUqVPdXkLIYIBM4LFf/YcBMoFnwn4lsAF4paVJvXtLI0Z4hnGMGcOZwYEyZMgQt5dgPceRHn9cuv9+aeBAz7nsfDMYGOxX/5gwQbr1VqlDB74ZDCQT9qvfThE5evSovx4KgB/5+u9maqrnL/6vv/aESrduAV5YmHvuuec0dOhQt5dhrfR0qW9fadIkzwCZwYPdXlFoY7+eG8eRnnhCGj5cGjCAgUeBZsJ+PedR6SdOnNDatWuVmZnprzUB8DPHcfTnn3/q0KFDOY5KP3mATNaPLxFYmZmZKsB/Yc/KkSOel4R8+aUnsDnjOvDYr2ePATLBZ8J+Pecr2FFRUbrooouUnp6uAwcOaO7cuYqNjTXiiBSEj7S0NE2aNEm9e/dWoUKF3F6OcTIyMpSenp7j76WkeN4ctm+f581h9esHdWlha8SIEXr88cfdXoZ1du/2nBn822+eATKtW7u9ovDAfj07R4543iz+xReeATI9eri9ovBgwn71y0tEoqKiFBUVpWPHjik1NVVpaWkENoLqxIkT2rZtm/bt26coXoSZq+PHj2f7mAEy7unevbvbS7AOA2Tcw37NPwbIuMeE/erXSY7R0dEqWrSoDh48qBMnTvjzoYE8nThxQtHR0Tp06BCBfQZFixZVdHS0Fi70vNGmWjXP1RXOuA6uRYsWqQeXs3y2Zo3nm8HChT1nBnPGdXCxX/Nn61bPN4O7d3u+GeSM6+AyYb/6NbBjY2PVqVOn066SAYF26NAhPfHEE+rUqZPiObA5T9HR0fr881h17+6Z0Pjxx5xx7YaqVau6vQRrLFoktW8vVa3q+WaQM66Dj/3qu99+83wzGBXl+WaQM66Dz4T96tfAljyRHRsb6++HBfJUsGBBHT9+XCVKlFBRzj3K09ixnnexd+nieYMYF/zdwYUI33z0kedEm2uu8XwzyL/e7mC/+mbJEummm6TKlT3fDHLGtTtM2K+8JRgIEwyQMcs///zj9hKMxwAZc7Bfz4wBMuYwYb8S2EAYYICMeS677DK3l2AsBsiYh/2aNwbImMWE/cp/YoEQl5rqef3qe+95QuWhh9xeESTps88+c3sJRkpPl+64Q3ruOc8AGQZymIH9mjPHkYYNk/r18/x0cPp0iUPU3GfCfj3nQTOACQ4ePKhixYrpwIEDvAb7JAyQMdfRo0cVExPj9jKMwgAZc7FfT8cAGXOZsF+5LgCEqJQU6aqrpM2bPacwENdmGTNmjNtLMMru3VKLFp69OncucW0a9mt2R45IN98sTZ7sGSDzyCPEtUlM2K9cwUZI4Ap2dicPkPnySwbIwGwnD5D5/HMGyMBsJw+Q+egjBsggZ1zBBkLMwoWe860rVGA6o8mGDx/u9hKMsGaN1KiRdOKE58xg4tpM7FePrVulq6+WNm3y/F1LXJvJhP3KFWyEBK5ge3zwgRggY4mdO3cqIczHZzJAxh7s1+wDZL78kgEyJjNhv3IFGwgRY8dKnTtLt9zi+TE7cW22Tz/91O0luOqjjzwvC7niCk9oE9dmC/f9umSJZ9hR2bKenwwS12YzYb8S2IDlGCBjp/r167u9BNcwQMY+4bxfGSBjHxP2K4ENWIwBMvbauXOn20sIOgbI2Csc96vEABlbmbBfC7q9AABnJzXV8xf/1197QqVbN7dXhPw4ceKE20sIqvR0qW9fz/nWo0dLgwe7vSLkR7jtV8eRnnhCGj5cGjCAgUe2MWG/EtiAhU4eIPP555xxbaOqVau6vYSgOXmAzNSpnHFto3DarwyQsZ8J+5XvxwDLMEAmNCxevNjtJQQFA2RCQ7jsVwbIhAYT9ivH9CEkhMsxfQyQCR379+9X8eLF3V5GQDFAJnSEw35lgEzoMGG/cgUbsAQDZELLa6+95vYSAooBMqEl1PcrA2RCiwn7lSvYCAmhfgWbATKwCQNkYBMGyCAQuIINGI4BMqHJhFG+gcAAmdAUqvuVATKhyYT9yhVshIRQvIKddWbwiBHSoEGeo804Jip0HDhwQMWKFXN7GX41bpzUv7/nG8LJkznjOpSE4n6dNctzvOlVV0mffMIZ16HEhP3Kf64BAzFAJvS9++67bi/BbxxHGjqUATKhLJT2q8QAmVBnwn7lHGzAMAyQCQ/Nmzd3ewl+kZ4u3X23NHEiA2RCWajsVwbIhAcT9ivbCjDI7t3StddKS5d6Xm9NXIeuTZs2ub2Ec3bkiOcK4LvvegbIENehKxT2a3q6dNddnrgeNUp66SXiOlSZsF+5gg0YYvNmzzvZ9+3zvDmsfn23V4RAiomJcXsJ52T3bs+Zwb/95hkg07q12ytCINm+X48ckTp1kubN8wyQ6dHD7RUhkEzYrwQ2YICsATKxsZxxHS5KlSrl9hLO2skDZBYtki6/3O0VIdBs3q8nD5CZM4czrsOBCfuVH44ALjt5gMz33xPX4eLXX391ewlnJWuATFqa55tB4jo82LpfGSATnkzYrwQ24KIPPvBcuW7QwHMlMCHB7RUhWNq1a+f2EvJt0SLPmcHlyvHNYLixcb/+9pvnm8Fjxzz7tUEDt1eEYDFhvxLYgEsYIBPe3n77bbeXkC8MkAlvtu1XBsiENxP2K4NmEBJsGjTDABnYhgEysAkDZGAC/rMOBBEDZJDFhFG+Z8IAGWSxYb9KDJCBhwn7lSvYCAk2XME+eYDM5MmccR3ujh07psKFC7u9jFwxQAYnM32/MkAGJzNhv7L9gCBggAxONXbsWLeXkCsGyOBUJu9XBsjgVCbsV87BBgKMATLISYcOHdxeQo4YIIOcmLpfGSCDnJiwX/keDwig1aulxo2ljAzPO9mJa2RZuXKl20s4zZYtnjODk5M93wwS18hi4n7ds0dq2VL69lvPABniGllM2K8ENhAgDJBBXsoZds4dA2SQF9P2KwNkkBcT9iuBDQQAA2RwJgULmvMKPQbI4ExM2q8MkMGZmLBfCWzAzxggA19s3rzZ7SVIYoAMfGPKfmWADHxhwn4lsAE/cRzpscekBx6QHnzQc/oCZwYjN02aNHF7CRo3TrrtNqljR84MRt5M2K+zZkmtWnney7J4sVS+vNsrgqlM2K8ENuAHDJBBfk2fPt2152aADPLLzf0qMUAG+eP2fpUYNIMQ4eagGQbI4GxkZGQoMjIy6M/LABmcDbf2KwNkcDbc2q8nY5sC54ABMjhbI0aMCPpzMkAGZ8uN/coAGZwtN/brqbiCjZDgxhXskwfIzJvHGdcw28kDZGbN4oxrmO3kATITJ3LGNezD94LAWWCADM7V8OHDg/ZcDJDBuQrmfmWADM5VMPdrbriCjZAQzCvYCxd6fsxerZrnzTaccY2zsW3bNlWsWDHgz7NmjecnLTEx0pdfcsY1zk6w9uvWrZ5vAHfv9rzsjjOucTaCtV/zwhVsIB8YIAN/WbBgQcCfgwEy8Jdg7FcGyMBfgrFfz4TABnzEABn4U40AT8hggAz8KdD7lQEy8KdA71dfENjAGTBABoFw9OjRgD02A2Tgb4HcrwyQgb8Fcr/6isAG8sAAGQTKnj17/P6YDJBBoARiv0oMkEFgBGq/5kdBtxcAmOrkATLTpnHGNfyrbt26fn08BsggkPy9Xxkgg0Dy9349G2xnIAcMkEGgzZ0712+PxQAZBJo/9ysDZBBo/tyvZ4tj+hAS/HlMHwNkEAxHjhxRkSJFzvlxGCCDYPDXfmWADILBX/v1XPA9I3ASBsggWF588cVzfgwGyCBY/LFfGSCDYPHHfj1XXMFGSPDHFWwGyMAmDJCBTRggg3DDFWxADJBB8J3LKF8GyCDYzmW/MkAGwcaodMBPzuUK9tixnnexd+kiTZrEsWYIjn/++UdlypTJ9+d99JHnTbfXXCN9/DHHmiE4zna/Llki3XSTVLmy5yeDnHGNYDjb/epPXMFG2GKADNz08ccf5/tzGCADt5zNfmWADNxyNvvV3whshCUGyMBtV1xxhc/3ZYAM3Jaf/SoxQAbuyu9+DQQGzSDsMEAGJti+fbtP92OADEzg635lgAxM4Ot+DSQCG2Fl927pxhuldes872Rv1crtFSFcZWRknPE+R454XhLy5ZeelzDdfnsQFgbkwJf9mp4u3XOP9M47ngEyDz8sRUQEYXHAKXzZr4HGmxwRErLe5PjGG28oJiYmx/v880+cRo++Vqmp0Ro8eIEqV94b5FUC/7N161ZdcMEFuf7+oUPRevHF5vrrr+Lq33+x6tRx/4oMwteZ9uvx45EaN66J1qypoDvv/EFXX/1nEFcHZFe3bl3VqVPH1TXwgxuEha1bS+jpp1srMzNCTzwxn7iG6zZu3Jjr7+3eHavhw1tr1654DRnyFXEN1+W1Xw8ditKoUS21bl05PfjgQuIarlu6dKnbS+AlIgh969Yl6JVXmikh4ZAeeuhbFSt2zO0lAWrYsGGOt2/dWlwvvNBCUVEZeuKJ+UpIOBTklQGny22/7t5dRKNHt9Thw9EaMuQrVa26J8grA07XpUsXt5fAFWyEtp9+qqQXXmihKlX2aMiQr4hrGGPBggWn3ZaUlKBnn22tYsWOauhQ4hrmyGm/bttWXM8800ZpaZEaOnQ+cQ1jjB8/3u0l8BpshIacXoP91VcX6r33rlDDhim6665lKlgw0+VVArlbvvwCvf761apRY5cGDFismJg0t5cE5Gr9+rJ6+eXmKl36sAYP/lbFix91e0mAV/fu3d1eAlewEXocR/rww3qaNq2BWrdO0t13f0dcwziffvqp9/9/800NjRvXRJdfvlWDB39LXMM4J+/XFSsu0OjRLZWYuEePP/4VcQ3jmDAqPWCvwd6yRVq+XEpMlAw47xshbONG6YcfPP8/PT1Cb73VWN99V1VduvysNm2S3F0ccIo9e4ooObm0qlfvLMc5qlmz6umzzy5R69br1KXLSs4MhlEOHYrW+vUJSkzsKsdJ1bff1tC77zZQgwZb1Lfv9ypUiIsXMMfRowW1bl15NWnSXunpUkEX32kYkJeIDB4sjR8vVa8ubdsm1asnzZ7NJCec2eHDh9WzZ0+99NJLeR4JJUkZGdKdd0qTJ0vSQUnFFB+/Q6mpZdS37zI1brw5CCsGfPfhh/X09dcXqXr1AkpOflUFC96lgwdj1LnzSt1wwzq3lwdk8/XXF+rDD+uratVIbd36qqS+OnSosFq1SlLXrj/zzSCMsmLFBXrrrUY6dixK0quqWPEBzZkj1a3rznr8/q/Hp59KU6ZIq1ZJq1dLKSmew+cff9zfz4RQM3HiRI0ePVoff/yxMjPPfFXk7bez4lqSPN8nHjoUo8aN/ySuYZw1ayrou+8u0YoVBbR6taPFi1vq8stjVLPmDuIaxvnrr2L64IMrNG9epH77zdHSpS3Vrl1hlSt3QN26Edcwy6FD0Xr99av+P64lqaW2bZPcPEzE7xfP339fuvdeqWZNz8dFi3pGpt56qzR2rL+fDaGkT58+kqSnn376jPc9fvy4pk8/LkkqWvSQbrrpQ02bJp133l86fLiAjh8/HtC1Avm1bl287r57u+LijuvNN79UZmamBg+O1333OexXGOe334qpc+cdqlo1XZMnf6PU1FQNHhyvhQsjdeBAhmJi0t1eIuD1229lVLr0P5KkggXTVbz4D/rjj0QlJRXRb79Jl1wS/DX5/BKRGTNmqEGDBpo1a5YGDBig0aNHa+jQoRo+fLj69OmjefPmqU6dOvr3v/eqZMlUPf10TX3zzTfq1auXBg58VfPmDdV99w1Xv379NGPGDF1zzTVKSUlRZGSkypcvrxUrVujmm2/WG2+84X3cQYMGacKECWrbtq1Wr16tUqVKKSYmRhs3blSLFi00ZcoU732HDBmi559/Xl27dtWSJUtUuXJlpaena8eOHapfv75mz56t/v3764UXXvB+zp133qk5c+aoXr162rNnj44eParq1atr4cKF6tGjh8aOHeu97/33369p06apadOmSk5OVlRUlBISErRy5Uq1b99eb731lve+Dz30kMaPH6+bbrpJq1atUpkyZRQdHa3k5GQ1a9ZMU6dO1ZAhQ/Tcc8/pscce04gRI9S9e3ctWrRIVatW1fHjx/XPP//osssu02effaZ+/fppzJgx3se/66679Omnn6p+/frauXOnTpw4oapVq2rx4sW6/fbb9dprr3nv279/f7377rtq3ry5Nm3apJiYGJUqVUq//vqr2rVrp7ffftt738GDB2vs2LHq0KGDVq5cqXLlyqlgwYLavHmzmjRpounTp+uRRx7RiBEjvJ/Ts2dPLViwQDVq1NDRo0e1Z88e1a1bV3PnztW9996rF1980Xvfu+++Wx9//LGuuOIKbd++XRkZGUpMTNTSpUvVpUsXjR8/XkOHDlVERITWrFmjhQsX6siRI/r7778VHR2tuLg4bdu2TXXq1NHrr7+upCTP66tjY2PVq1cvjRs3To8++qgKFy4c0H9pAACA2WbNul6//faTPv20pdLT1ys2NlYlS5bUmjVr1KZNG02cONHbJw8//LBeeeUVdezYUcuXL1f58uUVGRmpLVu26Oqrr9bMmTM1ePBgjRw5UkOHDvXp+f3+GuwvvpC6dZMWLvS89nrPHumGG6RLL5Vef92fz4RQFRERoc2bNysxMVFTp07N8T5paWlatKiipk69UpJU5d45+nPC7Rr44BMqU7qzevcuHsQVA2e2fLnn/Smvvy79UXy1dsz9SWmZkTpyqK0efjjB7eUB2aSkSJ06SS++KKnqJq39bKEyJf1323V65pnKLq8OyO7gQalNG+nYMal06d3q2PFjvfNOH5UoUVGrV7uzJr+/ROSGG6T+/aVGjaQKFaSdO6W0NM/rsA8fluLi/P2MCEeFChVSy5Y79Pff27VwYXWlFiohSTpWOlOR0Z8rKqq3SpUq5fIqgf9p31767TepXTupct9tuq2EtLtsAZ1f+AtlZPTQ+eef7/YSAa/y5aUnn5R695YS2+3RLRdKmytFqWqBBTpw4FbVzHodKGCA8uU9L0Pu0UPavTvrtoInvU8r+ALyNoWnn/Z89zt2rOeqzY8/Sps2Sbfc4oltwB8iIqSePZdrzJhPdPHFeyVJ81rH6+/oE3p78iTt2cNUMZhl6FDPEaY33eT5+Is2RbWlbAFNnvqu/vrrL3cXB5zijjuk//5X6tnD8/GCZkW1rkaUPvjwQ61fv97dxQGnuPFGz34dN87z8SefSLVqubeegL0POCHBczW7dm3Py0Nmz5a+/dbzLyyzI+FPpUodUalSnhHox2IK6J1uJYlsGKtMGanmhZ7/n14oQu92LkFkw1hFi/7vDWJOpPRR+xJaS2TDUIULSw0bev5/RIS7awnaQTvXXitNner5NWRIsJ4VNpkxY4buvfdeSdKjjz6q8ePHn9XjpMZFEtmwxomoAkQ2rJEZGUFkAz4I6kmWnTpJL78sjRolvfJKMJ8ZNujSpYsmTJggx3E0c+ZM9evX76wfi8iGTYhs2ITIBs4s6EfFDxggPfKINHCgNHNmsJ8d4YTIhk2IbNiEyAby5sosppEjPe/07NFDWrDAjRUgXBDZsAmRDZsQ2UDuXAnsiAjPmOsWLaR//Uv65Rc3VoFwQWTDJkQ2bEJkAzlzJbAlqVAh6cMPPSPV27SRNm92ayUIB0Q2bEJkwyZENnA61wJb8gyd+fxzKT5eat1a+ucfN1eDUEdkwyZENmxCZAPZuRrYkudM2C+/9Iy5vPFGz7RHIFCIbNiEyIZNiGzgf1wPbEmqUkWaN09av55pjwg8Ihs2IbJhEyIb8DAisCWmPSK4iGzYhMiGTYhswKDAlpj2iOAismETIhs2IbIR7owKbIlpjwguIhs2IbJhEyIb4cy4wJaY9ojgIrJhEyIbNiGyEa6MDGyJaY8ILiIbNiGyYRMiG+HI2MBm2iOCjciGTYhs2ITIRrgxNrAlpj0i+Ihs2ITIhk2IbIQTowNbYtojgo/Ihk2IbNiEyEa4MD6wJaY9IviIbNiEyIZNiGyEAysCW2LaI4KPyIZNiGzYhMhGqLMmsCWmPSL4iGzYhMiGTYhshDKrAlti2iOCj8iGTYhs2ITIRqiyLrAlpj0i+Ihs2ITIhk2IbIQiKwNbYtojgo/Ihk2IbNiEyEaosTawJaY9IviIbNiEyIZNiGyEEqsDm2mPcAORDZsQ2bAJkY1QYXVgS0x7hDuIbNiEyIZNiGyEAusDW2LaI9xBZMMmRDZsQmTDdiER2BLTHuEOIhs2IbJhEyIbNguZwJaY9gh3ENmwCZENmxDZsFVIBbbEtEe4g8iGTYhs2ITIho1CLrAlpj3CHUQ2bEJkwyZENmwTkoEtMe0R7iCyYRMiGzYhsmGTkA1siWmPcAeRDZsQ2bAJkQ1bhHRgS0x7hDuIbNiEyIZNiGzYIOQDm2mPcAuRDZsQ2bAJkQ3ThXxgS0x7hHuIbNiEyIZNiGyYLCwCW2LaI9xDZMMmRDZsQmTDVGET2BLTHuEeIhs2IbJhEyIbJgqrwJaY9gj3ENmwCZENmxDZME3YBbbEtEe4h8iGTYhs2ITIhknCMrAlpj3CPUQ2bEJkwyZENkwRtoEtMe0R7iGyYRMiGzYhsmGCsA5siWmPcA+RDZsQ2bAJkQ23hX1gS0x7hHuIbNiEyIZNiGy4icAW0x7hLiIbNiGyYRMiG24hsP8f0x7hJiIbNiGyYRMiG24gsE/CtEe4iciGTYhs2ITIRrAR2Kdg2iPcRGTDJkQ2bEJkI5gI7Bww7RFuIrJhEyIbNiGyESwEdi6Y9gg3EdmwCZENmxDZCAYCOw9Me4SbiGzYhMiGTYhsBBqBfQZMe4SbiGzYhMiGTYhsBBKB7QOmPcJNRDZsQmTDJkQ2AoXA9hHTHuEmIhs2IbJhEyIbgUBg+yhr2uO11zLtEe4gsmETIhs2IbLhbwR2PhQqJH300f+mPf75p9srQrghsmETIhs2IbLhTwR2Pp067XHXLrdXhHBDZMMmRDZsQmTDXwjss5A17fHQIaltW6Y9IviIbNiEyIZNiGz4A4F9lpj2CLcR2bAJkQ2bENk4VwT2Obj0UumTT5j2CPcQ2bAJkQ2bENk4FwT2OWrRQnr3Xc+0x0cfdXs1CEdENmxCZMMmRDbOFoHtB507e6Y9Pv+853+BYCOyYRMiGzYhsnE2CGw/yZr2+OCDTHuEO4hs2ITIhk2IbOQXge1HTHuE24hs2ITIhk2IbOQHge1HTHuECYhs2ITIhk2IbPiKwPYzpj3CBEQ2bEJkwyZENnxBYAcA0x5hAiIbNiGyYRMiG2dCYAcI0x5hAiIbNiGyYRMiG3khsAOIaY8wAZENmxDZsAmRjdwQ2AHGtEeYgMiGTYhs2ITIRk4I7CBg2iNMQGTDJkQ2bEJk41QEdpAw7REmILJhEyIbNiGycTICO4iY9ggTENmwCZENmxDZyEJgBxnTHmECIhs2IbJhEyIbEoEddEx7hCmIbNiEyIZNiGwQ2C5g2iNMQWTDJkQ2bEJkhzcC2yVMe4QpiGzYhMiGTYjs8EVgu4hpjzAFkQ2bENmwCZEdnghslzHtEaYgsmETIhs2IbLDD4FtAKY9whRENmxCZMMmRHZ4IbANwbRHmILIhk2IbNiEyA4fBLZBmPYIUxDZsAmRDZsQ2eGBwDYM0x5hCiIbNiGyYRMiO/QR2AZi2iNMQWTDJkQ2bEJkhzYC20BMe4RJiGzYhMiGTYjs0EVgG4ppjzAJkQ2bENmwCZEdmghsgzHtESYhsmETIhs2IbJDD4FtOKY9wiRENmxCZMMmRHZoIbAtwLRHmITIhk2IbNiEyA4dBLYlmPYIkxDZsAmRDZsQ2aGBwLYI0x5hEiIbNiGyYRMi234EtmWY9giTENmwCZENmxDZdiOwLcS0R5iEyIZNiGzYhMi2F4FtKaY9wiRENmxCZMMmRLadCGxLMe0RpiGyYRMiGzYhsu1DYFuMaY8wDZENmxDZsAmRbRcC23JMe4RpiGzYhMiGTYhsexDYIYBpjzANkQ2bENmwCZFtBwI7RDDtEaYhsmETIhs2IbLNR2CHEKY9wjRENmxCZMMmRLbZCOwQw7RHmIbIhk2IbNiEyDYXgR2CmPYI0xDZsAmRDZsQ2WYisEMU0x5hGiIbNiGyYRMi2zwEdghj2iNMQ2TDJkQ2bEJkm4XADmFMe4SJiGzYhMiGTYhscxDYIY5pjzARkQ2bENmwCZFtBgI7DDDtESYismETIhs2IbLdR2CHCaY9wkRENmxCZMMmRLa7COwwwrRHmIjIhk2IbNiEyHYPgR1mmPYIExHZsAmRDZsQ2e4gsMMQ0x5hIiIbNiGyYRMiO/gI7DDFtEeYiMiGTYhs2ITIDi4CO4wx7REmIrJhEyIbNiGyg4fADnNMe4SJiGzYhMiGTYjs4CCwwxzTHmEqIhs2IbJhEyI78AhsMO0RxiKyYRMiGzYhsgOLwIYkpj3CXEQ2bEJkwyZEduAQ2PBi2iNMRWTDJkQ2bEJkBwaBjWyY9ghTEdmwCZENmxDZ/kdg4zRMe4SpiGzYhMiGTYhs/yKwkSOmPcJURDZsQmTDJkS2/xDYyBXTHmEqIhs2IbJhEyLbPwhs5IlpjzAVkQ2bENmwCZF97ghsnBHTHmEqIhs2IbJhEyL73BDYOCOmPcJkRDZsQmTDJkT22SOw4ROmPcJkRDZsQmTDJkT22SGw4TOmPcJkRDZsQmTDJkR2/hHYyBemPcJkRDZsQmTDJkR2/hDYyDemPcJkRDZsQmTDJkS27whsnBWmPcJkRDZsQmTDJkS2bwhsnDWmPcJkRDZsQmTDJkT2mRHYOCdMe4TJiGzYhMiGTYjsvBHYOGdMe4TJiGzYhMiGTYjs3BHY8AumPcJkRDZsQmTDJkR2zghs+AXTHmE6Ihs2IbJhEyL7dAQ2/IZpjzAdkQ2bENmwCZGdHYENv2LaI0xHZMMmRDZsQmT/D4ENv2PaI0xHZMMmRDZsQmR7ENgICKY9wnRENmxCZMMmRDaBjQBi2iNMR2TDJkQ2bBLukU1gI6CY9gjTEdmwCZENm4RzZBPYCDimPcJ0RDZsQmTDJuEa2QQ2goJpjzAdkQ2bENmwSThGNoGNoGHaI0xHZMMmRDZsEm6RTWAjaJj2CBsQ2bAJkQ2bhFNkE9gIKqY9wgZENmxCZMMm4RLZBDaCjmmPsAGRDZsQ2bBJOEQ2gQ1XMO0RNiCyYRMiGzYJ9cgmsOEapj3CBkQ2bEJkwyahHNkENlzFtEfYgMiGTYhs2CRUI5vAhuuY9ggbENmwCZENm4RiZBPYMALTHmEDIhs2IbJhk1CLbAIbxmDaI2xAZMMmRDZsEkqRTWDDKEx7hA2IbNiEyIZNQiWyCWwY5dRpjykpJdxeEpAjIhs2IbJhk1CIbAIbxjl52uOYMS20a1ec20sCckRkwyZENmxie2QT2DBS1rTHwoXTNHp0Cx08WNjtJQE5IrJhEyIbNrE5sglsGKtMGenhhxfo2LFCevHF5jp2rKDbSwJyRGTDJkQ2bGJrZBPYMFrZsof10EML9PffRTV2bBOlp0e4vSQgR0Q2bEJkwyY2RjaBDeMlJu7TgAGLtW5dOb3zTiOmPcJYRDZsQmTDJrZFNoENK1x00Q7dffcyff99VX3wwaVuLwfIFZENmxDZsIlNkU1gwxoNG6aoW7cV+vzzizV/fk23lwPkisiGTYhs2MSWyCawYZXWrdfrxht/1/TpV+jHHxPdXg6QKyIbNiGyYRMbIjtggX34sLR8ubR9e6CeAaFm165dmjZtmqZPn66HHnpI6enpOd7vttt+0VVXJeuNNxpr7dpySk0tpIMHCwV5tcCZEdmwCZENm5ge2QEJ7FdflSpUkK68UqpYUerVSzpxIhDPhFDy7bffav/+/eratavS0tL0zTff5Hi/iAjpjjt+UO3aO/TCC9fqgQdu1dq1ZYK8WsA3RDZscnJkzxz3rn69baqKXjFHTScX1E1Tj7u9PCAbkyPb74G9cKE0YIB06JDn44wMacoU6emn/f1MCDWdO3fW/fffL0nasWOHatbM/XXWBQs6uvLKFJUoEamffopUnz7BWiWQf6dGdtqBVLeXBOTqRFQBTb2tuC6aIx1btE0R6Y4Kp0ao18vH1H7aUbeXB2RzamRv3rzZ7SVJkvw+uWPKlNxvHz7c38+GUPT555/r1ltvVWJiopYuXZrjfdLS0vTDD6X04IMHdd55x3T8o98lSaX2ZKhAPD8ugZnmXBevDvMO6thnyyRJpXfn/DIowG21V6arxK7Tb7910hEtbxkZ/AUBZ/DdlXEqfOygnK+/lqRcX2YaLD4H9owZM9SgQQPNmjVLAwYM0OjRozV06FANHz5cffr00bx581SnTh1t3rxXUqqkmpK+kdRL0qs6etRz3379+mnGjBm65pprlJKSosjISJUvX14rVqzQzTffrDfeeMP7uIMGDdKECRPUtm1brV69WqVKlVJMTIw2btyoFi1aaMqUKd77DhkyRM8//7y6du2qJUuWqHLlykpPT9eOHTtUv359zZ49W/3799cLL7zg/Zw777xTc+bMUb169bRnzx4dPXpU1atX18KFC9WjRw+NHTvWe9/7779f06ZNU9OmTZWcnKyoqCglJCRo5cqVat++vd566y3vfR966CGNHz9eN910k1atWqUyZcooOjpaycnJatasmaZOnaohQ4boueee02OPPaYRI0aoe/fuWrRokapWrarjx4/rn3/+0WWXXabPPvtM/fr105gxY7yPf9ddd+nTTz9V/fr1tXPnTp04cUJVq1bV4sWLdfvtt+u1117z3rd///5699131bx5c23atEkxMTEqVaqUfv31V7Vr105vv/22976DBw/W2LFj1aFDB61cuVLlypVTwYIFtXnzZjVp0kTTp0/XI488ohEjRng/p2fPnlqwYIFq1Kiho0ePas+ePapbt67mzp2re++9Vy+++KL3vnfffbc+/vhjXXHFFdq+fbsyMjK8Ed2lSxeNHz9erVu31ty5czVq1Cg99thjKlq0qP7++29FR0crLi5O27ZtU506dfT6668rKSlJjz8uvfBCCfXs2VOSdNMX+1W48LEA/KsC+F/Hz/a7vQQgR6W3RCinREjYmaG7J+4O/oKAfPr777/1ySefqGXLllq/fr1iY2NVsmRJrVmzRm3atNHEiRO9ffLwww/rlVdeUceOHbV8+XKVL19ekZGR2rJli66++mrNnDlTgwcP1siRIzV06FCfnj/Ccfw7tmPGDKlr19Nv79lTmjzZn8+EUPPDDz/o7rvvVtmyZXXixAlNmDBBq1atyvG+aWlpmj+/stasqa9586Q3/5ytkS17auCg4YqN6az77isS5NUDvpu99Rftmr9CBaOjdHP7DipevLjbSwKycY6n66/WHyhzX/bXXUd2q6bzH7nGpVUBZ7Z9+3bNmTNHt912m2rVquXaOvz+EpFOnaQvv8z+UpECBaRt26S0NKkQhz0gF40aNdKaNWuy3ZZbYBcqVEht2vytTZuqq0GD81Xx4dKSpMz4oypVap7i43spLi4u4GsGzkaRzG2SpD2FM/XZF5/rzl69VapUKZdXBWQXN+U2/XHfZzqx7YCcCEebL47Q5pJ/qGdGY51//vluLw/IUdZLQ3bv3q0DBw6oWLFirqzD729yLFDAc6X6l1+k8eOlefOkL76Qli6V7rpLjLmG3xQsmKlBgxbq3nvnqUiRA5Kkea2LaseJA3pnymQdPnzY5RUCeZvdpiini8BYRRtW1KUr+unQB820qGe6Hn2rqFIqcIQf7OA4jrZt26YDBw648vwBOwe7Xj3p3nul66+XWrf2XNGeMkV67LFAPSNsFxERcdqvHj16nPHzqlffrfMqeE5lOFisgOe0hmNENsx3rEgBjvCD0SIKRCizelGdiJXSC0VwTjas4mZkB22SY5cu0osvSiNHes7JBk7lOM5pv9599918P86eUgWJbFiDc7JhE4bRwDZuRXZQR6U/+KA0eLA0cKD0wQfBfGbY4MiRI5o4caLmzJmjO+64Q5mZmWf9WEQ2bEJkwyZENmzjRmQHNbAladQozykj3btL334b7GeHyZKSkpScnKy2bdvqt99+0/Hj5zY1jMiGTYhs2ITIhm2CHdlBD+wCBaSJE6VmzaQOHaRffw32CmCq+vXra+DAgRo3bpweeOABxcTEnPNjEtmwCZENmxDZsE0wIzvogS1JUVHSRx9JNWpIbdpIhky1hAHKlCmj+++/X++9957Wr1/vl8cksmETIhs2IbJhm2BFtiuBLUnx8Z7j+2JjPaeM/POPWyuBKcaNG6c33nhDklSwYEElJyf77bGJbNiEyIZNiGzYJiuyz/WlqHlxLbAlqWxZz1CaAwektm2l1FQ3VwO3NW/eXPHx8fr00091ySWX6Prrr/fr4xPZsAmRDZsQ2bCN4zjKyMgI2OO7GtiSVLWqZxjNunXSrbd6pj0iPNWuXVtdu3ZV+/bt9dxzzykyMtLvz0FkwyZENmxCZAP/43pgS9Jll0kffyx98w3THhF4RDZsQmTDJkQ24GFEYEvSddcx7RHBQ2TDJkQ2bEJkAwYFtsS0RwQXkQ2bENmwCZGNcGdUYEtMe0RwEdmwCZENmxDZCGfGBbbEtEcEF5ENmxDZsAmRjXBlZGAz7RHBRmTDJkQ2bEJkIxwZGdgS0x4RfEQ2bEJkwyZENsKNsYEtMe0RwUdkwyZENmxCZCOcGB3YEtMeEXxENmxCZMMmRDbChfGBLTHtEcFHZMMmRDZsQmQjHFgR2BLTHhF8RDZsQmTDJkQ2Qp01gS0x7RHBR2TDJkQ2bEJkI5RZFdgS0x4RfEQ2bEJkwyZENkKVdYEtMe0RwUdkwyZENmxCZCMUWRnYEtMeEXxENmxCZMMmRDZCjbWBzbRHuIHIhk2IbNiEyEYosTawJaY9wh1ENmxCZMMmRDZChdWBLTHtEe4gsmETIhs2IbIRCqwPbIlpj3AHkQ2bENmwCZEN24VEYEtMe4Q7iGzYhMiGTYhs2CxkAlti2iPcQWTDJkQ2bEJkw1YhFdgS0x7hDiIbNiGyYRMiGzYKucCWmPYIdxDZsAmRDZsQ2bBNSAa2xLRHuIPIhk2IbNiEyIZNQjawJaY9wh1ENmxCZMMmRDZsEdKBzbRHuIXIhk2IbNiEyIYNQjqwJaY9wj1ENmxCZMMmRDZMF/KBLTHtEe4hsmETIhs2IbJhsrAIbIlpj3APkQ2bENmwCZENU4VNYEtMe4R7iGzYhMiGTYhsmCisAlti2iPcQ2TDJkQ2bEJkwzRhF9gS0x7hHiIbNiGyYRMiGyYJy8CWmPYI9xDZsAmRDZsQ2TBF2Aa2xLRHuIfIhk2IbNiEyIYJwjqwJaY9wj1ENmxCZMMmRDbcFvaBzbRHuInIhk2IbNiEyIabwj6wJaY9wl1ENmxCZMMmRDbcQmD/P6Y9wk1ENmxCZMMmRDbcQGCfhGmPcBORDZsQ2bAJkY1gI7BPwbRHuInIhk2IbNiEyEYwEdg5YNoj3ERkwyZENmxCZCNYCOxcMO0RbiKyYRMiGzYhshEMBHYemPYINxHZsAmRDZsQ2Qg0AvsMmPYINxHZsAmRDZsQ2QgkAtsHTHuEm4hs2ITIhk2IbAQKge0Dpj3CbUQ2bEJkwyZENgKBwPYR0x7hNiIbNiGyYRMiG/5GYOcD0x7hNiIbNiGyYRMiG/5EYOcT0x7hNiIbNiGyYRMiG/5CYJ8Fpj3CbUQ2bEJkwyZENvyBwD5LTHuE24hs2ITIhk2IbJwrAvscMO0RbiOyYRMiGzYhsnEuCOxzxLRHuI3Ihk2IbNiEyMbZIrD9gGmPcBuRDZsQ2bAJkY2zQWD7CdMe4TYiGzYhsmETIhv5RWD7CdMeYQIiGzYhsmETIhv5QWD7EdMeYQIiGzYhsmETIhu+IrD9jGmPMAGRDZsQ2bAJkQ1fENgBwLRHmIDIhk2IbNiEyMaZENgBwrRHmIDIhk2IbNiEyEZeCOwAYtojTEBkwyZENmxCZCM3BHaAMe0RJiCyYRMiGzYhspETAjsImPYIExDZsAmRDZsQ2TgVgR0kTHuECYhs2ITIhk2IbJyMwA4ipj3CBEQ2bEJkwyZENrIQ2EHEtEeYgsiGTYhs2ITIhkRgBx3THmEKIhs2IbJhEyIbBLYLmPYIUxDZsAmRDZsQ2eGNwHYJ0x5hCiIbNiGyYRMiO3wR2C5i2iNMQWTDJkQ2bEJkhycC22VMe4QpiGzYhMiGTYjs8ENgG4BpjzAFkQ2bENmwCZEdXghsQzDtEaYgsmETIhs2IbLDB4FtEKY9whRENmxCZMMmRHZ4ILANw7RHmILIhk2IbNiEyA59BLZhmPYIkxDZsAmRDZsQ2aGNwDYQ0x5hEiIbNiGyYRMiO3QR2IZi2iNMQmTDJkQ2bEJkhyYC22BMe4RJiGzYhMiGTYjs0ENgG45pjzAJkQ2bENmwCZEdWghsCzDtESYhsmETIhs2IbJDB4FtCaY9wiRENmxCZMMmRHZoILAtwrRHmITIhk2IbNiEyLYfgW0Zpj3CJEQ2bEJkwyZEtt0IbAsx7REmIbJhEyIbNiGy7UVgW4hpjzANkQ2bENmwCZFtJwLbUkx7hGmIbNiEyIZNiGz7ENgWY9ojTENkwyZENmxCZNuFwLYc0x5hGiIbNiGyYRMi2x4Edghg2iNMQ2TDJkQ2bEJk24HADhFMe4RpiGzYhMiGTYhs8xHYIYRpjzANkQ2bENmwCZFtNgI7xDDtEaYhsmETIhs2IbLNRWCHIKY9wjRENmxCZMMmRLaZCOwQxbRHmIbIhk2IbNiEyDYPgR2imPYIExHZsAmRDZsQ2WYhsEMY0x5hIiIbNiGyYRMi2xwEdohj2iNMRGTDJkQ2bEJkm4HADgNMe4SJiGzYhMiGTYhs9xHYYYJpjzARkQ2bENmwCZHtLgI7jDDtESYismETIhs2IbLdQ2CHGaY9wkRENmxCZMMmRLY7COwwxLRHmIjIhk2IbNiEyA4+AjtMMe0RJiKyYRMiGzYhsoOLwA5jJ097XLjQ7dUAHkQ2bEJkwyZEdvAQ2GHs5GmP7dsz7RHmILJhEyIbNiGyg4PADnNMe4SpiGzYhMiGTYjswCOwwbRHGIvIhk2IbNiEyA4sAhuSmPYIcxHZsAmRDZsQ2YFDYMOLaY8wFZENmxDZsAmRHRgENrJh2iNMRWTDJkQ2bEJk+x+BjdNcd500eTLTHmEeIhs2IbJhEyLbvwhs5KhrV2nMGKY9wjxENmxCZMMmRLb/ENjI1aBBTHuEmYhs2ITIhk2IbP8gsJEnpj3CVEQ2bEJkwyZE9rkjsJEnpj3CZEQ2bEJkwyZE9rkhsHFGTHuEyYhs2ITIhk2I7LNHYMMnTHuEyYhs2ITIhk2I7LNDYMNnTHuEyYhs2ITIhk2I7PwjsJEvTHuEyYhs2ITIhk2I7PwhsJFvTHuEyYhs2ITIhk2IbN8R2DgrTHuEyYhs2ITIhk2IbN8Q2DhrTHuEyYhs2ITIhk2I7DMjsHFOmPYIkxHZsAmRDZsQ2XkjsHHOmPYIkxHZsAmRDZsQ2bkjsHHOmPYI0xHZsAmRDZsQ2TkjsOEXTHuE6Yhs2ITIhk2I7NMR2PAbpj3CdEQ2bEJkwyZEdnYENvyKaY8wHZENmxDZsAmR/T8ENvyOaY8wHZENmxDZsAmR7UFgIyCY9gjTEdmwCZENmxDZBDYCiGmPMB2RDZsQ2bBJuEc2gY2AYtojTEdkwyZENmwSzpFNYCPgmPYI0xHZsAmRDZuEa2QT2AgKpj3CdEQ2bEJkwybhGNkENoKCaY+wAZENmxDZsEm4RTaBjaBh2iNsQGTDJkQ2bBJOkU1gI6iY9ggbENmwCZENm4RLZBPYCDqmPcIGRDZsQmTDJuEQ2QQ2XMG0R9iAyIZNiGzYJNQjm8CGa5j2CBsQ2bAJkQ2bhHJkE9hwFdMeYQMiGzYhsmGTUI1sAhuuY9ojbEBkwyZENmwSipFNYMMITHuEDYhs2ITIhk1CLbIJbBiDaY+wAZENmxDZsEkoRTaBDWMw7RG2ILJhEyIbNgmVyCawYZRTpz3+80+c20sCckRkwyZENmwSCpFNYMM4J097fP75Fjp4MNrtJQE5IrJhEyIbNrE9sglsGClr2uPRo4X04ovX6vjxgm4vCcgRkQ2bENmwic2RTWDDWFWrSoMHf6u//y6msWObKD09wu0lATkismETIhs2sTWyCWwYLTFxrx54YLHWri2niRMbMe0RxiKyYRMiGzaxMbIJbBjv4ou36667lum776rqww8vdXs5QK6IbNiEyIZNbItsAhtWaNw4RV26/Ky5cy/WV1/VdHs5QK6IbNiEyIZNbIpsAhvWaNMmSW3arNV7712un36q5PZygFwR2bAJkQ2b2BLZBDas0qnTKjVqtFlvvHGV1q1LcHs5QK6IbNiEyIZNbIjsgAV2Zqa0Y4d0/HigngGhJjU1VZ9//rmuu+66XO9ToIB0550/qGbNnXr55WbasqWEMjMjdPxEZBBXCviGyIZNiGzYxPTIDkhgf/yxVL26VL68lJAgPfGEOP0BZxQbG6sbb7xRaWlped6vYMFM9e+/WOXKHdJzz12nBx7oqB9/4Go2zERkwyZENmxicmT7PbBXrpRuu03680/PxwcOSM88I730kr+fCeEsJiZdN9ywVgUKRGvq1Bj17uP2ioDcnRrZ6Uf40R7MdWpkHz1wyO0lAbk6NbJ37drl9pIkSX4fj/fmm1JGxum3T5ggDRrk72dDuEpLS9P335fWgw8e1NVXp+uHTzdKkkrtyVCB+BMurw7I2Wet4tV+3n4V+WyZJKn07nSXVwTkbs518eow76COf7ZQEvsVZvuyeZzafnlQn8+bJ0nKyClGg8jnwJ4xY4YaNGigWbNmacCAARo9erSGDh2q4cOHq0+fPpo3b57q1KmjtWv3SkqVVFPSN5J6SXpVu3d77tuvXz/NmDFD11xzjVJSUhQZGany5ctrxYoVuvnmm/XGG294H3fQoEGaMGGC2rZtq9WrV6tUqVKKiYnRxo0b1aJFC02ZMsV73yFDhuj5559X165dtWTJElWuXFnp6enasWOH6tevr9mzZ6t///564YUXvJ9z5513as6cOapXr5727Nmjo0ePqnr16lq4cKF69OihsWPHeu97//33a9q0aWratKmSk5MVFRWlhIQErVy5Uu3bt9dbb73lve9DDz2k8ePH66abbtKqVatUpkwZRUdHKzk5Wc2aNdPUqVM1ZMgQPffcc3rsscc0YsQIde/eXYsWLVLVqlV1/Phx/fPPP7rsssv02WefqV+/fhozZoz38e+66y59+umnql+/vnbu3KkTJ06oatWqWrx4sW6//Xa99tpr3vv2799f7777rpo3b65NmzYpJiZGpUqV0q+//qp27drp7bff9t538ODBGjt2rDp06KCVK1eqXLlyKliwoDZv3qwmTZpo+vTpeuSRRzRixAjv5/Ts2VMLFixQjRo1dPToUe3Zs0d169bV3Llzde+99+rFF1/03vfuu+/Wxx9/rCuuuELbt29XRkaGEhMTtXTpUnXp0kXjx4/X0KFDtWXLFh08eFCTJ0/WkSNH9Pfffys6OlpxcXHatm2b6tSpo9dff11JSUlavVp6882y6tGjhyTppi/2q3DhYwH4VwXwH0eev/g7frbf3YUAPsh6hSf7FTbI2q/79u3Tl19+qYYNG2rz5s2KiYlRsWLFtHHjRl199dWaPXu2Ro0apeHDh+vhhx/WK6+8oo4dO2r58uUqX768IiMjtWXLFl199dWaOXOmBg8erJEjR2ro0KE+rSPCcfz76ug335Tuvvv022+9VfrgA38+E0LN8ePHNWvWLO83HTfffLM+yGXTpKWlafbsGtq5s44++0x6edUsjbyhjwY8OEqREZ01eHChIK8e8N0nf67QP9/8opi4OHXs0EFFihRxe0lArpZsXaf1879Twego3dy+g4oXL+72koBcbd26VfPnz1fjxo1Vrly5PO9btWrVgP396/eXiPTq5QnpBQuy3+44nl8REf5+RoSK6Ohode3aVV27dj3jfQsVKqS2bf/SiBG11KxZKZXt73mTY8GY/apywdcqVaq7oqKiAr1k4KzEZpbTP5L2ZhzV3PnzdEfPXoqLi3N7WUCOimd63ui4p3CmPvvic93Zq7dKlSrl8qqAnB075vkp9oEDB1SqVCkVKuTOBTe/v8kxKkr68kvp00+lRx+V3njDc1X7o48kH6+qAz6JiUnTE0/M07XXLlHqEc/JDF+2Kqbte//WlGlTdeIEr8WG2T5tU5TTRWCN2W2KcroIrOE4jnbu3HnGk8kCJSDH9EVGSjfdJI0YIfXtK911lzR6tPTcc9JrrwXiGREKIiIiTvuV9drq3BQs6Khhwy2qWuWgJOmfMpGa3KWktu4ksmG+A8UjOcIP1jhWpABH+MEqbkZ20CY5Dh7sOUXkgQc8V7OBUzmOc9qvd999N9+P89d5UUQ2rME52bAJ52TDNm5FdlBHpY8eLXXpInXrJi1aFMxnhg2OHDmiiRMnas6cObrjjjuUmZl51o9FZMMmRDZsQmTDNm5EdlADu0ABadIkqUkTqX17ac2aYD47TJeUlKTk5GS1bdtWv/32m44fP7dhHEQ2bEJkwyZENmwT7MgOamBLnjdBfvyxVK2adP31UkpKsFcAU9WvX18DBw7UuHHj9MADDygmJuacH5PIhk2IbNiEyIZtghnZQQ9sSYqPl774QoqJ8UT27t1urAImKlOmjO6//3699957Wr9+vV8ek8iGTYhs2ITIhm2CFdmuBLYkJSR4jvPbu1dq21ZKTXVrJTDFuHHj9MYbb0iSChYsqOTkZL89NpENmxDZsAmRDdtkRfa5vhQ1L64FtuR5mcgXX0i//y516iS5dFQhDNG8eXPFx8fr008/1SWXXKLrr7/er49PZMMmRDZsQmTDNo7jKCMjI2CP72pgS9Lll3tek/3ll54R6/4d3A6b1K5dW127dlX79u313HPPKTIy0u/PQWTDJkQ2bEJkA//jemBLUqtWntNFJk1i2iMCj8iGTYhs2ITIBjyMCGxJuv12pj0ieIhs2ITIhk2IbMCgwJaY9ojgIrJhEyIbNiGyEe6MCmyJaY8ILiIbNiGyYRMiG+HMuMBm2iOCjciGTYhs2ITIRrgyLrAlpj0i+Ihs2ITIhk2IbIQjIwNbYtojgo/Ihk2IbNiEyEa4MTawJaY9IviIbNiEyIZNiGyEE6MDW2LaI4KPyIZNiGzYhMhGuDA+sCWmPSL4iGzYhMiGTYhshAMrAlti2iOCj8iGTYhs2ITIRqizJrAlpj0i+Ihs2ITIhk2IbIQyqwJbYtojgo/Ihk2IbNiEyEaosi6wJaY9IviIbNiEyIZNiGyEIisDm2mPcAORDZsQ2bAJkY1QY2VgS0x7hDuIbNiEyIZNiGyEEmsDW2LaI9xBZMMmRDZsQmQjVFgd2BLTHuEOIhs2IbJhEyIbocD6wJaY9gh3ENmwCZENmxDZsF1IBLbEtEe4g8iGTYhs2ITIhs1CJrAlz7THyZOZ9ojgIrJhEyIbNiGyYauQCmzJczb2Cy8w7RHBRWTDJkQ2bEJkw0YhF9iS9NBDTHtE8BHZsAmRDZsQ2bBNSAa2xLRHuIPIhk2IbNiEyIZNQjawmfYItxDZsAmRDZsQ2bBFyAa2xLRHuIfIhk2IbNiEyIYNQjqwJaY9wj1ENmxCZMMmRDZMF/KBLTHtEe4hsmETIhs2IbJhsrAIbIlpj3APkQ2bENmwCZENU4VNYEtMe4R7iGzYhMiGTYhsmCisAlti2iPcQ2TDJkQ2bEJkwzRhF9gS0x7hHiIbNiGyYRMiGyYJy8CWmPYI9xDZsAmRDZsQ2TBF2Aa2xLRHuIfIhk2IbNiEyIYJwjqwmfYINxHZsAmRDZsQ2XBbWAe2xLRHuIvIhk2IbNiEyIabwj6wJaY9wl1ENmxCZMMmRDbcQmD/P6Y9wk1ENmxCZMMmRDbcQGCfhGmPcBORDZsQ2bAJkY1gI7BPwbRHuInIhk2IbNiEyEYwEdg5YNoj3ERkwyZENmxCZCNYCOxcMO0RbiKyYRMiGzYhshEMBHYemPYINxHZsAmRDZsQ2Qg0AvsMmPYINxHZsAmRDZsQ2QgkAvsMmPYItxHZsAmRDZsQ2QgUAtsHp0573LLF7RUh3BDZsAmRDZsQ2QgEAttHJ097bN2aaY8IPiIbNiGyYRMiG/5GYOcD0x7hNiIbNiGyYRMiG/5EYOcT0x7hNiIbNiGyYRMiG/5CYJ8Fpj3CbUQ2bEJkwyZENvyBwD5LJ097HDbM7dUgHBHZsAmRDZsQ2ThXBPY5yJr2+OyzTHuEO4hs2ITIhk2IbJwLAvscMe0RbiOyYRMiGzYhsnG2CGw/YNoj3EZkwyZENmxCZONsENh+wLRHmIDIhk2IbNiEyEZ+Edh+wrRHmIDIhk2IbNiEyEZ+ENh+xLRHmIDIhk2IbNiEyIavCGw/Y9ojTEBkwyZENmxCZMMXBHYAMO0RJiCyYRMiGzYhsnEmBHaAMO0RJiCyYRMiGzYhspEXAjuAmPYIExDZsAmRDZsQ2cgNgR1gTHuECYhs2ITIhk2IbOSEwA4Cpj3CBEQ2bEJkwyZENk5FYAcJ0x5hAiIbNiGyYRMiGycjsIOEaY8wBZENmxDZsAmRjSwEdhAx7RGmILJhEyIbNiGyIRHYQce0R5iCyIZNiGzYhMgGge0Cpj3CFEQ2bEJkwyZEdngjsF3CtEeYgsiGTYhs2ITIDl8EtouY9ghTENmwCZENmxDZ4YnAdhnTHmEKIhs2IbJhEyI7/BDYBmDaI0xBZMMmRDZsQmSHFwLbEEx7hCmIbNiEyIZNiOzwQWAbhGmPMAWRDZsQ2bAJkR0eCGyDMO0RJiGyYRMiGzYhskMfgW0Ypj3CJEQ2bEJkwyZEdmgjsA3EtEeYhMiGTYhs2ITIDl0EtqGypj3u28e0R7iPyIZNiGzYhMgOTQS2wZj2CJMQ2bAJkQ2bENmhh8A2XP36THuEOYhs2ITIhk2I7NBCYFuAaY8wCZENmxDZsAmRHToIbEsw7REmIbJhEyIbNiGyQwOBbRGmPcIkRDZsQmTDJkS2/QhsyzDtESYhsmETIhs2IbLtRmBbhmmPMA2RDZsQ2bAJkW0vAttCTHuEaYhs2ITIhk2IbDsR2JZi2iNMQ2TDJkQ2bEJk24fAthjTHmEaIhs2IbJhEyLbLgS25Zj2CNMQ2bAJkQ2bENn2ILBDANMeYRoiGzYhsmETItsOBHaIYNojTENkwyZENmxCZJuPwA4hTHuEaYhs2ITIhk2IbLMR2CGGaY8wDZENmxDZsAmRbS4COwQx7RGmIbJhEyIbNiGyzURghyCmPcJERDZsQmTDJkS2eQjsEMW0R5iIyIZNiGzYhMg2C4Edwpj2CBMR2bAJkQ2bENnmILBDHNMeYSIiGzYhsmETItsMBHYYYNojTERkwyZENmxCZLuPwA4TTHuEiYhs2ITIhk2IbHcR2GGEaY8wEZENmxDZsAmR7R4CO8ww7REmIrJhEyIbNiGy3UFghyGmPcJERDZsQmTDJkR28BHYYYppjzARkQ2bENmwCZEdXAR2mGLaI0xFZMMmRDZsQmQHD4Edxpj2CFMR2bAJkQ2bENnBQWCHOaY9wlRENmxCZMMmRHbgEdhg2iOMRWTDJkQ2bEJkBxaBDUlMe4S5iGzYhMiGTYjswCGw4cW0R5iKyIZNiGzYhMgODAIb2TDtEaYismETIhs2IbL9j8DGaZj2CFMR2bAJkQ2bENn+RWAjR0x7hKmIbNiEyIZNiGz/IbCRK6Y9wlRENmxCZMMmRLZ/ENjIFdMeYTIiGzYhsmETIvvcEdjIE9MeYTIiGzYhsmETIvvcENg4I6Y9wmRENmxCZMMmRPbZI7DhE6Y9wmRENmxCZMMmRPbZIbDhM6Y9wmRENmxCZMMmRHb+EdjIF6Y9wmRENmxCZMMmRHb+ENjIN6Y9wmRENmxCZMMmRLbvCGycFaY9wmRENmxCZMMmRLZvCGycNaY9wmRENmxCZMMmRPaZEdg4J0x7hMmIbNiEyIZNiOy8Edg4J0x7hOmIbNiEyIZNiOzcEdg4Z0x7hOmIbNiEyIZNiOycEdjwC6Y9wnRENmxCZMMmRPbpCGz4DdMeYToiGzYhsmETIjs7Aht+xbRHmI7Ihk2IbNiEyP4fAht+x7RHmI7Ihk2IbNiEyPYgsBEQTHuE6Yhs2ITIhk2IbAIbAcS0R5iOyIZNiGzYJNwjm8BGQDHtEaYjsmETIhs2CefIJrARcEx7hOmIbNiEyIZNwjWyCWwEXNa0x6ZNmfYIcxHZsAmRDZuEY2QT2AiKqChp1iymPcJsRDZsQmTDJuEW2QQ2goZpj7ABkQ2bENmwSThFNoGNoGLaI2xAZMMmRDZsEi6RTWAj6Jj2CBsQ2bAJkQ2bhENkE9hwBdMeYQMiGzYhsmGTUI9sAhuuYdojbEBkwyZENmwSypFNYMNVTHuEDYhs2ITIhk1CNbIJbLiOaY+wAZENmxDZsEkoRjaBDSMw7RE2ILJhEyIbNgm1yCawYQSmPcIWRDZsQmTDJqEU2QQ2jMG0R9iCyIZNiGzYJFQim8CGUU6d9njoULTbSwJyRGTDJkQ2bBIKkU1gwzgnT3t88cXmOn68oNtLAnJEZMMmRDZsYntkE9gwUta0x7/+Kq7XXrtG6ekRbi8JyBGRDZsQ2bCJzZFNYMNY9etLDzywWL//XkGTJjVk2iOMRWTDJkQ2bGJrZBPYMNoll2zXXXct09Kl1TRrVj23lwPkisiGTYhs2MTGyCawYbzGjTerS5ef9dlnl+jrry90ezlArohs2ITIhk1si2wCG1Zo0yZJ11+/TtOmXaHlyy9wezlArohs2ITIhk1simwCG9bo3HmlGjZM0euvX62kpAS3lwPkisiGTYhs2MSWyCawYY0CBaS77lqmmjV36uWXm2nr1uKKLlBI1csnqkzJOLeXB2RDZMMmRDZsYkNkE9iwSsGCmerff7ESEg7p5Zda6/Irb1HDlteodEJRt5cGnIbIhk2IbNjE9MgmsGGdmJh0jXv+DxUtFqUb2hbU7t1urwjIHZENmxDZsInJkU1gwzoRilDz6y/2Tnts21ZKS3N7VUDuTo3szLR0t5cE5OrUyD5x5JjbSwJydWpkHzhwwO0lSZJ8mkHtOI4OHToU6LUApzl69Ohpt5WJK6nDx46ocOF9mjRJuuUWKe2jfyRJxbemBnuJgE/SJM1uHKU23yQr+oMdSj92TCVSDivzUKTbSwNy9EnjQrrx6x3a/cEX7FcY79NGBXXj1wc065NPlH7ihA4fPqyIiLynQB86dEhRUVFn9Xzx8fF5Pn6E45x5Pt7BgwdVrFixs1oAAAAAEEoOHDigokVzf/+XT4HNFWyY5Mim3Yq8IF7Hjx/33rZy5WZ16NBE3377rc477zxJ0pZfNiq9KFdbYJ59+/bp2Wef1QMPPKDChQu7vRwgT4cOHdKECRPUq1cv9iuMd+TIEU2dOlUPPvjgGS8O169fX6VKlTqr5znTFWyfXiISERGRZ6UDwVS0flEd/WOPylQ7/7Tfq169us4//3wd2XlAx2sdl/L+6RDgiuLFi2vdunWqVauWUlNT5cN1DsA1sbGxWrdunSpVqqS0tDRlZma6vSQgV9HR0Vq7dq0yMzMVExOTZwTHx8cHrG95kyOs5BxPV8bRnN/ZmJmWoW3r/ySuYbxChQopISHhjK8TBExQoEABFStWTAUKkA4wn+M42rdvn2sXMPi3BFYqclGCjqXsU+qaHdluP7Jxt46s/0fl6lUhWmAFIhs2IbJhEzcjm39DYK3YWmUVW6ecjv/3oNJTDkqSSlxynuIuKadixYqpYsWKRAuMFBUVpauvvtr77nUiGyYrVKiQLr/8chUqVEgSkQ2zFSxYUHXq1FHBgp5XQbsV2T69yREwXdZJN6e+q/fAgQPatm0br3GFcQ4cOHDaG3DS0tK0c+dO9iuMc+jQIcXHx2e7LTMzUwcOHOA12TDO4cOHFRcXl+22iIgIlShRItuFjAYNGqh06dIBWQPffiKkcSUbpnr//fdPu40r2TDV559/ftptXMmGqRYsWHDabcG+ks0VbISE3K5gZ+FKNmzClWzYhCvZsMnJV7K5gg2cI65kwzRvvvlmrr/HlWyYZubMmbn+HleyYZpPP/00198L1pVsrmAjJJzpCvbJ99u/f3/wFgbkIqfXtJ7q2LFjOnDgQJBWBOQup9e0nio9PV0HDx4M0oqA3KWmpio2NjbP+xQoUEANGjQI2KRynwbNAKGiaNGiDE2CEV599VU98MADbi8D8An7FTYxYb/y8xwAcEHLli3dXgLgM/YrbGLCfiWwASBIUlNT9fnnn+u6667T+vXr3V4OkKddu3Zp2rRpmj59uh599FGlp6e7vSTgjA4fPqw+ffpo69atrq6DwAaAIImNjdWNN96otLS0M74+EHDbt99+q/3796tr166KiIjQN9984/aSgDxNnDhRo0eP1k8//eT6qTa8BhsAXFCyZEm3lwDkqXPnzt7/n5qaqpo1a7q4GuDM+vTpI0l6+umnXV4JV7ABwBVr1qxxewmATz7//HNVr15diYmJbi8FsAaBDQAuaNOmjdtLAM5oxYoVSkhI0LBhw7Ru3Tq3lwNYg8AGgCA5fvy4pk+frpSUFA0cOFDHjx93e0lArn744QfdcccdevTRR9W4cWMmiwL5wKAZhARfB80AAIDQFhERoc2bN7v6siauYAOAC4YPH+72EgCfsV+B/OEKNkICV7Bhg4iIiBxv569hmIj9CtvMmDFDS5Ys0euvv65OnTqpSZMm6tevnytr4Qo2AASJ4zjeX6NGjfL+f8BE7FfYpkuXLpowYYJGjRqlmTNnuhbXEudgA0DQHDlyRDNnzlSZMmW0YsUKZWZmqkABrnPATOxX2Kpjx45uL4Er2AAQLElJSUpOTlbbtm21ZcsWThGB0divsFXVqlXdXgKvwUZocBxHhw4dUnx8fK6vGwRM8M8//+j9999X8eLFdfvtt7u9HCBP7Ffg7BDYAOCCNm3a6KWXXmL8NKzAfgXyh5eIAECQjBs3Tm+88YYkqWDBgkpOTnZ5RUDu2K/A2SOwASBImjdvrvj4eH366ae65JJLdP3117u9JCBX7Ffg7PESEQAAAMCPuIINAAAA+BGBDQAAAPgRgQ0AAAD4EYENAAAA+BGBDQAAAPgRgQ0AAAD4EYENAAAA+BGBDQAAAPgRgQ0AAAD4EYENAAAA+BGBDQAAAPjR/wHzYoUNVK2uFAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "Graphics object consisting of 69 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:43:59,112 Plotting 2d diagram... done\n", + "INFO: 2023-09-20 09:43:59,113 Not minimal, thus NOT extreme.\n" + ] + }, + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "extremality_test(h, True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "There's many more functions to explore. Try some of the following to get\n", - "more information.\n", - "\n", - "Also consult the survey, which shows the graphs of these functions for\n", + "There's many more functions to explore. Try some of the following to get\n", + "more information.\n", + "\n", + "Also consult the survey, which shows the graphs of these functions for\n", "default parameters next to their names:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mgj_2_slope\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_gj_2_slope\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_gj_2_slope(default_values=(('f', 3/5), ('lambda_1', 1/6), ('field', None), ('conditioncheck', True)), names=('f', 'lambda_1'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Gomory--Johnson's 2-Slope;\n", + "\n", + " * Infinite (or Finite); Dim = 1; Slopes = 2; Continuous;\n", + " Analysis of subadditive polytope method;\n", + "\n", + " * Discovered [61] p.352, Fig.5, construction 1;\n", + "\n", + " * Proven extreme (infinite group) [60] p.377, thm.3.3; [61]\n", + " p.352, thm.4; p.354, thm.5.\n", + "\n", + " * gj_2_slope is a facet.\n", + "\n", + " Parameters:\n", + " * f (real) \\in (0,1);\n", + "\n", + " * lambda_1 (real) in (0,1].\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " * 0 < lambda_1 <=1,\n", + "\n", + " * lambda_1 < f/(1 - f).\n", + "\n", + " Examples: [61] p.354, Fig.6\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = gj_2_slope(f=3/5, lambda_1=1/6)\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = gj_2_slope(f=3/5, lambda_1=1/2)\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = gj_2_slope(f=3/5, lambda_1=1)\n", + " sage: extremality_test(h, False, f=3/5) # Provide f to suppress warning\n", + " True\n", + "\n", + " Reference:\n", + " [60]: R.E. Gomory and E.L. Johnson, Some continuous functions\n", + " related to corner polyhedra, part II, Mathematical Programming 3\n", + " (1972) 359-389.\n", + "\n", + " [61]: R.E. Gomory and E.L. Johnson, T-space and cutting planes,\n", + " Mathematical Programming 96 (2003) 341-375.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "gj_2_slope?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mgj_2_slope_repeat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_gj_2_slope_repeat\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_gj_2_slope_repeat(default_values=(('f', 3/5), ('s_positive', 4), ('s_negative', <...> ), ('field', None), ('conditioncheck', True)), names=('f', 's_positive', 's_negative', 'm', 'n'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Gomory--Johnson's 2-Slope-repeat;\n", + "\n", + " * Infinite (or Finite); Dim = 1; Slopes = 2; Continuous;\n", + " Analysis of subadditive polytope method;\n", + "\n", + " * Discovered [61] p.354, Fig.7, construction 2;\n", + "\n", + " * Proven extreme (for infinite group) [60] p.377, thm.3.3; [61]\n", + " p.354, thm.5; p.355, thm.6.\n", + "\n", + " * gj_2_slope_repeat is a facet.\n", + "\n", + " Parameters:\n", + " * f (real) \\in (0,1);\n", + "\n", + " * s_positive, s_negative (real);\n", + "\n", + " * m, n >= 2 (integer).\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " * 0 < f < 1;\n", + "\n", + " * s_positive > 1/f; s_negative < 1/(f - 1);\n", + "\n", + " * m >= (s_positive - s_positive*s_negative*f) / (s_positive -\n", + " s_negative);\n", + "\n", + " * n >= (- s_negative + s_positive*s_negative*(f - 1)) /\n", + " (s_positive - s_negative).\n", + "\n", + " Examples: [61] p.354, Fig.7\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = gj_2_slope_repeat(f=3/5, s_positive=4, s_negative=-5, m=4, n=3)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Reference:\n", + " [60]: R.E. Gomory and E.L. Johnson, Some continuous functions\n", + " related to corner polyhedra, part II, Mathematical Programming 3\n", + " (1972) 359-389.\n", + "\n", + " [61]: R.E. Gomory and E.L. Johnson, T-space and cutting planes,\n", + " Mathematical Programming 96 (2003) 341-375.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "gj_2_slope_repeat?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mdg_2_step_mir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_dg_2_step_mir\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_dg_2_step_mir(default_values=(('f', 4/5), ('alpha', 3/10), ('field', None), ('conditioncheck', True)), names=('f', 'alpha'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Dash-Gunluk's 2-Step MIR;\n", + "\n", + " * Infinite (or Finite); Dim = 1; Slopes = 2; Continuous; Simple\n", + " sets method;\n", + "\n", + " * Discovered [33] p.39 def.8, Fig.5;\n", + "\n", + " * Proven extreme (for infinite group) [60] p.377, thm.3.3.\n", + "\n", + " * dg_2_step_mir is a facet.\n", + "\n", + " Parameters:\n", + " * f (real) in (0,1);\n", + "\n", + " * alpha (real) in (0,f).\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " * 0 < alpha < f < 1;\n", + "\n", + " * f / alpha < ceil(f / alpha) <= 1 / alpha.\n", + "\n", + " Examples: [33] p.40, Fig.5\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = dg_2_step_mir(f=4/5, alpha=3/10)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Reference:\n", + " [33]: S. Dash and O. Gunluk, Valid inequalities based on simple\n", + " mixed-integer sets.,\n", + " Proceedings 10th Conference on Integer Programming and\n", + " Combinatorial Optimization (D. Bienstock and G. Nemhauser,\n", + " eds.), Springer-Verlag, 2004, pp. 33-45.\n", + "\n", + " [60]: R.E. Gomory and E.L. Johnson, Some continuous functions\n", + " related to corner polyhedra, part II, Mathematical Programming 3\n", + " (1972) 359-389.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "dg_2_step_mir?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mkf_n_step_mir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_kf_n_step_mir\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_kf_n_step_mir(default_values=(('f', 4/5), ('a', (1, 3/10, 2/25)), ('field', None), ('conditioncheck', True)), names=('f', 'a'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Kianfar-Fathi's n-Step MIR;\n", + "\n", + " * Infinite (or Finite); Dim = 1; Slopes = 2; Continuous; Simple\n", + " sets method;\n", + "\n", + " * Discovered [74] p.328, def.3, thm.2;\n", + "\n", + " * Proven extreme (for infinite group) [60] p.377, thm.3.3.\n", + "\n", + " * (Although only extremality has been established in literature,\n", + " the same proof shows that) \"kf_n_step_mir\" is a facet.\n", + "\n", + " Parameters:\n", + " * f (real) \\in (0,1);\n", + "\n", + " * a (list of reals, with length = n) \\in (0,f).\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " * 0 < a[1] < f < 1 == a[0];\n", + "\n", + " * a[i] > 0, for i = 0, 1, ... , n-1;\n", + "\n", + " * b[i - 1] / a[i] < ceil(b[i - 1] / a[i]) <= a[i - 1] / a[i],\n", + " for i = 1, 2, ... , n-1;\n", + "\n", + " where,\n", + " * b[0] = f;\n", + "\n", + " * b[i] = b[i - 1] - a[i] * floor(b[i - 1] / a[i]), for i = 1,\n", + " 2, ... , n-1.\n", + "\n", + " Note:\n", + " if a[i] > b[i-1] for some i, then the kf_n_step_mir function\n", + " degenerates, i.e. kf_n_step_mir(f, [a[0], .. , a[n - 1]]) =\n", + " kf_n_step_mir(f, [a[0], .. a[i - 1], a[i + 1], ... , a[n - 1]])\n", + "\n", + " Examples: [74] p.333 - p.335, Fig.1 - Fig.6\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = kf_n_step_mir(f=4/5, a=[1])\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = kf_n_step_mir(f=4/5, a=[1, 3/10])\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = kf_n_step_mir(f=4/5, a=[1, 3/10, 8/100])\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = kf_n_step_mir(f=4/5, a=[1, 3/10, 8/100, 3/100])\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = kf_n_step_mir(f=4/5, a=[1, 45/100, 2/10, 558/10000, 11/1000])\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = kf_n_step_mir(f=4/5, a=[1, 48/100, 19/100, 8/100, 32/1000, 12/1000])\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Reference:\n", + " [60]: R.E. Gomory and E.L. Johnson, Some continuous functions\n", + " related to corner polyhedra, part II, Mathematical Programming 3\n", + " (1972) 359-389.\n", + "\n", + " [74]: K. Kianfar and Y. Fathi, Generalized mixed integer\n", + " rounding valid inequalities:\n", + " Facets for infinite group polyhedra, Mathematical Programming\n", + " 120 (2009) 313-346.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "kf_n_step_mir?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mgj_forward_3_slope\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_gj_forward_3_slope\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_gj_forward_3_slope(default_values=(('f', 4/5), ('lambda_1', 4/9), ('lambda_2', 2/3), ('field', None), ('conditioncheck', True)), names=('f', 'lambda_1', 'lambda_2'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Gomory--Johnson' Forward 3-Slope;\n", + "\n", + " * Infinite (or Finite); Dim = 1; Slopes = 3; Continuous;\n", + " Analysis of subadditive polytope method;\n", + "\n", + " * Discovered [61] p.359, Construction.3, Fig.8;\n", + "\n", + " * Proven extreme [61] p.359, thm.8.\n", + "\n", + " * gj_forward_3_slope is a facet.\n", + "\n", + " Parameters:\n", + " * f (real) \\in (0,1);\n", + "\n", + " * lambda_1, lambda_2 (real) \\in (0,1).\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " * 0 <= lambda_1 <= 1/2;\n", + "\n", + " * 0 <= lambda_2 <= 1 (in literature).\n", + "\n", + " Note:\n", + " Since the domain and range are in [0,1], I think the conditions\n", + " for a three-slope extreme function should be:\n", + "\n", + " (0 <= lambda_1 <= 1/2) & (0 <= lambda_2 <= 1) & (0 < lambda_1\n", + " * f + lambda_2 * (f - 1) < lambda_1 * f).\n", + "\n", + " Examples:\n", + " [61] p.360, Fig.8\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: h = gj_forward_3_slope(f=4/5, lambda_1=4/9, lambda_2=1/3)\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = gj_forward_3_slope(f=4/5, lambda_1=4/9, lambda_2=2/3)\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = gj_forward_3_slope(f=4/5, lambda_1=4/9, lambda_2=1)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Try irrational case\n", + "\n", + " sage: h = gj_forward_3_slope(f=sqrt(17)/5, lambda_1=2*sqrt(5)/9, lambda_2=2/sqrt(10))\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Reference:\n", + " [61]: R.E. Gomory and E.L. Johnson, T-space and cutting planes,\n", + " Mathematical Programming 96 (2003) 341-375.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "gj_forward_3_slope?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mdrlm_backward_3_slope\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_drlm_backward_3_slope\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_drlm_backward_3_slope(default_values=(('f', 1/12), ('bkpt', 1/6), ('field', None), ('conditioncheck', True)), names=('f', 'bkpt'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Dey--Richard--Li--Miller's Backward 3-Slope;\n", + "\n", + " * Infinite; Dim = 1; Slopes = 3; Continuous; Group relations\n", + " method;\n", + "\n", + " * Discovered [40] p.154 eq.5;\n", + "\n", + " * Proven [40] p.153 thm.6.\n", + "\n", + " * (Although only extremality has been established in literature,\n", + " the same proof shows that) drlm_backward_3_slope is a facet.\n", + "\n", + " Parameters:\n", + " f, bkpt (real) \\in (0,1).\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " f < bkpt < (1+f)/4 < 1.\n", + "\n", + " Note:\n", + " In [40], they require that f, bkpt are rational numbers. The\n", + " proof is based on interpolation of finite cyclic group extreme\n", + " functions(cf. [8]), so it needs rational numbers. But in fact,\n", + " by analysing covered intervals and using the condition f < bkpt\n", + " <= (1+f)/4 < 1, one can prove that the function is extreme\n", + " without assuming f, bkpt being rational numbers.\n", + "\n", + " In [61] p.374, Appendix C, p.360. Fig.10, they consider real\n", + " number f, bkpt, and claim (without proof) that:\n", + "\n", + " 1. the function (named pi3(u)) is facet (thus extreme);\n", + "\n", + " 2. can add a perturbation (zigzag) on the third slope as shown\n", + " in Fig.10;\n", + "\n", + " An extremality proof for the general (not necessarily rational)\n", + " case appears in [KZh2015b, section 4].\n", + "\n", + " Examples:\n", + " * Finite group --> Example 3.8 in [8] p.386,\n", + "\n", + " * Infinite group --> Interpolation using Equation 5 from [40]\n", + " p.154\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: h = drlm_backward_3_slope(f=1/12, bkpt=2/12)\n", + " sage: extremality_test(h, False)\n", + " True\n", + " sage: h = drlm_backward_3_slope(f=1/12, bkpt=3/12)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " References:\n", + "\n", + " * [8] J. Araoz, L. Evans, R.E. Gomory, and E.L. Johnson, Cyclic\n", + " groups and knapsack facets, Mathematical Programming 96 (2003)\n", + " 377-408.\n", + "\n", + " * [40] S.S. Dey, J.-P.P. Richard, Y. Li, and L.A. Miller, On the\n", + " extreme inequalities of infinite group problems, Mathematical\n", + " Programming 121 (2010) 145-170.\n", + "\n", + " * [61] R.E. Gomory and E.L. Johnson, T-space and cutting planes,\n", + " Mathematical Programming 96 (2003) 341-375.\n", + "\n", + " * [KZh2015b] M. Koeppe and Y. Zhou, An electronic compendium of\n", + " extreme functions for the Gomory-Johnson infinite group problem,\n", + " Operations Research Letters, 2015,\n", + " http://dx.doi.org/10.1016/j.orl.2015.06.004\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "drlm_backward_3_slope?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mdg_2_step_mir_limit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_dg_2_step_mir_limit\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_dg_2_step_mir_limit(default_values=(('f', 3/5), ('d', 3), ('field', None)), names=('f', 'd'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Dash-Gunluk 2-Step MIR Limit;\n", + "\n", + " * Infinite; Dim = 1; Slopes = 1; Discontinuous; Simple sets\n", + " method;\n", + "\n", + " * Discovered [33] p.41, def.12;\n", + "\n", + " * Proven extreme [33] p.43, lemma 14.\n", + "\n", + " * dg_2_step_mir_limit is a facet.\n", + "\n", + " Parameters:\n", + " * f (real) \\in (0,1);\n", + "\n", + " * d (positive integer): number of slopes on [0,f).\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " * 0 < f < 1;\n", + "\n", + " * d >= ceil(1 / (1 - f)) - 1.\n", + "\n", + " Note:\n", + " This is the limit function as alpha in dg_2_step_mir() tends\n", + " (from left) to f/d, where d is integer; cf. [33] p.42, lemma 13.\n", + "\n", + " It's a special case of \"drlm_2_slope_limit()\":\n", + "\n", + " \"dg_2_step_mir_limit(f, d) =\n", + " multiplicative_homomorphism(drlm_2_slope_limit(f=1-f,\n", + " nb_pieces_left=1, nb_pieces_right=d), -1)\".\n", + "\n", + " Examples: [33] p.42, Fig.6\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.WARN) # Suppress warning about experimental discontinuous code.\n", + " sage: h = dg_2_step_mir_limit(f=3/5, d=3)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Reference:\n", + " [33]: S. Dash and O. Gunluk, Valid inequalities based on simple\n", + " mixed-integer sets.,\n", + " Proceedings 10th Conference on Integer Programming and\n", + " Combinatorial Optimization (D. Bienstock and G. Nemhauser,\n", + " eds.), Springer-Verlag, 2004, pp. 33-45.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "dg_2_step_mir_limit?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mdrlm_2_slope_limit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_drlm_2_slope_limit\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_drlm_2_slope_limit(default_values=(('f', 3/5), ('nb_pieces_left', 3), ('nb_piece <...> 4), ('field', None), ('conditioncheck', True)), names=('f', 'nb_pieces_left', 'nb_pieces_right'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Dey--Richard--Li--Miller's 2-Slope Limit;\n", + "\n", + " * Infinite; Dim = 1; Slopes = 1; Discontinuous; Group relations\n", + " method;\n", + "\n", + " * Discovered [40] p.158 def.10;\n", + "\n", + " * Proven extreme [40] p.159 thm.8.\n", + "\n", + " * (Although only extremality has been established in literature,\n", + " the same proof shows that) drlm_2_slope_limit is a facet.\n", + "\n", + " Parameters:\n", + " * f (real) \\in (0,1);\n", + "\n", + " * nb_pieces_left (positive integer) : number of linear pieces to\n", + " the left of f;\n", + "\n", + " * nb_pieces_right (positive integer) : number of linear pieces\n", + " to the right of f.\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " nb_pieces_left * (1-f) <= nb_pieces_right * f.\n", + "\n", + " Examples:\n", + " [40] p.159 Fig.4\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.WARN) # Suppress warning about experimental discontinuous code.\n", + " sage: h = drlm_2_slope_limit(f=3/5, nb_pieces_left=3, nb_pieces_right=4)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Reference:\n", + " [40]: S.S. Dey, J.-P.P. Richard, Y. Li, and L.A. Miller, On the\n", + " extreme inequalities of infinite group problems,\n", + " Mathematical Programming 121 (2010) 145-170.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "drlm_2_slope_limit?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mdrlm_3_slope_limit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_drlm_3_slope_limit\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_drlm_3_slope_limit(default_values=(('f', 1/5), ('field', None), ('conditioncheck', True)), names=('f',))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Dey--Richard--Li--Miller's 3-Slope Limit;\n", + "\n", + " * Infinite; Dim = 1; Slopes = 2; Discontinuous; Group relations\n", + " method;\n", + "\n", + " * Discovered [40] p.161 def.11;\n", + "\n", + " * Proven extreme [40] p.161 thm.9.\n", + "\n", + " * (Although only extremality has been established in literature,\n", + " the same proof shows that) drlm_3_slope_limit is a facet.\n", + "\n", + " Parameters:\n", + " f (real) \\in (0,1);\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " 0 < f < 1/3.\n", + "\n", + " Note:\n", + " This is the limit function as bkpt tends to f in\n", + " drlm_backward_3_slope(f, bkpt).\n", + "\n", + " Examples:\n", + " [40] p.162 Fig.5\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.WARN) # Suppress warning about experimental discontinuous code.\n", + " sage: h = drlm_3_slope_limit(f=1/5)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Reference:\n", + " [40]: S.S. Dey, J.-P.P. Richard, Y. Li, and L.A. Miller, On the\n", + " extreme inequalities of infinite group problems,\n", + " Mathematical Programming 121 (2010) 145-170.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "drlm_3_slope_limit?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mbccz_counterexample\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_bccz_counterexample\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_bccz_counterexample(default_values=(('f', 2/3), ('q', 4), ('eta', 1/1000), ('maxiter', 10000)), names=('f', 'q', 'eta', 'maxiter'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " return function psi, a counterexample to Gomory--Johnson's\n", + " conjecture constructed by Basu--Conforti--Cornuejols--Zambelli\n", + " [IR1].\n", + "\n", + " psi is a continuous facet (hence extreme), but is not piecewise\n", + " linear. cf. [IR1]\n", + "\n", + " It can be considered as an absolutely continuous, measurable, non-\n", + " piecewise linear \"2-slope function\". A separate case with\n", + " different parameters, which gives rise to a continuous \"1-slope\n", + " function\", is discussed in [KZh2015b, section 5].\n", + "\n", + " Parameters:\n", + "\n", + " * f (real) \\in (0,1);\n", + "\n", + " * q (real), q > 2: ratio of the geometric series;\n", + "\n", + " * eta (real), 0 <= eta < 1: to control the series sum;\n", + "\n", + " * maxiter (integer): maximum number of iterations;\n", + "\n", + " Note:\n", + " psi is the uniform limit of the sequence of functions psi_n,\n", + " generated by psi_n_in_bccz_counterexample_construction(f, [e[0],\n", + " e[1], ..., e[n - 1]]). e is a geometric series with ratio q,\n", + " such that: 0 < ... < e[n] <= e[n - 1] <= ... <= e[1] <= e[0] <=\n", + " 1 - f and sum_{i = 0}^{infty} {2^i * e[i]} <= f. The first n\n", + " terms of e are generated by generate_example_e_for_psi_n(f, n,\n", + " q, eta)\n", + "\n", + " See also:\n", + "\n", + " def generate_example_e_for_psi_n(f, n q, eta)\n", + " def psi_n_in_bccz_counterexample_construction(f, e)\n", + "\n", + " Examples:\n", + " quick exact evaluations:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: bccz_counterexample(f=2/3, q=4, eta=0, maxiter=10000)(r=1/5)\n", + " 21/40\n", + " sage: bccz_counterexample(f=2/3, q=4, eta=0, maxiter=10000)(r=1/4)\n", + " 3/4\n", + "\n", + " too many iterations:\n", + "\n", + " sage: bccz_counterexample(f=2/3, q=4, eta=0, maxiter=10000)(r=9/40) # doctest: +SKIP\n", + "\n", + " References:\n", + "\n", + " * [IR1]: A. Basu, M. Conforti, G. Cornuejols, and G. Zambelli, A\n", + " counterexample to a conjecture of Gomory and Johnson,\n", + " Mathematical Programming Ser. A 133 (2012), 25-38.\n", + "\n", + " * [KZh2015b] M. Koeppe and Y. Zhou, An electronic compendium of\n", + " extreme functions for the Gomory-Johnson infinite group problem,\n", + " Operations Research Letters, 2015,\n", + " http://dx.doi.org/10.1016/j.orl.2015.06.004\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "bccz_counterexample?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mbhk_irrational\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_bhk_irrational\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_bhk_irrational(default_values=(('f', 4/5), ('d1', 3/5), ('d2', 1/10), ('a0', 3/20), ('delta', (1/200, 1/200*sqrt(2))), ('field', None)), names=('f', 'd1', 'd2', 'a0', 'delta'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * Name: Basu-Hildebrand-Koeppe's irrational function.\n", + "\n", + " * Infinite; Dim = 1; Slopes = 3; Continuous; Covered intervals\n", + " and equivariant perturbation.\n", + "\n", + " * Discovered >>:cite:`basu-hildebrand-koeppe:equivariant`<<\n", + " p.33, section.5.2, fig.9-10.\n", + "\n", + " * Proven extreme >>:cite:`basu-hildebrand-koeppe:equivariant`<<\n", + " p.34, thm.5.3.\n", + "\n", + " * (Although only extremality has been established in literature,\n", + " the same proof shows that), bhk_irrational is a facet.\n", + "\n", + " Parameters:\n", + " * f (real) \\in (0,1);\n", + "\n", + " * d1 (real): length of the positive slope;\n", + "\n", + " * d2 (real): length of the zero slopes;\n", + "\n", + " * a0 (real): length of the first zig-zag;\n", + "\n", + " * delta (n-tuple of reals): length of the extra zig-zags.\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " * 0 < f < 1;\n", + "\n", + " * d1, d2, a0, delta > 0;\n", + "\n", + " * d1 + d2 < f;\n", + "\n", + " * len(delta) == 2\n", + "\n", + " * sum(delta) < d2 / 4; Weaker condition: 2*delta[0] + delta[1]\n", + " < d2 / 2;\n", + "\n", + " * the two components of delta are linearly independent over Q.\n", + "\n", + " Relation between the code parameters and the paper parameters:\n", + " * t1 = delta[0], t2 = delta[0] + delta[1], ...\n", + "\n", + " * a1 = a0 + t1, a2 = a0 + t2, ...\n", + "\n", + " * A = f/2 - a0/2 - d2/4,\n", + "\n", + " * A0 = f/2 - a0/2 + d2/4.\n", + "\n", + " Examples:\n", + " >>:cite:`basu-hildebrand-koeppe:equivariant`<< p.34, thm.5.3:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.NOTSET) # enable INFO messages disabled by other doctests\n", + " sage: h = bhk_irrational(f=4/5, d1=3/5, d2=1/10, a0=15/100, delta=(1/200, sqrt(2)/200))\n", + " INFO: ...\n", + " sage: extremality_test(h, False)\n", + " INFO: ...\n", + " True\n", + "\n", + " >>:cite:`basu-hildebrand-koeppe:equivariant`<< thm 5.4: Not\n", + " extreme for rational data:\n", + "\n", + " sage: h = bhk_irrational(delta=[1/200, 3/200])\n", + " INFO: ...\n", + " sage: extremality_test(h, False)\n", + " INFO: ...\n", + " INFO: ... Total: 1 stability orbit...\n", + " False\n", + "\n", + " A generalization with 3 zigzags instead of 2 as in >>:cite\n", + " :`basu-hildebrand-koeppe:equivariant`<<:\n", + "\n", + " sage: h = bhk_irrational(f=4/5, d1=3/5, d2=1/10, a0=15/100, delta=(1/200, 6* sqrt(2)/200, 1/500))\n", + " INFO: ...\n", + " sage: extremality_test(h, False) # not tested - takes 20min on Macbook Pro 2.7Ghz Core i7\n", + " INFO: ...\n", + " INFO: ... Total: 3 stability orbits...\n", + " False\n", + "\n", + " Verify that p constructed below is an effective perturbation of\n", + " h:\n", + "\n", + " sage: sqrt2 = h.end_points()[0].parent().gen()\n", + " sage: pb = ((0, 0), (343/1000, -3/100), (1331/4000, -9/400), (1249/4000, -3/400), (151/500, 0), (303/1000, 0), (1171/4000, 3/400), (1089/4000, 9/400), (131/500, 3/100), (87/250, -3/100), (1351/4000, -9/400), (1269/4000, -3/400), (307/1000, 0), (77/250, 0), (1191/4000, 3/400), (1109/4000, 9/400), (267/1000, 3/100), (353/1000, -3/100), (1371/4000, -9/400), (1289/4000, -3/400), (39/125, 0), (313/1000, 0), (1211/4000, 3/400), (1129/4000, 9/400), (34/125, 3/100), (179/500, -3/100), (1391/4000, -9/400), (1309/4000, -3/400), (317/1000, 0), (159/500, 0), (1231/4000, 3/400), (1149/4000, 9/400), (277/1000, 3/100), (363/1000, -3/100), (1411/4000, -9/400), (1329/4000, -3/400), (161/500, 0), (323/1000, 0), (1251/4000, 3/400), (1169/4000, 9/400), (141/500, 3/100), (46/125, -3/100), (1431/4000, -9/400), (1349/4000, -3/400), (327/1000, 0), (41/125, 0), (1271/4000, 3/400), (1189/4000, 9/400), (287/1000, 3/100), (373/1000, -3/100), (1451/4000, -9/400), (1369/4000, -3/400), (83/250, 0), (333/1000, 0), (1291/4000, 3/400), (1209/4000, 9/400), (73/250, 3/100), (189/500, -3/100), (1471/4000, -9/400), (1389/4000, -3/400), (337/1000, 0), (169/500, 0), (1311/4000, 3/400), (1229/4000, 9/400), (297/1000, 3/100), (383/1000, -3/100), (1491/4000, -9/400), (1409/4000, -3/400), (171/500, 0), (343/1000, 0), (1331/4000, 3/400), (1249/4000, 9/400), (151/500, 3/100), (97/250, -3/100), (1511/4000, -9/400), (1429/4000, -3/400), (347/1000, 0), (87/250, 0), (1351/4000, 3/400), (1269/4000, 9/400), (307/1000, 3/100), (493/1000, -3/100), (1931/4000, -9/400), (1849/4000, -3/400), (113/250, 0), (453/1000, 0), (1771/4000, 3/400), (1689/4000, 9/400), (103/250, 3/100), (249/500, -3/100), (1951/4000, -9/400), (1869/4000, -3/400), (457/1000, 0), (229/500, 0), (1791/4000, 3/400), (1709/4000, 9/400), (417/1000, 3/100), (503/1000, -3/100), (1971/4000, -9/400), (1889/4000, -3/400), (231/500, 0), (463/1000, 0), (1811/4000, 3/400), (1729/4000, 9/400), (211/500, 3/100), (127/250, -3/100), (1991/4000, -9/400), (1909/4000, -3/400), (467/1000, 0), (117/250, 0), (1831/4000, 3/400), (1749/4000, 9/400), (427/1000, 3/100), (513/1000, -3/100), (2011/4000, -9/400), (1929/4000, -3/400), (59/125, 0), (473/1000, 0), (1851/4000, 3/400), (1769/4000, 9/400), (54/125, 3/100), (259/500, -3/100), (2031/4000, -9/400), (1949/4000, -3/400), (477/1000, 0), (239/500, 0), (1871/4000, 3/400), (1789/4000, 9/400), (437/1000, 3/100), (523/1000, -3/100), (2051/4000, -9/400), (1969/4000, -3/400), (241/500, 0), (483/1000, 0), (1891/4000, 3/400), (1809/4000, 9/400), (221/500, 3/100), (66/125, -3/100), (2071/4000, -9/400), (1989/4000, -3/400), (487/1000, 0), (61/125, 0), (1911/4000, 3/400), (1829/4000, 9/400), (447/1000, 3/100), (533/1000, -3/100), (2091/4000, -9/400), (2009/4000, -3/400), (123/250, 0), (493/1000, 0), (1931/4000, 3/400), (1849/4000, 9/400), (113/250, 3/100), (269/500, -3/100), (2111/4000, -9/400), (2029/4000, -3/400), (497/1000, 0), (249/500, 0), (1951/4000, 3/400), (1869/4000, 9/400), (457/1000, 3/100), (1, 0))\n", + " sage: pv = ((0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0), (1, 0), (-1, 0), (0, 0), (0, 0))\n", + " sage: bkpts = [b[0]+b[1]*sqrt2 for b in pb]\n", + " sage: values = [v[0]+v[1]*sqrt2 for v in pv]\n", + " sage: p = piecewise_function_from_breakpoints_and_values(bkpts, values)\n", + " sage: h1 = h + 8/10000*p\n", + " sage: minimality_test(h1)\n", + " INFO: ...\n", + " True\n", + " sage: h2 = h - 8/10000*p\n", + " sage: minimality_test(h2)\n", + " INFO: ...\n", + " True\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "bhk_irrational?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mchen_4_slope\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_chen_4_slope\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_chen_4_slope(default_values=(('f', 7/10), ('s_pos', 2), ('s_neg', -4), ('lam1', <...> ccording_to_literature', False), ('merge', True)), names=('f', 's_pos', 's_neg', 'lam1', 'lam2'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " This 4-slope function is shown [KChen_thesis] to be a facet.\n", + "\n", + " Parameters:\n", + " * f (real) \\in (0,1);\n", + "\n", + " * s_pos, s_neg (real): positive slope and negative slope\n", + "\n", + " * lam1, lam2 (real).\n", + "\n", + " Function is claimed to be extreme under the following conditions,\n", + " according to literature [KChen_thesis]:\n", + "\n", + " * 1/2 <= f < 1;\n", + "\n", + " * s_pos >= 1/f;\n", + "\n", + " * s_neg <= 1/(f - 1);\n", + "\n", + " * 0 <= lam1 < min(1/2, (s_pos - s_neg) / s_pos / (1 - s_neg *\n", + " f));\n", + "\n", + " * f - 1 / s_pos < lam2 < min(1/2, (s_pos - s_neg) / s_neg /\n", + " (s_pos * (f - 1) - 1)).\n", + "\n", + " Note:\n", + " The lower bound 0 < lam1 claimed in [KChen_thesis] is not\n", + " sufficient for extremality. The following example satisfies the\n", + " extremality conditions according to [KChen_thesis], however it\n", + " violates the subadditivity, and thus is not an extreme function:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = chen_4_slope(f=7/10, s_pos=2, s_neg=-4, lam1=1/100, lam2=49/100, condition_according_to_literature=True)\n", + " sage: h._claimed_parameter_attribute\n", + " 'extreme'\n", + " sage: extremality_test(h, False)\n", + " False\n", + "\n", + " On the other hand, the hypotheses stated by Chen are also not\n", + " necessary for extremality. For example, the following function\n", + " does not satisfy the hypotheses, however it is extreme:\n", + "\n", + " sage: h = chen_4_slope(f=7/10, s_pos=2, s_neg=-4, lam1=1/10, lam2=1/10, condition_according_to_literature=True)\n", + " sage: h._claimed_parameter_attribute\n", + " 'constructible'\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " We propose to revised the conditions for extremality, as follows.\n", + " s_pos >= 1/f; s_neg <= 1/(f - 1); lam1 <= 1/2; lam2 <= 1/2;\n", + " ((f*s_pos-1) * (1-f*s_neg)) * lam1 <= (s_pos-s_neg) * lam2;\n", + " ((f-1)*s_neg-1) * (1+(1-f)*s_pos) * lam2 <= (s_pos-s_neg) *\n", + " lam1.\n", + "\n", + " Examples:\n", + " [KChen_thesis] p.38, fig.8:\n", + "\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = chen_4_slope(f=7/10, s_pos=2, s_neg=-4, lam1=1/4, lam2=1/4)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = chen_4_slope(f=1/2, s_pos=4, s_neg=-4, lam1=1/3, lam2=1/3)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " The following parameters do not satisfy the requirement, however\n", + " the function is extreme:\n", + "\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = chen_4_slope(f=1/2, s_pos=5, s_neg=-5, lam1=1/5, lam2=1/5)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " Reference:\n", + " [KChen_thesis]: K. Chen, Topics in group methods for integer\n", + " programming,\n", + " Ph.D. thesis, Georgia Institute of Technology, June 2011.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "chen_4_slope?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mrlm_dpl1_extreme_3a\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_rlm_dpl1_extreme_3a\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_rlm_dpl1_extreme_3a(default_values=(('f', 1/4), ('field', None), ('conditioncheck', True)), names=('f',))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " From Richard--Li--Miller [RLM2009].\n", + "\n", + " For 0 < f < 1/3, by Thm.28, the DPL1 function phi (whose\n", + " corresponding h is shown on p.273, Fig.3-lowerleft) is \"extreme\"\n", + " (not the usual definition).\n", + "\n", + " See def.19 for the definition of DPLn, which is a special family of\n", + " discontinuous piecewise linear functions. See Prop.18 and Fig 1 for\n", + " relation between the DPLn representation \\phi and the group\n", + " representation \\pi, where \\pi(u) is called f(u), and f is called\n", + " r_0 throughout this paper.\n", + "\n", + " All we know from the paper is that \\pi on p.273, Fig.3-lowerleft is\n", + " subadditive. However, the extremality is unknown (see discussion\n", + " after thm.28 p.272).\n", + "\n", + " Indeed, the function rlm_dpl1_fig3_lowerleft(f) is a facet (and\n", + " thus extreme) for any 0 < f < 1/3. This can be verified using the\n", + " covered components and the additivity equations. (Specifically, 2 *\n", + " pi(f+) = pi(2f+) and 2* pi((1+f) / 2 +) = pi(f+))\n", + "\n", + " This is worked out in [KZh2015b, section 2].\n", + "\n", + " Example: p.273, Fig.3-lowerleft\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.WARN) # Suppress warning about experimental discontinuous code.\n", + " sage: h = rlm_dpl1_extreme_3a(f=1/4)\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\n", + " All other 3 functions (corresponding to phi from the DPL1 family)\n", + " shown in Fig.3 are proven to be extreme. They are covered by\n", + " \"drlm_3_slope_limit\" and \"drlm_2_slope_limit\" classes:\n", + "\n", + " * upper-left: drlm_3_slope_limit(1/3)\n", + "\n", + " * upper-right: drlm_2_slope_limit(f=3/5, nb_pieces_left=1,\n", + " nb_pieces_right=1)\n", + "\n", + " * lower-right: drlm_2_slope_limit(f=3/5, nb_pieces_left=1,\n", + " nb_pieces_right=2)\n", + "\n", + " Reference:\n", + "\n", + " [RLM2009] J.-P. P. Richard, Y. Li, and L. A. Miller, Valid\n", + " inequalities for MIPs and group polyhedra from\n", + " approximate liftings, Mathematical Programming 118\n", + " (2009), no. 2, 253-277, doi:10.1007/s10107-007-0190-9\n", + "\n", + " [KZh2015b] M. Koeppe and Y. Zhou, An electronic compendium of\n", + " extreme functions for the Gomory-Johnson infinite group\n", + " problem, Operations Research Letters, 2015,\n", + " http://dx.doi.org/10.1016/j.orl.2015.06.004\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "rlm_dpl1_extreme_3a?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mmlr_cpl3_g_3_slope\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr0\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m12\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mz1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfield\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconditioncheck\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Summary:\n", + " * The group representation of the continuous piecewise linear\n", + " lifting (CPL) function.\n", + "\n", + " * Infinity; Dim = 1; Slopes = 3 ; Continuous.\n", + "\n", + " * Discovered [1] p.179, Table 3, Ext. pnt g.\n", + "\n", + " * Proven extreme p.188, thm.19.\n", + "\n", + " Parameters:\n", + " * 0 < r0 (real) < 1,\n", + "\n", + " * 0 < z1 (real) <= (1-r0)/4\n", + "\n", + " Function is known to be extreme under the conditions:\n", + " * r0 < z1,\n", + "\n", + " * 2*r0 + 4*z1 = 1\n", + "\n", + " Examples:\n", + " page 184, Fig 3, point g:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h1 = mlr_cpl3_g_3_slope(r0=1/12, z1=5/24)\n", + " sage: extremality_test(h1)\n", + " True\n", + " sage: phi = cpl3_function(r0=1/12, z1=5/24, o1=5/18, o2=1/6)\n", + " sage: fn1 = group_function_from_superadditive_lifting_function(phi)\n", + " sage: h1 == fn1\n", + " True\n", + " sage: h2 = mlr_cpl3_g_3_slope(r0=1/12, z1=11/48, conditioncheck=False)\n", + " sage: extremality_test(h2)\n", + " False\n", + " sage: phi = cpl3_function(r0=1/12, z1=11/48, o1=11/36, o2=7/36)\n", + " sage: fn2 = group_function_from_superadditive_lifting_function(phi)\n", + " sage: h2 == fn2\n", + " True\n", + "\n", + " Reference:\n", + " * [1] L. A. Miller, Y. Li, and J.-P. P. Richard, New\n", + " Inequalities for Finite and Infinite Group Problems from\n", + " Approximate Lifting, Naval Research Logistics 55 (2008), no.2,\n", + " 172-191, doi:10.1002/nav.20275\n", + "\u001b[0;31mInit docstring:\u001b[0m Initialize self. See help(type(self)) for accurate signature.\n", + "\u001b[0;31mFile:\u001b[0m /tmp/tmp16dmq5a1/extreme_functions_mlr_cpl3.sageznx32z9i.py\n", + "\u001b[0;31mType:\u001b[0m function\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "mlr_cpl3_g_3_slope?" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Many more `mlr_cpl3_...` functions:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mnot_extreme_1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " A non-extreme, minimal function.\n", + "\n", + " EXAMPLES:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = not_extreme_1()\n", + " sage: minimality_test(h, False)\n", + " True\n", + " sage: extremality_test(h, False)\n", + " False\n", + "\u001b[0;31mInit docstring:\u001b[0m Initialize self. See help(type(self)) for accurate signature.\n", + "\u001b[0;31mFile:\u001b[0m /tmp/tmp16dmq5a1/survey_examples.sagedv82qa1w.py\n", + "\u001b[0;31mType:\u001b[0m function\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "not_extreme_1?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mdrlm_not_extreme_2\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " Example from S. S. Dey, J.-P. P. Richard, Y. Li, and L. A. Miller,\n", + " On the extreme inequalities of infinite group problems,\n", + " Mathematical Programming 121 (2009), no. 1, 145-170,\n", + " https://doi:10.1007/s10107-008-0229-6. Figure 3.\n", + "\n", + " Note: this is not any of \"drlm_2_slope_limit\" functions, since here\n", + " \"s_positive = 3\", whereas in \"drlm_2_slope_limit(f=1/2,\n", + " nb_pieces_left=2, nb_pieces_right=2)\", the \"s_positive\" has to be\n", + " 4.\n", + "\n", + " EXAMPLES:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.WARN) # Suppress warning about experimental discontinuous code.\n", + " sage: h = drlm_not_extreme_2()\n", + " sage: minimality_test(h, False)\n", + " True\n", + " sage: extremality_test(h, False)\n", + " False\n", + "\u001b[0;31mInit docstring:\u001b[0m Initialize self. See help(type(self)) for accurate signature.\n", + "\u001b[0;31mFile:\u001b[0m /tmp/tmp16dmq5a1/survey_examples.sagedv82qa1w.py\n", + "\u001b[0;31mType:\u001b[0m function\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "drlm_not_extreme_2?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mhildebrand_5_slope_28_1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " One of Hildebrand's 5-slope functions.\n", + "\n", + " They held the world record regarding the number of slopes until\n", + " functions with more slopes were discovered in 2014.\n", + "\n", + " From Hildebrand (2013, unpublished).\n", + "\n", + " EXAMPLES:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = hildebrand_5_slope_28_1()\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\u001b[0;31mInit docstring:\u001b[0m Initialize self. See help(type(self)) for accurate signature.\n", + "\u001b[0;31mFile:\u001b[0m /tmp/tmp16dmq5a1/extreme_functions_sporadic.sage_qdiweor.py\n", + "\u001b[0;31mType:\u001b[0m function\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "hildebrand_5_slope_28_1?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mhildebrand_2_sided_discont_1_slope_1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " The first known example of function that is discontinuous on both\n", + " sides of the origin but is also extreme.\n", + "\n", + " Constructed by Robert Hildebrand (2013, unpublished).\n", + "\n", + " EXAMPLES:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = hildebrand_2_sided_discont_1_slope_1()\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\u001b[0;31mInit docstring:\u001b[0m Initialize self. See help(type(self)) for accurate signature.\n", + "\u001b[0;31mFile:\u001b[0m /tmp/tmp16dmq5a1/extreme_functions_sporadic.sage_qdiweor.py\n", + "\u001b[0;31mType:\u001b[0m function\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "hildebrand_2_sided_discont_1_slope_1?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mhildebrand_2_sided_discont_2_slope_1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " The second known example of function that is discontinuous on both\n", + " sides of the origin but is also extreme. This one has 2 slopes.\n", + "\n", + " Constructed by Robert Hildebrand (2013, unpublished).\n", + "\n", + " EXAMPLES:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = hildebrand_2_sided_discont_2_slope_1()\n", + " sage: extremality_test(h, False)\n", + " True\n", + "\u001b[0;31mInit docstring:\u001b[0m Initialize self. See help(type(self)) for accurate signature.\n", + "\u001b[0;31mFile:\u001b[0m /tmp/tmp16dmq5a1/extreme_functions_sporadic.sage_qdiweor.py\n", + "\u001b[0;31mType:\u001b[0m function\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "hildebrand_2_sided_discont_2_slope_1?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mhildebrand_discont_3_slope_1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " This is a very new discontinuous 3-slope function that is extreme.\n", + "\n", + " Constructed by Robert Hildebrand (2013, unpublished).\n", + "\n", + " A detailed extremality proof appears as an example in >>:cite\n", + " :`hong-koeppe-zhou:software-paper`<<.\n", + "\n", + " EXAMPLES:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: psi = hildebrand_discont_3_slope_1()\n", + " sage: extremality_test(psi, False)\n", + " True\n", + "\n", + " In >>:cite:`koeppe-zhou:discontinuous-facets`<<, it is shown that\n", + " this function (called \\psi) is neither a weak facets nor a facet,\n", + " by showing that the function ` psi' =\n", + " \"discontinuous_facets_paper_example_psi_prime()\" ` has a larger\n", + " additivity domain E (sans limits):\n", + "\n", + " sage: psi = hildebrand_discont_3_slope_1()\n", + " sage: E_psi = set(generate_additive_faces_sans_limits(psi))\n", + " sage: psi_prime = discontinuous_facets_paper_example_psi_prime(merge=False)\n", + " sage: E_psi_prime = set(generate_additive_faces_sans_limits(psi_prime))\n", + " sage: E_psi.issubset(E_psi_prime)\n", + " True\n", + " sage: sorted(E_psi_prime.difference(E_psi), key=lambda F: F.minimal_triple)\n", + " [, , ...]\n", + "\n", + " In fact, if one uses only the faces of \\psi that are additive sans\n", + " limits, then there is one covered component only; two intervals\n", + " remain uncovered:\n", + "\n", + " sage: show_plots=False\n", + " sage: show_plots=True # not tested\n", + " sage: sorted(generate_covered_components_strategically(psi, show_plots=show_plots,\n", + " ....: additive_faces=E_psi))\n", + " [[, ],\n", + " [, ],\n", + " [, ]]\n", + "\u001b[0;31mInit docstring:\u001b[0m Initialize self. See help(type(self)) for accurate signature.\n", + "\u001b[0;31mFile:\u001b[0m /tmp/tmp16dmq5a1/extreme_functions_sporadic.sage_qdiweor.py\n", + "\u001b[0;31mType:\u001b[0m function\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "hildebrand_discont_3_slope_1?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mgomory_fractional\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " The Gomory fractional cut. Not minimal.\n", + "\n", + " EXAMPLES:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO) # Suppress output in automatic tests.\n", + " sage: h = gomory_fractional(f=4/5)\n", + " sage: minimality_test(h, f=4/5)\n", + " False\n", + "\u001b[0;31mInit docstring:\u001b[0m Initialize self. See help(type(self)) for accurate signature.\n", + "\u001b[0;31mFile:\u001b[0m /tmp/tmp16dmq5a1/survey_examples.sagedv82qa1w.py\n", + "\u001b[0;31mType:\u001b[0m function\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "gomory_fractional?" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "See the extreme function with the world-record number of different\n", + "See the extreme function with the world-record number of different\n", "slopes:" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mCall signature:\u001b[0m \u001b[0mextreme_function_with_world_record_number_of_slopes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mType:\u001b[0m ParametricFamily_bcdsp_arbitrary_slope\n", + "\u001b[0;31mString form:\u001b[0m ParametricFamily_bcdsp_arbitrary_slope(default_values=(('f', 1/2), ('k', 4), ('field', None), ('conditioncheck', True)), names=('f', 'k'))\n", + "\u001b[0;31mFile:\u001b[0m ~/sage/cutgeneratingfunctionology/cutgeneratingfunctionology/igp/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + " A family of extreme functions with an arbitrary number k of slopes.\n", + " (k >= 2)\n", + "\n", + " Function is known to be extreme under the condition:\n", + " 0 < f <= 1/2.\n", + "\n", + " Tests show that the function is also extreme when f <= 4/5.\n", + "\n", + " Examples:\n", + "\n", + " sage: from cutgeneratingfunctionology.igp import *\n", + " sage: logging.disable(logging.INFO)\n", + " sage: h = bcdsp_arbitrary_slope(f=1/2, k=2)\n", + " sage: h == gmic(f=1/2)\n", + " True\n", + " sage: h = bcdsp_arbitrary_slope(f=1/2, k=3)\n", + " sage: h == gj_forward_3_slope(f=1/2, lambda_1=1/2, lambda_2=1/4)\n", + " True\n", + " sage: h = bcdsp_arbitrary_slope(f=1/2, k=4)\n", + " sage: number_of_slopes(h)\n", + " 4\n", + " sage: extremality_test(h)\n", + " True\n", + " sage: h = bcdsp_arbitrary_slope(f=4/5, k=10)\n", + " sage: number_of_slopes(h)\n", + " 10\n", + " sage: extremality_test(h)\n", + " True\n", + "\n", + " Reference:\n", + " [arbitrary_num_slopes] A. Basu, M. Conforti, M. Di Summa, and J.\n", + " Paat, Extreme Functions with an Arbitrary Number of Slopes,\n", + " 2015, http://www.ams.jhu.edu/~abasu9/papers/infinite-slopes.pdf,\n", + " to appear in Proceedings of IPCO 2016.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "extreme_function_with_world_record_number_of_slopes?" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: 2023-09-20 09:44:01,571 Conditions for extremality are satisfied.\n", + "INFO: 2023-09-20 09:44:01,573 Rational case.\n", + "INFO: 2023-09-20 09:44:01,574 Rational case.\n" + ] + } + ], "source": [ "h = extreme_function_with_world_record_number_of_slopes()" - ], - "outputs": [], - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC64AAAjACAYAAACNPJHnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU1f3/8feESCCEhEUkWHGhlQqCWKwLxd1S3KFftHUXd9sifm3tr9avimgQhQKWRTbBACIoApFNFoEU2WwE2QwgBcNSCKuZCWRP5veHmJi5g2aZuTPn5PV8PPL4Nvfc+dxDvm/v4zw+ORw8fr/fLwAAAAAAAAAAAAAAAAAAAAAAwiQm0hMAAAAAAAAAAAAAAAAAAAAAANiNjesAAAAAAAAAAAAAAAAAAAAAgLBi4zoAAAAAAAAAAAAAAAAAAAAAIKzYuA4AAAAAAAAAAAAAAAAAAAAACCs2rgMAAAAAAAAAAAAAAAAAAAAAwoqN6wAAAAAAAAAAAAAAAAAAAACAsGLjOgAAAAAAAAAAAAAAAAAAAAAgrNi4DgAAAAAAAAAAAAAAAAAAAAAIKzaun+T3++Xz+eT3+yM9FQAAAAAAAAAAAAAAAAAAAACwChvXT8rNzVVSUpJyc3NDXnvatGkhr+lGbZiLXMAG5BgAAABwYp0MW5BlBDKxh0qOAQAAAAAAAABVQT+5gsfPEeOSJJ/Pp6SkJHm9XiUmJoa09sGDB9WyZcuQ1nSjNsxFLmADcgwAAAA4sU6GLcgyApnYQyXHAAAAAAAAAICqoJ9cgRPXXTB+/Hgja8Nc5AI2IMcAAACAE+tk2IIsI5CJPVRyDAAAAAAAAACoCvrJFThx/aRwnrgOAAAAAAAAAAAAAAAAAAAAAHUZJ667ICUlxcjaMBe5gA3IMQAAAODEOhm2IMsIZGIPlRwDAAAAAAAAAKqCfnIFTlw/KZwnrufn56thw4YhrelGbZiLXMAG5BgAAABwYp0MW5BlBDKxh0qOAQAAAAAAAABVQT+5Aieuu+Ctt94ysjbMRS5gA3IMAAAAOLFOhi3IMgKZ2EMlxwAAAAAAAAAQvYqKipSXlxcVX5MnT474HELxVVRUVOv/v3Di+knhPHF9x44dOv/880Na043aMBe5gA3IMQAAAODEOhm2IMsIZGIPlRwDAAAAAAAAQHQqKirSl19+qbKyskhPxSoxMTG68MILVb9+/RrXiA3hfHAK69evD9svMMJZG+YiF7ABOQYAAACcWCfDFmQZgUzsoZJjAAAAAAAAAIhOJSUlKisr07nnnquGDRtGejpWyM/PV1ZWlkpKSti4Hu1atGhhZG2Yi1zABuQYAAAAcGKdDFuQZQQysYdKjgEAAAAAAAAgujVs2FDx8fGRnoZVvF6vCgoKFBcXp0aNGlX782xcd0FcXJyRtWEucgEbkGMAAADAiXUybEGWEcjEHio5BgAAAAAAAADUNfPmzdOJEyeUmJio3//+99XevB4Tpnnhe3bu3GlkbZiLXMAG5BgAAABwYp0MW5BlBDKxh0qOAQAAAAAAAAB1TaNGjVS/fn35fD4VFhZW+/NsXHfBtddea2RtmItcwAbkGAAAAHBinQxbkGUEMrGHSo4BAAAAAAAAAHVNXFxcrf5FUjauu2DKlClG1oa5yAVsQI4BAAAAJ9bJsAVZRiATe6jkGAAAAAAAAACA6vH4/X5/pCcRDXw+n5KSkuT1epWYmBjS2mVlZYqJCc/fEQhnbZiLXMAG5BgAAABwYp0MW5BlBDKxh0qOAQAAAAAAACA65eXlaevWrWrXrp3i4+MjPR0rfPczzcrKUk5OjnJzc/XAAw+oWbNm1apDV90Fr732mpG1YS5yARuQYwAAAMCJdTJsQZYRyMQeKjkGAAAAAAAAAHg8HqWlpUV6GsbgxPWTOHEdNiEXsAE5BgAAAJxYJ8MWZBmBTOyhkmMAAAAAAAAAiE6hOnH90KFDevHFF/Xxxx/r4MGDatq0qTp16qSXX35ZXbp0kfTtxvXZs2erZ8+eIZp9zcyaNUtjx47VunXrdPToUX3xxRe6+OKLg97r9/t18803a+HChVWeOyeuG2TgwIFG1oa5yAVsQI4BAAAAJ9bJsAVZRiATe6jkGAAAAAAAAADs1qtXL23cuFGTJk3SV199pTlz5ujaa6/VsWPHIj01hxMnTqhr1656/fXXf/TeN998Ux6Px4VZOcVG5Kl1zP33329kbZiLXMAG5BgAAABwYp0MW5BlBDKxh0qOAQAAAAAAAMAAjz0mbdlSvc906KCcwYO1cuVKpaen65prrpEknXPOObrssst+8KObN2/W008/rTVr1ig+Pl69evXS0KFDlZCQIEnq3bu3cnJy9Itf/EKjRo1SQUGB7r77bo0YMUL169eX9O2J6IMHD9aYMWN04MABtW3bVi+++KLuuOOOUz73u551VlbWD85v48aNGjp0qDIyMtSqVauq/kRChhPXXZCenm5kbZiLXMAG5BgAAABwYp0MW5BlBDKxh0qOAQAAAAAAAMAAW7ZIa9dW72vLFiUkJCghIUFpaWkqLCys0qPy8vJ04403qmnTpsrIyNCMGTP0ySefqE+fPpXuW7p0qbZu3arly5dr2rRpmj17tvr3718+/sILL+idd97R6NGj9eWXX+qZZ57Rfffdp3/961+1+lHk5eXp7rvv1siRI5WcnFyrWjXFxnUX/PSnPzWyNsxFLmADcgwAAAA4sU6GLcgyApnYQyXHAAAAAAAAAGCv2NhYpaamatKkSWrSpIm6du2q559/Xps2bTrlZ6ZOnar8/HxNnjxZHTp00PXXX6+RI0dqypQpOnjwYPl99evX18SJE3XhhRfqlltu0SuvvKLhw4errKxMJ06c0NChQzVx4kR1795dbdq0Ue/evXXfffdp7NixtfozPfPMM/rVr36lHj161KpObbBx3QVV/ZsW0VYb5iIXsAE5BgAAAJxYJ8MWZBmBTOyhkmMAAAAAAAAAsFuvXr20f/9+zZkzR927d1d6ero6d+6s1NTUoPdv3bpVnTp1UqNGjcqvde3aVWVlZdq+fXv5tU6dOik+Pr78+y5duuj48ePau3evMjMzVVBQoG7dupWf+p6QkKDJkydr586dNf6zzJkzR8uWLdObb75Z4xqhEBvRp9cRhw8fNrI2zEUuYANyDAAAADixToYtyDICmdhDJccAAAAAAAAAYL8GDRqoW7du6tatm1566SU9+uij6tevn3r37u241+/3y+PxBK1zquuB95SVlUmS5s+fr5/85CeVxuPi4qr/Bzhp2bJl2rlzp5o0aVLpeq9evXTVVVcpPT29xrWrg43rLujcubORtWEucgEbkGMAAADAiXUybEGWEcjEHio5BgAAAAAAAAADdOgQ0s+0b99eaWlppxybNGmSTpw4UX7q+qpVqxQTE6O2bduW37dx40bl5+erYcOGkqS1a9cqISFBZ511lpo2baq4uDjt2bNH11xzTfXnfgrPPfecHn300UrXOnbsqGHDhum2224L2XN+TIxrT6rD5syZY2RtmItcwAbkGAAAAHBinQxbkGUEMrGHSo4BAAAAAAAAwADjx0tr1lTva/x4HT16VNdff73effddbdq0SV9//bVmzJihQYMGqUePHkEfde+996pBgwZ68MEHtWXLFi1fvlxPPfWU7r//frVs2bL8vqKiIj3yyCPKzMzUxx9/rH79+qlPnz6KiYlR48aN9eyzz+qZZ57RpEmTtHPnTn3xxRcaNWqUJk2adMo/5rFjx7RhwwZlZmZKkrZv364NGzYoOztbkpScnKwOHTpU+pKks88+W+edd16ofto/yuP3+/2uPS2K+Xw+JSUlyev1KjExMaS1v/+3IkItnLVhLnIBG5BjAAAAwIl1MmxBlhHIxB4qOQYAAAAAAACA6JSXl6etW7eqXbt2io+Pr1GNwsJCvfzyy1q8eLF27typ4uJitW7dWnfeeaeef/758v6wx+PR7Nmz1bNnT0nS5s2b9fTTT2vNmjWKj49Xr169NHToUCUkJEiSevfurZycHHXq1EmjRo1SYWGh7rrrLo0cOVJxcXGSJL/frxEjRuitt97Srl271KRJE3Xu3FnPP/+8rr766qDzTU1N1UMPPeS43q9fP7388stBPxM49x/y3c80KytLOTk5ys3N1QMPPKBmzZr96Ge/jxPXXTBkyBAja8Nc5AI2IMcAAACAE+tk2IIsI5CJPVRyDAAAAAAAAAD2iouL08CBA7Vu3Trl5OToxIkT2rZtm1599dVKh5r4/f5KG787duyoZcuWKT8/X0ePHtW4cePKN61/X//+/XXkyBHl5uZq/Pjx5ZvWpW83lPft21fbtm1TUVGRDh06pIULF55y07r07YZ4v9/v+DrVpvVgc3cDJ66fFM4T1wEAAAAAAAAAAAAAAAAAAACEXyhOXA+X705cT0tLi/RUqoUT1w2SkpJiZG2Yi1zABuQYAAAAcGKdDFuQZQQysYdKjgEAAAAAAAAAqB5OXD8pnCeuHzx4UC1btgxpTTdqw1zkAjYgxwAAAIAT62TYgiwjkIk9VHIMAAAAAAAAANEpmk9cNxUnrhvko48+MrI2zEUuYANyDAAAADixToYtyDICmdhDJccAAAAAAAAAAI/Ho7S0tEhPwxhsXHfBJZdcYmRtmItcwAbkGAAAAHBinQxbkGUEMrGHSo4BAAAAAAAAwG6HDh3SE088obPPPltxcXFKTk5W9+7dtWbNmkhP7UcdO3ZMTz31lH7+858rPj5eZ599tvr27Suv1xvRecVG9Ol1xMGDB42sDXORC9iAHAMAAABOrJNhC7KMQCb2UMkxAAAAAAAAANitV69eKi4u1qRJk9SmTRsdPHhQS5cu1bFjxyI9tR+1f/9+7d+/X//4xz/Uvn177d69W08++aT279+vDz/8MGLzYuO6C4qKioysDXORC9iAHAMAAABOrJNhC7KMQCb2UMkxAAAAAAAAAES/OXpMh7SlWp85Qx10dc5grVy5Uunp6brmmmskSeecc44uu+yyH/zs5s2b9fTTT2vNmjWKj49Xr169NHToUCUkJEiSevfurZycHP3iF7/QqFGjVFBQoLvvvlsjRoxQ/fr1JUl+v1+DBw/WmDFjdODAAbVt21Yvvvii7rjjjir/GTp06KCZM2eWf//Tn/5UAwYM0H333aeSkhLFxkZmCzkb113w05/+1MjaMBe5gA3IMQAAAODEOhm2IMsIZGIPlRwDAAAAAAAAQPQ7pC3ap7XV/lxCQoISEhKUlpamK664QnFxcT/6mby8PN1444264oorlJGRoUOHDunRRx9Vnz59lJqaWn7f0qVL1aBBAy1fvlxZWVl66KGHdPrpp2vAgAGSpBdeeEGzZs3S6NGjdf7552vFihW677771KJFi/JN9DXh9XqVmJgYsU3rkhQTsSfXIf/617+MrA1zkQvYgBwDAAAATqyTYQuyjEAm9lDJMQAAAAAAAADYKzY2VqmpqZo0aZKaNGmirl276vnnn9emTZtO+ZmpU6cqPz9fkydPVocOHXT99ddr5MiRmjJlig4ePFh+X/369TVx4kRdeOGFuuWWW/TKK69o+PDhKisr04kTJzR06FBNnDhR3bt3V5s2bdS7d2/dd999Gjt2bI3/PEePHtWrr76qJ554osY1QoGN6y647777jKwNc5EL2IAcAwAAAE6sk2ELsoxAJvZQyTEAAAAAAAAA2K1Xr17av3+/5syZo+7duys9PV2dO3eudHr6923dulWdOnVSo0aNyq917dpVZWVl2r59e/m1Tp06KT4+vvz7Ll266Pjx49q7d68yMzNVUFCgbt26lZ/6npCQoMmTJ2vnzp1Bn/vaa69VunfPnj2Vxn0+n2655Ra1b99e/fr1q8VPpPbYuO6CkSNHGlkb5iIXsAE5BgAAAJxYJ8MWZBmBTOyhkmMAAAAAAAAAsF+DBg3UrVs3vfTSS1q9erV69+59ys3ffr9fHo8n6NiprgfeU1ZWJkmaP3++NmzYUP6VmZmpDz/8MOjnnnzyyUr3nnnmmeVjubm5uvHGG5WQkKDZs2frtNNO+9F5hFNsRJ9eR7zwwgtG1oa5yAVsQI4BAAAAJ9bJsAVZRiATe6h/e+HZsNQFAAAAAAAAAITOGeoQ0s+0b99eaWlppxybNGmSTpw4UX7q+qpVqxQTE6O2bduW37dx40bl5+erYcOGkqS1a9cqISFBZ511lpo2baq4uDjt2bNH11xzTZXm26xZMzVr1sxx3efzqXv37oqLi9OcOXPUoEGDKtULJytPXD9+/Lh69erlOOo+UlJSUoysDXORC9iAHAMAAABOrJNhC7KMQMb0UDMzpRUrtHX/KN32agvt9a8JXW0AAAAAAAAAQMjdrvF6VGuq9XW7xuvo0aO6/vrr9e6772rTpk36+uuvNWPGDA0aNEg9evQI+qx7771XDRo00IMPPqgtW7Zo+fLleuqpp3T//ferZcuW5fcVFRXpkUceUWZmpj7++GP169dPffr0UUxMjBo3bqxnn31WzzzzjCZNmqSdO3fqiy++0KhRozRp0qQq/7lzc3P1m9/8RidOnNCECRPk8/mUnZ2t7OxslZaW1vrnWlMev9/vj9jTw2DixInavXu3XnnlFX399dc699xzq/Q5n8+npKQkeb1eJSYmhnROXq9XSUlJIa3pRm2Yi1zABuQYAAAAcGKdDFuQZQQypYea9/8e0YKLJ2rLPVKBV/pJtkdP3tFGp238Soqx8pwYAAAAAAAAADBOXl6etm7dqnbt2ik+Pr5GNQoLC/Xyyy9r8eLF2rlzp4qLi9W6dWvdeeedev7558tPS/d4PJo9e7Z69uwpSdq8ebOefvpprVmzRvHx8erVq5eGDh2qhIQESVLv3r2Vk5OjTp06adSoUSosLNRdd92lkSNHKi4uTpLk9/s1YsQIvfXWW9q1a5eaNGmizp076/nnn9fVV19dpfmnp6fruuuuCzpWnf3V3/nuZ5qVlaWcnBzl5ubqgQceCHrS+w+xrpP+8MMPq3///pGeRiWTJ082sjbMRS5gA3IMAAAAOLFOhi3IMgKZ0EPdpjka9fep2nLPt99vnCwd/blfy/9wgE3rAAAAAAAAAGCZuLg4DRw4UOvWrVNOTo5OnDihbdu26dVXXy3ftC59u8n8u03rktSxY0ctW7ZM+fn5Onr0qMaNG1e+af37+vfvryNHjig3N1fjx48v37QufbsZvm/fvtq2bZuKiop06NAhLVy4sMqb1iXp2muvld/vD/pV3U3roRQbsSdHWGFhoQoLC8u/9/l8YXvWqf7GQrTXhrnIBWxAjgEAAAAn1smwBVlGIBN6qIf1pU40regpn3ey7Oon83SBVuts/SokzwEAAAAAAAAAwFZVPgZm2rRp2rlzpwYNGqTCwkKlpKRIklJSUrR//35NmDBBGRkZWrRokWbNmqXMzEwNHz5cPp+v0r3Hjh3TqFGjtGnTJs2ZM0fz58/X+vXrNXbsWB0+fLjSvXl5eRoyZIi2b9+uDz74QEuXLtXq1auVmpqqvXv3Vrq3tLRUAwcO1O7duzVlyhRJ0tq1azV9+nTt2LFDgwcPVkFBQflnbrrpJiUlJZV/tW7dWpKUmZmpESNGyOv1Vqqfk5OjkSNHavPmzUpLS9OCBQu0bt06jRs3TgcPHqx0b35+voYMGaIdO3bo/fff16xZs7Rq1SpNnjxZe/bs0YABA1RWVqaUlBSVlZVpwIAB2rNnjyZPnqxVq1Zp2bJlev/997Vjxw4NGTJE+fn5leofPHhQ48aN07p16zR9+nSlpaVp8+bNGjlypHJycird6/V6NWLECG3ZskWzZ8/WwoULlZGRofHjxys7O7vSvQUFBRo8eLB27Nih6dOnKz09XStXrtSUKVO0e/duDRw4UKWlpZU+s3fvXqWmpmr16tVaunSpPvjgA23fvl1DhgxRXl5epXsPHz6ssWPHav369Zo/f77mzJmjTZs2adSoUTp27File30+n4YPH67MzEzNmjVLixYtUkZGhiZMmKD9+/dXurewsFCDBg3Szp07NW3aNKWnp+vTTz/Vu+++q6ysLL3++usqKSmp9Jl9+/bpnXfe0dq1a7VkyRLNmDFD27Zt07Bhw3T8+PFK9x45ckRjxozRhg0bNG/ePM2dO1cbNmzQ6NGjdfTo0Ur35ubm6s0331RmZqZmzpypxYsX67PPPtPEiRMd8y4uLtYbb7yhXbt2aerUqVqxYoVWrFihqVOnateuXXrjjTdUXFzs+G9t4sSJ+uyzz7R48WLNnDlTmZmZevPNN5Wbm1t+72uvvaajR49q9OjR2rBhg+bOnat58+Zpw4YNGjNmjI4cOVKp7vHjxzVs2DBt27ZNM2bM0JIlS7R27Vq988472rdvX6V7S0pK9PrrrysrK0vvvvuuPv30U6Wnpxv3jli5cqXS09NP+Y5ISUlRdna2xo8fr4yMDC1cuFCzZ8/Wli1bQv6OWLZsWdjeEQsWLDD2HTF16lTeEWF6R6SkpPCO4B1h/DuCdQTvCN4RvCN4R/COqKvviOnTp/OO4B1hxTvitdde4x3BOqLSO2LBggVhe0ekpqaG5B3RwfeEtv2tng5nSltnSV9+IP03Q1r/jjR5//3qn9KPdwTrCN4RrCNYR/CO4B3BO4J3BO8I3hG8I3hH8I7gHcE7gncE7wjeEbwjeEdEwTvio48+EsKjtLRUa9eulSS9+eab5e+IqvL4/X5/uCYXSR6PR19//fUpj7MPduJ669at5fV6lZiYGNK5LFy4UDfeeGNIa7pRG+YiF7ABOQYAAACcWCfDFmQZgYzoofr9OtS5gcauLVJpnPSfhdLPvle2i/6s7hpS++cAAAAAAAAAAGolLy9PW7duVbt27RQfHx/WZ3k8Hs2ePVs9e/YM63Mi7bufaVZWlnJycpSbm6sHHnhAzZo1q1adKp+4bpu4uDglJiZW+gqX5s2bG1kb5iIXsAE5BgAAAJxYJ8MWZBmBjOiher06Y0ORrnvp228bBpRdo2Hao1WheRYAAAAAAAAAIOIOHTqkJ554Qmeffbbi4uKUnJys7t27a82aNZGeWlBbt27V7bffrqSkJDVu3FhXXHGF9uzZE+lpVVJnN667acOGDUbWhrnIBWxAjgEAAAAn1smwBVlGICN6qNnZkqQuQ6SffCZlO8r6labeKlJeaJ4HAAAAAAAAAIioXr16aePGjZo0aZK++uorzZkzR9dee62OHTsW6ak57Ny5U1deeaUuuOACpaena+PGjXrxxRfVoEGDSE+tkthITyDUpk2bphUrVkiSnnvuOV199dX64x//GNE53XbbbUbWhrnIBWxAjgEAAAAn1smwBVlGICN6qCc3rtcrlXr2lnZ87LzlmP6jZfo/3ahhoXkmAAAAAAAAAKBWHpO0pZqf6SBpcE6OVq5cqfT0dF1zzTWSpHPOOUeXXXbZD3528+bNevrpp7VmzRrFx8erV69eGjp0qBISEiRJvXv3Vk5Ojn7xi19o1KhRKigo0N13360RI0aofv36kiS/36/BgwdrzJgxOnDggNq2basXX3xRd9xxxymf+3//93+6+eabNWjQoPJrbdq0qeafPPysO3H97rvv1ujRo+X3+zV9+vSIb1qXpLffftvI2jAXuYANyDEAAADgxDoZtiDLCGRED/XAgfL/2WKb9M39wW9bq39qtz4NzTMBAAAAAAAAALWyRdLaan5tkZSQkKCEhASlpaWpsLCwSs/Ky8vTjTfeqKZNmyojI0MzZszQJ598oj59+lS6b+nSpdq6dauWL1+uadOmafbs2erfv3/5+AsvvKB33nlHo0eP1pdffqlnnnlG9913n/71r38FfW5ZWZnmz5+vtm3bqnv37jrjjDN0+eWXKy0trRo/KXd4/H6/P9KTiAY+n09JSUnyer1KTEyM9HQAAAAAAAAAANFk2DDpz38u/7YsRpqwSvrvFc5bm+lnelIbVF+NXJwgAAAAAAAAAED6dgP51q1b1a5dO90QH6+11fz8FZLWSJo5c6Yee+wx5efnq3Pnzrrmmmt011136aKLLiq/1+PxaPbs2erZs6fGjx+vv/3tb9q7d68aNfq2P7xgwQLddttt2r9/v1q2bKnevXtr7ty52rt3r+Lj4yVJY8aM0V//+ld5vV7l5+fr9NNP17Jly9SlS5fy5zz66KPKy8vTe++955hvdna2WrVqpfj4eKWkpOi6667TwoUL9fzzz2v58uXlJ8bXxnc/06ysLOXk5Cg3N1cPPPCAmjVrVq061p24Ho1SUlKMrA1zkQvYgBwDAAAATqyTYQuyjEBG9FC/d+K6JL1WJvXsLdXzxzluPab/aKmeD81zAQAAAAAAAAAR0atXL+3fv19z5sxR9+7dlZ6ers6dOys1NTXo/Vu3blWnTp3KN61LUteuXVVWVqbt27eXX+vUqVP5pnVJ6tKli44fP669e/cqMzNTBQUF6tatW/mp7wkJCZo8ebJ27twZ9LllZWWSpB49euiZZ57RxRdfrOeee0633nqrxowZE4KfROiwcd0Fzz77rJG1YS5yARuQYwAAAMCJdTJsQZYRyIgeanZ25bqSWvw3Qdd7gm+M/0zDlaUVoXk2AAAAAAAAACAiGjRooG7duumll17S6tWr1bt3b/Xr1y/ovX6/Xx6PJ+jYqa4H3vPdJvT58+drw4YN5V+ZmZn68MMPg37u9NNPV2xsrNq3b1/pert27bRnz54ffa6b2LjughEjRhhZG+YiF7ABOQYAAACcWCfDFmQZgYzooQacuD5CkpKT1UXP6Cx1CfqRj/SQinQiNM8HAAAAAAAAAFRbB0lXVPOrww/Ua9++vU6cCN73bd++vTZs2FBpfNWqVYqJiVHbtm3Lr23cuFH5+fnl369du1YJCQk666yz1L59e8XFxWnPnj362c9+VumrdevWQZ9bv359XXrppZVOdZekr776Suecc84P/GncFxvpCdQFPXv2NLI2zEUuYANyDAAAADixToYtyDICGdFDDThxvacktWqlGNVTT72jMbpYJSqodM832qVP9HfdrOGhmQMAAAAAAAAAoFrG1/BzR48e1Z133qmHH35YF110kRo3bqzPP/9cgwYNUo8ePYJ+5t5771W/fv304IMP6uWXX9bhw4f11FNP6f7771fLli3L7ysqKtIjjzyiF154Qbt371a/fv3Up08fxcTEqHHjxnr22Wf1zDPPqKysTFdeeaV8Pp9Wr16thIQEPfjgg0Gf/de//lW///3vdfXVV+u6667TwoULNXfuXKWnp9fwJxAenLjugnXr1hlZG+YiF7ABOQYAAACcWCfDFmQZgYzooQacuL5OkpKTJUmn6+e6XgOCfuzfGqGvlR6aOQAAAAAAAAAAXJGQkKDLL79cw4YN09VXX60OHTroxRdf1GOPPaaRI0cG/Ux8fLwWLVqkY8eO6dJLL9Udd9yhG264wXH/DTfcoPPPP19XX321fve73+m2227Tyy+/XD7+6quv6qWXXtLAgQPVrl07de/eXXPnztV55513yvn+9re/1ZgxYzRo0CB17NhRb7/9tmbOnKkrr7wyJD+PUOHEdRckn/zlhWm1YS5yARuQYwAAAMCJdTJsQZYRKOp7qEVF0tGjletKUqtW5d9foae1VbO0V6scH/9ID+sP2qQ4JdR+LgAAAAAAAACAsIuLi9PAgQM1cODAH7zP7/dX+r5jx45atmzZj9bv37+/+vfvH3TM4/Gob9++6tu3b9UnLOnhhx/Www8/XK3PuI0T110QGxu+vx8QztowF7mADcgxAAAA4MQ6GbYgywgU9T3UgweddaXyE9clKUb11EMTFasGjntz9LU+0XO1nwcAAAAAAAAAAAZj47oLvv76ayNrw1zkAjYgxwAAAIAT62TYgiwjUNT3ULOznXWlSieuS9Lpaqsb9FrQEhkapa+1vPZzAQAAAAAAAADAUGxcd8HVV19tZG2Yi1zABuQYAAAAcGKdDFuQZQSK+h7qgQPOulKlE9e/c7n66mxdGbTMR3pYhTpe+/kAAAAAAAAAAKKCx+NRWlpale9PTU2t1v22YeO6C9577z0ja8Nc5AI2IMcAAACAE+tk2IIsI1DU91CDnLj+nuQ4cV2SYlRPPfSOYtXQMZajLC3R/6v9fAAAAAAAAAAAYXfo0CE98cQTOvvssxUXF6fk5GR1795da9asifTUKikuLtbf/vY3dezYUY0aNdKZZ56pBx54QPv374/01Bw8fr/fH+lJRAOfz6ekpCR5vV4lJiaGtHZpaanq1asX0ppu1Ia5yAVsQI4BAAAAJ9bJsAVZRqCo76G+8orUr1/lupLqZWdLLVsG/cha/VML9b9Bxx7QUrXR9bWbEwAAAAAAAAAgqLy8PG3dulXt2rVTfHx8jetcddVVKi4u1sCBA9WmTRsdPHhQS5cu1UUXXaRbbrlF0rcnrs+ePVs9e/YM0eyrz+v16o477tBjjz2mTp066ZtvvtH//u//qqSkRJ9//nlInvHdzzQrK0s5OTnKzc3VAw88oGbNmlWrDieuu2DgwIFG1oa5yAVsQI4BAAAAJ9bJsAVZRqCo76EeOOCs6/FIp59+yo9cpqd0tq4KOvaRHlahcms/LwAAAAAAAADAD5rzmPR2l+p9zXlMysnJ0cqVK/XGG2/ouuuu0znnnKPLLrtMf//738s3rQezefNmXX/99WrYsKGaN2+uxx9/XMePHy8f7927t3r27Kn+/fvrjDPOUGJiop544gkVFRWV3+P3+zVo0CC1adNGDRs2VKdOnfThhx+e8plJSUlasmSJfve73+nnP/+5rrjiCo0YMULr1q3Tnj17QvODDJHYSE+gLnjhhReMrA1zkQvYgBwDAAAATqyTYQuyjEBR30PNznbWTU6WfuAk9xjFqIcmaow6qVh5lca82q3F+qtu05jazw0AAAAAAAAAcEqHtkj71lb/cwkJCUpISFBaWpquuOIKxcXF/ehn8vLydOONN+qKK65QRkaGDh06pEcffVR9+vRRampq+X1Lly5VgwYNtHz5cmVlZemhhx7S6aefrgEDBkj6tq89a9YsjR49Wueff75WrFih++67Ty1atNA111xTpfl7vV55PB41adKk+n/4MOLEdRekpKQYWRvmIhewATkGAAAAnFgnwxZkGYGivoca5MT1qlRtrp/p13o96Ng6jdVOfVLLiQEAAAAAAAAAwiE2NlapqamaNGmSmjRpoq5du+r555/Xpk2bTvmZqVOnKj8/X5MnT1aHDh10/fXXa+TIkZoyZYoOHjxYfl/9+vU1ceJEXXjhhbrlllv0yiuvaPjw4SorK9OJEyc0dOhQTZw4Ud27d1ebNm3Uu3dv3XfffRo7dmyV5l5QUKDnnntO99xzjxITE2v9swglNq674MEHHzSyNsxFLmADcgwAAAA4sU6GLcgyAkV9DzXIiesPXnBBlT56qf6kcxT8BJw5ekQF8tVqagAAAAAAAACA8OjVq5f279+vOXPmqHv37kpPT1fnzp0rnZ7+fVu3blWnTp3UqFGj8mtdu3ZVWVmZtm/fXn6tU6dOio+PL/++S5cuOn78uPbu3avMzEwVFBSoW7du5ae+JyQkaPLkydq5c+ePzrm4uFh33XWXysrK9NZbb9X8Dx8mbFx3wdKlS42sDXORC9iAHAMAAABOrJNhC7KMQFHdQ/X7g564vrSkpEofj1GMemiiTlO8Y8yrPVqiv9ZufgAAAAAAAACAsGnQoIG6deuml156SatXr1bv3r3Vr1+/oPf6/X55PJ6gY6e6HnhPWVmZJGn+/PnasGFD+VdmZqY+/PDDH/x8cXGxfve73+nrr7/WkiVLou60dUmKjfQE6oK2bdsaWRvmIhewATkGAAAAnFgnwxZkGYGiuoeakyMVFTnrtmlT5RLN1EbdNEgL1Mcxtk7j1E699DP9pjazBAAAAAAAAAAEcUaH0H6mffv2SktLO+XYpEmTdOLEifJT11etWqWYmJhKveqNGzcqPz9fDRs2lCStXbtWCQkJOuuss9S0aVPFxcVpz549uuaa4P+aZzDfbVrfsWOHli9frubNm1f5s25i47oL8vPzjawNc5EL2IAcAwAAAE6sk2ELsoxAUd1DDXLauiTlN25crTK/1B+UqQ+VpXTH2Bw9qj9qsxooqSYzBAAAAAAAAACcwu3ja/a5o0eP6s4779TDDz+siy66SI0bN9bnn3+uQYMGqUePHkE/c++996pfv3568MEH9fLLL+vw4cN66qmndP/996tly5bl9xUVFemRRx7RCy+8oN27d6tfv37q06ePYmJi1LhxYz377LN65plnVFZWpiuvvFI+n0+rV69WQkKCHnzwQcdzS0pKdMcdd2j9+vWaN2+eSktLlZ2dLUlq1qyZ6tevX7MfQhiwcd0FR48eNbI2zEUuYANyDAAAADixToYtyDICRXUP9WRz31G3mo3+GMWohybqLXVUsU5UGvNprxbrWd2uGv4GBQAAAAAAAAAQUgkJCbr88ss1bNgw7dy5U8XFxWrdurUee+wxPf/880E/Ex8fr0WLFunpp5/WpZdeqvj4ePXq1UtDhw6tdN8NN9yg888/X1dffbUKCwt111136eWXXy4ff/XVV3XGGWdo4MCB2rVrl5o0aaLOnTuf8rn79u3TnDlzJEkXX3xxpbHly5fr2muvrfHPIdTYuO6CTp06GVkb5iIXsAE5BgAAAJxYJ8MWZBmBorqHeooT1zv98pfVLtVU56mbBmmB/uQYW6+31V536GfqXu26AAAAAAAAAIDQiouL08CBAzVw4MAfvM/v91f6vmPHjlq2bNmP1u/fv7/69+8fdMzj8ahv377q27dvleZ67rnnOuYRrWIiPYG6YN68eUbWhrnIBWxAjgEAAAAn1smwBVlGoKjuoZ7ixPV5mzfXqNwv9aTO0/VBx+boURXIW6O6AAAAAAAAAABEO4/flC32Yebz+ZSUlCSv16vExMSQ1s7Ly1N8fHxIa7pRG+YiF7ABOQYAAACcWCfDFmQZgaK6h/rss9KQIc66hw8r/vTTa1TyG2VptDqqSMcdY7/Qw+qhCTWqCwAAAAAAAAD4ti+8detWtWvXLup+H9G7d2/l5OQoLS0t0lOplu9+pllZWcrJyVFubq4eeOABNWvWrFp1OHHdBUOHDjWyNsxFLmADcgwAAAA4sU6GLcgyAkV1DzXYieuJiRo6ZkyNSzbVueqmwUHHvtBE7dDHNa4NAAAAAAAAAIheqampxm1aDyVOXD8pnCeuAwAAAAAAAAAM9etfS0uXVr7Wtq20fXutyvrl12R109da6hhrrJ/oj9qihmpSq2cAAAAAAAAAQF0UzSeum4oT1w2SkpJiZG2Yi1zABuQYAAAAcGKdDFuQZQSK6h7qgQPOa61a1bquRx710ATVV4JjLFf/1SL9uVb1AQAAAAAAAACINpy4flI4T1w/fPiwWrRoEdKabtSGucgFbECOAQAAACfWybAFWUagqO6hNm8uHTtW+drvf6/DI0aEZM6fa5zm6YmgY/dontrqllo/AwAAAAAAAADqEk5cDz1OXDfIrFmzjKwNc5EL2IAcAwAAAE6sk2ELsoxAUdtDLSx0blqXpFatQjbnS/SY2qhb0LG5elz5+iYkzwEAAAAAAAAAINLYuO6CSy+91MjaMBe5gA3IMQAAAODEOhm2IMsIFLU91IMHg19PTg7ZnD3y6Ha9rfpq7BjL1X4t1DMheQ4AAAAAAAAAAJHGxnUXHDhwwMjaMBe5gA3IMQAAAODEOhm2IMsIFLU91FN9Njk5pHNuorPVXUODjm3UJG3XvJA9CwAAAAAAAACASImN9ATqgtLSUiNrw1zkAjYgxwAAAIAT62TYgiwjUNT2ULOzg19v1UqlBQU1rxtEZz2iTH2onVrkGJurx3W2vlRDNQ3pMwEAAAAAAADAZvn5+ZGegjVC9bNk47oLzj33XCNrw1zkAjYgxwAAAIAT62TYgiwjUNT2UH/gxPVaVA3KI49u13i9pQ4qlK/S2HEd0Md6Wv+jySF+KgAAAAAAAADYJzY2VjExMcrKyor0VKzi9/trfRANG9dd8Omnn+qiiy4yrjbMRS5gA3IMAAAAOLFOhi3IMgJFbQ/1B05c//SDD0I+5yS1VncN1Rw96hjbpCm6UHfq57otpM8EAAAAAAAAANvUr19fF154oUpKSuT1ejVv3jw1atRIcXFxEZlPZmam2rdvH5Fnh1JpaalKSkpqVcPj9/v9IZqP0Xw+n5KSkuT1epWYmBjS2seOHVOzZs1CWtON2jAXuYANyDEAAADgxDoZtiDLCBS1PdQnnpDGjat8LTZWKizUsZycsMzZL7+m6mb9RwsdYwlK1h/1peLFfz8AAAAAAAAAUBXHjh3T5MmTVb9+/YhtXC8oKFCDBg0i8uxwKCwsVFFRkR544IFq98ljwjQnfM9bb71lZG2Yi1zABuQYAAAAcGKdDFuQZQSK2h5qsBPXW7aUYmLCNmePPLpN4xWnJMfYcWXrY/UNy3MBAAAAAAAAwEZxcXFKTExUUVGRcnNzI/L1+eefR+zZ4fgqKipSYmJijf4iACeunxTOE9cBAAAAAAAAAAa67DIpI6PytUsukT7/POyP/kLv6CM9HHTsLqXpAvUI+xwAAAAAAAAAwAYnTpxQYWFhpKdhlbi4ODVq1Kjan4sNw1wQICUlRS+88IJxtWEucgEbkGMAAADAiXUybEGWEShqe6jBTlxv1ar2davgYvVWpj7UDi1wjM3VEzpbVypezcP2fAAAAAAAAACwRaNGjWq0yTpU+L1IBU5cPymcJ677fL6wneIeztowF7mADcgxAAAA4MQ6GbYgywgUlT1Uv1+Ki5OKiytff/RRafx4V3Ls0381SheqUF7HWEfdo16aGtbnAwAAAAAAAABqj9+LVIiJ9ATqgtTUVCNrw1zkAjYgxwAAAIAT62TYgiwjUFT2UI8dc25al8pPXHcjx4n6iW7SP4OObdZ72qrZYZ8DAAAAAAAAAKB2+L1IBTauu+DXv/61kbVhLnIBG5BjAAAAwIl1MmxBlhEoKnuo2dnBrycn165uNXXSAzpftwQdm6cndUJHXJkHAAAAAAAAAKBm+L1IBTauu2Dbtm1G1oa5yAVsQI4BAAAAJ9bJsAVZRqCo7KEeOBD8+skT193KsUce3aZxaqAmjrETOqSP9ZQr8wAAAAAAAAAA1Ay/F6nAxnUXNGrUyMjaMBe5gA3IMQAAAODEOhm2IMsIFJU91B85cd3NHCfqTN2ofwYd26LpytRM1+YCAAAAAAAAAKgefi9SgY3rLmjWrJmRtWEucgEbkGMAAADAiXUybEGWESgqe6inOnH95MZ1t3PcSferrW4LOjZPf9AJHXZ1PgAAAAAAAACAquH3IhXYuO6CTZs2GVkb5iIXsAE5BgAAAJxYJ8MWZBmBorKH+iMnrrudY488uk1j1UBNHWN5OqwF6uPqfAAAAAAAAAAAVcPvRSqwcd0FN910k5G1YS5yARuQYwAAAMCJdTJsQZYRKCp7qMFOXE9Kkho2rF3dWmisVrpJw4OOfakP9KU+dHlGAAAAAAAAAIAfw+9FKrBx3QUTJ040sjbMRS5gA3IMAAAAOLFOhi3IMgJFZQ812InrrVrVvm4tXaR79XPdHnRsvv6g4zrk8owAAAAAAAAAAD+E34tU8Pj9fn+kJxENfD6fkpKS5PV6lZiYGOnpAAAAAAAAAAAiqV07adu2yteuvVZavjwi0/m+XGXrLV2ofB1zjLXXHfqdZkRgVgAAAAAAAAAA/DBOXHdBSkqKkbVhLnIBG5BjAAAAwIl1MmxBlhEoKnuoP3LieiRz3FjJukkjgo5l6kNt0QcuzwgAAAAAAAAAcCr8XqQCJ66fFM4T1wsLCxUXFxfSmm7UhrnIBWxAjgEAAAAn1smwBVlGoKjroebnS/HxzuvPPCMNHVrzuiHkl1/v63+0TWmOsXidrj/qSyXoDPcnBgAAAAAAAACoJNL95GjCiesu+Oc//2lkbZiLXMAG5BgAAABwYp0MW5BlBIq6HurBg8Gvf+/E9Ujn2COPbtFoNVQzx1iejmi+/ii/OLcGAAAAAAAAACIt0v3kaMLGdRf06tXLyNowF7mADcgxAAAA4MQ6GbYgywgUdT3UAweCX09Orl3dEGusZN2sUUHHtmqmtuh9l2cEAAAAAAAAAAgUDf3kaMHGdRf8+9//NrI2zEUuYANyDAAAADixToYtyDICRV0PNTs7+PXvnbgeLTnuoN+rnf4n6NgC9dFxneL0eAAAAAAAAACAK6KlnxwN2Ljuglbf+2WGSbVhLnIBG5BjAAAAwIl1MmxBlhEo6nqop9q4/r0T16Mlxx55dIveUkM1d4zl66jm6Q/yyx+BmQEAAAAAAAAApOjpJ0cDNq67oF69ekbWhrnIBWxAjgEAAAAn1smwBVlGoKjroR44EPz69365EE05TlBL3aJRQce2aba2aLrLMwIAAAAAAAAAfCea+smRxsZ1F+zevdvI2jAXuYANyDEAAADgxDoZtiDLCBR1PdRgJ66fdprUrFnt6obRhfqd2uuOoGML1Ee5OsUp8gAAAAAAAACAsIq2fnIksXHdBVdeeaWRtWEucgEbkGMAAADAiXUybEGWESjqeqjBTlxPTpY8ntrVDSOPPLpZoxSv0x1j+TqmeXpSfvkjMDMAAAAAAAAAqNuirZ8cSWxcd8H06eH7Z1jDWRvmIhewATkGAAAAnFgnwxZkGYGiroca7MT15OTa1w2zBJ2hW/RW0LHt+kib9Z7LMwIAAAAAAAAARGM/OVI8fr+fI1Yk+Xw+JSUlyev1KjExMaS1S0pKFBsbG9KabtSGucgFbECOAQAAACfWybAFWUagqOuhnnWW9N//Vr52223SnDm1q+uSD/Q7ZWqG43oDNdWf9KUaq1UEZgUAAAAAAAAAdVM095PdxonrLnj99deNrA1zkQvYgBwDAAAATqyTYQuyjEBR1UMtK5MOHnReb1V5s3c05/gWjVK8WjiuF+gbzdUT8ovzbAAAAAAAAADALdHcT3YbJ66fFM4T1wEAAAAAAAAAhjh8WDrjDOf1l16S+vd3fz41lKmZ+kB3BB37rSark+53eUYAAAAAAAAAgLqOE9ddkJKSYmRtmItcwAbkGAAAAHBinQxbkGUEiqoeanZ28OsBJ65He47bq5cu1O+Djn2svvJpv8szAgAAAAAAAIC6Kdr7yW7ixPWTwnni+r59+3TWWWeFtKYbtWEucgEbkGMAAADAiXUybEGWESiqeqiLF0vduzuvz54t9exZ87oRcEJH9JYu1Akdcoy11a26W3PkkScCMwMAAAAAAACAusOEfrJbOHHdBUuWLDGyNsxFLmADcgwAAAA4sU6GLcgyAkVVD7WKJ66bkONGOl23akzQsa80Txs1xeUZAQAAAAAAAEDdY0I/2S1sXHdBu3btjKwNc5EL2IAcAwAAAE6sk2ELsoxAUdVDPXAg+PXk5NrVjZB2+q066O6gYx+rr3z6r8szAgAAAAAAAIC6xZR+shvYuO6C3NxcI2vDXOQCNiDHAAAAgBPrZNiCLCNQVPVQT3XiesDGdZNyfLNGqJFaOq4Xyqu5elx++SMwKwAAAAAAAACoG0zqJ4cbG9ddkJOTY2RtmItcwAbkGAAAAHBinQxbkGUEiqoearAT15s2leLialc3guLVXLdqTNCxHVqgDZrk8owAAAAAAAAAoO4wqZ8cbmxcd0HHjh2NrA1zkQvYgBwDAAAATqyTYQuyjEBR1UMNduJ6q1a1rxth7dRTHXVv0LGF+l95tc/lGQEAAAAAAABA3WBaPzmc2Ljugo8//tjI2jAXuYANyDEAAADgxDoZtiDLCBRVPdRgG9eTk2tfNwrcpOFKkPPPUiiv5uox+eWPwKwAAAAAAAAAwG4m9pPDxeP3++lES/L5fEpKSpLX61ViYmJIax8/flwJCQkhrelGbZiLXMAG5BgAAABwYp0MW5BlBIqqHmpSkuTzVb52773Su+/Wrm6U2KY5mq4eQcdu1wR11sMuzwgAAAAAAAAA7GZqPzkcOHHdBW+++aaRtWEucgEbkGMAAADAiXUybEGWEShqeqh5ec5N61LQE9dNzfEFul0X6b6gY4v0jLza6/KMAAAAAAAAAMBupvaTw4ET108K54nrAAAAAAAAAAAD7Nol/fSnzuuDB0vPPuv+fMIkT8f0ljrouA44xn6q7rpPH8sjTwRmBgAAAAAAAACwGSeuuyAlJcXI2jAXuYANyDEAAADgxDoZtiDLCBQ1PdTs7ODXW7WqXd0oE69muk3jgo7t1CKt1wSXZwQAAAAAAAAA9jK5nxxqnLh+UjhPXD9y5IhOP/30kNZ0ozbMRS5gA3IMAAAAOLFOhi3IMgJFTQ915kzpjjuc1z/5RLrhhprXjVKz9aA2arLjen011h+1RU10dgRmBQAAAAAAAAB2saGfHCqcuO6CDz/80MjaMBe5gA3IMQAAAODEOhm2IMsIFDU91GqcuG5Djm/Um2qsMx3Xi5SrOXpUfnHuDQAAAAAAAADUlg395FBh47oLrrjiCiNrw1zkAjYgxwAAAIAT62TYgiwjUNT0UA8cCH49Obl2daNUQzXVbRoXdGyXlmi93nZ5RgAAAAAAAABgHxv6yaHCxnUX7Nu3z8jaMBe5gA3IMQAAAODEOhm2IMsIFDU91GAnrtevLzVtWru6UaytbtHF6h10bJH+rBztdndCAAAAAAAAAGAZW/rJocDGdRf4/eH751TDWRvmIhewATkGAAAAnFgnwxZkGYGipoca7MT15GTJ46ld3SjXXcPUWD9xXC/Scc3Ro/LLnj8rAAAAAAAAALjNpn5ybbFx3QWtW7c2sjbMRS5gA3IMAAAAOLFOhi3IMgJFTQ812InrrVrVvm6Ua6gmul3jg47t0idap3EuzwgAAAAAAAAA7GFTP7m22LjugjVr1hhZG+YiF7ABOQYAAACcWCfDFmQZgaKmh3qqE9drW9cA5+smXayHgo4t1rP6RlnuTggAAAAAAAAALGFbP7k2PH7On5ck+Xw+JSUlyev1KjExMaS1jx49qubNm4e0phu1YS5yARuQYwAAAMCJdTJsQZYRKCp6qKWlUlzct//3+558Uho9uuZ1DZKvHI1WR/m0zzF2nq7X/VqiGM7DAQAAAAAAAIBqsbGfXFN0mF0wOsgvNUyoDXORC9iAHAMAAABOrJNhC7KMQFHRQz161LlpXTrlies25rihmuh2vR107Gst0zqNdXlGAAAAAAAAAGA+G/vJNcWJ6yeF88R1AAAAAAAAAECU27hRuvhi5/WxY6XHH3d9OpH0kR7VF5rguH6aGumP2qymOi8CswIAAAAAAAAAmI4T112QkpJiZG2Yi1zABuQYAAAAcGKdDFuQZQSKih5qdnbw66c4cd3mHHfXECXqLMf1Yp3QR3pEZSqLwKwAAAAAAAAAwEw295OrixPXTwrnieu5ublq3LhxSGu6URvmIhewATkGAAAAnFgnwxZkGYGiooeamio99JDz+r//LV16ac3rGuo/Wqx31T3o2M0aqcv0J5dnBAAAAAAAAABmsr2fXB2cuO6CCROc/6SqCbVhLnIBG5BjAAAAwIl1MmxBlhEoKnqo1Txx3fYc/0y/UWc9FnRsif6fjmmXyzMCAAAAAAAAADPZ3k+uDjauu+A3v/mNkbVhLnIBG5BjAAAAwIl1MmxBlhEoKnqoBw4Ev96yZe3qGuw3+oeSdLbjerHy9JEeVpnKIjArAAAAAAAAADBLXegnVxUb112wdetWI2vDXOQCNiDHAAAAgBPrZNiCLCNQVPRQg5243ry5VL9+7eoarIESdbveDjq2W/9Sht5yeUYAAAAAAAAAYJ660E+uKjauu6Bx48ZG1oa5yAVsQI4BAAAAJ9bJsAVZRqCo6KEGO3E9Obn2dQ33U3XTJXoi6Ngn+puOaafLMwIAAAAAAAAAs9SVfnJVsHHdBUlJSUbWhrnIBWxAjgEAAAAn1smwBVlGoKjooQY7cb1Vq9rXtcBvNFhJOsdxvVh5+kgPq0xlEZgVAAAAAAAAAJihLvWTfwwb113w5ZdfGlkb5iIXsAE5BgAAAJxYJ8MWZBmBoqKHWs0T1+tSjuPUWD00IejYbq3QvzXS5RkBAAAAAAAAgDnqUj/5x7Bx3QU33nijkbVhLnIBG5BjAAAAwIl1MmxBlhEo4j3U48e//Qr0Ayeu17Uct9EN+qWeDDr2iZ7TUf3H5RkBAAAAAAAAgBnqWj/5h7Bx3QUTJ040sjbMRS5gA3IMAAAAOLFOhi3IMgJFvIeanR38+g+cuF4Xc9xNg9RE5zqulyhfH+khlanM/UkBAAAAAAAAQJSri/3kU/H4/X5/pCcRDXw+n5KSkuT1epWYmBjp6QAAAAAAAAAA3LJypXTVVc7r770n3X23+/OJYl9ruSbp+qBj3TVMXfS/7k4IAAAAAAAAAGAMTlx3QUpKipG1YS5yARuQYwAAAMCJdTJsQZYRKOI91AMHgl//gRPX62qOz9N1ulR/DDq2VM/rqHa4PCMAAAAAAAAAiG51tZ8cDCeunxTOE9eLi4t12mmnhbSmG7VhLnIBG5BjAAAAwIl1MmxBlhEo4j3UESOkvn2d17dulS64oOZ1LVWo4xqti5Sjrx1jrdVVD+lfilG9CMwMAAAAAAAAAKJPXe4nB+LEdRcMHTrUyNowF7mADcgxAAAA4MQ6GbYgywgU8R5qdnbw6z9w4npdznGcEtRDE4OO7dUqfabhLs8IAAAAAAAAAKJXXe4nB2LjugvuvPNOI2vDXOQCNiDHAAAAgBPrZNiCLCNQxHuoBw44rzVoICUl1a6uxc7TtbpMfYKOLdXzOqLtLs8IAAAAAAAAAKJTXe8nfx8b112wZs0aI2vDXOQCNiDHAAAAgBPrZNiCLCNQxHuowU5cT06WPJ7a1bXcr/W6mqqN43qJCpSmh1Sm0gjMCgAAAAAAAACiC/3kCmxcd0Hr1q2NrA1zkQvYgBwDAAAATqyTYQuyjEAR76EGO3E9Obn2dS1XX43UQxODju3TGq3Vm+5OCAAAAAAAAACiEP3kCmxcBwAAAAAAAADUbcFOXG/Vyv15GOhcXaPL1Tfo2DK9oMPa5vKMAAAAAAAAAADRio3rLti7d6+RtWEucgEbkGMAAADAiXUybEGWESiiPdTSUunQIef1HzlxnRxXuEGvqal+6rheogJ9pIdUptIIzAoAAAAAAAAAogP95ApsXHdBly5djKwNc5EL2IAcAwAAAE6sk2ELsoxAEe2hHj4slZU5r//IievkuEJ9NVJPvSPJ4xjbp7Vao6HuTwoAAAAAAAAAogT95ApsXHfBjBkzjKwNc5EL2IAcAwAAAE6sk2ELsoxAEe2hHjgQ/PqPnLhOjis7R1fpcvUNOrZML+qwtro8IwAAAAAAAACIDvSTK3j8fr8/0pOIBj6fT0lJSfJ6vUpMTAxp7eLiYp122mkhrelGbZiLXMAG5BgAAABwYp0MW5BlBIpoD/Xjj6Wbb3ZenztXuvXWmtetg4qUpzHqpGP6j2PsJ7pMD2uV6ik2AjMDAAAAAAAAgMihn1yBE9dd8MYbbxhZG+YiF7ABOQYAAACcWCfDFmQZgSLaQ63hievk2Km+4tVTqZI8jrH/6t9aoyGuzwkAAAAAAAAAIo1+cgVOXD8pnCeuAwAAAAAAAACi1GuvSf/3f87r+/ZJP/mJ+/OxwEL9WWs1zHG9nurrCX2hM9Q+ArMCAAAAAAAAAEQaJ667ICUlxcjaMBe5gA3IMQAAAODEOhm2IMsIFNEearAT1z0e6Ywzale3DrteKWqm8x3XS1WkNPVWqUoiMCsAAAAAAAAAiAz6yRU4cf2kcJ64vn//fp155pkhrelGbZiLXMAG5BgAAABwYp0MW5BlBIpoD/XOO6UPP6x8rUUL6dCh2tWt4/ZotSbqSknOX0HcoIG6Ss+5PykAAAAAAAAAiAD6yRU4cd0FCxcuNLI2zEUuYANyDAAAADixToYtyDICRbSHmp3tvJacXPu6ddzZ+pW66M9Bx9LVTwe1xeUZAQAAAAAAAEBk0E+uwMZ1F1x44YVG1oa5yAVsQI4BAAAAJ9bJsAVZRqCI9lAPHHBea9Wq9nWh6/WqmuvnjuulKtJHekilKonArAAAAAAAAADAXfSTK7Bx3QVer9fI2jAXuYANyDEAAADgxDoZtiDLCBTRHmoNT1wnxz/uNDVUT70jT5BfRezX51qlQRGYFQAAAAAAAAC4i35yBTauuyA3N9fI2jAXuYANyDEAAADgxDoZtiDLCBSxHmpurnTihPN6FU5cJ8dV01pd1EV/DjqWrpd1UJtdnhEAAAAAAAAAuIt+cgU2rrugXbt2RtaGucgFbECOAQAAACfWybAFWUagiPVQg522LlXpxHVyXHXX6RWdrgsc18tUrDT1VqmKIzArAAAAAAAAAHAH/eQKbFx3weLFi42sDXORC9iAHAMAAABOrJNhC7KMQBHroR44EPx6FTauk+OqO00N1VOp8gT5lcQBrddKvRGBWQEAAAAAAACAO+gnV/D4/X5/pCcRDXw+n5KSkuT1epWYmBjS2rm5uWrcuHFIa7pRG+YiF7ABOQYAAACcWCfDFmQZgSLWQ/3gA+n3v3deT0+Xrrmm5nUR1BL9Tas0yHE9RqfpcX2uZF0UgVkBAAAAAAAAQHjRT67Aiesu+Oc//2lkbZiLXMAG5BgAAABwYp0MW5BlBIpYD7UWJ66T4+q7Vv11upz/JG6ZipWm3ipVcQRmBQAAAAAAAADhRT+5AieunxTOE9cBAAAAAAAAAFHo73+XXn/ded3rlegTh8U+/VsT1EV+lTnGrlV/XauXIjArAAAAAAAAAIAbOHHdBSkpKUbWhrnIBWxAjgEAAAAn1smwBVlGoIj1UIOduN6woVSFf7KVHNfMWbpMXfX/go6t0KvK1kaXZwQAAAAAAAAA4UU/uQInrp8UzhPXjx49qubNm4e0phu1YS5yARuQYwAAAMCJdTJsQZYRKGI91BtvlBYtqnytTRtp587a1cUPKlGhxqqzDivTMZasi/WY/q16Oi0CMwMAAAAAAACA0KOfXIET113wwQcfGFkb5iIXsAE5BgAAAJxYJ8MWZBmBItZDDXbienJy7eviB8UqTj2VKo/qOcaytUGf6rUIzAoAAAAAAAAAwoN+cgU2rrugS5cuRtaGucgFbECOAQAAACfWybAFWUagiPVQs7Od11q1qn1d/Kif6FJdqb8FHVuhFB3QBncnBAAAAAAAAABhQj+5AhvXXbB3714ja8Nc5AI2IMcAAACAE+tk2IIsI1BEeqglJdLhw87rVTxxnRzX3jV6SWeog+N6mUqUpgdVoqIIzAoAAAAAAAAAQot+cgU2rrvA4/EYWRvmIhewATkGAAAAnFgnwxZkGYEi0kM9dEjy+53Xq3jiOjmuvVjFqadS5VE9x9hBbdKnGhCBWQEAAAAAAABAaNFPrsDGdRecddZZRtaGucgFbECOAQAAACfWybAFWUagiPRQs7ODX6/iievkODTO1CW6Us8FHftUr2m/1rs8IwAAAAAAAAAILfrJFdi47oK1a9caWRvmIhewATkGAAAAnFgnwxZkGYEi0kM9cCD49SqeuE6OQ+cavagz1NFxvUwlSlNvlagoArMCAAAAAAAAgNCgn1zB4/cH+7dQ6x6fz6ekpCR5vV4lJiaGtPaRI0d0+umnh7SmG7VhLnIBG5BjAAAAwIl1MmxBlhEoIj3UCROkRx91Xl+3TurcueZ1USP7tV7jdZn8KnWMXa0XdL1ejcCsAAAAAAAAAKD26CdX4MR1F4wZM8bI2jAXuYANyDEAAADgxDoZtiDLCBSRHuqpTlxPTq5dXdTImeqsq/R80LFPNVD7tc7lGQEAAAAAAABAaNBPrsCJ6yeF88R1AAAAAAAAAECU6dNHGjWq8jWPRyoqkmJjIzOnOq5ERRqvS3VQmxxjZ6iDHtfnilVcBGYGAAAAAAAAAAgFTlx3QUpKipG1YS5yARuQYwAAAMCJdTJsQZYRKCI91GAnrrdoUeVN6+Q49GJVXz2Vqhg5/39wSFv0L70SgVkBAAAAAAAAQO3QT67AiesnhfPE9ePHjyshISGkNd2oDXORC9iAHAMAAABOrJNhC7KMQBHpoXbtKq1eXflap07Shg21q4taW66X9S/1d1z3qJ4e1Vr9RL+MwKwAAAAAAAAAoGboJ1fgxHUXjB8/3sjaMBe5gA3IMQAAAODEOhm2IMsIFJEearAT15OTa18XtXaVnldLdXJc96tUaeqtEhVGYFYAAAAAAAAAUDP0kyuwcd0FN910k5G1YS5yARuQYwAAAMCJdTJsQZYRyPUeqt8vZWc7r7dqVbu6CIlY1VdPpSpGsY6xw/pS6UFOYwcAAAAAAACAaEU/uQIb112wefNmI2vDXOQCNiDHAAAAgBPrZNiCLCOQ6z1Un0/Kz3der8aJ6+Q4vFrpYl2tF4OOrdIb+q8yXJ4RAAAAAAAAANQM/eQKbFx3QZMmTYysDXORC9iAHAMAAABOrJNhC7KMQK73UIOdti5V68R1chx+V+nvStYvHNf9KtNsPahiFURgVgAAAAAAAABQPfSTK7Bx3QWNGzc2sjbMRS5gA3IMAAAAOLFOhi3IMgK53kM9cCD4zdU4cZ0ch189naaeSlWMTnOMHdFWpetl9ycFAAAAAAAAANVEP7kCG9ddsHXrViNrw1zkAjYgxwAAAIAT62TYgiwjkOs91BCcuE6O3ZGsi3SNXgw6tlqDtU+fuTwjAAAAAAAAAKge+skV2Ljugm7duhlZG+YiF7ABOQYAAACcWCfDFmQZgVzvoZ5q43o1Tlwnx+65Us+plTo7rvtVpjT1VrEKIjArAAAAAAAAAKga+skV2LjugtTUVCNrw1zkAjYgxwAAAIAT62TYgiwjkOs91AMHgt9cjRPXybF76uk09VSqYnSaY+yItmm5XorArAAAAAAAAACgaugnV/D4/X5/pCcRDXw+n5KSkuT1epWYmBjp6QAAAAAAAAAAwuXBB6XJkytfa9RIOn48MvNBlazQAC3TC47rHsXoYa1Sa10RgVkBAAAAAAAAAKqKE9ddkJKSYmRtmItcwAbkGAAAAHBinQxbkGUEcr2HGuzE9eTk2tdFWHXV39RKlziu+1WmNPVWsfIjMCsAAAAAAAAA+GH0kytw4vpJ4TxxvaSkRLGxsSGt6UZtmItcwAbkGAAAAHBinQxbkGUEcr2HetFF0ubNla9deaX06ae1q4uwO6gtGqdLVKoix9iv9Kx+o8ERmBUAAAAAAAAAnBr95AqcuO6Cf/zjH0bWhrnIBWxAjgEAAAAn1smwBVlGINd7qCE4cZ0cR0ZLddC1ejno2GoN0R6tdndCAAAAAAAAAPAj6CdX4MT1k8J54npWVpbOPffckNZ0ozbMRS5gA3IMAAAAOLFOhi3IMgK52kMtLpbq13fe+NRT0vDhNa8L15SqRBP0K+1XhmOsudrqSW3QaWoYgZkBAAAAAAAAgBP95AqcuO6ClStXGlkb5iIXsAE5BgAAAJxYJ8MWZBmBXO2hHjwY/MZqnrhOjiOnnmLVU6mqJ+dfQDiqr7RML0RgVgAAAAAAAAAQHP3kCmxcd8E555xjZG2Yi1zABuQYAAAAcGKdDFuQZQRytYeanR38xlatalcXrjpD7XWdXgk6tkbDtEerXJ4RAAAAAAAAAARHP7kCG9ddUFpaamRtmItcwAbkGAAAAHBinQxbkGUEcrWHeuBA8BureeI6OY68LvqLfqLLgoz4labeKlKe63MCAAAAAAAAgED0kyuwcd0FB071i5Aorw1zkQvYgBwDAAAATqyTYQuyjECu9lBDdOI6OY68eopVT6WqnuIcY8f0Hy3T/0VgVgAAAAAAAABQGf3kCmxcd8FllwU78SX6a8Nc5AI2IMcAAACAE+tk2IIsI5CrPdQQnbhOjqNDC7XTdXol6Nha/VO79anLMwIAAAAAAACAyugnV2DjugtmzpxpZG2Yi1zABuQYAAAAcGKdDFuQZQRytYca7MT1mBipRYva1UXE/Ep/0Vm6IsiIXx/pYRXphOtzAgAAAAAAAIDv0E+u4PH7/f5ITyIa+Hw+JSUlyev1KjExMaS1CwsLFRfn/KdKo702zEUuYANyDAAAADixToYtyDICudpD/Z//kWbPrnxTcvKpT2Kval1E1GFt0xhdrFIVOsYuV1/dpH9GYFYAAAAAAAAAQD/5+zhx3QWDBw82sjbMRS5gA3IMAAAAOLFOhi3IMgK52kMNtkG9Vava10VEtdAFul4pQcc+03BlaYXLMwIAAAAAAACAb9FPrsCJ6yeF88R1AAAAAAAAAECUOO88KSur8rWbbpIWLIjIdBA6ZSrVRF2lfVrjGGuqNvqDNqm+GkVgZgAAAAAAAAAAiRPXXZGSEvyUl2ivDXORC9iAHAMAAABOrJNhC7KMQK71UP3+kJ24To6jT4zqqafeUawaOMa+0S59or9HYFYAAAAAAAAA6jr6yRU4cf2kcJ64vn//fp155pkhrelGbZiLXMAG5BgAAABwYp0MW5BlBHKth5qTIzVt6rzp+eelAQNqXhdRZbWGarH+EnTsQS3XebrW3QkBAAAAAAAAqNPoJ1fgxHUXfPzxx0bWhrnIBWxAjgEAAAAn1smwBVlGINd6qMFOW5ek5OTa1UVUuUJPq7W6Bh37SA+rUMddnhEAAAAAAACAuox+cgU2rrvgoosuMrI2zEUuYANyDAAAADixToYtyDICudZDzc4OflOrVrWri6gSo3rqoYmKVQPHWI6+1id6LgKzAgAAAAAAAFBX0U+uwMZ1Fxw7dszI2jAXuYANyDEAAADgxDoZtiDLCORaDzWEJ66T4+h2utrqBr0WdCxDo/S1lrs8IwAAAAAAAAB1Ff3kCmxcd8GJEyeMrA1zkQvYgBwDAAAATqyTYQuyjECu9VBDeOI6OY5+l6uvztaVQcc+0sMq1HGXZwQAAAAAAACgLqKfXIGN6y644IILjKwNc5EL2IAcAwAAAE6sk2ELsoxArvVQQ3jiOjmOfjGqpx56R7Fq6BjLUZaW6P9FYFYAAAAAAAAA6hr6yRXYuO6CTz75xMjaMBe5gA3IMQAAAODEOhm2IMsI5FoPNdiJ640bS40a1a4uolZz/Uy/1sCgY59rtHZpmcszAgAAAAAAAFDX0E+u4PH7/f5ITyIa+Hw+JSUlyev1KjExMeS1Q13TjdowF7mADcgxAAAA4MQ6GbYgywjkWg/117+Wli6tfMP550tffVW7uohqZSpTqq7VHn3qGEvSOfqjNitOjSMwMwAAAAAAAAB1Af3kCpy47oLhw4cbWRvmIhewATkGAAAAnFgnwxZkGYFc66EGO3G9Vava10VUi1GMemiiTlO8Y8yr3Vqsv0ZgVgAAAAAAAADqCvrJFThx/aRwnrgOAAAAAAAAAIgCzZtLx45Vvva730nvvx+Z+cBVn2mEPlbfoGP3a4l+ql+7PCMAAAAAAAAAqFs4cd0FKSkpRtaGucgFbECOAQAAACfWybAFWUYgV3qohYXOTetSjU9cJ8fmuVR/0jm6JujYHD2iAvlcnhEAAAAAAACAuoB+cgVOXD8pnCeuHzt2TM2aNQtpTTdqw1zkAjYgxwAAAIAT62TYgiwjkCs91L17pbPPdt4wcKD03HM1rwujHNMujVZHFSvPMXaJHtdtGhuBWQEAAAAAAACwGf3kCpy47oJp06YZWRvmIhewATkGAAAAnFgnwxZkGYFc6aEeOBD8hhqeuE6OzdRMbdRNg4KOrdM4/UeLXZ4RAAAAAAAAANvRT67AxnUXXHXVVUbWhrnIBWxAjgEAAAAn1smwBVlGIFd6qNnZwW9ITq5dXRjnl/qDztW1Qcfm6FEVyOvuhAAAAAAAAABYjX5yBTauuyArK8vI2jAXuYANyDEAAADgxDoZtiDLCORKD/VUJ67XcOM6OTZXjGLUQxN1mho5xnzaq8V6NgKzAgAAAAAAAGAr+skV2Ljugnr16hlZG+YiF7ABOQYAAACcWCfDFmQZgVzpoZ7qxPVWrWpXF0ZqqvPUTYOCjq3X2/qPFrk8IwAAAAAAAAC2op9cgY3rLmhVw198RLo2zEUuYANyDAAAADixToYtyDICudJDDXbier160umn164ujPVLPanzdH3QsTl6VAXyujwjAAAAAAAAADain1yBjesuyMjIMLI2zEUuYANyDAAAADixToYtyDICudJDDXbiesuWUkzN2uTk2HwxitHtmqD6SnCM+bRPi/TnCMwKAAAAAAAAgG3oJ1fw+P1+f6QnEQ18Pp+SkpLk9XqVmJgY0tqHDx9WixYtQlrTjdowF7mADcgxAAAA4MQ6GbYgywjkSg/18sulf/+78mDnztK6dbWrC+NlaIzm6w9Bx+7VAp2vm1yeEQAAAAAAAACb0E+uwInrLhg7dqyRtWEucgEbkGMAAADAiXUybEGWEciVHmqwE9dr8c+zkmN7/FJP6DzdEHRsjh5TvnLcnRAAAAAAAAAAq9BPrsCJ6yeF88R1AAAAAAAAAEAE+f1SgwZSUVHl6488Ir39dmTmhKiSo916Sx1UpOOOsYv1kHpqYgRmBQAAAAAAAAB24cR1F6SkpBhZG+YiF7ABOQYAAACcWCfDFmQZgcLeQ/3mG+emdalWJ66TY7s00Tn6jYYEHdugd/SV5rs8IwAAAAAAAAC2oJ9cgRPXTwrniet5eXmKj48PaU03asNc5AI2IMcAAACAE+tk2IIsI1DYe6hffy116OAcHDlS+tOfal6XHFvFL7+mqLt2aYljrLHO1B+1RQ3VNAIzAwAAAAAAAGAy+skVOHHdBaNHjzayNsxFLmADcgwAAAA4sU6GLcgyAoW9h5qdHXywFieuk2P7eOTR7Xpb9dXYMZar/VqoZyIwKwAAAAAAAACmo59cgY3rLrj11luNrA1zkQvYgBwDAAAATqyTYQuyjEBh76GeauN6cnLt6sI6TXS2umto0LGNmqTtmufyjAAAAAAAAACYjn5yBTauu2Djxo1G1oa5yAVsQI4BAAAAJ9bJsAVZRqCw91APHAg+WIsT18mxvTrrEf1U3YOOzdXjytc3Ls8IAAAAAAAAgMnoJ1dg47oLmjdvbmRtmItcwAbkGAAAAHBinQxbkGUECnsPNQwnrpNje3nk0e0arzglOsaO64A+1tMRmBUAAAAAAAAAU9FPrsDGdRc0bNjQyNowF7mADcgxAAAA4MQ6GbYgywgU9h5qsBPXk5KkWjyXHNstSa3VXUODjm3SFG3XXJdnBAAAAAAAAMBU9JMrsHHdBV999ZWRtWEucgEbkGMAAADAiXUybEGWESjsPdRgJ67X4rT18rqw2i/0sH6mG4OOzdXjytMxl2cEAAAAAAAAwET0kyuwcd0FN9xwg5G1YS5yARuQYwAAAMCJdTJsQZYRKOw91GAnrtdy4zo5tp9HHt2m8YpTkmPsuLL1sfpGYFYAAAAAAAAATEM/uQIb110wadIkI2vDXOQCNiDHAAAAgBPrZNiCLCNQ2HuowU5cb9Wq9nVhvSSdpRs1LOjYZk3VNn3k8owAAAAAAAAAmIZ+cgWP3+/3R3oS0cDn8ykpKUler1eJiYmRng4AAAAAAAAAIBQKCqSGDZ3X//d/pWHBNyQD3+eXX+/pVu3QAsdYI7XUn/Sl4tU8AjMDAAAAAAAAALNw4roLUlJSjKwNc5EL2IAcAwAAAE6sk2ELsoxAYe2hvvBC8IFanrhOjusOjzy6TeMUpyTH2Akd1MfqG4FZAQAAAAAAADAF/eQKnLh+UjhPXC8tLVW9evVCWtON2jAXuYANyDEAAADgxDoZtiDLCBTWHuqqVap35ZXOgUmTpAceqHldclznbNAkpal30LHfa5ba6bfuTggAAAAAAACAEegnV+DEdRcMGjTIyNowF7mADcgxAAAA4MQ6GbYgywgU1h7qmDHBB2p54jo5rns66QGdr1uCjs3TkzqhIy7PCAAAAAAAAIAJ6CdXYOO6C+655x4ja8Nc5AI2IMcAAACAE+tk2IIsI1BYe6g//3nwgeTk2tUlx3WORx7dpnFqoCaOsRM6pI/1lPuTAgAAAAAAABD16CdXMHrj+qFDh/Tuu+/qvffe01/+8hcdOnRIw4cP19KlS/X2229HenrlVqxYYWRtmItcwAbkGAAAAHBinQxbkGUEWrFihfzyh6f2unXBB2p54jo5rpsSdaZu1D+Djm3RdGVqpsszAgAAAAAAABDt6CdXMHrj+rJly5STk6N77rlHxcXFuummm9SpUyfdcMMN+uqrr7Rjx45IT1GSdN555xlZG+YiF7ABOQYAAACcWCfDFmQZ33lf0lId19fnfah09Q/LM84rLXVejI2VmjWrXV1yXGd10v1qq9uCjs3TH3RCh12eEQAAAAAAAIBoRj+5QmykJ1Abd911V/n/zs7O1mOPPaacnBxJktfr1RdffKHzzz8/QrOrUFJSYmRtmItcwAbkGAAAAHBinQxbkGVIUqmkR1SiE0qQp6SPzlSSbtQh3aczdG0In1Ny5IjzYnKyFFO7c13Icd3lkUe3aaxGaaUK9E2lsTwd1gL10Z16P0KzAwAAAAAAABBt6CdXMPrE9e/Mnz9fd955p5588kk1aNBAq1atUmxsrOLi4iI9NUnfbqo3sTbMRS5gA3IMAAAAOLFOhi3IMgrk1Uj104mTZ6v4s4/qv7pME3SGFinICem1kH3woPNicnLt65LjOq2xWukmDQ869qU+0Jf60OUZAQAAAAAAAIhW9JMrGL9xPSMjQy1bttSdd96pt956S4WFheratat8Pp+uvfbaU36usLBQPp+v0le4XHLJJUbWhrnIBWxAjgEAAAAn1smwBVnGN9qlT/S9DeXfy0SC3gvpsy45ccJ5sVWr2tclx3XeRbpXP9ftQcfm6w86rkMuzwgAAAAAAABANKKfXKHKG9enTZumnTt3atCgQSosLFRKSookKSUlRfv379eECROUkZGhRYsWadasWcrMzNTw4cPl8/kq3Xvs2DGNGjVKmzZt0pw5czR//nytX79eY8eO1eHDhyvdm5eXpyFDhmj79u364IMPtHTpUq1evVqpqanau3evHn/8cT3yyCP6/e9/r6uuukrbtm3TunXr9NBDD6ljx4764osvNH36dO3YsUODBw9WQUFBef2bbrpJSUlJ5V+tW7eWJGVmZmrEiBHyer2V5pKTk6ORI0dq8+bNSktL04IFC7Ru3TqNGzdOBw8erHRvfn6+hgwZoh07duj999/XP/7xD61atUqTJ0/Wnj17NGDAAJWVlSklJUVlZWUaMGCA9uzZo8mTJ2vVqlVatmyZ3n//fe3YsUNDhgxRfn5+pfoHDx7UuHHjtG7dOg0cOFBpaWnavHmzRo4cqZycnEr3er1ejRgxQlu2bNHs2bO1cOFCZWRkaPz48crOzq50b0FBgQYPHqwdO3Zo+vTpSk9P18qVKzVlyhTt3r1bAwcOVGlpaaXP7N27V6mpqVq9erWWLl2qDz74QNu3b9eQIUOUl5dX6d7Dhw9r7NixWr9+vebPn685c+Zo06ZNGjVqlI4dO1bpXp/Pp+HDhyszM1OzZs3SokWLlJGRoQkTJmj//v2V7i0sLNSgQYO0c+dOTZs2Tenp6fr000/17rvvKisrS6+//rpKSkoqfWbfvn165513tHbtWi1ZskQzZszQtm3bNGzYMB0/frzSvUeOHNGYMWO0YcMGzZs3T3PnztWGDRs0evRoHT16tNK9ubm5evPNN5WZmamZM2dq8eLF+uyzzzRx4kTHvIuLi/XGG29o165dmjp1qlasWKEVK1Zo6tSp2rVrl9544w0VFxc7/lubOHGiPvvsMy1evFgzZ85UZmam3nzzTeXm5pbf+9RTT+no0aMaPXq0NmzYoLlz52revHnasGGDxowZoyNHjlSqe/z4cQ0bNkzbtm3TjBkztGTJEq1du1bvvPOO9u3bV+nekpISvf7668rKytK7776rTz/9VOnp6VH5jvj+vaWlpRo4cKB2796tKVOmaOXKlUpPTz/lOyIlJUXZ2dkaP368MjIytHDhQs2ePVtbtmwJ+Tti2bJlYXtHLFiwwNh3xIABA3hHhOkdkZKSwjuCd4Tx7wjWEbwjeEfwjuAdwTuirr4jBg4cyDuCd4QV74innnqKd0QdX0d8OGKljm65QZo9W1q4UBoxQho/XsrO1sKUP2i/1oXmHbFkifofOqTtkoZIypOUIknJybV+R7zxxhu8I+r4OmLc2HG64vAArU5pKElakSIV50mrh0h7th/Rix/czjuihu8I1hG8I2x4R7CO4B3BO4J3BO8I3hG8I3hH8I7gHcE7gncE7wjeEbwjeEd8944YNmyY9e+IqvL4/X5/le+2SGFhoQoLC8u/9/l8at26tbxerxITE0P6rIKCAjVo0CCkNd2oDXORC9iAHAMAAABOrJNhC7IMSfq5/PpKnm+/KSiQGjRQc21XH12gM9RBj+tzxSqudg85ckQFLVrIkbYXX5ReeaVWpckxvrNJ72mW7g06dofeVwf9zuUZAQAAAAAAAIgm9JMrVPnEddvExcUpMTGx0le4/OMf/zCyNsxFLmADcgwAAAA4sU6GLcgyjkoVm9Yl6WQmztIaSdIhbdG/VLuN5ZKk7GwFTVurVrUuTY7xnY66WxeoZ9CxBfqTjuuQuxMCAAAAAAAAEFXoJ1cw+sR1j8fz4zed9GN/TJ/Pp6SkpLCcuA4AAAAAAAAAqDBf0q1Brt+iJ/RLjZMkeVRPj2qtfqJf1vxBS5ZIv/mN8/qsWdJvf1vzukCAXGXrLV2ofB1zjLVTL/1OM+RR1X+nAQAAAAAAAAA2MvrEdb/fX+WvSEpJSTGyNsxFLmADcgwAAAA4sU6GLcgy1gReOJmJ1t8b8atUaeqtEhXW/EHZ2QqathCcuE6O8X2NlaybNSro2FbN1Ba97/KMAAAAAAAAAEQL+skVjD5xPS8vT9OnT1eLFi2UlpamgQMHavHixYqJidG6dev0xhtvKDY2tkq1wnnienZ2tpKTk0Na043aMBe5gA3IMQAAAODEOhm2IMu4QdKy71/IzlZccrz+n5oqRmWV7r1Sf9ev9VrNHjRokLL/9jc50vb119K559as5knkGIH88usD3aGtmuUYa6jm+pO+VIJaRmBmAAAAAAAAACKJfnIFo09c37p1q3bu3Klbb71Vmzdv1tKlS5WTk6N77rlHxcXF+uSTTyI9RUnS3LlzjawNc5EL2IAcAwAAAE6sk2ELsly3lUr6d+DFuXN1oY44Nq1L0iq9oX3OT1RNdraCpi0EvyAgxwjkkUe36C01VHPHWL6Oap7+IL+MPUsIAAAAAAAAQA3RT65QtePIo9Qll1yis88+W6NGjVLfvn119913l49lZ2frggsuiODsKlx88cVG1oa5yAVsQI4BAAAAJ9bJsAVZrtu2SDoeePHii3WjzlGyfqFsfVFpyK8ypam3ntB6naYG1XvYgQO6OPBakyZSg2rWCYIcI5gEtdQtGqUPdZdjbJtma4umq6PuDvJJAAAAAAAAALain1zB6BPXJalFixbq06ePpk6dqm3btkmS5s+frzvvvFPn1vKfeg2Vo0ePGlkb5iIXsAE5BgAAAJxYJ8MWZLluWxPs4tGj6qp66qlUxeg0x/ARbVW6Xq7+w7Kz5Uhbq1bVrxMEOcapXKjfqb3uCDq2QH2Uq2yXZwQAAAAAAAAgkugnVzB64/qoUaM0duxYSVJsbKx27typjIwMtWzZUnfeeacyMzMjPMNv5efnG1kb5iIXsAE5BgAAAJxYJ8MWZLluC7pxPT9fV0hK1kW6Ri8G/dxqDdY+fVa9hx04IEfakpOrV+MUyDFOxSOPbtYoxet0x1i+jmmenpRf/gjMDAAAAAAAAEAk0E+uYPTG9euuu06NGzfWRx99pI4dO6pJkyZ65JFH9Nxzz+nqq6+W3x8djd/zzz/fyNowF7mADcgxAAAA4MQ6GbYgy3VbsI3r555/vpqd/N9X6jm1UmfHPX6VKU29VayCqj8sO1uOtIXoxHVyjB+SoDN0i94KOrZdH2mz3nN5RgAAAAAAAAAihX5yBaM3rrdv31733HOPevTooddee01du3bVpk2b9Mknn2jFihW68MILIz1FSdLy5cuNrA1zkQvYgBwDAAAATqyTYQuyXHcdkbQjyPWW38tEPZ2mnkpVjE4L8vltWq6Xqvaw/HzJ65UjbSE6cZ0c48dcqDvVXncGHVugp5SrAy7PCAAAAAAAAEAk0E+u4PFHy7HkEebz+ZSUlCSv16vExMSQ1vZ6vUpKSgppTTdqw1zkAjYgxwAAAIAT62TYgizXXfMk3Rbk+pter54OyMQKDdAyveC416MYPaxVaq0rfvhhX38ttWkjr6RKlQcPlp59tpozdyLHqIoTOqxRulB5OuwYa6vbdLc+kkeeCMwMAAAAAAAAgFvoJ1cw+sR1U4wYMcLI2jAXuYANyDEAAADgxDoZtiDLddfqU1z/T5BMdNXf1EqXOK77VaY09Vax8n/4YdnZkiRH5RCduE6OURWN1EK3anTQsa80V5v0rsszAgAAAAAAAOA2+skVOHH9pHCeuA4AAAAAAAAAkK6TlB5wLVHSNwp+yspBbdE4XaJSFTnGuugv6q5/nPphs2ZJvXo5r3/yiXTDDVWeMxAKM3SXvtT7jusN1ER/1JdK1JkRmBUAAAAAAAAAuIsT112QkpJiZG2Yi1zABuQYAAAAcGKdDFuQ5bqpRNK/g1y/XNJrp8hES3XQtXo56NgaDdWeU57hrvIT1x2VQ3TiOjlGddyskWqkMxzXC5SjeXpCfnHGEAAAAAAAAGAr+skVOHH9pHCeuJ6Tk6MmTZqEtKYbtWEucgEbkGMAAADAiXUybEGW66YvJHUOcv0lSc/8QCZKVaIJ+pX2K8Mx1lxt9aQ26DQ1dH7wxRellBTlSKpU+cgRqXnzas7eiRyjurZqtt7X/wQd66lJulgPuDwjAAAAAAAAAG6gn1yBE9dd8O677xpZG+YiF7ABOQYAAACcWCfDFmS5blpziutd9MOZqKdY9VSq6qm+Y+yovtIyvRD8gydPXK9U+bTTpGbNqjTfH0OOUV3t9Ft10N1Bxz5WX/n0X5dnBAAAAAAAAMAN9JMrsHHdBddcc42RtWEucgEbkGMAAADAiXUybEGW66ZTbVy/XD+eiTPUXtfplVPUHabdWukcOHBAklSpcnKy5PH86FyrghyjJm7WCDVSS8f1Qnk1V4/LL/6RXAAAAAAAAMA29JMrsHHdBTt37jSyNsxFLmADcgwAAAA4sU6GLchy3RRs43o7SU1VtUx00V/0E10WZMSvj/SQipRX+fLJE9crVW7VqmqTrQJyjJqIV3PdqjFBx3ZogTZoksszAgAAAAAAABBu9JMrsHHdBfXrO/8JWxNqw1zkAjYgxwAAAIAT62TYgizXPYcUsIH8pC4n/29VMlFPseqpVNVTnGPsmP6jZfq/yhdPnrheqXJyclWmWyXkGDXVTj3VUfcGHVuo/5VX+1yeEQAAAAAAAIBwop9cgY3rLmjZ0vnPfppQG+YiF7ABOQYAAACcWCfDFmS57ll7iuvfbVyvaiZaqJ2u0yuneMY/tVuffvtNWZl08OC3tb9/UwhPXCfHqI2bNFwJcv5FikJ5NVePyS9/BGYFAAAAAAAAIBzoJ1dg47oL1q1bZ2RtmItcwAbkGAAAAHBinQxbkOW6Z80prn+3cb06mfiV/qKzdEWQEb/S9JCKdEI6ckQqLf229vdvCeGJ6+QYtRGvZrpVY4OO/UcL9YXecXlGAAAAAAAAAMKFfnIFj9/v59gOST6fT0lJSfJ6vUpMTAxp7YMHD4btb0uEszbMRS5gA3IMAAAAOLFOhi3Ict1zraR/BVxLknRM356uUt1MHNY2jdHFKlWhY+xy9dVNmx6ROnWSJB3U905dHzNGeuKJ6k4/KHKMUJil+7VJ7zquxylRf9QWJal1BGYFAAAAAAAAIJToJ1fgxHUXjB8/3sjaMBe5gA3IMQAAAODEOhm2IMt1S7GkjCDXL1dFg7q6mWihC3S9UoKOfabhyipYXP59pcohPHGdHCMUbtQ/laBWjuuF8mmOHpNfnD0EAAAAAAAAmI5+cgVOXD8pnCeuAwAAAAAAAEBdtU7SL4Ncf1lSv1rULVOpJuoq7dMax1jT3Bb6Q/Jh1c8LGPjsM+myy2rxVCD0tmuepum2oGO3abwu0aMuzwgAAAAAAAAAwoMT112QkhL85J9orw1zkQvYgBwDAAAATqyTYQuyXLc4t5V/q8v3/ndNMhGjeuqpdxSrBo6xbxof1ievn6z9/YEQnrhOjhEqP9et6qQHgo4t0p+Voz0uzwgAAAAAAABAKNFPrmD8ies+n0+JiYnKzc1V48aNa1UnXCeu5+fnq2HDhiGt6UZtmItcwAbkGAAAAHBinQxbkOW65V5J7wVc80j6RlLSye9rk4nVGqrF+kvQsQevlZL/JZVXLiiQ4uJq9JxA5BihlK9v9JY6KFf7HWNt1E33a5E88kRgZgAAAAAAAABqi35yBeNPXP/FL36hHj16aMaMGdqyZYs6d+6s7t27q1u3bnrjjTciPT1J0ltvvWVkbZiLXMAG5BgAAABwYp0MW5DluiXYievtVbFpXapdJq7Q02qtrkHHPpooDa9/8ptmzUK2aV0ixwithmqq2zQu6NguLdF6ve3yjAAAAAAAAACECv3kCsZvXO/fv78++ugjPfzwwyosLNS6deu0aNEiPfroo3r66acjPT1J0u23325kbZiLXMAG5BgAAABwYp0MW5DluuOgpK+DXO8S8H1tMhGjeuqhiYpVA8dYThup6d9OfpOcXONnBEOOEWptdYsuVu+gY4v0Z+Vot7sTAgAAAAAAABAS9JMrGL9xfePGjVq2bJkGDx6szp07y+PxaMWKFercubMaNHD+oiIS1q9fb2RtmItcwAbkGAAAAHBinQxbkOW6I9hp65Jz43ptM3G62uoGDQw6tvhCadd1klq1qtUzApFjhEN3DVNj/cRxvUjHNUePyi9/BGYFAAAAAAAAoDboJ1cwfuP6oEGDdP3116uoqEjp6emSpJkzZ+r888+P7MS+p0WLFkbWhrnIBWxAjgEAAAAn1smwBVmuO6q6cT0UmbhcfXW2rnRcb9RCmjNBKjynea2f8X3kGOHQUE10u8YHHdulT7RO41yeEQAAAAAAAIDaop9cweiN65MnT9b7778vSfJ6vfL7/frvf/+r7OzsH/1sYWGhfD5fpa9wiYuLM7I2zEUuYANyDAAAADixToYtyHLdEWzjehNJPw+4FopMxChGPfSOYv0NK12vFyflnCcteWR7rZ/xfeQY4XK+btLFeijo2GI9q2+U5e6EAAAAAAAAANQK/eQKVd64Pm3aNO3cuVODBg1SYWGhUlJSJEkpKSnav3+/JkyYoIyMDC1atEizZs1SZmamhg8fLp/PV+neY8eOadSoUdq0aZPmzJmj+fPna/369Ro7dqwOHz5c6d68vDwNGTJE27dv1wcffKClS5dq9erVSk1N1d69e/Xll1+qYcOGuueee3TWWWfps88+06ZNm5STk6OVK1cqPT1d06dP144dOzR48GAVFBSU17/pppuUlJRU/tW6dWtJUmZmpkaMGCGv11tpLjk5ORo5cqQ2b96stLQ0LViwQOvWrdO4ceN08ODBSvfm5+dryJAh2rFjh95//33NnTtXq1at0uTJk7Vnzx4NGDBAZWVlSklJUVlZmQYMGKA9e/Zo8uTJWrVqlZYtW6b3339fO3bs0JAhQ5Sfn1+p/sGDBzVu3DitW7dOs2bNUlpamjZv3qyRI0cqJyen0r1er1cjRozQli1bNHv2bC1cuFAZGRkaP368srOzK91bUFCgwYMHa8eOHZo+fbrS09O1cuVKTZkyRbt379bAgQNVWlpa6TN79+5VamqqVq9eraVLl+qDDz7Q9u3bNWTIEOXl5VW69/Dhwxo7dqzWr1+v+fPna86cOdq0aZNGjRqlY8eOVbrX5/Np+PDhyszM1KxZs7Ro0SJlZGRowoQJ2r9/f6V7CwsLNWjQIO3cuVPTpk1Tenq6Pv30U7377rvKysrS66+/rpKSkkqf2bdvn9555x2tXbtWS5Ys0YwZM7Rt2zYNGzZMx48fr3TvkSNHNGbMGG3YsEHz5s3T3LlztWHDBo0ePVpHjx6tdG9ubq7efPNNZWZmaubMmVq8eLE+++wzTZw40THv4uJivfHGG9q1a5emTp2qFStWaMWKFZo6dap27dqlN954Q8XFxY7/1iZOnKjPPvtMixcv1syZM5WZmak333xTubm55fcOHTpUR48e1ejRo7VhwwbNnTtX8+bN04YNGzRmzBgdOXKkUt3jx49r2LBh2rZtm2bMmKElS5Zo7dq1euedd7Rv375K95aUlOj1119XVlaW3n33XX366adKT0+PynfE9+8tLS3VwIEDtXv3bk2ZMuVH3xEpKSnKzs7W+PHjlZGRoYULF2r27NnasmVLyN8Ry5YtC9s7YsGCBca+I2bMmME7IkzviJSUFN4RvCOMf0ewjuAdwTuCdwTvCN4RdfUdMWvWLN4RvCOseEcMHTqUd0QdWEes37xZa0eOlHJypJP3KiVFl3i9GhXwjliyZElI3hGjU6ar46ZHtSFV2rta2rVU2vKedGS7NHzNRn2ZtyBk74i0tDTeEawjwvaO+OmOP2nd4CSVFEgrTv7nsyJFOpZ9XH8ef6M+y/jM+HcE6wjeEbwjWEfwjuAdwTuCdwTvCN4RvCN4R/CO4B3BO4J3BO8I3hF15R2xYMEC698RVeXx+/3+Kt9tkcLCQhUWFpZ/7/P51Lp1a3m9XiUmJob0WXv27NHZZ58d0ppu1Ia5yAVsQI4BAAAAJ9bJsAVZrhs+l3RpkOv9Jb0UcC2UmShb9alSS6/Wnqu//d67R0o6W+q06yrd2OYjNVTTkDyHHCPc/qNFelc3Bh27RW/pUv3B5RkBAAAAAAAAqAn6yRWqfOK6beLi4pSYmFjpK1ymTJliZG2Yi1zABuQYAAAAcGKdDFuQ5bphzSmudwlyLZSZiImtr55jL9dpeR5J0rZR0t23Sr/Nejlkm9Ylcozw+5m66xd6JOjYYv1V3+hrl2cEAAAAAAAAoCboJ1cw+sR1j8dT5Xt/7I/p8/mUlJQUlhPXy8rKFBMTnr8jEM7aMBe5gA3IMQAAAODEOhm2IMt1wz2SpgVc80jKkRTYgQ1HJj7TCP1XGfrNiQFKOFQitWwpxceHrD45hhsK5NVb6iCf9jnGztV1ekCfKKbunlEEAAAAAAAAGIF+cgWjfwp+v7/KX5H02muvGVkb5iIXsAE5BgAAAJxYJ8MWZLluWB3k2oVyblqXwpOJy9RH/6PJenPYJOm880K6aV0ix3BHAyXpdk0IOpal5fpco12eEQAAAAAAAIDqop9cwegT1yVp2rRpatq0qRYuXKj+/fsrKSlJ+/bt07BhwzRkyJAq1+HEddiEXMAG5BgAAPx/9u47zNKqzBf2rzrQgFCFBAmCOQdUkjSKYs7Sc5xzzoTjJ+Y4OuPoOOOoYyjFhFkUUegxh1EbMIIiuckiIKKISJAgQaoITdNhf3/YM1t434ame9e791p139fFdela3U896o9y7acXq4Am52RqIcv1uyLJDi3rr0hyUMt6iTNUOaZLh+cVOTMHN9bnZ9O8Oudky9xvCF0BAAAAAOvCPLmv6P8WjjvuuNxwww155jOfmY997GOZmJhIr9fLYYcdlmuvvXbY7f2P/fffv8jalEsuqIEcAwBAk3MytZDl+i1dy/rCtayXOEOVY7r09Hw4E7lXY31Fbs5heUlWZ/UQugIAAAAA1oV5cl/RF9e/853v5LrrrsuJJ56YD37wg+n1ejnqqKPy5Cc/edit3cYLX/jCImtTLrmgBnIMAABNzsnUQpbrd1cvrpc4Q5VjurRxxvP8fL517+Icm9NyYMcdAQAAAADryjy5r+iL67feemse9rCH5XGPe1xuvPHGfO5zn8u2226bTTbZZNit3cYxxxxTZG3KJRfUQI4BAKDJOZlayHL92i6ub5nkQWv59SXOUOWYrt0/T8uueWXr3k/yllyXCzvuCAAAAABYF+bJfUVfXN91111v8++vvPLKXHTRRTnyyCNzySWX5Oyzzx5SZ7d1//vfv8jalEsuqIEcAwBAk3MytZDlut2a5PSW9T2TjK3l95Q4Q5VjhuHp+VAmcu/G+orcnMPykqzO6iF0BQAAAADcEfPkvqIvrr/whS/ML37xi3z3u9/N3e9+97zjHe/Ic57znCxbtizLly9Pr9cbdotJkuXLlxdZm3LJBTWQYwAAaHJOphayXLezkrT9L7zwDn5PiTNUOWYYFmTz7JsvtO5dnONyaj7VcUcAAAAAwJ0xT+6bN+wGNsRGG22Ut7/97bdZmz9/ft7whjfkDW94w5C6arr66quLrE255IIayDEAADQ5J1MLWa7b0rWs39HF9RJnqHLMsNwvT8lueVVOz2cbez/Jv+aBeXa2ygOG0BkAAAAA0MY8ua/oF9dLscsuuxRZm3LJBTWQYwAAaHJOphayXLe2i+tzkuxxB7+nxBmqHDNMT8sHs0Xu01hfmWU5LC/O6qzuvikAAAAAoJV5cp+L6x04/PDDi6xNueSCGsgxAAA0OSdTC1muW9vF9Uck2fwOfk+JM1Q5ZpgWZPPsm0Na9y7JCTkln+i4IwAAAABgbcyT+8Z6vV5v2E2Mgunp6UxMTGRqairj4+MDrb1s2bJssskmA63ZRW3KJRfUQI4BAKDJOZlayHK9Lk9yz5b1Vyb57B38vhJnqHLMKPh+XpvTcmBjfV42yavzi2yVBw6hKwAAAADgL5kn93lxvQMHHHBAkbUpl1xQAzkGAIAm52RqIcv1anttPUkW3snvK3GGKseMgqfmA9ki922sr8yyLMmLszqrhtAVAAAAAPCXzJP7vLi+xky+uA4AAAAAMBu8KUnb+P3XSR7UcS8wW1yUY/KfeVLr3jPykSzMP3XcEQAAAABAOy+ud2BycrLI2pRLLqiBHAMAQJNzMrWQ5Xqd1LK2VZIH3snvK3GGKseMivtmn+yR17Xu/TRvzTX5dccdAQAAAAB/yTy5z4vra8zki+tXXXVVtt1224HW7KI25ZILaiDHAADQ5JxMLWS5TsuTjCe59Xbrz01yxJ383hJnqHLMKLk1N+Uz2Tl/yu8aeztmYV6S4zMnc4fQGQAAAABgntznxfUOHHbYYUXWplxyQQ3kGAAAmpyTqYUs1+nnaV5aT5KF6/B7S5yhyjGjZKPcLfvmkNa9y7I0J+dj3TYEAAAAAPwP8+Q+F9c7sOuuuxZZm3LJBTWQYwAAaHJOphayXKela1lfl4vrJc5Q5ZhRc588MY/N61v3js7bcnXO77gjAAAAACAxT/5LLq534KqrriqyNuWSC2ogxwAA0OScTC1kuU5tF9fnJNl9HX5viTNUOWYUPSXvy91z/8b6ytySw/LirM6qIXQFAAAAALObeXKfi+sduPXWth+QO/q1KZdcUAM5BgCAJudkaiHLdWq7uL5zks3W4feWOEOVY0bRRrlbFuXQJGONvctycpbmI903BQAAAACznHlyn4vrHbj//Zuvm5RQm3LJBTWQYwAAaHJOphayXJ/L1vx1ewvX8feXOEOVY0bVvbN3HpvXt+4dnbfn6vyq444AAAAAYHYzT+5zcb0Dxx57bJG1KZdcUAM5BgCAJudkaiHL9Wl7bT1Z94vrJc5Q5ZhR9pS8L1vmAY31VVmeJdkvq7JyCF0BAAAAwOxkntw31uv1esNuYhRMT09nYmIiU1NTGR8fH2jt66+/PltsscVAa3ZRm3LJBTWQYwAAaHJOphayXJ83Jvloy/oFScvV2aYSZ6hyzKi7JCfmkOydpPnHQE/N+/P4vKX7pgAAAABgFjJP7vPiegc+9alPFVmbcskFNZBjAABock6mFrJcn7YX17dOsq4//LTEGaocM+rulcdlz/xj697P8o78Med12xAAAAAAzFLmyX1eXF9jJl9cBwAAAACo1fIk40luvd3685Ic3n07wF+4NTfns3l0rssFjb0dsntempMyN/OG0BkAAAAAMBt5cb0Dk5OTRdamXHJBDeQYAACanJOphSzX5cw0L60nycK7UKPEGaocU4KNsmkWZXGSscbe5TktJ+XDnfcEAAAAALONeXKfF9fXmMkX16empjIxMTHQml3UplxyQQ3kGAAAmpyTqYUs1+WAJG9qWT8myRPXsUaJM1Q5piQ/zpuyNAc01udmo7wiZ2TbPGIIXQEAAADA7GCe3OfF9Q588YtfLLI25ZILaiDHAADQ5JxMLWS5Lktb1uYm2e0u1ChxhirHlOTJeU+2yoMb66tyaw7Li7MqK4fQFQAAAADMDubJfS6ud+BJT3pSkbUpl1xQAzkGAIAm52RqIcv16KX94vqjktztLtQpcYYqx5RkfjbJohyasZY/Fro8p+fEfHAIXQEAAADA7GCe3OfiegcuuOCCImtTLrmgBnIMAABNzsnUQpbrcWmSy1vWF97FOiXOUOWY0uyUhVmYf27dOybvzFU5p+OOAAAAAGB2ME/uc3G9A5tsskmRtSmXXFADOQYAgCbnZGohy/Voe209uesX10ucocoxJXpS3p2t85DG+uqsyJLsl1VZMYSuAAAAAKBu5sl9Lq53YKuttiqyNuWSC2ogxwAA0OScTC1kuR6Durhe4gxVjinR/GycRVmcsZY/HroiZ+aEfGAIXQEAAABA3cyT+1xc78BZZ51VZG3KJRfUQI4BAKDJOZlayHI92i6u3yPJfe9inRJnqHJMqXbMY7NX3tS6d2zenStzdscdAQAAAEDdzJP7xnq9Xm/YTYyC6enpTExMZGpqKuPj4wOtfeWVV2a77bYbaM0ualMuuaAGcgwAAE3OydRClutwS5LxJCtut75vkiV3sVaJM1Q5pmQrcksOyi65Jr9q7G2Xx+TlOSVzM38InQEAAABAfcyT+7y43oHPf/7zRdamXHJBDeQYAACanJOphSzX4Yw0L60nycL1qFXiDFWOKdn8bJxFWZyxlj8mujI/z/HZfwhdAQAAAECdzJP7vLi+xky+uA4AAAAAUJsPJ3lzy/qxSZ7QcS/A+vlJ/i0n5P2N9TmZl1fk9GyXRw2hKwAAAACgVl5c78Dk5GSRtSmXXFADOQYAgCbnZGohy3VY2rI2L8lu61GrxBmqHFODffLObJOHNdZXZ2WWZL+sav25CgAAAADAXWGe3OfF9TVm8sX1W265JRtvvPFAa3ZRm3LJBTWQYwAAaHJOphayXL5ekh2SXHm79V2TnL4e9UqcocoxtfhDTsvnszC9rGrs7ZN3Zp/8xxC6AgAAAIB6mCf3eXG9A5/85CeLrE255IIayDEAADQ5J1MLWS7fxWleWk+SvdazXokzVDmmFvfM7nl83tK6d1wmc0XO6rYhAAAAAKiMeXKfi+sdWLRoUZG1KZdcUAM5BgCAJudkaiHL5Vu6lvWF61mvxBmqHFOTJ+YduUce0VhfnZVZkhdlZW4dQlcAAAAAUAfz5D4X1ztwxhlnFFmbcskFNZBjAABock6mFrJcvkFfXC9xhirH1GReFmRRFmcscxt7V+XsHJ/3DqErAAAAAKiDeXKfi+sd2G677YqsTbnkghrIMQAANDknUwtZLl/bxfXtktx7PeuVOEOVY2qzQ3bN4/OvrXvH5325PGd23BEAAAAA1ME8uc/F9Q7MmzevyNqUSy6ogRwDAECTczK1kOWyLUtyVsv6wiRj61mzxBmqHFOjJ+btuUce2VhfnZVZkv2yMrcOoSsAAAAAKJt5cp+L6x246KKLiqxNueSCGsgxAAA0OSdTC1ku2+lJVrasL9yAmiXOUOWYGs3LgizK4oxlbmPvjzknx+U9Q+gKAAAAAMpmntzn4noHnvCEJxRZm3LJBTWQYwAAaHJOphayXLala1nfkIvrJc5Q5Zha7ZBdsnfe2rp3fPbP5Tmj444AAAAAoGzmyX0urnfgq1/9apG1KZdcUAM5BgCAJudkaiHLZWu7uD4vya4bULPEGaocU7Mn5G3ZNjs31ntZlSXZLyuzfAhdAQAAAECZzJP7xnq9Xm/YTYyC6enpTExMZGpqKuPj4wOtvWrVqsyd2/yxmqNem3LJBTWQYwAAaHJOphayXK5eku2TXHW79d2TnLoBdUucocoxtbsiP8/B2SOrs7Kxt3femqfkvUPoCgAAAADKY57c58X1Duy///5F1qZcckEN5BgAAJqck6mFLJfr92leWk+ShRtYt8QZqhxTu+3zmOydf2/dOyEfyB9yescdAQAAAECZzJP7vLi+xky+uA4AAAAAUIOvJvn7lvWvJfmbjnsBZt7K3JqDs0euyi8ae9vk4Xllzsi8LBhCZwAAAABAiby43oHJyckia1MuuaAGcgwAAE3OydRClsu1dC3rG/rieokzVDlmNpiXjbIoizMn8xp7V+eXOSbvGkJXAAAAAFAW8+Q+L66vMZMvrl966aXZaaedBlqzi9qUSy6ogRwDAECTczK1kOVy7ZbkjNutbZ/kD0nGNqBuiTNUOWY2OSbvzjH5j8b6WObkZTk598zuQ+gKAAAAAMpgntznxfUO/PSnPy2yNuWSC2ogxwAA0OScTC1kuUw3JTmrZX2vbNil9aTMGaocM5vsnX/LdnlMY72X1fluXpQVuWUIXQEAAABAGcyT+1xc78CDHvSgImtTLrmgBnIMAABNzsnUQpbLdHqSVS3rCwdQu8QZqhwzm8zN/CzK4szJ/MbeNflVjsk7u28KAAAAAAphntzn4noHli1bVmRtyiUX1ECOAQCgyTmZWshymZauZX0QF9dLnKHKMbPNdtk5T8zbW/dOyodyWU7puCMAAAAAKIN5cp+L6x249tpri6xNueSCGsgxAAA0OSdTC1kuU9vF9flJdhlA7RJnqHLMbPT4/Gu2b/m7vpfVWZL9siK3DKErAAAAABht5sl9Lq534FGPelSRtSmXXFADOQYAgCbnZGohy+Xppf3i+i5JNh5A/RJnqHLMbDQ387MoizMn8xt71+T8/CzvGEJXAAAAADDazJP7XFzvwPe+970ia1MuuaAGcgwAAE3OydRClsvzuyRXt6wvHFD9EmeocsxstW0emX3yH617S3NALs3JHXcEAAAAAKPNPLlvrNfr9YbdxCiYnp7OxMREpqamMj4+PtDaN998czbddNOB1uyiNuWSC2ogxwAA0OScTC1kuTxfTvLClvVvJPk/A6hf4gxVjpnNVmVlPp89c0XOaOxtlQfnVfl55meTIXQGAAAAAKPHPLnPi+sd+MhHPlJkbcolF9RAjgEAoMk5mVrIcnmWrmV9UC+ulzhDlWNms7mZl0VZnLnZqLF3bX6dn+UdQ+gKAAAAAEaTeXKfF9fXmMkX1wEAAAAASrZLkp/fbu2eSS4bQi/A6Dg+++eneWvLzlhekhNyr+zVeU8AAAAAwOjy4noHJicni6xNueSCGsgxAAA0OSdTC1kuy01Jzm5ZH9Rr60mZM1Q5hmSvvDk7ZPeWnV4Oy4uzIss67wkAAAAARo15cp8X19eYyRfXr7766myzzTYDrdlFbcolF9RAjgEAoMk5mVrIclmOSfKklvUDkrxxQF+jxBmqHMOf/THn5aA8Jqtya2NvYd6YZ+SAIXQFAAAAAKPDPLnPi+sd+M53vlNkbcolF9RAjgEAoMk5mVrIclmWrmV9kC+ulzhDlWP4s3vkYXlS3t26tzQfzSU5seOOAAAAAGC0mCf3ubjegd13b/sxmaNfm3LJBTWQYwAAaHJOphayXJaTWtY2SrLLAL9GiTNUOYa+hfnn3DN7tOz0siT75dbc3HlPAAAAADAqzJP7XFzvwBVXXFFkbcolF9RAjgEAoMk5mVrIcjl6SU5uWd81yYIBfp0SZ6hyDH1zMy+LsjhzW74zXJff5uj8+xC6AgAAAIDRYJ7c5+J6B1atWlVkbcolF9RAjgEAoMk5mVrIcjl+m+SalvWFA/46Jc5Q5Rhua5s8NE/Ku1v3Ts7Hc3GO77gjAAAAABgN5sl9Lq534D73uU+RtSmXXFADOQYAgCbnZGohy+VYupb1QV9cL3GGKsfQtFf+OTtmz5adXg7LS3Jrbuq8JwAAAAAYNvPkPhfXO3D88TP3ishM1qZcckEN5BgAAJqck6mFLJejq4vrJc5Q5Ria5mRu9s2hmZsFjb3r8tv8NG8dQlcAAAAAMFzmyX1jvV6vN+wmRsH09HQmJiYyNTWV8fHxgda+7rrrsuWWWw60Zhe1KZdcUAM5BgCAJudkaiHL5Xh0kl/cbm2nJJcM+OuUOEOVY1i7E/PhHJU3t+7tl2Nznzyh444AAAAAYHjMk/u8uN6BAw88sMjalEsuqIEcAwBAk3MytZDlMtyQ5JyW9UG/tp6UOUOVY1i7hfmn7LiW7xaH5cW5NTd13BEAAAAADI95cp8X19eYyRfXAQAAAABKc3SSp7SsfzTJP3bbClCga/LrfDaPzsrc0tjbI/+QZ+cTQ+gKAAAAABgmL653YHJyssjalEsuqIEcAwBAk3MytZDlMixdy/pMvLhe4gxVjuGObZ0H58l5b+veqflkLsox3TYEAAAAAENintznxfU1ZvLF9enp6Rl7xX0ma1MuuaAGcgwAAE3OydRClsvw3CTfv93agiTTSTYa8NcqcYYqx3DnVmdVDs0Tc2lObOxtkfvm1Tk7C7LZEDoDAAAAgO6YJ/d5cb0DixcvLrI25ZILaiDHAADQ5JxMLWR59PWSnNyyvmsGf2k9KXOGKsdw5+ZkbvbNIZmXjRt71+ei/CT/OoSuAAAAAKBb5sl9Lq534KlPfWqRtSmXXFADOQYAgCbnZGohy6PvgiTXtqwvnKGvV+IMVY5h3WydB+UpeV/r3mn5dC7KzzruCAAAAAC6ZZ7c5+J6B84///wia1MuuaAGcgwAAE3OydRClkffSWtZ32uGvl6JM1Q5hnX32Lw+98rjW/cOy0uyPDd23BEAAAAAdMc8uc/F9Q7c7W53K7I25ZILaiDHAADQ5JxMLWR59C1dy/pMvbhe4gxVjmHdzcnc7JtDMy+bNPauz+9zVP5lCF0BAAAAQDfMk/tcXO/AlltuWWRtyiUX1ECOAQCgyTmZWsjy6Gu7uH7vJNvP0NcrcYYqx3DXbJUH5KnZv3Xv9Hwmv8vRHXcEAAAAAN0wT+5zcb0DZ599dpG1KZdcUAM5BgCAJudkaiHLo206ybkt6zP12npS5gxVjuGu2yP/kHtl79a9w/KSLM8NHXcEAAAAADPPPLlvrNfr9YbdxCiYnp7OxMREpqamMj4+PtDal19+eXbYYYeB1uyiNuWSC2ogxwAA0OScTC1kebT9JMnTWtY/nuT1M/Q1S5yhyjGsn2vz23w2j8qK3NzY2zWvzPPy2SF0BQAAAAAzxzy5z4vrHTjkkEOKrE255IIayDEAADQ5J1MLWR5tS9eyPpMvrpc4Q5VjWD9b5QF5at7fundGDsqF+UnHHQEAAADAzDJP7vPi+hoz+eI6AAAAAEApnp3kh7db2zjJVJKNum8HqNDqrM5/5sm5OMc29iZyr7w652Tj+LMaAAAAAKiNF9c7MDk5WWRtyiUX1ECOAQCgyTmZWsjy6Fqd5OSW9d0ys5fWS5yhyjGsvzmZk31zSOZn08beVC7JUXnzELoCAAAAgJlhntznxfU1ZvLF9eXLl2fBggUDrdlFbcolF9RAjgEAoMk5mVrI8ug6P8lDW9bfnOSDM/h1S5yhyjFsuFPz6fwgr2vd+3/5cR6Qp3fcEQAAAAAMnnlynxfXO/Dxj3+8yNqUSy6ogRwDAECTczK1kOXRtXQt6wtn+OuWOEOVY9hwu+XVuU/2ad07PC/LLZnqtiEAAAAAmAHmyX0urnfgBS94QZG1KZdcUAM5BgCAJudkaiHLo2tYF9dLnKHKMWy4OZmTfXNI5udujb3pXJoj86YhdAUAAAAAg2We3OfiegdOPfXUImtTLrmgBnIMAABNzsnUQpZHV9vF9fsk2W6Gv26JM1Q5hsG4e+6bp+WDrXtn5vP5bX7ccUcAAAAAMFjmyX0urndg++23L7I25ZILaiDHAADQ5JxMLWR5NE0l+WXL+l4dfO0SZ6hyDIOzW16V++bJrXuH52W5JVMddwQAAAAAg2Oe3Ofiegfmzp1bZG3KJRfUQI4BAKDJOZlayPJoOiVJr2V9YQdfu8QZqhzD4MzJnDw/X8hG2ayxN53L8uO8cQhdAQAAAMBgmCf3ubjegYsvvrjI2pRLLqiBHAMAQJNzMrWQ5dG0dC3rXVxcL3GGKscwWHfPffK0fKh17+c5JBfkhx13BAAAAACDYZ7c5+J6Bx7/+McXWZtyyQU1kGMAAGhyTqYWsjya2i6ub5Jk5w6+dokzVDmGwdstr8x985TWvcPz8izL9d02BAAAAAADYJ7c5+J6B77+9a8XWZtyyQU1kGMAAGhyTqYWsjx6Vic5uWV99yTzO/j6Jc5Q5RgGbyxj2TdfyEbZrLF3Q/6QH+eNQ+gKAAAAADaMeXLfWK/X6w27iVEwPT2diYmJTE1NZXx8fKC1V65cmXnz5g20Zhe1KZdcUAM5BgCAJudkaiHLo+e8JA9vWX9Lkvd38PVLnKHKMcyc0/O5fC+vbN37u3wvD8pzOu4IAAAAANafeXKfF9c78P73z9wf7cxkbcolF9RAjgEAoMk5mVrI8uhZupb1hR19/RJnqHIMM2fXvDz3y9Na947IK7Isf+q4IwAAAABYf+bJfV5cX2MmX1wHAAAAABhlL0vyhZb1q5Lco+NeAJLk+lySA/OI3JobGnuPyovyV1ncfVMAAAAAwAbx4noHJicni6xNueSCGsgxAAA0OSdTC1kePW0vrt8v3V1aL3GGKscws7bIvfKMfKR17xf5z/w63+u4IwAAAABYP+bJfV5cX2MmX1y/7LLLsuOOOw60Zhe1KZdcUAM5BgCAJudkaiHLo+X6JHdvWf/7JF/uqIcSZ6hyDDOvl16+nGflwvy4sbdZts9r88ts0vodDAAAAABGh3lynxfXO3DUUUcVWZtyyQU1kGMAAGhyTqYWsjxaTlnL+sIOeyhxhirHMPPGMpbn5+AsSPPBoRtzRX6YNwyhKwAAAAC4a8yT+1xc78BDH/rQImtTLrmgBnIMAABNzsnUQpZHy9K1rHd5cb3EGaocQzcmslOekY+07p2dL+XXOaLjjgAAAADgrjFP7nNxvQM33HBDkbUpl1xQAzkGAIAm52RqIcujpe3i+qZJdu6whxJnqHIM3XlMXpIH5Jmte0fkFbk513XcEQAAAACsO/PkPhfXO3D99dcXWZtyyQU1kGMAAGhyTqYWsjw6Vic5uWV9jyTzOuyjxBmqHEN3xjKW5+XgLMhEY+/GXJkf5vVD6AoAAAAA1o15cp+L6x145CMfWWRtyiUX1ECOAQCgyTmZWsjy6DgvyXTL+sKO+yhxhirH0K2J7Jhn5qOte+fkKzk/h3XcEQAAAACsG/PkPhfXO/DDH/6wyNqUSy6ogRwDAECTczK1kOXRsXQt611fXC9xhirH0L1HZ788MM9u3Tsir8zNubbjjgAAAADgzpkn9431er3esJsYBdPT05mYmMjU1FTGx8cHWvvGG2/MZpttNtCaXdSmXHJBDeQYAACanJOphSyPjpckObRl/Y9JtumwjxJnqHIMwzGdP+TTeXiWZ6qx98j8XV6QrwyhKwAAAABYO/PkPi+ud+BjH/tYkbUpl1xQAzkGAIAm52RqIcujo+3F9Qek20vrSZkzVDmG4RjPPfOsfLx175x8Nb/KdzvuCAAAAADumHlynxfX15jJF9cBAAAAAEbNdUm2all/YZIvdtwLwF3RSy9fzfNyQb7f2Ltb7pHX5Je5W7YeQmcAAAAAwB3x4noHJicni6xNueSCGsgxAAA0OSdTC1keDaesZX1hp138WYkzVDmG4RnLWJ6Xz2XjbNHYuyl/zA/zD903BQAAAABrYZ7c58X1NWbyxfVrrrkmW289My97zGRtyiUX1ECOAQCgyTmZWsjyaHhHkve0rP88yaO7baXIGaocw/CdlS9mSV7Uuvd/8l95WF7QcUcAAAAA0GSe3OfF9Q7813/9V5G1KZdcUAM5BgCAJudkaiHLo2Fpy9rdkjyi60ZS5gxVjmH4HpUX5kF5Xuve9/Lq3JSrO+4IAAAAAJrMk/tcXO/AnnvuWWRtyiUX1ECOAQCgyTmZWsjy8K1KckrL+h5J5nXcS1LmDFWOYfjGMpbn5aBsnLs39m7O1flBXjeErgAAAADgtsyT+1xc78Bll11WZG3KJRfUQI4BAKDJOZlayPLwnZfkhpb1hV03skaJM1Q5htGwebbPs/KJ1r1f5pv5ZbxmBQAAAMBwmSf3ubjegV6vV2RtyiUX1ECOAQCgyTmZWsjy8C1dy/qwLq6XOEOVYxgdO+fv8+A8v3Xv+3l1bswfO+4IAAAAAPrMk/tcXO/ATjvtVGRtyiUX1ECOAQCgyTmZWsjy8J20lvVh/bDSEmeocgyjYyxjeW4OyibZsrF3c67JD/LaIXQFAAAAAH9mntzn4noHli5d2/tFo12bcskFNZBjAABock6mFrI8fG3/CzwoydZdN7JGiTNUOYbRsnm2y7Pyyda98/JfOTff7LgjAAAAAPgz8+S+sZ7355Mk09PTmZiYyNTUVMbHxwda+9prr81WW2010Jpd1KZcckEN5BgAAJqck6mFLA/XtWm/oP6iJIu7beV/lDhDlWMYPb308o38r5yfJY29TbN1XpNfZrPco/vGAAAAAJjVzJP7vLjegc985jNF1qZcckEN5BgAAJqck6mFLA/XyWtZX9hpF7dV4gxVjmH0jGUsz8lnskm2bOzdnGvy/bwmvXjPCQAAAIBumSf3eXF9jZl8cR0AAAAAYFS8Lcl7W9Z/kWTnjnsBmAnn5Ov5dv62de8F+Voemb/puCMAAAAAIPHieicmJyeLrE255IIayDEAADQ5J1MLWR6upS1rmyd5eNeN/IUSZ6hyDKPrEfm/eWj+V+veD/K63JirOu4IAAAAgNnMPLnPi+trzOSL6zfccEM233zzgdbsojblkgtqIMcAANDknEwtZHl4ViXZIsmNt1t/SpKfdN5NX4kzVDmG0XZjrsqn8/Asy7WNvYfkr/J/8+2MZWwInQEAAAAw25gn93lxvQNf+MIXiqxNueSCGsgxAAA0OSdTC1kennPTvLSeJAu7buR2SpyhyjGMts2ybZ6TT7funZ/v5tx8veOOAAAAAJitzJP7XFzvwNOf/vQia1MuuaAGcgwAAE3OydRClodn6VrWh31xvcQZqhzD6Ht4/k8elr9u3ftBXpcbcmXHHQEAAAAwG5kn97m43oFf/epXRdamXHJBDeQYAACanJOphSwPz9ouru/ZaRdNJc5Q5RhG31jG8ux8Optm68beslyX7+VV6aU3hM4AAAAAmE3Mk/tcXO/A5ptvXmRtyiUX1ECOAQCgyTmZWsjy8LRdXH9wki27buR2SpyhyjGUYbPcI8/Jga17v85hOSdf7bgjAAAAAGYb8+Q+F9c7MDExUWRtyiUX1ECOAQCgyTmZWsjycFyT5IKW9YVdN9KixBmqHEM5Hp7/nYflf7fu/SD/kBtyRccdAQAAADCbmCf3ubjegV/+8pdF1qZcckEN5BgAAJqck6mFLA9H22vrSbJXp120K3GGKsdQlufk09k02zTWb8mfckRemV56Q+gKAAAAgNnAPLlvrNfrmcQlmZ6ezsTERKampjI+Pj7Q2pdffnl22GGHgdbsojblkgtqIMcAANDknEwtZHk43ppk/5b1c5I8ouNebq/EGaocQ3nOy7fzzfx1695f5Yt5VF7YcUcAAAAAzAbmyX1eXO/AIYccUmRtyiUX1ECOAQCgyTmZWsjycLS9uD6e5GFdN9KixBmqHEN5HpYX5OH5v617P8zrM53LO+4IAAAAgNnAPLnPi+trzOSL6wAAAAAAw7QyyUSSm2+3/rQkR3bfDsDQ3JRrcmAenpvyx8beg/Lc/G0Oz1jGhtAZAAAAANTPi+sdmJycLLI25ZILaiDHAADQ5JxMLWS5e+ekeWk9SRZ23chalDhDlWMo092ydZ6bz7bu/Sbfyy/ypY47AgAAAKB25sl9XlxfYyZfXF+xYkXmz58/0Jpd1KZcckEN5BgAAJqck6mFLHfvwCSvbVn/YZJndtxLmxJnqHIMZfuv/F3Ozdca6wsykdfmlxnPPYfQFQAAAAA1Mk/u8+J6Bz7ykY8UWZtyyQU1kGMAAGhyTqYWsty9pWtZf2ynXaxdiTNUOYayPTufzN2ybWN9eaZyRF6RXrz7BAAAAMBgmCf3eXF9jZl8cf13v/td7ne/+w20Zhe1KZdcUAM5BgCAJudkaiHL3XtAkgtvt/bQJOcNoZc2Jc5Q5RjK96ssyTfyV617++bQPCb7ddsQAAAAAFUyT+7z4noHli5d23tGo12bcskFNZBjAABock6mFrLcrT+meWk9SRZ23cgdKHGGKsdQvodmUR6Zv2/d+1H+MVO5rOOOAAAAAKiReXKfi+sd2GmnnYqsTbnkghrIMQAANDknUwtZ7tbJa1kfpYvrJc5Q5Rjq8Kx8Iptlu8b68kzliLw8vfjBxQAAAABsGPPkPhfXAQAAAAAqtrZ3XEbp4jrAsGyaLfPcHNS699v8KD/PoR13BAAAAAD1cnG9A5deemmRtSmXXFADOQYAgCbnZGohy91qu7g+keShXTdyB0qcocox1OMheX52zv9r3ftx/ilT8fc7AAAAAOvPPLnPxfUOLFw4c28XzWRtyiUX1ECOAQCgyTmZWshyd1YkOa1lfc+M1nC4xBmqHENdnpmPZ7Ns31hfnukcnpenl94QugIAAACgBubJfaP0ZxPV+ta3vlVkbcolF9RAjgEAoMk5mVrIcnfOTnJzy/qojchLnKHKMdRl02yZ5+VzrXsX5sc5M1/ouCMAAAAAamGe3DfW6/U8EZFkeno6ExMTmZqayvj4+EBrr1ixIvPnzx9ozS5qUy65oAZyDAAATc7J1EKWu/OpJP/Qsv7jJE/vuJc7UuIMVY6hTt/Ni/KLfLGxvlE2z2tybrbIvYbQFQAAAAAlM0/u8+J6Bz7wgQ8UWZtyyQU1kGMAAGhyTqYWstydpS1rY0ke23Ujd6LEGaocQ52emY9l8+zQWL81N+TwvCy9eA8KAAAAgLvGPLnPi+trzOSL6wAAAAAAw3C/JBfdbu3hSc4dQi8ApfhNvp+v5rmte8/L57JrXt5xRwAAAABQBy+ud2BycrLI2pRLLqiBHAMAQJNzMrWQ5W5cleal9SRZ2HUj66DEGaocQ70elOfk0dmvde/HeWOuz8XdNgQAAABA0cyT+7y4vsZMvrh++eWXZ4cdmj9WctRrUy65oAZyDAAATc7J1EKWu7EkyV+1rH8hyUu6beVOlThDlWOo27JcnwPziNyQPzT27pen5oU5MmMZG0JnAAAAAJTGPLnPi+sd+NGPflRkbcolF9RAjgEAoMk5mVrIcjeWrmV9FF9cL3GGKsdQt02yRZ6fg1v3fpef5Ix8ruOOAAAAACiVeXKfi+sdePjDH15kbcolF9RAjgEAoMk5mVrIcjfaLq5vkeTBHfexLkqcocox1O+BeVYes5afUXFk3pQ/5ffdNgQAAABAkcyT+1xc78DU1FSRtSmXXFADOQYAgCbnZGohyzNvRZLTW9b3zGgOhUucocoxzA7PyEcynh0b67fmxhyel2Z1Vg+hKwAAAABKYp7cN4p/RlGdG264ocjalEsuqIEcAwBAk3MytZDlmfeLJMta1hd23cg6KnGGKscwO2yciTw/n2/duyhH54wc1HFHAAAAAJTGPLnPxfUOPPShDy2yNuWSC2ogxwAA0OScTC1keeYtXcv6qF5cL3GGKscwezwgz8hj8tLWvSPz5vwpF3XcEQAAAAAlMU/uc3G9A0ceeWSRtSmXXFADOQYAgCbnZGohyzOv7eL6WJLHdt3IOipxhirHMLs8IwdkPDs21lfkphyWl2Z1Vg+hKwAAAABKYJ7cN9br9XrDbmIUTE9PZ2JiIlNTUxkfHx9o7RtuuCGbb775QGt2UZtyyQU1kGMAAGhyTqYWsjzz7pPk4tutPTLJ2d23sk5KnKHKMcw+v82R+XKe0br37Hwqe+S1HXcEAAAAQAnMk/u8uN6Bj3/840XWplxyQQ3kGAAAmpyTqYUsz6wr0ry0niQLu27kLihxhirHMPs8IE/PLnl5695R+Zdcl9913BEAAAAAJTBP7vPi+hoz+eI6AAAAAEBXvpPkBS3rhybZr9tWAKpzS6bzmTwyU7mksXfvPDEvytGZ490oAAAAAGhlctaBycnJImtTLrmgBnIMAABNzsnUQpZn1tK1rI/yi+slzlDlGGanjTOe5+fzrXsX59iclgM77ggAAACAUWee3OfF9TVm8sX1a6+9NltttdVAa3ZRm3LJBTWQYwAAaHJOphayPLMen+TE261tmeSaJGPdt7NOSpyhyjHMbkfkVTkjBzXW52fTvDpnZ8vcfwhdAQAAADCKzJP7vLjegW9+85tF1qZcckEN5BgAAJqck6mFLM+cW5Oc3rK+Z0b30npS5gxVjmF2e3o+lIncu7G+IjfnsLwkq7N6CF0BAAAAMIrMk/tcXO/AwoUz90N4Z7I25ZILaiDHAADQ5JxMLWR55pyVZHnL+qj/N17iDFWOYXZbkM2zb77Qundxjsup+VTHHQEAAAAwqsyT+1xc78Cll15aZG3KJRfUQI4BAKDJOZlayPLMWbqW9VEfiZc4Q5Vj4H55SnbLq1r3fpJ/zbX5bccdAQAAADCKzJP7XFzvwNjYzP0Q3pmsTbnkghrIMQAANDknUwtZnjltF9fnJNmj60buohJnqHIMJMnT8sFskfs01ldmWQ7Li7M6q7tvCgAAAICRYp7c5+J6B3bccccia1MuuaAGcgwAAE3OydRClmdO28X1RyTZvOtG7qISZ6hyDCTJgmyefXNI694lOSGn5BMddwQAAADAqDFP7nNxvQMnn3xykbUpl1xQAzkGAIAm52RqIcsz4/Ikl7SsL+y6kfVQ4gxVjoH/dt88KbvnNa17P81bc20u6LgjAAAAAEaJeXLfWK/X6w27iVEwPT2diYmJTE1NZXx8fKC1r7nmmmy99dYDrdlFbcolF9RAjgEAoMk5mVrI8sz4dpK/bllfnORF3bZyl5U4Q5Vj4C8tz435THbO9bmosbdTHpcX59jMydwhdAYAAADAsJkn93lxvQOf/exni6xNueSCGsgxAAA0OSdTC1meGSetZX2vTrtYPyXOUOUY+EsLsln2zSGte5fmxJycj3fcEQAAAACjwjy5z4vra8zki+sAAAAAADNtryRLb7e2dZI/Jhnrvh2AWekH+Yecmk811udl47wqZ2XrPHgIXQEAAADAaPDiegcmJyeLrE255IIayDEAADQ5J1MLWR685UnOaFnfM2VcWi9xhirHQJun5v25e+7XWF+ZW7IkL87qrBpCVwAAAAAMk3lynxfX15jJF9dvvPHGbLbZZgOt2UVtyiUX1ECOAQCgyTmZWsjy4J2cZGHL+nuTvLXjXtZHiTNUOQbW5vc5NouzT+ve0/Ph7JV/7rYhAAAAAIbKPLnPi+sdOPjgg4usTbnkghrIMQAANDknUwtZHryla1lvu8w+ikqcocoxsDb3yRPz2Ly+de/ovC1X5/yOOwIAAABgmMyT+1xc78CznvWsImtTLrmgBnIMAABNzsnUQpYHr+3i+pwku3fdyHoqcYYqx8AdeUrel7vn/o31lbklh+XFWZ1VQ+gKAAAAgGEwT+5zcb0D55xzTpG1KZdcUAM5BgCAJudkaiHLg9d2cX3nJKX84NESZ6hyDNyRjXK3LMqhScYae5fl5CzNR7pvCgAAAIChME/uc3G9A1tssUWRtSmXXFADOQYAgCbnZGohy4N12Zq/bm9h141sgBJnqHIM3Jl7Z+88Nq9v3Ts6b8/V+VXHHQEAAAAwDObJfS6ud2DzzTcvsjblkgtqIMcAANDknEwtZHmw2l5bT8q6uF7iDFWOgXXxlLwvW+YBjfVVWZ4l2S+rsnIIXQEAAADQJfPkPhfXO/CrX83cixkzWZtyyQU1kGMAAGhyTqYWsjxYNVxcL3GGKsfAutgom2ZRFicZa+z9IadmaQ7ovCcAAAAAumWe3DfW6/V6w25iFExPT2diYiJTU1MZHx8faO3LLrssO+6440BrdlGbcskFNZBjAABock6mFrI8WAuTnHy7ta2T/DFt1yRHU4kzVDkG7oof5Y05OR9trM/NRnllfp575GFD6AoAAACALpgn93lxvQOLFy8usjblkgtqIMcAANDknEwtZHlwlic5s2V9Ycq5tJ6UOUOVY+CueHIms2Ue2FhflVuzJPtlVVYOoSsAAAAAumCe3OfF9TVm8sV1AAAAAICZsDTJXi3r+yf51457AeCOXZKTckgen6T5R3NPyf7Z23duAAAAACrnxfUOTE5OFlmbcskFNZBjAABock6mFrI8OCetZX1hp11suBJnqHIM3FX3yl5ZmDe27h2T/8hVObfjjgAAAADognlynxfX15jJF9dXrlyZefPmDbRmF7Upl1xQAzkGAIAm52RqIcuD89dJvn27tblJppLcrft21luJM1Q5BtbHiizLZ/OYXJtfN/Z2yG55aZZmbnxvAQAAAKiJeXKfF9c78OEPf7jI2pRLLqiBHAMAQJNzMrWQ5cHoJVnasv6olHVpPSlzhirHwPqYn02yKIdmrOWP6C7P6TkxHxxCVwAAAADMJPPkPi+urzGTL67//ve/z33uc5+B1uyiNuWSC2ogxwAA0OScTC1keTAuSXLvlvXXJvlUx71sqBJnqHIMbIgj8y85KR9qrM/J/LwyZ2TbPHIIXQEAAAAwE8yT+7y43oETTjihyNqUSy6ogRwDAECTczK1kOXBaHttPUkWdtrFYJQ4Q5VjYEM8Ke/O1nlIY311VmRJ9suqrBhCVwAAAADMBPPkPhfXO3Dve7e9ezT6tSmXXFADOQYAgCbnZGohy4NR08X1EmeocgxsiPnZOIuyOGMtf1R3Rc7MCfnAELoCAAAAYCaYJ/e5uN6BVatWFVmbcskFNZBjAABock6mFrI8GG0X1++R5L5dNzIAJc5Q5RjYUDvmsdkrb2rdOzbvzpU5u+OOAAAAAJgJ5sl9Lq534IorriiyNuWSC2ogxwAA0OScTC1kecPdkuTnLesLk4x13MsglDhDlWNgEPbJu7J1HtpYX50VWZL9siorhtAVAAAAAINkntzn4noH9thjjyJrUy65oAZyDAAATc7J1EKWN9wZSetVxoVdNzIgJc5Q5RgYhPnZOIuyOGMtf2R3ZX6e47P/ELoCAAAAYJDMk/tcXO/At7/97SJrUy65oAZyDAAATc7J1EKWN9zStayXenG9xBmqHAODsmP2yOPyL617x+U9uTK/6LgjAAAAAAbJPLlvrNfr9YbdxCiYnp7OxMREpqamMj4+PtDay5cvz4IFCwZas4valEsuqIEcAwBAk3MytZDlDfeCJN+53dq8JFNJNu2+nQ1W4gxVjoFBWpnlOSi75Oqc19jbLo/Oy3Nq5mb+EDoDAAAAYEOZJ/d5cb0DH/rQh4qsTbnkghrIMQAANDknUwtZ3jC9JCe1rD86ZV5aT8qcocoxMEjzsiCLsjhjmdvYuzJn5fi8bwhdAQAAADAI5sl9XlxfYyZfXAcAAAAAGJTfJ7lvy/o/JPlEt60AMGA/zb+3XlKfk3l5eU7L9nl0900BAAAAwIB4cb0Dk5OTRdamXHJBDeQYAACanJOphSxvmKVrWV/YaReDVeIMVY6BmfDEvCP3yCMa66uzMkvyoqzMrUPoCgAAAIANYZ7c58X1NWbyxfXLL788O+yww0BrdlGbcskFNZBjAABock6mFrK8YV6f5JMt6xcluU+3rQxMiTNUOQZmyuU5IwfnsellVWPviXlHnpR3DaErAAAAANaXeXKfF9c78MMf/rDI2pRLLqiBHAMAQJNzMrWQ5Q3T9uL6dknu3XUjA1TiDFWOgZmyQ3bN4/OvrXvH5325PGd23BEAAAAAG8I8uc/F9Q7svPPORdamXHJBDeQYAACanJOphSyvv2VJzmpZX5hkrNtWBqrEGaocAzPpiXl77pFHNtZXZ2WWZL+szK1D6AoAAACA9WGe3Ofiegeuu+66ImtTLrmgBnIMAABNzsnUQpbX3+lJVrasL+y6kQErcYYqx8BMmpcFWZTFGcvcxt4fc06Oy3uG0BUAAAAA68M8uc/F9Q7cdNNNRdamXHJBDeQYAACanJOphSyvv6VrWS/94nqJM1Q5BmbaDtkle+etrXvHZ/9cnjM67ggAAACA9WGe3Ofiegce8pCHFFmbcskFNZBjAABock6mFrK8/tours9LsmvXjQxYiTNUOQa68IS8Ldum+aOke1mVJdkvK7N8CF0BAAAAcFeYJ/e5uN6Bn/zkJ0XWplxyQQ3kGAAAmpyTqYUsr59e2i+uPybJJh33MmglzlDlGOjCvGyURVmcOZnX2Ptjzs2xefcQugIAAADgrjBP7hvr9Xq9YTcxCqanpzMxMZGpqamMj48PvPaga3ZRm3LJBTWQYwAAaHJOphayvH4uSnK/lvXXJ/l4x70MWokzVDkGuvSzvDPH5l2N9bHMzctycu6Z3YbQFQAAAADrwjy5z4vrHfjEJz5RZG3KJRfUQI4BAKDJOZlayPL6aXttPUkWdtrFzChxhirHQJf2zluzbR7VWO9lVZZkv6zM8iF0BQAAAMC6ME/u8+L6GjP54joAAAAAwIb6hySfaln/fZJ7d9sKAENwRc7Kwdk9q7Oysff4/FuemvcNoSsAAAAAWHdeXO/A5ORkkbUpl1xQAzkGAIAm52RqIcvr56SWtR2S3KvrRmZAiTNUOQa6tn0enSfk7a17J+YDuSyndtwRAAAAAOvCPLnPi+trzOSL69ddd1223HLLgdbsojblkgtqIMcAANDknEwtZPmuuynJRJJVt1t/QZL/6r6dgStxhirHwDCsyoocnMfmyvy8sbd1HppX5szMz8ZD6AwAAACAtTFP7vPiege+9rWvFVmbcskFNZBjAABock6mFrJ8152e5qX1JFnYdSMzpMQZqhwDwzA387MoizMn8xt71+RXOSbv7L4pAAAAAO6QeXKfi+sd2HvvvYusTbnkghrIMQAANDknUwtZvuuWrmW9lovrJc5Q5RgYlu2yc56Yt7funZQP5bKc0nFHAAAAANwR8+Q+F9c78Pvf/77I2pRLLqiBHAMAQJNzMrWQ5buu7eL6/CS7dN3IDClxhirHwDA9Pv+a7Vv+X6CX1VmS/bIitwyhKwAAAADamCf3ubjegblz5xZZm3LJBTWQYwAAaHJOphayfNf00n5xfZckG3fcy0wpcYYqx8Awzc38LMrizMn8xt41OT8/yzuG0BUAAAAAbcyT+1xc78D2229fZG3KJRfUQI4BAKDJOZlayPJd87skV7esL+y6kRlU4gxVjoFh2zaPzD75j9a9pTkgl+bkjjsCAAAAoI15cp+L6x047bTTiqxNueSCGsgxAAA0OSdTC1m+a9peW0/qurhe4gxVjoFR8Li8Jdtn18Z6L6uzJPtlRZYNoSsAAAAA/pJ5ct9Yr9frDbuJUTA9PZ2JiYlMTU1lfHx8oLWvvvrqbLPNNgOt2UVtyiUX1ECOAQCgyTmZWsjyXfPaJAe2rF+SZKeOe5kpJc5Q5RgYFVfl3Hwuu2ZVbm3s7ZU35en50BC6AgAAAOC/mSf3eXG9AwcddFCRtSmXXFADOQYAgCbnZGohy3dN24vr90w9l9aTMmeocgyMim3ziOyTd7bunZQDcklO6rYhAAAAAG7DPLnPi+trzOSL6wAAAAAA6+OmJBNJVt1u/a+TfKv7dgAYUauyMl/IXrk8zR87vVUelFflrMzPJkPoDAAAAAD6vLjegcnJySJrUy65oAZyDAAATc7J1EKW191paV5aT5KFXTcyw0qcocoxMErmZl4WZXHmZqPG3rX5TY7O24bQFQAAAACJefJf8uL6GjP54vrNN9+cTTfddKA1u6hNueSCGsgxAAA0OSdTC1led+9L8u8t60uT7NlxLzOpxBmqHAOj6IR8ID/Jv7bsjOUlOT73yuM67wkAAABgtjNP7vPiegc+85nPFFmbcskFNZBjAABock6mFrK87pa2rG2U5DFdNzLDSpyhyjEwihbmn3PP7NGy08uS7Jdbc3PnPQEAAADMdubJfS6ud+C5z31ukbUpl1xQAzkGAIAm52RqIcvrppfk5Jb1XZMs6LiXmVbiDFWOgVE0N/OyKIszt+X/Ka7Lb3N068/xAAAAAGAmmSf3ubjegV/84hdF1qZcckEN5BgAAJqck6mFLK+b3ya5pmV9YdeNdKDEGaocA6Nqmzw0T8q7W/dOzsdzcY7vuCMAAACA2c08uc/F9Q5stdVWRdamXHJBDeQYAACanJOphSyvm6VrWa/x4nqJM1Q5BkbZXvnn7Jg9W3Z6OSwvya25qfOeAAAAAGYr8+Q+F9c7sMkmmxRZm3LJBTWQYwAAaHJOphayvG5m08X1EmeocgyMsjmZm31zaOZmQWPvuvw2P81bh9AVAAAAwOxkntzn4noHfvOb3xRZm3LJBTWQYwAAaHJOphayvG7aLq7vlOSeXTfSgRJnqHIMjLpt8pA8OZOte6fkE/l9juu4IwAAAIDZyTy5z8X1DjzlKU8psjblkgtqIMcAANDknEwtZPnO3ZDknJb1Gl9bT8qcocoxUIKF+afsuJb/9zgsL86tuanjjgAAAABmH/PkPhfXO/Cf//mfRdamXHJBDeQYAACanJOphSzfudOSrG5Zr/XieokzVDkGSjAnc7Moh2ZeNm7s/Sm/y0/yb0PoCgAAAGB2MU/uG+v1er1hNzEKpqenMzExkampqYyPjw+7HQAAAABgFntvkre1rJ+c5LEd9wJA+U7KR3Jk/rl170X5We6bfbptCAAAAIBZyYvrHZicnCyyNuWSC2ogxwAA0OScTC1k+c4tbVlbkOQxXTfSkRJnqHIMlGTPvCE75XGte4flJVmeGzvuCAAAAGD2ME/u8+L6GjP54vqqVasyd+7cgdbsojblkgtqIMcAANDknEwtZPmO9ZJsk+Ta263vleTE7tvpRIkzVDkGSnNNfpPP5lFZmVsae7vntXlOPjWErgAAAADqZ57c58X1Dnzwgx8ssjblkgtqIMcAANDknEwtZPmOXZDmpfXkzxfXa1XiDFWOgdJsnQflKXlf695p+XQuys867ggAAABgdjBP7vPi+hoz+eL6xRdfnHvf+94DrdlFbcolF9RAjgEAoMk5mVrI8h1bnOTFLevfTvK/um2lMyXOUOUYKNHqrMri7JNLckJjb4vcJ6/OOVmQzYbQGQAAAEC9zJP7vLjegeOOO67I2pRLLqiBHAMAQJNzMrWQ5Tu2dC3rCzvtolslzlDlGCjRnMzNvjk087JJY+/6/D5H5V+G0BUAAABA3cyT+1xc78B973vfImtTLrmgBnIMAABNzsnUQpbvWNvF9Xsn2b7rRjpU4gxVjoFSbZUH5KnZv3Xv9Hwmv8vRHXcEAAAAUDfz5D4X1zuwcuXKImtTLrmgBnIMAABNzsnUQpbXbjrJuS3rNb+2npQ5Q5VjoGR75B9yr+zdundYXpLluaHjjgAAAADqZZ7c5+J6B6688soia1MuuaAGcgwAAE3OydRCltfu1CS9lvXaL66XOEOVY6BkczIn++aQzM+mjb2pXJwj8+YhdAUAAABQJ/PkPhfXO7DrrrsWWZtyyQU1kGMAAGhyTqYWsrx2S9eyXvvF9RJnqHIMlG6rPCBPzftb987IQbkwP+m4IwAAAIA6mSf3ubjegSVLlhRZm3LJBTWQYwAAaHJOphayvHZtF9c3TvKorhvpWIkzVDkGarB7Xpt754mte4fnpbkl0x13BAAAAFAf8+S+sV6v1/aTZ2ed6enpTExMZGpqKuPj4wOtfcstt2TjjTceaM0ualMuuaAGcgwAAE3OydRCltutTrJ1kj/dbv3xSY7vvp1OlThDlWOgFtfld/lMHpkVubmxt2tekefloCF0BQAAAFAP8+Q+L6534MMf/nCRtSmXXFADOQYAgCbnZGohy+1+k+al9SRZ2HUjQ1DiDFWOgVpsmfvlaflg694Z+Vx+myM77ggAAACgLubJfV5cX2MmX1wHAAAAALgzhyZ5Scv6d5L8Vce9ADC7rM7qfDFPye9zTGNvPDvlNTknG2ei+8YAAAAAqIoX1zswOTlZZG3KJRfUQI4BAKDJOZlayHK7pWtZnw0vrpc4Q5VjoCZzMif75pDMz90ae9O5NEfmTUPoCgAAAKAO5sl9XlxfYyZfXL/yyiuz3XbbDbRmF7Upl1xQAzkGAIAm52RqIcvtHpnk3Nut3TfJ74bQS9dKnKHKMVCjU3NgfpDXtu79v/woD8gzOu4IAAAAoHzmyX1eXO/AEUccUWRtyiUX1ECOAQCgyTmZWshy01SSX7asz4bX1pMyZ6hyDNRot7wq982TW/cOz8tyS6Y67ggAAACgfObJfS6ud+DRj350kbUpl1xQAzkGAIAm52RqIctNpyRp+9GYs+XieokzVDkGajQnc/L8fCEbZbPG3nQuy4/zxiF0BQAAAFA28+Q+F9c7cO211xZZm3LJBTWQYwAAaHJOphay3LR0Leuz5eJ6iTNUOQZqdffcJ0/Lh1r3fp5DckF+2HFHAAAAAGUzT+5zcb0Dy5YtK7I25ZILaiDHAADQ5JxMLWS5qe3i+iZJdu66kSEpcYYqx0DNdssrc988pXXv8Lw8y3J9tw0BAAAAFMw8uc/F9Q488IEPLLI25ZILaiDHAADQ5JxMLWT5tlYnObllffck8zvuZVhKnKHKMVCzsYxl33whG2Wzxt4N+UN+nDcOoSsAAACAMpkn97m43oGf/exnRdamXHJBDeQYAACanJOphSzf1vlJplrWF3bdyBCVOEOVY6B2W+TeeXoOaN07K4fmN/l+xx0BAAAAlMk8uW+s1+v1ht3EKJiens7ExESmpqYyPj4+0NpTU1OZmJgYaM0ualMuuaAGcgwAAE3OydRClm/rC0le1rK+JMm+3bYyNCXOUOUYmA166eVLeUZ+l6Mae5tnh7wm52aT3H0InQEAAACUwzy5z4vrHfjkJz9ZZG3KJRfUQI4BAKDJOZlayPJtLV3L+mx6cb3EGaocA7PBWMby/Hw+G2Xzxt4NuTw/yj8NoSsAAACAspgn93lxfY2ZfHEdAAAAAGBtHp7kvNut3S/JhUPoBQDanJHP54i8vHXvb3NEHpzndtwRAAAAACXy4noHJicni6xNueSCGsgxAAA0OSdTC1nuuz7NS+vJ7HptPSlzhirHwGyyS16a++cZrXtH5BVZlj913BEAAABAOcyT+7y4vsZMvrh+/fXXZ4stthhozS5qUy65oAZyDAAATc7J1EKW+36c5Jkt659K8tqOexmmEmeocgzMNlO5NAfmEVme6cbeznlh/le+OISuAAAAAEafeXKfF9c78OUvf7nI2pRLLqiBHAMAQJNzMrWQ5b6la1mfbS+ulzhDlWNgtpnITnlGPtK6d3a+lF/niI47AgAAACiDeXKfi+sdeOITn1hkbcolF9RAjgEAoMk5mVrIct9JLWubJtm560aGrMQZqhwDs9Fj8pI8oPVnhSRH5BW5Odd13BEAAADA6DNP7nNxvQMXXnhhkbUpl1xQAzkGAIAm52RqIct/tjrJKS3reySZ13Evw1biDFWOgdloLGN5Xg7Ogkw09m7MlflhXj+ErgAAAABGm3lyn4vrHdhoo42KrE255IIayDEAADQ5J1MLWf6z85JMt6wv7LqREVDiDFWOgdlqIjvmmflo6945+UrOz2EddwQAAAAw2syT+1xc78C2225bZG3KJRfUQI4BAKDJOZlayPKfLV3L+my8uF7iDFWOgdns0dkvD8yzW/eOyCtzc67tuCMAAACA0WWe3OfiegfOOOOMImtTLrmgBnIMAABNzsnUQpb/bG0X1/fstIvRUOIMVY6B2WwsY3lePpcFmWjs3ZSr8sO8fghdAQAAAIwm8+S+sV6v1xt2E6Ngeno6ExMTmZqayvj4+EBrX3XVVTP2T0vMZG3KJRfUQI4BAKDJOZlayPKfPTTJ+bdbe0CSC4bQy7CVOEOVY4DkrPxnlmS/1r3/m+/kofmrbhsCAAAAGEHmyX1eXO/AwQcfXGRtyiUX1ECOAQCgyTmZWshycl2al9aTZGHXjYyIEmeocgyQPCr/Xx6Y57TufS+vyk25puOOAAAAAEaPeXKfF9fXmMkX1wEAAAAA/tIPkzy7Zf3AJK/uuBcA2BDTuTwH5uG5Jdc39h6Rv8lf52vdNwUAAADASPLiegcmJyeLrE255IIayDEAADQ5J1MLWU6WrmV9tr64XuIMVY4B/mw8O+RZ+UTr3rn5es7LtzvuCAAAAGC0mCf3eXF9jZl8cX3ZsmXZZJNNBlqzi9qUSy6ogRwDAECTczK1kOXkaUl+cru1uyW5Psm8zrsZvhJnqHIM0NdLL1/LvvlNjmjsbZpt8tr8MnfLNkPoDAAAAGD4zJP7vLjegQMPPLDI2pRLLqiBHAMAQJNzMrWY7VleleSUlvU9MjsvrSdlzlBne44B/tJYxvK8HJSNc/fG3s25Oj/I64bQFQAAAMBoME/uc3G9A89//vOLrE255IIayDEAADQ5J1OL2Z7l85Lc0LK+sOtGRkiJM9TZnmOA29s82+dZ+UTr3i/zzfwy/9VxRwAAAACjwTy5z8X1Dpx55plF1qZcckEN5BgAAJqck6nFbM/y0rWs79VpF6OlxBnqbM8xQJud8/d5cNr/IPb7eXVuzB877ggAAABg+MyT+1xc78A222xTZG3KJRfUQI4BAKDJOZlazPYsn7SW9T077WK0lDhDne05BmgzlrE8Nwdlk2zZ2Ls51+QHee0QugIAAAAYLvPkPhfXO7BgwYIia1MuuaAGcgwAAE3OydRitme57cX1ByXZqutGRkiJM9TZnmOAtdk82+VZ+WTr3nn5r5ybb3bcEQAAAMBwmSf3ubjegQsvvLDI2pRLLqiBHAMAQJNzMrWYzVm+NslvWtYXdt3IiClxhjqbcwxwZx6Zv81Dsqh17wd5bW7MH7ttCAAAAGCIzJP7XFzvwD777FNkbcolF9RAjgEAoMk5mVrM5iyfvJb12X5xvcQZ6mzOMcCdGctYnpPPZJNs2di7Odfk+3lNeukNoTMAAACA7pkn97m43oEvfelLRdamXHJBDeQYAACanJOpxWzO8tK1rM/2i+slzlBnc44B1sXm2S7Pzqdb936Vb+fcfKPjjgAAAACGwzy5b6zX63nOIMn09HQmJiYyNTWV8fHxgdZevXp15syZmX9GYCZrUy65oAZyDAAATc7J1GI2Z/kpSY6+3drmSf6UZG737YyMEmeosznHAOuql16+mb/Or/Kdxt4m2SqvzS+zWbYdQmcAAAAA3TFP7vPfQgfe9773FVmbcskFNZBjAABock6mFrM1y6uSnNqyvkdm96X1pMwZ6mzNMcBdMZaxPCcHZpNs1dhblmvzvbw6vXhjCwAAAKibeXKfF9fX8OI6NZELaiDHAADQ5JxMLWZrln+R5NEt629L8p5uWxk5Jc5QZ2uOAdbHuflG/it/07r3gnw1j8zfdtwRAAAAQHfMk/v8t9CB/fffv8jalEsuqIEcAwBAk3MytZitWV66lvWFnXYxmkqcoc7WHAOsj4fn/+Rh+evWvR/kdbkhV3bcEQAAAEB3zJP7vLi+xky+uH7JJZfkXve610BrdlGbcskFNZBjAABock6mFrM1yy9K8sWW9WuTbNlxL6OmxBnqbM0xwPq6MX/MgXl4bs41jb0HZ9/8Tb6bsYwNoTMAAACAmWWe3OfF9Q4cc8wxRdamXHJBDeQYAACanJOpxWzNctuL6w+OS+tJmTPU2ZpjgPW1We6R5+TA1r1f57Cck6923BEAAABAN8yT+1xc78D973//ImtTLrmgBnIMAABNzsnUYjZm+ZokF7Ss79V1IyOqxBnqbMwxwIZ6eP53Hpb/3br3g/xDbsgVHXcEAAAAMPPMk/tcXO/A8uXLi6xNueSCGsgxAAA0OSdTi9mY5bbX1pNkYaddjK4SZ6izMccAg/CcfDqbZpvG+i35U47IK9NLbwhdAQAAAMwc8+Q+F9c7cPXVVxdZm3LJBTWQYwAAaHJOphazMcsurt+xEmeoszHHAINwt2yT5+YzrXu/yRE5O1/uuCMAAACAmWWe3Ofiegd22WWXImtTLrmgBnIMAABNzsnUYjZmue3i+niSh3XdyIgqcYY6G3MMMCgPywvy8Pzf1r0f5vWZzuUddwQAAAAwc8yT+1xc78Dhhx9eZG3KJRfUQI4BAKDJOZlazLYsr0xyasv6Y2NA+99KnKHOthwDDNqz86ncLfdorN+S6/O9vDK99IbQFQAAAMDgmSf3jfV6PVOfJNPT05mYmMjU1FTGx8cHWnvZsmXZZJNNBlqzi9qUSy6ogRwDAECTczK1mG1Z/nmStrdU3pHkXR33MqpKnKHOthwDzIRf5bv5Rv5X696i/Gcenf+v444AAAAABs88uc+DPh044IADiqxNueSCGsgxAAA0OSdTi9mW5aVrWV/YaRejrcQZ6mzLMcBMeGj+Ko/I37bu/TCvz3T+0HFHAAAAAINnntznxfU1ZvLFdQAAAABg9nphki+3rF+X5O4d9wIAo+bmXJtP5+G5KVc19h6YZ+fv8r2MZWwInQEAAAAwaF5c78Dk5GSRtSmXXFADOQYAgCbnZGox27Lc9uL6Q+PS+l8qcYY623IMMFM2zVZ5bj7bundBfpCz8p8ddwQAAAAwWObJfV5cX2MmX1y/6qqrsu222w60Zhe1KZdcUAM5BgCAJudkajGbsvzHJG3/SV+S5Asd9zLKSpyhzqYcA3Th2/l/OSdfaawvyERek3MzkR2H0BUAAADAhjNP7vPiegcOO+ywImtTLrmgBnIMAABNzsnUYjZl+eS1rC/stIvRV+IMdTblGKALz8onslm2a6wvz1SOyMvTi7e4AAAAgDKZJ/e5uN6BXXfdtcjalEsuqIEcAwBAk3MytZhNWV66lnUX12+rxBnqbMoxQBc2zZZ5bg5q3fttfpSf59COOwIAAAAYDPPkPhfXO3DVVVcVWZtyyQU1kGMAAGhyTqYWsynLbRfXJ5I8tOtGRlyJM9TZlGOArjwkz8/O+X+tez/OP2Uql3bcEQAAAMCGM0/uc3G9A7feemuRtSmXXFADOQYAgCbnZGoxW7K8IsmpLet7xmD29kqcoc6WHAN07Zn5eDbL9o315ZnO4Xl5eukNoSsAAACA9Wee3OfPRzpw//vfv8jalEsuqIEcAwBAk3MytZgtWT47ybKW9YVdN1KAEmeosyXHAF3bNFvmeflc696F+XHOzBc67ggAAABgw5gn97m43oFjjz22yNqUSy6ogRwDAECTczK1mC1ZXrqWdRfXm0qcoc6WHAMMw4Pz3Dwq/1/r3o/zxlyfSzruCAAAAGD9mSf3jfV6PT9PL8n09HQmJiYyNTWV8fHxgda+/vrrs8UWWwy0Zhe1KZdcUAM5BgCAJudkajFbsvz3Sb56u7WxJH9KMtF9OyOtxBnqbMkxwLAsy59yYB6RG3J5Y+9+eVpemB9nLGND6AwAAADgrjFP7vPiegc+9alPFVmbcskFNZBjAABock6mFrMly20vrj8sLq23KXGGOltyDDAsm+TueV4+17r3uxyVM/P5jjsCAAAAWD/myX1eXF9jJl9cBwAAAABml6uSbNey/rIkB3fcCwCUbElenLOyuLG+UTbLa3Jutsi9u28KAAAAgPXixfUOTE5OFlmbcskFNZBjAABock6mFrMhy22vrSfJwk67KEeJM9TZkGOAUfCMfDSb556N9VtzYw7Py9KLN7oAAACA0Wae3OfF9TVm8sX1qampTEzMzA8AnsnalEsuqIEcAwBAk3MytZgNWX5Lkg+2rJ+X5KEd91KCEmeosyHHAKPigvwwX8mzW/eem89mt7yy444AAAAA1p15cl91L67ffPPNOeSQQ3LEEUfkpS99aVavXj3slvLFL36xyNqUSy6ogRwDAECTczK1mA1ZbntxfYskD+64j1KUOEOdDTkGGBUPzLPymLykde/IvCl/yu+7bQgAAADgLjBP7qvu4vqvfvWrXHjhhXnuc5+bc845J8uXLx92S3nSk55UZG3KJRfUQI4BAKBv9erktz9O7r/PgqzKymG3Axus9s98K5Kc3rK+ZyocyA5IiTPU2nMMMGqekY9kPDs21m/NjTk8L83qDP8xKwAAAIA25sl91f05ya677pp//Md/zKc//em8/vWvzyabbDLslnLBBRcUWZtyyQU1kGMAAOhbetCN+fIzk/982YU55qrPDLsd2GC1f+b7RZJlLesLu26kICXOUGvPMcCo2TgTeX4+37p3UY7OGTmo444AAAAA1o15cl91F9eTZJtttsnrXve6fOUrX8n5558/7HZm9PL8KFzMZ/TIBTWQYwAA+LPTLzoqR715LEky/9Qn5fiH/V1O/Nql6fWG3BhsgNo/8y1dy7qL62tX4gy19hwDjKIH5Bl5TF7aundk3pw/5aKOOwIAAAC4c+bJfdVdXP/0pz+dgw7684sK8+bNy4UXXtj665YvX57p6enb/DVTttpqqyJrUy65oAZyDAAAyU9Wvz3fe8m85Ka7JUk2yVbJdVvlqL/bKT94/eohdwfrr/bPfG0X18eSPLbrRgpS4gy19hwDjKpn5ICMZ8fG+orclMPy0qyOczIAAAAwWsyT+9b54vrXvva1XHjhhfngBz+Y5cuXZ3JyMkkyOTmZyy+/PF/4whdy2mmn5cc//nG+853v5LzzzssnPvGJTE9P3+bXXnfddfn0pz+ds88+O4cffni+//3v58wzz8xBBx2Uq6+++ja/9uabb84BBxyQX//61/nmN7+Zn/70pznppJOyePHiXHrppbf5tatWrcr++++fBz/4wTnrrLOy//77Z3x8PFNTU7ngggvyoQ99KLfccsv//J5nPetZmZiY+J+/dtpppyTJeeedl09+8pOZmpq6Tf3rr78+n/rUp3LOOedkyZIl+cEPfpAzzjgjn/vc53LVVVfd5tcuW7YsBxxwQC644IJ84xvfyNe//vWceOKJ+eIXv5hLLrkk733ve7N69epMTk5m9erVee9735tLLrkkX/ziF3PiiSfm6KOPzje+8Y1ccMEFOeCAA7Js2bLb1L/qqqvyuc99LmeccUa+9KUvZcmSJTnnnHPyqU99Ktdff/1tfu3U1FQ++clP5txzz813v/vd/OhHP8ppp52Wgw8+OFdeeeVtfu0tt9ySD33oQ7ngggvy9a9/Pcccc0xOOOGEfOlLX8rFF1+c/fffP6tWrbrN77n00kuzePHinHTSSfnpT3+ab37zm/n1r3+dAw44IDfffPNtfu3VV1+dgw46KGeeeWa+//3v5/DDD8/ZZ5+dT3/607nuuutu82unp6fziU98Iuedd16+853v5Mc//nFOO+20fOELX8jll19+m1+7fPnyfPCDH8yFF16Yr33taznmmGNy/PHH58tf/nJ+//vf5/3vf39Wrlx5m99z2WWX5dBDD83JJ5+co446Kt/61rdy/vnn56Mf/WhuvPHG2/zaa665Jp/97Gdz1lln5Xvf+16OOOKInHXWWfnMZz6Ta6+99ja/9oYbbsjHPvaxnHfeefn2t7+dI488MqecckoOOeSQRt8rVqzIBz7wgfzud7/LV77ylRx33HE57rjj8pWvfCW/+93v8oEPfCArVqxo/L12yCGH5JRTTsmRRx6Zb3/72znvvPPysY99LDfccMP//Nr3vve9ufbaa/OZz3wmZ511Vo444oh873vfy1lnnZXPfvazueaaa25T98Ybb8xHP/rRnH/++fnWt76Vo446KieffHIOPfTQXHbZZbf5tStXrsz73//+/P73v8+Xv/zlHH/88TnmmGOK+R5x8cUX50tf+lJOOOGEHHPMMfn617/e+j1icnIyV155ZQ4++OCcdtpp+dGPfpTvfve7Offccwf+PeLoo4+ese8RP/jBD4r9HrF48WLfI2boe8Tk5KTvEb5HFP89wjnC9wjfI3yP8D3C94hZ8z3igBfk1GN+matyTs7PkvwiX8rlOSNn5HO5+vGf8z3C94hiv0e8973vrfp7xEl//sXJqlXJ/vsnF1+ce37pSznbOWKt3yOWLFkyY98jPv/5z8/I94ivfOUrvkc4R4z2OaKi7xHOEb5H/OX3iA9PfjJPufFTWfrR5Jrzk19+K7nwqOSyk5PvHvqzfP+y9/ke4XuE7xGz+HuEc4TvEb5H+B7he4TvEb5H+B7he4TvEb5H+B4xit8jvvWtb1X/PWJdjfV6s/MHSy9fvjzLly//n38/PT2dnXbaKVNTUxkfHx/o17ryyiuz3XbbDbRmF7Upl1xQAzkGAGC2u+53yWcemay4ub92Y67MZtkuecVBmXvQ6/OKnJFt84jhNQnrqebPfFck2aFl/RVJDuq4l5KUOEOtOccAJTg8r8iZaf6h6PxsmlfnnGyZ+w2hKwAAAIAm8+S+dX5xvTYLFizI+Pj4bf6aKZ///OeLrE255IIayDEAALPZ6tXJYS++7aX1JDkzn0/udXHyoTdnVW7NkuyXVVkxnCZhA9T8mW/pWtYXdtpFeUqcodacY4ASPD0fzkTu1VhfkZtzWF6S1Vk9hK4AAAAAmsyT+6p7cX1sbKx1/c7+Y05PT2diYmJGXlwHAAAAuCtO+WTyw9evZfOopyZP/en//NsnZzJPyL930xhwp96c5MMt6+cneXDHvQBA7S7MUflSnt6696x8Mo/N6zruCAAAAIA7Ut2L671er/WvYZqcnCyyNuWSC2ogxwAAzFbXXZj85F/b947b/fm3ubSeJMfkXbkq53TQGQxOzZ/52l5c3zLJg7pupDAlzlBrzjFAKe6fp2XXvLJ17yd5S67LhR13BAAAANBkntxX3Yvr/+2yyy7LRz/60RxwwAHr9Otn8sX1W265JRtvvPFAa3ZRm3LJBTWQYwAAZqPVq5PF+ySXHN/cm7h3L6tP2yU3bHNWY2/77JKX5eTMzfwZ7xEGodbPfLcmGU+y/Hbrz07y/e7bKUqJM9RacwxQmuW5IQfmkZnKxY29e+cJeVF+ljn1veUFAAAAFMQ8ua/KKU2v18thhx2Wa6+9dtitJEk++clPFlmbcskFNZBjAABmo1M/2X5pPUn2PWQsf1r8+Iy1jHOuyJk5Ie+f4e5gcGr9zHdWmpfWk2Rhx32UqMQZaq05BijNgmyeffOF1r2Lc1xOzac67ggAAADgtsyT+6q8uH7UUUflyU9+8rDb+B+LFi0qsjblkgtqIMcAAMw2116Q/OTf2vd2e3VyvycnL1r0+uyVN7f+mmPznlyZs2ewQxicWj/zLV3Luovrd67EGWqtOQYo0f3ylOyWV7Xu/ST/mmvz2447AgAAAOgzT+6r7uL6hRdemG233TabbLLJsFv5H2eccUaRtSmXXFADOQYAYDZZvTo57CXJymXNvS3ukzztg3/+12eccUb2yTuzTR7WrJEVWZL9siorZrZZGIBaP/O1XVyfk2SPrhspUIkz1FpzDFCqp+WD2SL3aayvzLIclhdndVZ33xQAAABAzJP/UnUX188666xcdNFFOfLII3PJJZfk7LOH/9LYdtttV2RtyiUX1ECOAQCYTU75RHLJCe17+x6SLNjsz/96u+22y/xsnEVZnLHMbfzaK/PzHJ/9Z7BTGIxaP/O1XVx/RJLNu26kQCXOUGvNMUCpFmTz7JtDWvcuyQk5JZ/ouCMAAACAPzNP7qvu4voLXvCCPOc5z8myZcuyfPny9Hq9YbeUefPmFVmbcskFNZBjAABmi2t+k/z039r3dn9tct8n9f/9f5+T75nd87j8S+vvOS7vyRU5a8BdwmDV+Jnv8iSXtKwv7LqRQpU4Q60xxwClu2+elN3zmta9n+atuTYXdNwRAAAAgHnyX6ru4nqSzJ8/P294wxty4okn5lGPetSw28lFF11UZG3KJRfUQI4BAJgNVq9KDntxsvKW5t4W902e+v7brv3lOXmf/Ee2ycObNbMyS7JfVubWQbcLA1PjZ76219aTZK9OuyhXiTPUGnMMUIOn5gPZIvdtrK/MsizJi7M6q4bQFQAAADCbmSf3VXlxfdQ84QlPKLI25ZILaiDHAADMBid/PLn0pPa9fQ9JFmx227W/PCfPy4IsyuKMZW7j916VX+T4vG+QrcJA1fiZby1/K3txfR2VOEOtMccANViQzbJvDmnduzQn5uR8vOOOAAAAgNnOPLnPxfUOfPWrXy2yNuWSC2ogxwAA1O6aXydH/3v73h6vS+67T3P99ufke2a3PD5vaa1xfN6bK/LzDWsSZkiNn/naXlzfOskDum6kUCXOUGvMMUAt7pt9skde17p3dP491+TXHXcEAAAAzGbmyX1jvV6vN+wmRsH09HQmJiYyNTWV8fHxgdZetWpV5s5tvn426rUpl1xQAzkGAKBmq1clh+ydXNZy0/Xu90tefXay0d2ae23n5JVZns9lt/wx5zZ+/bbZOS/PaZmXjQbVOgxEbZ/5licZT3Lr7dafm+SI7tspUokz1NpyDFCbW3NTPpOd86f8rrG3YxbmJTk+c1p+ehEAAADAoJkn93lxvQP7779/kbUpl1xQAzkGAKBmSz/afmk9SfY9tP3SetJ+Tp6XBVmUxRlruXRzVc7OcZnckFZhRtT2me/naV5aT5KFXTdSsBJnqLXlGKA2G+Vu2TeHtO5dlqU5OR/rtiEAAABg1jJP7vPi+hoz+eI6AAAAwH+7+vzks49OVi1v7j329cmzPr5+dY/O21svqY9lbl6eU7NDdlm/wsCd+miSN7asH53kSR33AgDc1g/zhpySTzTW52ZBXpWzsk0eMoSuAAAAAGYnL653YHJy5l42m8nalEsuqIEcAwBQo9WrkiX7tV9av/v9k6e8745//x2dk5+Qt+ceeWRjvZdVWZL9sjItXxSGpLbPfG0/QGFOkt27bqRgJc5Qa8sxQK2ekvfl7rl/Y31VluewvDirs2oIXQEAAACziXlynxfX15jJF9cvvfTS7LTTTgOt2UVtyiUX1ECOAQCo0QkfTH7ylpaNseTFxyb33vuOf/+dnZMvz5n5fB6b1VnZ2Ns7/56ntLzIDsNQ22e+nZJcdru1Ryf5efetFKvEGWptOQao2cU5PofmiUmafyz6tHwwj8ubu28KAAAAmDXMk/u8uN6Bn/70p0XWplxyQQ3kGACA2lz9q+Rn72jf2/MNd35pPbnzc/IO2SV7562teyfk/flDTr/zLwIdqOkz32VpXlpPkoVdN1K4EmeoNeUYoHb3zt55bF7fund03p6r86uOOwIAAABmE/PkPhfXO/CgBz2oyNqUSy6ogRwDAFCTVSuTJfslq5Y397Z8YPLk965bnXU5J++df8+2eVRjvZdVWZL9sjItTUDHavrMt3Qt6y6u3zUlzlBryjHAbPCUvC9b5gGN9VVZniXZL6tafmoRAAAAwCCYJ/e5uN6BZcuWFVmbcskFNZBjAABqsvSA5A+ntmyMJYsOTTbadN3qrMs5eV42yqIszpzMa+xdnV/m2Lx73b4YzKCaPvO5uD4YJc5Qa8oxwGywUTbNoixOMtbY+0NOzdIc0HlPAAAAwOxgntzn4noHrr322iJrUy65oAZyDABALf74y+Rn72jfW/hPyb0et+611vWcvH0enSfkba17J+T9+UNOW/cvCjOgps98bRfXt05y/64bKVyJM9SacgwwW9wrj8ue+cfWvZ/lHfljzuu2IQAAAGBWME/uc3G9A496VPPHc5dQm3LJBTWQYwAAarBqZbJkv2TVrc29rR6UPHnyrtW7K+fkvfPWbJdHN9Z7WZ0l2S8rcstd++IwQLV85rslyZkt63ul7S1X7kiJM9Racgww2zw5k9kyD2ysr8qtWZL9siorh9AVAAAAUDPz5D4X1zvwve99r8jalEsuqIEcAwBQg5M+lFx+esvGWLLvocn8Te5avbtyTp6b+VmUxZmTeY29q3Nejs277toXhwGq5TPfmUla/rmULOy6kQqUOEOtJccAs81G2TSLsjht/5jZ5TktJ+XDnfcEAAAA1M08uW+s1+v1ht3EKJiens7ExESmpqYyPj4+0No333xzNt1004HW7KI25ZILaiDHAACU7qpzk8/t2v7a+sJ/Tp6xHvdh1uecfEzenWPyH431sczJS7M0O2aPu94IbKBaPvMdkORNLevHJHlit60Ur8QZai05Bpitfpw3ZWkOaKzPzUZ5Rc7ItnnEELoCAAAAamSe3OfF9Q585CMfKbI25ZILaiDHAACUbNWKZMl+7ZfWt3pw8uT3rF/d9Tkn751/y3Z5TGO9l9VZkv2yIresXzOwAWr5zLe0ZW1ukt26bqQCJc5Qa8kxwGz15LwnW+XBjfVVuTWH5cVZlZVD6AoAAACokXlynxfX15jJF9cBAACA2eW49yZHv625PjYnecmJyU57dtvPVTknB2XXrM6Kxt7j8i95Wj7QbUNQgV6SHZNcfrv1XZKc0X07AMB6uDRLc0gen15WN/aenPfmCXnrELoCAAAAqJcX1zswOTlZZG3KJRfUQI4BACjVVeckx7yrfW/hP2/YpfX1PSdvm0fmiXlH695J+XAuzcnr3xSshxo+812a5qX1JFnYdSOVKHGGWkOOAWa7nbIwC/PPrXvH5J25Kud03BEAAABQI/PkPi+urzGTL65fffXV2WabbQZas4valEsuqIEcAwBQolUrks/vmVxxZnNv64ckr/x5Mn/j9a+/IefkVVmRz2fPXJFmc1vnIXllfp752YDm4C6o4TPfN5L8Tcv6l5P8fce91KDEGWoNOQYgWZFbclAek2tyfmNv++ySl+XkzM38IXQGAAAA1MI8uc+L6x34zne+U2RtyiUX1ECOAQAo0QkfaL+0PjYnWbR4wy6tJxt2Tp6b+VmU/8yclks31+T8/GwtL7LDTKjhM9/Stax7cX39lDhDrSHHACTzs3EWZXHGWv7Y9IqcmRPygSF0BQAAANTEPLnPxfUO7L777kXWplxyQQ3kGACA0lx5dnLsu9v39npzsuNjN/xrbOg5eds8Ivvkna17J+XDuXStV3FhsGr4zNf2d8s9kty360YqUeIMtYYcA/BnO+ax2Stvat07Nu/OlTm7444AAACAmpgn97m43oErrriiyNqUSy6ogRwDAFCSVSuSJfslq1c097Z5WLLPOwfzdQZxTn5c/iU7ZLeWnV6WZL+syLIN/hpwZ0r/zHdLkp+3rC9MMtZxL7UocYZaeo4BuK198q5snYc21ldnRZZkv6xKy2EfAAAAYB2YJ/e5uN6BVatWFVmbcskFNZBjAABKcvz+yZUtt1jH5iT7HprM33gwX2cQ5+S5mZdFWZy52aixd21+k6Pz9g3+GnBnSv/Md0bSenVtYdeNVKTEGWrpOQbgtuZn4yzK4oy1/PHplfl5js/+Q+gKAAAAqIF5cp+L6x24z33uU2RtyiUX1ECOAQAoxRVnJce9p33vcW9JdtxjcF9rUOfke+Th2Sfvat1bmo/kkpw0kK8Da1P6Z76la1l3cX39lThDLT3HADTtmD3yuPxL695xeU+uzC867ggAAACogXlyn4vrHTj++OOLrE255IIayDEAACVYeWuyZL9k9crm3jYPT/b5j8F+vUGek/fKm3LPtN2q72VJ9sutuXlgXwtur/TPfG0X1+cl2a3rRipS4gy19BwD0G6fvDPb5GGN9dVZmSXZL6taf+4KAAAAwNqZJ/eN9Xq93rCbGAXT09OZmJjI1NRUxsfHB1r7uuuuy5ZbbjnQml3UplxyQQ3kGACAEvzsncmxLQ+Xj81NXnZycs8B32Id9Dn5jzkvB+UxWZVbG3t75p/yzHxkYF8L/lLJn/l6SXZIcuXt1ndLclr37VSjxBlqyTkG4I79Iafl81mYXpo/xnufvDP7ZMD/hCoAAABQNfPkPi+ud+DAAw8ssjblkgtqIMcAAIy6K85Kjn9v+97j3zL4S+vJ4M/J98jD8qS8u3Xv5HwsF+eEgX49+G8lf+a7OM1L60mysOtGKlPiDLXkHANwx+6Z3fP4vKV177hM5oqc1W1DAAAAQNHMk/u8uL7GTL64DgAAANRl5a3JwbsnV53d3LvHI5JXnJ7MW9B9X+tjVVbmkDw+f8gpjb0t84C8Kr/IRtl0CJ3BaPpakr9rWf9qkr/tuBcAYOaszPJ8Lrvljzm3sbdtds7Lc1rmZaMhdAYAAABQLi+ud2BycrLI2pRLLqiBHAMAMMqOm2y/tD42N1m0eOYurc/EOXlu5mVRFmdumk1fl9/mp3nrwL8mlPyZb+la1r24vmFKnKGWnGMA7ty8LMiiLM5Y5jb2rsrZOT5r+fFLAAAAALdjntznxfU1ZvLF9enp6Rl7xX0ma1MuuaAGcgwAwKi6/Mzk4D2S3qrm3hPeljz5PTP3tWfynHxiPpSj8i8tO2N5cY7NvbP3jHxdZqeSP/PtnuT0261tl+TyJGPdt1ONEmeoJecYgHX307yt9ZL6nMzLy3JKdsguQ+gKAAAAKIl5cp8X1zuwePHiImtTLrmgBnIMAMAoWnlrsmS/9kvr93hk8oS3z+zXn8lz8sK8MTtmz5adXpbkxbk1N83Y12b2KfUz37IkZ7WsL4xL6xuqxBlqqTkG4K55Yt6ee+SRjfXVWZkl2S8rc+sQugIAAABKYp7c5+J6B5761KcWWZtyyQU1kGMAAEbRce9J/nhOc33OvGTR4mTeRjP79WfynDwnc7MoizMvGzf2/pQL89O8dca+NrNPqZ/5Tk+ysmV9YdeNVKjEGWqpOQbgrpmXBVmUxRnL3MbeH3NOjssM/sglAAAAoArmyX0urnfg/PPPL7I25ZILaiDHAACMmj+cnhy/f/ve3m9Ndthl5nuY6XPy1nlwnpzJ1r1T8on8PsfO6Ndn9ij1M9/Stay7uL7hSpyhlppjAO66HbJL9l7LP8h5fPbP5Tmj444AAACAkpgn97m43oG73e1uRdamXHJBDeQYAIBRsnJ5smS/pLequbfto5K9/72bPro4J++Zf8xO2at177C8JLfmphnvgfqV+pmv7eL6vCS7dt1IhUqcoZaaYwDWzxPytmybnRvrvazKkuyXlVk+hK4AAACAEpgn97m43oEtt9yyyNqUSy6ogRwDADBKjn13cvUvm+tz5iWLFifzNuqmjy7OyXMyN/vm0MzLxo29P+V3+Un+dcZ7oH4lfubrpf3i+mOSbNJxLzUqcYZaYo4BWH/zslEWZXHmZF5j7485N8fm3UPoCgAAACiBeXKfi+sdOPvss4usTbnkghrIMQAAo+IPpyUnfKB97wlvS7Z/dHe9dHVO3joPypPz3ta9U/OpXJRjOumDepX4me/3Sa5qWV/YcR+1KnGGWmKOAdgw2+cx2TvtP27phHwgf8jpHXcEAAAAlMA8uW+s1+v1ht3EKJiens7ExESmpqYyPj4+0NqXX355dthhh4HW7KI25ZILaiDHAACMghW3JJ/bNbn6vObedo9OXn5qMnd+d/10eU5enVU5NE/MpTmxsbdF7pNX55wsyGad9EJ9SvzM99Ukf9+y/rUkf9NxLzUqcYZaYo4B2HArc2sOzh65Kr9o7G2Th+eVOSPzsmAInQEAAACjyjy5z4vrHTjkkEOKrE255IIayDEAAKPg2He1X1qfMy9ZtLjbS+tJt+fkOZmbRTk087JJY+/6/D4/yVs664X6lPiZb+la1vfqtIt6lThDLTHHAGy4edkoi7I4czKvsXd1fplj8q4hdAUAAACMMvPkPi+urzGTL64DAAAA5bns1OQLC5Pe6ubePu9K9nlH9z0Nw9J8LD/OP7Xu/X/5ae6XJ3fcEQzHrknOvN3aDkkuSzLWfTsAwJAdk3fnmPxHY30sc/LSLM2O2WMIXQEAAACMNi+ud2BycrLI2pRLLqiBHAMAMEwrbkmW7Nd+aX27xyR7/1vnLSUZzjn5sXl97pXHt+4dnpdmeW7ouCNqUNpnvpuS/KJlfWFcWh+UEmeopeUYgMHaO/+W7fKYxnovq7Mk+2VFbhlCVwAAAMAoMk/u8+L6GjP54vry5cuzYMGCgdbsojblkgtqIMcAAAzTUW9JTvxgc33O/OQVpyfb7dx9T8nwzsnX5rf5THbOyixr7O2WV+W5+UznPVG20j7zHZtkn5b1Dyf5525bqVaJM9TScgzA4F2Zs/O57JbVWdHYe1zekqfl/UPoCgAAABg15sl9XlzvwMc//vEia1MuuaAGcgwAwLBcenJy0ofb9574juFdWk+Gd07eKg/IU9dy6eb0fDa/y0877ojSlfaZb+la1hd22kXdSpyhlpZjAAZvu+ycJ+btrXsn5UO5LKd03BEAAAAwisyT+7y4vsZMvrh+4YUX5v73v/9Aa3ZRm3LJBTWQYwAAhmHFLclBj0muOb+5t/0uyctOTubO776v/zbMc/LqrM5/5km5OMc19iZy77wm52RBNh9CZ5SotM98+yY5/HZr85NMJ9m4+3aqVOIMtbQcAzAzVmVFPp89c0XObOxtnYfklfl55jsxAAAAwKxmntznxfUOnHrqqUXWplxyQQ3kGACAYfjZO9ovrc+ZnyxaPNxL68lwz8lzMif75pDMz6aNvalcnCPz5iF0RalK+szXS/uL67vEpfVBKnGGWlKOAZg5czM/i7I4c9L8sHBNzs/P8o4hdAUAAACMEvPkPhfXO7D99tsXWZtyyQU1kGMAALp26dLkpA+37+3zzmTbR3baTqthn5O3zP3z1Hygde+MHJQLc1THHVGqYWf5rvhdkqtb1hd23UjlSpyhlpRjAGbWtnlk9sl/tO4tzQG5NCd33BEAAAAwSsyT+1xc78DcuXOLrE255IIayDEAAF1asSxZsl/+/LTy7eywW/K4f+m6o3ajcE7ePa/JfbJP695heWluyXS3DVGkUcjyump7bT1xcX3QSpyhlpRjAGbe4/KWbJ9dG+u9rM6S7JcVWTaErgAAAIBRYJ7c5+J6By6++OIia1MuuaAGcgwAQJeOfnty7W+a63M3ShYtTubO67ylVqNwTp6TOXl+vpD5uVtjbzqX5si8aQhdUZpRyPK6cnG9GyXOUEvKMQAzb27mZVEWZ242auxdm1/nZ3nHELoCAAAARoF5cp+L6x14/OMfX2RtyiUX1ECOAQDoyiUnJUs/0r63zzuTezy803bu0Kick7fM/fK0fKB178wcnN/myI47ojSjkuV10XZx/Z5Jduq6kcqVOEMtKccAdGPbPCL75J2teyflgFySk7ptCAAAABgJ5sl9Lq534Otf/3qRtSmXXFADOQYAoAu33pws2S9Jr7m3w+7JXm/uuqM7Nkrn5N3y6twnT2rdOzwvzS2Z6rgjSjJKWb4jNyU5u2Xda+uDV+IMtZQcA9CtvfLm7JDdW3Z6OSwvzoos67wnAAAAYLjMk/vGer1eyx/Nzj7T09OZmJjI/8/efUbJVZ35Gn9KOXYLkYPIYHJOIphgMkqM44yTSCbZ2MZjGMdxaGyCMVlCgIIxXBswoACIbBElchAiZ4RAIAl1K4fuuh8QU9DnNChU7VP71PNbaz54v/Lu9876z7mbV5vdjY2N1NXVlXXvpUuX0qFDZX6neCX3VrzMhfLAHEuSJCmE20+HSRck19t3ghOfgrW2Cd/T56m2c/JHvMEQtmcJ8xK1nTmOgVyVQVeKQbVluS0TIPVfz/gr8NOwreRejDPUWHIsSQrvA55nGDvTzOJErS+ncxjnZ9CVJEmSJEnKivPkEl9cD+Dss8+Ocm/Fy1woD8yxJEmSKu2tB2HShem1A/9QfZfWofrOyauxCYdyXmrtKYbzCrcH7kixqLYst+XhNtZ9cb38YpyhxpJjSVJ4a7ENB/KH1NpELuBtHgrckSRJkiRJypLz5BJfXF+mki+uS5IkSZKk6rJ4Ply+I8x6NVlbfw849iFo76MHy6WFFv7OIbzBvYlaHRtwCs/RhfoMOpNWXX/gllZrnYAmoHP4diRJUkSaWcoI9uFdHk3UerM5J/EMneiWQWeSJEmSJEnZ8cX1ABoaGqLcW/EyF8oDcyxJkqRKuueX6ZfW23eGQaOq99J6NZ6T29GOAQynEz0StSamcgenZ9CVql01Zrm1IjApZX1XvLReCTHOUGPIsSQpO+3pwCBG0T7l5DCLV7mXX2XQlSRJkiRJyoLz5BJfXF+mki+uT506lQ022KCse4bYW/EyF8oDcyxJkqRKeesBGLk/H99KbeWQc2GfnwdvablV8zn5cYZxCyel1v6LW9mSIwN3pGpWzVn+xCvAlinrpwPnB+6lFsQ4Q40hx5Kk7D3IudzNmSmVAsdwHxuxX/CeJEmSJElSWM6TS3xxPYC77roryr0VL3OhPDDHkiRJqoTF82D0MaReWt9gL+hb5Y+DV/M5eVd+wKYcnFobxwksYHbYhlTVqjnLn5jYxnrfoF3UjhhnqDHkWJKUvb35GRuwV0qlyBiOZTHzgvckSZIkSZLCcp5c4sX1ALbeeuso91a8zIXywBxLkiSpEu75JXz0WnK9fWcYOBLatQ/f04qo5nNygQIDuIpO9EzU5jCNO/hpBl2pWlVzlj/hxfWwYpyhxpBjSVL22tGegYykPZ0TtVm8yj38MoOuJEmSJElSSM6TS7y4HsCcOXOi3FvxMhfKA3MsSZKkcnvzPnjk4vTaV86CNbcK28/KqPZzci824jDOT609zShe5tbAHalaVXuWIf3ieh9g/dCN1IgYZ6gx5FiSVB3WZCsOoiG19ggX8yb3B+5IkiRJkiSF5Dy5xIvrAcyePTvKvRUvc6E8MMeSJEkqp8XzYMyx6bU+e8NePwnazkqL4Zy8C8ezGYem1sZyAgv4KHBHqkbVnuU5wOSUdV9br5wYZ6jVnmNJUnXpy0/ZoI3TxBiOYTHzAnckSZIkSZJCcZ5c4sX1ALbffvso91a8zIXywBxLkiSpnO7+H/jo9eR6hy4wcCS0ax++p5URwzm5QIH+XEkneiZqc3mP2/lJ+KZUdao9y48BLSnrXlyvnBhnqNWeY0lSdWlHewYxkg50SdQ+4nXu5hcZdCVJkiRJkkJwnlzixfUAxo8fH+Xeipe5UB6YY0mSJJXLGxPg0UvTawedBWtsGbSdVRLLObkXG3IYf02tPcPVvMS4wB2p2lR7lie2se7F9cqJcYZa7TmWJFWfNfgSB3FWau1RLuENJoRtSJIkSZIkBeE8uaRQLBaLWTdRDZqamqivr6exsZG6urqy7j137lx69OhR1j1D7K14mQvlgTmWJElSOSyaC0N3gNlvJGt99oFj7ovntXWI65xcpMg1HMFr3JGo9WBdTuE5utE7g85UDao9y/2AW1utdQaagE7h26kJMc5Qqz3HkqTq1EIzI9mfd3goUevFJpzMs3TG//9FkiRJkqQ8cZ5c4ovrAVx44YVR7q14mQvlgTmWJElSOdx9Zvql9Q5dYdDIuC6tQ1zn5AIFBnAVnUk+EDCX97idH2fQlapFNWe5SPqL67vhpfVKinGGWs05liRVr3a0ZyAj6ECXRG02b3A3/5NBV5IkSZIkqZKcJ5f44voylXxxXZIkSZIkhff6vXD1V9Jrh10AfX8StJ2a9SQjGMtxqbVvMYatGBC4I+nzvQRslbL+38B5gXuRJEn5NZELuIPTU2vf51424cDAHUmSJEmSJFWeL64H0NDQEOXeipe5UB6YY0mSJK2KRXNhbPpdaTbcF/Y8LWw/5RLjOXlnjmFzjkit3cKJzGdW4I5UDao5y2mvrQP0DdpF7YlxhlrNOZYkVb89OY0N2Te1NoZjWcTcwB1JkiRJkqRKcZ5c4ovry1TyxfUZM2awxhprlHXPEHsrXuZCeWCOJUmStCpuOQUeH5pc79AVTn4WVt88fE/lEOs5uZGpDGE7FtGYqG3Pt/kq12TQlbJUzVk+EbgiZX0asG7gXmpJjDPUas6xJCkOM3mVoezAUhYkartxMv0YkkFXkiRJkiSp3Jwnl/jiegD/+te/otxb8TIXygNzLEmSpJX1+j3pl9YBDj473kvrEO85uZ4NOJwLU2uTuZYXGB20H2WvmrOc9uL6RnhpvdJinKFWc44lSXFYnc05mD+n1h5nKK9zb+COJEmSJElSJThPLvHiegB77bVXlHsrXuZCeWCOJUmStDIWzYExx6XXNvoy7PHDsP2UW8zn5J34PltwVGrtFk5iPjMDd6QsVWuWm4DnUtb7hm6kBsU4Q63WHEuS4rIHP2JD9kutjeFYFjEncEeSJEmSJKncnCeXeHE9gKlTp0a5t+JlLpQH5liSJEkr486fQ+NbyfWO3WDgCGgX+SQk5nNygQL9GUZn6hO1eUznNn6UQVfKSrVm+VGgmLLuxfXKi3GGWq05liTFpR3tGMgIOtItUWvkLe7k5xl0JUmSJEmSysl5cknkf10bh2Ix7a+7qn9vxctcKA/MsSRJklbUa3fBE8PSawefA703C9tPJcR+Tq5jfY7gotTac/yD57kpcEfKSrVmeWIb615cr7wYZ6jVmmNJUnxWZ3MO5uzU2hMM4zXuDtyRJEmSJEkqJ+fJJV5cD6BPnz5R7q14mQvlgTmWJEnSiljYBGOOS69tfADsfkrQdiomD+fkHfkeW9IvtXYrJzOPGYE7UhaqNctpF9e7ADuGbqQGxThDrdYcS5LitDunshH7p9bGchwLaQrckSRJkiRJKhfnySVeXA9g4sS23mqq7r0VL3OhPDDHkiRJWhF3/jc0vZNc79gdBgyHdjmZgOThnFygQD+G0YVeido8PuA2fhi+KQVXjVluASalrO8GdArcSy2KcYZajTmWJMWrHe0YyAg60i1Ra+Rt7uLnGXQlSZIkSZLKwXlySaHo+/MANDU1UV9fT2NjI3V1dWXde+bMmay++upl3TPE3oqXuVAemGNJkiQtr1fvhGsOS68deSnscWrYfiopT+fkZ/g7N/O91No3+Bfb8NXAHSmkaszyi8DWKes/B84N3EstinGGWo05liTF71Eua/Nf5vwOd7A5hwbuSJIkSZIkrSrnySU5eW+sug0dOjTKvRUvc6E8MMeSJElaHgsbYezx6bWND4TdTg7bT6Xl6Zy8A99hS/qn1m7hZObxYeCOFFI1Zrmtt076Bu2idsU4Q63GHEuS4rcbJ7MxB6TWxnI8C2kM25AkSZIkSVplzpNLfHF9mUq+uC5JkiRJkipjzPHw1PDkesfucMpkWG2T8D1p+c3hPS5jWxbyUaK2DV/nG1yfQVeqVT8ArkxZfw9YJ3AvkiSptn3EGwxhe5YwL1HbheMZkHpqkSRJkiRJqn6+uB5AQ0NDlHsrXuZCeWCOJUmS9EVeuT390jrAoefl89J63s7JPVmXI7kktfY8NzCFGwJ3pFCqMctpL65vgpfWQ4lxhlqNOZYk5cNqbMIhnJtae5KreJU7AnckSZIkSZJWhfPkEl9cX6aSL67PmTOHnj17lnXPEHsrXuZCeWCOJUmS9HkWNsKQ7aBparK2yUHw3bugXQ7/df08npOLFPknR/MSYxK1bqzBKUyhB2tl0Jkqqdqy3AisBrQelP4XcG34dmpSjDPUasuxJClfWmjh7xzCG9ybqNWxAafwHF2oz6AzSZIkSZK0opwnl+Twr3Crz/DhbTz/VuV7K17mQnlgjiVJkvR57jg9/dJ6px4wYHg+L61DPs/JBQr043K60jtRm88MbuUUionrxIpdtWX5EZKX1gH6hm6khsU4Q622HEuS8qUd7RjAcDrRI1FrYip3cHoGXUmSJEmSpJXhPLkkp3+NW10OPfTQKPdWvMyF8sAcS5IkqS0v3wZPjUivHfoXWG3joO0Elddzck/W4UguTa29wI1M4frAHanSqi3LE9tY9+J6ODHOUKstx5Kk/FmNjTmE81JrTzGCVxgfuCNJkiRJkrQynCeXeHE9gBdeeCHKvRUvc6E8MMeSJElKs2A2jDshvbbpwbDrD4K2E1yez8nb8S224ujU2q2cylymB+5IlVRtWU67uN4V2CF0IzUsxhlqteVYkpRPu3Eim/CV1NpYTmABs8M2JEmSJEmSVpjz5BIvrgfQs2fPKPdWvMyF8sAcS5IkKc0dP4U505LrnXrCgKugUAjfU0h5PicXKNCPoXRl9URtATO5lVMoUsygM1VCNWW5BZiUsr470DFwL7UsxhlqNeVYkpRfBQoMZDid6JGozeFd7uCnGXQlSZIkSZJWhPPkEi+uB1BfXx/l3oqXuVAemGNJkiS19vKt8PSo9Nqhf4FeGwVtJxN5Pyf3YG2O5NLU2gvcxHNcF7gjVUo1ZflFoDFlvW/oRmpcjDPUasqxJCnferERh3J+au1pRvEytwbuSJIkSZIkrQjnySVeXA9gypQpUe6teJkL5YE5liRJ0qct+AjGnpBe2/QQ2LWNWt7Uwjl5O77J1nw1tXYbpzKH9wN3pEqopixPbGPdi+thxThDraYcS5Lyb1dOYFMOSa2N4wcs4KPAHUmSJEmSpOXlPLnEi+sBHH744VHurXiZC+WBOZYkSdKn3f4TmPtecr1TTxhwFRQKwVvKRC2ckwsUOIohdGONRG0Bs7iVkylSzKAzlVM1ZdmL69UhxhlqNeVYkpR/BQoM4Co6kfzV4nOYxu38NIOuJEmSJEnS8nCeXOLF9QBGjBgR5d6Kl7lQHphjSZIkfeKlcfDM1em1w/4KvTYM20+WauWc3IO1OJLLUmsvMprJ/CNwRyq3aspy2sX1TYG1QjdS42KcoVZTjiVJtaEXG3IYf02tPcPfeIlbAnckSZIkSZKWh/PkkkKxWPSJKqCpqYn6+noaGxupq6vLuh1JkiRJkgTMnwVDtkt/bX2zw+A742vntfVadD1f53n+lVjvSm9OYQo9WSeDrpQns4HVUta/DVwTthVJkqTlUqTINRzBa9yRqPVgXU5lCl1TTziSJEmSJEnZ88X1ABoaGqLcW/EyF8oDcyxJkiSA23+cfmm9cx0MuLL2Lq3X2jn5KIbQjTUT6wuYxS2cRBHfY4hVtWT5kTbW9w7ahSDOGWq15FiSVFsKFBjAlXQm+RDXXN5jPD/OoCtJkiRJkvR5nCeX+OL6MpV8cX3JkiV07NixrHuG2FvxMhfKA3MsSZKkF8fCPwem1wYMh12ODdtPNajFc/IU/sUNfD21djR/Z0e+E7gjlUO1ZPl3wO9T1p8Edg7bSs2LcYZaLTmWJNWmJxnOWI5Prf0nY/kS/QN3JEmSJEmS2uI8ucQX1wP461//GuXeipe5UB6YY0mSpNo2fxbccmJ6bfMjYOdjwvZTLWrxnLwtX2NbvpFaG89pzCHlSX5VvWrJ8sMpa92B7UM3oihnqNWSY0lSbdqZY9mcw1Nr4/gB85kVuCNJkiRJktQW58klXlwP4OtfT38VrNr3VrzMhfLAHEuSJNW28afB3PeT653rof8VUCiE76ka1Oo5+UgupRtrJtYX8hHjOJEi/kLB2FRDlluAR1LWdwc6BO5Fcc5QqyHHkqTaVaBAf66kM/WJ2lzeZzynZdCVJEmSJElK4zy5lW/WgAABAABJREFUxIvrAUycODHKvRUvc6E8MMeSJEm164XRMPna9NrhF0L9BiG7qS61ek7uzpr0Y2hq7WXG8SzXBO5Iq6oasvw80JSy3jd0IwLinKFWQ44lSbWtng04nAtSa5O5lhcZE7gjSZIkSZKUxnlyiRfXA+jTp0+Ueyte5kJ5YI4lSZJq0/yZcMtJ6bUtjoKdvh+2n2pTy+fkbfgq2/Gt1Np4TqOJaYE70qqohiy3NSL24no2YpyhVkOOJUnaicFswZGptXGcyHxmBu5IkiRJkiS15jy5xIvrkiRJkiSpatz2I5g3PbneuR76D4NCIXxPqh5HcAndWSuxvpDZjOMHFClm0JVi1dbF9b2CdiFJkrRqChTozxV0pj5Rm8d0xnNaBl1JkiRJkiSl8+J6AO+8806Ueyte5kJ5YI4lSZJqzws3w3P/SK8dcRHUrR+2n2pU6+fk7qxBPy5Prb3CrTzD1YE70sqqhiynXVzfHFgzdCMC4pyhVkOOJUkCqGN9juCi1Npk/h8vcHPgjiRJkiRJ0qc5Ty7x4noAfftW7hcMV3JvxctcKA/MsSRJUm2ZNwNuOSm9tmU/2PF7YfupVp6TYWuOZnv+K7U2nh/TxLuBO9LKyDrLs4AXU9b9v7DsxDhDzTrHkiR92o58jy04KrV2CycxjxmBO5IkSZIkSZ9wnlzixfUAbrjhhij3VrzMhfLAHEuSJNWW234I8z5IrnfpBf2GQaEQvKWq5Dn5Y0dwMd1ZO7G+iEbGcgJFihl0pRWRdZYfaWPdsXF2YpyhZp1jSZI+rUCB/lxBF3olavP4gPH8KHxTkiRJkiQJcJ78aYVisejf5AFNTU3U19fT2NhIXV1dWfdesmQJHTt2LOueIfZWvMyF8sAcS5Ik1Y7nb4Trv5ZeO/pq2PG7YfupZp6TS15kDP9kUGptICPYmWPCNqQVknWWfwv8MWX9KWCnsK1omRhnqFnnWJKkNM/wd24m/VdWfYN/sQ1fDdyRJEmSJElynlzii+sBnHPOOVHurXiZC+WBOZYkSaoN8z6EW05Or23ZH3b4Tth+qp3n5JKtGMj2fDu1djs/oZGpgTvSisg6yxNT1roD24VuRP8nxhlq1jmWJCnNDnyHLemfWruFk5nHh4E7kiRJkiRJzpNLfHF9mUq+uC5JkiRJktLd8E2Ycn1yvctqcOoU6Llu+J4Uj/nMYgjbMpf3E7XNOZxvcxsFChl0pmrWDKwGzGm1fiBwb/h2JEmSym4O73EZ27KQjxK1bfkGX+e6DLqSJEmSJEnyxfUgGhoaotxb8TIXygNzLEmSlH9Tbki/tA5w5CVeWk/jOfmzutGb/lyRWnuV23mKEYE70vLKMsvPk7y0DrB36Eb0GTHOUP0mS5KqVU/W5QguTq1N4Xqm8K/AHUmSJEmSVNucJ5f44voylXxxfdq0aay33npl3TPE3oqXuVAemGNJkqR8m/sBDNkW5s9I1r40EL51MxR8KDvBc3K6m/gez/L3xHpn6jiF56inTwZd6fNkmeVhwEkp67cARwXuRSUxzlD9JkuSqlmRIv/kaF5iTKLWjTU4hSn0YK0MOpMkSZIkqfY4Ty7xxfUAbr/99ij3VrzMhfLAHEuSJOXbbaemX1rv2hv6Xe6l9bZ4Tk53BBfRg+QT/YtoYiwnUMR3G6pNllme2Mb6XkG7UGsxzlD9JkuSqlmBAv24nK70TtTmM4PbODWDriRJkiRJqk3Ok0u8uB7AtttuG+Xeipe5UB6YY0mSpPx67np4vo3fTH/kpdBznbD9xMRzcrqurEZ/rkitvcYdPMnwwB3pi2SZ5bSL61sCq4duRJ8R4wzVb7Ikqdr1ZB2O4JLU2vP8i+e4PnBHkiRJkiTVJufJJV5cD6CxsTHKvRUvc6E8MMeSJEn5NHc63HpKem2ro2G7b4XtJzaek9v2JfqxI99Prd3B6czm7cAd6fNkleWZwMsp631DN6KEGGeofpMlSTHYnv9kKwal1m7jVObyQdiGJEmSJEmqQc6TS7y4HsCcOXOi3FvxMhfKA3MsSZKUP8Xix5fWF8xM1rquDv2GQqEQvq+YeE7+fIdzIT1ZL7G+mDmM5XiKFDPoSmmyyvKkNta9uJ69GGeofpMlSTEoUOAohtKV3onafGZwK6d4TpYkSZIkqcKcJ5d4cT2ArbfeOsq9FS9zoTwwx5IkSfnz3HXwwk3ptSMvhR5rh+0nRp6TP19XetGfK1Nrr3MXT7RRU3hZZXliG+teXM9ejDNUv8mSpFj0ZB2O5LLU2gvcyHNcF7gjSZIkSZJqi/PkEi+uB3DnnXdGubfiZS6UB+ZYkiQpX+a8D7edml7b+quw3TfD9hMrz8lfbEuOZCcGp9bu5GfM5q2wDSlVVllOu7jeE9g2dCNKiHGG6jdZkhST7fgmW/MfqbXb+CFzmR64I0mSJEmSaofz5JJCsVj0d78BTU1N1NfX09jYSF1dXVn3njNnDj179izrniH2VrzMhfLAHEuSJOVHsQjX/Qe8ODpZ67YGnDIFeqwVvK0oeU5ePguYzRC2Yw7vJmqb8BW+x10UKGTQmT6RRZabgV7A3FbrXwHuDtqJ0sQ4Q/WbLEmKzVymcxnbsoCZidpWHM03udFzsiRJkiRJFeA8ucQX1wO46KKLotxb8TIXygNzLEmSlB+T/5F+aR3gyMu8tL4iPCcvn670YgBXptbe4B4eZ1jgjtRaFll+juSldYC+oRtRqhhnqH6TJUmx6cHaHMVlqbUXuZnn+GfgjiRJkiRJqg3Ok0t8cX2ZSr64LkmSJElSrZrzPgzZFhbMSta2+Rp844bwPal2jOE4nmJEYr0TPTiZyazGxuGbUmYuB05OWb8VODJwL5IkSVkpUuQGvsHz/CtR60pvTmEKPVkng84kSZIkSVIt8MX1ABoaGqLcW/EyF8oDcyxJkhS/YhFuOSn90nq3NeGoIeF7ip3n5BVzGH+ljg0S64uZy1iOo4WWDLoSZJPliW2s7xW0C7Ulxhmq32RJUowKFDiSy+jGGonaAmZxCydRxHfPJEmSJEkqJ+fJJb64vkwlX1yfOXMmq6++eln3DLG34mUulAfmWJIkKX7PXAM3fze99vUbYNuvhe0nDzwnr7hXuYNrODy1diSXsQenBO5IkE2WtwReabW2FfBC0C7UlhhnqH6TJUkxm8IN3MA3Umv/wTXswLcDdyRJkiRJUn45Ty7xxfUArr/++ij3VrzMhfLAHEuSJMVtznsw/rT02rbf8NL6yvKcvOI25zB24fjU2l2cwUe8EbgjQfgszyB5aR2gb9Au9HlinKH6TZYkxWxbvs42fD21dhs/Yg7vBe5IkiRJkqT8cp5c4sX1APr2rdxfgVVyb8XLXCgPzLEkSVK8ikUYdyIs/ChZ67YmHHlp+J7ywnPyyjmU86mjT2J9CfMYw7G00JJBV7UtdJYnttVH0C70eWKcofpNliTF7iguoxtrJtYX8hHjOJEi/uJuSZIkSZLKwXlyiRfXA3jnnXei3FvxMhfKA3MsSZIUr2evgZfHpdf6DYXuyXsRWk6ek1dOF+oYwFWptTeZwOMMDdyRQmfZi+vVL8YZqt9kSVLsurMm/do4C7/MOJ7lmsAdSZIkSZKUT86TS7y4HkChUIhyb8XLXCgPzLEkSVKcmqbB+NPSa9t9C7b5ath+8sZz8srbnEPZlR+k1u7iDGbxWuCOalvoLKddXK8DtgnahT5PjDNUv8mSpDzYhq+yLd9MrY3nNJqYFrgjSZIkSZLyx3lyiRfXA9hggw2i3FvxMhfKA3MsSZIUn2IRxv0AFs5O1rqvBUdcEryl3PGcvGoO4Tzq2TCxvoT5jOFYWmjJoKvaFDLLS4FHU9b3xOFoNYlxhuo3WZKUF0dyKd1ZK7G+kNncwokUKWbQlSRJkiRJ+eE8ucS/mwlg0qRJUe6teJkL5YE5liRJis8zV8Mrt6bX+l0O3dcI208eeU5eNV2oYwDDU2tvcT+PcVngjmpXyCxPBuanrPcN1oGWR4wzVL/JkqS86M4a9OPy1NrL3MIzXB24I0mSJEmS8sV5ckmhWCz6r8gDTU1N1NfX09jYSF1dXVn3njFjBmusUZm/na/k3oqXuVAemGNJkqS4NL0Ll20LixqTte3+E772/8L3lEeek8tjHCfxBMMS6x3pxsk8S282y6Cr2hIyy0OAU1PWxwOHB+lAyyPGGarfZElS3vyL/+I5/pFY70w9pzKFOtbPoCtJkiRJkuLnPLnEF9cDuPzy9BcKqn1vxctcKA/MsSRJUjyKRRh7Qvql9e5rw5GXhO8przwnl8ehnEc9GyXWlzCf0RxDCy0ZdFVbQmZ5YhvrewbrQMsjxhmq32RJUt4cySV0Z+3E+iIaGccPKOJ7aJIkSZIkrQznySW+uL5MJV9clyRJkiQpz54aCWOOTa99azRsNTBoO9JyeZ17uZqvpNYO50L24seBO1KlbA681mpta+D5DHqRJEmqdi8wmus4OrU2kJHszOCwDUmSJEmSpFzxxfUAGhoaotxb8TIXygNzLEmSFIfGqXD7T9Jr23/bS+vl5jm5fDblIHbj5NTa3fyCmbwSuKPaEirLH5C8tA7QN8hP14qIcYbqN1mSlEdbM4jt+XZq7XZ+QiNTA3ckSZIkSVL8nCeX+OL6MpV8cX3u3Ln06NGjrHuG2FvxMhfKA3MsSZJU/YpFuPZIePX2ZK3HOnDKFOjWO3xfeeY5ubwWMZehbM9s3kzUNmRfBnMf7Xz3oSJCZXkskPbvz1wJHF/xn64VEeMM1W+yJCmv5jOLIWzLXN5P1DbncL7NbRQoZNCZJEmSJElxcp5c4t+8BXDllVdGubfiZS6UB+ZYkiSp+j01Iv3SOkC/YV5arwTPyeXVmR4MZERq7W0e5BEuDtxR7QiV5YltrO8d5KdrRcQ4Q/WbLEnKq270ph/DUmuvcjtPMTJwR5IkSZIkxc15cokX1wM44ogjotxb8TIXygNzLEmSVN0a34E7Tk+v7fBd2GpA2H5qhefk8tuEA9mdU1Nr9/ALZvBy4I5qQ6gsp11c7wVsFeSna0XEOEP1myxJyrOtGMAOfCe1dgc/pZF3AnckSZIkSVK8nCeXeHE9gMmTJ0e5t+JlLpQH5liSJKl6FYsw9gRY1JSs9VgXjrgofE+1wnNyZRzM2fRik8T6UhYyhmNooTmDrvItRJaXAI+mrO+JQ9FqFOMM1W+yJCnvDucierBuYn0RTYzlBIoUM+hKkiRJkqT4OE8u8e9oAujVq1eUeyte5kJ5YI4lSZKq15PD4bU70mv9r4Cuq4Xtp5Z4Tq6MzvRgICNSa+/wMJPw38YotxBZfhZYkLLet+I/WSsjxhmq32RJUt51ozf9uSK19hp38CTDA3ckSZIkSVKcnCeXeHE9gJ49e0a5t+JlLpQH5liSJKk6zX4b7jg9vbbj9+FL/cL2U2s8J1fOJhzAHvwotXYvv2IGLwXuKN9CZHliG+teXK9OMc5Q/SZLkmrBl+jHjnwvtXYHpzObtwN3JEmSJElSfJwnl3hxPYAXXnghyr0VL3OhPDDHkiRJ1adYhLHHw+I5yVrP9eDwC4O3VHM8J1fWwfyZ1dgssb6UhYzmGFpozqCrfAqR5bSL6wVgz4r/ZK2MGGeofpMlSbXicC6kJ+sl1hczh7EcT5FiBl1JkiRJkhQP58klXlwP4JBDDolyb8XLXCgPzLEkSVL1eeJKeP2u9Fr/K6Frr6Dt1CTPyZXVie4MZERqbSoTmcgFgTvKrxBZTru4vg1QX/GfrJUR4wzVb7IkqVZ0ZTX6c0Vq7XXu4kmuCtyRJEmSJElxcZ5c4sX1AEaNGhXl3oqXuVAemGNJkqTqMvstuPNn6bWdBsOWRwZtp2Z5Tq68jfkye3Jaau1efs2HvBi4o3yqdJanA2+krPet6E/Vqohxhuo3WZJUS7bkKHZicGrtDk5nNm+FbUiSJEmSpIg4Ty4pFItFf3cb0NTURH19PY2NjdTV1WXdjiRJkiRJVaNYhKsPgTfuSdZ6rg+nPOdr68qXxczjcnZiFq8mauuzJ8fxEO1on0FnWl6jgaNT1ocDx4ZtRZIkKTcWMJshbMcc3k3UNuVgvsudFChk0JkkSZIkSYqFL64H0NDQEOXeipe5UB6YY0mSpOrx+LD0S+sAA6700npInpPD6ER3BjISUi7dvMsjPMz54ZvKmUpneWIb6764Xr1inKH6TZYk1Zqu9GIAV6bWXudunuCKwB1JkiRJkhQH58klvri+TCVfXF+6dCkdOnQo654h9la8zIXywBxLkiRVh4/ehKHbw+K5ydrOx8LA4cFbqmmek8O6nZ8yiQsT6+3pzEk8xZpsHb6pnKh0lr8MPNBqrRcwE1/yqFYxzlD9JkuSatUYjuMpRiTWO9GDk5nMamwcvilJkiRJkqqY8+QS/54mgL/85S9R7q14mQvlgTmWJEnKXksLjD0u/dJ63QZw2F/D91TrPCeHdRBn0ZstEuvNLGI0g2lmaQZd5UMls7wEeDxlfS8chlazGGeofpMlSbXqMP5KHRsk1hczl7EcRwstGXQlSZIkSVL1cp5c4t/VBPCtb30ryr0VL3OhPDDHkiRJ2XtiGLxxb3ptwFXQpT5sP/KcHFonujGIkUAhUXuXR5nI+eGbyolKZvkZYEHK+t4V+4kqhxhnqH6TJUm1qgv1DOCq1Nob3MsTDAvckSRJkiRJ1c15cokX1wN48MEHo9xb8TIXygNzLEmSlK2P3oA7f55e2+V42PywsP3oY56Tw9uQfejLT1Nr/+a3fMCUwB3lQyWzPLGN9b4V+4kqhxhnqH6TJUm1bHMOY2eOS63dyc/5iDcCdyRJkiRJUvVynlzixfUANtpooyj3VrzMhfLAHEuSJGWnpQXGHAtL5iVrdX3gUB+Zzozn5GwcRAOrs2VivZnFjGYwzSzNoKu4VTLLD6esFYA9KvYTVQ4xzlD9JkuSat1hnE8dfRLrS5jHGI6jhZYMupIkSZIkqfo4Ty7x4noAzc3NUe6teJkL5YE5liRJys7jQ+HNCem1AVdBl7qg7ehTPCdnoyNdGchIPr7+/FnTeJyHOS98U5GrZJbTXlzfDvDTVd1inKH6TZYk1bou1DOAq1Jrb/JvHmdo4I4kSZIkSapOzpNLvLgewHvvvRfl3oqXuVAemGNJkqRszHod7jojvbbrD2DzQ8P2o8/ynJydDdmbvpyeWpvA75jOc4E7ilulsvwe8FbKet+K/DSVU4wzVL/JkiTB5hzKLpyQWruLM5jF64E7kiRJkiSp+jhPLvHiegB77FG5X0Rcyb0VL3OhPDDHkiRJ4bW0wJhjYMn8ZK1+QzjER6Uz5zk5WwfxR1bnS4n1ZhYzmsE0sySDruJUqSynvbYOXlyPQYwzVL/JkiR97FD+Qj0bJtaXMJ8xHEsLLRl0JUmSJElS9XCeXOLF9QBuvPHGKPdWvMyF8sAcS5IkhffYZfDW/em1AcOhS13YfpTkOTlbHenKIEZRSBmpvccTPMS5GXQVp0pl2Yvr8Ypxhuo3WZKkj3WhjgFclVp7i/t4jCGBO5IkSZIkqbo4Ty4pFIvFYtZNVIOmpibq6+tpbGykrq68fxO/aNEiOnfuXNY9Q+yteJkL5YE5liRJCmvWazB0h/TX1nc9EfpfHr4nJXlOrg53cgYPk/wVBO3oyIk8wdpsn0FXcalUlvcFHmq11huYARTK/tNUTjHOUP0mS5L0WeM4iScYlljvSDdO5ll6s1kGXUmSJEmSlD3nySW+uB7AeedV7nepV3JvxctcKA/MsSRJUjgtLTD6mPRL6/UbwaEezaqG5+TqcCB/YA22Sqy3sITRDKaZJRl0FZdKZHkx8HjK+l54aT0GMc5Q/SZLkvRZh3Ie9WyUWF/CfMZwLC20ZNCVJEmSJEnZc55c4ovry1TyxXVJkiRJkqrZpIvg9p+k1753D2x6UNB2pChM5RGGszfFlMs3B/IH9uc3GXRV2x4F9kxZ/yPw68C9SJIk1arXuYerOTi1djgXsRenBe5IkiRJkiRVE19cD6ChoSHKvRUvc6E8MMeSJElhzHwF7v5Fem23k720Xm08J1ePDdiTvfl5au0+/sj7PBu4o7hUIssT21jvW/afpEqIcYbqN1mSpKRN+Qq7cVJq7W7+h5m8GrgjSZIkSZKy5zy5xBfXl6nki+vTpk1jvfXWK+ueIfZWvMyF8sAcS5IkVV5LC4zaH95+MFnrtTGcPBk69wjelj6H5+TqsoSFXMGufMjzido67MwJPEJ7OmbQWfWrRJa/BVzXaq0dMBvoWdafpEqIcYbqN1mSpHSLmMNQdmA2byZqG7Ivg7mPdr6vJkmSJEmqIc6TS5wIBDB+/Pgo91a8zIXywBxLkiRV3iMXp19aBxg4wkvr1chzcnXpSBcGMpJCyojtfZ7iAf6cQVdxqESW015c3w4vrccixhmq32RJktJ1picDGZFae5sHeYSLA3ckSZIkSVK2nCeXeHE9gB122CHKvRUvc6E8MMeSJEmVNeNluOcX6bXdT4VNDgzbj5aP5+TqswF7sA9nptbu54+8x9NhG4pEubP8LvB2yvreZf0pqqQYZ6h+kyVJatsmHMjunJJau4dfMpNXAnckSZIkSVJ2nCeXeHE9gFmzZkW5t+JlLpQH5liSJKlyWpphzDGwdGGy1msTOPjs8D1p+XhOrk4H8L+sybaJ9RaWMprBLGVxBl1Vt3JnOe21dYC+Zf0pqqQYZ6h+kyVJ+nwHcw692CSxvpQFjOYYWmjOoCtJkiRJksJznlzixfUA5s2bF+Xeipe5UB6YY0mSpMqZdBG883B6beAI6NwjbD9afp6Tq1MHOjOIURRon6hN5xke4E8ZdFXdyp1lL67HL8YZqt9kSZI+X2d6MJARqbV3eIhJXBS4I0mSJEmSsuE8ucSL6wFstdVWUe6teJkL5YE5liRJqowZL8G9v0qv7fFD2OSAkN1oRXlOrl7rsxv7cmZq7QHO4j2eDttQlSt3ltMurq8BbF7Wn6JKinGG6jdZkqQvtgkHsAc/TK3dy6+YwUuBO5IkSZIkKTznySVeXA/g7rvvjnJvxctcKA/MsSRJUvm1NMPoY2DpwmRttU3h4LPD96QV4zm5uu3Pb1mL7RLrLSxlNN9nKYsz6Ko6lTPLi4AnUtb3Agpl+ymqtBhnqH6TJUlaPgdzNquxaWJ9KQsZzTG00JxBV5IkSZIkheM8uaRQLBaLWTdRDZqamqivr6exsZG6urqy713uPUPsrXiZC+WBOZYkSSq/h/4Cd/08vTb4Ptj4y2H70YrznFz9pvEEV7InxZTLN1/mNxzEHzLoqvqUM8uTgL4p62cBvyzLT1AIMc5Q/SZLkrT83uQ+RnFAau1Q/sLe/CxsQ5IkSZIkBeQ8ucQX1wO4+OKLo9xb8TIXygNzLEmSVF4fvgj3/jq9tudpXlqPhefk6rceu7Ifv0itPcCfmMaTgTuqTuXM8sQ21tMus6t6xThD9ZssSdLy25j92ZPTUmv38Cs+5MXAHUmSJEmSFI7z5BJfXF+mki+uS5IkSZKUpZZmGL4PvPtIsrbaZnDyM9Cpe/i+pLxaymKuYDc+YHKithbb8wMepwOdMugsn74B3NBqrR3QCPQI344kSZLasJh5DGVHPuK1RG0D9uJYHqQd7TPoTJIkSZIkheKL6wE0NDREubfiZS6UB+ZYkiSpfB4+P/3SOgUYNNJL6zHxnByHDnRiEKNoR4dE7QMmcz9/zKCr6lLOLKe9uL4DXlqPTYwzVL/JkiStmE50ZxAjgUKiNpVJTOSv4ZuSJEmSJCkA58klvri+TCVfXJ81axa9e/cu654h9la8zIXywBxLkiSVx4cvwOU7Q/OiZG2vn8DhFwRvSavAc3Jc/s3/ch9/SKwXaM/xTGJ9dsugq+pQrixPBfqkrJ8MDFnl3RVSjDNUv8mSJK2c8fyER7gosd6ezpzEU6zJ1hl0JUmSJElS5ThPLvHF9QD+8Y9/RLm34mUulAfmWJIkadU1L4XRg9MvrffeAg46K3hLWkWek+OyH79ibXZMrBdpZjSDWUrK/3HWiHJlOe21dYC+ZdldIcU4Q/WbLEnSyvkKf6I3myfWm1nEaAbTzNIMupIkSZIkqXKcJ5d4cT2A/fbbL8q9FS9zoTwwx5IkSatu4vnw7qMphQIMGgmdugVvSavIc3JcOtCJQYyiHR0StQ+Zkvoae60oV5a9uJ4fMc5Q/SZLkrRyOtGNQYwCConauzzKRM4P3pMkSZIkSZXkPLnEi+sBvPnmm1HurXiZC+WBOZYkSVo1H0yBf/82vdb3p7DhPmH7UXl4To7PuuzEl/l1au1BzuFdHgvcUXUoV5bTLq6vCWxWlt0VUowzVL/JkiStvA3Zh734SWrt3/yWD3g+bEOSJEmSJFWQ8+QSL64H0L59+yj3VrzMhfLAHEuSJK285qUwejA0L07WVt8SDmoI3pLKxHNynPbjl6zDTon1Is2MZjBLWBi+qYyVI8sLgSdT1vuS9nanql2MM1S/yZIkrZqDaKA3WyTWm1nMaAbTzNIMupIkSZIkqfycJ5d4cT2AddddN8q9FS9zoTwwx5IkSSvv4fNg2uMphQIMHAkduwZvSWXiOTlO7enIIEbRjg6J2oc8z338PoOuslWOLD8JpPz7OfRd5Z2VhRhnqH6TJUlaNZ3oxiBGkfavHU7jMR7mL8F7kiRJkiSpEpwnl3hxPYDHHqvcr3yu5N6Kl7lQHphjSZKklTP9OZjwu/Ra39Nhw72DtqMy85wcr3XYkS/zm9TaQ5zLVB4N3FG2ypHliW2se3E9TjHOUP0mS5K06jZkb/pyemptAv/LdJ4L3JEkSZIkSeXnPLmkUCwWi1k3UQ2ampqor6+nsbGRurq6su794Ycfsuaaa5Z1zxB7K17mQnlgjiVJklZc8xK4qi+890SytvqX4KSnfG09dp6T49bMEq5kT97nqURtDbbmRJ6kI10y6Cy8cmT5a8CNrdbaA41A91XaWVmIcYbqN1mSpPJYwgIuZ2dm8lKith67cRwTaZ/y24skSZIkSYqF8+QSX1wPYNiwYVHurXiZC+WBOZYkSVpxD52bfmm90A4GjfLSeh54To5bezpyNH+jHR0TtRm8wAT+N4OusrGqWS6S/uL6jnhpPVYxzlD9JkuSVB4d6cogRlJI+avraTzOQ5ybQVeSJEmSJJWP8+QSX1xfppIvrkuSJEmSVGnTJ8OwXaFlSbK298/hUP+eX6oa99HAv/lNYr1AO47lIfqwVwZdxeVtYKOU9VOBSwP3IkmSpPK4kzN4mPMS6+3oyIk8wdpsn0FXkiRJkiSpnHxxPYCGhoYo91a8zIXywBxLkiQtv+YlMHpw+qX1NbaCA/8QvCVViOfkfNiXM1mXXRLrRVoYwzEsYWEGXYW1qllOe20doO8q7aosxThD9ZssSVJ5HcgfWIOtEustLGE0g2km5R96JUmSJEmKgPPkEl9cX6aSL67Pnz+fbt26lXXPEHsrXuZCeWCOJUmSlt99DfDv5OPNFNrBcQ/DBnuG70mV4Tk5P6YzmWHsSkvK5Zu9+TmHku9fk7CqWf4JcFHK+mvApiu9q7IU4wzVb7IkSeU3lUcYzt4UaUnUDuSP7M+vM+hKkiRJkqRV4zy5xBfXAxg6dGiUeyte5kJ5YI4lSZKWz/vPwn1tvKi+98+9tJ43npPzY2225wB+l1p7mL/wTptviufDqmY57X87awGbrNKuylKMM1S/yZIkld8G7Mne/Hdq7T7+wPs8G7gjSZIkSZJWnfPkEi+uB9CvX78o91a8zIXywBxLkiR9seYlMHowtKT8tvQ1t4EDfhe6I1Wa5+R82YczWI/dUipFRjOYJSwI3lMoq5LlhcBTKet9gcJK76qsxThD9ZssSVJlHMDvWYOtE+stLGE0g2lO+a1FkiRJkiRVM+fJJV5cD+CZZ56Jcm/Fy1woD8yxJEnSF3vgz/B+yu3NQjsYOBI6dgnfkyrLc3K+tKcDgxhFezolajN5mXv5TQZdhbEqWX4CUq8q9V3pHVUNYpyh+k2WJKkyOtKFQYyikPJX2e/zFA/w5wy6kiRJkiRp5TlPLvHiegCrr756lHsrXuZCeWCOJUmSPt97T8P9f0yv7XMmbLBH0HYUiOfk/FmLbTmA36XWJvJX3ubhsA0FsipZntjG+t4rvaOqQYwzVL/JkiRVzgbswT6ckVq7nz/yPv6FvyRJkiQpHs6TS7y4HkDXrl2j3FvxMhfKA3MsSZLUtqWLYfRgaFmarK25LRzwv8FbUiCek/Npb37OeuyeUikymsEsZn7wniptVbKcdnG9A7DbSu+oahDjDNVvsiRJlXUAv2NNtkmst7CU0QymOfX38EiSJEmSVH2cJ5d4cT2Al19+Ocq9FS9zoTwwx5IkSW174E8wPeVxuUJ7GDQKOnQO3pIC8ZycT+3pwCBG0Z5OidosXuFefp1BV5W1slkuQuob9DsBjnzjFuMM1W+yJEmV1YHODGIUBdonau/zNA/wpwy6kiRJkiRpxTlPLvHiegBf+cpXotxb8TIXygNzLEmSlO69p+GBs9Jr+54J6/vkcK55Ts6vtdiGA/lDam0SF/IWDwbuqLJWNstvAe+nrPddpW5UDWKcofpNliSp8tZnd/blzNTa/TTwHk+HbUiSJEmSpJXgPLnEi+sB/O1vf4tyb8XLXCgPzLEkSVLS0sUw+vvQsjRZW2s72P+34XtSWJ6T860vP2N99kipFBnDMSxmfvCeKmVlszyxjXUvrscvxhmq32RJksLYn9+yFtsl1ltYymi+z1IWZ9CVJEmSJEnLz3lySaFYLBazbqIaNDU1UV9fT2NjI3V1dVm3I0mSJElSwr2/hfv/mFwvtIcTHoH1dg3fk6Ty+pAXuJydaWZRorYnP+YILgzfVBU5DbgkZf0NYOOwrUiSJCmgaTzBlexJkeZEbX9+y4H8PoOuJEmSJEnSivLF9QAaGhqi3FvxMhfKA3MsSZL0WdOehAf+lF7b7xdeWq8VnpPzb0225iBS/g0V4BEu5i0eCNxRZaxsltNeXF8H2GiVulE1iHGG6jdZkqRw1mNX9uV/UmsP8Cem8WTgjiRJkiRJWn7Ok0t8cX2ZSr643tzcTPv27cu6Z4i9FS9zoTwwx5IkSSVLF8MVu8EHk5O1tbaHHzwOHTqF70vheU6uDS00M4J9mcqkRG01NuNknqET3TPorHxWJssLgDpgaav1o4GbytSXshPjDNVvsiRJYS1lEVewOx+Q/IfjtdieH/A4HfAfjiVJkiRJ1cd5cokvrgdw7rnnRrm34mUulAfmWJIkqeT+P6ZfWm/XAQaN8tJ6LfGcXBva0Z6BjKQ9nRO1j3iNe/hlBl2V18pk+XGSl9YB+q5yN6oGMc5Q/SZLkhRWBzoziFEUSP5F/wdM5v42fnORJEmSJElZc55c4ovry1TyxfW33nqLjTaqzC8sruTeipe5UB6YY0mSpI+9+zhctRcUm5O1/X8LB/4+fE/Kjufk2vIw53Mn/51aG8wENmb/wB2Vz8pk+VzgzJT1B4B9y9GUMhXjDNVvsiRJ2biX36ZeUi/QnhN4hPXYNYOuJEmSJElqm/PkEl9cD+D++++Pcm/Fy1woD8yxJEkSLF0EowenX1pfe0fY71fBW1LGPCfXlr34CX3YO7U2hmNZzLzAHZXPymR5YspaB/BaUk7EOEP1myxJUja+zK9Zmx0S60WaGc1glrIog64kSZIkSWqb8+QSL64HsMkmm0S5t+JlLpQH5liSJAnu+wN8OCW53q4DDBoFHToFb0kZ85xcW9rRnoGMpANdErWPeJ27+Z8MuiqPFc1ykfSL6zsDXcvRkDIX4wzVb7IkSdnoQCcGMYp2dEjUPuA57uMPGXQlSZIkSVLbnCeXeHE9gKVLl0a5t+JlLpQH5liSJNW6dx+DB89Jr+33K1h3p6DtqEp4Tq49a7AlB3FWau1RLuUNJoRtqExWNMtvAtNT1tPfo1eMYpyh+k2WJCk767Iz+5H+a8ge5Bze5fHAHUmSJEmS1DbnySVeXA/g/fffj3JvxctcKA/MsSRJqmVLFsLowVBsTtbW2Qn2+2XojlQtPCfXpr34MX3YJ7U2hmNZxNzAHa26Fc1y2mvrAH1XvRVViRhnqH6TJUnK1n78krXZMbFepJnRDGYpizLoSpIkSZKkJOfJJV5cD2DXXXeNcm/Fy1woD8yxJEmqZff9Hj58PrnergMMGgUdOgVvSVXCc3Jtakd7BjGSDnRN1GbzBndzZgZdrZoVzfLDbax7cT0/Ypyh+k2WJClbHejEIEbRjg6J2odMYQK/z6ArSZIkSZKSnCeXeHE9gNGjR0e5t+JlLpQH5liSJNWqqY/CQ+em1778G1gn+Zicaojn5Nq1OlvwFf6UWnuMIbzOvYE7WjUrmuW0F9fXA/qUoxlVhRhnqH6TJUnK3rrsxJf5TWrtIc5hKo8G7kiSJEmSpCTnySWFYrFYzLqJatDU1ER9fT2NjY3U1dWVde+FCxfSpUuXsu4ZYm/Fy1woD8yxJEmqRUsWwrBdYMYLydo6O8MJj0D7juH7UvXwnFzbWmhhFPvzNg8mar3YmJOZTGd6ZNDZiluRLM8D6oHmVutfBf5V5r6UnRhnqH6TJUmqDs0s4Ur25H2eStTWYGtO5Ek64v+fLUmSJEnKjvPkEl9cD+Avf/lLlHsrXuZCeWCOJUlSLZrwv+mX1tt1hEGjvLQuz8m1rh3tGMhIOtA1UZvNm9zFGRl0tXJWJMuPk7y0DtC3bN2oGsQ4Q/WbLElSdWhPRwYxinYk/6F5Bi8wgd+Fb0qSJEmSpE9xnlzii+vLVPLFdUmSJEmSvsg7k2DEPlBsSdYO/CPs/+vwPUmqTpO4mNv5cWrte9zNpnwlcEeVdTbwi5T1h4C9A/ciSZKk6nUff+Tf/DaxXqAdx/EwG7BnBl1JkiRJkqRP88X1ABoaGqLcW/EyF8oDcyxJkmrJkoUw5pj0S+vr7gL7nhm+J1Unz8kC2IMfshFfTq2N4TgWMSdwRytuRbI8MWWtI7BL2bpRNYhxhuo3WZKk6rIv/8O6KafEIi2MZjBLWJhBV5IkSZIkOU/+NF9cX6aSL66///77rLPOOmXdM8Teipe5UB6YY0mSVEvuPAMePi+53q4jnPgErL19+J5UnTwn6xOzeI2h7MAS5idqu3Ii/bk8g66W3/JmuQisDXzYan1PYFIF+lJ2Ypyh+k2WJKn6TGcyw9iVFpYkanvzcw7l3Ay6kiRJkiTVOufJJb64HsC4ceOi3FvxMhfKA3MsSZJqxTsT4eG/pNcO+J2X1vVZnpP1id5sxsGck1p7gmG8xl2BO1oxy5vl10leWgfoW9ZuVA1inKH6TZYkqfqszfYcwP+m1iZyPu/4rz9KkiRJkjLgPLnEi+sB7LTTTlHurXiZC+WBOZYkSbVgyQIYPZiPnxRuZb3dYJ8zQnekauc5WZ+2O6ewMQek1sZwHAtpCtvQCljeLE9sY92L6/kT4wzVb7IkSdVpH85kXXZNrBdpYTSDWcKCDLqSJEmSJNUy58klXlwPYObMmVHurXiZC+WBOZYkSbXg3t/AzJeT6+07waBR0L5D8JZU5Twn69Pa0Y4BDKcj3RO1Jt7hTv47g66Wz/Jm2YvrtSPGGarfZEmSqlN7OjCIUbSnU6I2k5f4N7/NoCtJkiRJUi1znlzixfUAFiyo3L+1X8m9FS9zoTwwx5IkKe/efhgm/jW9dsDvYK1tg7ajSHhOVmu92ZRDOCe19iRX8ip3Bu5o+SxvltMurq8P9ClrN6oGMc5Q/SZLklS91mY7DuB3qbWHOZ+3eThsQ5IkSZKkmuY8ucSL6wFsscUWUe6teJkL5YE5liRJebZ4PoweDBSTtfV2h71/HrojxcJzstLsxslszIGptbEcz0IaA3f0xZYny/OAZ1PW9y57N6oGMc5Q/SZLklTd9ubnrMfuKZUiYziGJXhpQJIkSZIUhvPkEi+uB/Dvf/87yr0VL3OhPDDHkiQpz+79Ncx6JbnevhMMGgXtOwRvSZHwnKw07WjHQIbTke6JWhPvcAc/y6Crz7c8WX4MaE5Z71v2blQNYpyh+k2WJKm6tacDgxhFezolajN5mXv5dQZdSZIkSZJqkfPkkkKxWEx53632NDU1UV9fT2NjI3V1dWXdu7Gxkfr6+rLuGWJvxctcKA/MsSRJyqu3HoSRXyb1tfWDz4Z9zwzekiLiOVmf5zGGciunpNa+zXi24PDAHbVtebL8J+BXKesTgb0q0ZQyFeMM1W+yJElxeJBzuJv/SakUOJYH2JB9gvckSZIkSaotzpNLfHE9gEsuuSTKvRUvc6E8MMeSJCmPFs+HMceQeml9/T2gb/U9iqwq4zlZn2dXTmQTDkqtjeMEFtIYuKO2LU+WJ6asdQJ2Lns3qgYxzlD9JkuSFIe+/Iz12SOlUmQ0g1nM/OA9SZIkSZJqi/PkEl9cX6aSL65LkiRJkgQw/ifwyEXJ9fad4aSnYM2tg7ckKWc+4k2Gsj2LmZuo7cyxDGR4Bl2tuCKwFjCj1Xpf4OHw7UiSJClyH/ICl7MzzSxK1PbiJxzOBRl0JUmSJElS7fHF9QAaGhqi3FvxMhfKA3MsSZLy5q0H4JGL02sH/dFL61o+npP1RVZjYw7lL6m1pxjBy9wWuKN0X5TlV0leWoePL64rn2KcofpNliQpHmuyNQfyh9TaJC7iLR4I3JEkSZIkqZY4Ty7xxfVlKvni+uzZs+nVq1dZ9wyxt+JlLpQH5liSJOXJ4nkwdEf46LVkbYO94NgHoV378H0pPp6TtTyKFPk7h/I6dydqPVmPU5hCV3qFb+xTvijLVwPfT1m/AfhahXpStmKcofpNliQpLi00M4J9mcqkRK03m3MST9OJ7hl0JkmSJEnKO+fJJb64HsA111wT5d6Kl7lQHphjSZKUJ/f8Mv3SevvOMHCkl9a1/Dwna3kUKDCAq+hEz0RtDtO4g59m0NVnfVGWJ7ax7ovr+RXjDNVvsiRJcWlHewYykvZ0TtRm8Sr38MsMupIkSZIk1QLnySVeXA9g//33j3JvxctcKA/MsSRJyos374NHLk6vfeUsWHOrsP0obp6Ttbx6sRGH8pfU2tOM4mVuDdzRZ31RltMurvcB1q9IN6oGMc5Q/SZLkhSfNdmKg0j/9eyPcDFvcn/gjiRJkiRJtcB5cokX1wN47bWUZ/Ui2FvxMhfKA3MsSZLyYPE8GHNseq3P3rDXT4K2oxzwnKwVsSsnsCmHpNbGcgIL+ChwRyWfl+U5wOSUdV9bz7cYZ6h+kyVJilNffsoGbZwux3AMi5kXuCNJkiRJUt45Ty7x4noAnTp1inJvxctcKA/MsSRJyoO7/wc+ej253qELDBwJ7dqH70lx85ysFVGgwACuohM9E7W5vMft/CR8U8t8XpYfA1pS1r24nm8xzlD9JkuSFKd2tGcQI+lAl0TtI17nbn6RQVeSJEmSpDxznlzixfUA1l577Sj3VrzMhfLAHEuSpNi9MQEevTS9dtBZsMaWQdtRTnhO1orqxYYcxl9Ta89wNS8xLnBHH/u8LE9sY92L6/kW4wzVb7IkSfFagy9xEGel1h7lEt5gQtiGJEmSJEm55jy5xIvrATzxxBNR7q14mQvlgTmWJEkxWzQXxhybXuuzD+z147D9KD88J2tl7MJxbMZhqbVxnMh8ZgXu6POznHZxvTOwc8W6UTWIcYbqN1mSpLjtxY/pwz6ptTEcyyLmBu5IkiRJkpRXzpNLCsVisZh1E9WgqamJ+vp6GhsbqaurK+ve06dPr9i/LVHJvRUvc6E8MMeSJClmt54Kjw1JrnfoCic/A6tvEb4n5YPnZK2sRt5hCNuxiKZEbQe+w3/w96D9tJXlIrAGJK7S7wM8GKAvZSfGGarfZEmS4jeDl7mcHVnKwkRtd07lKNr4VWqSJEmSJK0A58klvrgewJVXXhnl3oqXuVAemGNJkhSr1+9Nv7QO8JU/eWldq8ZzslZWPX04jAtSa89yDS8yNmg/bWX5ZZKX1gH6VrQbVYMYZ6h+kyVJit8abMlX+HNq7TEu4w3+HbgjSZIkSVIeOU8u8cX1ZSr54rokSZIkqTYsmgtDt4fZbyZrG+4Lg++Ddv4r5JIyUqTItRzFq4xP1HqwDqcwhW70zqCzklHAMSnrNwL/EbYVSZIk1YgWWhjF/ryd8jt+erExJzOZzvTIoDNJkiRJkvLHvy4PoKGhIcq9FS9zoTwwx5IkKUZ3nZF+ab1DVxg40kvrWnWek7UqChTozxV0pj5Rm8v7jOe0YL20leWJbfx5X1zPvxhnqH6TJUnKh3a0YyAj6UDXRG02b3IXZ2TQlSRJkiQpT5wnl/ji+jKVfHF9wYIFdO2aHHRU+96Kl7lQHphjSZIUm9fvgasPTq8dfhHsFe4+qHLMc7LK4SlGMSb1XXP4JjezNYMq3kNbWd4BmNxqbSPgzYp3pKzFOEP1myxJUr5M4iJu5yepte9xD5tyUNiGJEmSJEm54Ty5xLfeAhgyZEiUeyte5kJ5YI4lSVJMFs2BMcel1zb6Muzxw7D9KL88J6scduL7bMFRqbVbOIn5zKx4D2lZbgKeS/mzvrZeG2KcofpNliQpX/bgR2zIfqm1MRzLIuYE7kiSJEmSlBfOk0u8uB7AgAEDotxb8TIXygNzLEmSYnLnz6HxreR6x24wcAS085++VSaek1UOBQr0ZxidqU/U5jGd2/hRxXtIy/KjQNqvhvTiem2IcYbqN1mSpHxpRzsGMoKOdEvUGnmLO/l5Bl1JkiRJkvLAeXKJf3UewJNPPhnl3oqXuVAemGNJkhSL1+6CJ4al1w4+B3pvFrYf5ZvnZJVLHetzBBel1p7jH7zAzRX9+WlZntjGn/Xiem2IcYbqN1mSpPxZnc05mLNTa08wjNe4O3BHkiRJkqQ8cJ5c4sX1ANZcc80o91a8zIXywBxLkqQYLGyCMcel1zY+AHY/JWg7qgGek1VOO/I9tqRfau0WTmIeMyr2s9OynHZxvQuwY8W6UDWJcYbqN1mSpHzanVPZiP1Ta2M5joU0Be5IkiRJkhQ758klXlwPoHPnzlHurXiZC+WBOZYkSTG487+h6Z3kesfuMGA4tPOfulVmnpNVTgUK9GMYXeiVqM3jA27jhxX72a2z3AJMSvlzuwGdKtaFqkmMM1S/yZIk5VM72jGQEXSkW6LWyNvcxc8z6EqSJEmSFDPnySX+FXoAr732WpR7K17mQnlgjiVJUrV79U548sr02iHnQO9Nw/aj2uA5WeVWx3ocwcWptSlcx/PcWJGf2zrLLwMfpfy5vhX56apGMc5Q/SZLkpRfvdmUQzg3tfYEV/AqdwbuSJIkSZIUM+fJJV5cD+CAAw6Icm/Fy1woD8yxJEmqZgsbYezx6bWND4DdTg7ajmqI52RVwg58hy3pn1q7hZOZx4dl/5mtszyxjT+3d9l/sqpVjDNUv8mSJOXbbpzMxhyQWhvL8SykMWxDkiRJkqRoOU8u8eJ6AH//+9+j3FvxMhfKA3MsSZKq2R0/g6Z3kusdu8PAEdDOf9pWhXhOViUUKNCfYXRhtURtPh9yGz8s+89sneW2Lq774nrtiHGG6jdZkqR8a0c7BjKCjnRP1Jp4hzv57wy6kiRJkiTFyHlySaFYLBazbqIaNDU1UV9fT2NjI3V1dWXdu6WlhXYVurVQyb0VL3OhPDDHkiSpWr1yO1x7RHrtqCGwu6+tq4I8J6uSnuVabuI7qbWvcz3b8vWy/azWWd4OmNLqz2wCvF62n6hqF+MM1W+yJEm14VGGcBunpta+w+1szmGBO5IkSZIkxcZ5con/WwjgT3/6U5R7K17mQnlgjiVJUjVa2AjjTkivbXIQ7Hpi2H5Uezwnq5K257/4EgNTa7dyCnP5oGw/69NZbgSeT/kzvrZeW2KcofpNliSpNuzGSWzCQam1sRzPQhoDdyRJkiRJio3z5BJfXF/GF9eVJ+ZCeWCOJUlSNRpzHDw1IrneqQecPBlW2zh4S6oxnpNVaXN4nyFsywJmJWrb8DW+wQ1l+TmfzvKdkPpG5SXAD8vy0xSDGGeofpMlSaodH/EmQ9mexcxN1HbmWAYyPIOuJEmSJEmxcJ5c4v8WAvjzn/8c5d6Kl7lQHphjSZJUbV6+Lf3SOsChf/HSusLwnKxK68k6HMmlqbXn+RfPcX1Zfs6nszyxjT/ji+u1JcYZqt9kSZJqx2pszCGcl1p7ihG8wvjAHUmSJEmSYuI8ucQX15ep5Ivrb7/9NhtuuGFZ9wyxt+JlLpQH5liSJFWTBbNhyLYwZ1qytunB8N07oVAI3pZqkOdkhVCkyHV8lRe5OVHryuqcyhR6sPYq/YxPZ/lw4I7Ez4FGoOMq/RTFJMYZqt9kSZJqS5EiV3MIb3BPotaT9TmF5+hKr/CNSZIkSZKqnvPkEl9cD2DChAlR7q14mQvlgTmWJEnV5I6fpl9a79QTBlzlpXWF4zlZIRQo0I+hdGX1RG0BM7mVUyiyam9hfJLlFmBSSn13vLRea2KcofpNliSpthQoMJDhdKJHojaHd7mDn2bQlSRJkiQpBs6TS7y4HsBmm20W5d6Kl7lQHphjSZJULV6+FZ4elV479C/Qa6Og7ajGeU5WKD1YmyO5NLX2AjfxHNet0v6fZPlFPn5ZvbW+q7S7YhTjDNVvsiRJtacXG3Eo56fWnmYUL3Nr4I4kSZIkSTFwnlzixfUAFi1aFOXeipe5UB6YY0mSVA0WfARjT0ivbXoI7NpGTaoUz8kKaTu+ydZ8NbV2G6cyh/dXeu9PsjyxjboX12tPjDNUv8mSJNWmXTmBTTkktTaOH7CAjwJ3JEmSJEmqds6TS7y4HsCHH34Y5d6Kl7lQHphjSZJUDW7/Ccx9L7neqScMuAoKheAtqcZ5TlZIBQocxRC6sUaitoBZ3MrJFCmu1N6fZNmL6/pEjDNUv8mSJNWmAgUGcBWd6JmozWEat/PTDLqSJEmSJFUz58klXlwPYJdddolyb8XLXCgPzLEkScraS+PgmavTa4f9FXptGLYfCTwnK7werMWRXJZae5HRTOYfK7XvJ1lOu7i+KbDWSu2qmMU4Q/WbLElS7erFhhzGX1Nrz/A3XuKWwB1JkiRJkqqZ8+QSL64HMHbs2Cj3VrzMhfLAHEuSpCzNnwXjTkyvbXYY7HJc2H6kT3hOVha24xtsw9dSa+P5EXN4f4X3HDt2LLOB51Nqe6/wbsqDGGeofpMlSaptu3Acm3FYam0cP2ABHwXuSJIkSZJUrZwnlxSKxeLK/T7fnGlqaqK+vp7Gxkbq6urKuveCBQvo2rVrWfcMsbfiZS6UB+ZYkiRl6abvwrPXJNc718Epz0F9n/A9SeA5WdmZx4dcxrbMJ/mrLL/EQL7FzRQoLPd+CxYs4P6uXTk8pXYZcMrKt6pIxThD9ZssSZIaeYchbMcimhK1Hfgu/0Ebv8pNkiRJklRTnCeX+OJ6AOeff36Ueyte5kJ5YI4lSVJWXhybfmkd4LALvLSubHlOVla6syZHMSS19hJjeJZrV2i/888/n4lt1PquYG/KhxhnqH6TJUlSPX04jL+m1p7l77zEuMAdSZIkSZKqkfPkEl9cX6aSL65LkiRJkuIwfxYM2Rbmvp+sbX4EfPtWKCz/g8KSlDs38E2mcH1ivQurcSpT6Mm6y73XocBdrda6A7OBDqvQoyRJkhRSkSLXciSvcnui1oN1OIUpdKN3Bp1JkiRJklR9fHE9gIaGhij3VrzMhfLAHEuSpCyMPy390nrneuh/hZfWlT3PycrakVxKN9ZMrC/kI8ZxIkWW742MPzY08EjK+u54ab1WxThD9ZssSZIAChToz5V0pj5Rm8v7jOe0DLqSJEmSJFUT58klvri+TCVfXJ8+fTprr712WfcMsbfiZS6UB+ZYkiSF9sJouO7o9NrAkbDz4JDdSOk8J6saPM+NXM/XUmtHczU78t0v3GPC9OkcmJLlXwB/WtUGFaUYZ6h+kyVJ0qc9xUjGcGxq7VuMZisGBu5IkiRJklQtnCeX+OJ6AGPGjIlyb8XLXCgPzLEkSQpp/ky45aT02hZHwU7fD9uP1BbPyaoG2/BVtuNbqbXxnEYT075wj+FtZLnvKnWmmMU4Q/WbLEmSPm0nBrMFR6bWxnEi85kZuCNJkiRJUrVwnlzixfUAdt111yj3VrzMhfLAHEuSpJBu+xHMm55c71wP/YdBoRC+JymN52RViyO4hO6slVhfyGzG8QOKfP4veWxsI8t7laU7xSjGGarfZEmS9GkFCvTnCjpTn6jNYzrjOS2DriRJkiRJ1cB5cokX1wOYPj3l9kMEeyte5kJ5YI4lSVIoL9wMz/0jvXbERVC3fth+pM/jOVnVojtr0I/LU2uvcCvPcPXn/vefSsny5sCa5WhOUYpxhuo3WZIktVbH+hzBRam1yfw/XuDmwB1JkiRJkqqB8+QSL64HsHjx4ij3VrzMhfLAHEuSpBDmzYBbTkqvbdkPdvxe2H6kL+I5WdVka45mO/4ztTaeH9PEu6m1WcDUlCz3LWdzik6MM1S/yZIkKc2OfI8tOCq1dgsnMY8ZgTuSJEmSJGXNeXKJF9cD2GyzzaLcW/EyF8oDcyxJkkK47Ycw74Pkepde0G8YFArBW5I+l+dkVZsjuYTurJ1YX0QjYzmBIsVE7RGAlCx7cb22xThD9ZssSZLSFCjQnyvoQq9EbR4fMJ4fhW9KkiRJkpQp58klXlwP4L777otyb8XLXCgPzLEkSaq052+EKdel1464GOrWC9uPtDw8J6vadGN1+jMstfYq43maUYn1iQApWfbiem2LcYbqN1mSJLWljvU4gotTa8/xT57nxsAdSZIkSZKy5Dy5pFAsFpPPHtWgpqYm6uvraWxspK6urqx7z549m169epV1zxB7K17mQnlgjiVJUiXN+xAu2xbmf5isbdkf/nOMr62rOnlOVrW6ke8wmWsT652p4xSmUM8G/7d2CHD37NnwqSx3B2YDHSrcp6pXjDNUv8mSJOnzFCnyDwbyMuMStW6syalMoTtrZtCZJEmSJCk058klvrgewKWXXhrl3oqXuVAemGNJklRJt/0w/dJ6l9Wg/zAvrat6eU5WtTqCi+nBOon1RTQxjhMo8vHbGc3AIwCtsrwnXlqvdTHOUP0mS5Kkz1OgQH+G0YXVErX5fMht/DCDriRJkiRJWXCeXOKL68tU8sV1SZIkSVL1mHID3PCN9Np/XAM7fDtsP5KUFy8yln8yMLU2gKvYheOYDOyQUv8V0FDJ5iRJkqSMPMM13Mx3U2tf5wa25WuBO5IkSZIkKTu+uB5AQ0Pl/tqtknsrXuZCeWCOJUlSJcz9AG49Jb32pYGw/X+F7UdaUZ6TVc22YgA7tHEh5w5Op5F3ePiThVZZ7lvZ1hSBGGeofpMlSdLy2IFv86U2/gXPWzmZuXwQuCNJkiRJUmjOk0t8cX2ZSr643tjYSH19fVn3DLG34mUulAfmWJIkVcL1X4fn/5Vc79obTpkCPdcJ35O0Ijwnq9ot4CMuY1vm8l6ithmHcQ/j+RsFaGyET2V5BrB6wD5VfWKcofpNliRJy2sO7zOEbVnArERtG77GN7ghg64kSZIkSaE4Ty7xxfUArr766ij3VrzMhfLAHEuSpHJ77vr0S+sAR17qpXXFwXOyql1XVqM/V6TWXuMO/k3jx//hU1neEi+tK84Zqt9kSZK0vHqyDkdwSWrtef7Fc1wfuCNJkiRJUkjOk0tyeXG9qakJgDlz5mTcyccOPPDAKPdWvMyF8sAcS5Kkcpo7HW49Jb221dGw3bfC9iOtLM/JisGX6MeOfD+xPp/evE2vj//Dp7LcN1Bfqm4xzlD9JkuSpBWxPf/JVgxKrd3Gqczlg7ANSZIkSZKCcZ5cksuL6zvvvDMDBw7khhuq41eqvfLKK1HurXiZC+WBOZYkSeVSLH58aX3BzGSt6+rQbygUCuH7klaG52TF4nAupCfrfWZtKnuV/sOnsuzFdUGcM1S/yZIkaUUUKHAUQ+lK70RtPjO4lVMoUsygM0mSJElSpTlPLsnlxfXf//73jBkzhmOPPTbrVgDo2rVrlHsrXuZCeWCOJUlSuTx3HbxwU3rtyEuhx9ph+5FWhedkxaIrvejPlZ9Zm/rpK+qfyrIX1wVxzlD9JkuSpBXVk3U4kstSay9wI89xXeCOJEmSJEkhOE8uyeXF9WeeeYZ7772X8847j2Ix+38rffXVV49yb8XLXCgPzLEkSSqHOe/Dbaem17b+Kmz3zbD9SKvKc7JisiVHshOD/+8/f+bi+rIs9wS2DduWqlSMM1S/yZIkaWVsxzfZmv9Ird3GD5nL9MAdSZIkSZIqzXlySS4vrp977rkcdNBBLF68mAkTJmTdDk8//XSUeyte5kJ5YI4lSdKqKhbh1pNhwaxkrdsacNQQKBTC9yWtCs/Jis1hXEBP1qeFdrzLHqXCsizvQZH22bSmKhPjDNVvsiRJWhkFChzFELqSvLSwgJncwskUyf5xNkmSJElS+ThPLsndxfWrr76a6677+FeoNTY2tvni+qJFi2hqavrM/1RK//79o9xb8TIXygNzLEmSVtXkf8CLo9NrR14GPdYK2o5UFp6TFZuu9GIAV/IB27GYnqXCsixvxJMZdaZqE+MM1W+yJElaWT1Ym6O4LLX2IjfzHP8M3JEkSZIkqZKcJ5cs98X1f/zjH7z22muce+65LFq0iIaGBgAaGhqYNm0aw4cP57HHHuOOO+7gpptu4vnnn+fiiy+mqanpM3921qxZXHbZZTz77LOMHTuWW2+9lSeffJJhw4bx4YcffubPzp8/n/PPP5+XXnqJ66+/nnvuuYeHH36YUaNG8c4773zmzzY3N/PnP/+ZrbfemkmTJvGnP/2JRYsW8cEHH/DKK69w3nnnsXDhwv/77xxxxBHU19f/3//06dMHgOeff55LLrmExsbGz+w/e/ZsLr30UiZPnszo0aO57bbbeOKJJ7jiiiuYPn36Z/7sggULOP/883nllVe47rrr+OUvf8lDDz3E1Vdfzdtvv81ZZ51FS0sLDQ0NtLS0cNZZZ/H2229z9dVX89BDD3Hvvfdy3XXX8corr3D++eezYMGCz+w/ffp0rrjiCp544gnOOOMMRo8ezeTJk7n00kuZPXv2Z/5sY2Mjl1xyCc899xw333wzt99+O4899hhXXnkl77///mf+7MKFCznvvPN45ZVX+Oc//8mECRN48MEH+fvf/85bb73Fn//8Z5qbmz/z33nnnXcYNWoUDz/8MPfccw/XX389L730Eueffz7z58//zJ/98MMPGTZsGE8++SS33norY8eO5dlnn+Wyyy5j1qxZn/mzTU1NXHzxxTz//PPcdNNN3HHHHTz22GMMHz6cadOmfebPLlq0iHPPPZfXXnuNf/zjH0yYMIEHHniAa665hjfffJOzzz6bpUuXfua/M3XqVEaOHMmkSZO46667uOGGG3jxxRe54IILmDt37mf+7IwZM7j88st5+umnueWWWxg3bhxPP/00Q4cOZebMmZ/5s3PmzOHCCy/k+eef58Ybb+TOO+/kkUceYcSIEYm+lyxZwjnnnMPrr7/Otddey/3338/999/Ptddey+uvv84555zDkiVLEv+3NmLECB555BHuvPNObrzxRp5//nkuvPBC5syZ839/9jvf+Q4zZ85k6NChPP3004wbN45bbrmFp59+mssvv5wZM2Z8Zt+5c+dywQUX8OKLL3LDDTdw1113MWnSJEaOHMnUqVM/82eXLl3K2WefzZtvvsk111zDAw88wIQJE6L5Rrz11lv8/e9/58EHH2TChAn885//TP1GNDQ08P7773PllVfy2GOPcfvtt3PzzTfz3HPPlf0bce+991bsG3HbbbdF+4342c9+5jeiQt+IhoYGvxF+I6L/RniO8BvhN8JvxBd9Iybe+yy/PeEyFjCL+/n4z95PA4to4q0dL6bddn4j/EbE+Y0444wz/EZ4jojuGzHv6XV5/vKdYcYMWPZn+c53YO5cnrngGB558R6/EZ4j+N3vflexb8SPf/zjinwjzjzzTL8RniP8RniOaPMb4TnCb4TfCL8RX/SNmP/YJrw/fFfmTIP7lx2T72+ApYvgzHOP45nXJvmN8BvhN6KGvxGeI/xG+I3wG+E3wm+E3wi/EX4j8vWN+PWvf537b8TyKhTbepI85xYtWsSiRYv+7z83NTXRp08fGhsbqaury7AzSZIkSdKqKBbhn0fDS2OStW5rwClTfG1dkkL7Dou5lk6J9Zs4i/78Nx3onEFXkiRJUrbm8gFD2Jb5zEjUvsRAvsXNFChk0JkkSZIkSZWx3C+u503nzp2pq6v7zP9Uyif/ZkFseyte5kJ5YI4lSdLKevba9EvrAEcN8dK64uY5WbH6LzrxXd5iPR6jHUugoYHNWcDR/MpL6wLinKH6TZYkSauqB2txFENSay8xhsn8v8AdSZIkSZIqwXlySe5eXC8U0v+N8y/6f2ZTUxP19fUVeXF94cKFdOnSpax7hthb8TIXygNzLEmSVsac9+CybWHhR8natt+Ar18XviepnDwnK3a3cDKwFp0W/oylXeo4MuuGVDVinKH6TZYkSeVyPd/geW5IrHdhNU5lCj1ZN4OuJEmSJEnl4jy5JHcvrheLxdT/ydIll1wS5d6Kl7lQHphjSZK0oopFGHdi+qX1bmvCkZeG70kqN8/Jit1RDKEfv+eZS4Z5aV2fEeMM1W+yJEkql6O4jG6smVhfyEeM40SK5OotOkmSJEmqOc6TS3J3cb2xsZHrr7+eCRMmcNlll2V+aR1g0KBBUe6teJkL5YE5liRJK+rZa+Dlcem1fkOhe/Lvf6XoeE5W7Ap8/NsSzbJai3GGao4lSVK5dGdN+jE0tfYy43iWawJ3JEmSJEkqJ+fJJbm7uP7AAw/Q3NzMAQccwNy5c5kzZ07WLfHEE09EubfiZS6UB+ZYkiStiKZpMP609Np234Jtvhq2H6lSPCcrL8yyWotxhmqOJUlSOW3DV9mWb6bWxnMaTUwL3JEkSZIkqVycJ5fk7uL6gQceyN/+9jeOPvpoNtxwQ+rq6rJuiXXWWSfKvRUvc6E8MMeSJGl5FYsw7gewcHay1n0tOMLfuqYc8ZysvDDLai3GGao5liRJ5XYkl9KdtRLrC5nNLZxIkex/27gkSZIkacU5Ty7J3cX1F198kdNOO43vfe97XHLJJbz33ntZt0SHDh2i3FvxMhfKA3MsSZKW1zNXwyu3ptf6XQ7d1wjbj1RJnpOVF2ZZrcU4QzXHkiSp3LqzBv24PLX2MrfwDFcH7kiSJEmSVA7Ok0tyd3H9pptu4sgjj+Too4/moosu4pFHHsm6Jd54440o91a8zIXywBxLkqTl0fQujP9xem27/4Stjw7bj1RpnpOVF2ZZrcU4QzXHkiSpErbmaLbjP1Nr4/kxTbwbuCNJkiRJ0qpynlxSKBaLufp9Yi+88AIPPvggffr0oampiYEDB9K5c+cv/O81NTVRX19PY2MjdXV1Ze3prbfeYqONNirrniH2VrzMhfLAHEuSpC9SLMK1R8Gr45O17mvDqVOg2+rh+5IqyXOy8sIsq7UYZ6jmWJIkVcp8ZnIZ2zKP6YnaFhzJf3ELBQoZdCZJkiRJWhnOk0ty9+L61ltvzQknnMDhhx/ON77xjeW6tF5p/+///b8o91a8zIXywBxLkqQv8vSo9EvrAP2HeWld+eQ5WXlhltVajDNUcyxJkiqlG6vTj8tTa69wG0/zt8AdSZIkSZJWhfPkkty9uL6yKvnienNzM+3bty/rniH2VrzMhfLAHEuSpM/TOBWGbAuLmpK17b8NX70mfE9SCJ6TlRdmWa3FOEM1x5IkqdJu5DtM5trEemfqOIUp1LNBBl1JkiRJklaU8+SS3L24Xo3+/Oc/R7m34mUulAfmWJIktaVYhHEnpF9a77EOHHFx+J6kUDwnKy/MslqLcYZqjiVJUqUdwcX0YJ3E+iKaGMcJFPGNOkmSJEmKgfPkEl9cX6aSL65LkiRJksrnyeEw9vj02rfGwFYDwvYjSZIkSZJUKS8yln8yMLU2gOHswrGBO5IkSZIkaeX54noADQ0NUe6teJkL5YE5liRJaRrfgTtOT6/t8F0vrSv/PCcrL8yyWotxhmqOJUlSCFsxgB34TmrtDn5KI+8E7kiSJEmStKKcJ5f44voylXxx/Z133qFPnz5l3TPE3oqXuVAemGNJktRasQjXHAGv3ZGs9VgXTp0CXVcL35cUkudk5YVZVmsxzlDNsSRJCmU+sxjCdszlvURtMw7jO4ynQCGDziRJkiRJy8N5cokvrgdwzz33RLm34mUulAfmWJIktfbk8PRL6wD9r/DSumqD52TlhVlWazHOUM2xJEkKpRu96c8VqbXXuIMnGR64I0mSJEnSinCeXOLF9QC23HLLKPdWvMyF8sAcS5KkT5v9Ntxxenptx+/Dl/qF7UfKiudk5YVZVmsxzlDNsSRJCulL9GNHvpdau4PTmc3bgTuSJEmSJC0v58klXlwPYMGCBVHurXiZC+WBOZYkSZ8oFmHs8bB4TrLWcz04/MLgLUmZ8ZysvDDLai3GGao5liRJoR3OhfRkvcT6YuYwluMpUsygK0mSJEnSF3GeXOLF9QBmzpwZ5d6Kl7lQHphjSZL0iSeuhNfvSq/1vxK69grajpQpz8nKC7Os1mKcoZpjSZIUWldWoz9XpNZe5y6e5KrAHUmSJEmSlofz5BIvrgew4447Rrm34mUulAfmWJIkAcx+C+78WXptp8Gw5ZFB25Ey5zlZeWGW1VqMM1RzLEmSsrAlR7ETg1Nrd3A6s3krbEOSJEmSpC/kPLnEi+sB3HLLLVHurXiZC+WBOZYkScUijDkOFs9N1nquD4ddEL4nKWuek5UXZlmtxThDNceSJCkrh3EBPVk/sb6YuYzleIoUM+hKkiRJktQW58klhWKx6D+1Ak1NTdTX19PY2EhdXV1Z954/fz7dunUr654h9la8zIXywBxLkqTHLodbT06vffs22OKIsP1I1cBzsvLCLKu1GGeo5liSJGXpFcZzLem/iq4fl7MbJwbuSJIkSZLUFufJJb64HsBf//rXKPdWvMyF8sAcS5JU2z56E+76eXpt52O9tK7a5TlZeWGW1VqMM1RzLEmSsrQFR7Azx6bW7uS/+Yg3wzYkSZIkSWqT8+QSX1xfppIvrkuSJEmSll9LC/z9EHjj3mStbgM45TnoUh++L0mSJEmSpGqykEaGsB1NTE3UNuEgvstdtPMtO0mSJElSFfGfUgNoaGiIcm/Fy1woD8yxJEm164lh6ZfWAQZc5aV11TbPycoLs6zWYpyhmmNJkpS1LtQzgKtSa29wL08wLHBHkiRJkqQ0zpNLfHF9mUq+uP7hhx+y5pprlnXPEHsrXuZCeWCOJUmqTR+9AUO2hyXzkrVdjocBV4bvSaomnpOVF2ZZrcU4QzXHkiSpWozheJ5ieGK9I905hcmsxiYZdCVJkiRJ+oTz5BJfXA/gpptuinJvxctcKA/MsSRJtaelBcYcm35pva4PHHp++J6kauM5WXlhltVajDNUcyxJkqrFYZxPHX0S60uYxxiOo4WWDLqSJEmSJH3CeXKJF9cD2H333aPcW/EyF8oDcyxJUu15fCi8OSG9NuAq6FLeX44lRclzsvLCLKu1GGeo5liSJFWLLtQzgKtSa2/ybx5naOCOJEmSJEmf5jy5xIvrAbz33ntR7q14mQvlgTmWJKm2zHod7jojvbbrD2DzQ8P2I1Urz8nKC7Os1mKcoZpjSZJUTTbnUHbhhNTaXZzBLF4P3JEkSZIk6RPOk0u8uB5Ac3NzlHsrXuZCeWCOJUmqHS0tMOYYWDI/WavfEA45L3xPUrXynKy8MMtqLcYZqjmWJEnV5lD+Qj0bJtaXMJ8xHEsLLRl0JUmSJElynlzixfUANt544yj3VrzMhfLAHEuSVDseuwzeuj+9NmA4dKkL249UzTwnKy/MslqLcYZqjiVJUrXpQh0DuCq19hb38RhDAnckSZIkSQLnyZ/mxfUAHnjggSj3VrzMhfLAHEuSVBtmvQZ3/096bdcTYbODw/YjVTvPycoLs6zWYpyhmmNJklSNNuMQduXE1NrdnMksXgvckSRJkiTJeXJJoVgsFrNuoho0NTVRX19PY2MjdXXlfc5v1qxZ9O7du6x7hthb8TIXygNzLElS/rW0wKgD4O2Uf0av3whOmQydewZvS6pqnpOVF2ZZrcU4QzXHkiSpWi1iDkPYnkbeStQ24st8n3/TzjfuJEmSJCkY58kl/tNoAEOGVO5XrlVyb8XLXCgPzLEkSfn36CXpl9YBBo7w0rqUxnOy8sIsq7UYZ6jmWJIkVavO9GQgw1Nrb3E/j3Jp4I4kSZIkqbY5Ty7xxfVlKvniuiRJkiTps2a+AkN3hKULkrXdToZ+/nO7JEmSJEnSKrmFk3mcyxPrHejKyTzL6myeQVeSJEmSpFrmi+sBNDQ0RLm34mUulAfmWJKk/GppgTHHpl9a77UxHHJu8JakaHhOVl6YZbUW4wzVHEuSpGp3COfSi40T60tZwBiOoYWW8E1JkiRJUg1ynlzii+vLVPLF9aampoq94l7JvRUvc6E8MMeSJOXXxAvhjp+m175/L2xyYNB2pKh4TlZemGW1FuMM1RxLkqQYvMG/+RsHpdYO4wL68pOwDUmSJElSDXKeXOKL6wGMGjUqyr0VL3OhPDDHkiTl04yX4Z5fpNd2P9VL69IX8ZysvDDLai3GGao5liRJMdiEA9mdU1Jr9/BLZvJK4I4kSZIkqfY4Ty7x4noABx98cJR7K17mQnlgjiVJyp+WZhhzDCxdmKz12gQOPjt8T1JsPCcrL8yyWotxhmqOJUlSLA7mHHqxSWJ9KQsYzTG00JxBV5IkSZJUO5wnl3hxPYAXX3wxyr0VL3OhPDDHkiTlz6SL4J2H02sDR0DnHmH7kWLkOVl5YZbVWowzVHMsSZJi0ZkeDGREau0dHmISFwXuSJIkSZJqi/PkEi+uB9C9e/co91a8zIXywBxLkpQvM16Ce3+VXtvjh7DJASG7keLlOVl5YZbVWowzVHMsSZJisgkHsAc/TK3dy6+YwUuBO5IkSZKk2uE8ucSL6wH07t07yr0VL3OhPDDHkiTlR0szjD4Gli5M1lbbFA4+O3xPUqw8JysvzLJai3GGao4lSVJsDuZsVmPTxPpSFjKaY2ihOYOuJEmSJCn/nCeXeHE9gGeffTbKvRUvc6E8MMeSJOXHxAtg6sT02sCR0Ml/uVxabp6TlRdmWa3FOEM1x5IkKTad6M5ARqTWpjKRSVwYtiFJkiRJqhHOk0sKxWKxmHUT1aCpqYn6+noaGxupq6sr697Tpk1jvfXWK+ueIfZWvMyF8sAcS5KUDx++CJfvBM2LkrU9T4MjLgrekhQ1z8nKC7Os1mKcoZpjSZIUq/H8mEe4OLHens6cxNOsyVYZdCVJkiRJ+eU8ucQX1wMYMSL931qv9r0VL3OhPDDHkiTFr6UZRg9Ov7S+2mbwlT8Fb0mKnudk5YVZVmsxzlDNsSRJitVX+BOrsVlivZlFjOEYWmjOoCtJkiRJyi/nySW+uL5MJV9clyRJkqRa9OC5cPeZKYUCHHMfbLRf8JYkSZIkSZIEvMUDjGR/IHld4BDOZR9+Hr4pSZIkSVLu+eJ6AA0NDVHurXiZC+WBOZYkKW4fvgD//m16ba8fe2ldWlmek5UXZlmtxThDNceSJClmG7Efe3Jaau1efsOHvBC4I0mSJEnKL+fJJb64vkwlX1xftGgRnTt3LuueIfZWvMyF8sAcS5IUr+alMGIfePfRZK33FnDS09CpW/C2pFzwnKy8MMtqLcYZqjmWJEmxW8x8LmdHZvFqorY+e3AsD9GeDhl0JkmSJEn54jy5xBfXA7joooui3FvxMhfKA3MsSVK8Jp6ffmmdAgwa6aV1aVV4TlZemGW1FuMM1RxLkqTYdaIbgxgFFBK1d3mUiZwfvCdJkiRJyiPnySW+uL5MJV9cf+2119hss83KumeIvRUvc6E8MMeSJMXpgykwbBdoXpys9T0dDvPvO6VV4jlZeWGW1VqMM1RzLEmS8uJ2TmcSFyTW29OJE3mKtdgmg64kSZIkKT+cJ5f44noAjz6a9tRg9e+teJkL5YE5liQpPs1LYfTg9Evrq28JBzUEb0nKHc/JyguzrNZinKGaY0mSlBcH0UBvtkisN7OY0QymmaUZdCVJkiRJ+eE8ucSL6wGsu+66Ue6teJkL5YE5liQpPg+fB9MeTykUYOBI6Ng1eEtS7nhOVl6YZbUW4wzVHEuSpLzoRDcGMQooJGrTeIyH+UvwniRJkiQpT5wnl3hxPYD27dtHubfiZS6UB+ZYkqS4TH8OJvwuvdb3dNhw76DtSLnlOVl5YZbVWowzVHMsSZLyZEP2pi+np9Ym8L9M57nAHUmSJElSfjhPLvHiegBvvfVWlHsrXuZCeWCOJUmKR/MSGD0Ymhcna6t/CQ76Y/CWpNzynKy8MMtqLcYZqjmWJEl5cxB/ZHW+lFhvZjFjOIZmlmbQlSRJkiTFz3lyiRfXA9h3332j3FvxMhfKA3MsSVI8HjoX3nsiuV5oB4NGQceuwVuScstzsvLCLKu1GGeo5liSJOVNR7oyiJEUUq4RTONxHuLcDLqSJEmSpPg5Ty7x4noA//znP6PcW/EyF8oDcyxJUhymT4YJv0+v9f0Z9NkrbD9S3nlOVl6YZbUW4wzVHEuSpDzqQ1/68rPU2gR+x3QmB+5IkiRJkuLnPLmkUCwWi1k3UQ2ampqor6+nsbGRurq6su69dOlSOnToUNY9Q+yteJkL5YE5liSp+jUvgav2gveeTNbW2ApOfAo6dgnfl5RnnpOVF2ZZrcU4QzXHkiQpr5awkGHszAxeTNTWZReOZxLt6ZhBZ5IkSZIUJ+fJJb64HsDZZ58d5d6Kl7lQHphjSZKq34PnpF9aL7SDQaO8tC5Vgudk5YVZVmsxzlDNsSRJyquOdGEQoyikXCd4jyd5kHMy6EqSJEmS4uU8ucQX15ep5IvrkiRJkpQ37z8LV+wGLUuStX3OhEP8525JkiRJkqSo3cWZPMS5ifV2dOQHPM467JBBV5IkSZKkmPniegANDQ1R7q14mQvlgTmWJKl6NS+B0YPTL62vuQ0c8LvQHUm1w3Oy8sIsq7UYZ6jmWJIk5d0B/J412Dqx3sISRjOYZlKGQ5IkSZKkBOfJJb64vkwlX1yfOnUqG2ywQVn3DLG34mUulAfmWJKk6jXhDzDhf5PrhXZw3ETYYI/wPUm1wnOy8sIsq7UYZ6jmWJIk1YKpPMpw+lKkJVE7gN9zAL/NoCtJkiRJiovz5BJfXA/grrvuinJvxctcKA/MsSRJ1em9p+H+P6bX9jnTS+tSpXlOVl6YZbUW4wzVHEuSpFqwAXuwD2ek1u7nj7zPM4E7kiRJkqT4OE8u8eJ6AFtvnfz1aTHsrXiZC+WBOZYkqfosXQyjB0PL0mRtzW3hgJRX2CWVl+dk5YVZVmsxzlDNsSRJqhUH8DvWZJvEegtLGc1gmlmSQVeSJEmSFA/nySVeXA9gzpw5Ue6teJkL5YE5liSp+jzwJ5ie8ohWoT0MGgUdOgdvSao5npOVF2ZZrcU4QzXHkiSpVnSgM4MYRYH2idr7PM0D/CmDriRJkiQpHs6TS7y4HsDs2bOj3FvxMhfKA3MsSVJ1ee9peOCs9Nq+Z8L6uwVtR6pZnpOVF2ZZrcU4QzXHkiSplqzP7uzLmam1+2ngPZ4O25AkSZIkRcR5cokX1wPYfvvto9xb8TIXygNzLElS9Vi6GEZ/H1qWJmtrbQf7/zZ8T1Kt8pysvDDLai3GGao5liRJtWZ/fstabJdYb2Epo/k+S1mcQVeSJEmSVP2cJ5d4cT2A8ePHR7m34mUulAfmWJKk6nF/A0x/NrleaA+DRkGHzsFbkmqW52TlhVlWazHOUM2xJEmqNR3ozCBGUaB9ojadZ3mANn5dnyRJkiTVOOfJJYVisVjMuolq0NTURH19PY2NjdTV1ZV177lz59KjR4+y7hlib8XLXCgPzLEkSdVh2pNw5R5QbE7WvvxrOOiP4XuSapnnZOWFWVZrMc5QzbEkSapV9/Ib7qchsd6ODhzPI6zHLhl0JUmSJEnVy3lyiS+uB3DhhRdGubfiZS6UB+ZYkqTsLV0MowenX1pfa3v48m+CtyTVPM/JyguzrNZinKGaY0mSVKu+zG9Yi+SvuW9hKaMZzFIWZ9CVJEmSJFUv58klvri+TCVfXJckSZKkGN37G7g/+XgW7TrA8Y/Aej6eJUmSJEmSVJOm8SRXsgdFki8efJlfcxD+mj5JkiRJUpIvrgfQ0JBy0yOCvRUvc6E8MMeSJGXr3cfhgT+n1/b7pZfWpax4TlZemGW1FuMM1RxLkqRath67sB+/TK09wJ+ZxhOBO5IkSZKk6uU8ucQX15ep5IvrM2bMYI011ijrniH2VrzMhfLAHEuSlJ2li2DYrvDhlGRt7R3hhEehQ6fwfUnynKz8MMtqLcYZqjmWJEm1bimLuZLdmc6zidpabMcPeJwOdM6gM0mSJEmqLs6TS3xxPYB//etfUe6teJkL5YE5liQpO/f9If3SersOMGiUl9alLHlOVl6YZbUW4wzVHEuSpFrXgU4MYhTt6JCofcBz3McfMuhKkiRJkqqP8+QSL64HsNdee0W5t+JlLpQH5liSpGy8+xg8eE56bb9fwbo7BW1HUiuek5UXZlmtxThDNceSJEmwLjuzH79KrT3IObzL44E7kiRJkqTq4zy5xIvrAUydOjXKvRUvc6E8MMeSJIW3ZCGMHgzF5mRtnZ1gv1+G7khSa56TlRdmWa3FOEM1x5IkSR/bj1+yNjsm1os0M5rBLGVRBl1JkiRJUvVwnlzixfUAisVilHsrXuZCeWCOJUkK777fw4fPJ9fbdYBBo6BDp+AtSWrFc7LywiyrtRhnqOZYkiTpYx3oxCBG0Y4OidqHTGECv8+gK0mSJEmqHs6TS7y4HkCfPn2i3FvxMhfKA3MsSVJYUx+Fh85Nr335N7BO8tEsSRnwnKy8MMtqLcYZqjmWJEkqWZed+DK/Sa09xDlM5dHAHUmSJElS9XCeXOLF9QAmTpwY5d6Kl7lQHphjSZLCWbIQRg+GYkuyts7OsN8vgrckqQ2ek5UXZlmtxThDNceSJEmftR+/YB12TqwXaWE0g1nCwgy6kiRJkqTsOU8uKRR9fx6ApqYm6uvraWxspK6urqx7z5w5k9VXX72se4bYW/EyF8oDcyxJUjh3nZn+2nq7jvCDx2GdHcL3JCmd52TlhVlWazHOUM2xJElS0vs8yxXsRgtLErV9OJNDODuDriRJkiQpW86TS3xxPYChQ4dGubfiZS6UB+ZYkqQw3pkED/8lvbb/b720LlUbz8nKC7Os1mKcoZpjSZKkpHXYgf35TWrtYc5jKo8E7kiSJEmSsuc8ucQX15ep5IvrkiRJklSNliyEYTvDjBeTtXV3geMnQfuO4fuSJEmSJElSvJpZwlXsxXs8maitwVacyFN0pEsGnUmSJEmSsuaL6wE0NDREubfiZS6UB+ZYkqTK+/dv0y+tt+sIg0Z5aV2qRp6TlRdmWa3FOEM1x5IkSena05FBjKIdyeHSDF7k3/w2g64kSZIkKTvOk0t8cX2ZSr64PmfOHHr27FnWPUPsrXiZC+WBOZYkqbLemQjD9wFS/onwoLPgy78M3pKk5eA5WXlhltVajDNUcyxJkvT57ucs7uXXifUC7TiWh+jDXhl0JUmSJEnhOU8u8cX1AIYPHx7l3oqXuVAemGNJkipnyQIYPZjUS+vr7Qb7nBG6I0nLy3Oy8sIsq7UYZ6jmWJIk6fPtw/9n776jLa/K+/G/78zA0OZeuoAgiBUpFmyoKAqCIGXy1ZiYJkVF0GiiMUaNxpiJvReKCIzGWGMyAwiKiAUVe6EEK0WQIjByL0OfmfP7I+PvJOd8UMq9+9y97+v15+dZ61nPcr2Xa9+HPfu8Kltn96HvvazJshyaO3LLCKYCAAAozz65z8X1Avbdd98qe1MvuaAFcgwAM+fs1yXX/2z4+/x1k8VLk/kLio8E3EXOybRClhlU4w5VjgEAfr/5WZDFWZr5WXeodn1+mrPzuhFMBQAAUJ59cp+L6wVcdNFFVfamXnJBC+QYAGbGr76ZnPuu7tpeb0i23LnoOMDd5JxMK2SZQTXuUOUYAOAPu092yV55Q2ft3Lwrv8o3yw4EAAAwAvbJfS6uF7Bo0aIqe1MvuaAFcgwA0+/2m5NlhybpDde2eUzyhFeWngi4u5yTaYUsM6jGHaocAwDcNU/IK7NNHtNR6WV5DssduaX4TAAAACXZJ/e5uF7AxMRElb2pl1zQAjkGgOl39j8mK34+/H3+usnipcn8BcVHAu4m52RaIcsMqnGHKscAAHfN/CzI4izN/Kw7VLs+P8vZ+ccRTAUAAFCOfXKfi+sFXHjhhVX2pl5yQQvkGACm12VfT771nu7aU9+YbPmwouMA95BzMq2QZQbVuEOVYwCAu27LPCxPzRs7a+fm3flVvlF4IgAAgHLsk/vGer1ex4/Ezz1TU1OZmJjI5ORkxsfHp7X3lVdemW222WZae5boTb3kghbIMQBMn9tvTo57eLLiF8O1+z42OfwbXluHWjgn0wpZZlCNO1Q5BgC4e1ZnVU7KE/PrfGeotmkemBflx1k3G4xgMgAAgJlln9znxfUCTjrppCp7Uy+5oAVyDADT5+zXdl9an78wWbzUpXWoiXMyrZBlBtW4Q5VjAIC7Z34WZHGWZn4WDtVW5Bc5O68dwVQAAAAzzz65z4vra83ki+sAAACjctk5yclPSdLxl9/T35Y88ZXFRwIAAABgDvt63paz8qqOylgOy1ezffYsPhMAAABleHG9gCVLllTZm3rJBS2QYwC4926/KVl2WDovrW/7+GSPlxcfCbiXnJNphSwzqMYdqhwDANwzT8grsm0e31HpZXkOz+25qfhMAAAAM8k+uc+L62vN5Ivrd9xxR9ZZZ51p7VmiN/WSC1ogxwBw753xsuTb7xv+Pn9h8qIfJVs8tPhIwL3knEwrZJlBNe5Q5RgA4J67Nj/JcXlEVue2odrj8tLsn/eOYCoAAICZYZ/c58X1At71rndV2Zt6yQUtkGMAuHcu/Wr3pfUk2ftfXVqHWjkn0wpZZlCNO1Q5BgC457bIQ/O0dL84+O28L5fma4UnAgAAmDn2yX1eXF9rJl9cv/jii7PjjjtOa88SvamXXNACOQaAe+72m5Jjd0t+e/FwbbsnJId9LZk3v/xcwL3nnEwrZJlBNe5Q5RgA4N5Zk9U5KXvmipw7VNskO+aonJd1s+EIJgMAAJhe9sl9Xlwv4Nxzh//QrqE39ZILWiDHAHDPnfUP3ZfWF6yXHHKyS+tQM+dkWiHLDKpxhyrHAAD3zrzMz+KcnAVZb6j221ycs/LqEUwFAAAw/eyT+1xcL2C77barsjf1kgtaIMcAcM9c8pXkOx/orj3tX5PNH1x0HGCaOSfTCllmUI07VDkGALj3Ns9D8rT8a2ftO3l/LslXyg4EAAAwA+yT+1xcBwAAaMRtK5Plh3fXtnti8viXlZ0HAAAAAP6Qx+dl2S5P7Kwtz+G5LSsLTwQAAMBMcXG9gMsvv7zK3tRLLmiBHAPA3XfWq5IbLhn+vmD9ZPHJybz55WcCppdzMq2QZQbVuEOVYwCA6TEv83NITsqCrDdUuyGX5Kz8wwimAgAAmD72yX0urhewxx57VNmbeskFLZBjALh7Lj47+e4x3bW935Rs9qCy8wAzwzmZVsgyg2rcocoxAMD02TwPzt55c2ftu/lgLsmXC08EAAAwfeyT+1xcL+Azn/lMlb2pl1zQAjkGgLvutpXJKUd01+73pORxLy07DzBznJNphSwzqMYdqhwDAEyvx+WluV+e1FlbnsNzW1YWnggAAGB62Cf3jfV6vd6oh5gNpqamMjExkcnJyYyPj09r7zvuuCPrrLPOtPYs0Zt6yQUtkGMAuOtOOzr53rHD3xesnxx1XrLZA8vPBMwM52RaIcsMqnGHKscAANPv+vwix2a3rMotQ7VH56gcmDv5yUEAAIBZzD65z4vrBbz1rW+tsjf1kgtaIMcAcNdc/KXuS+tJss9bXFqH1jgn0wpZZlCNO1Q5BgCYfpvlgdknb+6sfS/H5uKcXXgiAACAe88+uc+L62vN5IvrAAAAM+G2G5Njdk0mLxuubf/k5HlfTub558oAAAAAVGRN1mRp9sqvcs5QbSLb5+icn4VZNILJAAAAuLdcYShgyZIlVfamXnJBC+QYAP6wM1/ZfWl9nQ2SQ05yaR1a5JxMK2SZQTXuUOUYAGBmzMu8LM7JWScbDNUmc1nOzCtHMBUAAMA9Z5/c58X1tWbyxfUrr7wy22yzzbT2LNGbeskFLZBjAPj9fvnF5N/27a7t//7kcS8pOw9QhnMyrZBlBtW4Q5VjAICZ9e28P2fkpZ21v8wX84DsU3giAACAe8Y+uc/7ewV8/vOfr7I39ZILWiDHAHDnbp1Klh/RXdthr+QxRxcdByjIOZlWyDKDatyhyjEAwMx6TF6c7fOUztopOSK3ZqrwRAAAAPeMfXKfi+sF7LzzzlX2pl5yQQvkGADu3Jl/l0xdPvx9nQ2Tg09M5vlLD5rlnEwrZJlBNe5Q5RgAYGbNy7wckpOyTjYYqk3mV/liXjmCqQAAAO4+++Q+1xkKmJycrLI39ZILWiDHANDtF2cmPzihu/b0tyab7lh2HqAs52RaIcsMqnGHKscAADNv0+yYp+dtnbXv50P5Rc4sPBEAAMDdZ5/c5+J6ATfeeGOVvamXXNACOQaAYbdOJqc8v7u2w17Jo48qOg4wAs7JtEKWGVTjDlWOAQDKeHSOyg7Zq7N2Sp6fW+MCCAAAMLvZJ/e5uF7ATjvtVGVv6iUXtECOAWDYF16RTF0+/H2dDZNDTkrm+QsPmuecTCtkmUE17lDlGACgjHmZl0NyUtbJhkO1qVyeM/N3I5gKAADgrrNP7nOtoYAzz5y5nyebyd7USy5ogRwDwP/1888nPzyxu7bv25NN7l92HmA0nJNphSwzqMYdqhwDAJSzSe6fp+dtnbUf5MP5Rb5QeCIAAIC7zj65b6zX6/VGPcRsMDU1lYmJiUxOTmZ8fHxae994441ZtGjRtPYs0Zt6yQUtkGMA6Lt1Mjlml2TqiuHa/Z+W/OUXvbYOc4VzMq2QZQbVuEOVYwCAstZkTf4tT88lOXuoNp5tc3QuyHqZGMFkAAAAv599cp+rDQW8973vrbI39ZILWiDHAND3hZd3X1pfd6Pk4BNdWoe5xDmZVsgyg2rcocoxAEBZ8zIvB+fErJuNhmpTuSJfyMtHMBUAAMAfZp/c58X1tWbyxXUAAIB76menJx9/ZnftwOOSRx9Zdh4AAAAAGKXv5rh8Lkd11v48p+dB2b/wRAAAANxV3uUrYMmSJVX2pl5yQQvkGACSW25ITn1Bd23HfZLdX1h0HGAWcE6mFbLMoBp3qHIMADAaj86RuX/27qydkhfkltxQdiAAAIA/wD65z4vra83ki+vXX399Nttss2ntWaI39ZILWiDHAJAsOyz50dLh7+suSo4+P9l4++IjASPmnEwrZJlBNe5Q5RgAYHRuyGU5Jrvk9qwcqj0ih2ZxTh7BVAAAAN3sk/u8uF7Apz/96Sp7Uy+5oAVyDMBc97PPdV9aT5J93+HSOsxVzsm0QpYZVOMOVY4BAEZn42yfffPOztqPsjQ/y+cKTwQAAHDn7JP7XFwvYI899qiyN/WSC1ogxwDMZbf8NjnlBd21HZ+e7H4nNaB9zsm0QpYZVOMOVY4BAEZr97wgO+bpnbVT88Lckt8WnggAAKCbfXKfi+sFXH755VX2pl5yQQvkGIC57PN/k6y8avj7uouSgz+cjI0VHwmYJZyTaYUsM6jGHaocAwCM1ljGcnA+nHWzaKh2Y67M5/O3I5gKAABgmH1yn4vrBYzN4K2SmexNveSCFsgxAHPVT09NfvzR7tp+70o2vl/ZeYDZxTmZVsgyg2rcocoxAMDobZz7Zb+8q7P243wkP82phScCAAAYZp/c5+J6Adtuu22VvamXXNACOQZgLrp5RXLqkd21B+yXPOqIsvMAs49zMq2QZQbVuEOVYwCA2eFROSIPyH6dtVNzZG7JbwtPBAAA8H/ZJ/e5uF7At771rSp7Uy+5oAVyDMBc9PmXJSuvGv6+cDw5+ITEP8IGnJNphSwzqMYdqhwDAMwOYxnLwTkhCzM+VFuZq3JGXjaCqQAAAPrsk/vGer1eb9RDzAZTU1OZmJjI5ORkxseH/6C9N6677rpsvvnm09qzRG/qJRe0QI4BmGt+ckryyUO6awefmDzq8LLzALOTczKtkGUG1bhDlWMAgNnlBzkxp+T5nbXn5pQ8JAcVnggAAOB/2Cf3eXG9gOOOO67K3tRLLmiBHAMwl9y8IjntyO7aA/dPHnlY2XmA2cs5mVbIMoNq3KHKMQDA7PLIHJ4H5hmdtVPzwtycFYUnAgAA+B/2yX1eXF9rJl9cBwAA+H0++xfJ+f8+/H3hRHL0BcnEtuVnAgAAAIDaTOaKHJNdclsmh2q75s/zrHxsBFMBAADwO15cL2DJkiVV9qZeckEL5BiAueKiZd2X1pPkGe9xaR34v5yTaYUsM6jGHaocAwDMPhPZNs/Iuztr5+ff85MsLzwRAACAffL/5sX1tWbyxfWVK1dmo402mtaeJXpTL7mgBXIMwFxw8/XJB3dObrpmuPagZyZ/dmoyNlZ+LmD2ck6mFbLMoBp3qHIMADA79dLLx3Ngfp7Th2ob5j55cS7MBtlsBJMBAABzlX1ynxfXCzjhhBOq7E295IIWyDEAc8Hpf919aX3hRHLQ8S6tA8Ock2mFLDOoxh2qHAMAzE5jGctB+VAWZmKodlOuyRl56QimAgAA5jL75D4X1wvYf//9q+xNveSCFsgxAK276L+SCz7RXdv/vcn4fcvOA9TBOZlWyDKDatyhyjEAwOw1nvtm/7y3s3Z+Pp6L8l+FJwIAAOYy++Q+F9cLOP/886vsTb3kghbIMQAtu+m65LQXddcefGDy8L8qOw9QD+dkWiHLDKpxhyrHAACz28PzV3lQntlZOy0vyk25rvBEAADAXGWf3OfiegEbb7xxlb2pl1zQAjkGoGWnvyS56TfD39fbODnw+GRsrPhIQCWck2mFLDOoxh2qHAMAzG5jGctB+VDWy8ZDtZvym5yRvy4/FAAAMCfZJ/e5uF7AokWLquxNveSCFsgxAK36788mF36qu7b/+5LxbcrOA9TFOZlWyDKDatyhyjEAwOw3nm2yf97XWbsgn8x/57OFJwIAAOYi++Q+F9cLuOiii6rsTb3kghbIMQAtuuna5LSjumsPPijZ7S/KzgPUxzmZVsgyg2rcocoxAEAddstf5ME5qLN2Wo7KTbm28EQAAMBcY5/cN9br9XqjHmI2mJqaysTERCYnJzM+Pj6tva+44opsu+2209qzRG/qJRe0QI4BaNFn/iS58NPD39fbJHnxhcmircvPBNTFOZlWyDKDatyhyjEAQD1uzFX5YHbOrfntUG3nPCd/nDv5iUQAAIBpYJ/c58X1ApYuXVplb+olF7RAjgFozYWf6b60niQHvN+ldeCucU6mFbLMoBp3qHIMAFCPRdk6++d9nbUL8+lcmP8oPBEAADCX2Cf3eXF9rZl8cR0AAJjbVv4mOWbn5ObrhmsPOST50/9KxsbKzwUAAAAAc0UvvXwyf5SfZvlQbYNsnqNzYTbKliOYDAAAYO7w4noBS5YsqbI39ZILWiDHALTk9Bd3X1pff9PkwONcWgfuOudkWiHLDKpxhyrHAAB1GctYDsxxWT+bDtVuznU5PS8ewVQAAMBcYJ/c58X1tWbyxfVVq1ZlwYIF09qzRG/qJRe0QI4BaMUFn07+40+6a8/6eLLrc8vOA9TNOZlWyDKDatyhyjEAQJ3Oy8fzn/nzztqz86nskucUnggAAGidfXKfF9cLeMc73lFlb+olF7RAjgFowcprks8d3V176B8lu/xp2XmA+jkn0wpZZlCNO1Q5BgCo0655bh6axZ210/PirMxvyg4EAAA0zz65z4vra83ki+uXXnppdthhh2ntWaI39ZILWiDHANSu10s+/ezkov8crq2/WfLiC5ON7lN+LqBuzsm0QpYZVOMOVY4BAOq1Mtfkg9k5t+T6odpOeVaek89kLGMjmAwAAGiRfXKfF9cL+PrXv15lb+olF7RAjgGo3QWf6r60niQHfMCldeCecU6mFbLMoBp3qHIMAFCvjXKfHJAPdNYuymdzQT5VeCIAAKBl9sl9Lq4XsP3221fZm3rJBS2QYwBqduPVyekv7q7t9Kxklz8pOw/QDudkWiHLDKpxhyrHAAB12yV/kp3y/zprp+clWZlrCk8EAAC0yj65z8X1AlavXl1lb+olF7RAjgGoVa+XfO6o5JYVw7UNNk+eeUwy5leGgXvIOZlWyDKDatyhyjEAQN3GMpZn5pisn82Garfk+pyWo9JLbwSTAQAArbFP7nNxvYCrrrqqyt7USy5ogRwDUKvzP5H8ZFl37YAPJhttWXQcoDHOybRClhlU4w5VjgEA6rdR7pNn5oOdtZ/kv3JBPll4IgAAoEX2yX0urhfw2Mc+tsre1EsuaIEcA1CjG69Ozvjr7trDnp3s8pyy8wDtcU6mFbLMoBp3qHIMANCGnfOcPCzP7qydnpfkxlxdeCIAAKA19sl9Lq4X8NnPfrbK3tRLLmiBHANQm14vOe1FyS0rhmsbbP4/r60D3FvOybRClhlU4w5VjgEA2jCWsRyQD2aDbD5UuyUrclpelF56I5gMAABohX1y31iv1/MXVpKpqalMTExkcnIy4+Pj09r7tttuy8KFC6e1Z4ne1EsuaIEcA1CbH38s+a+/7K798aeTnf+47DxAm5yTaYUsM6jGHaocAwC05cJ8Jp9J908m/r98LLvlzwtPBAAAtMI+uc+L6wW8/e1vr7I39ZILWiDHANTkxquSM17aXdv5OS6tA9PHOZlWyDKDatyhyjEAQFt2zh/nYele5J2ev86NuarwRAAAQCvsk/u8uL7WTL64DgAAtKvXSz5xSPKzU4drG2yRvPjCZMMtys8FAAAAANw9N+XafDA75+ZcO1R7cA7Kc7M8YxkbwWQAAABt8OJ6AUuWLKmyN/WSC1ogxwDU4ryPdV9aT5IDj3VpHZhezsm0QpYZVOMOVY4BANqzYbbIgTm2s/aznJrz8rHCEwEAAC2wT+7z4vpaM/ni+pVXXpltttlmWnuW6E295IIWyDEANZi6Mjlm5+TWG4Zru/xp8uxPFB8JaJxzMq2QZQbVuEOVYwCAdn0mf5oL86mh7+tl4xydCzMe50AAAOCus0/u8+J6AWeccUaVvamXXNACOQZgtuv1klNf2H1pfcMtk/3fX3wkYA5wTqYVssygGneocgwA0K4D8oFsmC2Hvt+aG3Jajkwv3gcEAADuOvvkPhfXC9htt92q7E295IIWyDEAs92PP5r8/HPdtQOPSzbcvOw8wNzgnEwrZJlBNe5Q5RgAoF0bZvMcmOM6az/LaflxPlp4IgAAoGb2yX0urhewYsWKKntTL7mgBXIMwGw29evkjJd113Z5brLTH5WdB5g7nJNphSwzqMYdqhwDALRtp/xRdslzO2tn5GWZyq8LTwQAANTKPrnPxfUCbrrppip7Uy+5oAVyDMBs1eslp7wguW1yuLbhfZID3l9+JmDucE6mFbLMoBp3qHIMANC+A/L+bJj7DH2/LZM5NS9ML70RTAUAANTGPrnPxfUCHvrQh1bZm3rJBS2QYwBmqx8tTX5xRnftoOOTDTYrOg4wxzgn0wpZZlCNO1Q5BgBo3wbZLAfmuM7az3N6fpSPFJ4IAACokX1yn4vrBZx11llV9qZeckEL5BiA2WjyiuTzf9Nd2/XPk4ceUnQcYA5yTqYVssygGneocgwAMDfslMXZNX/eWft8XpbJXFF4IgAAoDb2yX1jvV7Pb1clmZqaysTERCYnJzM+Pj7tvae7Z4ne1EsuaIEcAzDb9HrJvx+Q/OLzw7WNtkqOvjDZYNPycwFzi3MyrZBlBtW4Q5VjAIC54+asyDHZOStz9VDtgXlG/jynZyxjI5gMAACogX1ynxfXC3jf+95XZW/qJRe0QI4BmG1+eFL3pfUkOfB4l9aBMpyTaYUsM6jGHaocAwDMHRtk0xyY4ztrv8jn88OcXHgiAACgJvbJfV5cX2smX1wHAADqNnl5cswuyW1Tw7Xd/jL5fx8tPxMAAAAAUNZ/5i9zXj429H1hxnN0LshEthvBVAAAAPXw4noBS5YsqbI39ZILWiDHAMwWvV5yygu6L61vtHWy/3vLzwTMXc7JtEKWGVTjDlWOAQDmnmfkvdkoWw99vy1TOSUvSC/eDQQAAIbZJ/d5cX2tmXxxfcWKFdl0002ntWeJ3tRLLmiBHAMwW3z/w8mpL+iuPffU5CEHlp0HmNuck2mFLDOoxh2qHAMAzE0/zWn5RA7qrB2UE7J7nl94IgAAYLazT+7z4noBn/jEJ6rsTb3kghbIMQCzwQ2/Sr7w8u7aw5/n0jpQnnMyrZBlBtW4Q5VjAIC56SE5MA/PX3XWvpCX54b8qvBEAADAbGef3OfiegF77rlnlb2pl1zQAjkGYNR6veSU5ye33zhcW7RN8oz3FB8JwDmZZsgyg2rcocoxAMDc9Yy8J4uyzdD323NjTsnz04sfvgcAAPrsk/tcXC/g0ksvrbI39ZILWiDHAIza909ILv5id+2gE5L1Ny46DkAS52TaIcsMqnGHKscAAHPX+tkkB+VDnbWL88X8IB8uPBEAADCb2Sf3ubhewPz586vsTb3kghbIMQCjdMNlyZmv6K494tDkwQcUHQfg/+ecTCtkmUE17lDlGABgbntwnplH5NDO2hfy8tyQy8oOBAAAzFr2yX0urhew9dZbV9mbeskFLZBjAEal10uWH5HcvnK4tui+yX7vLj8TwO84J9MKWWZQjTtUOQYAYL+8O4ty36Hvt2dlTsnz00tvBFMBAACzjX1yn4vrBXz3u9+tsjf1kgtaIMcAjMr3jk8u+VJ37eATkvU3LjoOwP/hnEwrZJlBNe5Q5RgAgPWzcQ7OCZ21i3NWvp8PFZ4IAACYjeyT+8Z6vZ5/4ptkamoqExMTmZyczPj4+LT2vvbaa7PFFltMa88SvamXXNACOQZgFH57aXLsrt2vrT/y8OSQE4uPBPB/OCfTCllmUI07VDkGAOB3lueI/DAnDX1fNxvlqJyfTbJD+aEAAIBZwz65z4vrBRx//PFV9qZeckEL5BiA0tasSU45ovvS+vi2yX7vKj8TwCDnZFohywyqcYcqxwAA/M5+eVfGs+3Q99uzMqfkiKzJmhFMBQAAzBb2yX1eXF9rJl9cBwAAZr/vHpt87uju2l98PnngfmXnAQAAAADq8Yt8IR/LMzprz8wxeUyOKjwRAADA7OPF9QKWLFlSZW/qJRe0QI4BKOm3lyRnvrK79qjnu7QOzB7OybRClhlU4w5VjgEA+N8emP3yyBzRWTszr8xvc0nhiQAAgNnCPrnPi+trzeSL6zfffHM22GCDae1Zojf1kgtaIMcAlLJmTfLRvZNLvzJcG98uOfqCZD0/ygTMEs7JtEKWGVTjDlWOAQAYdGsmc0x2zVQuH6rtkKfmr3JW5nlfEAAA5hz75D5/ERVw7LHHVtmbeskFLZBjAEr53rHdl9aT5OAPu7QOzC7OybRClhlU4w5VjgEAGLReJnJwPtxZuzRfzvfiDAkAAHORfXKfi+sFHHjggVX2pl5yQQvkGIASVlycfPHvu2u7vzB54L5l5wH4Q5yTaYUsM6jGHaocAwDQ5YHZN4/KCzprX8zfZ0UuLjwRAAAwavbJfS6uF/DjH/+4yt7USy5ogRwDMNPWrEmWH5bccfNwbeJ+ydPfXn4mgD/EOZlWyDKDatyhyjEAAHdm37wjE7nf0Pc7cnOW5/CsyZoRTAUAAIyKfXKfi+sFbLbZZlX2pl5yQQvkGICZ9t0PJpd9rbt28InJeuNl5wG4K5yTaYUsM6jGHaocAwBwZ9bLeA7OiZ21y/LVfDfHFJ4IAAAYJfvkPhfXC1h//fWr7E295IIWyDEAM2nFL5Oz/qG7tvuRyQP2KTsPwF3lnEwrZJlBNe5Q5RgAgN/nAdknu+fIztpZeVVW5JeFJwIAAEbFPrnPxfUCfvazn1XZm3rJBS2QYwBmypo1ybLDkjtuHq5NbJ/s+/byMwHcVc7JtEKWGVTjDlWOAQD4Q/bN2zOR7Ye+35GbszyHZ03WjGAqAACgNPvkPhfXC9h7772r7E295IIWyDEAM+U7709+dU537ZCTkoWLys4DcHc4J9MKWWZQjTtUOQYA4A9ZmEU5JCd21i7L1/KdfKDwRAAAwCjYJ/e5uF7ARz7ykSp7Uy+5oAVyDMBMuP7nyVmv7q49+qhkx6eVnQfg7nJOphWyzKAad6hyDADAXbFj9s6j86LO2ln5h1yfXxSeCAAAKM0+uW+s1+v1Rj3EbDA1NZWJiYlMTk5mfHx81OMAAADTbM2aZOlTkl99fbi28Q7JUecnCzcqPhYAAAAA0LjbcmOOzW65IZcO1e6XJ+XQfDXzvDsIAADMAf7yKWDJkiVV9qZeckEL5BiA6fbt93VfWk+SQ05yaR2og3MyrZBlBtW4Q5VjAADuqoVZlENyUmftV/l6vp33FZ4IAAAoyT65z4vra83ki+urV6/O/Pnzp7Vnid7USy5ogRwDMJ2u+1ly3MOTVbcO1x7z4uSZHyg/E8A94ZxMK2SZQTXuUOUYAIC763N5cb6bY4a+L8j6OSo/zmZ50AimAgAAZpp9cp8X1wt429veVmVv6iUXtECOAZgua1Ynyw/rvrS+8f2Tfd5SfiaAe8o5mVbIMoNq3KHKMQAAd9c+eWs2zv2Hvq/KLVmWw7Imq0cwFQAAMNPsk/u8uL7WTL64ftlll2X77bef1p4lelMvuaAFcgzAdPnmu5IzX9Fde96Xk/vvVXIagHvHOZlWyDKDatyhyjEAAPfEJflKPpKndtb2zTvzhLy88EQAAMBMs0/u8+J6AV/72teq7E295IIWyDEA0+G6nyZnv7a79tiXuLQO1Mc5mVbIMoNq3KHKMQAA98T9s1cem5d01s7Oa3Ndflp4IgAAYKbZJ/e5uF7A/e8//FNfNfSmXnJBC+QYgHtrzepk2WHJqluHa5vsmOzzlvIzAdxbzsm0QpYZVOMOVY4BALin9slbskl2HPq+KrdmWQ7LmqwewVQAAMBMsU/uc3G9gFWrVlXZm3rJBS2QYwDurXPfnVxxbnftkJOTdTcsOw/AdHBOphWyzKAad6hyDADAPbVuNswhOamzdkXOzbfynrIDAQAAM8o+uc/F9QKuvvrqKntTL7mgBXIMwL1x7U+Ss/+xu/a4lyY7PLnsPADTxTmZVsgyg2rcocoxAAD3xg55Sh6Xl3bWvpTX5tr8pPBEAADATLFP7nNxvYDdd9+9yt7USy5ogRwDcE+tWZ0sOzRZfdtwbZMHJHu/qfhIANPGOZlWyDKDatyhyjEAAPfW3nlTNskDhr6vzm1ZnsOyJqtHMBUAADDd7JP7XFwvYNmyZVX2pl5yQQvkGIB76pvvTH797Y7CWLL45GTdDYuPBDBtnJNphSwzqMYdqhwDAHBvrZsNszgnJxkbql2Rb+XcvKv8UAAAwLSzT+4b6/V6vVEPMRtMTU1lYmIik5OTGR8fn9bet956a9Zbb71p7VmiN/WSC1ogxwDcE9delBz3yO7X1h//N8kz3l18JIBp5ZxMK2SZQTXuUOUYAIDpckb+Jt/Oe4e+z8/CvCg/zBbZaQRTAQAA08U+uc+L6wW84x3vqLI39ZILWiDHANxdq1clyw7tvrS+6YOSp/1r8ZEApp1zMq2QZQbVuEOVYwAApsveeVM2zQOHvq/ObVmWQ7M6q0YwFQAAMF3sk/u8uL7WTL64DgAAzLyvvzU56x86CmPJ4eck93ti8ZEAAAAAAO6SX+UbOSl7Jhm+wrFP3pIn5VXlhwIAAJhmXlwvYMmSJVX2pl5yQQvkGIC74zcXJl9+fXdtj791aR1oh3MyrZBlBtW4Q5VjAACm0/3yxDw+f9NZ+3Jen9/kv8sOBAAATBv75D4vrq81ky+uX3311dlqq62mtWeJ3tRLLmiBHANwV61elZy4R3Ll94Zrmz04edGPknXWLz4WwIxwTqYVssygGneocgwAwHS7PTfnuDwiK/Lzodo2eUyOyDczPwtGMBkAAHBv2Cf3eXG9gFNPPbXK3tRLLmiBHANwV33z7d2X1jOWHHKyS+tAW5yTaYUsM6jGHaocAwAw3dbNBlmcpUnGhmpX5rv5Zt5RfCYAAODes0/uc3G9gEc84hFV9qZeckEL5BiAu+KaC5KvvKG7tsfLk/s9oeg4ADPOOZlWyDKDatyhyjEAADPhfnlC9sjLO2tfyT/lmlxQeCIAAODesk/uc3G9gOuvv77K3tRLLmiBHAPwh6y+I1l2aLL69uHaZg9JnvYvxUcCmHHOybRClhlU4w5VjgEAmClPy79kszxk6Pvq3J7lOSyrs2oEUwEAAPeUfXKfi+sF3HLLLVX2pl5yQQvkGIA/5BtvS676/vD3sXnJ4qXJOusXHwlgxjkn0wpZZlCNO1Q5BgBgpqyT9bM4J2es40rHlflevpG3jWAqAADgnrJP7nNxvYAHPehBVfamXnJBC+QYgN/nmvOTr/xzd22PVyTbPb7sPAClOCfTCllmUI07VDkGAGAmbZc9skde0Vn7St6Qa3J+4YkAAIB7yj65z8X1Ar785S9X2Zt6yQUtkGMA7szqO5JlhyZr7hiubf7Q5KlvLD4SQDHOybRClhlU4w5VjgEAmGlPzRuzeR469H1N7siyHJrV6ViSAgAAs459ct9Yr9frjXqI2WBqaioTExOZnJzM+Pj4tPaenJzMxMTEtPYs0Zt6yQUtkGMA7sxXlyRfft3w97F5yRHfTLZ9XPmZAEpxTqYVssygGneocgwAQAlX5Ns5MU9IL2uGak/Nv+Qp+ccRTAUAANwd9sl9Xlwv4P3vf3+VvamXXNACOQagy9XnJV+9kxfVn/BKl9aB9jkn0wpZZlCNO1Q5BgCghG3zuDwhf9dZ+2remKtzXuGJAACAu8s+uc+L62vN5IvrAADAvbf6juSExyVX/3C4tsXDkhd+P1lnvfJzAQAAAADMpDtya47Po3JdLhqqbZVH5gX5duZnnRFMBgAAcPd4cb2AJUuWVNmbeskFLZBjAAad8+buS+tj85JDTnZpHZgbnJNphSwzqMYdqhwDAFDKOlkvi7M0Yx1XPK7OD3NO3jyCqQAAgLvKPrnPi+trzeSL6zfccEM23njjae1Zojf1kgtaIMcA/G9X/Sg54THJmlXDtSe9OtnnTcVHAhgJ52RaIcsMqnGHKscAAJR2Vl6dr+ctQ9/nZUFemO9lqzx8BFMBAAB/iH1ynxfXC/jYxz5WZW/qJRe0QI4B+J1VtyfLDu2+tL7Fzsle/1R8JICRcU6mFbLMoBp3qHIMAEBpe+UN2SIPG/q+JquyLIdmde4YwVQAAMAfYp/c5+J6AU95ylOq7E295IIWyDEAv3POm5Jrfjz8fWx+snhpsmBh8ZEARsY5mVbIMoNq3KHKMQAApS3IwizO0oxl/lDt6vwo58RPUwIAwGxkn9zn4noBv/zlL6vsTb3kghbIMQBJctWPknP+tbv2pFcl93100XEARs45mVbIMoNq3KHKMQAAo3DfPCZPyqs6a1/LklyVH5UdCAAA+IPsk/tcXC9g3XXXrbI39ZILWiDHAKy6PVn2vGTNquHalrskT3l9+ZkARs05mVbIMoNq3KHKMQAAo/KUvD5bZpeh72uyKsvyvKzK7SOYCgAAuDP2yX0urhdwn/vcp8re1EsuaIEcA/C1Jck15w1/H5ufLF6aLFhYfCSAkXNOphWyzKAad6hyDADAqCzIwizO0oxl/lDtmpyXc3InP2MJAACMhH1yn4vrBXz/+9+vsjf1kgtaIMcAc9uVP0jOeVN3bc9XJ9vsXnYegNnCOZlWyDKDatyhyjEAAKO0TXbPnnl1Z+2cvClX5geFJwIAAO6MfXLfWK/X6416iNlgamoqExMTmZyczPj4+LT2vuaaa2bsX0vMZG/qJRe0QI4B5q5VtycfenTym/OHa1vumrzwe8kCv6IFzFHOybRClhlU4w5VjgEAGLVVuT0fyqPzmwwvU7fMrnlhvpcFsUwFAIBRs0/u8+J6ASeccEKVvamXXNACOQaYu772L92X1uctSBYvdWkdmNuck2mFLDOoxh2qHAMAMGoLsm4WZ2nGMn+o9pucn6/lX0YwFQAAMMg+uc+L62vN5IvrAADAXfPr7yUffnzSWz1ce8rrk6f+c/mZAAAAAABms7Pz+s5L6mOZnxfk29kmu49gKgAAgGFeXC9gyZIlVfamXnJBC+QYYO5ZdVuy7NDuS+v3eXiy52uLjwQw6zgn0wpZZlCNO1Q5BgBgtnhy/jH3yW5D33tZnWU5NKty2wimAgAAfsc+uc+L62vN5Ivrt9xyS9Zff/1p7VmiN/WSC1ogxwBzz5dem5zzpuHv8xYkL/husvUjio8EMOs4J9MKWWZQjTtUOQYAYDa5Kj/MCXls1mTVUG3PvCZ7519HMBUAAJDYJ/9vXlwv4JhjjqmyN/WSC1ogxwBzy6+/m3z9rd21PV/r0jrA7zgn0wpZZlCNO1Q5BgBgNtk6j8ye6f7Zyq/nrfl1vld4IgAA4Hfsk/tcXC/g4IMPrrI39ZILWiDHAHPHHbcmyw5NequHa1s9ItnzNaUnApi9nJNphSwzqMYdqhwDADDb7JnX5D55+ND3XlZnWQ7Nqtw2gqkAAAD75D4X1wv4wQ9+UGVv6iUXtECOAeaOr/5zcu1/D3+ftyBZvDRZsG7xkQBmLedkWiHLDKpxhyrHAADMNguybhZnaeZlwVDt2lyYr+SfRzAVAABgn9zn4noBW2yxRZW9qZdc0AI5BpgbrvhO8o23ddee/Lpkq+HHgQDmNOdkWiHLDKpxhyrHAADMRlvnEXlyXtdZ+0bemivyncITAQAA9sl9Lq4XsHDhwip7Uy+5oAVyDNC+O25Nlh2a9NYM17Z6ZLLnq4uPBDDrOSfTCllmUI07VDkGAGC22jOvzlZ55ND3XtZkWQ7NHbl1BFMBAMDcZZ/c5+J6Ab/85S+r7E295IIWyDFA+77yT8l1Fw1/n7dOsnhpMn+d4iMBzHrOybRClhlU4w5VjgEAmK3mZ50sztLMy/CS9bpclK/kDeWHAgCAOcw+uc/F9QL22muvKntTL7mgBXIM0LbLv5V88x3dtae8Ptlqt7LzANTCOZlWyDKDatyhyjEAALPZVtktT8nrOmvfzNtzRb5deCIAAJi77JP7XFwv4N/+7d+q7E295IIWyDFAu+64NVl+WNJbM1zb+lHJk15VfiaAWjgn0wpZZlCNO1Q5BgBgtntS/iFb51FD33tZk2U5NHfk1hFMBQAAc499ct9Yr9frjXqI2WBqaioTExOZnJzM+Pj4tPZes2ZN5s2bmX8jMJO9qZdc0AI5BmjXmX+ffPPtw9/nrZMc+f3kPruWnwmgFs7JtEKWGVTjDlWOAQCowTU5P8dn96zJHUO1J+SV2TdvG8FUAAAwt9gn9/lfoYA3velNVfamXnJBC+QYoE2Xn5t88x3dtb3e4NI6wB/inEwrZJlBNe5Q5RgAgBrcJ7tmr/xTZ+3cvDOX51uFJwIAgLnHPrnPi+treXGdlsgFLZBjgPbccUty3COS6382XNvm0ckR5ybzFxQfC6Aqzsm0QpYZVOMOVY4BAKjF6qzKh/P4XJXvD9U2y0Pyovww62T9EUwGAABzg31yn/8VCnjzm99cZW/qJRe0QI4B2nP267ovrc9fN1m81KV1gLvCOZlWyDKDatyhyjEAALWYnwVZnKWZn3WHatfnpzk7rxvBVAAAMHfYJ/d5cX2tmXxx/Ve/+lXud7/7TWvPEr2pl1zQAjkGaMuvvpmc9KQkHX997P2mZM9XFx8JoErOybRClhlU4w5VjgEAqM05eXO+lNd0VMZyeL6e++UJxWcCAIC5wD65z4vrBXzlK1+psjf1kgtaIMcA7bj95mTZoem8tL7NY5InvLL0RAD1ck6mFbLMoBp3qHIMAEBtnpBXZps8pqPSy/IcljtyS/GZAABgLrBP7nNxvYAHPOABVfamXnJBC+QYoB1n/2Oy4ufD3+evmyxemsxfUHwkgGo5J9MKWWZQjTtUOQYAoDbzsyCLszTzs+5Q7fr8LGfnH0cwFQAAtM8+uc/F9QJuu+22KntTL7mgBXIM0IbLvp586z3dtae+MdnyYUXHAaieczKtkGUG1bhDlWMAAGq0ZR6Wp+aNnbVz8+5clq8XnggAANpnn9zn4noB1157bZW9qZdc0AI5Bqjf7Tcnyw9L0huu3fexyR6vKD4SQPWck2mFLDOoxh2qHAMAUKs98orcN4/tqPSyPIfl9txcfCYAAGiZfXKfi+sFPOpRj6qyN/WSC1ogxwD1O/u1yYpfDH+fvzBZvDSZv6D4SADVc06mFbLMoBp3qHIMAECt5mdBFmdp5mfhUG1FfpGz89oRTAUAAO2yT+5zcb2AU045pcre1EsuaIEcA9TtsnOSb723u/a0f0m22KnsPACtcE6mFbLMoBp3qHIMAEDNtshOeWre2Fn7Vt6by3JO4YkAAKBd9sl9Y71erzfqIWaDqampTExMZHJyMuPj49Pa+5Zbbsn6668/rT1L9KZeckEL5BigXrfflBz78OS3vxyubfv45PCvJ/Pml58LoAXOybRClhlU4w5VjgEAqN2arM5JeVKuyLeGapvmgXlRfpR1s+EIJgMAgLbYJ/d5cb2Ad77znVX2pl5yQQvkGKBeX3pN96X1+QuTQ052aR3g3nBOphWyzKAad6hyDABA7eZlfg7JyZmfhUO1FflFvpTXjGAqAABoj31ynxfX15rJF9cBAGCuuPSrydK9umv7viN5wiuKjgMAAAAAwB/wjbwjX8wrO2uH5qvZIU8uPBEAANAqL64XsGTJkip7Uy+5oAVyDFCf229Klh/eXdvuCcnj/6boOABNck6mFbLMoBp3qHIMAEAr9sjfZtvs0VlbnsNye24qPBEAALTFPrnPi+trzeSL69dcc03uc5/7TGvPEr2pl1zQAjkGqM/pf5185wPD3xesl7zox8nmDy4/E0BrnJNphSwzqMYdqhwDANCS6/LTHJdHZFVuHao9Nn+dA/K+EUwFAABtsE/u8+J6AcuXL6+yN/WSC1ogxwB1ueQr3ZfWk+Rp/+rSOsB0cU6mFbLMoBp3qHIMAEBLNs9D8rT8a2ftO3l/LslXyg4EAAANsU/uc3G9gN13373K3tRLLmiBHAPU47aVyfLDu2vbPTF5/MvKzgPQMudkWiHLDKpxhyrHAAC05vF5WbbLEztry3N4bsvKwhMBAEAb7JP7XFwv4JprrqmyN/WSC1ogxwD1OOtVyQ2XDH9fsH6y+ORk3vzyMwG0yjmZVsgyg2rcocoxAACtmZf5OSQnZUHWG6rdkEtyVv5hBFMBAED97JP7XFwv4Pbbb6+yN/WSC1ogxwB1uPjs5LvHdNf2flOy2YPKzgPQOudkWiHLDKpxhyrHAAC0aPM8OHvnzZ217+aDuSRfLjwRAADUzz65z8X1Ah7wgAdU2Zt6yQUtkGOA2e+2lckpR3TX7vek5HEvLTsPwFzgnEwrZJlBNe5Q5RgAgFY9Li/N/fKkztryHJ7bsrLwRAAAUDf75D4X1wv46le/WmVv6iUXtECOAWa/L/59csOlw98XrJ8ccnIyz18bANPOOZlWyDKDatyhyjEAAK2al3k5JCdnQdYfqt2QS/PF/P0IpgIAgHrZJ/eN9Xq93qiHmA2mpqYyMTGRycnJjI+PT2vvG264IRtvvPG09izRm3rJBS2QY4DZ7eIvJR/dp7v2jPcmj/faOsCMcE6mFbLMoBp3qHIMAEDrvpX35vP5m87aX+VL2TFPKzsQAABUyj65zxuIBXzgAx+osjf1kgtaIMcAs9dtNybLj+iubf/k5LEvKTsPwFzinEwrZJlBNe5Q5RgAgNY9Nn+d+2XPztryHJ7bcmPhiQAAoE72yX1eXF9rJl9cBwCAlpz6ouT7xw9/X2eD5Kjzkk0fUH4mAAAAAACm34r8Msdmt9yRm4dqu+fIHJTjRjAVAABQKy+uF7BkyZIqe1MvuaAFcgwwO/3yi92X1pNkn7e6tA4w05yTaYUsM6jGHaocAwAwF2yaB2SfvKWz9v0cn1/mrMITAQBAfeyT+7y4vtZMvrg+OTmZiYmJae1Zojf1kgtaIMcAs8+tU8kxuyRTlw/Xdtgr+asvJfP801iAGeWcTCtkmUE17lDlGACAuWJN1uQjeVouy1eHahO5X47K+VkvftkeAADujH1yn2slBXz0ox+tsjf1kgtaIMcAs8+Zf9d9aX2dDZODT3RpHaAE52RaIcsMqnGHKscAAMwV8zIvh+SkrJMNhmqT+VW+mFeOYCoAAKiHfXKfqyUFPPWpT62yN/WSC1ogxwCzyy/OTH5wQnft6W9NNt2x7DwAc5VzMq2QZQbVuEOVYwAA5pJNs2Oenrd11r6fD+UXObPwRAAAUA/75D4X1wv4+c9/XmVv6iUXtECOAWaPWyeTU57fXdthr+TRRxUdB2BOc06mFbLMoBp3qHIMAMBc8+gclR2yV2ftlDw/t2ay7EAAAFAJ++Q+F9cLWH/99avsTb3kghbIMcDs8YVXJFOXD39fZ8PkkJOSef6qACjGOZlWyDKDatyhyjEAAHPNvMzLITkp62TDodpULs+Z+bsRTAUAALOffXKfKyYFbLbZZlX2pl5yQQvkGGB2+Pnnkx+e2F3b9+3JJvcvOw/AXOecTCtkmUE17lDlGACAuWiT3D9Pz9s6az/Ih/OLfKHwRAAAMPvZJ/e5uF7Aj370oyp7Uy+5oAVyDDB6t04mp76gu3b/pyW7H1l2HgCck2mHLDOoxh2qHAMAMFc9Oi/K/fO0ztopeX5uzWThiQAAYHazT+4b6/V6vVEPMRtMTU1lYmIik5OTGR8fn9beV199dbbaaqtp7VmiN/WSC1ogxwCjt/yI5IcnDX9fd6PkqPOTTXYoPhLAnOecTCtkmUE17lDlGACAuey3uTTHZtfcnpVDtUfm8BySO/kpTwAAmIPsk/u8uF7Ahz/84Sp7Uy+5oAVyDDBaPzu9+9J6kuz7DpfWAUbFOZlWyDKDatyhyjEAAHPZJtkhT8/bO2s/zEn5ec4oPBEAAMxe9sl9XlxfayZfXAcAgJrcckNyzM7JjVcO13bcJ/nLM5OxseJjAQAAAAAwi/TSy0fz9FySLw3VFuW+OToXZP1sXH4wAABg1vLiegFLliypsjf1kgtaIMcAo/OFv+2+tL7uouTgD7u0DjBKzsm0QpYZVOMOVY4BAJjrxjKWQ3Ji1s1GQ7Ub8+t8IX87gqkAAGD2sU/u8+L6WjP54vqtt96a9dZbb1p7luhNveSCFsgxwGj87HPJxw/srh14fPLoF5adB4D/yzmZVsgyg2rcocoxAAD8j+/lQzktR3bW/iyn5cF5ZuGJAABgdrFP7vPiegHvf//7q+xNveSCFsgxQHm3/DY55QXdtR2fnux+JzUAynFOphWyzKAad6hyDAAA/2P3vCA75umdtVPzwtyS3xaeCAAAZhf75D4X1wtYvHhxlb2pl1zQAjkGKO/zf5OsvGr4+7qLkoM/nIyNFR8JgAHOybRClhlU4w5VjgEA4H+MZSwH58NZN4uGajfmynw+fzuCqQAAYPawT+5zcb2A73//+1X2pl5yQQvkGKCsn56a/Pij3bX93pVsfL+y8wDQzTmZVsgyg2rcocoxAAD0bZz7Zb+8q7P243wkP82phScCAIDZwz65z8X1Arbaaqsqe1MvuaAFcgxQzs0rklOP7K49YL/kUUeUnQeAO+ecTCtkmUE17lDlGAAA/q9H5Yg8IPt11k7Nkbklvy08EQAAzA72yX0urhewYMGCKntTL7mgBXIMUM7nX5asvGr4+8Lx5OATkrGx8jMB0M05mVbIMoNq3KHKMQAA/F9jGcvBOSELMz5UW5mrckZeNoKpAABg9OyT+1xcL+CSSy6psjf1kgtaIMcAZfzklOS8j3XX9nt3MrFd2XkA+P2ck2mFLDOoxh2qHAMAwLCJbJf98q7O2nn5t/wkpxSeCAAARs8+uc/F9QKe/OQnV9mbeskFLZBjgJl384rktCO7aw/cP3nkYWXnAeAPc06mFbLMoBp3qHIMAADdHpnD88A8o7N2Wo7MzVlReCIAABgt++Q+F9cL+PjHP15lb+olF7RAjgFm3hkvTVZePfx94URy0IeSsbHyMwHw+zkn0wpZZlCNO1Q5BgCAbmMZy0E5IQszMVRbmatzRl46gqkAAGB07JP7xnq9Xm/UQ8wGU1NTmZiYyOTkZMbHx6e19+rVqzN//vxp7VmiN/WSC1ogxwAz66Jlyaf+qLt2yMnJIw8tOQ0Ad5VzMq2QZQbVuEOVYwAA+P1+mJOzPId31v40y/LQHFJ4IgAAGA375D4vrhfw5je/ucre1EsuaIEcA8ycm69PTntRd+1Bz0we8byy8wBw1zkn0wpZZlCNO1Q5BgCA3+8ROTQPygGdtVNzZG7O9YUnAgCA0bBP7vPi+loz+eI6AADMJv/xZ8kFnxj+vnAiefGFyfh9y88EAAAAAEB7pvLrfDA757ZMDtV2zZ/lWfn3EUwFAACMihfXC1iyZEmVvamXXNACOQaYGRf9V/el9STZ/70urQPMds7JtEKWGVTjDlWOAQDgDxvPfbN/3ttZOz8fz0X5r8ITAQBAefbJfV5cX2smX1y//PLLs912201rzxK9qZdc0AI5Bph+N12XHLNzctNvhmsPPjB57inJ2Fj5uQC465yTaYUsM6jGHaocAwDAXdNLLx/PQfl5PjdU2zBb5uhcmA2z+QgmAwCAMuyT+7y4XsCXvvSlKntTL7mgBXIMMP1Of0n3pfX1Nk4OPN6ldYAaOCfTCllmUI07VDkGAIC7ZixjOSgfynrZeKh2U36TM/LX5YcCAICC7JP7XFwv4MEPfnCVvamXXNACOQaYXv/92eTCT3XX9n9fMr5N2XkAuGeck2mFLDOoxh2qHAMAwF03nm2yf97XWbsgn8x/57OFJwIAgHLsk/tcXC/glltuqbI39ZILWiDHANPnpmuT047qrj34oGS3vyg7DwD3nHMyrZBlBtW4Q5VjAAC4e3bLX+TBOaizdlqOyk25tvBEAABQhn1yn4vrBVx//fVV9qZeckEL5Bhg+pz+kuTmjn3/epskBx2fjI2VnwmAe8Y5mVbIMoNq3KHKMQAA3D1jGctBOT7rZZOh2s25NqfnJSOYCgAAZp59cp+L6wU8/OEPr7I39ZILWiDHANPjws8kF366u3bA+5NFW5edB4B7xzmZVsgyg2rcocoxAADcfYuydfbP+zprF+bTuTD/UXgiAACYefbJfS6uF3DaaadV2Zt6yQUtkGOAe2/lb5LPHd1de8ghya5/VnYeAO4952RaIcsMqnGHKscAAHDP7JY/z0NySGftczkqK/ObwhMBAMDMsk/uG+v1er1RDzEbTE1NZWJiIpOTkxkfH5/W3jfffHM22GCDae1Zojf1kgtaIMcA996n/zj5747HadbfNDn6wmTRVuVnAuDecU6mFbLMoBp3qHIMAAD33I25Osdk59ySFUO1h+XZeU4+M4KpAABgZtgn93lxvYB3vetdVfamXnJBC+QY4N654NPdl9aT5IAPuLQOUCvnZFohywyqcYcqxwAAcM8tylbZP+/vrP13/iMX5NOFJwIAgJljn9znxfW1ZvLFdQAAKGnlNckHd05uuX649tA/Sv7ks8nYWPm5AAAAAADgd3rp5VP5f/lJlg3VNsjmOToXZqNsWX4wAABgxnhxvYAlS5ZU2Zt6yQUtkGOAe6bXSz53dPel9fU3Sw481qV1gJo5J9MKWWZQjTtUOQYAgHtnLGM5MMdl/Ww2VLs51+VzOTq9eIsRAID62Sf3eXF9rZl8cf3aa6/NFltsMa09S/SmXnJBC+QY4J45/5PJZ5/bXXvWJ5Jd/7TsPABML+dkWiHLDKpxhyrHAAAwPc7PJ/PZdC+2n5VPZNdYbAMAUDf75D4vrhfwn//5n1X2pl5yQQvkGODuu/Hq5PQXd9d2elayy5+UnQeA6eecTCtkmUE17lDlGAAApscu+ZPslP/XWTs9L8nKXFN4IgAAmF72yX0urhfwmMc8psre1EsuaIEcA9w9vV7yuaOSW1YM1zbYPHnmMcnYWPm5AJhezsm0QpYZVOMOVY4BAGB6jGUsz8wxWT+bDdVuyfU5LUell94IJgMAgOlhn9zn4noBV111VZW9qZdc0AI5Brh7zv9E8pNl3bUDPphstGXRcQCYIc7JtEKWGVTjDlWOAQBg+myU++SZ+WBn7Sf5r1yQTxaeCAAApo99cp+L6wWsXr26yt7USy5ogRwD3HU3Xp2c8dfdtYc9O9nlOWXnAWDmOCfTCllmUI07VDkGAIDptXOek4fl2Z210/OS3JirC08EAADTwz65z8X1AnbYYYcqe1MvuaAFcgxw1/R6yWkvSm5ZMVzbYPP/eW0dgHY4J9MKWWZQjTtUOQYAgOk1lrEckA9mg2w+VLslK3JaXpReeiOYDAAA7h375D4X1ws455xzquxNveSCFsgxwF1z3r8nP13eXXvmMclGW5adB4CZ5ZxMK2SZQTXuUOUYAACm30bZMs/MMZ21n2Z5zs/HC08EAAD3nn1y31iv1/PPUZNMTU1lYmIik5OTGR8fn9beK1asyKabbjqtPUv0pl5yQQvkGOAPu/Gq5IM7J7f+dri283OSP/5U+ZkAmFnOybRClhlU4w5VjgEAYOZ8Os/Jf+czQ9/XyyZ5cS7Momw9gqkAAOCesU/u8+J6Accc0/2vgWd7b+olF7RAjgF+v14vOfXI7kvrG2yRHPCB8jMBMPOck2mFLDOoxh2qHAMAwMx5Zj6YDbLF0Pdb89ucmiPTizcaAQCoh31ynxfX15rJF9cBAGC6/fjfkv/6q+7ac/4jedizys4DAAAAAADT6b/z2Xw6z+6s/VE+mofnLwtPBAAA3FteXC9gyZIlVfamXnJBC+QY4M5NXZmc8dLu2i5/6tI6QMuck2mFLDOoxh2qHAMAwMx6WJ6VnfMnnbUz8tJM5crCEwEAwD1jn9znxfW1ZvLF9ampqRl7xX0me1MvuaAFcgzQrddLPn5Q8vPPDdc23DI5+sJkw83LzwVAGc7JtEKWGVTjDlWOAQBg5t2U63JMds5N+c1Q7cE5MM/NKRnL2AgmAwCAu84+uc+L6wUsXbq0yt7USy5ogRwDdPvxR7svrSfJgce5tA7QOudkWiHLDKpxhyrHAAAw8zbM5jkwx3XWfpbT8uN8tPBEAABw99kn97m4XsA+++xTZW/qJRe0QI4Bhk39OjnjZd21XZ6b7PRHZecBoDznZFohywyqcYcqxwAAUMZO+aPskud21s7IyzKVXxeeCAAA7h775D4X1wv4yU9+UmVv6iUXtECOAf6vXi855QXJbZPDtQ3vkxzw/vIzAVCeczKtkGUG1bhDlWMAACjngLw/G+Y+Q99vy2ROzQvTS28EUwEAwF1jn9zn4noBG264YZW9qZdc0AI5Bvi/frQ0+cUZ3bWDjk822KzoOACMiHMyrZBlBtW4Q5VjAAAoZ4NslgNzXGft5zk9P8pHCk8EAAB3nX1yn4vrBWy66aZV9qZeckEL5Bigb/KK5PN/013b9c+Thx5SdBwARsg5mVbIMoNq3KHKMQAAlLVTFmfX/Hln7fN5WSZzReGJAADgrrFP7nNxvYDzzjuvyt7USy5ogRwD/I9eLzn1BcltU8O1jbZK9n9f+ZkAGB3nZFohywyqcYcqxwAAUN7+eV82ylZD32/LVE7NC9JLbwRTAQDA72ef3DfW6/Wc2pNMTU1lYmIik5OTGR8fn9beV155ZbbZZptp7VmiN/WSC1ogxwD/4wcnJqc8v7v2p8uThx5cdh4ARss5mVbIMoNq3KHKMQAAjMZPcko+me6fIj04J+ZRObzwRAAA8PvZJ/d5cb2Ak046qcre1EsuaIEcAySTlydfeHl3bbe/dGkdYC5yTqYVssygGneocgwAAKPx0Byc3fIXnbUv5G8zmcsLTwQAAL+ffXKfF9fXmskX1wEA4O7q9ZKP7Z/88gvDtY22Tl58YbL+JuXnAgAAAACAUbs5K3JMdsnKXDVUe0D2y1/kjIxlbASTAQAAv48X1wtYsmRJlb2pl1zQAjkG5rofnNh9aT1JDvqQS+sAc5VzMq2QZQbVuEOVYwAAGJ0NsmkOyoc6a7/MF/KDnFh4IgAAuHP2yX1eXF9rJl9cv+2227Jw4cJp7VmiN/WSC1ogx8BcdsOvkmN2SW6/cbj28Oclf7S0+EgAzBLOybRClhlU4w5VjgEAYPT+K8/Lj/PRoe/rZlGOzgXZOPcbwVQAAPB/2Sf3eXG9gPe+971V9qZeckEL5BiYq3q95JTnd19aX7RN8oz3FB8JgFnEOZlWyDKDatyhyjEAAIzeM/KeLMo2Q99vz405Jc9PL95yBABg9OyT+1xcL+BZz3pWlb2pl1zQAjkG5qrvn5Bc/MXu2kEnJOtvXHQcAGYZ52RaIcsMqnGHKscAADB662eTHJQPddYuzhfzg3y48EQAADDMPrnPxfUCvvOd71TZm3rJBS2QY2AuuuGy5MxXdNcecWjy4AOKjgPALOScTCtkmUE17lDlGAAAZocH55l5RA7trH0hL88NuazsQAAAMMA+uc/F9QK23nrrKntTL7mgBXIMzDW9XrL8iOT2lcO1RfdN9nt3+ZkAmH2ck2mFLDOoxh2qHAMAwOyxX96dRbnv0PfbszKn5PnppTeCqQAA4H/YJ/e5uF7A/Pnzq+xNveSCFsgxMNd87/jkki911w4+IVl/46LjADBLOSfTCllmUI07VDkGAIDZY/1snINzQmft4pyV7+dDhScCAIA+++Q+F9cLuOyymfvZqZnsTb3kghbIMTCX/PbS5Iuv7K498vDkQfsXHQeAWcw5mVbIMoNq3KHKMQAAzC4Pyv55ZA7vrJ2Zv8tvc2nZgQAAYC375D4X1wt40pOeVGVv6iUXtECOgblizZrklCOS21cO18a3TfZ7V/mZAJi9nJNphSwzqMYdqhwDAMDss1/elfFsO/T99qzMKTkia7JmBFMBADDX2Sf3ubhewCc/+ckqe1MvuaAFcgzMFd8/Prnk7O7awR9O1psoOw8As5tzMq2QZQbVuEOVYwAAmH3Wy0QOzoc7a5fk7Hw/xxeeCAAA7JP/t7Fer9cb9RCzwdTUVCYmJjI5OZnx8fFp7b1q1aosWLBgWnuW6E295IIWyDEwF/z2kuSYXZM7bhquPer5ycEnlJ8JgNnNOZlWyDKDatyhyjEAAMxey/P8/DAnDn1fJxvm6JyfTXL/EUwFAMBcZZ/c58X1At7ylrdU2Zt6yQUtkGOgdWvWJMsP7760Pr5dsu87y88EwOznnEwrZJlBNe5Q5RgAAGav/fLOjGe7oe935KYszxFZkzUjmAoAgLnKPrnPi+trzeSL6wAAMOg7H0xOf0l37S++kDxw37LzAAAAAABAS36RM/Ox7NdZOyAfyGPz4sITAQAAXlwvYMmSJVX2pl5yQQvkGGjZiouTL/59d233F7q0DsCdc06mFbLMoBp3qHIMAACz2wOzbx6VF3TWvpi/z4pcXHgiAADmKvvkPi+urzWTL65fccUV2Xbbbae1Z4ne1EsuaIEcA61asyb5yFOTy742XJu4X3LU+cl6fgAIgDvhnEwrZJlBNe5Q5RgAAGa/WzOVY7NrJvOrodr2eUqel7Mzz5uPAADMMPvkPqfvAr74xS9W2Zt6yQUtkGOgVd/9YPel9SQ5+ESX1gH4/ZyTaYUsM6jGHaocAwDA7LdexnNwTuysXZav5rs5pvBEAADMRfbJfS6uF7DTTjtV2Zt6yQUtkGOgRSt+mZz1D9213Y9MHrBP2XkAqI9zMq2QZQbVuEOVYwAAqMMDsk92z5GdtbPyqqzILwtPBADAXGOf3OfiegE33nhjlb2pl1zQAjkGWrNmTbLssOSOm4drE9sn+769/EwA1Mc5mVbIMoNq3KHKMQAA1GPfvD0T2X7o+x25OctzeNZkzQimAgBgrrBP7nNxvYAbbrihyt7USy5ogRwDrfnO+5NfndNdO+SkZOGisvMAUCfnZFohywyqcYcqxwAAUI+FWZRDcmJn7bJ8Ld/JBwpPBADAXGKf3OfiegG77rprlb2pl1zQAjkGWnL9z5OzXt1de/RRyY5PKzsPAPVyTqYVssygGneocgwAAHXZMXvn0Tmqs3ZW/iHX5xeFJwIAYK6wT+5zcb2AM844o8re1EsuaIEcA61YsyZZfniy6pbh2sY7JE9/W/GRAKiYczKtkGUG1bhDlWMAAKjP0/O2bJwdhr6vyi1ZnsOyJmvKDwUAQPPsk/vGer1eb9RDzAZTU1OZmJjI5ORkxsfHp7X3ypUrs9FGG01rzxK9qZdc0AI5Blpx7nuSL/xtd+15Zyf3f2rRcQConHMyrZBlBtW4Q5VjAACo0yX5cj6S7p9C3S/vzh75m7IDAQDQPPvkPi+uF/Ce97ynyt7USy5ogRwDLbjuZ8mXXt1de8yLXVoH4O5zTqYVssygGneocgwAAHW6f56ax+ToztqX8ppcn58XnggAgNbZJ/d5cX2tmXxxHQCAuWfN6uTkJyeXf3O4tvH9k6POSxb6x7QAAAAAAFDcbVmZY7NbbsglQ7Xt8sQclq9mXuaPYDIAAGibF9cLWLJkSZW9qZdc0AI5Bmr3rfd2X1pPkkNOcmkdgHvGOZlWyDKDatyhyjEAANRrYTbKITmps3Z5vpFv5b2FJwIAoGX2yX1eXF9rJl9cv+6667L55ptPa88SvamXXNACOQZqdt1Pk+Mekay6dbj22JckB7y/+EgANMI5mVbIMoNq3KHKMQAA1O/0/HW+kw8MfV+Q9fKi/Cib5yEjmAoAgNbYJ/d5cb2A//iP/6iyN/WSC1ogx0Ct1qxOlh3WfWl9kx2Tfd5SfiYA2uGcTCtkmUE17lDlGAAA6rdP3pJNsuPQ91W5NctyWNZk9QimAgCgNfbJfS6uF/D4xz++yt7USy5ogRwDtTr33ckV53bXDjk5WXfDsvMA0BbnZFohywyqcYcqxwAAUL91s2EOyUmdtStybr6V95QdCACAJtkn97m4XsAVV1xRZW/qJRe0QI6BGl37k+Tsf+yuPe6lyQ5PLjsPAO1xTqYVssygGneocgwAAG3YIU/J4/LSztqX8tpcm58UnggAgNbYJ/e5uF5Ar9ersjf1kgtaIMdAbdasTpYdmqy+bbi2yQOSvd9UfCQAGuScTCtkmUE17lDlGAAA2rF33pRN8oCh76tzW5bnsKzJ6hFMBQBAK+yT+1xcL2C77barsjf1kgtaIMdAbb75zuTX3+4ojCWLT07W3bD4SAA0yDmZVsgyg2rcocoxAAC0Y91smMU5OcnYUO2KfCvn5l3lhwIAoBn2yX0urhdw7rnnVtmbeskFLZBjoCbXXpR8+fXdtce/LNl+z7LzANAu52RaIcsMqnGHKscAANCW7bNnHpeXdtbOzutybS4qPBEAAK2wT+4b63l/PkkyNTWViYmJTE5OZnx8fFp7X3/99dlss82mtWeJ3tRLLmiBHAO1WL0qOemJya+/M1zb9EHJi36UrLtB8bEAaJRzMq2QZQbVuEOVYwAAaM/tuTnH5eFZkV8M1e6bx+bwfCPzs2AEkwEAUDP75D4vrhdw7LHHVtmbeskFLZBjoBbnvrP70nrGksUnu7QOwPRyTqYVssygGneocgwAAO1ZNxtkcZYmGRuq/Trfybl5Z/GZAACon31ynxfX15rJF9cBAGjTby5Mjn9Usvr24doeL0/2s78GAAAAAIDqfD4vz7fy7qHv87NujswPs2UeNoKpAACgfl5cL2DJkiVV9qZeckEL5BiY7VavSpYd2n1pfbMHJ0/zf2MAzADnZFohywyqcYcqxwAA0K6nZUk2zYOGvq/O7VmWQ7M6q0YwFQAAtbJP7vPi+loz+eL6jTfemEWLFk1rzxK9qZdc0AI5Bma7c96cfOk1HYWx5PCvJ/d7QvGRAJgDnJNphSwzqMYdqhwDAEDbfpVv5qQ8KcnwtZq986bsmVeXHwoAgCrZJ/d5cb2AE088scre1EsuaIEcA7PZNRckX3lDd22Pl7u0DsDMcU6mFbLMoBp3qHIMAABtu1+ekD3y8s7aV/KGXJMLCk8EAECt7JP7XFwvYN99962yN/WSC1ogx8BstfqOZNmhyerbh2ubPSR52r8UHwmAOcQ5mVbIMoNq3KHKMQAAtO9p+ZdslocMfV+d27M8h2V1Vo1gKgAAamOf3OfiegEXXXRRlb2pl1zQAjkGZqtvvC256vvD38fmJYuXJuusX3wkAOYQ52RaIcsMqnGHKscAANC+dbJ+FufkjHVcr7ky38s38rYRTAUAQG3sk/tcXC9g0aJFVfamXnJBC+QYmI2uOT/5yj931/Z4RbLd48vOA8Dc45xMK2SZQTXuUOUYAADmhu2yR/bIKzprX8kbck3OLzwRAAC1sU/uc3G9gImJiSp7Uy+5oAVyDMw2q+9Ilh2arLljuLb5Q5OnvrH4SADMQc7JtEKWGVTjDlWOAQBg7nhq3pjN89Ch72tyR5bl0KxOx388AACAteyT+1xcL+DCCy+ssjf1kgtaIMfAbPP1tyZX/WD4+9i8ZPHSZJ31io8EwBzknEwrZJlBNe5Q5RgAAOaOdbJeFmdpxjqu2VyVH+TreesIpgIAoBb2yX1jvV6vN+ohZoOpqalMTExkcnIy4+Pj09r7yiuvzDbbbDOtPUv0pl5yQQvkGJhNrj4v+dCju19bf+Krkqe/pfxMAMxNzsm0QpYZVOMOVY4BAGDu+WJelW/kbUPf52WdvDDfy1bZbQRTAQAw29kn93lxvYCTTjqpyt7USy5ogRwDs8XqO5Jlh3ZfWt/iYclebyg9EQBzmXMyrZBlBtW4Q5VjAACYe/bKP2fz7DT0fU3uyLIcmtXp+I8JAADMefbJfV5cX2smX1wHAKBeX3lj8pV/Gv4+Ni854txk28eWnwkAAAAAABiNK/KdnJg90suaodpe+efsldePYCoAAKiDF9cLWLJkSZW9qZdc0AI5BmaDq36UfO1fumtPfJVL6wCU55xMK2SZQTXuUOUYAADmpm3z2Dwxf99Z+1r+JVfnx4UnAgBgtrNP7vPi+loz+eL6HXfckXXWWWdae5boTb3kghbIMTBqq25PTnhsck3HfnmLnZMjv58sWFh+LgDmNudkWiHLDKpxhyrHAAAwd63KbTk+j8q1+e+h2lZ5RF6Q72R+/L0AAMD/sE/u8+J6Ae9617uq7E295IIWyDEwaue8qfvS+tj8ZPFSl9YBGA3nZFohywyqcYcqxwAAMHctyMIsztKMZf5Q7er8KOfkTSOYCgCA2co+uc+L62vN5IvrF198cXbcccdp7VmiN/WSC1ogx8AoXfWj5ITHJGtWDdf2fE2y978WHwkAkjgn0w5ZZlCNO1Q5BgAAvpTXdl5Sn5cFeUG+m63ziPJDAQAw69gn93lxvYBzzz23yt7USy5ogRwDo7Lq9mTZ87ovrW+5S/KU15efCQB+xzmZVsgyg2rcocoxAADwlLw+W2aXoe9rsirL8rysyu0jmAoAgNnGPrnPxfUCtttuuyp7Uy+5oAVyDIzK15Yk15w3/H1sfrJ4abJgYfGRAOD/55xMK2SZQTXuUOUYAABYkIVZnKUZy/yh2jU5L+fET7gCAGCf/L+5uA4AAGtd+YPknOFf9EyS7PnqZJvdy84DAAAAAADMbttk9+yZV3fWzsmbcmV+UHgiAACYvVxcL+Dyyy+vsjf1kgtaIMdAaatuT5YdmvRWD9e23DV58uuKjwQAQ5yTaYUsM6jGHaocAwAAv/PkvC5bZteh72uyKstyaFbl9hFMBQDAbGGf3OfiegF77LFHlb2pl1zQAjkGSvvavyS/OX/4+7wFyeKlyYJ1i48EAEOck2mFLDOoxh2qHAMAAL+zIOtmcZZmLPOHar/J+fla/mUEUwEAMFvYJ/e5uF7AZz7zmSp7Uy+5oAVyDJT06+8l57y5u7bna5JtHlV2HgC4M87JtEKWGVTjDlWOAQCA/22bPCp75jWdtXPy5lyZ7xeeCACA2cI+uW+s1+v1Rj3EbDA1NZWJiYlMTk5mfHx8WnvfcccdWWeddaa1Z4ne1EsuaIEcA6Wsui05fvfk2guHa/d5ePKC73htHYDZwzmZVsgyg2rcocoxAAAwaFVuzwl5TK7JeUO1LbNLXpjvZUEWjmAyAABGyT65z4vrBbz1rW+tsjf1kgtaIMdAKV99Y/el9XkLksVLXVoHYHZxTqYVssygGneocgwAAAxakHWzOB/JvCwYqv0mF+SreeMIpgIAYNTsk/u8uL7WTL64DgDA7PTr7yYf3iPprR6uPeWfkqe+ofhIAAAAAABA5b6cN+Sr+eeh72OZn+fnW7lvHj2CqQAAYPS8uF7AkiVLquxNveSCFsgxMNPuuDVZdmj3pfWtHpHs+ZrSEwHAH+acTCtkmUE17lDlGAAAuDN75jW5Tx4+9L2X1VmWQ7Mqt41gKgAARsU+uc+L62vN5IvrV155ZbbZZptp7VmiN/WSC1ogx8BMO+vVydffMvx93oLkhd9LthreJwPAyDkn0wpZZlCNO1Q5BgAAfp+r8qOckMdkTVYN1Z6UV2efvGkEUwEAMAr2yX1eXC/g85//fJW9qZdc0AI5BmbSFd9JvvG27tqTX+fSOgCzl3MyrZBlBtW4Q5VjAADg99k6j8iT87rO2jfy1lyR7xSeCACAUbFP7nNxvYCdd965yt7USy5ogRwDM+WOW5Nlhya9NcO1rR6Z7Pnq4iMBwF3mnEwrZJlBNe5Q5RgAAPhD9syrs1UeOfS9lzVZlkNzR24dwVQAAJRmn9zn4noBk5OTVfamXnJBC+QYmClf+afkuouGv89bJ1m8NJm/TvGRAOAuc06mFbLMoBp3qHIMAAD8IfOzThZnaeZl+D8+XJeL8pW8ofxQAAAUZ5/c5+J6ATfeeGOVvamXXNACOQZmwuXfSr75ju7aU16fbLVb2XkA4O5yTqYVssygGneocgwAANwVW2W3PCWv66x9M2/PFfl24YkAACjNPrnPxfUCdtpppyp7Uy+5oAVyDEy3O25Nlh+W9NYM17Z+VPKkV5WfCQDuLudkWiHLDKpxhyrHAADAXfWk/EO2zqOGvveyJstyaO7IrSOYCgCAUuyT+1xcL+DMM8+ssjf1kgtaIMfAdPvy65PrfjL8fd46yeKlyfzhX+kEgFnHOZlWyDKDatyhyjEAAHBXzc86WZylmZfh/xhxXX6SL+f1I5gKAIBS7JP7xnq9Xm/UQ8wGU1NTmZiYyOTkZMbHx6e194033phFixZNa88SvamXXNACOQam0+XnJic+MUnHyfdp/5o8+TXFRwKAe8Q5mVbIMoNq3KHKMQAAcHd9Lf+as/OPQ9/HMi+H5xvZLo8fwVQAAMw0++Q+L64X8N73vrfK3tRLLmiBHAPT5Y5bkmWHpvPS+jaPTp7496UnAoB7zjmZVsgyg2rcocoxAABwdz0xr8rW2X3oey9rsiyH5o7cMoKpAACYafbJfV5cX2smX1wHAGB0vvB3ybnvHP4+f93kyB8kW+5cfiYAAAAAAGBuuiYX5EPZPatz+1Btj7wi++UdI5gKAADK8OJ6AUuWLKmyN/WSC1ogx8B0+NU3k3Pf1V3b6w0urQNQH+dkWiHLDKpxhyrHAADAPXGf7JK98obO2rl5V36Vb5YdCACAGWef3OfF9bVm8sX166+/Ppttttm09izRm3rJBS2QY+Deuv3m5LhHJCt+Plzb5jHJEd9M5i8oPhYA3CvOybRClhlU4w5VjgEAgHtqdVblxDwhV+a7Q7XN8uC8KD/KOll/BJMBADAT7JP7vLhewKc//ekqe1MvuaAFcgzcW2f/Y/el9fnrJouXurQOQJ2ck2mFLDOoxh2qHAMAAPfU/CzI4izN/Kw7VLs+P8vZ+ccRTAUAwEyxT+5zcb2APfbYo8re1EsuaIEcA/fGZV9PvvWe7tpT35hs+bCi4wDAtHFOphWyzKAad6hyDAAA3Btb5mF5at7YWTs3785l+XrhiQAAmCn2yX0urhdw+eWXV9mbeskFLZBj4J66/eZk+WFJesO1+z422eMVxUcCgGnjnEwrZJlBNe5Q5RgAALi39sgrct88tqPSy/Iclttzc/GZAACYfvbJfS6uFzA2NlZlb+olF7RAjoF76uzXJit+Mfx9/sJk8dJk/oLiIwHAtHFOphWyzKAad6hyDAAA3FvzsyCLszTzs3CotiK/yNl57QimAgBgutkn97m4XsC2225bZW/qJRe0QI6Be+Kyc5Jvvbe79rR/SbbYqew8ADDdnJNphSwzqMYdqhwDAADTYYvslKfmjZ21b+W9uSznFJ4IAIDpZp/c5+J6Ad/61req7E295IIWyDFwd91+U7LssCS94dq2j0/2eHnxkQBg2jkn0wpZZlCNO1Q5BgAApssT8opsm8d3VHpZnsNze24qPhMAANPHPrlvrNfrdVztmXumpqYyMTGRycnJjI+PT2vv6667Lptvvvm09izRm3rJBS2QY+DuOuNlybffN/x9/sLkRT9Ktnho8ZEAYNo5J9MKWWZQjTtUOQYAAKbTtflJjssjsjq3DdUel5dm/9zJT84CADDr2Sf3eXG9gOOOO67K3tRLLmiBHAN3x6Vf7b60niR7/6tL6wC0wzmZVsgyg2rcocoxAAAwnbbIQ/O0LOmsfTvvy6X5WuGJAACYLvbJfV5cX2smX1wHAGDm3H5TcuxuyW8vHq5t94TksK8l8+aXnwsAAAAAAODuWJPVOSl75oqcO1TbJDvmqJyXdbPhCCYDAIDp4cX1ApYs6f4XsbO9N/WSC1ogx8BdddY/dF9aX7BecsjJLq0D0BbnZFohywyqcYcqxwAAwHSbl/lZnJOzIOsN1X6bi3NWXj2CqQAAuLfsk/u8uL7WTL64vnLlymy00UbT2rNEb+olF7RAjoG74pKvJB95andt33cmT3h50XEAYMY5J9MKWWZQjTtUOQYAAGbKN/OunJlXdNaely/n/tmr7EAAANwr9sl9Xlwv4IQTTqiyN/WSC1ogx8AfctvKZPnh3bXtnpg8/mVl5wGAEpyTaYUsM6jGHaocAwAAM+XxeVm2yxM7a8tzeG7LysITAQBwb9gn97m4XsD+++9fZW/qJRe0QI6BP+SsVyU3XDL8fcH6yeKTk3nzy88EADPNOZlWyDKDatyhyjEAADBT5mV+DslJWZD1hmo35JKclX8YwVQAANxT9sl9Lq4XcP7551fZm3rJBS2QY+D3ufjs5LvHdNf2flOy2YPKzgMApTgn0wpZZlCNO1Q5BgAAZtLmeXD2zps7a9/NB3NJvlx4IgAA7in75D4X1wvYeOONq+xNveSCFsgxcGduW5mcckR37X5PSh730rLzAEBJzsm0QpYZVOMOVY4BAICZ9ri8NPfLkzpry3N4bsvKwhMBAHBP2Cf3ubhewKJFi6rsTb3kghbIMXBnvvj3yQ2XDn9fsH5yyMnJPCdcABrmnEwrZJlBNe5Q5RgAAJhp8zIvh+TkLMj6Q7Ubcmm+mL8fwVQAANxd9sl9rvUUcNFFF1XZm3rJBS2QY6DLxV9Kvndsd22ftySbPbDsPABQmnMyrZBlBtW4Q5VjAACghM3ywOyTN3fWvpdjc3HOLjwRAAB3l31y31iv1+uNeojZYGpqKhMTE5mcnMz4+Pi09r7iiiuy7bbbTmvPEr2pl1zQAjkGBt12Y3LMrsnkZcO17Z+cPO/LXlsHoH3OybRClhlU4w5VjgEAgFLWZE2WZq/8KucM1SayfY7O+VkYr3gCAMxW9sl9rvYUsHTp0ip7Uy+5oAVyDAw685Xdl9bX2SA55CSX1gGYG5yTaYUsM6jGHaocAwAApczLvCzOyVknGwzVJnNZzswrRzAVAAB3lX1ynxfX15rJF9cBALh3fvnF5N/27a7t//7kcS8pOw8AAAAAAEBp3877c0Ze2ln7y3wxD8g+hScCAIC7x7uUBSxZsqTK3tRLLmiBHAO/c+tUsvyI7toOeyWPObroOAAwUs7JtEKWGVTjDlWOAQCA0h6TF2f7PKWzdkqOyK2ZKjwRAAB3hX1ynxfX15rJF9dXrVqVBQsWTGvPEr2pl1zQAjkGfueUFyY/OGH4+zobJkedl2y6Y/mZAGBUnJNphSwzqMYdqhwDAACjsCIX59jsljty01Bt97wwB+X4EUwFAMDvY5/c58X1At7xjndU2Zt6yQUtkGMgSX5xZvel9SR5+ltdWgdg7nFOphWyzKAad6hyDAAAjMKm2TFPz1s7a9/Ph/KLnFl4IgAA/hD75D4vrq81ky+uX3rppdlhhx2mtWeJ3tRLLmiBHAO3TibH7JpMXT5c22Gv5K++lMzzzzABmGOck2mFLDOoxh2qHAMAAKOyJmvy0eydS/OVodp4tsvROT/rZaL8YAAAdLJP7nPVp4Cvf/3rVfamXnJBC+QY+MIrui+tr7NhcshJLq0DMDc5J9MKWWZQjTtUOQYAAEZlXublkJyUdbLhUG0ql+fM/N0IpgIA4M7YJ/e57lPA9ttvX2Vv6iUXtECOYW77+eeTH57YXdv37ckm9y87DwDMFs7JtEKWGVTjDlWOAQCAUdok98/T87bO2g/y4fwiXyg8EQAAd8Y+uc/F9QJWr15dZW/qJRe0QI5h7rp1Mjn1Bd21+z8t2f3IsvMAwGzinEwrZJlBNe5Q5RgAABi1R+dFuX+e1lk7Jc/PrZksPBEAAF3sk/tcXC/gqquuqrI39ZILWiDHMHd94eXJ1BXD39fdKDn4xGSeEywAc5hzMq2QZQbVuEOVYwAAYNTmZV4OzolZNxsN1aZyRb6Ql49gKgAABtkn97n2U8BjH/vYKntTL7mgBXIMc9PPTk9+eFJ3bd93JJvsUHQcAJh1nJNphSwzqMYdqhwDAACzwSbZIU/P2ztrP8xJ+XnOKDwRAACD7JP7XFwv4LOf/WyVvamXXNACOYa555YbklNf0F3bcZ9k9xcWHQcAZiXnZFohywyqcYcqxwAAwGzx6ByZ+2fvztopeUFuyQ1lBwIA4P+wT+4b6/V6vVEPMRtMTU1lYmIik5OTGR8fn9bet912WxYuXDitPUv0pl5yQQvkGOaeZYclP1o6/H3dRcnR5ycbb198JACYdZyTaYUsM6jGHaocAwAAs8kNuSzHZJfcnpVDtUfk0CzOySOYCgCAxD75f/PiegFvf3v3TzLN9t7USy5ogRzD3PKzz3VfWk+Sfd/h0joA/I5zMq2QZQbVuEOVYwAAYDbZONtn37yzs/ajLM3P8rnCEwEA8Dv2yX1eXF9rJl9cBwDgzt3y2+SDOycrrxqu7fj05C+/kIyNlZ8LAAAAAACgJr308m/ZLxfni0O1RdkmR+eCrJ9NRjAZAAD8Dy+uF7BkyZIqe1MvuaAFcgxzx+f/pvvS+rqLkoM/7NI6APxvzsm0QpYZVOMOVY4BAIDZZixjOTgfzrpZNFS7MVfm8/nbEUwFAIB9cp8X19eayRfXr7zyymyzzTbT2rNEb+olF7RAjmFu+OmpyScO7q4ddEKy+/PLzgMAs51zMq2QZQbVuEOVYwAAYLb6fj6cU/OCztpzc0oekoMKTwQAMLfZJ/d5cb2AM844o8re1EsuaIEcQ/tuXpGcemR37QH7JY86ouw8AFAD52RaIcsMqnGHKscAAMBs9agckQdkv87aqTkyt+S3hScCAJjb7JP7XFwvYLfddquyN/WSC1ogx9C+z78sWXnV8PeF48nBJyRjY+VnAoDZzjmZVsgyg2rcocoxAAAwW41lLAfnhCzM+FBtZa7KGXnZCKYCAJi77JP7XFwvYMWKFVX2pl5yQQvkGNr2k1OS8z7WXdvv3cnEdmXnAYBaOCfTCllmUI07VDkGAABms4lsl/3yrs7aefm3/CSnFJ4IAGDusk/uc3G9gJtuuqnK3tRLLmiBHEO7bl6RnHZkd+2B+yePPKzsPABQE+dkWiHLDKpxhyrHAADAbPfIHJ4H5hmdtdNyZG6OC1QAACXYJ/e5uF7AQx/60Cp7Uy+5oAVyDO0646XJyquHvy+cSA76UDI2Vn4mAKiFczKtkGUG1bhDlWMAAGC2G8tYDsoJWZiJodrKXJ0z8tIRTAUAMPfYJ/e5uF7AWWedVWVv6iUXtECOoU0XLUvO//fu2jPek0xsW3IaAKiPczKtkGUG1bhDlWMAAKAGE9k2z8i7O2vn59/zkywvPBEAwNxjn9w31uv1eqMeYjaYmprKxMREJicnMz4+Pu29p7tnid7USy5ogRxDe26+PvngzslN1wzXHvTM5M9O9do6APwhzsm0QpYZVOMOVY4BAIBa9NLLx3Ngfp7Th2ob5j55cS7MBtlsBJMBAMwN9sl9Xlwv4H3ve1+VvamXXNACOYb2nP7X3ZfWF04kBx3v0joA3BXOybRClhlU4w5VjgEAgFqMZSwH5UNZmImh2k25JmfkpSOYCgBg7rBP7vPi+loz+eI6AMBcd9F/JZ/6f921xUuTRzyv6DgAAAAAAABzzo/ykSzLoZ21P8l/Zqf8UdmBAACYc7y4XsCSJUuq7E295IIWyDG046brktNe1F178IHJw/+q7DwAUDPnZFohywyqcYcqxwAAQG0enr/Kg/LMztppeVFuynWFJwIAmBvsk/u8uL7WTL64vmLFimy66abT2rNEb+olF7RAjqEdn/nT5MJPDX9fb+Pk6AuT8W2KjwQA1XJOphWyzKAad6hyDAAA1GgqV+aY7Jxbc8NQbZf8aZ6dT5QfCgCgcfbJfV5cL+ATn5i5Q/1M9qZeckEL5Bja8N+f7b60niT7v8+ldQC4u5yTaYUsM6jGHaocAwAANRrPNtk/7+usXZBP5r/z2cITAQC0zz65z8X1Avbcc88qe1MvuaAFcgz1u+na5LSjumsPPijZ7S/KzgMALXBOphWyzKAad6hyDAAA1Gq3/EUenIM6a6flqNyUawtPBADQNvvkPhfXC7j00kur7E295IIWyDHU7/SXJDd37DXX2yQ56PhkbKz8TABQO+dkWiHLDKpxhyrHAABArcYyloNyfNbLJkO1m3NtTs9LRjAVAEC77JP7XFwvYP78+VX2pl5yQQvkGOp24WeSCz/dXTvg/cmircvOAwCtcE6mFbLMoBp3qHIMAADUbFG2zv55X2ftwnw6F+Y/Ck8EANAu++Q+F9cL2HrrmbuZNZO9qZdc0AI5hnqt/E3yuaO7aw85JNn1z8rOAwAtcU6mFbLMoBp3qHIMAADUbrf8eR6SQzprn8tRWZnfFJ4IAKBN9sl9Lq4X8N3vfrfK3tRLLmiBHEO9Tn9xcvN1w9/X3zQ58LhkbKz8TADQCudkWiHLDKpxhyrHAABA7cYylgNzXNbPpkO1m3NdTs+LRzAVAEB77JP7xnq9Xm/UQ8wGU1NTmZiYyOTkZMbHx6e197XXXpsttthiWnuW6E295IIWyDHU6YJPJ//xJ921Z3082fW5ZecBgNY4J9MKWWZQjTtUOQYAAFpxXj6e/8yfd9aenU9llzyn8EQAAG2xT+7z4noBxx9/fJW9qZdc0AI5hvqsvCb53NHdtYf+UbLLn5adBwBa5JxMK2SZQTXuUOUYAABoxa55bh6axZ210/PirMxvyg4EANAY++Q+L66vNZMvrgMAtK7XSz797OSi/xyurb9Z8uILk43uU34uAAAAAAAA/rCVuSYfzM65JdcP1XbKs/KcfCZjGRvBZAAAtMSL6wUsWbKkyt7USy5ogRxDXS74VPel9SQ54AMurQPAdHFOphWyzKAad6hyDAAAtGSj3CcH5AOdtYvy2VyQTxWeCACgHfbJfV5cX2smX1y/+eabs8EGG0xrzxK9qZdc0AI5hnrceHVyzM7JLSuGazs9K3nOZ5IxD3AAwLRwTqYVssygGneocgwAALSml14+nWfnogy/VrR+NsuLc2E2iteKAADuLvvkPi+uF3DsscdW2Zt6yQUtkGOoQ6+XfO6o7kvrG2yePPMYl9YBYDo5J9MKWWZQjTtUOQYAAFozlrE8M8dk/Ww2VLsl1+e0HJVevI8JAHB32Sf3ubhewIEHHlhlb+olF7RAjqEO538i+cmy7toBH0w22rLoOADQPOdkWiHLDKpxhyrHAABAizbKffLMHNNZ+0n+Kxfkk4UnAgCon31yn4vrBfz4xz+usjf1kgtaIMcw+914dXLGX3fXHvbsZJfnlJ0HAOYC52RaIcsMqnGHKscAAECrdslz8rA8u7N2el6SG3N14YkAAOpmn9zn4noBm202/BNKNfSmXnJBC+QYZrdeLzntRcktK4ZrG2z+P6+tAwDTzzmZVsgyg2rcocoxAADQsgPywWyQzYe+35IVOS0vSi+9EUwFAFAn++Q+F9cLWH/99avsTb3kghbIMcxu5/178tPl3bVnHpNstGXZeQBgrnBOphWyzKAad6hyDAAAtGyjbJln5pjO2k+zPOfn44UnAgCol31yn4vrBfzsZz+rsjf1kgtaIMcwe914VXLGS7trOz8n2fmPy84DAHOJczKtkGUG1bhDlWMAAKB1O+eP87B0/4ef0/PXuTFXFZ4IAKBO9sl9Lq4XsPfee1fZm3rJBS2QY5ider3k1COTW387XNtgi+SAD5SfCQDmEudkWiHLDKpxhyrHAADAXPDMfDAbZIuh77fmtzk1R6aX3gimAgCoi31yn4vrBXzkIx+psjf1kgtaIMcwO533seRnp3bXDjw22XB4bwkATCPnZFohywyqcYcqxwAAwFywYbbIgTm2s/aznJrz8rHCEwEA1Mc+uW+s1+v5p49JpqamMjExkcnJyYyPj496HACAWWfqyuSYnZNbbxiu7fKnybM/UXwkAAAAAAAACvhM/jQX5lND39fLxjk6F2Y824xgKgAAauPF9QKWLFlSZW/qJRe0QI5hdun1/j/27jvMyurc+/h3ZujCDIIFe2+xiw1jr9EokHNykmMq9pqmMYnJ0ZhkYi+xIqJAqsa0AewFUVRUxIq9YkGQIjMgdWb2+4fk3XE/zyhl77X3evb3c125TrLuYc2d5OfOOrdr1sDYE9Mvra+2Fhx+dfCWJEmqSp6TlRVmWYVinKGaY0mSJEnV5AiuYTXWSqwvYi63cRI5fDdTkiSpI86T83xxfZlSvrje1tZGXV1dUfcMsbfiZS6UBeZYqizP/B6ahqTXvv5P2OYrQduRJKlqeU5WVphlFYpxhmqOJUmSJFWbl/gXf+W/UmuDGcVOfDdwR5IkSXFwnpzni+sBXHzxxVHurXiZC2WBOZYqR8v7cOcP0mvbHe2ldUmSQvKcrKwwyyoU4wzVHEuSJEmqNtvwFbbj6NTanfyAFt4P3JEkSVIcnCfn+eL6MqV8cX3q1KlstNFGRd0zxN6Kl7lQFphjqTLkcvDnL8PrdyZrq60Np70APfqG70uSpGrlOVlZYZZVKMYZqjmWJEmSVI0WMJtr2ZaPmZGobcERfIPbqKGmDJ1JkiRVLufJeb64HsBDDz0U5d6Kl7lQFphjqTI8Myr90jrAUcO8tC5JUmiek5UVZlmFYpyhmmNJkiRJ1agHfTmS61Nrr3EHz/D7wB1JkiRVPufJeV5cD2CTTTaJcm/Fy1woC8yxVH7N78FdP0yvbf9N2HpQ0HYkSRKek5UdZlmFYpyhmmNJkiRJ1WobBrM930yt3cUPaOa9wB1JkiRVNufJeV5cD6C1tTXKvRUvc6EsMMdSeeVyMPYEWNySrPXsB4dfFb4nSZLkOVnZYZZVKMYZqjmWJEmSVM0O5yp60i+xvpgWxnICOXJl6EqSJKkyOU/O8+J6ANOnT49yb8XLXCgLzLFUXk+PgNfvSq8dOQx69AnbjyRJ+oTnZGWFWVahGGeo5liSJElSNetBH45kWGrtde7iaUYG7kiSJKlyOU/O8+J6AP37949yb8XLXCgLzLFUPs3vwt1npNd2+DZsPTBsP5IkKc9zsrLCLKtQjDNUcyxJkiSp2m3NQHbgW6m1u/kRzbwbuCNJkqTK5Dw5z4vrATQ1NUW5t+JlLpQF5lgqj1wOxpwAi1uStZ7rwOFXhu9JkiTleU5WVphlFYpxhmqOJUmSJAm+xJX0ZJ3E+mJaGMMJ5MiVoStJkqTK4jw5ryaXy3lCBFpaWmhoaKC5uZn6+vqi7r1o0SK6detW1D1D7K14mQtlgTmWymPyjTD2hPTa0WNhqyPD9iNJkj7Nc7KywiyrUIwzVHMsSZIkSZ94hdu4maNSa0cxnP4cH7gjSZKkyuI8Oc8X1wO49NJLo9xb8TIXygJzLIU39x24+4z02o7f9dK6JEmVwHOyssIsq1CMM1RzLEmSJEmf2Ioj2ZHvpNbu5gzm8k7gjiRJkiqL8+Q8X1xfppQvrkuSJFW6XA7+eBi8eW+y1mtdOPUF6N47eFuSJEmSJEmSJEmKwEI+4jq2Yx7TErVNOYRvczc11JShM0mSJFUSX1wPoLGxMcq9FS9zoSwwx1JYk4enX1oHOGq4l9YlSaoUnpOVFWZZhWKcoZpjSZIkScrrzuocxQ2ptTe5l6e4MXBHkiRJlcN5cp4vri9TyhfXp0+fTr9+/Yq6Z4i9FS9zoSwwx1I4c6fCddvBkvnJ2k5DYPDI4C1JkqQOeE5WVphlFYpxhmqOJUmSJCmpiWN4hlGJ9S705FSm0JuNwjclSZJUZs6T83xxPYCxY8dGubfiZS6UBeZYCiOXg9HHpV9a77UeHHZF+J4kSVLHPCcrK8yyCsU4QzXHkiRJkpR0GFfQi/US60uYzxiOJ4fva0qSpOrjPDnPi+sB7LTTTlHurXiZC2WBOZbCeHIYvHV/em3gcOjeO2g7kiTpc3hOVlaYZRWKcYZqjiVJkiQpqTu9Gcjw1Nqb3MdkbgjckSRJUvk5T87z4noAs2fPjnJvxctcKAvMsVR6H70N956VXtv5WNji8KDtSJKk5eA5WVlhllUoxhmqOZYkSZKkdFtwODtzbGrtHn7MR7wdtiFJkqQyc56c58X1ABYuXBjl3oqXuVAWmGOptNrbYcxxsGR+sla/Phx2efieJEnS5/OcrKwwyyoU4wzVHEuSJElSxw7jcupZP7G+hPmM4TjaaS9DV5IkSeXhPDnPi+sBbLHFFlHurXiZC2WBOZZKa/IweGtcem3gjdCtIWw/kiRp+XhOVlaYZRWKcYZqjiVJkiSpY91oYCA3ptbeYhyTGRa4I0mSpPJxnpznxfUAHnjggSj3VrzMhbLAHEul89FbcM9Z6bVdjofNDwvbjyRJWn6ek5UVZlmFYpyhmmNJkiRJ+mybcxg7c1xq7R7O4iPeCtyRJElSeThPzqvJ5XK5cjdRCVpaWmhoaKC5uZn6+vqi7t3c3ExDQ2meLS3l3oqXuVAWmGOpNNrb4Q8Hwdvjk7X6DeDUKdCtuEchSZJURJ6TlRVmWYVinKGaY0mSJEn6fIto5jq2p4V3E7WNOYDvcB+1vrspSZIyznlynie/AK6++uoo91a8zIWywBxLpfHk0PRL6wADb/TSuiRJlc5zsrLCLKtQjDNUcyxJkiRJn68bDQzkxtTa2zzAkwwN3JEkSVJ4zpPzfHF9mVK+uC5JklQJ5rwJQ7eHpQuStf4nwlHDwvckSZIkSZIkSZKk7BvDiTzF8MR6Z3pwCs/Th03L0JUkSZJC88X1ABobG6PcW/EyF8oCcywVV3s7jD4m/dJ6w4ZwyCXhe5IkSSvOc7KywiyrUIwzVHMsSZIkScvvUC6lgQ0T60tZwGiOpZ32MnQlSZIUhvPkPF9cX6aUL67PnTuX3r17F3XPEHsrXuZCWWCOpeJ6/Gq48/vptW/fC5sdHLYfSZK0cjwnKyvMsgrFOEM1x5IkSZK0Yt7gPv7IIam1w7maPTg9cEeSJElhOE/O88X1AP70pz9FubfiZS6UBeZYKp45b8B9P0uv9T/JS+uSJMXEc7KywiyrUIwzVHMsSZIkSStmMw6mPyel1u7jp8zhjcAdSZIkheE8Oc+L6wHst99+Ue6teJkLZYE5loqjvR2ajoGlC5K1ho3g0EvC9yRJklae52RlhVlWoRhnqOZYkiRJklbcoVxCAxsl1peygNEcSzvtZehKkiSptJwn53lxPYA33ijdT4SWcm/Fy1woC8yxVBxPXA3vTEivDRoBXXuF7UeSJK0az8nKCrOsQjHOUM2xJEmSJK24rvRiEDel1qbyEE9wTeCOJEmSSs95cp4X1wPo0qVLlHsrXuZCWWCOpVU3+zW47+z02q6nwKYHhu1HkiStOs/JygqzrEIxzlDNsSRJkiStnE05iF05JbV2Hz9jNq8H7kiSJKm0nCfneXE9gLXXXjvKvRUvc6EsMMfSqmlvh9HHQuvCZK33xnDIxcFbkiRJReA5WVlhllUoxhmqOZYkSZKklXcIF9ObjRPrrSxkNMfQTnv4piRJkkrEeXKeF9cDmDx5cpR7K17mQllgjqVV8/hV8M7D6bVBI6Brz7D9SJKk4vCcrKwwyyoU4wzVHEuSJEnSyutKTwYxIrX2Dg/zOFcF7kiSJKl0nCfn1eRyuVy5m6gELS0tNDQ00NzcTH19fVH3njFjRsl+WqKUeyte5kJZYI6llTfrVbh+R2hdlKztdhp8+ZrwPUmSpOLwnKysMMsqFOMM1RxLkiRJ0qq7ndOYxHWJ9U505xSepS9blKErSZKk4nKenOeL6wEMHz48yr0VL3OhLDDH0sppb4PRx6RfWu+9CRx8YfieJElS8XhOVlaYZRWKcYZqjiVJkiRp1R3MRfRmk8R6Kwtp4hjaaStDV5IkScXlPDnPF9eXKeWL65IkSaE8ejncc2Z67bsPwCb7h+xGkiRJkiRJkiRJ+mxvMZ7fc0Bq7VAuYy/OCNyRJEmSSsUX1wNobGyMcm/Fy1woC8yxtOJmvQLjfpFe2/10L61LkpQFnpOVFWZZhWKcoZpjSZIkSSqOTdif3Tk9tTaOXzCLVwJ3JEmSVFzOk/N8cX2ZUr64vnDhQrp3717UPUPsrXiZC2WBOZZWTHsbjNgH3puYrK2+KZzyHHRZLXxfkiSpuDwnKyvMsgrFOEM1x5IkSZJUPEv4mKHswEe8maitzwCOZQK11JWhM0mSpFXnPDnPF9cDuO6666LcW/EyF8oCcyytmIlXpF9aBxg00kvrkiRlhedkZYVZVqEYZ6jmWJIkSZKKpwurMYgRqbX3mMhj/C5sQ5IkSUXkPDnPi+sBDBw4MMq9FS9zoSwwx9Lym/kyjPu/9Noe34eN9w3bjyRJKh3PycoKs6xCMc5QzbEkSZIkFdfG7McefD+1dj+/YCYvB+5IkiSpOJwn53lxPYCnnnoqyr0VL3OhLDDH0vJpb4OmIdC2OFlbfTM46PzgLUmSpBLynKysMMsqFOMM1RxLkiRJUvEdxPmszmaJ9TYWM5pjaKetDF1JkiStGufJeV5cD2DNNdeMcm/Fy1woC8yxtHwevQzefzylUAODR0KX1YK3JEmSSshzsrLCLKtQjDNUcyxJkiRJxdeF1RjMSKAmUXuPx5jI5eGbkiRJWkXOk/O8uB5A165do9xb8TIXygJzLH2+mS/BA+em1/b8AWy0T9h+JElS6XlOVlaYZRWKcYZqjiVJkiSpNDZiH/bg+6m1cZzDTF4K3JEkSdKqcZ6c58X1AN54440o91a8zIWywBxLn62tFZqGQNviZK3PFnDgb4O3JEmSAvCcrKwwyyoU4wzVHEuSJElS6RzE+fRh88R6G4tpYghttJahK0mSpJXjPDnPi+sB7L///lHurXiZC2WBOZY+28TL4P0nUgo1MHgkdOkRvCVJkhSA52RlhVlWoRhnqOZYkiRJkkqnCz0YzCigJlF7nyeYyGXBe5IkSVpZzpPzvLgewB//+Mco91a8zIWywBxLHfvwBXjg3PTagB/Bhl8M248kSQrHc7KywiyrUIwzVHMsSZIkSaW1IV9kT36YWnuAc/mQF8M2JEmStJKcJ+fV5HK5XLmbqAQtLS00NDTQ3NxMfX19Ufdub2+ntrY0PyNQyr0VL3OhLDDHUrq2VrhpAEx7MlnruyWc/Ax07h68LUmSFIjnZGWFWVahGGeo5liSJEmSSm8JC7ienZjDa4nauuzGcTxKHZ3K0JkkSdLyc56c538KAZx//vlR7q14mQtlgTmW0j16SfqldWpg0EgvrUuSlHWek5UVZlmFYpyhmmNJkiRJKr0u9GAwo4CaRG0ak3iUS4L3JEmStKKcJ+f54voyvriuLDEXygJzLCXNmAI39Ie2JcnagDPhsEvD9yRJksLynKysMMsqFOMM1RxLkiRJUjh382MmcllivY4unMhk1ma7MnQlSZK0fJwn5/mfQgAXXHBBlHsrXuZCWWCOpU9rWwpNQ9IvrffdCg78TfCWJElSGXhOVlaYZRWKcYZqjiVJkiQpnAP5DX3ZKrHexhJGcwxttJahK0mSpOXjPDnPF9eXKeWL6++88w4bbrhhUfcMsbfiZS6UBeZY+rSHfgvj/i+5XlMLxz4CG+wZvidJkhSe52RlhVlWoRhnqOZYkiRJksJ6l4mMYG9ytCdqB/Jb9uXnZehKkiTp8zlPzvPF9QDGjx8f5d6Kl7lQFphjKW/G8zD+V+m1AWd6aV2SpGriOVlZYZZVKMYZqjmWJEmSpLA2YAADODO1Np7zmMHzgTuSJElaPs6T87y4HsBmm20W5d6Kl7lQFphj6RNtS6FpCLQvTdbW2BoO+HXwliRJUhl5TlZWmGUVinGGao4lSZIkKbwD+DVrsHVivZ2lNDGENlL+ppokSVKZOU/O8+J6AIsXL45yb8XLXCgLzLH0iYcvgg+eSq7X1MLgUdC5W/CWJElSGXlOVlaYZRWKcYZqjiVJkiQpvM50YzCjqEm58vQBT/EwF5WhK0mSpM/mPDnPi+sBzJw5M8q9FS9zoSwwxxJMfw4e7OBF9b3OgvX3CNuPJEkqP8/JygqzrEIxzlDNsSRJkiSVx/rswV78OLX2IL9mOs8F7kiSJOmzOU/O8+J6ALvsskuUeyte5kJZYI5V7dqWQtMQaE/5bYZrfgH2Py90R5IkqRJ4TlZWmGUVinGGao4lSZIkqXz251eswTaJ9XaW0sQQ2kj5m2ySJEll4jw5z4vrAYwZMybKvRUvc6EsMMeqdhMugOlPJ9dramHQSOjcLXxPkiSp/DwnKyvMsgrFOEM1x5IkSZJUPp3pxmBGUZNy9Wk6TzOBC8rQlSRJUjrnyXk1uVwuV+4mKkFLSwsNDQ00NzdTX19f1L0XLlxI9+7di7pniL0VL3OhLDDHqmYfPAPDd4P21mRt77Ph4PODtyRJkiqE52RlhVlWoRhnqOZYkiRJksrvPs7mYS5MrNfSiRN5kn7sWIauJEmSPs15cp4vrgdw2WWXRbm34mUulAXmWNWqdQk0DUm/tL7mtrD/L4O3JEmSKojnZGWFWVahGGeo5liSJEmSym9/zmNNvpBYb6eVJobQxtIydCVJkvRpzpPzfHF9mVK+uC5JkrS8HjgPHvxVcr2mDo5/DNbbNXhLkiRJkiRJkiRJUsV6n0ncyABytCVq+3Me++PLUJIkSZXCF9cDaGxsjHJvxctcKAvMsarRB8/AhN+m1/b+qZfWJUmS52Rlh1lWoRhnqOZYkiRJkirDeuzG3vw0tfYQjXzAM2EbkiRJKuA8Oc8X15cp5YvrM2bMYO211y7qniH2VrzMhbLAHKvatC6B4bvBjOeStbW2gxOfhE5dw/clSZIqi+dkZYVZVqEYZ6jmWJIkSZIqRyuLuYFd+ZApidra7MAJTKITXcrQmSRJkvPk/+SL6wGMHj06yr0VL3OhLDDHqjYPNaZfWq+pg8GjvLQuSZI+4TlZWWGWVSjGGao5liRJkqTK0YmuDGYUNdQlajN4jgl08GuPJUmSAnCenOfF9QD69+8f5d6Kl7lQFphjVZNpT8GE89Nr+5wN6/qXgyRJWsZzsrLCLKtQjDNUcyxJkiRJlWVd+rMPZ6fWJnA+03gqcEeSJEmfcJ6c58X1AGbMmBHl3oqXuVAWmGNVi9Yl0DQEcm3J2lrbw77nBG9JkiRVMM/JygqzrEIxzlDNsSRJkiRVnn05h7XYPrHeTitNDKGVJWXoSpIkVTvnyXleXA9gyZLSHXpLubfiZS6UBeZY1eKh38CHzyfXa+pg8Cjo1CV4S5IkqYJ5TlZWmGUVinGGao4lSZIkqfJ0oguDGUUNdYnahzzPQ/ymDF1JkqRq5zw5z4vrAWy22WZR7q14mQtlgTlWNXj/SZhwQXpt31/AuruE7UeSJFU+z8nKCrOsQjHOUM2xJEmSJFWmddmFffh5am0CFzCNyYE7kiRJ1c55cp4X1wN48MEHo9xb8TIXygJzrKxrXQxNQyDXlqytvSPs84vgLUmSpAh4TlZWmGUVinGGao4lSZIkqXLty/+xNjsk1nO00cQQWllchq4kSVK1cp6cV5PL5XLlbqIStLS00NDQQHNzM/X19UXde+7cufTu3buoe4bYW/EyF8oCc6ysu/8XMOH85HptJzhhEqyzU/CWJElSBDwnKyvMsgrFOEM1x5IkSZJU2T7gGYazG+20Jmr78HMO4rdl6EqSJFUj58l5vrgewDXXXBPl3oqXuVAWmGNl2fuT4OGL0mv7/MJL65IkqWOek5UVZlmFYpyhmmNJkiRJqmzrsBP7kP5rjh/mIt7nycAdSZKkauU8Oc8X15cp5YvrkiRJ/7Z0EdzQH2a+mKz12wmOfxw6dQneliRJkiRJkiRJkpQ5rSxhOLszg2cTtTXZlpOYTCe6lqEzSZKk6uSL6wE0NjZGubfiZS6UBeZYWfXgr9Ivrdd2gsGjvLQuSZI+m+dkZYVZVqEYZ6jmWJIkSZIqXye6MJhR1NIpUZvJC4znV2XoSpIkVRvnyXm+uL5MKV9cb25upqGhoah7hthb8TIXygJzrCx67wm4aQDk2pO1/X8F+58bvidJkhQXz8nKCrOsQjHOUM2xJEmSJMVjPL9mPL9MrNdQy3FMZH12L0NXkiSpWjhPzvPF9QD+8Ic/RLm34mUulAXmWFmzdBE0DUm/tN5vZ9jn7OAtSZKkCHlOVlaYZRWKcYZqjiVJkiQpHvtwNv3YObGeo50mhrCURWXoSpIkVQvnyXleXA/ggAMOiHJvxctcKAvMsbJm/C9h1kvJ9drOMHgU1HUO3pIkSYqQ52RlhVlWoRhnqOZYkiRJkuJRR2cGM4pakn9TbhYvMZ7zwjclSZKqhvPkPC+uB/Daa69FubfiZS6UBeZYWfLuY/Dopem1/c6FfjuE7UeSJMXLc7KywiyrUIwzVHMsSZIkSXHpxw7sxzmptUe5hPd4PHBHkiSpWjhPzvPiegDdu3ePcm/Fy1woC8yxsmLpIhh9DOTak7V1doG9fxq+J0mSFC/PycoKs6xCMc5QzbEkSZIkxWdvfsY67JJYz9FOE0NYyqIydCVJkrLOeXKeF9cD6Nu3b5R7K17mQllgjpUVD5wLs15Ortd2hsGjoC752wglSZI65DlZWWGWVSjGGao5liRJkqT41NGZwYyiluTfpJvFyzzAuWXoSpIkZZ3z5DwvrgfwzDPPRLm34mUulAXmWFnw7kR49NL02v7nwdrbB21HkiRlgOdkZYVZVqEYZ6jmWJIkSZLitDbbsz+/TK1N5DLe5bHAHUmSpKxznpxXk8vlcuVuopgWLFjALbfcwpprrklTUxPDhw+ntvbz7+e3tLTQ0NBAc3Mz9fX1Re1p+vTp9OvXr6h7hthb8fpg+ges02+dcrchrRI/3xS7pQvh+p1g9qvJ2rq7wnEToa5T8LYkSVLkPCcrK8yyCsU4QzXHkiRJkhSvNlq5kT35gMmJWl+24mSepjPdy9CZJEnKIufJeZl7cf2ll17ijTfe4Mgjj+T5559n8eLF5W6JG2+8Mcq9FZcHgbtp4x6u4gc3HkSOTP1MiqqQn2+K3bhz0i+t13WBwaO8tC5JklaO52RlhVlWoRhnqOZYkiRJkuJVRycGM4o6uiRqs3mFcZxThq4kSVJWOU/Oy9yL6wAzZ87kr3/9K7179+Zb3/rWcv2ZUr64LoVwAB8zntWAdtbiBb5IZ/6HrTm63I1JUhV651EYsTek/QzRQefDPmcHb0mSJEmSJEmSJElSgQlcwP38PKVSw7E8zIbsFbwnSZKkLMvci+sAa665Jqeffjp//vOfefnll8vdDo2NjVHurTi008YELmcirctWavmwcTT/YmuGsqisvUmrws83xWrJAmgaQuql9XV3g73OCt2RJEnKEs/JygqzrEIxzlDNsSRJkiTFby/OYl12S6nkGM0xLGVh8J4kSVL2OE/Oy9yL69deey2dOnXipJNO4qijjuLkk0/my1/+cuLrFi9ezOLFi///v25paWGDDTYoyYvrixYtolu3bkXdM8TeisNC5vJ//BeXMy6/uGgRdOvGUfyF0RxNDTXla1BaSX6+KVZ3nQGPXZFcr+sCJz0Na30hfE+SJCk7PCcrK8yyCsU4QzXHkiRJkpQNH/Iiw9iZNpYkagM4g8O4rAxdSZKkLHGenLfcL67ffPPNvPHGG1x88cUsXrz4/9/+b2xsZNq0adx0001MmjSJu+++m3/+85+8+OKLXHXVVbS0tHzqa+fMmcO1117Lc889x5gxY7j99tt56qmnGDZsGDNnzvzU1y5YsIDLLruMV155hVtvvZX777+fRx99lFGjRvHuu+9+6mvb2tq44IIL2GqrrXjmmWe44IILqK+vp7m5mddee41LLrmERYsW/f8/c/jhh9PQ0PD//7HBBhsA8OKLL3L11VfT3Nz8qf3nzp3LNddcw/PPP09TUxN33HEHkydP5oYbbmDGjBmf+tqFCxdy2WWX8dprr/HXv/6VH/zgBzzyyCP84Q9/4J133uG3v/0t7e3tNDY20t7ezm9/+1veeecd/vCHP/DII48wbtw4/vrXv/Laa69x2WWXsXDhwk/tP2PGDG644QYmT57MqaeeSlNTE88//zzXXHMNc+fO/dTXNjc3c/XVVzNlyhT+9a9/cddddzFp0iSGDx/O9OnTP/W1ixYt4pJLLuG1117jlltuYfz48Tz88MP88Y9/ZOrUqVxwwQW0tbV96s+8++67jBo1ikcffZT777+fW2+9lVdeeYXLLruMBQsWfOprZ86cybBhw3jqqae4/fbbGTNmDM899xzXXnstc+bM+dTXtrS0cNVVV/Hiiy/yz3/+k7vvvptJkyZx0003MW3atE997eLFi7n44ot54403uPnmmxk/fjwTJkzgT3/6E2+//TYXXnghra2tn/oz7733HiNHjuSxxx7j3nvv5W9/+xsvv/wyV1xxBfPnz//U186aNYvrr7+eZ555httuu42xY8fyzDPPMHToUGbPnv2pr503bx6/+93vePHFF/nHP/7BPffcw+OPP86IESMSfS9dupSLLrqIN998kz//+c889NBDPPTQQ/z5z3/mzTff5KKLLmLp0qWJv9ZGjBjB448/zj333MM//vEP3npxGi/+bleYNw/+/VM5gwfD7Nl8MPQCbn7ml4wdO5bbbruNZ555huuvv55Zs2Z9at/58+dzxRVX8PLLL/O3v/2Ne++9l8cee4yRI0fy3nvvfeprW1tbufDCC3n77bf505/+xIQJExg/fnw0nxFTp07lj3/8Iw8//DDjx4/nlltuSf2MaGxsZPr06QwfPpxJkyZx11138a9//YspU6YU/TNi3LhxJfuMuOOOO6L9jDj55JP9jCjCZ8SLL77I7373O+bNm/epr509ezZDhw7lmWee8TOiiJ8R9/xhCldecTWLaOYhPvnah2hkEXOZ86VrmNHmZ4TnCD8jqvkzwnOEnxF+RvgZUYzPiFNPPdXPCD8jMvEZMXjwYD8jPEd86jPiJz/5Sck+I44//viSfEacfvrpfkZ4jvAzwnNEh58RniP8jPAzws8IPyP8jPAzws8IPyPi+Yx487EWFowcSMt78NAnX8pDjdDeCpdceDkPv/03PyP8jPAzooo/IzxH+BnhZ4SfEcX4jDjjjDMy/xmxvDL34vryCvni+muvvcYWW2xR1D1D7K14HAOM+s+F116DLbbgLNagN0s4lefpzUblaU5aSX6+KTZLFsD1O8Kc15O19XaHYx+Buk7h+5IkSdniOVlZYZZVKMYZqjmWJEmSpOxoo5URfJH3eSJR68PmnMyzdKFHGTqTJElZ4Dw5b7lfXM+arl27Ul9f/6l/lMrkyZOj3FvxmFi4MHkyfXiVHsxmCfMYw/HkqMqfUVHE/HxTbMb9Iv3Sel1XGDzKS+uSJKk4PCcrK8yyCsU4QzXHkiRJkpQddXRiMKOoo2uiNofXGccvytCVJEnKCufJeZm7uF5TU5P6j3Lq169flHsrDnOAVwoX+/Vjg/+4zv4m9zGZG0K2Ja0yP98Uk6kT4LEr02sH/gbW3CZsP5IkKbs8JysrzLIKxThDNceSJEmSlC1rsg0H8OvU2mNcyVQmBO5IkiRlhfPkvMxdXM/lcqn/KKdOnUr3xGop91YcHktb7NSJ9QveYb+HH/MRb4doSSoKP98UiyUfQ9MxkPaLLdbfEwacEbwlSZKUYZ6TlRVmWYVinKGaY0mSJEnKnr04k/XZM6WSo4ljWMLHwXuSJEnxc56cl7mL683Nzdx6662MHz+ea6+9tuyX1gHeeuutKPdWHCamLb71VuLi+hLmM4bjaKc9SF/SqvLzTbG4/+fw0RvJ9bquMGgk1NaF70mSJGWX52RlhVlWoRhnqOZYkiRJkrKnljoGMZI6uiZqH/EG9/PzMnQlSZJi5zw5L3MX1ydMmEBbWxv7778/8+fPZ968eeVuiX333TfKvRWHtIvr3ffdi7WYklh/i3FMZljpm5KKwM83xeDtB+Hxq9JrB/0W1tw6bD+SJCn7PCcrK8yyCsU4QzXHkiRJkpRNa7I1B9KYWnucq3ibhwJ3JEmSYuc8OS9zF9cPOOAAfv/73/OVr3yFDTfckPr6+nK3xF/+8pco91blawMeT1lf5y+30p8hqX/mHs7iI/zpHVU+P99U6ZZ8DKOPTa9tsBfs+cOg7UiSpCrhOVlZYZZVKMYZqjmWJEmSpOwawI9YnwGptdEcwxI+DtyRJEmKmfPkvJpcLpcrdxPFNHnyZGbMmMHixYu55JJL+Mc//sE666zzuX+upaWFhoYGmpubi37Zva2tjbq6uqLuGWJvVb7ngB1T1s9ua+Pcuvlcx3a08F6ivkR+sL0AAQAASURBVDEH8B3uozZ7P7uiDPHzTZXuju/BE9ck1zt1g5OfhTW2DN+TJEnKPs/JygqzrEIxzlDNsSRJkiRl2yxe4Xp2opVFidrufI8j6OBXM0uSJBVwnpyXuVur//znPzniiCP4yle+wpVXXsnjj6e9Rx3WBRdcEOXeqnwTO1h/74IL6EYDA7kxtf42D/Ak15euMakI/HxTJXtrfPqldYADf+uldUmSVDqek5UVZlmFYpyhmmNJkiRJyrY12IoD+W1q7Qmu5i3Gh21IkiRFy3lyXuZeXH/ppZd4+OGH2WCDDWhpaWHQoEF07dr1c/9cKV9cl0plCPD7lPXZQJ9l/3wMJ/BUygX2zvTgFJ6nD5uWrkFJyqDF82HoDjD3rWRtgy/CMQ9CrT8gKUmSJEmSJEmSJEWvnTZGsh/v8kii1ptNOIXn6ErPMnQmSZIUp8y9uL7NNttwwgkn8KUvfYmvfe1ry3VpvdQaGxuj3FuV79GUta2A6/4jF4dyGfVskPi6pSxgNMfSTnvpGpRWgZ9vqlT3/TT90nqn7jB4pJfWJUlSaXlOVlaYZRWKcYZqjiVJkiQp+2qpYxAj6ES3RG0ub3EfPytDV5IkKTbOk/My9+L6yirli+vvvvsuG2yQvDhc6Xurss0C1kxZHwL8uiAXr3MPf+Kw1H0O52r24PRStCitEj/fVIneHAd/OCi9dtgVMOCHQduRJElVyHOyssIsq1CMM1RzLEmSJEnVYyK/425+lFr7LuPYhAMCdyRJkmLiPDkvcy+uV6L7778/yr1V2R7rYH0AyVxszqHswgmpX38fP2UObxS3OakI/HxTpVk8H8Ycl17bcG/Y4/th+5EkSdXJc7KywiyrUIwzVHMsSZIkSdVjD77PhuydWhvNsSxmfuCOJElSTJwn53lxPYAtt9wyyr1V2SZ2sD6A9FwcyqU0sGFifSkLGM2xtNNe3AalVeTnmyrNvT+BuW8n1zt1h0EjodZTlSRJCsBzsrLCLKtQjDNUcyxJkiRJ1aOWWgYxkk50T9Tm8jb38pMydCVJkmLhPDnPK1YBLFy4MMq9VdnSLq73Ar5Aei66Uc9AbkrdayoP8QTXFLU/aVX5+aZK8ub98OTQ9NrBF0LfzcP2I0mSqpfnZGWFWVahGGeo5liSJEmSqktfNudgLkitPclQ3mRc4I4kSVIsnCfneXE9gNmzZ0e5typXK/BEyvoeQB0d52IzDqY/J6XW7uNnzOb1YrUorTI/31QpFs+D0cel1zbaF3Y/PWw/kiSpunlOVlaYZRWKcYZqjiVJkiSp+uzO99iQfVJrozmWxcwL3JEkSYqB8+Q8L64HsOOOO0a5tyrXFODjlPUBy/7vZ+XiUC6hgY0S660sZDTH0E57UXqUVpWfb6oU95wFzVOT6517wKARUOtpSpIkBeQ5WVlhllUoxhmqOZYkSZKk6lNLLYMZSWd6JGrNTOUezipDV5IkqdI5T87zqlUAt912W5R7q3JN7GD93xfXPysXXenFIG5Krb3DwzzOVavWnFQkfr6pErxxL0well47+ELos1nYfiRJkjwnKyvMsgrFOEM1x5IkSZJUnfqwGQdzYWptMsN4g/sCdyRJkiqd8+S8mlwulyt3E5WgpaWFhoYGmpubqa+vL+reCxYsoEeP5E9aVvreqlzfAf6Ysj4HWJ3ly8VtnMqTDE2sd6I7p/AsfdmiGK1KK83PN5Xboha4bjtoeTdZ22g/+O44X1uXJEnheU5WVphlFYpxhmqOJUmSJKl6tdPO7zmQqTyYqDWwIafwPN0o7v0jSZIUL+fJeV63CuDyyy+Pcm9VrrQX17fmk0vrsHy5OISL6c3GifVWFtLEMbTTtiotSqvMzzeV2z0/Tr+03nk1GDTCS+uSJKk8PCcrK8yyCsU4QzXHkiRJklS9aqllECPozGqJWjPvcC9nlaErSZJUqZwn5/ni+jKlfHFdKqaZwFop68cCN63gXm/xAL/nwNTaYVzOAH60gjtKUja8fg/86bD02hHXwO6nhe1HkiRJkiRJkiRJUuV5gmu5g9NTa9/ibjbn0MAdSZIkVTbfCg2gsbExyr1VmR7rYH3Af/zz5c3FJhzAbqTfvryfnzOLV1esOamI/HxTuSxqhjHHp9c23h92PSVoO5IkSZ/iOVlZYZZVKMYZqjmWJEmSJO3KKWzM/qm1MRzPIprDNiRJkiqS8+Q8X1xfppQvrs+cOZM111yzqHuG2FuV6efABSnrU4Btl/3zFcnFYuYzlB2Yy1uJ2voM4FgmUEvdyrYrrTQ/31Quo4+Hp1N+hUXn1eDU52H1TcL3JEmS9G+ek5UVZlmFYpyhmmNJkiRJEsBHvMV1bM9SPk7UduF4BjK8DF1JkqRK4jw5zxfXA/jnP/8Z5d6qTI+mrDUA2/zHv16RXHSlJ4MYkVp7j4k8xu9WpD2paPx8Uzm8dlf6pXWAQy/x0rokSSo/z8nKCrOsQjHOUM2xJEmSJAlgdTbhUC5JrT3FjbzO3YE7kiRJlcZ5cp4X1wPYbbfdotxblacVmJSyvgef/ot5RXOxCfuzO6en1sbxf8zilRXaTyoGP98U2qJmGHtCem2TA6H/SWH7kSRJSuM5WVlhllUoxhmqOZYkSZIk/Vt/TmITDkytjeF4FtEcuCNJklRJnCfneXE9gA8++CDKvVV5ngMWpKwPKPjXK5OLg7mQ1dk0sd7KIpoYQjttK7yntCr8fFNod58BLe8l17v0hIE3Qa2nJkmSVAE8JysrzLIKxThDNceSJEmSpH+rpZaB3EQXeiZqLbzH3ZxRhq4kSVKlcJ6c5xWsANraSnfht5R7q/JM7GC98OL6yuSiC6sxiJGptfd4jIlcvsJ7SqvCzzeF9Ood8PSI9Nqhl8LqGwdtR5IkqUOek5UVZlmFYpyhmmNJkiRJ0n9anY05hEtSa08zgte4M3BHkiSpUjhPzvPiegAbb7xxlHur8nR0cX2Pgn+9srnYmH3Zg++n1sZxDjN5aaX2lVaGn28KZeFcGHtCem3Tg6H/iUHbkSRJ+kyek5UVZlmFYpyhmmNJkiRJUqFdOYlNOCi1NoYTWMjcsA1JkqSK4Dw5z4vrAUyYMCHKvVV50i6ufwHoXbC2Krk4iPNZnc0S620spoljaMef/FEYfr4plLt/BPOmJde79IKBN0JNTfieJEmSOuI5WVlhllUoxhmqOZYkSZIkFaqhhkHcRBd6JmrzeJ+7+VEZupIkSeXmPDmvJpfL5crdRCVoaWmhoaGB5uZm6uvri7r3nDlz6NOnT1H3DLG3KsuHwNop68cBNxasrWoupjKBkewHJD8eDuYi9uYnK723tLz8fFMIr94OfzkyvXbkMNjV19YlSVKF8ZysrDDLKhTjDNUcS5IkSZI68iQ3cBsnpda+wW1syZcDdyRJksrJeXKeL64HcN1110W5typL2mvrAANS1lY1FxuxD3vyg9TaA5zDh7y4SvtLy8PPN5Xawo9gzAnptU0Pgf4d1CRJksrJc7KywiyrUIwzVHMsSZIkSepIf05gUw5JrY3lRBbyUeCOJElSOTlPzvPF9WVK+eK6VAw/Ay5KWX8B+EIJvt8SFnA9OzGH1xK1ddmN43iUOjqV4DtLUhj/+i48+4fkepdecOoU6L1h+J4kSZIkSZIkSZIkZcNc3uE6tmMJ8xK1HfkuX2FU+KYkSZLKzBfXA2hsbIxyb1WWtBfXewNbp6wXIxdd6MFgRgI1ido0JvEol67y95A+i59vKqVXxqZfWgc47HIvrUuSpMrlOVlZYZZVKMYZqjmWJEmSJH2W3mzIYVyeWnuW3/MKYwN3JEmSysV5cp4vri9TyhfXW1paSvaKeyn3VuVYCjQACwvWvwTcmfL1xczF3ZzJxJT/R6qOLpzEU6zFtkX5PlIhP99UKgvmwHXbwfwPkrXNDoNv3Qk1yZ/ZkSRJqgiek5UVZlmFYpyhmmNJkiRJ0ufJkeNPHM4b3J2o9WQdTuMFurN6GTqTJEkhOU/O88X1AEaNGhXl3qocz5G8tA4woIOvL2YuDqSRvmyZWG9jCU0MoY3Won0v6T/5+aZSuesH6ZfWu9bDwOFeWpckSZXNc7KywiyrUIwzVHMsSZIkSfo8NdQwkOF0JXlRbT4fcCc/KENXkiQpNOfJeV5cD+Dggw+Ocm9Vjkc7WO/o4noxc9GZ7gxiJJC8yTmNJ3mEi4v2vaT/5OebSuHlMfDcn9Jrh10BDRuE7UeSJGlFeU5WVphlFYpxhmqOJUmSJEnLo4ENOCzlN90DPMcfeZkxgTuSJEmhOU/O8+J6AC+//HKUe6tyTExZqwH26ODri52LDdmLAZyRWhvPecxgSlG/nwR+vqn4FsyB205Kr21+OOx8TNh+JEmSVobnZGWFWVahGGeo5liSJEmStLx25lg250uptds4iQXMCdyRJEkKyXlynhfXA1httdWi3FuVI+3i+raQ8oukPlGKXBzIb+jLVon1dpbSxBDaWFr076nq5uebiu3O78P86cn1rg1w1A1Qk/zFEpIkSRXHc7KywiyrUIwzVHMsSZIkSVpeNdRwFMPpSkOiNp/p3Mn3y9CVJEkKxXlynhfXA+jTp0+Ue6syTAfeTlkf8Bl/phS56Ex3BjOKmpSPjQ+YzMNcVPTvqerm55uK6aUmeP7P6bUv/Q4a1g/ZjSRJ0srznKysMMsqFOMM1RxLkiRJklZEA+vzJa5IrT3Pn3mZ0YE7kiRJoThPzvPiegDPPfdclHurMqS9tg6ffXG9VLnYgD0ZwJmptQf5NdMxjyoeP99ULAtmw20np9e2+DLs9N2w/UiSJK0Kz8nKCrOsQjHOUM2xJEmSJGlF7cQQtuCI1NpYTmIBswN3JEmSQnCenFeTy+Vy5W6iErS0tNDQ0EBzczP19fVF3XvatGmsu+66Rd0zxN6qDD8BLklZfwnYuoM/U8pcLGURw9iZWbycqPVjZ07gceroXJLvreri55uK5e/fgCk3J9e7NsBpL0D9euF7kiRJWlmek5UVZlmFYpyhmmNJkiRJ0spo4X2uZVsW05yobcfRfJW/lKErSZJUSs6T83xxPYARI0ZEubcqQ9qL66sDW37GnyllLjrTjcGMoibl42M6T/MwF5bse6u6+PmmYnjpX+mX1gEOv9JL65IkKT6ek5UVZlmFYpyhmmNJkiRJ0sqoZz0O58rU2hRu5iX+FbgjSZJUas6T83xxfZlSvrgurawlQAOwqGD9cOCO8O18yr38jEe4KLFeSydO5En6sWMZupKkvI9nwXXbwscfJmtbHglHj4GamvB9SZIkSZIkSZIkSapuOXL8haN4jdsTtdVYi1N5gdVYowydSZIklZYvrgfQ2NgY5d4qv2dJXloHGPA5fy5ELvbnPNbkC4n1dlppYghtLC15D8o2P9+0qu44Pf3SerfecOQwL61LkqQ4eU5WVphlFYpxhmqOJUmSJEkrq4YajuIGutE7UfuYD7mT74VvSpIklYzz5DxfXF+mlC+uL168mK5duxZ1zxB7q/yuAn6Qsn4vcPBn/LlQuXiPJ7iJAeRoT9T25zz255cl70HZ5eebVsWL/4Bbv5pe+8ofYMdvh+1HkiSpWDwnKyvMsgrFOEM1x5IkSZKkVfUsf+RffCe19jX+zhf478AdSZKkUnCenOeL6wFceeWVUe6t8puYslYL7P45fy5ULtZnd77IT1JrD9HIBzwTpA9lk59vWlkfz4TbTkmvbXkU7PCtsP1IkiQVk+dkZYVZVqEYZ6jmWJIkSZK0qnbgW2zJUam12ziFj5kZuCNJklQKzpPzvLgewH//d+l++rGUe6v80i6ubwd83u8ECJmL/TmPNdk2sd5OK018l1aWBOtF2eLnm1bWHafDgpT5TbfV4ahhUFMTvidJkqRi8ZysrDDLKhTjDNUcS5IkSZJWVQ01HMUwurF6oraAmdzB6WXoSpIkFZvz5DwvrgfwxBNPRLm3ymsaMDVlfcBy/NmQuehEVwYzihrqErUZPMcEfhusF2WLn29aGS/8DV64Nb12xNXQa52w/UiSJBWb52RlhVlWoRhnqOZYkiRJklQMvViHw7kqtfYCt/ICfw/ckSRJKjbnyXleXA9gnXVKd0uulHurvNJeW4flu7geOhfrsSt789PU2gTO5wOeDtqPssHPN62o+R/C7aem17YaBNt/I2w/kiRJpeA5WVlhllUoxhmqOZYkSZIkFcsOfJOtGJRau51TmM+HgTuSJEnF5Dw5z4vrAdTVJV+ijmFvldeqXFwvRy7241zWYrvEejut/Ivv0sqS4D0pbn6+aUXdcRosmJVc794HjrweamrC9yRJklRsnpOVFWZZhWKcoZpjSZIkSVKx1FDDkVxPd/okaguYxR2cVoauJElSsThPzvPiegBTp06Ncm+VV9rF9b7AFsvxZ8uRi050ZTCjqCH5Afshz/MQvwnek+Lm55tWxJRb4cUOfkPeEddAr35h+5EkSSoVz8nKCrOsQjHOUM2xJEmSJKmYetGPw7k6tfYif2cKtwbuSJIkFYvz5Dwvrgew9957R7m3ymcJMDllfU9geR4MLlcu1qU/+3B2am0CFzAt9d+VlM7PNy2v+TPg9lPTa1t/Bbb737D9SJIklZLnZGWFWVahGGeo5liSJEmSVGzbczRbMzi1dgenMZ8PwzYkSZKKwnlynhfXA7jlllui3Fvl8zSwOGV9wHL++XLmYl/OYS22T6znaKOJIbSm/juTkvx80/LI5T65tL5wdrLWvS8cORRqlucnfiRJkiLhOVlZYZZVKMYZqjmWJEmSJBVbDTUcyfV0p2+itoBZ3M6p5MiVoTNJkrQqnCfn1eRyOU8zQEtLCw0NDTQ3N1NfX1/UvVtbW+nUqVNR9wyxt8rnd8CPUtbvBw5cjj9f7lxM4ymGszs52hK1ffgFB9FYhq4Um3LnWHF4/hb4x9Hptf++Gbb3tXVJkpQxnpOVFWZZhWKcoZpjSZIkSVKpPM8t/IP0vxH639zM9vg3QiVJionz5DxfXA/gwgsvjHJvlc/ElLVaYPfl/PPlzsW67MK+/CK19jAX8j5PBu5IMSp3jlX55k2HO05Lr23zX7Dd18P2I0mSFILnZGWFWVahGGeo5liSJEmSVCrb8XW24b9Sa3dwOvOZEbgjSZK0Kpwn5/ni+jKlfHFdWlEbAu8WrO0IPBO+lZXWyhKGszszeDZRW5NtOYnJdKJrGTqTlAW5HPz1v+DlpmStxxpw6gvQc63gbUmSJEmSJEmSJElSUcxnBteyLQuZnahtzVf4Ov+ghpoydCZJkrTyfHE9gMbGxij3Vnm8T/LSOsCAFdijEnLRiS4MZhS1JH+9xUxeYDy/KkNXikkl5FiV6/mb0y+tAxxxrZfWJUlSdnlOVlaYZRWKcYZqjiVJkiRJpdSTtfky16XWXuZfTOGWwB1JkqSV5Tw5zxfXlynli+vvvfce66+/flH3DLG3yuPvwP+krP8B+PZy7lFJuXiA83gw5ZJ6DbUcz2Osx25l6EoxqKQcq7LMmw7XbQsL5yRrX/gqfO1v4XuSJEkKxXOyssIsq1CMM1RzLEmSJEkK4Vb+hxf5e2K9O304lRfoRb8ydCVJklaE8+Q8X1wP4N57741yb5XHxA7WV+TF9UrKxT78nH7slFjP0U4TQ1jKovBNKQqVlGNVjlwObjs5/dJ6jzU+eW1dkiQpyzwnKyvMsgrFOEM1x5IkSZKkEI7gWnqwRmJ9IXO4jZPJ4ZulkiRVOufJeV5cD2CbbbaJcm+Vx6Mpa2sAm63AHpWUi050YTCjqKVTojaTFxnPeeGbUhQqKceqHM/9GV4ZnV778nXQc62w/UiSJIXmOVlZYZZVKMYZqjmWJEmSJIXQk7X4Mtel1l5hNM/zl8AdSZKkFeU8Oc+L6wHMmzcvyr0V3mLgqZT1AUDNCuxTabnox47syzmptUe5hPd4PHBHikGl5VjlN+8DuPP76bVtvwbb/k/YfiRJksrBc7KywiyrUIwzVHMsSZIkSQplW/6Hbflaau0Ovsc8PgjckSRJWhHOk/O8uB7A3Llzo9xb4T0FLElZH7CC+1RiLvbhbPqxc2I9RztNDGEpi8rQlSpZJeZY5ZPLwdiTYNFHyVqPNeGIa8L3JEmSVA6ek5UVZlmFYpyhmmNJkiRJUkhHcA09WDOxvoiPGMtJ5MiVoStJkrQ8nCfneXE9gO233z7KvRXexA7WV/TieiXmoo7ODGYUtXRO1GbxMuP5ZRm6UiWrxByrfJ77E7w6Nr125FBYLTmfkSRJyiTPycoKs6xCMc5QzbEkSZIkKaTVWJMjGZpae5WxPMefAnckSZKWl/PkPC+uB3DnnXdGubfCS7u4XgfstoL7VGou+rED+3Fuau1RLuVdHgvckSpZpeZY4bVMgzu/n17b7n/hC/8dth9JkqRy8pysrDDLKhTjDNUcS5IkSZJC+wL/zbZ8PbV2J9+nhWmBO5IkScvDeXJeTS6X8/fEAC0tLTQ0NNDc3Ex9fX1R954/fz49e/Ys6p4h9lZ46wPvF6ztDDy1gvtUci7aWMqN7MkHKf+u+rIVJ/M0nelehs5UaSo5xwonl4O/HAWv3Z6srbYWnPoCrLZG+L4kSZLKxXOyssIsq1CMM1RzLEmSJEkqh4+ZxXVsy8d8mKhtyZEczRhqqClDZ5IkqSPOk/N8cT2A3/3ud1HurbDeJXlpHWDASuxVybmoozODGUUtnRO12bzCAx28yK7qU8k5VjjP/iH90jrAkdd7aV2SJFUfz8nKCrOsQjHOUM2xJEmSJKkcVmMNjuT61Nqr3Maz/CFwR5Ik6fM4T87zxfVlSvniurQ8boXUX+b0R+BbgXsJ4SHOZxy/SKnUcCwPsyF7Be9JUmVpeR+u3RYWNydr2x0NX/1L+J4kSZIkSZIkSZIkqRL8nW8whZsT611p4DReoJ71ytCVJEnSZ/PF9QAaGxuj3FthTexgfWVeXI8hF1/kJ6zLrimVHKM5hqUsDN6TKksMOVbp5HIw5oT0S+urrQ1HXB2+J0mSpErgOVlZYZZVKMYZqjmWJEmSJJXTEVzNaqydWF9MM2M5kRy+ZSpJUqVwnpzni+vLlPLF9VmzZrHGGmsUdc8QeyusPYHHC9bWBGYANSu4Vyy5+JAXGMYutLEkURvAGRzGZWXoSpUilhyrNJ4eCaOPTa/9bxNsPShoO5IkSRXDc7KywiyrUIwzVHMsSZIkSSq3l2jir3wltTaIkezMkLANSZKkVM6T83xxPYC///3vUe6tcBYBT6WsD2DFL61DPLlYi23Zn/NSaxO5gnd4JGxDqiix5FjF1/we3PXD9Nr23/TSuiRJqm6ek5UVZlmFYpyhmmNJkiRJUrltw2C255uptbv4Ac28F7gjSZKUxnlynhfXA9hzzz2j3FvhPAUsTVnfayX3iykXe3EW67JbSiVHE8ewhAXBe1JliCnHKp5cDsaeAItbkrWe/eDwq8L3JEmSVEk8JysrzLIKxThDNceSJEmSpEpwOFfRk36J9cW0MJYTyJErQ1eSJOk/OU/O8+J6AO+9V7qfXizl3gpnYgfrA1Zyv5hyUUcnBjOKOrokanN4jXH8ogxdqRLElGMVz9Mj4PW70mtHDoMefcL2I0mSVGk8JysrzLIKxThDNceSJEmSpErQgz4cybDU2uvcxdOMDNyRJEkq5Dw5z4vrAeRypfvJxVLurXAeTVnrBOy6kvvFlou1+AIH8OvU2mNcyVQmBO5IlSC2HGvVNb8Ld5+RXtvh27D1wLD9SJIkVSLPycoKs6xCMc5QzbEkSZIkqVJszUB24Fuptbv5Ec28G7gjSZL0n5wn53lxPYANNtggyr0VRo70F9d3BHqs5J4x5mIAZ7Ieu6dUcozmWJawIHhPKq8Yc6yVl8vBmBNgcUuy1nMdOPzK8D1JkiRVIs/JygqzrEIxzlDNsSRJkiSpknyJK+nJOon1xbQwhhPI4YU5SZLKxXlynhfXA5g4Me1acuXvrTDeAT5IWR+wCnvGmIs6OjGYUdTRNVGbw+vcz8/L0JXKKcYca+U9dRO8cXd67agboPvqYfuRJEmqVJ6TlRVmWYVinKGaY0mSJElSJelBH47ihtTaG9zNU9wUuCNJkvRvzpPzanK+Pw9AS0sLDQ0NNDc3U19fX9S9Z8+eTd++fYu6Z4i9FcYtwNEp638GvrGSe8aci0e4hHv5SWptCA+yMfsG7kjlEnOOtWLmvgPXbQdL5iVrO34XvjIqeEuSJEkVy3OyssIsq1CMM1RzLEmSJEmqRP/iuzzLHxLrXejFqUyhNxuWoStJkqqb8+Q8X1wPYOjQoVHurTA6+jmaVXlxPeZcDOAM1mfP1NpojmEJHwfuSOUSc461/HI5GHN8+qX1XuvCl34XvCVJkqSK5jlZWWGWVSjGGao5liRJkiRVoi/xO3qxbmJ9CfMYw/Hk8I1TSZJCc56c54vry5TyxXXps+wOTCpYWxv4AKgJ305FmMnLXM9OtLE4Udud73EEV5WhK0ml8OQNcNtJ6bVv3A5bHhG2H0mSJEmSJEmSJEmK3avczl84MrV2JMPYlRMDdyRJkvQJX1wPoLGxMcq9VXoLgadT1gewapfWY8/FmmzNgaT/e3iCq3mbBwN3pHKIPcf6fHOnwj1nptd2GuKldUmSpDSek5UVZlmFYpyhmmNJkiRJUqXaki+zE0NSa/dwJnOZGrYhSZKqnPPkPF9cX6aUL67PmzePXr16FXXPEHur9B4G9klZvwj4ySrsm4VctNPGCPbhPSYmar3ZhFN4jq70LENnCiULOVbHcjn4wyHw1v3JWq/14NQp0L138LYkSZIqnudkZYVZVqEYZ6jmWJIkSZJUyRYyl+vYjnm8n6htysF8m3uoWaVnFSVJ0vJynpzni+sB3HTTTVHurdJLXsn+xIBV3DcLuailjsGMohPdErW5vMV9/KwMXSmkLORYHXtyWPqldYCBw720LkmS1BHPycoKs6xCMc5QzbEkSZIkqZJ1pzcDGZ5ae5P7mMwNgTuSJKl6OU/O8+J6AIceemiUe6v00i6udwJ2XcV9s5KLNdiSA/ltam0S1/IWDwTuSCFlJcdK+uhtuPes9NrOx8IWhwdtR5IkKSqek5UVZlmFYpyhmmNJkiRJUqXbgsPZmWNTa/fwYz7i7bANSZJUpZwn53lxPYCXXnopyr1VWjnSL67vDHRfxb2zlIs9+QEb8MXU2miOZTHzA3ekULKUY+W1t8OY42BJyl+69evDYZeH70mSJCkmnpOVFWZZhWKcoZpjSZIkSVIMDuNy6lk/sb6E+YzhONppL0NXkiRVF+fJeV5cD6BXr15R7q3SmgpMT1kfUIS9s5SLWuoYxAg6pVznn8vb3MtPytCVQshSjpU3eRi8NS69NvBG6NYQth9JkqTYeE5WVphlFYpxhmqOJUmSJEkx6EYDA7kxtfYW45jMsMAdSZJUfZwn53lxPYCGhtLdwivl3iqtRztYL8bF9azlYg225CDOT609yVDepINbsIpa1nIs+OgtuOes9Noux8Pmh4XtR5IkKUaek5UVZlmFYpyhmmNJkiRJUiw25zB25rjU2j2cxUe8FbgjSZKqi/PkPC+uB/DCCy9EubdKa2IH68W4uJ7FXOzB99mQvVNrozmWxcwL3JFKLYs5rmbt7TD6WFj6cbJWvwEceln4niRJkmLkOVlZYZZVKMYZqjmWJEmSJMXkMC6jng0S60v5mNEcRzvtZehKkqTq4Dw5z4vrAXzpS1+Kcm+VVtrF9XWADYuwdxZzUUstgxhJJ7onas1M5V5+UoauVEpZzHE1e3IovD0+vTbwRuhWH7QdSZKkaHlOVlaYZRWKcYZqjiVJkiRJMelGAwO5MbX2Ng/wJEMDdyRJUvVwnpznxfUARowYEeXeKp0FwLMp6wOAmiLsn9Vc9GVzDubC1NqTXM8b3Be4I5VSVnNcjea8Cfd28LMl/U+EzQ8N248kSVLMPCcrK8yyCsU4QzXHkiRJkqTYbM6h7MIJqbV7+QlzeDNwR5IkVQfnyXk1uVwuV+4mKkFLSwsNDQ00NzdTX++zryqth4D9UtYvAX4cuJfYtNPO7zmAqTyUqDWwIafwPN3wr2GpUrS3w+8PgKnJv2Rp2BBOed7X1iVJkiRJkiRJkiQplEW0MJTtaeadRG0j9uO7jKPWt1AlSVKJeMoIoLGxMcq9VToTO1gfUKT9s5yLWmoZxAg60yNRa+Yd7uWsMnSlUshyjqvJpGvTL60DDLzJS+uSJEkrynOyssIsq1CMM1RzLEmSJEmKUTfqGchNqbWpPMgkrgvckSRJ2ec8Oc8X15cp5YvrS5cupXPnzkXdM8TeKp3BwOiCtc5AC9CtCPtXQy4e52ru5PuptW9zD5txSOCOVGzVkOOsm/MGDN0Bli5I1vqfBEddH74nSZKk2HlOVlaYZRWKcYZqjiVJkiRJMRvLyUxmWGK9Mz04hefow2Zl6EqSpGxynpzni+sBXH755VHurdLIkf7i+s4U59I6VEcuduM0NmK/1NpojmMRLYE7UrFVQ46zrL0dmo5Jv7TesBEcekn4niRJkrLAc7KywiyrUIwzVHMsSZIkSYrZoVxCAxsl1peygNEcSzvtZehKkqRscp6c58X1AP7nf/4nyr1VGm8BH6asDyji96iGXNRSyyBG0JnVErUW3uUezixDVyqmashxlj1xNbwzIb026Cbo2itsP5IkSVnhOVlZYZZVKMYZqjmWJEmSJMWsK70YxE2ptak8xBNcE7gjSZKyy3lynhfXA5g4Me197crfW6XR0X9jxby4Xi256MOmHMJFqbWnuJHXuTtwRyqmaslxFs1+De47O7226ymw6UFh+5EkScoSz8nKCrOsQjHOUM2xJEmSJCl2m3IQu3JKau0+fsZsXg/ckSRJ2eQ8Oc+L6wFssMEGUe6t0ujo42evIn6PasrFrpzCxuyfWhvD8SyiOWxDKppqynGWtLfD6GOhdWGy1ntjOOTi4C1JkiRliudkZYVZVqEYZ6jmWJIkSZKUBYdwMb3ZOLHeykJGcwzttIdvSpKkjHGenOfFdSmwtIvr6wF+LK2cWmoZxAg6s1qi1sJ73M2ZZehKql6PXwXvPJxeGzQCuvYM248kSZIkSZIkSZIkqWNd6ckgRqTW3uFhHueqwB1JkqQs8+J6AO+++26Ue6v4PgaeTVkfUOTvU225WJ1NOJRLUmtPcxOvcWfgjlQM1ZbjLJj1Ktx/dnptt9NgkwPC9iNJkpRFnpOVFWZZhWKcoZpjSZIkSVJWbMIB7MapqbX7+TmzeS1wR5IkZYvz5DwvrgcwYECxryWH2VvFNwloS1kv9n+L1ZiL/pzEJhyYWhvDCSxkbtiGtMqqMccxa2+D0cdA66JkrfcmcPCF4XuSJEnKIs/JygqzrEIxzlDNsSRJkiQpSw7mInqzSWK9lYU0cQztqTdeJEnS8nCenOfF9QD+9re/Rbm3im9iB+vF/kiqxlzUUstAbqILPRO1ebzP3ZxRhq60KqoxxzF77Ep499H02qAR0DX5l6YkSZJWgudkZYVZVqEYZ6jmWJIkSZKUJV3pySBGpNbe5REe48rAHUmSlB3Ok/NqcrlcrtxNVIKWlhYaGhpobm6mvr6+qHsvXbqUzp07F3XPEHur+AYCYwvWugAtQNcifp9qzsWTDOM2Tk6tfYPb2ZIjAneklVXNOY7NrFfg+p3SX1vf/XQ44urgLUmSJGWW52RlhVlWoRhnqOZYkiRJkpRFd/A9nuCaxHonunEyz7AGW5WhK0mS4uY8Oc8X1wO46KKLotxbxZUj/cX1XSjupXWo7lz050Q25eDU2lhOYCEfBe5IK6uacxyT9jZoOib90vrqm8LBF4bvSZIkKcs8JysrzLIKxThDNceSJEmSpCw6mAtZnU0T660sooljaKetDF1JkhQ358l5vri+TClfXJcAXge2SFn/EXB54F6ybi5TuY7tWcK8RG1HvstXGBW+KSmjHrkU7j0rvTbkQdh437D9SJIkSZIkSZIkSZJWzds8yCj2T60dyqXsxZlhG5IkSZnhi+sBNDY2Rrm3iivttXWAASX4XtWei95sxKFcmlp7lt/zKrcH7kgro9pzHIOZL8O4/0uv7fF9L61LkiSVgudkZYVZVqEYZ6jmWJIkSZKUVRuzH3vw/dTa/fyCmbwcuCNJkuLmPDnPF9eXKeWL69OmTWPdddct6p4h9lZxnQoMTVl/F1i/yN/LXECOHH/kMN7k3kStJ+twGi/QndXL0JmWlzmubO1tcNMX4f3Hk7XVN4NTnoUuq4XvS5IkKes8JysrzLIKxThDNceSJEmSpCxbwscMZUc+4o1EbX325Fgeppa6MnQmSVJ8nCfn+eJ6AHfddVeUe6u40l5cX5/iX1oHcwFQQw0DuZEu9ErU5vMBd/KDMnSlFWGOK9ujl6VfWqcGBo/00rokSVKpeE5WVphlFYpxhmqOJUmSJElZ1oXVGMxIoCZRe4/HmMjl4ZuSJClSzpPzvLgewLbbbhvl3iqe+cBzKesDSvT9zMUnerMhh3Xw/yg9xx95hbGBO9KKMMeVa+ZL8MC56bU9fwAb7RO2H0mSpGriOVlZYZZVKMYZqjmWJEmSJGXdRuzDHnw/tTaOc5jJS4E7kiQpTs6T87y4HkBzc3OUe6t4JgHtKeulurhuLvJ24Tg247DU2lhOZAFzAnek5WWOK1NbKzQNgbbFyVqfLeDA3wZvSZIkqap4TlZWmGUVinGGao4lSZIkSdXgIM6nD5sn1ttYTBNDaKO1DF1JkhQX58l5XlwPYN68eVHureKZ2MH6XiX6fuYir4YaBjKcrtQnavOZzl38oAxdaXmY48o08TJ4/4mUQg0MHgldegRvSZIkqap4TlZWmGUVinGGao4lSZIkSdWgCz0YzCigJlF7nyeYyGXBe5IkKTbOk/O8uB7ANttsE+XeKp5HU9a6AjuX6PuZi09rYAMO44rU2nP8iZcZHbgjLQ9zXHk+fAEeODe9NuBHsOEXw/YjSZJUjTwnKyvMsgrFOEM1x5IkSZKkarEhX2RPfphae4Bz+ZAXwzYkSVJknCfneXE9gHvuuSfKvVUcOeCxlPX+QJcSfU9zkbQzx7A5h6fWxnISC5gduCN9HnNcWdpaoWkItC1J1vpuCQc2Bm9JkiSpKnlOVlaYZRWKcYZqjiVJkiRJ1eRAGunDFon1NpbQxBDaaC1DV5IkxcF5cl5NLpfLlbuJStDS0kJDQwPNzc3U19cXde958+bRq1evou4ZYm8Vx6vAVinrZwKXluh7mot0zbzHdWzHYpoTte35Bv/Nn8vQlTpijivLhAvg/p+nFGrg2Idhw72CtyRJklSVPCcrK8yyCsU4QzXHkiRJkqRq8w6PMoK9+eQZx087iPPZh7PDNyVJUgScJ+f54noAV155ZZR7qzgmdrA+oITf01yka2B9vsQVqbXn+Qsv8a/AHemzmOPKMWMKjD8vvTbgDC+tS5IkheQ5WVlhllUoxhmqOZYkSZIkVZsN2YsBnJFaG895zGBK4I4kSYqD8+Q8X1xfppQvrqu6nQwMS1l/H1g3cC+CHDn+wpG8xh2J2mqsxam8wGqsUYbOpMrUthRuHAAfTE7W+m4FJz8NnbuH70uSJEmSJEmSJEmSFN5SFnI9OzObVxK1ddmV45hIHZ3K0JkkSYqBL64H0NjYGOXeKo60F9c3pLSX1s1Fx2qo4ShuoCsNidrHfMidfK8MXSmNOa4Mj1ycfmm9phYGj/LSuiRJUmiek5UVZlmFYpyhmmNJkiRJUjXqTHcGM5KalGtn03iSR7i4DF1JklTZnCfn+eL6MqV8cX327Nn07du3qHuG2Furbh7QG2gvWP86cEsJv6+5+HzP8HuaGJJa+xr/4Av8V9iGlGCOy2/G8zCsP7QvTdb2OgsOdd4gSZIUnOdkZYVZVqEYZ6jmWJIkSZJUze7hJzzKJYn1WjpzEpNZm+3L0JUkSZXJeXKeL64HcOutt0a5t1bdEyQvrQMMKPH3NRefb0e+wxZ8ObV2GyfzMTMDd6RC5ri82pZC05D0S+trbA0H/Dp4S5IkScJzsrLDLKtQjDNUcyxJkiRJqmYH8GvWYOvEejtLaWIIbaT8zWZJkqqU8+Q8L64HMGBA6a4pl3JvrbqJHayX+r81c/H5aqjhKG6gG70TtQXM5A5OD9+UPsUcl9fDF8EHTyXXa2ph8Cjo3C14S5IkScJzsrLDLKtQjDNUcyxJkiRJqmad6cZgRlGTcv3sA57iYS4qQ1eSJFUm58l5XlwP4N13341yb626tIvr3YCdSvx9zcXyqWddDueq1NoL3MoL/D1wR/pP5rh8pj8HD3bwovpeZ8H6e4TtR5IkSXmek5UVZlmFYpyhmmNJkiRJUrVbnz3Yix+n1h7k10znucAdSZJUmZwn53lxPYCampoo99aqyQGPpaz3B7qU+Hubi+W3A99iS45Krd3OqXzMzMAd6d/McXm0LYWmIdCe8lvb1vwC7H9e6I4kSZL0nzwnKyvMsgrFOEM1x5IkSZIkwf78ijXYJrHezlKaGEIbKX/zWZKkKuM8Oc+L6wGsv/76Ue6tVfMqMCdlfa8A39tcLL8aajiKYXRj9URtATO5ndPK0JXAHJfLhAtg+tPJ9ZpaGDQSOncL35MkSZLyPCcrK8yyCsU4QzXHkiRJkiRBZ7oxmFHUpFxDm87TTOCCMnQlSVJlcZ6c58X1AB57LO3d7crfW6tmYgfrAwJ8b3OxYnqxDkdwdWrtRf7GFG4N3JHAHJfDB8/AQ79Jr33xp7D+7kHbkSRJUgrPycoKs6xCMc5QzbEkSZIkSZ9Yn935Ij9JrT3Eb5jOs4E7kiSpsjhPzqvJ5XK5cjdRCVpaWmhoaKC5uZn6+vqi7j1r1izWWGONou4ZYm+tmhOB4SnrHwD9Svy9zcWKy5HjFr7CK4xO1HqwBqfyAj1ZqwydVS9zHFbrEhi+O8xImResuS2cNBk6dQ3flyRJkj7Nc7KywiyrUIwzVHMsSZIkSVJeK4sZxi7M5MVErR87cQJPUEfnMnQmSVL5OU/O88X1AK6//voo99aqSXtxfWNKf2kdzMXKqKGGI7me7vRJ1BYwi9s5lRz+nE9I5jisCeenX1qvqYPBo7y0LkmSVCk8JysrzLIKxThDNceSJEmSJOV1oiuDGUUNdYnadJ5hAueXoStJkiqD8+Q8X1xfppQvrqv6NAOrQ+Ka89HAX8K3oxXwHH/hn3wztfZVbmE7vh64I6n0PngGhu8G7a3J2j4/h4N+G7wlSZIkSZIkSZIkSVKE7ucXqZfUa+nECUxiHXYK35QkSaoYvrgeQGNjY5R7a+U9QfLSOsCAQN/fXKy87TmarflKau12TmM+MwJ3VL3McRitS6Dpu+mX1tfaDvY7N3xPkiRJ6pjnZGWFWVahGGeo5liSJEmSpKT9OJe12C6x3k4rTXyXVpaUoStJksrLeXKeL64vU8oX1+fPn0/Pnj2LumeIvbXyfg38MmV9ErBrgO9vLlbNfGZwLduykNmJ2tZ8ha/zD2qoKUNn1cUchzHuXHjoN8n1mjo44XFYt3/4niRJktQxz8nKCrOsQjHOUM2xJEmSJEnppjGZ4exBjrZEbT/O5QB+VYauJEkqH+fJeb64HsDw4cOj3Fsrb2LKWndgx0Df31ysmp6szRFck1p7mX8xhVsCd1SdzHHpTXsKJiR/QxsA+5ztpXVJkqRK5DlZWWGWVSjGGao5liRJkiQp3br0Zx/OTq1N4Hym8VTgjiRJKi/nyXleXA/g8MMPj3JvrZx24LGU9V2BzoF6MBerbju+zjb8V2rtDk5nHtMDd1R9zHFptS6BpiGQS/6AO2ttD/ueE7wlSZIkLQfPycoKs6xCMc5QzbEkSZIkSR3bl3NYi+0T6+200sQQWllShq4kSSoP58l5XlwP4Pnnn49yb62cV4C5KesDAvZgLlZdDTV8maH0YI1EbSFzuI2TyZErQ2fVwxyX1kO/gQ9T/iOuqYPBo6BTl+AtSZIkaTl4TlZWmGUVinGGao4lSZIkSepYJ7owmFHUUJeofcjzPMRvytCVJEnl4Tw5z4vrAfTu3TvKvbVyJnawHvLiurkojp6sxRFcm1p7hdE8z18Cd1RdzHHpvP8kTLggvbbvL2DdXcL2I0mSpOXnOVlZYZZVKMYZqjmWJEmSJOmzrcsu7MPPU2sTuIBpTA7ckSRJ5eE8Oc+L6wH06tUryr21cirh4rq5KJ7t+Bpf4KuptTv4HvP4IHBH1cMcl0brYmgaArm2ZG3tHWGfXwRvSZIkSSvAc7KywiyrUIwzVHMsSZIkSdLn25f/Y212SKznaKOJIbSyuAxdSZIUlvPkPC+uB/DSSy9FubdWTtrF9U2BtQP2YC6K6wiupQdrJNYX8RG3cTI5cmXoKvvMcWk8+GuY+UJyvbYTDB4FnboEb0mSJEkrwHOyssIsq1CMM1RzLEmSJEnS5+tEFwbze2rplKh9yBQe5Ndl6EqSpLCcJ+d5cT2AQw45JMq9teLmAi+mrId8bR3MRbH1ZC2+zHWptVcYw3P8OXBH1cEcF9/7k+Dhi9Jr+/wC1tkpaDuSJElaCZ6TlRVmWYVinKGaY0mSJEmSls867MQ+pP/674e5iPd5MnBHkiSF5Tw5z4vrAYwaNSrKvbXiHofUt7dDX1w3F8W3Lf/DtnwttXYn36OFaYE7yj5zXFxLF0HTEMi1JWv9doJ9fh66I0mSJK0Mz8nKCrOsQjHOUM2xJEmSJEnLbx9+ztrsmFjP0UYTQ2hlcRm6kiQpDOfJeTW5XC7tnm3VaWlpoaGhgebmZurr68vdjiJ1HvCrlPXJwC5hW1EJfMxMrmVbFjAzUduSIzmaMdRQU4bOpM9339nw8IXJ9dpOcOKT0C85H5AkSZIkSZIkSZIkqWim8yw3sCvttCZqe3M2B3N+GbqSJEkh+eJ6AI2NjVHurRU3MWWtB7BD4D7MRWmsxpocydDU2qvcxrP8MXBH2WaOi+e9J+CRi9Nr+57jpXVJkqSYeE5WVphlFYpxhmqOJUmSJElaMf3YkX05J7X2CBfxHk8E7kiSpDCcJ+f54voypXxxvbW1lU6dOhV1zxB7a8W0A32A5oL1/YDxgXsxF6X1d45mCrck1rvRm1OZQj3rlaGr7DHHxbF0EQzbBWa9lKz12xlOeBzqOofvS5IkSSvHc7KywiyrUIwzVHMsSZIkSdKKa2Mpw9mD6TydqK3BNpzEU3SmWxk6kySpdJwn5/niegCXXnpplHtrxbxE8tI6wIDQjWAuSu1wrmY11kqsL2IuYzmRHP48UDGY4+IY/8v0S+u1nWHwKC+tS5IkxcZzsrLCLKtQjDNUcyxJkiRJ0oqrozODGUUtyb9ZPYuXGM954ZuSJKnEnCfneXE9gP/93/+Ncm+tmIkdrJfj4rq5KK3VWIMjuT619hp38Ay/D9xRNpnjVffuY/BoB2ee/c6FfjuE7UeSJEmrznOyssIsq1CMM1RzLEmSJEnSyunHDuzHOam1R7mE93g8cEeSJJWW8+Q8L64H8PDDD0e5t1ZMRxfX9wzaxSfMReltw1fYjqNTa3fxQ1p4P3BH2WOOV83SRTD6GMi1J2vr7AJ7/zR8T5IkSVp1npOVFWZZhWKcoZpjSZIkSZJW3t78jHXYJbGeo50mhrCURWXoSpKk0nCenOfF9QA22mijKPfWikm7uL4ZsFboRjAXoRzB1azG2on1xTQzhhPIkStDV9lhjlfNA+fCrJeT67WdYfAoqEv+1jVJkiRFwHOyssIsq1CMM1RzLEmSJEnSyqujM4MZRS3Jv3k9i5d5gHPL0JUkSaXhPDnPi+sBtLW1Rbm3lt9HwEsp6wNCN7KMuQijB305imGptde5k6cZGbijbDHHK+/difDopem1/c+DtbcP2o4kSZKKyHOyssIsq1CMM1RzLEmSJEnSqlmb7dmfX6bWJnIZ7/JY4I4kSSoN58l5XlwP4IMPPohyby2/xztYL9fFdXMRztYMYnu+mVq7mx/RzLuBO8oOc7xyli6EpiGQ9uD/urvCF38SuiNJkiQVk+dkZYVZVqEYZ6jmWJIkSZKkVfdFfso69E+s52iniSEsZWEZupIkqbicJ+d5cT2A3XffPcq9tfwmdrC+V9Au8sxFWIdzFT3pl1hfTAtjOIFc2g1ifS5zvHLGnQOzX02u13WBwaOgrlPwliRJklREnpOVFWZZhWKcoZpjSZIkSZJWXR2dGMwo6uiSqM3mFcZxThm6kiSpuJwn53lxPYB//OMfUe6t5Zd2cX01YLvQjSxjLsLqQR+OZFhq7Q3u5mlGBO4oG8zxinvnUZh4eXpt//NgrW2DtiNJkqQS8JysrDDLKhTjDNUcS5IkSZJUHGuzHftzXmptIpfzDo+GbUiSpCJznpxXk8vlfAoYaGlpoaGhgebmZurr64u69+LFi+natWtR9wyxt5ZPG7A6MK9g/QBgXPh2AHNRLv/kOzzHHxPrXejFqUyhNxuWoat4meMVs2QBXL8TzHktWVt3NzjuUV9blyRJygLPycoKs6xCMc5QzbEkSZIkScXTRis3sRfTmJSo9WVLTuYZOtO9DJ1JkrTqnCfn+eJ6AJdcckmUe2v5vEjy0jrAgNCN/AdzUR6HcyU9WSexvoR5jOF4cvhzQivCHK+Ycf+Xfmm9rgsMHuWldUmSpKzwnKysMMsqFOMM1RxLkiRJklQ8dXRiMKOoo0uiNptXGcf/laErSZKKw3lyni+uL1PKF9eVbTcAJ6WsjwWODNyLyu8VbuNmjkqtHcUN9OeEwB2pGkx9GEbuC2k/G3HwhbD3T4O3JEmSJEmSJEmSJEnSCnuYi7iPn6VUajiGh9iIvYP3JEmSiscX1wNobGyMcm8tn4kdrO8ZtItPMxflsxVHsiPfSa3dzZnMZWrgjuJljpfPkgUw+hhSL62vtzsMODN4S5IkSSohz8nKCrOsQjHOUM2xJEmSJEnFN4AzWY/dUyo5RnMMS1gQvCdJklaV8+Q8X1xfppQvrk+bNo111123qHuG2FvLZ2vglYK1LYBXy9DLv5mL8lrIR1zHdsxjWqK2KQfzbe6hhpoydBYXc7x87voRPPa75HpdVzj5aVhzm+AtSZIkqYQ8JysrzLIKxThDNceSJEmSJJXGTF7ienamjcWJ2p78kC9xRRm6kiRp5TlPzvPF9QDuvPPOKPfW55tD8tI6wIDQjRQwF+XVndU5iuGptTe5j8ncELijOJnjzzd1Ajx2ZXrtwN94aV2SJCmLPCcrK8yyCsU4QzXHkiRJkiSVxppswwH8OrX2GFcylQmBO5IkadU4T87z4noAO+ywQ5R76/M91sF6uS+um4vy25Ij2IkhqbV7+DEf8XbQfmJkjj/bko+h6Rgg5femrL8nDDgjeEuSJEkKwHOyssIsq1CMM1RzLEmSJElS6ezFmazPnimVHE0cwxI+Dt6TJEkry3lynhfXA5gzZ06Ue+vzTexgvdwX181FZTiMK+jFeon1JcxnDMfRTnsZuoqHOf5s9/8cPnojuV7XFQaNhNq68D1JkiSp9DwnKyvMsgrFOEM1x5IkSZIklU4tdQxiJHV0TdQ+4g3u5+dl6EqSpJXjPDnPi+sBfPxx6X7Cr5R76/OlXVzvCWwXupEC5qIydKc3AxmeWnuLcUxmWOCO4mKOO/b2g/D4Vem1g34La24dth9JkiSF4zlZWWGWVSjGGao5liRJkiSptNZkaw6kMbX2OFfxNg8F7kiSpJXjPDnPi+sBbL116W4QlnJvfbY24PGU9d2Bcj90bC4qxxYczs4cm1q7h7P4iLcCdxQPc5xuyccwOj1SbLAX7PnDoO1IkiQpMM/JygqzrEIxzlDNsSRJkiRJpTeAH7E+A1JrozmGJXgRUJJU+Zwn53lxPYD77rsvyr312V4A5qespx+VwzIXleUwLqee9RPrS/mY0RxHO+1l6KrymeN09/0MPnozud6pGwwaCbXl/skZSZIklZTnZGWFWVahGGeo5liSJEmSpNKrpY7BjKQT3RK1j3iT+zi7DF1JkrRinCfn1eRyuVy5m6gELS0tNDQ00NzcTH19fdH3LvaeIfbWZxsGnJyyfjtwROBeCpmLyvM6d/MnvpRaO4Jr2Z1TA3dU+cxx0lvj4fcHpNcOvQz2OiNoO5IkSSoDz8nKCrOsQjHOUM2xJEmSJEnhPMrl3MOZqbXv8gCbsH/YhiRJWgHOk/N8cT2Aq666Ksq99dke7WB9z6BdpDMXlWdzDmMXjk+t3ctPmEPKE9pVzhx/2uL5MPrY9NoGX4Q9fxC2H0mSJJWH52RlhVlWoRhnqOZYkiRJkqRw9uQHbMAXU2ujOZbFzA/ckSRJy895cp4vri9TyhfXlU1bAq8VrG0FvFyGXhSHRbRwHdvRwruJ2kbsx3cZR60/T6QO3H4aTLouud6pO5zyLPTdInxPkiRJkiRJkiRJkiSFMotXuZ4daWVRorYbp/FlrilDV5IkaUV4QzKAxsbGKPdWx2aRvLQOMCB0Ix0wF5WpG/UM5MbU2lQeZBIpt5KrmDnOe3Nc+qV1gIPO99K6JElSNfGcrKwwyyoU4wzVHEuSJEmSFNYabMlBXJBam8S1vMUDgTuSJGn5OE/O88X1ZUr54vqcOXPo06dPUfcMsbc6dhtwVMr6MODEwL2kMReVbQwn8hTDE+ud6cEpPEcfNitDV5XHHH9i8XwYuj3MfTtZ23BvGPIg1PpjaJIkSVXDc7KywiyrUIwzVHMsSZIkSVJ47bQziv14h4cTtd5szCk8T1d6lqEzSZI65jw5z6tuAdx8881R7q2OTexgvVJeXDcXle1QLqWBDRPrS1nAaI6lnfYydFV5zPEn7v1J+qX1Tt1h0EgvrUuSJFUbz8nKCrOsQjHOUM2xJEmSJEnh1VLLIEbSie6J2lze5l5+UoauJEn6bM6T87zuFsA+++wT5d7qWNrF9V7AF0I30gFzUdm6Uc9AbkqtTeUhnuCawB1VJnMMb94PTw5Nrx18IfTdPGw/kiRJKj/PycoKs6xCMc5QzbEkSZIkSeXRl805mAtSa08ylDcZF7gjSZI+m/PkPC+uB/D2229HubfStQJPpKzvAdQF7qUj5qLybcbB9Oek1Np9/IzZvB64o8pT7TlePA9GH5de22hf2P30sP1IkiSpMlT7OVnZYZZVKMYZqjmWJEmSJKl8dud7bEj6JcDRHMti5gXuSJKkjjlPzvPiegB1daW7zlzKvZVuCvBxyvqA0I18BnMRh0O5hAY2Sqy3spDRHEs77WXoqnJUe47vOQuapybXO/eAQSOg1v8FlyRJqkrVfk5WdphlFYpxhmqOJUmSJEkqn1pqGcxIOtMjUWtmKvdwVhm6kiQpnfPkPK+9BbDOOutEubfSTexgvZIurpuLOHSlF4O4KbX2DhN4gqsDd1RZqjnHb9wLk4el1w6+EPpsFrYfSZIkVY5qPicrW8yyCsU4QzXHkiRJkiSVVx8242AuTK1NZhhvcF/gjiRJSuc8Oc+L6wFMmjQpyr2VrqOL63sG7eKzmYt4bMpB7MopqbX7OJvZvBa4o8pRrTle1AKjj0uvbbQf7HZa2H4kSZJUWar1nKzsMcsqFOMM1RxLkiRJklR+u3EaG7Ffam0Mx7GIlsAdSZKU5Dw5ryaXy+XK3UQlaGlpoaGhgebmZurr64u698yZM1lzzTWLumeIvZVuC+D1grWtgZfK0EtHzEVcFjOfoWzPXN5O1DbgixzDg9RSfb8qpFpzPOZEeGp4cr3zanDKc9Bn0/A9SZIkqXJU6zlZ2WOWVSjGGao5liRJkiSpMszhTYayA0v5OFHrz4kcRQe/8lySpECcJ+f54noAw4aV7vBTyr2VNJPkpXWAvUI38jnMRVy60pNBjEitvcsjPM5VgTuqDNWY49fvSb+0DnDIRV5alyRJUnWek5VNZlmFYpyhmmNJkiRJkipDHzblEC5KrU3mBl7nnsAdSZL0ac6T83xxfZlSvriu7BgLDExZHw4cH7gXZc/tnM4krk2sd6IbJ/Msa7BlGbpSKIua4brtoeXdZG3j/eE790OtP24mSZIkSZIkSZIkSVJCO+38gYN4m/GJWj0bcCrP042G8I1JkqRP8QpcAI2NjVHuraRHO1gfELSLz2cu4nQwF9KbTRLrrSyiiSG001aGrsqn2nJ895npl9Y7rwaDRnhpXZIkSZ+otnOyssssq1CMM1RzLEmSJElS5aillkGMoDOrJWotvMs9/LgMXUmS9AnnyXm+uL5MKV9cX7BgAT169CjqniH2VtL+wIMFaw3AHCrrp0DMRbzeYjy/54DU2qFcyl6cGbij8qmmHL92F/z58PTal6+D3U4J248kSZIqVzWdk5VtZlmFYpyhmmNJkiRJkirPJIZyO6em1r7FXWzOYYE7kiTJefJ/qqS7tpk1dOjQKPfWp7UCk1LW96Dy/kIyF/HahP3ZndNTa+P4P2bxSuCOyqdacryoGcaekF7b5EDof1LYfiRJklTZquWcrOwzyyoU4wzVHEuSJEmSVHn6cxKbcGBqbQzHs4jmwB1JkuQ8+T9V2n3bTDryyCOj3Fuf9hywIGV9QOhGloO5iNvBXMjqbJpYb2URTQyhnbYydBVeteT47jOg5b3kepeeMPAmqPV/qSVJkvQfquWcrOwzyyoU4wzVHEuSJEmSVHlqqWUgN9GFnolaC+9xN2eUoStJUrVznpzndbgAnn322Sj31qdN7GC9Ei+um4u4dWE1BjEytfYejzGRywN3VB7VkONX74CnR6TXDr0UVt84aDuSJEmKQDWck1UdzLIKxThDNceSJEmSJFWm1dmYQ7gktfY0I3iNOwN3JEmqds6T87y4HkDfvn2j3Fuf1tHF9T2CdrF8zEX8NmZf9uD7qbVxnMNMXgrcUXhZz/HCuTD2hPTapgdD/xODtiNJkqRIZP2crOphllUoxhmqOZYkSZIkqXLtyklswkGptTGcwELmhm1IklTVnCfneXE9gO7du0e5tz4t7eL6F4DegftYHuYiGw7ifFZns8R6G4tp4hjaaStDV+FkPcd3/wjmTUuud+kFA2+EmprwPUmSJKnyZf2crOphllUoxhmqOZYkSZIkqXLVUMMgbqILPRO1ebzP3fyoDF1JkqqV8+Q8L64H8Oqrr0a5t/I+BN5MWR8QupHlZC6yoQurMZiRQPIG8/s8zqNcFr6pgLKc41dvh2dGpdcOvRR6bxS0HUmSJEUky+dkVRezrEIxzlDNsSRJkiRJla03G3FoB3crnmEUr3J74I4kSdXKeXKeF9cDOOig9F87U+l7Ky/ttXWo3Ivr5iI7NmIf9uQHqbUHOIcPeTFwR+FkNccLP4IxJ6TXNj0E+ndQkyRJkiC752RVH7OsQjHOUM2xJEmSJEmVrz8nsCmHpNbGciIL+ShwR5KkauQ8Oc+L6wH8/ve/j3Jv5cV2cd1cZMuB/JY+bJFYb2MJTQyhjdYydFV6Wc3xXT+E+R8k17v0goE3Qk3ygX1JkiTp/8vqOVnVxyyrUIwzVHMsSZIkSVLlq6GGgdxIF3olavOYxl38qAxdSZKqjfPkvJpcLpcrdxOVoKWlhYaGBpqbm6mvry93O6ow+wEPFaz1BmbjT38ojHd4hBHsAyQ/sg/iAvbhZ+Gb0gp7ZSzcPDC9dtRw6H982H4kSZIkSZIkSZIkSaoGk7mRsaT/CvSjGcNWHBW4I0mSqpN3bgNobGyMcm99YikwKWV9Tyr3LyBzkT0b8kX25IeptfH8kg95IWxDAWQtxws/grEnpdc2Owx2OS5sP5IkSYpT1s7Jql5mWYVinKGaY0mSJEmS4rELx7EZh6XWxnISC/kocEeSpGriPDnPF9eXKeWL621tbdTV1RV1zxB76xNPArulrP8KODdwL8vLXGTTEhYwjJ2ZzauJ2rrsynFMpI5OZeisNLKW439+B577Y3K9az2cOgUaNgjfkyRJkuKTtXOyqpdZVqEYZ6jmWJIkSZKkuDTzLtexHYtpSdR24Nv8F38oQ1eSpGrgPDmvUh+MzpSLL744yr31iYkdrA8I2sWKMRfZ1IUeDGIkUJOoTeNJHiFb/71nKccvj0m/tA5w2BVeWpckSdLyy9I5WdXNLKtQjDNUcyxJkiRJUlwa2IDDuDy19hx/5GXGBO5IklQtnCfn+eL6MqV8cX3q1KlstNFGRd0zxN76xDeAmwvWaoC5QHGTUjzmItvu5sdM5LLEei2dOYmnWJvtytBV8WUlxwvmwHXbwvzpydrmh8M3b4ea5M8iSJIkSamyck6WzLIKxThDNceSJEmSJMUnR44/cwSvc1ei1pN+nMoL9KBPGTqTJGWZ8+Q8X1wP4KGHHopyb30i7cX1bancS+tgLrLuQH5DX7ZKrLezlCaG0MbSMnRVfFnJ8Z3fT7+03rUBjrrBS+uSJElaMVk5J0tmWYVinKGaY0mSJEmS4lNDDUcxnK40JGrzmc6dfL8MXUmSss55cp4X1wPYZJNNotxbMB14O2V9QOA+VpS5yLbOdGcwo6hJ+Qj/gMk8zEVl6Kr4spDjl5rg+T+n1770O2hYP2Q3kiRJyoIsnJMlMMtKinGGao4lSZIkSYpTA+vzJa5IrT3Pn3mZ0YE7kiRlnfPkPC+uB9Da2hrl3kp/bR0q/+K6uci+DdiTAZyZWnuQXzOd5wJ3VHyx53jBbLjt5PTaFl+Gnb4bth9JkiRlQ+znZOnfzLIKxThDNceSJEmSJMVrJ4awBUek1sZyEguYHbgjSVKWOU/O8+J6ANOnT49yb8V7cd1cVIcD+DVrsHVivZ2lNDGENpaWoaviiT3Hd3wPPp6RXO/aAEcNg5qa8D1JkiQpfrGfk6V/M8sqFOMM1RxLkiRJkhSvGmo4ihvoSkOi9jEzuIPvlaErSVJWOU/O8+J6AP37949yb6VfXF8d2DJ0IyvIXFSHznRjMKOoSfkon87TPMyFZeiqeGLO8Uv/gik3p9cOvxLq1wvbjyRJkrIj5nOy9J/MsgrFOEM1x5IkSZIkxa2e9TicK1NrU7iZl/hX4I4kSVnlPDnPi+sBNDU1Rbl3tVsCPJmyvieV/xeOuage67MHe3FWau1BfsN0ng3cUfHEmuOPZ8FtJ6fXtjwSdvxO2H4kSZKULbGek6VCZlmFYpyhmmNJkiRJkuK3I99hC76cWruNk/mYWYE7kiRlkfPkvJpcLpcrdxOVoKWlhYaGBpqbm6mvry/q3osWLaJbt25F3TPE3tVuErB7yvqvgXMC97KizEV1WcoibqA/M3kxUevHTpzAE9TRuQydrZpYc/y3/4UX/ppc79YbTn0B6tcN3pIkSZIyJNZzslTILKtQjDNUcyxJkiRJUja0MI3r2JZFzE3UtuN/+Sod/Mp1SZKWk/PkvEp/ODoTLr300ij3rnYTO1gfELSLlWMuqktnujGIkdSkfKRP5xkmcH4Zulp1Meb4xX+kX1oHOPwqL61LkiRp1cV4TpbSmGUVinGGao4lSZIkScqGetblcK5KrU3hFl7kH4E7kiRljfPkPF9cX6aUL64rTkcDtxSs1QIfASZEleg+zuZhLkys19KJE5jEOuwUvqkq8vFMuHZbWDAzWdvyKDh6NNTUhO9LkiRJkiRJkiRJkiR9thw5bmYQrzI2UevBmpzGC6zGmmXoTJKkbPHF9QAaGxuj3LvaPZqyth1xXFo3F9Vpf85jTbZNrLfTShNDaGVJGbpaebHl+I7T0y+td1sdjhrmpXVJkiQVR2znZKkjZlmFYpyhmmNJkiRJkrKjhhqOYhjdWD1RW8BM7uD0MnQlScoK58l5vri+TClfXJ8+fTr9+vUr6p4h9q5m04D1UtZPAq4P3MvKMBfV632e5Eb2JEdborYf53IAvypDVysnphy/8Df429fSa//1J9jhm2H7kSRJUnbFdE6WPotZVqEYZ6jmWJIkSZKk7HmWP/Evvp1a+x/+xrZ8NXBHkqQscJ6c54vrAYwdm/wVMjHsXc0mdrA+IGgXK89cVK/12JW9+WlqbQLn8wFPB+5o5cWS4/kfwu2npte2GgTbfyNsP5IkScq2WM7J0ucxyyoU4wzVHEuSJEmSlD078E22YlBq7XZOYT4fBu5IkpQFzpPzvLgewE477RTl3tUs9ovr5qK67ce5rMV2ifV2WmliCK0sKUNXKy6WHN9xGiyYlVzv3geOvB5qasL3JEmSpOyK5ZwsfR6zrEIxzlDNsSRJkiRJ2VNDDUdyPd3pk6gtYBZ3cFoZupIkxc55cp4X1wOYPXt2lHtXs7SL632BLUI3spLMRXXrRFcGM4oa6hK1GTzHQzSWoasVF0OOp9wKL/49vXbENdDL3+4iSZKkIovhnCwtD7OsQjHOUM2xJEmSJEnZ1It+HM7VqbUX+TtTuDVwR5Kk2DlPzvPiegALFy6Mcu9qtQSYnLK+JxDLw8nmQuvSn304O7U2gfOZlpryylLpOZ4/A24/Nb229Vdgu/8N248kSZKqQ6Wfk6XlZZZVKMYZqjmWJEmSJCm7tudotmZwau0OTmM+H4ZtSJIUNefJeV5cD2CLLUr3Tncp965WTwOLU9YHhG5kFZgLAezLOazF9on1HG00MYTW1KRXjkrOcS73yaX1hSk/CNe9Lxw5FGpi+UkXSZIkRaWSz8nSijDLKhTjDNUcS5IkSZKUXTXUcCTX052+idoCZnE7p5IjV4bOJEkxcp6c58X1AB544IEo965WEztYj+niurkQQCe6MJhR1FCXqH3IFB7kN2XoavlVco6n/BVe+md67YhroOfaYfuRJElS9ajkc7K0IsyyCsU4QzXHkiRJkiRlW0/W5giuSa29xD+Ywl8DdyRJipXz5LyaXC7nj34BLS0tNDQ00NzcTH19fVH3bm5upqGhoah7hti7Wn0duLVgrRZoBnqGb2elmAv9pwf4JQ/y68R6DXUcz2Osx65l6OrzVWqO502H67aFhXOStW3+C772d19blyRJUulU6jlZWlFmWYVinKGaY0mSJEmSsi9Hjlv5Ki+RfN2uO305jRfoia/bSZI+m/PkPF9cD+Dqq6+Ocu9qlfbi+vbEc2kdzIU+bR9+wdrsmFjP0UYTQ2hlcRm6+nyVmONcDm4/Jf3Seo814MtDvbQuSZKk0qrEc7K0MsyyCsU4QzXHkiRJkiRlXw01fJnr6E7fRG0hs7mNU8jhu7GSpM/mPDnPF9eXKeWL64rH+8D6KesnA0MD9yIV0wc8w3B2o53WRG1vzuZgzi9DV/F57i/wz2+m1776V9jua2H7kSRJkiRJkiRJkiRJpTeFW/k7X0+t/Td/YXuODtyRJElx8sX1ABobG6PcuxqlvbYOsFfQLladuVChddiJffhFau0RLuJ9JgXu6PNVWo7nTYc7v5de+8JXvbQuSZKkMCrtnCytLLOsQjHOUM2xJEmSJEnVYzu+xhf4amrtDk5nHtMDdyRJionz5DxfXF+mlC+uz507l969/x97dx4taVXei/97upsZzkEQQQREcQZBQZB2RBwIKkOSm+TmlwlQQySJRo0x0Zh4zXEWRwSZUTEajcqkCCiiKA0iiIA4IDMiyHgOQ9P0UL8/0qag3rehh6pd9b71+azlWjd7t0891/W13PWs3ZuN+1qzRO1x9OYkH61ZvzLJkwr3sibkgjpL8kCOzm65JT+p7G2WZ+Svc1HWyrpD6KzeKOW400m++PvJL06u7q3/6OSQnyYbPqZ8XwAAjJ9ROifDmpBlejVxhirHAAAAMF7uyW9zeLbPfbmtsvfU7Jf/m69lIhND6AyAUWee3OXF9QJOPPHERtYeR3Uvrj86yXalG1lDckGdeVk7v5/PZE7mVfZuzRU5J+8q39TDGKUcX/r5+kvrSfKqw11aBwCgnFE6J8OakGV6NXGGKscAAAAwXjbMY/KqHF6794ucnMvyn4U7AqApzJO7XFwv4MUvfnEja4+bRUkurlmfnzTu70LKBSuyRXbKi/LO2r3z8qHcmAsKd7Rio5Lju3+TnP6G+r3t/zjZ/o/K9gMAwHgblXMyrClZplcTZ6hyDAAAAONn+/xRts8f1+59I3+fu/Obwh0B0ATmyV0urhdw1VVXNbL2uLk4yQM16/NLN9IHcsHDeWH+JVvk2ZX1TpblpByQxbl/CF1VjUKOO53k1IOT+++s7q2/WfLKw8r3BADAeBuFczL0gyzTq4kzVDkGAACA8fTKHJb1s1ll/f7cmVNzcDrpDKErAEaZeXKXi+sFrL322o2sPW4WrGC9iRfX5YKHMzdrZf+ckDlZq7J3W36ec/LvQ+iqahRyfOmJyS9Prd979RHJBtXfoQAAMFCjcE6GfpBlejVxhirHAAAAMJ42yGZ5dY6o3ftlTs2lObFwRwCMOvPkLhfXC9h8880bWXvc1F1cn5tk19KN9IFc8Ei2yI55cf6tdu+8fDg35PzCHVUNO8ezNyWnv6F+b4f/mzzjD8v2AwAAyfDPydAvskyvJs5Q5RgAAADG1zPyh9k+f1K7d3rekNncVLgjAEaZeXKXi+sFXHTRRY2sPW7qLq7vmGSD0o30gVywMl6Qt+Wx2bmy3smynJQDsjgLh9BV1zBz3Okkp/51cv9d1b0NHpPs/cniLQEAQBK/92gPWaZXE2eocgwAAADj7ZU5LBvkMZX1+3NXTsvB6aQzhK4AGEXmyV0TnU7H/0ImmZ2dzdTUVGZmZjI5OdnX2rfccsvA/rbEIGuPkxuSbFOzfkiSTxXupR/kgpV1Sy7Lkdkly7K4sve8/GNekQ8Noav/McwcX/KZ5KQD6vf+5KvJ03+/aDsAAPC//N6jLWSZXk2cocoxAAAA8LN8Lf+VP6jd2z8n5Fn5q8IdATCKzJO7vLhewNFHH93I2uOk7rX1JJlftIv+kQtW1uZ5ZvbIv9funZdDc33OK9xR17ByPPvr5PQ31u/t8KcurQMAMFx+79EWskyvJs5Q5RgAAAB4en4/O+RPa/dOzxszm18X7giAUWSe3OXF9eUG+eI6o+9NST5Ws/6rJNuVbQWKW5olOSa75zep/uNINs1T8je5JGtlvSF0Vl6nk3z+VcmvTq/ubbB58rc/TdbftHxfAAAAAAAAAMBoui+351PZPvfmlsrek/PK/H85LROZGEJnADB6vLhewPT0dCNrj5O6F9c3S/LE0o30iVywKuZmXn4/n8ncrF3Zuz2/zNn51yF0NZwcX3JC/aX1JNnnSJfWAQAYPr/3aAtZplcTZ6hyDAAAACTJ+tk0r86na/euzDdyST5TuCMARo15cpcX15cb5IvrCxcuzHrrDea14kHWHhf3J5lMsrhnfb8kJxXvpj/kgtVxbt6Xb+ftNTsTOSjnZps8v2g/pXM8c2Ny+PbJotnq3jP/LPnDE4u1AgAAK+T3Hm0hy/Rq4gxVjgEAAIAH+0r+PJfl85X1dTKZQ/LTTGWrIXQFwCgwT+7y4noBhx9+eCNrj4uLUr20niTzSzfSR3LB6nhe3pots2vNTicn5cA8kPuK9lMyx51Ocurr6i+tb7hFsvcnirUCAAAPy+892kKW6dXEGaocAwAAAA+2dz6RDbNFZX1RZnNqXpdOvC8LMK7Mk7tcXC9g3333bWTtcbFgBetNvrguF6yOuZmX/XNC5mbtyt4duTJn5x1F+ymZ4x8fn/zqm/V7rz4yWX+TYq0AAMDD8nuPtpBlejVxhirHAAAAwIOtn03y6hxZu/erfDM/zvGFOwJgVJgnd7m4XsDFF1/cyNrjou7i+rwkzyndSB/JBavrMXlGXpJ31+6dn4/nupxbrJdSOZ65ITnjTfV7O/5F8jRnBgAARojfe7SFLNOriTNUOQYAAAB6PS37Zsf8ee3eGXlTZnJD4Y4AGAXmyV0urhew2WabNbL2OOik/uL6TknWL9xLP8kFa2J+3pLHZbeanU5OzkF5IPcV6aNEjjud5JTXJYtmq3sbPjbZ++MDbwEAAFaJ33u0hSzTq4kzVDkGAAAA6vxePp4N89jK+qLM5pS8Lp10htAVAMNkntzl4noB66yzTiNrj4Prk/ymZn1+6Ub6TC5YE3MzL/vnhMxNNUd35Ff5dt5epI8SOb742OSqM+r39jkqWe9RA28BAABWid97tIUs06uJM1Q5BgAAAOqsn02yT46q3bsqZ+TiHFu4IwCGzTy5y8X1Aq666qpG1h4Hda+tJ82/uC4XrKnN8vTsmf+o3bsgn8i1+d7Aexh0ju+6PjnjzfV7O/1V8tRXD/TjAQBgtfi9R1vIMr2aOEOVYwAAAGBFnppXZ6f8Ze3eGXlz7sr1hTsCYJjMk7tcXC9gjz32aGTtcdDWi+tyQT/Mz5uzVXav2enk5ByYB3LvQD9/kDnudJJTXps8cHd1b6Mtk9/72MA+GgAA1ojfe7SFLNOriTNUOQYAAAAezu/lY9koW1bWH8jdOSWvTSedIXQFwDCYJ3e5uF7A5z73uUbWHgd1F9c3T7Jt4T76TS7ohzmZm/1yfOam+o8puTNX51v5l4F+/iBzfNHRydVn1e/tc3Sy3sYD+2gAAFgjfu/RFrJMrybOUOUYAAAAeDjr5VHZJ0fV7l2ds3JRji7cEQDDYp7cNdHpdPzVrSSzs7OZmprKzMxMJicn+1p72bJlmTNnMH9HYJC1225hkskkS3rW90/yteLd9Jdc0E8/yIdzVt5au3dAzsm2efFAPndQOb7ruuTwHZIH7qnuPeuAZP/j+/6RAADQN37v0RayTK8mzlDlGAAAAFgZJ+XAXJITKutrZ8McksuzcR5fvikAijJP7vKfQgHvfe97G1m77S5K9dJ6kswv3cgAyAX9ND9vylYr+G/GyTkoi1JzA7wPBpHjTic5+TX1l9Y3elyy10f7/pEAANBXfu/RFrJMrybOUOUYAAAAWBl75aPZKI+rrD+Qe3JKXptOvDsL0HbmyV1eXF/Oi+vj50NJ/qlm/XtJXli4l36TC/rttvwyn85OWZL7K3u75m/zqhzW988cRI4v/HTy9dfX7/3ZN5In793XjwMAgL7ze4+2kGV6NXGGKscAAADAyroyp+fzeWXt3qvz6TwnBxfuCICSzJO7/KdQwPve975G1m67BTVr85I8p3QjAyAX9Nuj85TsmffU7l2YT+WafKfvn9nvHN95bXLWW+v3nn2QS+sAADSD33u0hSzTq4kzVDkGAAAAVtaTs3eenYNq987MP+bOXFu2IQCKMk/u8uL6coN8cf3666/PNtts09eaJWq3WSfJlklu7lnfNckPy7fTd3LBICzL0hyfF+eG/KCyt3G2zetzWdbJhn37vH7meNmy5HMvT645u7o3uVVyyOXJulN9+SgAABgov/doC1mmVxNnqHIMAAAArIr7M5PDs0Nmc2Nl7wnZM3+RszLHO7QArWSe3OV/6Qo455xzGlm7za5N9dJ6kswv3MegyAWDMCdzs1+Oy7ysV9m7K9fmW3lbXz+vnzm+6Mj6S+tJsu8xLq0DANAcfu/RFrJMrybOUOUYAAAAWBXrZir75pjavWtydi7KkYU7AqAU8+QuF9cL2G677RpZu80WrGC9LRfX5YJBeXSekpfmvbV7F+bwXJ0V3A5fDf3K8Z3XJGe+tX5v59cmT9qrLx8DAABF+L1HW8gyvZo4Q5VjAAAAYFU9KXvl2XlN7d6ZeWvuzDWFOwKgBPPkLhfXC1i0aFEja7dZ2y+uywWD9Ny8IdvkBbV7J+egLMrdffmcfuR42bLk5IOSxfdW9ya3Tl5x6Bp/BAAAFOX3Hm0hy/Rq4gxVjgEAAIDVsVcOzWS2rqwvzr05Oa/JsiwbQlcADJJ5cpeL6wXceuutjazdZnUX1x+bZJvSjQyIXDBIczIn++X4zMt6lb2ZXJez8k99+Zx+5PhHRyTXnlO/t+8xybqTa/wRAABQlN97tIUs06uJM1Q5BgAAAFbHupnKvjmmdu/afCc/yhGFOwJg0MyTu1xcL2DnnXduZO22ui/JT2rW5yeZKNzLoMgFg7ZpnpSX5f21ez/Kp3NVvrXGn7GmOb7j6uSsFdyh3+Wvkye9Yo3KAwDAUPi9R1vIMr2aOEOVYwAAAGB1PSmvyM55Xe3eWfmn3JGrC3cEwCCZJ3e5uF7AKaec0sjabfWjJEtq1ueXbmSA5IISdsvf5fF5Ue3eKXlN7s/sGtVfkxwvW5acfGCy+L7q3tQ2ycs/tAaNAQDAEPm9R1vIMr2aOEOVYwAAAGBNvCIfzlS2qawvzn05OQdlWZYNoSsABsE8uWui0+l0ht3EKJidnc3U1FRmZmYyOTnZ19oLFy7Meuut19eaJWq31QeS/HPN+veTPL9wL4MiF5RyR67KEdkxi1O9Ib5L/jr75MjVrr0mOb7gk8npb6jf+4uzku1ettptAQDAUPm9R1vIMr2aOEOVYwAAAGBNXZVv5XN5ee3e3vlknpu/K9wRAINgntzlxfUCDj300EbWbqsFNWtrJdmldCMDJBeUskm2y8vy/tq9i3JUrspZq117dXN8x1XJt+r+dkqSXQ52aR0AgGbze4+2kGV6NXGGKscAAADAmtouL8suObh271t5W+7IVYU7AmAQzJO7vLi+3CBfXGd0dJJskeS3Peu7JbmgfDvQCsuyLJ/Jnrku363sTWbrHJLLs27KfK8uW5acsEdy/bnVvanHJ4dclqyzUZFWAAAAAAAAAAAe0aLcncPzzMzkusre4/Oi/FW+kznepwWgJfwvWgHT09ONrN1G16R6aT1J5pduZMDkgpLmZE72y3FZKxtU9mZzQ87MW1ar7urk+IefrL+0niT7HevSOgAAzef3Hm0hy/Rq4gxVjgEAAIB+WCcbZb8cW7t3Xb6XH+awwh0B0G/myV1eXF9ukC+u33LLLdl88837WrNE7Tb6fJI/r1n/YpI/KdzLIMkFw/DDfCrfyN/V7v15vpknZa9VqreqOb79yuSInZIlC6t7z3l98urDV+njAQBgJPm9R1vIMr2aOEOVYwAAAKCfTssh+VGOqKzPy3p5fS7NpnnSELoCoB/Mk7u8uF7AySef3MjabbRgBevPK9rF4MkFw/CcvD7bZo/avVPy2tyfmVWqtyo5XrYsOfmg+kvrG2+bvPyDq/TRAAAwsvzeoy1kmV5NnKHKMQAAANBPL88Hs3G2rawvycKcnAOzLMvKNwVAX5gnd7m4XsAuu+zSyNptdF7N2uOSbF26kQGTC4ZhTuZkvxyXtbJBZW82N+aMvGWV6q1Kji/4RHL99+v39jsuWWfDVfpoAAAYWX7v0RayTK8mzlDlGAAAAOindbJh9stxtXvX5/u5IJ8o3BEA/WKe3OXiegG33HJLI2u3zb1JLq1Zn1+6kQLkgmF5VJ6QV+RDtXs/zrG5MqevdK2VzfFtv0y+/S/1e7v+bfKEl6z0RwIAwMjze4+2kGV6NXGGKscAAABAvz0hL8muOaR279t5e27PlYU7AqAfzJO7XFwv4IEHHmhk7ba5MMnSmvU2XlyXC4ZplxycJ2TP2r1T8roszF0rVWdlcrxsaXLygcmS+6t7Gz8hedn7V+qjAACgMfzeoy1kmV5NnKHKMQAAADAIL8sHsnGeUFlfkoU5KQdmWe0NKABGmXlyl4vrBWy33XaNrN02C1aw3saL63LBMM3JnOybY7N2Nqzs3Z1f54y8eaXqrEyOz/94csN59Xv7HZesU20BAAAaze892kKW6dXEGaocAwAAAIOwTjbMfjmudu+G/CDn5+OFOwJgTZknd7m4XsB3v/vdRtZum7qL62sn2bl0IwXIBcP2qGybl+dDtXuX5Pj8Mt94xBqPlOPbfpGc/Y76vd3+LnnCHo/4EQAA0Dh+79EWskyvJs5Q5RgAAAAYlCdkj+yWv6vdOzvvyG35ReGOAFgT5sldE51OpzPsJkbB7OxspqamMjMzk8nJyb7Wvuuuu7Lxxhv3tWaJ2m3SSfKYJLf1rO+eFb/E3mRywSjopJPP5RW5Ot+q7G2ULXNILs96edQK//0Pl+NlS5PjXpjcWPNf4Ec9MXn9pcnaG6xu5wAAMLr83qMtZJleTZyhyjEAAAAwSA/k3hyRHXNnrq7sbZX5OSjnZk7mDqEzAFaVeXKXF9cLOOywwxpZu02uSvXSepLML91IIXLBKJjIRPbNMVk7G1X27s5N+Wbe9LD//ofL8YKP1l9aT5L9jndpHQCA9vJ7j7aQZXo1cYYqxwAAAMAgrZ0Nsl+Oq927MQtyfj5WtiEAVpt5cpcX15cb5IvrDN/nkvxlzfqXkvxR4V5g3PwoR+W0HFy79//ltDwlr1qlerf+PPn0s5Kli6p7z31DsvfHV6NJAAAAAAAAAIARdHremAvyicr63KyTv8kl2SxPG0JXALB6vLhewPT0dCNrt8kKHmZu7YvrcsEo2SWvyxPz8tq9U/K6LMydtXt1OV62NDnpgPpL64/aLnnpe9ekUwAAGH1+79EWskyvJs5Q5RgAAAAo4aV5bx6V7SrrS7MoJ+fALMvSIXQFwKowT+7y4vpyg3xxfWZmJlNTU32tWaJ2mzw7ySU9a1sluaF8K0XIBaPmrlyfw7NDHsjdlb0d8xf5g3y2sl6X4+9/MPnW22o+YCI58LvJ41/Yr44BAGA0+b1HW8gyvZo4Q5VjAAAAoJTrcm6Oz4uTVK/6vTwfzPPz1vJNAbDSzJO7vLhewGc/W72Q2YTabXFPkktr1tv62noiF4yejbNN9spHavcuzefyi5xaWe/N8a0/S77zb/X1d3+jS+sAAIwHv/doC1mmVxNnqHIMAAAAlPL4vDDPzRtq987OO3Nrfla4IwBWhXlyl4vrBbzkJS9pZO22uDDJspr155VupCC5YBTtnNdku+xVu3dq/jr35Y6HrD04x0uXJCcdkCxdVP33bvLkZM/39LNTAAAYXX7v0RayTK8mzlDlGAAAACjppXlvNsmTKutLsygn5YAszZIhdAXAyjBP7nJxvYArr7yykbXb4rwVrLf5xXW5YBRNZCL75uisk8nK3j25Od/MGx+y9uAcLzg0+fUPa4tm/+OTtdfvd7cAADCa/N6jLWSZXk2cocoxAAAAUNLaWT/754QkE5W9X+eHWZBDi/cEwMoxT+5ycb2A9dZbr5G122JBzdo6SZ5dupGC5IJRNZWts1c+Wrt3aU7Mz3Py//7fv8vxb69IvvNv9fXmvynZ5vl9bxMAAEaW33u0hSzTq4kzVDkGAAAAStsmz8/u+Yfave/k3/LbXFG2IQBWinlyl4vrBWy66aaNrN0GnSTn16zvkmTtwr2UJBeMsmfnwDwpe9funZqDc19uT/I/OV66JDnpr5KlD1T/7KZPSfacHmSnAAAwevzeoy1kmV5NnKHKMQAAADAMe2Y6m+TJlfWleSAn5YAszZIhdAXAwzFP7nJxvYBLLrmkkbXb4Mpk+RXYh5pfupHC5IJRNpGJ7JOjsk6mKnv35pacnjck+Z8cn/eh5KYf1RbJfscna/mLaAAAjBm/92gLWaZXE2eocgwAAAAMw9pZP/vnhCQTlb2bcmHOy4eK9wTAwzNP7prodDqdYTcxCmZnZzM1NZWZmZlMTk72tfbNN9+cLbbYoq81S9Rug88kOaBm/b+T/GHZVoqSC5rgxzk+J+eg2r0/ydey5Jzdc9JeW9S+tj7/LcleHx5wgwAAMIL83qMtZJleTZyhyjEAAAAwTGfkH7Mgh1bW52bt/HUuyubZYQhdAVDHPLnLi+sFHHPMMY2s3QYLVrDe9hfX5YImeFYOyJPzytq9Uxf/bd7xZ0fWXlrf9KnJnv8x4OYAAGBE+b1HW8gyvZo4Q5VjAAAAYJj2zH9k0zy1sr40D+TkHJilWTKErgCoY57c1boX1++9996cc845+djHPpazzjprpf99g3xxneHZKcmlPWvbJLluCL0AVbP5dT6V7bMoMw/deM/bk399T+XPT8xJDvpBsvXuhRoEAAAAAAAAABhRN2RBjssL0smyyt6eeU9elLcPoSsAWLHWvbi+wQYb5FWvelUWL1487Fb+1/T0dCNrN93dSS6vWW/7a+uJXNAck3lc9s7HH7p42Q7J//v3fC/VHM9/i0vrAACMN7/3aAtZplcTZ6hyDAAAAAzb1pmf+XlL7d45eVduyWWFOwKgjnlyV+teXP+dPfbYI+ecc85K//lBvrh+//33Z9111+1rzRK1m+7bSV5Ws/6xJG8s20pxckGTdNLJf2afXJmvJ4vnJbufn1y8S5bk/sxLN8ePflpy8I+TtUQbAIAx5vcebSHL9GriDFWOAQAAgFGwOPfnyDw7t+Xnlb3HZue8NudnbtYaQmcA/I55clfrXlwfRZ/85CcbWbvpFqxgfRxeXJcLmmQiE9knR2XdbJx84G3JxbskSS5IN8cTc5L9T3BpHQAA/N6jLWSZXk2cocoxAAAAMArWyrrZPydkouYq4G9ycb6fDwyhKwAezDy5a2wvri9atCizs7MP+deg7L///o2s3XR1F9fXTfKswn0Mg1zQNJPZMs+79LPJu//tf9eelv3/9//9lLf+PFs9dwiNAQDAiPF7j7aQZXo1cYYqxwAAAMCo2CrPzfPyj7V73827c3MuLdwRAA9mnty10hfXv/CFL+Sqq67KBz/4wSxatCjT09NJkunp6dx000059thjc+GFF+aMM87IV7/61VxxxRX5xCc+kdnZ2Yf82TvuuCOf+tSncumll+aUU07J17/+9Vx88cU58sgjc+uttz7kz95333059NBD84tf/CJf+tKX8u1vfzvnnXdeTjjhhNxwww0P+bNLly7N+973vvzyl7/M61//+vziF7/IO9/5znzuc5/LlVdemQ996EO5//77//ffs/fee2dqaup//7X11lsnSa644op88pOfzMzMzEPq33XXXTnssMNy2WWX5aSTTso3vvGNXHTRRTnqqKNyyy23POTPLly4MIceemiuvPLK/Nd//Vc+85nP5Ac/+EE++9nP5vrrr8973vOeLFu2LNPT01m2bFne85735Prrr89nP/vZ/OAHP8jZZ5+d//qv/8qVV16ZQw89NAsXLnxI/VtuuSVHHXVULrroohxzzDE56aSTctlll+Wwww7LXXfd9ZA/OzMzk09+8pO5/PLL87WvfS3f/OY3c+GFF+boo4/OzTff/JA/e//99+dDH/pQrrzyynzxi1/MOeeck+9///v53Oc+l+uuuy7ve9/7snTp0of8e2644YaccMIJOe+88/Ltb387X/rSl/KLX/wihx56aO67776H/Nlbb701Rx55ZC6++OJ8/etfzymnnJJLL700n/rUp3LHHXc85M/Ozs7mE5/4RK644op89atfzRlnnJELL7wwxx57bG666aaH/NlFixblgx/8YK666qp84QtfyDnnnJPvnntuvnviicm11ybvf3+yZEkyPZ3nJPng9HRuvPHGHH/88Tn//PNz1lln5ctf/nJ+/vOf56Mf/Wjuueeeh9S/7bbb8ulPfzqXXHJJTjvttJx66qm55JJLcsQRR+T2229/yJ+9++6787GPfSxXXHFFvvKVr+TMM8/MBRdckOOOO67S9+LFi/OBD3wgV199dT7/+c/ne9/7Xr73ve/l85//fK6++up84AMfyOLFiyv/XTvuuONywQUX5Mwzz8xXvvKVXHHFFfnYxz6Wu++++3//7Dve8Y7cfvvtOeKII3LJJZfk1FNPzWmnnZZLLrkkn/70p3Pbbbc9pO4999yTj370o/n5z3+eL3/5yznrrLNy/vnn5/jjj8+NN974kD+7ZMmSvP/978+1116bE088Meeee27OOeecxnxHXHfddfnc5z6X73//+znnnHPyxS9+sfY7Ynp6OjfffHOOPvroXHjhhfnmN7+Zr33ta7n88sv7/h1x9tlnD+w74hvf+EZjviNm/vu5+dHi4/ObXJxf5uu5KEfmllyaH27xr7n/DdN9/Y4499xzc+KJJ+baa6/N+9///ixZsuQh/562f0dMT0/7jvAd0bjviJLnCN8RviN8R/iO8B3hO2KUvyOOOeYY3xG+I1rxHfGOd7zDd4RzxEO+I770pS8N7DvisMMOG8h3xHHHHec7wjnCd4RzxAq/I5wjfEf4jvAd4TvCd4TvCN8RviN8R/iO8B1R+jti/qK355IPPiZ3XJVc9oXk2nOS685NLjlxcY699k/z3ve/x3eE7wjfEWP8HeEcMdzviM9//vOt/45YWROdTqez0n+6RRYtWpRFixb97/89OzubrbfeOjMzM5mcnOzrZ51zzjnZY489+lqzRO0m+3mSp9esvzXJBwv3MgxyQVNddtbt+cprFiY3bJVrc062nfPCvHDB17PnbvtkIhPDbg8AAIbO7z3aQpbp1cQZqhwDAAAAo+bG/DDHZn46WVbZ2yP/L3vk34bQFQDmyV0r/eJ626yzzjqZnJx8yL8GZd68eY2s3WQLVrA+v2gXwyMXNNUzX75p9rn8B8lrj86czMuub7s3L91tX5fWAQBgOb/3aAtZplcTZ6hyDAAAAIyarbJbnp9/qt37Xv4jN+cnhTsCIDFPfrDWXVyfmJio/dcwXXPNNY2s3WTjfnFdLmiynSf/OH9+9DbZ/p+vzl7/Pri/VAQAAE3k9x5tIcv0auIMVY4BAACAUbRH3pXN8ozK+rIsyUk5IEuzeAhdAYw38+Su1l1c73Q6tf8aphe96EWNrN1kdRfXt02yReE+hkUuaLKJTORJ2Sv/529enHnrDLsbAAAYLX7v0RayTK8mzlDlGAAAABhF87JO9s8Jmcjcyt7NuSTn5r1D6ApgvJknd7Xu4vrv3HjjjXnLW94y7DaSJP/5n//ZyNpNNZPkpzXr4/LaeiIXtIMcAwBAlXMybSHL9GriDFWOAQAAgFH1uOyaF+RttXvfy3R+k0vKNgQw5syTuyY6w36OfAA6nU4OP/zwXHjhhTnhhBNW6t8zOzubqampzMzMZHJysq/9LF26NHPnVv8G26jXbqqzkryiZv0TSf6+cC/DIhe0gRwDAECVczJtIcv0auIMVY4BAACAUbYki3JUnpPf5vLK3ubZMa/LhZmXtYfQGcD4MU/uauWL62eddVb23HPPYbfxv973vvc1snZTLVjB+ji9uC4XtIEcAwBAlXMybSHL9GriDFWOAQAAgFE2L+tk/5yQiVQvSt6SS3Nu3jOErgDGk3lyV+teXL/qqqtyzz33ZGpqKu9617tG4sV1yto7yTd71tZLMpNkrfLtAAAAAAAAAAAADMXZeWe+l+nK+pzMy2tzQbbMzkPoCoBx1boX1y+55JJcc801OfPMM3P99dfn0ksvHXZLmZ6u/g9/E2o30bIk59esPyfjdWldLmgDOQYAgCrnZNpClunVxBmqHAMAAABN8KK8M4/JMyvry7IkJ+WALMkDQ+gKYLyYJ3e17sX1JFm8eHEOP/zwfOlLX8rhhx+enXba6RH/PYN8cf2GG27I1ltv3deaJWo30c+SPKNm/Z+SfKBwL8MkF7SBHAMAQJVzMm0hy/Rq4gxVjgEAAICmuCkX5+jslk6WVvZelH/NnvmPIXQFMD7Mk7ta9+J6kqy11lp54xvfmB/84AcrdWl90L797W83snYTLVjB+vyiXQyfXNAGcgwAAFXOybSFLNOriTNUOQYAAACaYsvsnBfm7bV75+Z9uSkXFe4IYLyYJ3e18uL6qHnKU57SyNpN5OL6/5AL2kCOAQCgyjmZtpBlejVxhirHAAAAQJO8KP+azbNjZb2TpTkpB2RJFg2hK4DxYJ7c5eJ6AQsXLmxk7Saqu7j+xCSbl25kyOSCNpBjAACock6mLWSZXk2cocoxAAAA0CTzsnb2z2cyJ/Mqe7/N5flu3j2ErgDGg3lyl4vrBdx+++2NrN00dyX5ac36uL22nsgF7SDHAABQ5ZxMW8gyvZo4Q5VjAAAAoGkem2flhXlH7d7384H8Oj8q3BHAeDBP7nJxvYCddtqpkbWb5oIVrI/jxXW5oA3kGAAAqpyTaQtZplcTZ6hyDAAAADTRC/P2bJ7qXKOTpTkpB2RJFg2hK4B2M0/ucnG9gNNOO62RtZtmwQrWx/HiulzQBnIMAABVzsm0hSzTq4kzVDkGAAAAmmhe1s7v5zOZk3mVvVvz05yT/zeErgDazTy5a6LT6XSG3cQomJ2dzdTUVGZmZjI5OdnX2vfdd1/WX3/9vtYsUbtp9kpyZs/a+klmkppjVrvJBW0gxwAAUOWcTFvIMr2aOEOVYwAAAKDJzsm7c07+vbI+kTl5TRZkq+w2hK4A2sk8ucuL6wV85CMfaWTtJlmW5IKa9V0zfpfWE7mgHeQYAACqnJNpC1mmVxNnqHIMAAAANNkL8y/ZIs+urHeyLCflgCzO/UPoCqCdzJO7vLi+3CBfXGfwfppkh5r1f07yvsK9AAAAAAAAAAAAjLqbc2mOynOyLIsre8/P2/LyvH8IXQHQZl5cL2B6erqRtZtkwQrW5xftYnTIBW0gxwAAUOWcTFvIMr2aOEOVYwAAAKDptsiOeXH+rXbvvHwoN+aCwh0BtJN5cpcX15cb5Ivrt956azbbbLO+1ixRu0lek+S4mvVbkjymcC+jQC5oAzkGAIAq52TaQpbp1cQZqhwDAAAAbbA0i3NMds9vcnFl79F5Wg7Oj7NW1h1CZwDtYZ7c5cX1Ar761a82snaT1L24vl3G89J6Ihe0gxwDAECVczJtIcv0auIMVY4BAACANpibtbJ/TsicrFXZuy0/z3dW8CI7ACvPPLnLxfUCdt1110bWboo7k/ysZn1+6UZGiFzQBnIMAABVzsm0hSzTq4kzVDkGAAAA2mLzPDN75N9r9xbk0NyQ8wt3BNAu5sldLq4X8Jvf/KaRtZvighWsj/PFdbmgDeQYAACqnJNpC1mmVxNnqHIMAAAAtMnz87Y8NrtU1jtZlpNyQBZn4RC6AmgH8+QuF9cLWLp0aSNrN8WCFaw/r2gXo0UuaAM5BgCAKudk2kKW6dXEGaocAwAAAG0yN/Oyf07I3Kxd2bs9v8jZeecQugJoB/PkLhfXC9h2220bWbspzqtZ2yDJDqUbGSFyQRvIMQAAVDkn0xayTK8mzlDlGAAAAGibzbND9si7avcW5CO5vvamFgCPxDy5y8X1As4999xG1m6CpUkuqFnfLcm8wr2MknHPBe0gxwAAUOWcTFvIMr2aOEOVYwAAAKCNnpe3ZsvsWrPTyck5MIuzsHhPAE1nntw10el0OsNuYhTMzs5mamoqMzMzmZyc7GvtO+64I5tssklfa5ao3QSXJdmxZv3tSd5TuJdRMu65oB3kGAAAqpyTaQtZplcTZ6hyDAAAALTVb3NFjsyzszQPVPbm583ZK4cOoSuA5jJP7vLiegGHH354I2s3wYIVrM8v2sXoGfdc0A5yDAAAVc7JtIUs06uJM1Q5BgAAANrqMXlGXpJ31+4tyEdzXb5fuCOAZjNP7vLi+nKDfHGdwTkwyQk167cmeXTZVgAAAAAAAAAAAFphaZbkuDw/v84PK3ub5En5m/wka2f9IXQGQJN5cb2A6enpRtZugroX158cl9bHPRe0gxwDAECVczJtIcv0auIMVY4BAACANpubedk/J2Ru1qns3ZFf5ey8YwhdATSTeXKXF9eXG+SL67OzswN7xX2QtUfdHUk2rVn/yySfKdzLqBnnXNAecgwAAFXOybSFLNOriTNUOQYAAADGwffzwXwrb6vZmciB+W4enxcW7wmgacyTu7y4XsAJJ5zQyNqj7vwVrM8v2sVoGudc0B5yDAAAVc7JtIUs06uJM1Q5BgAAAMbB8/KWbJXda3Y6OSkH5oHcW7wngKYxT+5ycb2Al73sZY2sPeoWrGDdxfXxzgXtIccAAFDlnExbyDK9mjhDlWMAAABgHMzJ3OyX4zM361T27sxV+XbePoSuAJrFPLnLxfUCfv7znzey9qiru7i+YZIdSjcygsY5F7SHHAMAQJVzMm0hy/Rq4gxVjgEAAIBxsVmelj0zXbt3QT6Ra/O9wh0BNIt5cpeL6wVssMEGjaw9ypYmuaBmfbckcwv3MorGNRe0ixwDAECVczJtIcv0auIMVY4BAACAcTI/b8pWmV+7d3IOzAO5t3BHAM1hntzl4noBm2yySSNrj7KfJrmnZv15pRsZUeOaC9pFjgEAoMo5mbaQZXo1cYYqxwAAAMA4mZO52T/HZ17WrezdmavzrfzzELoCaAbz5C4X1wu49NJLG1l7lJ23gvX6v9M3fsY1F7SLHAMAQJVzMm0hy/Rq4gxVjgEAAIBx8+g8NXvmPbV7P8xhuSbnlG0IoCHMk7smOp1OZ9hNjILZ2dlMTU1lZmYmk5OTfa190003Zcstt+xrzRK1R9lfJflszfrtSfy9lPHNBe0ixwAAUOWcTFvIMr2aOEOVYwAAAGAcLcvSHJ8X54b8oLK3cZ6Q1+fSrJMNh9AZwOgyT+7y4noBxx13XCNrj7IFNWtPjUvrvzOuuaBd5BgAAKqck2kLWaZXE2eocgwAAACMozmZm/1yXOZl3creXbkm38o/D6ErgNFmntzlxfXlBvniOv11W5LNatYPSHJ82VYAAAAAAAAAAADGzoJ8LGfkTbV7f5Wz84S8pHBHADSBF9cLmJ6ebmTtUXX+CtbnF+1itI1jLmgfOQYAgCrnZNpClunVxBmqHAMAAADj7Ll5Q7bJC2r3Ts5BWZR7CncEMLrMk7u8uL7cIF9cX7RoUdZZZ52+1ixRe1S9I8l7a9YvTfLMwr2MqnHMBe0jxwAAUOWcTFvIMr2aOEOVYwAAAGDc3Z5f5YjsmCVZWNl7Tl6fV+fwIXQFMHrMk7u8uF7Axz/+8UbWHlULatY2SvKM0o2MsHHMBe0jxwAAUOWcTFvIMr2aOEOVYwAAAGDcbZon5WV5X+3ej3JErs7ZhTsCGE3myV1eXF9ukC+uX3XVVdluu+36WrNE7VG0JMnGSe7tWX9ZkrOKdzO6xi0XtJMcAwBAlXMybSHL9GriDFWOAQAAAJJlWZYTskeuz7mVvak8PofksqyTjYbQGcDoME/u8uJ6AT/84Q8bWXsUXZ7qpfUkmV+6kRE3brmgneQYAACqnJNpC1mmVxNnqHIMAAAAkMzJnOyf47NW1q/szeS6nJm3DqErgNFintzl4noBj33sYxtZexQtWMG6i+sPNW65oJ3kGAAAqpyTaQtZplcTZ6hyDAAAAPA/Nsl2eVneX7t3UY7MVflW4Y4ARot5cpeL6wXMnTu3kbVH0Youru9etIvRN265oJ3kGAAAqpyTaQtZplcTZ6hyDAAAANC1a/42j8+La/dOyWtyf2YLdwQwOsyTu1xcL+C6665rZO1RVHdx/WlJHlW6kRE3brmgneQYAACqnJNpC1mmVxNnqHIMAAAA0DUnc7Jfjsta2aCyN5Prc1beOoSuAEaDeXKXi+sFvOAFL2hk7VHz2yS/qll/XulGGmCcckF7yTEAAFQ5J9MWskyvJs5Q5RgAAADgoTbJE/PyfKB276IclV/lzMIdAYwG8+QuF9cL+OIXv9jI2qPm/BWszy/aRTOMUy5oLzkGAIAq52TaQpbp1cQZqhwDAAAAVD0nr8+22aN275S8NvdnpmxDACPAPLlrotPpdIbdxCiYnZ3N1NRUZmZmMjk52dfaS5Ysybx58/pas0TtUfMvSd5fs355ku0L9zLqxikXtJccAwBAlXMybSHL9GriDFWOAQAAAOrdmWtyeJ6Zxbm3srdzXpt9c/QQugIYHvPkLi+uF/D+99ddtx792qNmQc3aVJKnl26kAcYpF7SXHAMAQJVzMm0hy/Rq4gxVjgEAAADqPSpPyCvyodq9i3NMfpUzCncEMFzmyV1eXF9ukC+us+aW5H8uqd/Xs/6KxDEGAAAAAAAAAABghCzLsnwuL881ObuyN5mtckguz7qZGkJnAAyTF9cLmJ6ebmTtUXJpqpfWk2R+6UYaYlxyQbvJMQAAVDkn0xayTK8mzlDlGAAAAGDF5mRO9s2xWTsbVvZmc2POyJuH0BXAcJgnd3lxfblBvrh+4403ZquttuprzRK1R8mnkvxdzfo3k+xVuJcmGJdc0G5yDAAAVc7JtIUs06uJM1Q5BgAAAHhkF+bT+XpeX7v3Z/lGnpy9C3cEUJ55cpcX1ws466yzGll7lCxYwfpzi3bRHOOSC9pNjgEAoMo5mbaQZXo1cYYqxwAAAACP7Dk5OE/My2r3TsnrsjB3lW0IYAjMk7tcXC/g6U9/eiNrj5K6i+vPSLJx4T6aYlxyQbvJMQAAVDkn0xayTK8mzlDlGAAAAOCRTWQi++aYrJ2NKnt359c5I28aQlcAZZknd7m4XsDdd9/dyNqj4rdJrq5Zn1+6kQYZh1zQfnIMAABVzsm0hSzTq4kzVDkGAAAAWDkb5/F5RT5cu3dJTsgv8/XCHQGUZZ7c5eJ6AXfddVcja4+KutfWExfXH8445IL2k2MAAKhyTqYtZJleTZyhyjEAAADAytslr8sT8/LavVPz11mYOwt3BFCOeXKXi+sFPPOZz2xk7VHh4vqqG4dc0H5yDAAAVc7JtIUs06uJM1Q5BgAAAFh5E5nIvjkma2ejyt7duSnfzJuG0BVAGebJXS6uF3D66ac3svaoqLu4vnGSpxXuo0nGIRe0nxwDAECVczJtIcv0auIMVY4BAAAAVs3G2SZ75SO1ez/JZ/KLnFq4I4AyzJO7JjqdTmfYTYyC2dnZTE1NZWZmJpOTk32tfc8992TDDTfsa80StUfB4iRTSRb2rP9eEv81XrG254LxIMcAAFDlnExbyDK9mjhDlWMAAACAVddJJydm71yVMyp7G+ax+dv8NOvlUUPoDGBwzJO7vLhewMc+9rFG1h4FP0n10nqSzC/dSMO0PReMBzkGAIAq52TaQpbp1cQZqhwDAAAArLqJTGTfHJ11Un1c9p78JqfnjUPoCmCwzJO7vLi+3CBfXGf1fTLJG2rWz0zy8sK9AAAAAAAAAAAAsOYuzrE5Ja+t3fu/OTlPy76FOwKgBC+uFzA9Pd3I2qNgQc3aRJLnlm6kYdqeC8aDHAMAQJVzMm0hy/Rq4gxVjgEAAABW37NzUJ6U36vdOy0H577cUbgjgMExT+7y4vpyg3xx/bbbbsujH/3ovtYsUXsUPCHJtT1rOyS5rHwrjdL2XDAe5BgAAKqck2kLWaZXE2eocgwAAACwZmZyYw7PDlmUmcreM/Nn+cOcOISuAPrPPLnLi+sF/Pd//3cjaw/bzaleWk+S+YX7aKI254LxIccAAFDlnExbyDK9mjhDlWMAAACANTOVrfJ7+Wjt3mX5fH6ekwt3BDAY5sldLq4XsPvuuzey9rAtWMG6i+uPrM25YHzIMQAAVDkn0xayTK8mzlDlGAAAAGDNPSsH5Ml5Ze3eqTk49+X2wh0B9J95cpeL6wXceOONjaw9bC6ur74254LxIccAAFDlnExbyDK9mjhDlWMAAACANTeRieyTo7JOpip79+aWfCN/P4SuAPrLPLnLxfUCOp1OI2sPW93F9UcleUrpRhqozblgfMgxAABUOSfTFrJMrybOUOUYAAAAoD8m87jsnY/X7l2eL+Rn+VrhjgD6yzy5y8X1ArbeeutG1h6mB5L8qGZ99wjtymhrLhgvcgwAAFXOybSFLNOriTNUOQYAAADon53yl3lyXlW7d1r+JvfmtsIdAfSPeXKXO8AFLFhQ93b46Ncepp8kub9mfX7pRhqqrblgvMgxAABUOSfTFrJMrybOUOUYAAAAoH8mMpF9clTWzcaVvXvz25yevy/fFECfmCd3TXS8P58kmZ2dzdTUVGZmZjI5OdnX2rfffns23XTTvtYsUXuYPpHkjTXr30ry0sK9NFFbc8F4kWMAAKhyTqYtZJleTZyhyjEAAABA//0kn8vX8pe1e3+c/84z8oeFOwJYc+bJXV5cL+CII45oZO1hOq9mbU6S3Uo30lBtzQXjRY4BAKDKOZm2kGV6NXGGKscAAAAA/bdj/jxPyT61e6fl9bk3txbuCGDNmSd3eXF9uUG+uM6qe3yS63vWdkzykyH0AgAAAAAAAAAAQBl35zf5VLbP/bmzsrd9/jh/lP8aQlcA9IMX1wuYnp5uZO1huSnVS+tJMr90Iw3WxlwwfuQYAACqnJNpC1mmVxNnqHIMAAAAMBgb5bHZO5+o3ftpvpSf5r8LdwSwZsyTu7y4vtwgX1y/++67s9FGG/W1Zonaw/KVJP+nZv2EJH9VtpXGamMuGD9yDAAAVc7JtIUs06uJM1Q5BgAAABicTjr5Yn4/v8jJlb318+gckp9mwzxmCJ0BrDrz5C4vrhdw7LHHNrL2sCxYwboX11deG3PB+JFjAACock6mLWSZXk2cocoxAAAAwOBMZCKvzqezXjap7N2X2/KN/O0QugJYPebJXS6uF/CKV7yikbWHpe7i+qZJnly6kQZrYy4YP3IMAABVzsm0hSzTq4kzVDkGAAAAGKyNskX2zidr967If+fyfKlwRwCrxzy5y8X1An72s581svYwPJDkopr13ZNMFO6lydqWC8aTHAMAQJVzMm0hy/Rq4gxVjgEAAAAG75n50zwt+9fufSN/m3vy27INAawG8+QuF9cL2GijjRpZexh+nGRRzfr80o00XNtywXiSYwAAqHJOpi1kmV5NnKHKMQAAAMDgTWQir86ns142rezdl9vy9RySTjpD6Axg5Zknd7m4XsDU1FQjaw/DghWsu7i+atqWC8aTHAMAQJVzMm0hy/Rq4gxVjgEAAADK2DCb55U5rHbvZ/lKLs9/Fe4IYNWYJ3e5uF7AT3/600bWHoa6i+tzkuxWupGGa1suGE9yDAAAVc7JtIUs06uJM1Q5BgAAAChnh/xJnp4/qN37Rv4u9+SWwh0BrDzz5K6JTqfjn5ORZHZ2NlNTU5mZmcnk5GRfa990003Zcsst+1qzRO1h2CbJDT1rOyW5pHwrjda2XDCe5BgAAKqck2kLWaZXE2eocgwAAABQ1j25JZ/K9lmY2yt7T8vv50/ylUxkYgidATw88+QuL64XcNxxxzWydmk3pnppPUnml26kBdqUC8aXHAMAQJVzMm0hy/Rq4gxVjgEAAADK2jCb51U5vHbv5/laLs8XC3cEsHLMk7u8uL7cIF9cZ+V8Ockf16x/NslfFO4FAAAAAAAAAACA0fOl/FGuyH9X1tfLJjkkP81G2WIIXQGwMry4XsD09HQja5e2YAXrXlxfdW3KBeNLjgEAoMo5mbaQZXo1cYYqxwAAAADD8cp8Kuvn0ZX1hbkjp+Vv0om3fIHRYp7c5cX15Qb54vrixYuz1lpr9bVmidqlzU9yfs/ao5P8NslE+XYarU25YHzJMQAAVDkn0xayTK8mzlDlGAAAAGB4fpov58v549q9P8iJ2TF/VrgjgBUzT+7y4noBH/nIRxpZu6RFSS6uWZ8fl9ZXR1tywXiTYwAAqHJOpi1kmV5NnKHKMQAAAMDwbJ8/yvYruLj+jfx97s5vCncEsGLmyV1eXF9ukC+uX3311XniE5/Y15olape0IMnzatbfm+RfCvfSBm3JBeNNjgEAoMo5mbaQZXo1cYYqxwAAAADDdW9uzaeyfe7LrZW9p2Sf/GlOzoRnU4ERYJ7c5cX1AhYsWNDI2iWt6P8X84t20R5tyQXjTY4BAKDKOZm2kGV6NXGGKscAAAAAw7VBNsurc0Tt3i9zai7NiYU7Aqhnntzl4noBW2+9dSNrl1T3X8m5SXYt3UhLtCUXjDc5BgCAKudk2kKW6dXEGaocAwAAAAzfM/KH2T5/Urt3et6Q2dxUuCOAKvPkLhfXGQl1F9d3TLJB6UYAAAAAAAAAAABojFfmsGyQx1TW789dOS0Hp5POELoCoI6L6wXccMMNjaxdyg1Jfl2zPr90Iy3ShlyAHAMAQJVzMm0hy/Rq4gxVjgEAAABGwwZ5dF6dT9fu/TKn5Sf5bOGOAB7KPLnLxfUC5s8f3BXsQdYupe619cTF9TXRhlyAHAMAQJVzMm0hy/Rq4gxVjgEAAABGx9Pz+9khf1q7d3remNnap1UByjBP7nJxvYAvf/nLjaxdiovr/deGXIAcAwBAlXMybSHL9GriDFWOAQAAAEbLK/PJbJDNK+uLMpNT89fppDOErgDMkx9sotPp+DZOMjs7m6mpqczMzGRycrKvtRcvXpy11lqrrzVL1C5l9yQX9KxtluSWJBPl22mFNuQC5BgAAKqck2kLWaZXE2eocgwAAAAwen6Wk/Jf+f3avf1yfJ6dA8o2BBDz5Afz4noBH/jABxpZu4T7k1xcs/68uLS+JpqeC0jkGAAA6jgn0xayTK8mzlDlGAAAAGD0PD3755n5s9q9b+aNmcmNhTsCME9+MC+uLzfIF9dZsR8keUHN+vuTvK1wLwAAAAAAAAAAADTbfbkjh2f73JObK3tPyu/lz/KNTHhWFWAovLhewPT0dCNrl7BgBevzi3bRPk3PBSRyDAAAdZyTaQtZplcTZ6hyDAAAADCa1s8meXWOrN37Vb6ZH+f4wh0B4848ucuL68sN8sX1m266KVtuuWVfa5aoXcIfJvlqz9q8JDNJ1i/fTms0PReQyDEAANRxTqYtZJleTZyhyjEAAADAaPtq/iKX5sTK+jqZzCG5PFPZeghdAePIPLnLi+sFfPOb32xk7UHrpP7F9Z3i0vqaanIu4HfkGAAAqpyTaQtZplcTZ6hyDAAAADDafi8fz4Z5bGV9UWZzSl6XTrz5C5Rhntzl4noB22+/fSNrD9r1SX5Tsz6/dCMt1ORcwO/IMQAAVDkn0xayTK8mzlDlGAAAAGC0rZ9Nsk+Oqt27Kmfk4hxbuCNgXJknd7m4XsDMzEwjaw9a3WvriYvr/dDkXMDvyDEAAFQ5J9MWskyvJs5Q5RgAAABg9D01r85O+cvavTPy5tyV6wt3BIwj8+QuF9cLuPvuuxtZe9BcXB+cJucCfkeOAQCgyjmZtpBlejVxhirHAAAAAM3we/lYNsqWlfUHcndOyWvTSWcIXQHjxDy5y8X1Ap7+9Kc3svag1V1c3zzJtoX7aKMm5wJ+R44BAKDKOZm2kGV6NXGGKscAAAAAzbBeHpV9clTt3tU5Kxfl6MIdAePGPLnLxfUCzjzzzEbWHqSFSX5csz4/yUThXtqoqbmAB5NjAACock6mLWSZXk2cocoxAAAAQHM8Ja/Ks3JA7d6ZeUvuynVlGwLGinly10Sn0/HPuUgyOzubqampzMzMZHJysq+177777my00UZ9rVmi9iB9P8kLa9Y/kOSfCvfSRk3NBTyYHAMAQJVzMm0hy/Rq4gxVjgEAAACaZWHuyuHZIXfn15W9J+Zl+YucmQnPrgIDYJ7c5cX1Aj7+8Y83svYgLVjB+vyiXbRXU3MBDybHAABQ5ZxMW8gyvZo4Q5VjAAAAgGZZLxtn3xxdu3d1vpWLclThjoBxYZ7c5cX15Qb54jpVf5Dkaz1r85LMJlmvfDsAAAAAAAAAAACMgZPzmvw4x1XW186GeX0uy6OybfmmAMaEF9cLmJ6ebmTtQekkOa9m/dlxab1fmpgL6CXHAABQ5ZxMW8gyvZo4Q5VjAAAAgGbaKx/JZLaqrD+Qe3JKXpNlWTaEroA2M0/u8uL6coN8cf3222/Ppptu2teaJWoPyjVJnliz/oYk/mEI/dHEXEAvOQYAgCrnZNpClunVxBmqHAMAAAA0169yRk7M79XuvSqHZ9e8vnBHQJuZJ3d5cb2AL33pS42sPSgLVrA+v2gX7dbEXEAvOQYAgCrnZNpClunVxBmqHAMAAAA015OyV56d19TunZm35s5cU7gjoM3Mk7tcXC9g/vzBXckeZO1BcXF98JqYC+glxwAAUOWcTFvIMr2aOEOVYwAAAIBm2yuHZjJbV9YX596cnNdkWZYNoSugjcyTu1xcL+CGG25oZO1Bqbu4/tgk25RupMWamAvoJccAAFDlnExbyDK9mjhDlWMAAACAZls3U9k3x9TuXZvv5Ec5onBHQFuZJ3e5uF7AxMREI2sPwn1JflKzPj9Js/5/MtqalguoI8cAAFDlnExbyDK9mjhDlWMAAACA5ntSXpGd87ravbPyT7kjVxfuCGgj8+QuF9cL2GqrrRpZexB+lGRJzbp/CEJ/NS0XUEeOAQCgyjmZtpBlejVxhirHAAAAAO3winw4U9mmsr449+XkHJRlWTaEroA2MU/ucnG9gPPPP7+RtQdhwQrWXVzvr6blAurIMQAAVDkn0xayTK8mzlDlGAAAAKAd1s1k9s2xtXvX5bu5MIcX7ghoG/PkrolOp9MZdhOjYHZ2NlNTU5mZmcnk5GRfa99222159KMf3deaJWoPwv5JTu5ZWyvJbJJ1i3fTXk3LBdSRYwAAqHJOpi1kmV5NnKHKMQAAAEC7nJq/yUU5srK+VtbP63NpNsl2Q+gKaAPz5C4vrhfw6U9/upG1+62T+hfXnx2X1vutSbmAFZFjAACock6mLWSZXk2cocoxAAAAQLu8Ih/KVB5fWV+c+3JyDsqyLBtCV0AbmCd3eXF9uUG+uM7/uDqp/Ttnb0zysbKtAAAAAAAAAAAAwENcnW/ns3lZ7d7v5ePZPW8o3BFAu3hxvYDp6elG1u63utfWk+R5RbsYD03KBayIHAMAQJVzMm0hy/Rq4gxVjgEAAADa54l5aZ6T19fufSv/nNvzq8IdAW1gntzlxfXlBvni+j333JMNN9ywrzVL1O63v01yeM369Um2LtxL2zUpF7AicgwAAFXOybSFLNOriTNUOQYAAABop0W5J0fkmbkr11b2tskLckC+mzneDAZWgXlyl2/PAo4++uhG1u63uhfXHxeX1gehSbmAFZFjAACock6mLWSZXk2cocoxAAAAQDutkw2zX46r3bs+388F+UThjoCmM0/ucnG9gL333ruRtfvp3iSX1qzPL93ImGhKLuDhyDEAAFQ5J9MWskyvJs5Q5RgAAACgvZ6Ql2TXHFK79+28PbfnysIdAU1mntzl4noBl112WSNr99OFSZbWrLu4PhhNyQU8HDkGAIAq52TaQpbp1cQZqhwDAAAAtNvL8oFsnCdU1pdkYU7KgVlWeyMOoMo8ucvF9QI23njjRtbupwUrWHdxfTCakgt4OHIMAABVzsm0hSzTq4kzVDkGAAAAaLd1smH2y3G1ezfkBzk/Hy/cEdBU5sldLq4XsNFGGzWydj/VXVxfO8nOpRsZE03JBTwcOQYAgCrnZNpClunVxBmqHAMAAAC03xOyR3bL39XunZ135Lb8onBHQBOZJ3e5uF7Az372s0bW7pdO6i+u75xkncK9jIsm5AIeiRwDAECVczJtIcv0auIMVY4BAAAAxsPL8v48Kk+srC/J/TkpB2ZZlg6hK6BJzJO7XFwv4OUvf3kja/fLVUluq1mfX7qRMdKEXMAjkWMAAKhyTqYtZJleTZyhyjEAAADAeFg7G2S/HF+7d2MW5Px8rGxDQOOYJ3e5uF7ACSec0Mja/VL32nri4vogNSEX8EjkGAAAqpyTaQtZplcTZ6hyDAAAADA+ts2L8ty8oXbv23lHbs3PC3cENIl5ctdEp9PpDLuJUTA7O5upqanMzMxkcnJy2O20yiFJjqhZvyHJVoV7AQAAAAAAAAAAgFX1QO7NEdkpd+aqyt5W2T0H5fuZk7lD6AygOby4XsD09HQja/dL3YvrW8Wl9UFqQi7gkcgxAABUOSfTFrJMrybOUOUYAAAAYLysnQ2yf45PMlHZuzHnZ0E+Ur4poBHMk7u8uL7cIF9cX7JkSebNm9fXmiVq98M9SaaSLOtZ/6MkXyrfztgY9VzAypBjAACock6mLWSZXk2cocoxAAAAwHg6Pf+QC/LxyvrcrJO/yY+zWZ4+hK6AUWae3OXF9QI+/OEPN7J2P/ww1UvrSfK80o2MmVHPBawMOQYAgCrnZNpClunVxBmqHAMAAACMp5fmvdkkT6qsL82inJQDsjRLhtAVMMrMk7u8uL7cIF9cv/baa7Ptttv2tWaJ2v3wniT/WrN+fpLnFu5lnIx6LmBlyDEAAFQ5J9MWskyvJs5Q5RgAAABgfF2fH+S4vDBJ9frly/L+vCBvK98UMLLMk7u8uF7A97///UbW7ocFNWvrJHl26UbGzKjnAlaGHAMAQJVzMm0hy/Rq4gxVjgEAAADG1zZ5fnbPP9TufSf/lt/mirINASPNPLnLxfUCHv/4xzey9prq5H9eVu+1S5K1C/cybkY5F7Cy5BgAAKqck2kLWaZXE2eocgwAAAAw3vbMdDbJkyvrS/NATsoBWZolQ+gKGEXmyV0urhewdOnSRtZeU1cmub1mfX7pRsbQKOcCVpYcAwBAlXMybSHL9GriDFWOAQAAAMbb2lk/++eEJBOVvZtyYc7Lh4r3BIwm8+QuF9cL+M1vftPI2mtqwQrWXVwfvFHOBawsOQYAgCrnZNpClunVxBmqHAMAAACwTZ6X+Xlz7d45eVduyeWFOwJGkXlyl4vrBey2226NrL2mXFwfnlHOBawsOQYAgCrnZNpClunVxBmqHAMAAACQJHvmP7JpnlpZX5oHcnIOzNIsGUJXwCgxT+5ycb2Ar3zlK42svabqLq5vk2TL0o2MoVHOBawsOQYAgCrnZNpClunVxBmqHAMAAACQJGtlveyf4zNRcx3zpvwoP8gHh9AVMErMk7smOp1OZ9hNjILZ2dlMTU1lZmYmk5OTfa29aNGirLPOOn2tWaL2mrg7ycZJlvWs/0mSLxbvZvyMai5gVcgxAABUOSfTFrJMrybOUOUYAAAAgAc7M/+U8/KhyvqcrJWDc1E2zzOH0BUwCsyTu7y4XsCHPlT9H6Mm1F4TP0z10nqSzC/dyJga1VzAqpBjAACock6mLWSZXk2cocoxAAAAAA/2krw7j87TKuvLsjgn5YAszeIhdAWMAvPkLi+uLzfIF9fH0XSSd9asX5Bkt8K9AAAAAAAAAAAAwKDdmAtybJ6XTs2zry/Jf+TF+dchdAUwOry4XsD09HQja6+JBTVr6yZ5VuE+xtWo5gJWhRwDAECVczJtIcv0auIMVY4BAAAA6LVVnpvn5R9r976bd+fmXFq4I2AUmCd3eXF9uUG+uH7TTTdlyy237GvNErVX17Ikj05yZ8/6C5KcW76dsTSKuYBVJccAAFDlnExbyDK9mjhDlWMAAAAA6izO/TkyO+e2/Kyyt0WendflgszNWkPoDBgW8+QuL64XcPrppzey9ur6ZaqX1pNkfulGxtgo5gJWlRwDAECVczJtIcv0auIMVY4BAAAAqLNW1s3+OSETNdczb86Pc27eN4SugGEyT+5ycb2AHXfcsZG1V9eCFay7uF7OKOYCVpUcAwBAlXMybSHL9GriDFWOAQAAAFiRrbJbnp9/qt37Xv4jN+cnhTsChsk8ucvF9QLuuOOORtZeXS6uD98o5gJWlRwDAECVczJtIcv0auIMVY4BAAAAeDh75F3ZLM+orC/LkpyUA7I0i4fQFTAM5sldLq4XcO+99zay9uqqu7i+bZItCvcxzkYxF7Cq5BgAAKqck2kLWaZXE2eocgwAAADAw5mXdbJ/TshE5lb2bs4lOTfvHUJXwDCYJ3e5uF7A0572tEbWXh0zSX5as+619bJGLRewOuQYAACqnJNpC1mmVxNnqHIMAAAAwCN5XHbNC/K22r3vZTq/ySVlGwKGwjy5y8X1Ar71rW81svbq+GGSTs26i+tljVouYHXIMQAAVDkn0xayTK8mzlDlGAAAAICV8eL8Wx6THSrry7IkJ+WvsiQPDKEroCTz5K6JTqdTd8947MzOzmZqaiozMzOZnJzse+1+1yxRe3W8O8m/16xfmOQ5hXsZZ6OWC1gdcgwAAFXOybSFLNOriTNUOQYAAABgZd2Ui3J0nptOllb2Xpx/y0vy/4bQFVCKeXKXF9cL+MQnPtHI2qtjQc3aekl2Kt3ImBu1XMDqkGMAAKhyTqYtZJleTZyhyjEAAAAAK2vL7JIX5l9q987Ne3NTLi7cEVCSeXKXF9eXG+SL6+NiWZJNk9zVs/7CJN8r3g0AAAAAAAAAAACMhiV5IEflOfltLqvsPSbPzF/nR5mXtYfQGUA5XlwvYHp6upG1V9UvUr20niTzC/fBaOUCVpccAwBAlXMybSHL9GriDFWOAQAAAFgV87J29s8Jmcjcyt5vc1m+l/8YQldACebJXV5cX26QL67fcccd2WSTTfpas0TtVXVcktfUrH8tyf5lWxl7o5QLWF1yDAAAVc7JtIUs06uJM1Q5BgAAAGB1nJ1/q72kPpG5eV0uyJbZZQhdAYNkntzlxfUCvvCFLzSy9qpasIJ1L66XN0q5gNUlxwAAUOWcTFvIMr2aOEOVYwAAAABWx4vyr9k8O1bWO1mak3JAlmTRELoCBsk8ucvF9QJe+MIXNrL2qjqvZu2JSTYv3QgjlQtYXXIMAABVzsm0hSzTq4kzVDkGAAAAYHXMy9rZP5/JnMyr7P02l+e7efcQugIGyTy5y8X1Aq699tpG1l4VdyW5ombda+vDMSq5gDUhxwAAUOWcTFvIMr2aOEOVYwAAAABW12PzrLww76jd+34+kF/nR4U7AgbJPLnLxfUC5s6d28jaq+KCFay7uD4co5ILWBNyDAAAVc7JtIUs06uJM1Q5BgAAAGBNvDBvz+bZqbLeydKclAOyJIuG0BUwCObJXS6uF/DYxz62kbVXxYIVrLu4PhyjkgtYE3IMAABVzsm0hSzTq4kzVDkGAAAAYE3My9r5/XwmczKvsndrfppz8v+G0BUwCObJXS6uF3DhhRc2svaqqLu4vn6SHUs3QpLRyQWsCTkGAIAq52TaQpbp1cQZqhwDAAAAsKa2yE55Ud5Zu/eDfCA35oeFOwIGwTy5a6LT6XSG3cQomJ2dzdTUVGZmZjI5OdnX2rfeems222yzvtYsUXtlLUuySZKZnvUXJzmneDcko5ELWFNyDAAAVc7JtIUs06uJM1Q5BgAAAKAflmZxjs5zc3N+XNl7dJ6eg3Nx1sq6Q+gM6Bfz5C4vrhdw5JFHNrL2yvpZqpfWk2R+6Ub4X6OQC1hTcgwAAFXOybSFLNOriTNUOQYAAACgH+ZmreyfEzIna1X2bsvPck7eVb4poK/Mk7u8uL7cIF9cb7tjkryuZv3kJPsW7gUAAAAAAAAAAACa5ruZznfyzsr6RObkNTkvW+W5Q+gKoL+8uF7A9PR0I2uvrAUrWN+9aBc82CjkAtaUHAMAQJVzMm0hy/Rq4gxVjgEAAADopxfkbXlsdq6sd7IsJ+WALM79Q+gK6Afz5C4vri83yBfX77vvvqy//vp9rVmi9sp6RpKf9axtl+RXQ+iF/zEKuYA1JccAAFDlnExbyDK9mjhDlWMAAAAA+u2WXJYjs0uWZXFl73l5a16RDw6hK2BNmSd3eXG9gCOOOKKRtVfGnaleWk+S+aUb4SGGnQvoBzkGAIAq52TaQpbp1cQZqhwDAAAA0G+b55nZI/9eu7cgh+aGnF+4I6AfzJO7XFwv4NWvfnUja6+MC1aw7uL6cA07F9APcgwAAFXOybSFLNOriTNUOQYAAABgEJ6ft+Wx2aWy3smynJQDsjgLh9AVsCbMk7tcXC/gJz/5SSNrr4zzVrD+vKJd0GvYuYB+kGMAAKhyTqYtZJleTZyhyjEAAAAAgzA387J/TsjcrF3Zuz2/yNl55xC6AtaEeXKXi+sFbLrppo2svTIW1KxtkGSH0o3wEMPOBfSDHAMAQJVzMm0hy/Rq4gxVjgEAAAAYlM2zQ/bIu2r3FuQjuX6FT84Co8g8ucvF9QLWW2+9RtZ+JEuTXFCzvluSeYV74aGGmQvoFzkGAIAq52TaQpbp1cQZqhwDAAAAMEjPy1uzZXat2enk5ByYxVlYvCdg9Zgnd7m4XsAvf/nLRtZ+JFckubtmfX7pRqgYZi6gX+QYAACqnJNpC1mmVxNnqHIMAAAAwCDNzbzsnxMyN2tX9m7PL3N2/nUIXQGrwzy5y8X1Al760pc2svYjWbCCdRfXh2+YuYB+kWMAAKhyTqYtZJleTZyhyjEAAAAAg/aYPCMvybtr9xbko7ku3y/cEbA6zJO7XFwv4DOf+Uwjaz+SFV1c371oF9QZZi6gX+QYAACqnJNpC1mmVxNnqHIMAAAAQAnz85Y8LrvV7HRycg7MA7mveE/AqjFP7prodDqdYTcxCmZnZzM1NZWZmZlMTk4Ou51GeFqSX/SsPTmJf6ABAAAAAAAAAAAA9Met+Vk+nWdnaRZV9nbPP+T38tEhdAWw6ry4XsD09HQjaz+cO1K9tJ4k80s3Qq1h5QL6SY4BAKDKOZm2kGV6NXGGKscAAAAAlLJZnp6X5N21e+fn47ku5xbuCFgV5sldXlxfbpAvri9dujRz587ta80StR/ON5K8qmb9iCR/U7gXqoaVC+gnOQYAgCrnZNpClunVxBmqHAMAAABQ0rIszXF5QW7M+ZW9R2W7vD4/ydrZYAidAY/EPLnLi+sFfPCDH2xk7YezYAXrXlwfDcPKBfSTHAMAQJVzMm0hy/Rq4gxVjgEAAAAoaU7mZr8cn7lZp7J3Z67Kt/P2IXQFrAzz5C4vri83yBfXr7vuujz+8Y/va80StR/Oy5J8u2dtwyR3JfF3QoZvWLmAfpJjAACock6mLWSZXk2cocoxAAAAAMPwg3w4Z+WttXsH5LvZNi8q3BHwSMyTu7y4XsD3vve9RtZekaVJLqhZ3y0urY+KYeQC+k2OAQCgyjmZtpBlejVxhirHAAAAAAzD/LwpW2V+7d7JOTAP5N7CHQGPxDy5y8X1Ap7whCc0svaKXJ7knpr155VuhBUaRi6g3+QYAACqnJNpC1mmVxNnqHIMAAAAwDDMydzsn+MzL+tW9u7M1flW/nkIXQEPxzy5y8X1ApYsWdLI2iuyYAXr9X+Hi2EYRi6g3+QYAACqnJNpC1mmVxNnqHIMAAAAwLA8Ok/NnnlP7d4Pc1iuyTllGwIelnlyl4vrBdx8882NrL0iK7q4vnvRLng4w8gF9JscAwBAlXMybSHL9GriDFWOAQAAABim3fPGbJ3n1+6dnIOyKPcU7ghYEfPkLhfXC9hll10aWXtF6i6uPzXJJqUbYYWGkQvoNzkGAIAq52TaQpbp1cQZqhwDAAAAMExzMjf75bjMy7qVvbtyTb6Vfx5CV0Ad8+QuF9cLOOmkkxpZu85tSa6sWZ9ftAseSelcwCDIMQAAVDkn0xayTK8mzlDlGAAAAIBhe3SekpfmfbV7F+ZTuTpnF+4IqGOe3DXR6XQ6w25iFMzOzmZqaiozMzOZnJzsa+37778/665b/VtNo167zmlJ9qlZPzLJXxfrgkdSOhcwCHIMAABVzsm0hSzTq4kzVDkGAAAAYBQsy7KckBfn+ny/srdxts3rc1nWyYZD6Az4HfPkLi+uF/DhD3+4kbXrLFjBuhfXR0vpXMAgyDEAAFQ5J9MWskyvJs5Q5RgAAACAUTAnc7Jfjs+8rFfZuyvX5qz80xC6Ah7MPLnLi+vLDfLF9TbZM8l3etY2SnJnkrnl2wEAAAAAAAAAAICxd34+nm/mH2r3/jLfzhOzZ9mGAGp4cb2A6enpRtbutSTJD2vWnxuX1kdNyVzAoMgxAABUOSfTFrJMrybOUOUYAAAAgFGyW/4+2+SFtXsn56Asyt2FOwJ+xzy5y4vryw3yxfWbb745W2yxRV9rlqjd65Ikz65Zf2eSdxfpgJVVMhcwKHIMAABVzsm0hSzTq4kzVDkGAAAAYNTckatyRHbM4txX2dslB2effHoIXQHmyV1eXC/g1FNPbWTtXgtWsD6/WAesrJK5gEGRYwAAqHJOpi1kmV5NnKHKMQAAAACjZpNsl5fl/bV7F+XIXJVvFe4ISMyTH8zF9QKe9axnNbJ2rxVdXN+9WAesrJK5gEGRYwAAqHJOpi1kmV5NnKHKMQAAAACjaNf8bR6fF9funZLX5P7MFu4IME/ucnG9gNtvv72RtXudV7P29CSPKtYBK6tkLmBQ5BgAAKqck2kLWaZXE2eocgwAAADAKJqTOdkvx2WtbFDZm8n1OStvHUJXMN7Mk7tcXC9g4cKFjaz9YL9NclXN+vwin86qKpULGCQ5BgCAKudk2kKW6dXEGaocAwAAADCqNskT8/J8oHbvohyVX+XMwh3BeDNP7nJxvYAnP/nJjaz9YOevYN3F9dFUKhcwSHIMAABVzsm0hSzTq4kzVDkGAAAAYJQ9J6/Pttmjdu+UvDb3Z6ZsQzDGzJO7XFwv4Dvf+U4jaz/YghWsu7g+mkrlAgZJjgEAoMo5mbaQZXo1cYYqxwAAAACMsjmZk/1yXNbKBpW92dyQM/OPQ+gKxpN5ctdEp9PpDLuJUTA7O5upqanMzMxkcnKyr7VnZmYyNTXV15olaj/YHkm+27M2leSO+NsPo6hULmCQ5BgAAKqck2kLWaZXE2eocgwAAABAE1yYI/L1HFK79+f5Zp6UvQp3BOPHPLnLneMCPvnJTzay9u8sSXJhzfpzI0CjqkQuYNDkGAAAqpyTaQtZplcTZ6hyDAAAAEAT7JKD84TsWbt3Sl6b+zNTuCMYP+bJXV5cX26QL6433cVJdqlZ//ck7yrbCgAAAAAAAAAAALAK7sy1OSLPzAO5p7L37ByU/XLsELoCxpEHswuYnp5uZO3fWbCC9fkD/2RWV4lcwKDJMQAAVDkn0xayTK8mzlDlGAAAAICmeFS2zcvzodq9H+e4XJnTC3cE48U8ucuL68sN8sX1u+66KxtvvHFfa5ao/Tt/nuTzNet3JhnsJ7O6SuQCBk2OAQCgyjmZtpBlejVxhirHAAAAADRJJ518Lq/I1flWZW+jPC6H5PKs50YgDIR5cpcX1ws48cQTG1n7d+peXH9GXFofZSVyAYMmxwAAUOWcTFvIMr2aOEOVYwAAAACaZCIT2TfHZO1sVNm7O7/OGXnTELqC8WCe3OXiegEvfvGLG1k7SX6b5Oqa9fkD/VTW1KBzASXIMQAAVDkn0xayTK8mzlDlGAAAAICm2TiPzyvy4dq9S3JCfpmvF+4IxoN5cpeL6wVcddVVjayd1L+2nri4PuoGnQsoQY4BAKDKOZm2kGV6NXGGKscAAAAANNEueV2emJfX7p2av87C3Fm4I2g/8+QuF9cLWHvttRtZO3FxvakGnQsoQY4BAKDKOZm2kGV6NXGGKscAAAAANNFEJrJvjsna2aiyd3duyjfzpiF0Be1mntzl4noBm2++eSNrJ8l5NWsbJ3naQD+VNTXoXEAJcgwAAFXOybSFLNOriTNUOQYAAACgqTbONtkrH6nd+0k+k1/k1MIdQbuZJ3e5uF7ARRdd1Mjai5P8qGZ99wjOqBtkLqAUOQYAgCrnZNpClunVxBmqHAMAAADQZDvnNdkue9XunZqDszB3Fu4I2ss8uWui0+l0ht3EKJidnc3U1FRmZmYyOTnZ19q33HLLwP62xCBr/yjJrjXr/y/Jvw3kE+mXQeYCSpFjAACock6mLWSZXk2cocoxAAAAAE03kxtyeHbIosxW9nbMX+QP8tkhdAXtY57c5eHsAo4++uhG1l6wgvX5A/tE+mWQuYBS5BgAAKqck2kLWaZXE2eocgwAAABA001l6+yVj9TuXZrP5ec5pXBH0E7myV1eXF9ukC+uN9X/l+QLPWsTSe5K4j8hAAAAAAAAAAAAaLZOOvl8Xplf5ZuVvQ2zRQ7JT7N+NhlCZ0AbeXG9gOnp6UbWrntxffu4tN4Eg8wFlCLHAABQ5ZxMW8gyvZo4Q5VjAAAAANpgIhPZJ0dnnUxV9u7JzTk9bxhCV9Au5sldXlxfbpAvri9cuDDrrbdeX2sOuvbNSR5bs/66JEf1/dPot0FmDkqRYwAAqHJOpi1kmV5NnKHKMQAAAABt8uMcn5NzUO3e/81JeVr2K9wRtId5cpcX1ws4/PDDG1e77rX1JJk/kE+j3waZOShFjgEAoMo5mbaQZXo1cYYqxwAAAAC0ybNyQJ6cV9bunZqDc19uL9wRtId5cpeL6wXsu+++javt4nqzDTJzUIocAwBAlXMybSHL9GriDFWOAQAAAGiTiUxknxyVdTJV2bs3t+Qb+fshdAXtYJ7c5eJ6ARdffHHjatddXH9UkqcM5NPot0FmDkqRYwAAqHJOpi1kmV5NnKHKMQAAAABtM5nHZe98vHbv8nwhP8vXCncE7WCe3OXiegGbbbZZo2o/kORHNeu7R2CaYpCZg1LkGAAAqpyTaQtZplfTZqiDrAsAAAAAw7RT/jJPzqtq907L3+Te3Fa4I2g+8+Qu95ALWGeddRpV+ydJ7q9Zn9/3T2JQBpk5KEWOAQCgyjmZtpBlejVthjrIugAAAAAwTBOZyD45Kutm48revfltTs/fl28KGs48ucvF9QKuuuqqRtU+bwXrz+v7JzEog8wclCLHAABQ5ZxMW8gyvZo2Qx1kXQAAAAAYtslsmb3zidq9y/PFXJGvFO4Ims08ucvF9QL22GOPRtVeULM2J8luff8kBmWQmYNS5BgAAKqck2kLWaZX02aog6wLAAAAAKNgx/x5npJ9avdOy+tzb24t3BE0l3lyl4vrBXzuc59rVO26i+s7JNmo75/EoAwyc1CKHAMAQJVzMm0hy/Rq2gx1kHUBAAAAYBRMZCL75Mism0dV9u7LrflG/m4IXUEzmSd3TXQ6nc6wmxgFs7OzmZqayszMTCYnJ/tae9myZZkzZzB/R6DftW9K8ria9YOTfLpvn8KgDTJzUIocAwBAlXMybSHL9GrSDHXQdQEAAABglPwkJ+Zr+YvavT/Kl7J9/qhwR9A85sld/lMo4L3vfW9jate9tp4k8/v6KQzaIDMHpcgxAABUOSfTFrJMrybNUAddFwAAAABGyY75szw1+9XufT2H5J78tnBH0DzmyV1eXF/Oi+v/4x+THFqz/oskT+nbpzBo/nYObSDHAABQ5ZxMW8gyvZo0Qx10XQAAAAAYNXfn5hye7bMwd1T2npH/kz/Ol4fQFTSHeXKX/xQKeN/73teY2nUvrm+a5Ml9/RQGbZCZg1LkGAAAqpyTaQtZpleTZqiDrgsAAAAAo2ajbJG988navSvy37k8XyrcETSLeXKXF9eXG+SL69dff3222WabvtYcRO0HkkwmWdSz/qokp/XlEyhlkJmDUuQYAACqnJNpC1mmV1NmqCXqAgAAAMAo6qST/8of5Oc5qbK3fh6dQ/LTbJjHlG8MGsA8ucuL6wWcc845jaj941QvrSfJ/L59AqUMMnNQihwDAECVczJtIcv0asoMtURdAAAAABhFE5nIq/PprJdNK3v35bZ8PYekE+8oQx3z5C4X1wvYbrvtGlF7wQrWXVxvnkFmDkqRYwAAqHJOpi1kmV5NmaGWqAsAAAAAo2rDbJ5X5rDavZ/lK7k8/1W4I2gG8+QuF9cLWLSo7h3z0atdd3F9TpLd+vYJlDLIzEEpcgwAAFXOybSFLNOrKTPUEnUBAAAAYJTtkD/J0/MHtXvfyN/lntxSuCMYfebJXS6uF3Drrbc2onbdxfVnJtmwb59AKYPMHJQixwAAUOWcTFvIMr2aMkMtURcAAAAARtlEJvKqHJ71smllb2Fuz2l5fTrpDKEzGF3myV0urhew8847j3ztG5PcULP+vL5Up7RBZg5KkWMAAKhyTqYtZJleTZihlqoLAAAAAKNuw2yeV+Xw2r2f52u5PF8s3BGMNvPkLhfXCzjllFNGvnbda+tJMr8v1SltkJmDUuQYAACqnJNpC1mmVxNmqKXqAgAAAEAT7JA/zjPyf2r3vpG/y925uXBHMLrMk7smOp2OfyZDktnZ2UxNTWVmZiaTk5N9rb1w4cKst956fa3Z79pvTvLRmvUrkzxpjatT2iAzB6XIMQAAVDkn0xayTK8mzFBL1QUAAACAprgnv83h2T735bbK3lOzX/5vvpaJTAyhMxgt5sldXlwv4NBDDx352nUvrj86yXZ9qU5pg8wclCLHAABQ5ZxMW8gyvZowQy1VFwAAAACaYsM8Jq/K4bV7v8jJuSz/WbgjGE3myV1eXF9ukC+uj7pFSSaTPNCzvk8S/3ACAAAAAAAAAAAAYEW+nD/JT/Olyvq6eVT+Nj/NRnnsELoCRpEX1wuYnp4e6doXp3ppPUnmr3FlhmWQmYNS5BgAAKqck2kLWabXqM9QS9YFAAAAgKZ5ZQ7L+tmssn5/7sypOTideF+Z8Wae3OXF9eUG+eL6Lbfcks0337yvNftZ+yNJ3lKz/p0ke6xRZYZlkJmDUuQYAACqnJNpC1mm16jPUEvWBQAAAIAmuiJfyZfyf2r3fj+fzU75i8IdwegwT+7y4noBJ5988kjXXlCzNjfJrmtcmWEZZOagFDkGAIAq52TaQpbpNeoz1JJ1AQAAAKCJnpE/zPb5k9q90/OGzOamwh3B6DBP7nJxvYBddtllpGvXXVzfMckGa1yZYRlk5qAUOQYAgCrnZNpCluk16jPUknUBAAAAoKlemcOyQR5TWb8/d+W0HJxOOkPoCobPPLnLxfUCbrnllpGtfUOSX9esz1+jqgzbIDMHpcgxAABUOSfTFrJMr1GeoZauCwAAAABNtUEenVfn07V7v8xp+Uk+W7gjGA3myV0urhfwwAMPjGztutfWExfXm26QmYNS5BgAAKqck2kLWabXKM9QS9cFAAAAgCZ7en4/O+RPa/dOzxszW/vULrSbeXKXi+sFbLfddiNb28X1dhpk5qAUOQYAgCrnZNpCluk1yjPU0nUBAAAAoOlemU9mg2xeWV+UmZyav04nnSF0BcNjntzl4noB3/3ud0e29nk1a49J8sQ1qsqwDTJzUIocAwBAlXMybSHL9BrlGWrpugAAAADQdOtn0+yTI2v3rsw3ckk+U7gjGC7z5K6JTqfjr64kmZ2dzdTUVGZmZjI5OdnX2nfddVc23njjvtbsR+37k0wmWdyzvl+Sk9aoK4ZtkJmDUuQYAACqnJNpC1mm16jOUIdRFwAAAADa4iv581yWz1fW18lkDslPM5WthtAVlGee3OXF9QIOO+ywkax9UaqX1pNk/mpXZFQMMnNQihwDAECVczJtIcv0GtUZ6jDqAgAAAEBb7J1PZMNsUVlflNmcmtelE+8uMx7Mk7u8uL7cIF9cH1UfTvLWmvXvJnlR4V4AAAAAAAAAAACAdvl5TskXs1/t3r45NjvnoMIdAcPkxfUCpqenR7L2gpq1eUmes9oVGRWDzByUIscAAFDlnExbyDK9RnWGOoy6AAAAANAmT8u+2TF/Xrt3Rt6UmdxQuCMozzy5y4vryw3yxfWZmZlMTU31teaa1u4keVyS3/Ss75LkR33oi+EaZOagFDkGAIAq52TaQpbpNYoz1GHVBQAAAIC2uS935PDskHsqNxaT7bJX/jynZyITQ+gMyjBP7vLiegGf/exnR6729aleWk+S+WvUDaNikJmDUuQYAACqnJNpC1mm1yjOUIdVFwAAAADaZv1skn1yVO3eVTkjF+fYwh1BWebJXS6uF/CSl7xk5GovWMG6i+vtMMjMQSlyDAAAVc7JtIUs02sUZ6jDqgsAAAAAbfTUvDo75S9r987Im3NXri/cEZRjntzl4noBV1555cjVdnG93QaZOShFjgEAoMo5mbaQZXqN4gx1WHUBAAAAoK1+Lx/LRtmysv5A7s4peW066QyhKxg88+QuF9cLWG+99Uaudt3F9c2TbLsmzTAyBpk5KEWOAQCgyjmZtpBleo3iDHVYdQEAAACgrdbLo7JPjqrduzpn5aIcXbgjKMM8ucvF9QI23XTTkaq9MMmPa9bnJ5lY04YYCYPMHJQixwAAUOWcTFvIMr1GbYY6zLoAAAAA0GZPyavyrBxQu3dm3pK7cl3ZhqAA8+QuF9cLuOSSS0aq9kVJltSsz1/TZhgZg8wclCLHAABQ5ZxMW8gyvUZthjrMugAAAADQdnvlo9koj6usP5B7ckpem046Q+gKBsc8uWui0+n4b3iS2dnZTE1NZWZmJpOTk32tffPNN2eLLbboa801qf2hJP9Us/69JC/sR1MM3SAzB6XIMQAAVDkn0xayTK9Rm6EOsy4AAAAAjIMrc3o+n1fW7r06n85zcnDhjmBwzJO7vLhewDHHHDNStc+rWZuX5Dlr3A2jYpCZg1LkGAAAqpyTaQtZpteozVCHWRcAAAAAxsGTs3eenYNq987MP+bOXFu2IRgg8+QuL64vN8gX10dJJ8ljk9zSs75rkh+WbwcAAAAAAAAAAAAYQ/dnJodnh8zmxsreE7Jn/iJnZY73maFV/De6gOnp6ZGpfW2ql9aTZH4/mmFkDDJzUIocAwBAlXMybSHL9BqlGeqw6wIAAADAuFg3U9k39S9RX5Ozc1GOLNwRDIZ5cpcX15cb5Ivr999/f9Zdd92+1lzd2v+Z5M9q1r+Q5P/2qymGbpCZg1LkGAAAqpyTaQtZptcozVCHXRcAAAAAxs3JeW1+nGMr62tlgxySy/KoPGEIXUH/mCd3eXG9gE9+8pMjU3vBCta9uN4ug8wclCLHAABQ5ZxMW8gyvUZphjrsugAAAAAwbvbKoZnM1pX1xbk3J+egLMuyIXQF/WOe3OXiegH777//yNSuu7j+2CTb9KMZRsYgMwelyDEAAFQ5J9MWskyvUZqhDrsuAAAAAIybdTOVfXNM7d61OSc/yhGFO4L+Mk/ucnG9gIsuumgkat+X5Cc16/OTTPSrIUbCIDMHpcgxAABUOSfTFrJMr1GZoY5CXQAAAAAYR0/KK7JzXle7d1b+KXfk6sIdQf+YJ3e5uF7AFltsMRK1f5RkSc36/L51w6gYZOagFDkGAIAq52TaQpbpNSoz1FGoCwAAAADj6hX5cKayTWV9ce7LyTkoy7JsCF3BmjNP7nJxvYB58+aNRO0FK1h3cb19Bpk5KEWOAQCgyjmZtpBleo3KDHUU6gIAAADAuFo3k9k3x9buXZfv5sIcXrgj6A/z5C4X1wu45pprRqJ23cX1tZLs0rduGBWDzByUIscAAFDlnExbyDK9RmWGOgp1AQAAAGCcbZeXZZccXLv3rbwtd+Sqwh3BmjNP7nJxvYAXvehFQ6/dSf3F9WcnWbefDTESBpk5KEWOAQCgyjmZtpBleo3CDHVU6gIAAADAuHtFPpSpPL6yvjj35eQclGVZNoSuYPWZJ3e5uF7Af/7nfw699jVJfluzPr+v3TAqBpk5KEWOAQCgyjmZtpBleo3CDHVU6gIAAADAuFsnG2W/HFu7d12+lx/msMIdwZoxT+6a6HQ6nWE3MQpmZ2czNTWVmZmZTE5O9rX20qVLM3fu3L7WXNXaJyb5i5r1/0ryx/1uiqEbZOagFDkGAIAq52TaQpbpNQoz1FGpCwAAAAD8j9NySH6UIyrr87JeXp9Ls2meNISuYNWZJ3d5cb2A973vfUOvvWAF615cb6dBZg5KkWMAAKhyTqYtZJleozBDHZW6AAAAAMD/eHk+mI2zbWV9SRbm5ByYZVlWvilYDebJXV5cX26QL66Pgp2T/Lhn7XFJbhxCLwAAAAAAAAAAAACP5Jp8J5/JnrV7e+WjmZ9/KNsQsEa8uF7A9PT0UGvfm+TSmnWvrbfXIDMHpcgxAABUOSfTFrJMr2HPUEepLgAAAADQ9YS8JLvmkNq9b+ftuT1XFu4IVp15cpcX15cb5IvrN9xwQ7beeuu+1lyV2uckeUnN+qFJ3jyAnhi+QWYOSpFjAACock6mLWSZXsOeoY5SXQAAAADgoRblnhyRHXNXrqnsbZ3n58B8N3MydwidwcoxT+7y4noB3/72t4dae8EK1r243l6DzByUIscAAFDlnExbyDK9hj1DHaW6AAAAAMBDrZMNs1+Oq927IT/I+fl44Y5g1Zgnd7m4XsBTnvKUodauu7i+dpKd+94No2KQmYNS5BgAAKqck2kLWabXsGeoo1QXAAAAAKh6QvbIbvm72r2z847cll8U7ghWnnlyl4vrBSxcuHBotTupv7i+c5J1BtEQI2GQmYNS5BgAAKqck2kLWabXMGeoo1YXAAAAAKj3srw/j8oTK+tLcn9OyoFZlqVD6AoemXlyl4vrBdx+++1Dq31Vkttq1ucPpBtGxSAzB6XIMQAAVDkn0xayTK9hzlBHrS4AAAAAUG/tbJD9cnzt3o1ZkPPzsbINwUoyT+5ycb2AnXbaaWi1615bT1xcb7tBZg5KkWMAAKhyTqYtZJlew5yhjlpdAAAAAGDFts2L8ty8oXbv23lHbs3PC3cEj8w8ucvF9QJOO+20odV2cX08DTJzUIocAwBAlXMybSHL9BrmDHXU6gIAAAAAD++leW8ele0q60uzKCfnwCzL0iF0BStmntw10el0OsNuYhTMzs5mamoqMzMzmZyc7Gvt++67L+uvv35fa65s7WcnuaRnbaskNwykG0bFIDMHpcgxAABUOSfTFrJMr2HOUEetLgAAAADwyK7LuTk+L05SvQL78nwwz89byzcFK2Ce3OXF9QI+8pGPDKX23UkurVl/3sC6YVQMMnNQihwDAECVczJtIcv0GtYMdRTrAgAAAACP7PF5YXbPG2v3zs47c2t+VrgjWDHz5C4vri83yBfXh+XsJC+tWf9okn8o2woAAAAAAAAAAABA3zyQ+/LpPCt35MrK3uOyWw7KDzI384bQGbAiXlwvYHp6eii1F6xgff5gWmGEDDJzUIocAwBAlXMybSHL9BrWDHUU6wIAAAAAK2ftrJ/9c3ySicrer/PDLMih5ZuCGubJXV5cX26QL67feuut2Wyzzfpac2VqvzrJ13vW1kkym2TtgXTDqBhk5qAUOQYAgCrnZNpCluk1rBnqKNYFAAAAAFbNN/PmnJ+PVtbnZu0cnB/nMXnGELqCLvPkLi+uF/DVr361eO1OkvNr1neJS+vjYJCZg1LkGAAAqpyTaQtZptcwZqijWhcAAAAAWDV7Zjqb5MmV9aV5ICflgCzNkiF0BV3myV0urhew6667Fq99ZZLba9bnD6wTRskgMwelyDEAAFQ5J9MWskyvYcxQR7UuAAAAALBq1s762T8nJJmo7N2UC3NePlS8J3gw8+QuF9cL+M1vflO89oIV/HkX18fDIDMHpcgxAABUOSfTFrJMr2HMUEe1LgAAAACw6rbJ8zI/b67dOyfvyi25vHBH0GWe3OXiegFLly4tXtvF9fE2yMxBKXIMAABVzsm0hSzTaxgz1FGtCwAAAACsnj3zH9k0T62sL80DOTkHZmmWDKErME9+MBfXC9h2222L1667uL5Nki0H1gmjZJCZg1LkGAAAqpyTaQtZptcwZqijWhcAAAAAWD1rZb3sn+MzUXM19qb8KD/IB4fQFZgnP5iL6wWce+65RWvfndT+Qy28tj4+Bpk5KEWOAQCgyjmZtpBlepWeoY5yXQAAAABg9W2d+Zmft9TunZN35ZZcVrgjME9+sIlOp9MZdhOjYHZ2NlNTU5mZmcnk5GRfa99xx//f3p2H2VnW9+N/TxII6ww7CQpu1eK+oFbqbt0QEKxL69aiWCkWl5ba5Vu11A5FQARkB1kUEIQfEFbZjQEEjNCwGKCIskkGApiZhITJdn5/GDjMeU5gMnOWeZ68Xr24ap77nM/5qO8+1319enPzeDbbbLOW1ny22lcleW+Tzx6W5Ktt6YKJpp2Zg06RYwAAKLJPpipkmUadnqFO5LoAAAAAwPgsy5M5Lq/Po7mzsDY9b8gXckMmZ50udMbayjy5zo3rHXD00Ud3tPb1q/msG9fXHu3MHHSKHAMAQJF9MlUhyzTq9Ax1ItcFAAAAAMZnnayX3XNKepockZ2Xm3NtDuxCV6zNzJPrKnHj+u23356/+Zu/yZZbbpmVK1fmve99b/71X/91jWq088b1JKmllp70tLxuMx9K8tOGZ+slGUyybkc6AAAAAAAAAAAAAOieK/KvuS4HFZ5Pyjr5Yn6VaXlNF7qCtVslblwfHh7OTTfdlMsuuyxf+MIX8tWvfrXbLSXLliV3352lix7J3/T/ea7Mv7flZ/r7+0f8eWWSG5p87o1xaH1t0pgLKCM5BgCAIvtkqkKWadTOTLSrthwDAAAAwMT2rvxXtsjLC89XZllmZI+syLIudMXayDy5rhI3rj9l1qxZmT59el760peu8XdbfuP63Xfnvs+9LOefnMzbOllvw+TzX3pNtt11/2SXXcZff5WhoaER/d6ZNHnNJl9Pmvx9Q1RVYy6gjOQYAACK7JOpClmmUTsz0a7acgwAAAAAE9+D+WVOzI6pZWVh7V35r7wr3+pCV6xtzJPrKnHj+lPOOeecMR1ab7WlWZxL1/9GTp6VPP7SZM4pSW1yMuMfb82yJY+39LdOOeWUEX++fjWf27Glv8pE15gLKCM5BgCAIvtkqkKWadTOTLSrthwDAAAAwMT3/Lw5b82/NF2blf/OQG7pcEesjcyT6ypzcP33v/99BgYGRv354eHhDA0NjfirVRbk3syefu7T/+m++L1//N+PbZ9c/ZaLW/Y7SfLe9753xJ8dXCcp5gLKSI4BAKDIPpmqkGUatTMT7aotxwAAAABQDu/Kftkyryg8X5nlmZE9sjxLu9AVaxPz5LpRH1w/44wzcs899+Sggw7K8PBw+vv7kyT9/f156KGHcuKJJ2b27Nm57LLLcu6552bu3Ln5/ve/n6GhoRGfffzxx3PUUUfl1ltvzQUXXJCLL744N998c4477rjMnz9/xGcXL16cQw45JHfddVfOOuusXHXVVfnFL36RU045JQ888MCIzz788MN54IEHct999+XUU0/Ntddem5kzZ+bMM8/M3XffnYMPPjhPPvnk09/Zaaed0tfX9/Rf2267bZJk7ty5OeKIIzI4ODii/oIFC3LkkUfmtttuy4wZM3LJJZfkpptuyvHHH5+HH354xGc3XvKiDHztpXns7uT2nyS/Pju5/7rklh8ll648K1/ff6+sXLky/f39WblyZfbff//cf//9+dGPfpTrrrsuV199dX7yk5/k7rvvziGHHJIlS5YU/r0ef/zxuemmm3L66adnxowZue2223LkkUfm2gULklWfTX9/MjiYzY44Io/efnvOO++8XHrppZk9e3ZOOOGEDAwMjKj75JNP5uCDD87dd9+dM888MzNnzsy1116bU089Nffdd18OOOCArFixYsR3HnjggZxyyin5xS9+kauuuipnnXVW7rrrrhxyyCFZvHjxiM/Onz8/xx13XG6++eZcfPHFueCCC3LrrbfmqKOOyuOPPz7is0NDQ/n+97+fuXPn5txzz81ll12W2bNn58QTT8xDDz004rPDw8M56KCDcs899+SMM87IzJkzc8011+S0007Lvffem+985ztZvnz5iO88+OCDOfnkk3PDDTfkiiuuyNlnn50777wzhx56aBYtWjTis48++miOPfbYzJkzJxdddFEuvPDCzJkzJ8ccc0wee+yxEZ9duHBhDjvssMydOzfnnHNOLr/88tx444056aSTCn0vW7YsBx54YH7729/m9NNPz6xZszJr1qycfvrp+e1vf5sDDzwwy5YtK/zf2kknnZQbb7wxl19+ec4555zMnTs3hx12WBYuXDjis4899liOOeaYzJkzJxdeeGEuuuiizJkzJ8cee2weffTREZ9dtGhRDj300Nx55505++yzc8UVV+SGG27IySefnAcffHDEZ5cvX57vfOc7uffee3PaaaflmmuuycyZMyf8O2LFihU54IADRv2O6O/vz8DAQE444YTMnj07l156ac4777zcfvvt435HLFmyJIccckjuvvvu/OQnP8nVV1+d6667Lj/60Y9y//33Z//992/ZO+KSSy4Z8Y5YsGDBiM8ODg7miCOOyO0T8B1x6qmnekd4R3hHeEes9h1hH+Ed4R3hHeEd4R2xtr4jTj/9dO8I7wjvCO+I1b4jyryPuOiii9r2jjjxxBPb8o4444wzvCO8I7wj7CNW+46wj/CO8I7wjvCO8I7wjvCO8I7wjvCO8I7wjvCO8I6YOO+Iyy+5KuvN2COP3DYpvzwyeXJBMuuPH81Z/XPy08FveUd4R7T1HXHuuedW/h0xWj21Wq026k9XyPDwcIaHh5/+89DQULbddtsMDg6mt7d33PVX/Me/5sTdDspDb05+c1nyJx+or22el+XvMyfrZP1x/85ll12WD3zgj8UHk2yapPG/0E8m+fG4f4kyeWYuoKzkGAAAiuyTqQpZplE7M9Gu2nIMAAAAAOVyVf4j1+R/Cs8nZUr+LrMzPa/rfFOsFcyT60Z943rVTJ06Nb29vSP+aqXJDz2S3fdIJg8n6282cu2x/F+uzjda8jubbVYv/ssUD60nyY4t+SXK5Jm5gLKSYwAAKLJPpipkmUbtzES7assxAAAAAJTLO/OtbJVXFZ6vzPLMyN9meZZ2oSvWBubJdaU+uN7T0zPqvzpu3rxsdUfy7m8lD99aXL4+h+b+XDfun7n11nrx61fzGQfX1z7PzAWUlRwDAECRfTJVIcs0amcm2lVbjgEAAACgXKZkanbPKenJ5MLaw7k112T/LnTF2sA8ua6nVqs1u6R7rTM0NJS+vr4MDg625vb1170uueWWrJicfG9G8sQuxY9slj/J3+eWrJsNxvwzDz30ULbZZpskyU5JLm1YXz/JYJJ1xvwLlNEzcwFlJccAAFBkn0xVyDKN2pmJdtWWYwAAAAAop6vzzcxKf+H5pEzJF3JjtskbutAVVWaeXFfqG9eT5Iwzzsill16ar33taxkcHEySPPjgg9l3332729jAQJJk8ork8c8lk58sfuTx/CZX5z/G9TMnnXRSkmRlkhuarL8xDq2vjZ7KBZSZHAMAQJF9MlUhyzRqZybaVVuOAQAAAKCc3pFvZqu8uvB8ZZZnRvbI8iztQldUmXlyXalvXJ81a1buvPPOfPGLX3z6Wa1Wy9FHH53Zs2fnlFNOGXWtlt64vnx5su66yTP+o73268mVBzX7cE8+l5/nBXn7uH7yjiSvaPL8X5IcOK7KAAAAAAAAAAAAANXxUG7OCXlzallRWHtHvpH35L+70BVUX6lvXD/33HPz+OOP57rrrstBBx2UWq2WK664Iu95z3u629j8+SMOrfcn+fNDkuc/uG2TD9dyfj6fpXliTD/V3//Hf1zF9atZ33FMVSm7p3IBZSbHAABQZJ9MVcgyjdqZiXbVlmMAAAAAKK9t8oa8Pf+v6do1OSAP5aYOd0SVmSfXlfrG9S996Uv54Ac/mA9/+MP51re+lec973l5y1vekr6+vuy3337du3H95puTHXZ4+o/DSaYmmX/Wt3Psx/fPigwXvvJn+Up2yuFr/FPDw8OZOnVqvpDkxCbrA0m2XuOqlN1TuYAyk2MAACiyT6YqZJlG7cxEu2rLMQAAAACU2/IszQl5Ux7OrYW1rfKqfDG/ypSYATJ+5sl1pb5xfYdnHA5PkoGBgfzud7/L5Zdfnvvvvz+33lp8mXTEwMCIPz51HH3LDd6Q96T53zVxY76fezNrjX/q8MP/WL3ZjesvjkPra6uncgFlJscAAFBkn0xVyDKN2pmJdtWWYwAAAAAotylZN7vnh5mUKYW1R3J7fp5vd6Erqsg8ua7UB9c/+9nP5pZbbsl5552XTTfdNN/61rey8847Z8mSJRkeHk7XLpOfN2/EHz/61L+YNi075h/z/OzY9Gvn53NZmifW6Kc++tGPZkGSuU3Wmv8Ka4OPfvSjz/0hmODkGAAAiuyTqQpZplE7M9Gu2nIMAAAAAOU3Pa/L2/MfTdeuzYH5fX7V4Y6oIvPkulIfXF933XXzzW9+Mx/5yEfyj//4j+np6ck666yTr371q7nuuuvy2te+tjuNNdy4/sun/sX06ZmUydk9J2dK1it87Q/5ba7Mv6/RT/3yl7/MjatZc3B97fXLX/7yuT8EE5wcAwBAkX0yVSHLNGpnJtpVW44BAAAAoBrenv+XrVM8b1rLiszIHlme4S50RZWYJ9eV+uD6hNVw4/r0JOnpSbbaKkmyRf4078n+Tb/6yxyRe/PzUf/U9OnTc/1q1hxcX3tNnz692y3AuMkxAAAU2SdTFbJMo3Zmol215RgAAAAAqmFK1s1H8sNMypTC2vz8OjPzX13oiioxT65zcL0dGm5cn5wkW26ZTKm/1N6Sr2bbvLXp12fkcxnOolH91OTJk5seXN8gyWtG1y0VNHny5G63AOMmxwAAUGSfTFXIMo3amYl21ZZjAAAAAKiOaXlt3pFvNl27Lgfmwbgxm7EzT65zcL0dGm5cvy9Jpk0b8WxSJme3nJQpWa/w9QX5Xa7Mv43qp3533325scnzNyVN/t4f1hb33Xdft1uAcZNjAAAosk+mKmSZRu3MRLtqyzEAAAAAVMvb8++ZltcXnteyMjOyR5blyS50RRWYJ9c5uN4ODTeuvy1Jmlzzv0Velr/IAU1LzM5R+V1+9pw/Ne1tb8tgk+c7jqJNquttb3tbt1uAcZNjAAAosk+mKmSZRu3MRLtqyzEAAAAAVMvkrJPdc0omZZ3C2qO5IzOzX+ebohLMk+scXG+1Wq1w4/qZSeHG9af8Wb6S7dI8kOfn8xnOomf9uePOPLPpcwfX125nriYXUCZyDAAARfbJVIUs06idmWhXbTkGAAAAgOqZltfknflW07Vf5OA8mBs73BFVYJ5c11Or1WrdbmIiGBoaSl9fXwYHB9Pb2zueQklf34hHy5NM+bd/Sw5ofrv6Y/lNjslrsjxLCmtvzN7ZJUev9uc+t3x5TpkypfD84SRbrVHjVMny5cszpUkuoEzkGAAAiuyTqQpZplE7M9Gu2nIMAAAAANW0Isvyg7wl83JzYW2LbJ+98r9ZJ+t1oTPKyjy5zo3rrTYwUHj0nWS1N64nyeb5k7w3zQ+1/yrH5Le5erXfvfg73yk8e0kcWl/bfadJLqBs5BgAAIrsk6kKWaZROzPRrtpyDAAAAADVNDnrZPeckklZp7D2aO7Mz1ZzIzusjnlynRvXV2nZjes//3nyrncVn//kJ8knPrHar63MypySd+X+XFNY68sL8qXclqnZeMTzPyTZrEmtzyQ5dY2aBgAAAAAAAAAAAOAps7J/rs43Cs97Mimfz3XZNm/pQldQbm5cb7UmN673J89643qSTMqk7J6Ts042KKwN5r5ckX8pPL8hSfr7C8//fJStUl39TXIBZSPHAABQZJ9MVcgyjdqZiXbVlmMAAAAAqLa35l8zPTsUnteyMjOyR5ZlSRe6oozMk+scXG+1efMKj/ZIkunTn/Orm+UleW+a/+MAfpVjc0+uHPHs+iTZY4/CZ3d8zl+i6vZokgsoGzkGAIAi+2SqQpZp1M5MtKu2HAMAAABAtU3OlHwkP8zkrFtYeyx35ep8swtdUUbmyXUOrrdakxvXr0ie88b1p7wp/5AX5J1N1y7InnkyQ0//+fokueKKEZ/ZMMmrRtcpFXZFQy6gjOQYAACK7JOpClmmUTsz0a7acgwAAAAA1bdVXpl3Zb+ma9fne7k/v+hsQ5SSeXKdg+ut1uTG9ZdPnZpstNGovj4pk7JbTso62bCwNpj7c0W+niRZkeTGJHn5y0d85s1Jpqxhy1TPyxtyAWUkxwAAUGSfTFXIMo3amYl21ZZjAAAAAFg7/Hm+nm3ypiYrtZyfz2VZlnS8J8rFPLnOwfVWa3Lj+sLNNkt6ekZdYrO8OO/LgU3XbsrxuSdXZG6ShUmycOGI9R3XoFWqa2FDLqCM5BgAAIrsk6kKWaZROzPRrtpyDAAAAABrh8mZkt1zSiZn3cLaY/m/XJ1vdKErysQ8uc7B9VZrcuP6gt7eNS7zxuydF+ZdTdfOz56Z9dTfobNgwYg1B9dJkgUNuYAykmMAACiyT6YqZJlG7cxEu2rLMQAAAACsPbbKK/LufLvp2vU5NPfl2g53RJmYJ9c5uN5qTW5cf/ULXrDGZSZlUnbLSVknGxbWhvJAzs3Nq4q/esTaW9b4l6iiVzfkAspIjgEAoMg+maqQZRq1MxPtqi3HAAAAALB22TH75nl5c5OVWs7P57I0izveE+Vgnlzn4HorLVuWzJ9fePzTxWN7GW2aF+X9Objp2i3ZfFXxnz797KVJthjTL1E1P31GLqCs5BgAAIrsk6kKWaZROzPRrtpyDAAAAABrl8mZkt1zSiZnamHt8fwmV+c/utAVZWCeXNdTq9Vq3W5ivBYvXpwzzzwzW265ZWbMmJETTjghkyat2Zn8oaGh9PX1ZXBwML29vWNr5Pe/T57//MLjRd/6Vjb6r/8aU8mVWZlT8778Llc//WxJNs1BeXxV8UXJRhslSf4myQ/H9CtUzaJFi7LRqlxAWckxAAAU2SdTFbJMo3Zmol215RgAAAAA1k7X5qBcmX9tstKTz+XneUHe3vGemNjMk+sqceP6HXfckXvuuSe77LJLbrvttgwPD3enkXnzmj4+7NZbx1xyUiblwzkx66Ye2AfzlmcUP+zpf7njmH+FqjnsGbmAspJjAAAosk+mKmSZRu3MRLtqyzEAAAAArJ3+PPvm+c88x/m0Wmbkc1maJzreExObeXJdJW5cT5L58+fnJz/5STbZZJN85jOfWePvt+TG9YsuSnbdtfj8kkuSnXYaW81VZufYXJy9kyRX59u5Jt8sfGZOkteO61cAAAAAAAAAAAAAeDbzc2eOzeuyIsWLlv8sX8lOObwLXcHEV4kb15Nkyy23zD777JPTTz89d955Z3eaWM2N6/0XXTTu0m/MXnlx3pskefCZd6v39ydJNkotrxr3r1AV/atyAWUmxwAAUGSfTFXIMo3amYl21ZZjAAAAAFh7bZnt8540nxHemO/n3szqcEdMZObJdZW4cf2oo47KlClTstdee2XXXXfN3//932fnnXd+1u8MDw9neLj+d7oMDQ1l2223Hd+N6//938m3vlV4/Ojtt2eLV75ybDWfYUHuy5F5bf47D2RpNl5V/NFkiy3y6szNrXnFuH+Danj00UezxRZbdLsNGBc5BgCAIvtkqkKWadTOTLSrthwDAAAAwNptZVbkpLw9D+b6wtqmeXH2zq1ZNxt2oTMmGvPkulHfuH7GGWfknnvuyUEHHZTh4eGnT//39/fnoYceyoknnpjZs2fnsssuy7nnnpu5c+fm+9//foaGhkZ89vHHH89RRx2VW2+9NRdccEEuvvji3HzzzTnuuOMyf/78EZ9dvHhxDjnkkNx1110566yzctVVV+UXv/hFTjnllDzwwANPf/auu+7KhhtumM9+9rPZbrvt8uijj+baa6/NzJkzc+aZZ+buu+/OwQcfnCeffPLp7+y0007p6+t7+q9tt902STJ37twcccQRGRwcHNHLggULcuSRR+a2227LjBkzcskll+Smm27K8ccfn4cffviPnx0YSH+SJUkOSXJ3kp/09KT/+ONz3XXX5Uc/+lHuv//+7L///lm5cmX6+/uzcuXK7L///rn//vvzox/9KNddd12uvvrq/OQnP8ndd9+dQw45JEuWLEl/f382yQtyS/9OWfrw4uT445Obbkr22y+ZMSPr3HZ0vnXk3lmwYMGIvgcHB3PEEUfk9ttvz3nnnZdLL700s2fPzgknnJCBgYERn33yySdz8MEH5+67786ZZ56ZmTNn5tprr82pp56a++67LwcccEBWrFgx4jsPPPBATjnllPziF7/IVVddlbPOOit33XVXDjnkkCxevHjEZ+fPn5/jjjsuN998cy6++OJccMEFufXWW3PUUUfl8ccfH/HZoaGhfP/738/cuXNz7rnn5rLLLsvs2bNz4okn5qGHHhrx2eHh4Rx00EG55557csYZZ2TmzJm55pprctppp+Xee+/Nd77znSxfvnzEdx588MGcfPLJueGGG3LFFVfk7LPPzp133plDDz00ixYtGvHZRx99NMcee2zmzJmTiy66KBdeeGHmzJmTY445Jo899tiIzy5cuDCHHXZY5s6dm3POOSeXX355brzxxpx00kmFvpctW5YDDzwwv/3tb3P66adn1qxZmTVrVk4//fT89re/zYEHHphly5YV/m/tpJNOyo033pjLL78855xzTubOnZvDDjssCxcufPqzn//85/PYY4/lmGOOyZw5c3LhhRfmoosuypw5c3Lsscfm0UcfHVF30aJFOfTQQ3PnnXfm7LPPzhVXXJEbbrghJ598ch588MERn12+fHm+853v5N57781pp52Wa665JjNnzpzQ74j+/v6sWLEiBxxwQO67776ceuqpz/mO6O/vz8DAQE444YTMnj07l156ac4777zcfvvtY39HrPrskiVLcsghh+Tuu+/OT37yk1x99dUteUc8Vf/hhx/O8ccfn5tuuimXXHJJZsyYkdtuuy1HHnlkqd4R3/zmN70j2vSO6O/v947wjij9O8I+wjvCO8I7wjvCO2JtfUfst99+3hHeEZV4R3z+85/3jrCPGPGO+O53v9u2d8S///u/t+Ud8e1vf9s7wj7CO8I+YrXvCPsI7wjvCO8I7wjvCO8I7wjvCO8I7wjvCO8I7wjviOq/I8468+xsOfPv8/tr180tpyYL7kuuOSBZuSI5v/+3uTL/5h3hHZHTTjstBxxwQOXfEaNViRvXx6ItN67/5V8m55038tm0aZnz05/mda973dibfYZjUsuX0lN/MGdO8rrX5V/Sn2/m77JRtm7J71Buc+bMaVnmoFvkGAAAiuyTqQpZplE7M9Gu2nIMAAAAACTJL/K9XJ59m679bX6WF+VdnW2ICcc8uW7UN65XzdSpU9Pb2zvir3EbGCg+mzYtDz744Phrr/Lm9OQrGcoLc12mZEmyqva/5D8cWudprcwcdIscAwBAkX0yVSHLNGpnJtpVW44BAAAAgCR5S76abfPWpmvn5/MZzqIOd8REY55cV+qD6z09PaP+qyPmzSs+mzYtrbzUfockh6c3/1/uyMn5bP6nNpiTk2yeDv17pBTW0n+QAhUjxwAAUGSfTFXIMo3amYl21ZZjAAAAACBJJmVydstJmZL1CmsL8rtcmX/rQldMJObJdaU+uF6r1Ub9VweaaX7j+vTp2XbbbVv+c2/Invl0zs5O274ye7S8OmXXjsxBp8kxAAAU2SdTFbJMo3Zmol215RgAAAAAeMoWeVn+Igc0XZudo/LbXN3hjphIzJPrSn1wffHixTnppJNy4YUXZs8998wjjzyS0047LT/+8Y+z7777Zvny5Z1rZnAwefLJ4vNp03L99de3/Od6Vv1PO2pTfnJBFcgxAAAU2SdTFbJMo3Zmol215RgAAAAAeKY/y1eyXd7WdO2C7JnhLOpwR0wU5sl1pT64fscdd+See+7JLrvskttuuy1XXXVVFixYkE996lNZtmxZrrzyys410+y29SSZPj2f+MQn2vaz7axNeckFVSDHAABQZJ9MVcgyjco4Q5VjAAAAAOCZJmVSdsvJmZL1C2sLcm+uyL90oSsmAvPkulIfXN9hhx3yta99LUcddVS+8pWv5JOf/GT22WefJMnAwEC23377zjUzb17z59Om5Zhjjmnbz7azNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAACARpvnT/LeHNB07Vc5Jr/N1R3uiInAPLmup1ar1brdRCvstNNOOfTQQ7P99tvn4osvzuLFi/Pxj3981N8fGhpKX19fBgcH09vbu+YNnHFG8qlPFZ9fc03ytub/6AcAAAAAAAAAAAAAqmNlVuaUvCv355rCWl9ekC/ltkzNxl3oDLqv1DeuH3XUUTnuuOOSJFOmTMk999yT2bNnZ+utt87HP/7xzJ07t3PNPMuN6/39/W372XbWprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAADQzKRMyu45Oetkg8LaYO7L5fl6F7qim8yT60p94/rcuXMzZ86cbLjhhrnxxhuz8847Z++9985WW22VpUuX5phjjskrX/nKUdUa943r//IvycEHF58vXJiFtVo23rg9f3fMwoUL21ab8pILqkCOAQCgyD6ZqpBlGrUzE+2qLccAAAAAwLO5MUfkp/lK07XP5oq8JO/tcEd0i3lyXalvXH/FK16RT33qU9ltt93yP//zP3nrW9+aW2+9NVdeeWVmzZo16kPrLdHsxvWNNko22ignnnhi2362nbUpL7mgCuQYAACK7JOpClmmURlnqHIMAAAAADybN+Uf8oK8s+naBdkzT2aowx3RLebJdaU+uD6hDAwUn02fniR5//vf37afbWdtyksuqAI5BgCAIvtkqkKWaVTGGaocAwAAAADPZlImZbeclHWyYWFtMPfniny9C13RDebJdQ6ut0qzg+vTpiVJ7rjjjrb9bDtrU15yQRXIMQAAFNknUxWyTKMyzlDlGAAAAAB4LpvlxXlfDmy6dlOOz29yeYc7ohvMk+scXG+VefOKz1bduL7xxhu37WfbWZvykguqQI4BAKDIPpmqkGUalXGGKscAAAAAwGi8MXvnhXlX07UL8oU8mcHONkTHmSfXObjeCkuXJo89Vny+6sb1vr6+tv10O2tTXnJBFcgxAAAU2SdTFbJMozLOUOUYAAAAABiNSZmU3XJS1smGhbWhPJDL889d6IpOMk+uc3C9FR5+uPnzVTeu//rXv27bT7ezNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAACA0do0L8r7c3DTtZvzg/wml3W4IzrJPLnOwfVWGBho/nzVjesf/OAH2/bT7axNeckFVSDHAABQZJ9MVcgyjco4Q5VjAAAAAGBN7JC98qK8p+naBflCnsxghzuiU8yT6xxcb4V585o/X3Vw/aSTTmrbT7ezNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAACANTEpk/LhnJh1s1FhbSgP5rL8Uxe6ohPMk+t6arVardtNTARDQ0Pp6+vL4OBgent71+zLxx+f7LVX8fmcOclrX9uS/gAAAAAAAAAAAAAot9k5Nhdn76Zrn84leWl26nBH0DluXG+F57hxvb+/v20/3c7alJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAADG4o3ZKy/Oe5uuXZC/y5Is6GxDtJ15cp0b11cZ143re++dHHvsyGeTJyfDw8nkyVm2bFnWWWed1jX7DO2sTXnJBVUgxwAAUGSfTFXIMo3KOEOVYwAAAABgrBbkvhydV2dpFhbWXpc9sntO7kJXtIt5cp0b11uh2Y3rW231x8PrSb73ve+17afbWZvykguqQI4BAKDIPpmqkGUalXGGKscAAAAAwFhtkhfk/flu07U5OSX/l4s73BHtZJ5c5+B6KwwMFJ9Nn/70v/z4xz/etp9uZ23KSy6oAjkGAIAi+2SqQpZpVMYZqhwDAAAAAOOxQ/4uL877mq5dmC9mSf7Q4Y5oF/PkOgfXW6HZjevTpj39L6+//vq2/XQ7a1NeckEVyDEAABTZJ1MVskyjMs5Q5RgAAAAAGI+e9OTD+UHWzcaFtYV5KJfmH7vQFe1gnlzn4Pp41WrPeeP6tttu27afb2dtyksuqAI5BgCAIvtkqkKWaVTGGaocAwAAAADjtUm2ywfyvaZrt+SHuSsXdrgj2sE8uc7B9fH6wx+SpUuLz59x4zoAAAAAAAAAAAAANHpD9sxL8oGmaxdmryzJHzrcEbSPg+vj1ey29WTEjesPPPBA236+nbUpL7mgCuQYAACK7JOpClmmURlnqHIMAAAAALRCT3ry4ZyQqektrC3KvPw0X+1CV7SSeXKdg+vjtbqD68+4cX3HHXds28+3szblJRdUgRwDAECRfTJVIcs0KuMMVY4BAAAAgFbpy7b5QL7XdO3WnJo7c0GHO6KVzJPrHFwfr3nzmj9/xo3rZ599dtt+vp21KS+5oArkGAAAiuyTqQpZplEZZ6hyDAAAAAC00uvz+fxJPth07aLslcV5vMMd0SrmyXU9tVqt1u0mJoKhoaH09fVlcHAwvb3Ff9zCah1ySPLP/1x8fs89yYtfnCRZtmxZ1llnnRZ1OlI7a1NeckEVyDEAABTZJ1MVskyjMs5Q5RgAAAAAaLXBPJij86oMZ7Cw9up8Oh/NaV3oivEyT65z4/p4re7G9WnTnv6XBx54YNt+vp21KS+5oArkGAAAiuyTqQpZplEZZ6hyDAAAAAC0Wl+enw/m0KZrt+X03JnzO9wRrWCeXOfG9VXGfOP6Zz6TnH76yGe9vclg8e92AQAAAAAAAAAAAIDVqaWWH2eX3J1LCmsbZuv8Q36dDbJ5FzqD8XPj+ng1u3H9GbetJ0l/f3/bfr6dtSkvuaAK5BgAAIrsk6kKWaZRGWeocgwAAAAAtENPerJrjs/U9BXWnsjDuSRf7kJXjId5cp0b11cZ843rr3xlMnfuyGfvfGcyc+bTf3zooYeyzTbbtKbRBu2sTXnJBVUgxwAAUGSfTFXIMo3KOEOVYwAAAACgnebkh5mRPZqu/VXOzcvzkc42xJiZJ9e5cX28RnHj+qWXXtq2n29nbcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAA7fTa/E1emp2brl2Uv88TebTDHTFW5sl1Dq6Px/Bw8oc/FJ9Pnz7ij6985Svb1kI7a1NeckEVyDEAABTZJ1MVskyjMs5Q5RgAAAAAaKee9GTXHJ/1sklh7Yk8kp/my51vijExT65zcH08BgaaP2+4cX1wcLBtLbSzNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAACAduvNNtkp32+6dnvOzNyc0+GOGAvz5DoH18djdQfXG25cX7hwYdtaaGdtyksuqAI5BgCAIvtkqkKWaVTGGaocAwAAAACd8Jp8Ji/Lrk3XLsreeSLzO9wRa8o8uc7B9fGYN6/584Yb11/+8pe3rYV21qa85IIqkGMAACiyT6YqZJlGZZyhyjEAAAAA0Ak96cmuOS7rZdPC2uLMzyXZpwtdsSbMk+scXB+PUd64fvnll7ethXbWprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAADQKRtnenbK95uu/Tpn5dc5u8MdsSbMk+t6arVardtNTARDQ0Pp6+vL4OBgent7R/el/fZL/uu/is8feSTZcsun/7hw4cJsvPHGrWm0QTtrU15yQRXIMQAAFNknUxWyTKMyzlDlGAAAAADopFpqOTMfyV05v7C2QbbIl/LrbJStutAZz8U8uc6N6+Mxb17x2ZQpyeabj3h0+OGHt62FdtamvOSCKpBjAAAosk+mKmSZRmWcocoxAAAAANBJPenJLjk262ezwtriPJpL8g9d6IrRME+uc+P6KmO6cX233ZILLhj57HnPSx58sPUNAgAAAAAAAAAAALBWuzU/zrn5dNO1j+UneVU+0eGOYPTcuD4ezW5cnzat8Ki/v79tLbSzNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAACAbnh1Ppnts3vTtUvyD1mURzrbEM/JPLnOjeurjOnG9e22Sx54YOSzXXZJLrxwxKPHHnssm2++eYs6HamdtSkvuaAK5BgAAIrsk6kKWaZRGWeocgwAAAAAdMuiPJyj8sosyWOFtZfno/lEzk5PerrQGc2YJ9e5cX2sarVkYKD4vMmN62eddVbb2mhnbcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAA3bJRts6HcmTTtTtyTm7PTzrcEc/GPLnOwfWxevzxZNmy4vPp0wuPdtxxx7a10c7alJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAAC66VX5q7w8f9l07ZLsk0V5uMMdsTrmyXUOro/VvHnNnze5cf2BBx5oWxvtrE15yQVVIMcAAFBkn0xVyDKNyjhDlWMAAAAAoJt60pOdc3TWz+aFtSV5LBdl79RS60JnNDJPrnNwfawGBpo/b3Ljek9PT9vaaGdtyksuqAI5BgCAIvtkqkKWaVTGGaocAwAAAADdtlG2zs45uunanTkvt+fMDndEM+bJdQ6uj9Ua3Lj+/Oc/v21ttLM25SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAICJ4FX5RF6RjzVduyT7ZGFWc1EzHWOeXOfg+litwY3rN9xwQ9vaaGdtyksuqAI5BgCAIvtkqkKWaVTGGaocAwAAAAATxYdyVDbIFoXnS/J4Lsrfp5ZaF7riKebJdT21Wk0akwwNDaWvry+Dg4Pp7e197i/80z8lhx5afL5kSbLeeiMePfroo9lii+ILoRXaWZvykguqQI4BAKDIPpmqkGUalXGGKscAAAAAwETy65yds/OJpmt/mdPymny6wx3xFPPkOjeuj1WzG9c32aRwaD1Jjj322La10c7alJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAAAmklfm43nlag6uX5IvZ2HmdbgjnmKeXOfG9VXW+Mb1d787mTlz5LPtt0/uuKMt/QEAAAAAAAAAAADA6jyR+Tkqr8zizC+svSy75pM5Pz3p6UJn8EduXB+rZjeuT5/e9KP9/f1ta6OdtSkvuaAK5BgAAIrsk6kKWaZRGWeocgwAAAAATDQbZsvskmOarv1fLsytOa3DHZGYJz+TG9dXWeMb1zfdNFmwYOSzT34y+fGPCx9dtGhRNtpoo9Y02sHalJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAAAmqrPz1/l1flJ4vl42yZfy6/Rmmy50tfYyT65z4/pYLFlSPLSerPbG9RNOOKFtrbSzNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAACAiepDOTIbZqvC8yezIBdlr9TizutOMk+uc3B9LB5+uPnzadOaPt5pp53a1ko7a1NeckEVyDEAABTZJ1MVskyjMs5Q5RgAAAAAmKg2zBbZJcc2Xfu/XJRb8qMOd7R2M0+uc3B9LObNa/58NQfXb7vttra10s7alJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAAAmspfnI3lVPtl07af5aoby+w53tPYyT65zcH0sBgaaP58+venjTTbZpG2ttLM25SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAICJ7kM5Ihtm68Lz4QzmwnwxtdS60NXaxzy5zsH1sVjDG9c33njjtrXSztqUl1xQBXIMAABF9slUhSzTqIwzVDkGAAAAACa6DbJ5ds1xTdfuziWZkx92uKO1k3lynYPrY7GGN67fcccdbWulnbUpL7mgCuQYAACK7JOpClmmURlnqHIMAAAAAJTB9tktr86nm65dmq9mMA92uKO1j3lynYPrY9HsxvV11kk226zpx9/3vve1rZV21qa85IIqkGMAACiyT6YqZJlGZZyhyjEAAAAAUBY75fvZKNMKz4czlAvzd6ml1oWu1h7myXUOro9FsxvXp01LenqafvyUU05pWyvtrE15yQVVIMcAAFBkn0xVyDKNyjhDlWMAAAAAoCw2yGbZJcc1XftNLs3/5uQOd7R2MU+u66nVav42iSRDQ0Pp6+vL4OBgent7n/3Db3xjctNNI5+96U3JL3/ZvgYBAAAAAAAAAAAAYIzOzWdza04rPJ+a3nwpt6cv23ahK9Ymblwfi2Y3rk+fvtqP9/f3t62VdtamvOSCKpBjAAAosk+mKmSZRmWcocoxAAAAAFA2H8zh2SjF867DGcoF+bvU4i7sdjBPrnPj+iqjvnF95cpk6tRk+fKRz7/4xeS45v8YheXLl2fKlCkt7LYztSkvuaAK5BgAAIrsk6kKWaZRGWeocgwAAAAAlNFduShnZNema7vmhOyQL3S4o+ozT65z4/qaeuyx4qH15FlvXP/ud7/btnbaWZvykguqQI4BAKDIPpmqkGUalXGGKscAAAAAQBn9aXbJa/M3Tdcuyz9lQe7vcEfVZ55c5+D6mhoYaP582rTVfuWv//qv29RMe2tTXnJBFcgxAAAU2SdTFbJMozLOUOUYAAAAACirD+awbJxtCs+XZmEuyBdSS60LXVWXeXKdg+trat685s+f5cb1a6+9tk3NtLc25SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAICyWj+bZtcc33Ttt7kiN+WEDndUbebJdQ6ur6kx3Lj+ghe8oE3NtLc25SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAIAye1l2zuuyR9O1y7NvFuS+zjZUYebJdQ6ur6nV3bj+LAfXV6xY0aZm2lub8pILqkCOAQCgyD6ZqpBlGpVxhirHAAAAAEDZfSCHZuM8r/B8aRblgnwhtdS60FX1mCfXObi+psZw4/q81R12b4F21qa85IIqkGMAACiyT6YqZJlGZZyhyjEAAAAAUHbrZ5N8OCc0XfttrsxNOb7DHVWTeXKdg+trqll4Nt00mTp1tV9585vf3LZ22lmb8pILqkCOAQCgyD6ZqpBlGpVxhirHAAAAAEAVvDQ75fX5fNO1y/PP+UPu7WxDFWSeXOfg+ppqduP69OnP+pVzzjmnTc20tzblJRdUgRwDAECRfTJVIcs0KuMMVY4BAAAAgKr4QL6X3jy/8HxpFuWC7JmVWdmFrqrDPLmup1ar1brdxEQwNDSUvr6+DA4Opre3d/Uf/NM/Tf7v/0Y+e897kquuWu1XhoeHM/VZbmQfj3bWprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAABQJb/JZTktH2y6tnOOzpuyd4c7qg7z5Do3rq+pMdy4fvDBB7epmfbWprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAABQJX+SD+T12bPp2uX5ev6Q33W4o+owT65z4/oqo7pxffHiZMMNi8/33Tf57nfb2yAAAAAAAAAAAAAAtMmTGczReXWG8kBh7YV5V/4mV2WSO7MZB+lZE81uW0+e88b1/v7+NjTT/tqUl1xQBXIMAABF9slUhSzTqIwzVDkGAAAAAKpmvfTlw/lB07V7MzO/yjEd7qgazJPr3Li+yqhuXL/uuuRtbys+P+205NOfXm3thx56KNtss02LOu1cbcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAAVXVBvpibc0Lh+TrZIHvntmyWF3ehq/IyT65z4/qaGOON6z/96U/b0Ez7a1NeckEVyDEAABTZJ1MVskyjMs5Q5RgAAAAAqKr357vpy3aF58uyOOfn81mZlV3oqrzMk+scXF8Tqzu4Pm3as37tNa95TRuaaX9tyksuqAI5BgCAIvtkqkKWaVTGGaocAwAAAABVtV568+Gc2HTtvvw8s3NUhzsqN/PkOgfX18S8ec2fP8eN648//ngbmml/bcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAAVfaSvDc7ZK+ma1fm3/J47ulwR+Vlnlzn4PqaaHbj+tSpySabPOvXnnjiifb00+balJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAACq7v05OH15QeH5sizO+fl8VmZlF7oqH/PkOgfX10SzG9enTUt6ep71a9tvv32bGmpvbcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAAVTc1G2e3nNh07b7Myi9zZIc7Kifz5DoH19dEsxvXp017zq9deeWVbWim/bUpL7mgCuQYAACK7JOpClmmURlnqHIMAAAAAKwNXpy/yBuzd9O1K/NveSy/6XBH5WOeXNdTq9Vq3W5iIhgaGkpfX18GBwfT29vb/EPbbFO8dX233ZIZM56z9mprjlM7a1NeckEVyDEAABTZJ1MVskyjMs5Q5RgAAAAAWFsMZ1GOyauzIPcW1rbL27JHfp5J7tJeLfPkOikZrRUrkkceKT6fPv05v/r973+/DQ21vzblJRdUgRwDAECRfTJVIcs0KuMMVY4BAAAAgLXF1GyU3XIry3VeAAAuxElEQVRS07X7c21ujHnpszFPrnPj+irPeeP6ww8n06YVn++3X/Kf/9n2/gAAAAAAAAAAAACgWy7OP2R2ji48n5L1s3duyeZ5aRe6okzcuD5aAwPNn4/ixvX+/v4WN9OZ2pSXXFAFcgwAAEX2yVSFLNOojDNUOQYAAAAA1jbvzYHZJC8qPF+eJZmRz2VlVnShq4nPPLnOjeurPOeN65demuy0U/H5+ecnH/7ws9Z+/PHHs9lmm7Wo087VprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAACwNvpdZuaHeXfTtffnkPx5/qnDHU185sl1blwfrXHcuH7GGWe0uJnO1Ka85IIqkGMAACiyT6YqZJlGZZyhyjEAAAAAsDZ6Ud6VN2efpmtX5z/yaO7qcEcTn3lynYProzVvXvPn06Y951ff/va3t7iZztSmvOSCKpBjAAAosk+mKmSZRmWcocoxAAAAALC2em++k03z4sLz5XkyM/K5rMyKLnQ1cZkn1zm4Plqru3F9662f86v33ntva3vpUG3KSy6oAjkGAIAi+2SqQpZpVMYZqhwDAAAAAGurdbNhdsvJTdcezPW5IYd1tqEJzjy5zsH10Wp24/rmmyfrrvucX508eXIbGmp/bcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAAa7MX5h35s3yl6dpV+Y/Mz50d7mjiMk+uc3B9tJrduD59+qi+On2UnxuLdtamvOSCKpBjAAAosk+mKmSZRmWcocoxAAAAALC2+4v8TzbNSwrPV2Q45+dzWZkVXehq4jFPrnNwfbSaHVyfNm1UX509e3aLm+lMbcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAAa7t1s2F2z8lJegprD+aGXJ/vdb6pCcg8ua6nVqvVut3ERDA0NJS+vr4MDg6mt7e3+IGNN04WLRr57LOfTX70o+esPX/+/Gy55ZYt6rRztSkvuaAK5BgAAIrsk6kKWaZRGWeocgwAAAAA8EeX5h9zQw4rPJ+cqfn7/G+2zMs739QEYp5c58b10Vi0qHhoPRn1jevHHXdcixvqTG3KSy6oAjkGAIAi+2SqQpZpVMYZqhwDAAAAAPzRe7J/NstLC89XZDgzskdWZHkXupo4zJPr3Li+yrPeuP6b3yQvLf4fVA45JPmnf+pMgwAAAAAAAAAAAAAwAd2f63JS3p6keCz5vflO3pZ/7XxTTDhuXB+NgYHmz6dPH9XX+/v7W9hM52pTXnJBFcgxAAAU2SdTFbJMozLOUOUYAAAAAKBuu7w1b8nXmq79LN/KI5nb2YYmEPPkOjeur/KsN66ffXbyiU8Uv3T11cm73/2ctRcvXpwNNtigRZ12rjblJRdUgRwDAECRfTJVIcs0KuMMVY4BAAAAAEZamsU5Nq/L47m7sLZN3pQ984tMzpQudNZd5sl1blwfjXHeuH7MMce0sJnO1aa85IIqkGMAACiyT6YqZJlGZZyhyjEAAAAAwEjrZoPsnlOS9BTWHsrs/CIHd7ynicA8uc7B9dGYN6/582nTRvX1XXbZpYXNdK425SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAACKtsufZ8f8U9O1mdkvD+f2DnfUfebJdQ6uj0azG9fXWy/p6xvV12+55ZYWN9SZ2pSXXFAFcgwAAEX2yVSFLNOojDNUOQYAAAAAaO49+e9snj8tPF+RpTk/n8uKLO9CV91jnlzn4PpoNLtxfdq0pKf4jzJoZvPNN29xQ52pTXnJBVUgxwAAUGSfTFXIMo3KOEOVYwAAAACA5tbJ+tk9J6enyTHlh/KrXJeDutBV95gn1zm4PhrNblyfPn3UX19//fVb2EznalNeckEVyDEAABTZJ1MVskyjMs5Q5RgAAAAAYPW2zY7ZMfs2XZuZ/fJwbutwR91jnlzn4PporO7G9VH6v//7vxY207nalJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAAB4du/Ot7NFti88X5llmZE9siLLutBV55kn1zm4/lxWrEjmzy8+X4Mb1//iL/6ihQ11rjblJRdUgRwDAECRfTJVIcs0KuMMVY4BAAAAAJ7dOlkvu+eU9DQ5rjwvN+faHNiFrjrPPLnOwfXnMn9+snJl8fka3Lj+wx/+sIUNda425SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAACe2/PzZ/nz/HPTtZ/n2xnIrR3uqPPMk+t6arVardtNTARDQ0Pp6+vL4OBgent76wv/+7/JG95Q/MIJJyRf+ELnGgQAAAAAAAAAAACAklmWJ3Nc3pBHc0dhbVpen7/LjZmcdbrQGZ3mxvXnMjDQ/Pka3Lje39/fomY6W5vykguqQI4BAKDIPpmqkGUalXGGKscAAAAAAKOzTtbL7jklPU2OLQ/kf3NNDuhCV51jnlznxvVVVnvj+kknJXvuWfzCr36V7LDDqGqvWLEikydPblGnnatNeckFVSDHAABQZJ9MVcgyjco4Q5VjAAAAAIA1c2X+PdfmO4XnkzIlX8yvMi2v7UJX7WeeXOfG9efSghvXDzrooBY109nalJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAABYM+/Kftkyryg8X5nlmZE9sjxLu9BV+5kn17lxfZXV3rj+5S8nRx458sM9PcnwcLLOOqOqfd999+UFL3hBC7vtTG3KSy6oAjkGAIAi+2SqQpZpVMYZqhwDAAAAAKy532d2fpAdU8uKwto78595d/brfFNtZp5c58b159LsxvUtthj1ofUkmTVrVgsb6lxtyksuqAI5BgCAIvtkqkKWaVTGGaocAwAAAACsueflTXlb/rXp2jXZP/Myp7MNdYB5cp2D689l3rzis2nT1qjEi170ohY109nalJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAAAYm3fmW9kqryo8X5nlmZG/zfIs7UJX7WOeXOfg+nNpduP69OlrVGL58uUtaqaztSkvuaAK5BgAAIrsk6kKWaZRGWeocgwAAAAAMDZTMjW755T0ZHJh7eHcmmuyfxe6ah/z5DoH159NrdaSG9cHmh1+b5F21qa85IIqkGMAACiyT6YqZJlGZZyhyjEAAAAAwNhtkx3y9vx707VZ2T8P5eYOd9Q+5sl1Dq4/m0WLksWLi8/X8Mb1HXbYoUUNdbY25SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAADG5x35ZrbKqwvPa1mRGdkjy7O0C121nnlynYPrz6bZbevJGt+4PmPGjPH30oXalJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAAAYnylZN7vnlPRkcmHtkdyWWfnvLnTVeubJdT21Wq3W7SYmgqGhofT19WVwcDC9vb1/fDhrVvLOdxY/fOaZyV/91ahrP/nkk1lvvfVa1GnnalNeckEVyDEAABTZJ1MVskyjMs5Q5RgAAAAAoDWuzreaHlLvyeT8XW7MNin3jeXmyXVuXH82Lbpx/bvf/W4Lmul8bcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAAtMY78o1sndcUnteyIjOyR5ZnuAtdtY55cp0b11dpeuP64YcnX/ta8cN33ZW87GUd7Q8AAAAAAAAAAAAAqmhe5uSEvCkrs7yw9vb8v/xF9u9CV7SaG9efzcBA8+dreON6f39/C5rpfG3KSy6oAjkGAIAi+2SqQpZpVMYZqhwDAAAAALTO9Lwub89/NF27Ngfm9/lVhztqHfPkOjeur9L0xvU99kh++MORH9xgg2TRoqSnZ9S1BwYGMm0ND7tPhNqUl1xQBXIMAABF9slUhSzTqIwzVDkGAAAAAGit5VmaE/LmPJxbCmtb5pXZKzdlSqZ2obPxMU+uc+P6s2l24/q0aWt0aD1JLrzwwhY11NnalJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAABorSlZNx/JDzMpUwpr8/PrzMx/daGr8TNPrnNw/dnMm1d8Noa/4+F1r3vd+HvpQm3KSy6oAjkGAIAi+2SqQpZpVMYZqhwDAAAAALTetLw278g3m65dlwPzYH7Z4Y7Gzzy5zsH1Z9PsxvXp09e4zGOPPdaCZjpfm/KSC6pAjgEAoMg+maqQZRqVcYYqxwAAAAAA7fH2/Hum5fWF57WszIzskWV5sgtdjZ15cp2D66uzfHkyf37x+RhuXF+yZEkLGup8bcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAAtMfkrJPdc0omZZ3C2qO5IzOzX+ebGgfz5DoH11fnkUeSWq34fAw3rr/0pS9tQUOdr015yQVVIMcAAFBkn0xVyDKNyjhDlWMAAAAAgPaZltfknflW07Vf5OA8mBs73NHYmSfXObi+OvPmNX8+hhvXf/azn42zme7UprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAABAe70t/5rpeUPheS0rMyN7ZFme7EJXa848ua6nVmt2rfjaZ2hoKH19fRkcHExvb29y8cXJLrsUP3jxxcmHPrRGtQcHB9PX19eiTjtXm/KSC6pAjgEAoMg+maqQZRqVcYYqxwAAAAAA7fdwbstx2SErs6yw9uf5et6fg7rQ1ZoxT65z4/rqtPDG9SOOOGKczXSnNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAAAA2m/rvDrvyn82Xbs+h+SB3NDhjtaceXKdG9dXKdy43t+ffPObxQ8+9FAyfXrnGwQAAAAAAAAAAACAtcyKLM8P8pbMy02Ftc3zp/n7/G/Wyfpd6Iw15cb11Wl243pPT7Lllmtcqr+/vwUNdb425SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAAA6Y3Km5CP5YSZn3cLaY7krV6fJRdUTiHlynRvXVyncuP7RjybnnjvyQ1tvnQwMrHHtBQsWZJNNNmlNox2sTXnJBVUgxwAAUGSfTFXIMo3KOEOVYwAAAACAzromB+Sq/L8mKz35fK7Ndvnzjvc0GubJdW5cX51mB9SnTRtTqdNOO22czXSnNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAAAAOuvP8/Vskzc1Wanl/Hwuy7Kk4z2NhnlynYPrqzNvXvHZ9OljKvXOd75znM10pzblJRdUgRwDAECRfTJVIcs0KuMMVY4BAAAAADprcqZk95ySyVm3sPZY/i9X5xtd6Oq5mSfXObjeTK3W0hvX77nnnnE21J3alJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAADovK3yirw73266dn0OzX25tsMdPTfz5DoH15sZGkqWNPnHBYzxxvV11y3+nR2t0s7alJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAADojh2zb56XNzdZqeX8fC5Ls7jjPT0b8+Q6B9ebaXbbejLmG9e33nrrcTTTvdqUl1xQBXIMAABF9slUhSzTqIwzVDkGAAAAAOiOyZmS3XNKJmdqYe3x/CZX5z+60NXqmSfXObjezLx5zZ+P8eD6TTfdNI5muleb8pILqkCOAQCgyD6ZqpBlGpVxhirHAAAAAADds2Vennfn203XbsjhuS/XdLij1TNPruup1Wq1bjcxEQwNDaWvry+Dg4PpveSS5JOfLH5o1qzk7W9f49oPP/xw2/5uiXbWprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAABAd63MipyUt+XB3FBY2zQvyd65Jetmwy50NpJ5cp0b15tp8Y3rJ5xwwjia6V5tyksuqAI5BgCAIvtkqkKWaVTGGaocAwAAAAB016RMzm45OZMztbD2h9yTq/L/utBVkXlynRvXVxlx4/r++ycHHVT80MKFyUYbdb45AAAAAAAAAAAAAKDgunw3V+TrTdf2yM/zwryjwx2xOm5cb6bZjesbbjjmQ+v9/f3jbKg7tSkvuaAK5BgAAIrsk6kKWaZRGWeocgwAAAAAMDHsmH/M87Nj07Xz87kszRMd7mgk8+Q6N66vMuLG9Y99LLniipEf+JM/Se6+e0y1lyxZkvXXX78FXXa2NuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAAAAJo5Hc1eOzeuyPE8W1t6cffKhHNGFrv7IPLnOjevNNLtxfdq0MZc7+uijx9FM92pTXnJBFcgxAAAU2SdTFbJMozLOUOUYAAAAAGDi2CJ/mvdk/6Zrv8yR+V1mdrahZzBPrnNwvZmBgeKz6dPHXO7DH/7wOJrpXm3KSy6oAjkGAIAi+2SqQpZpVMYZqhwDAAAAAEwsb8lXs23e2nTt/Hw+w1nU4Y7+yDy5zsH1RkuXJo8+Wnw+jhvXb7755nE01L3alJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAACYWCZlcnbLSZmS9QprC/K7XJl/60JX5snP5OB6o/nzmz8fx43rW2655Zi/283alJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAACYeLbIy/IXOaDp2uwcld/m6g53ZJ78TA6uN3r44ebPx3Hj+tSpU8f83W7WprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAADAxPRn+Uq2y9uarl2QPTOcRR3txzy5zsH1Rqs7uD6OG9fvueeeMX+3m7UpL7mgCuQYAACK7JOpClmmURlnqHIMAAAAADAxTcqk7JaTMyXrF9YW5N5ckX/paD/myXUOrjdqw43r73rXu8b83W7WprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAADAxLV5/iTvzQFN136VY/LbXNWxXsyT6xxcbzQw0Pz5OA6un3rqqWP+bjdrU15yQRXIMQAAFNknUxWyTKMyzlDlGAAAAABgYntzvpzt8vama+dnzwxnYUf6ME+u66nVarVuNzERDA0Npa+vL4N77pneE08cuThpUrJ0aTJ58phqr1y5MpMmtefvEWhnbcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAATHyP554ck9dkWRYX1nbIXtk1x7a9B/PkOv8pNGp24/pWW4350HqS/M///M84GupebcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAATHyb5SV5b77TdO2mHJd7cmXbezBPrnPj+ipP37j+xjem91e/Grn4+tcnN9885tplvC2IcpMLqkCOAQCgyD6ZqpBlGpVxhirHAAAAAADlsDIr88O8J/fl54W1vmyXvXNb1ktv+37fPPlp/lNo9PDDxWfTpo2r5AEHHDCu73erNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAAAAymFSJmW3nJR1smFhbTD354p8va2/b55c58b1VZ6+cX3dddO7dOnIxc9/PjnxxDHXvv/++7PddtuNs8PO16a85IIqkGMAACiyT6YqZJlGZZyhyjEAAAAAQLn8MkflkuzTdO0zuSx/kve35XfNk+vcuN6o8dB6Mu4b12fOnDmu73erNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAAAAyuWN2TsvzLuarl2QL+TJDLbld82T6xxcH43p08f19Ze85CUtaqSztSkvuaAK5BgAAIrsk6kKWaZRGWeocgwAAAAAUC6TMim75aSskw0La0N5IJfnn9vyu+bJdQ6uj8Y4b1wfHh5uUSOdrU15yQVVIMcAAFBkn0xVyDKNyjhDlWMAAAAAgPLZNC/K+3Nw07Wb84P8Jpe1/DfNk+scXB+Ncd64Pn/+/BY10tnalJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAAAopx2yV16U9zRduyBfyJMZbOnvmSfXObg+GuO8cf0Nb3hDixrpbG3KSy6oAjkGAIAi+2SqQpZpVMYZqhwDAAAAAJTTpEzKh3Ni1s1GhbWhPJjL8k8t/T3z5DoH10djnAfXL7jgghY10tnalJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAAAor03zwrwvBzdd+9+clLvz05b9lnlyXU+tVqt1u4mJYGhoKH19fRlM0vvMhY03ToaGxlV7yZIlWX/99cdVoxu1KS+5oArkGAAAiuyTqQpZplEZZ6hyDAAAAABQbrXUcmren9/mysLaxnlevpTbs342GffvmCfXuXH9uUyfPu4ShxxySAsa6XxtyksuqAI5BgCAIvtkqkKWaVTGGaocAwAAAACUW0968uH8IOtm48Lawvw+l+UfW/I75sl1blxfZbU3rr/jHcnPf96lrgAAAAAAAAAAAACAdvlVjs9F2avp2qdyUV6WnTvcUXW5cf25TJs27hL9/f0taKTztSkvuaAK5BgAAIrsk6kKWaZRGWeocgwAAAAAUA075O/y4ryv6dqF+WKW5A/jqm+eXOfG9VWG5s9P31ZbFW9c/+pXk8MOG1fthx9+OFtvvfW4anSjNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAAAAqmNB7s/ReVWWZmFh7bX523wkp4y5tnlynRvXn/LII82ft+DG9fPPP3/cNbpRm/KSC6pAjgEAoMg+maqQZRqVcYYqxwAAAAAA1bFJtssH8r2ma7fkh7krF465tnlynYPrT3n44ebPp08fd+kddthh3DW6UZvykguqQI4BAKDIPpmqkGUalXGGKscAAAAAANXyhuyZl+QDTdcuzF5Zkj+Mqa55cp2D609Z3cH1Fty4/vDqardAO2tTXnJBFcgxAAAU2SdTFbJMozLOUOUYAAAAAKBaetKTD+eETE1vYW1R5uWn+eqY6pon1zm4/pQ23ri+dOnScdfoRm3KSy6oAjkGAIAi+2SqQpZpVMYZqhwDAAAAAFRPX7bNB3Jo07Vbc2ruzAVrXNM8uc7B9ae08cb1l7zkJeOu0Y3alJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAACoptfnc/mT7NR07aLslcV5fI3qmSfXObj+lGYH1ydPTrbYYtylf/7zn4+7RjdqU15yQRXIMQAAFNknUxWyTKMyzlDlGAAAAACgmnrSk11zfKamr7C2KAP5ab6yRvXMk+t6arVardtNTARDH/pQ+n760wwm6X3q4TbbJL///bhrL1iwIJtsssm463S6NuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAAAAqu1/c3LOz+ebrv11ZmT77DaqOubJdW5cf8ojjxSfTZ/ektJHHnlkS+p0ujblJRdUgRwDAECRfTJVIcs0KuMMVY4BAAAAAKrtddkjL82Hmq5dmL2yOI+Nqo55cp0b11cZ2nbb9D344Mgb13feObnooi52BQAAAAAAAAAAAAB0w1B+n6PyygxnsLD2qnwyH8uPu9BVeblxPUlqteThh4vPW3Tjen9/f0vqdLo25SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAACqrzfPy045vOna7Tkjd+S856xhnlznxvUkefzxDG2+efqSkTeuf+MbyX//97jLDw4Opq+vb9x1Ol2b8pILqkCOAQCgyD6ZqpBlGpVxhirHAAAAAABrh1pq+XF2zd25uLC2YbbKl/LrbJgtVvt98+Q6N64nybx5zZ9Pm9aS8j/60Y9aUqfTtSkvuaAK5BgAAIrsk6kKWaZRGWeocgwAAAAAsHboSU92zfFZL5sU1p7II/lpvvys3zdPrnNwPUkGBpo/nz69JeXf/e53t6ROp2tTXnJBFcgxAAAU2SdTFbJMozLOUOUYAAAAAGDt0ZttslO+33Tt9pyZuTlntd81T65zcD1p+43rd999d0vqdLo25SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAADWLq/JZ/Ky7Np07aLsnScyv+maeXKdg+tJ229cX3/99VtSp9O1KS+5oArkGAAAiuyTqQpZplEZZ6hyDAAAAACwdulJT3bNcVkvmxbWFmd+Lsk+Tb9nnlzn4HrS9hvXN99885bU6XRtyksuqAI5BgCAIvtkqkKWaVTGGaocAwAAAACsfTbO9OyU7zdd+3XOyq9zduG5eXKdg+tJ8xvX+/qSFv0dDnPmzGlJnU7XprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAADA2uk1+XT+NLs1Xbs4X8qiPDLimXlyXU+tVqt1u4mue897MvSzn6UvyWCS3iT50z9N7ryzJeUHBgYyrUW3t3eyNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAAAA1l4LM5Cj88osyeOFtVfkY/nEM25eN0+uc+N60vzG9enTW1b+Bz/4QctqdbI25SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAADWXhtnWnbKEU3X5ub/y+056+k/myfXuXE9STbdNEMLFoy8cf2v/zo544zu9gUAAAAAAAAAAAAATDi11PKT/GXuzIzC2vrZPP+QX2ejbN35xiYwN64/+WSyYEHxeQtvXO/v729ZrU7WprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAADA2q0nPdklx2b9bF5YW5LHcnG+lFpq5snP4Mb1++5LXvjCDCUjb1w/8MDkX/6lJT/x5JNPZr311mtJrU7WprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAAAASXJbzsw5+WTTtY/mjLz0yd3Nk1dx4/q8ec2ft/DG9SOOOKJltTpZm/KSC6pAjgEAoMg+maqQZRqVcYYqxwAAAAAAJMmr8ld5ef6y6dol2SffPeJ/OtzRxOXg+sBA8+fTprXsJ3bfffeW1epkbcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAAkCQ96cnOOTrrZ/PC2pI8lg13vyG11LrQ2cTj4Prqblxv4cH1m266qWW1Olmb8pILqkCOAQCgyD6ZqpBlGpVxhirHAAAAAAA8ZaNsnZ1zdNO16266IrfnzA53NDE5uL66G9enT2/ZT0xr4SH4TtamvOSCKpBjAAAosk+mKmSZRmWcocoxAAAAAADP9Kp8Iq/IxwrPN5qWXJJ9sjCrObO8Fpkymg/VarUsXLiw3b101PDwcIaHh5O7706SPPXvbihJJk9OpkxJhoZa9ltDLarVydqUl1xQBXIMAABF9slUhSzTqIwzVDkGAAAAAKDR2/Kd3JmrsySPP/1s+XCyYOjxnJU987H8OD3p6WKH7bPxxhunp+fZ/7311Gq12nMVGhoaSl9fX8saAwAAAAAAAAAAAACgGgYHB9Pb2/usnxnVwfVK37i+887JrbdmXpI3J5mb5Hmvf30yc2ZLfmdoaCjbbrttHnjggef8L2Mi1aa85IIqkGMAACiyT6YqZJlGZZyhyjEAAAAAAM/mvOyRO3NehoeSQ7dN/vGBZOveF2XnHJPtsmO322uL0dy4PmU0hXp6eqo7fN9006S3N1n1j3TdOEnv85//x2ct1Nvb27b/DNtZm/KSC6pAjgEAoMg+maqQZRqVcYYqxwAAAAAANPOxHJejcm3+kPlJkrf27pVdew/Jutmwy51116RuN9B1M2cmg4PJXXf98c/nnZfst183OwIAAAAAAAAAAAAASmrDbJldckw2yQuTJO/LQWv9ofXEwfW6DTb44/9+4xuTN7yhu70AAAAAAAAAAAAAAKX1inw0X8iN3W5jQnFwfZWpU6eO+N+trPuf//mfLa/b7tqUl1xQBXIMAABF9slUhSzTqIwzVDkGAAAAAGA0NpraZ578DA6ur9LOg+tTpkxp2//TpV21KS+5oArkGAAAiuyTqQpZplEZZ6hyDAAAAADAaJgnj9RTq9Vq3W5iIhgaGkpfX18GBwfT29vb0toPPPBAtt1225bW7ERtyksuqAI5BgCAIvtkqkKWaVTGGaocAwAAAAAwGubJdW5c74CrrrqqlLUpL7mgCuQYAACK7JOpClmmURlnqHIMAAAAAMBomCfXObjeAS972ctKWZvykguqQI4BAKDIPpmqkGUalXGGKscAAAAAAIyGeXKdg+sdsGTJklLWprzkgiqQYwAAKLJPpipkmUZlnKHKMQAAAAAAo2GeXOfgegc89thjpaxNeckFVSDHAABQZJ9MVcgyjco4Q5VjAAAAAABGwzy5zsH1NnriiSdy8cUX5/DDD29L3fe973157Wtf29LalJdcUBXtencCAECZLV68OCeddFIee+yx7Lnnnlm5cmW3W4I1dvvtt+cNb3hDPvCBD+Twww/PgQce2O2W6KKn3msXXnhh9txzz7z0pS99erY1HmeccUYuvfTSfO1rX8vg4GBb3p1mFwAAAAAAjNaiRYvygx/8IPfff3+3W5kQHFxvow033DA777xzBgYG2lJ32bJlueiii1pam/KSC6qiXe9OAAAoszvuuCP33HNPnnjiidx2220ZHh7udkuwxoaHh3PTTTflsssuy4tf/OJ89atf7XZLdNFT77Vddtklt912Wy677LKnZ1tjNWvWrCxcuDAf/OAHc9hhh+U3v/lNW96dZhcAAAAAAIzGSSedlIMPPjhXXHGFi6lWmdLtBtYGz3ve89pWe++9925bbcpLLqiCdr47AQCgbHbYYYdst912OfXUU/OVr3wl66+/frdbgjW2ww47JPnj4eKvf/3rWW+99brcEd301HvtqKOOyle+8pX85V/+5bhrnnvuuZk2bVquu+66XHfddfn617/e1nen2QUAAAAAAM/m85//fJLk29/+dpc7mTjcuN4BDzzwQNtqf+9732tbbcpLLqiCdr47AQCgjLbccsssXrw4p59+eu68885utwNjds455+SCCy7odhtMAFtuuWX22WefnH766fn3f//3cddbunRpXvGKV+Stb31rFi1alKuuuqqt706zCwAAAAAAWDMOrnfAC17wgrbV/sY3vtG22pSXXFAF7Xx3AgBA2Rx11FE57rjj8o1vfCNTpkzJPffc0+2WYEx+//vfZ2BgwOyCp99rSTJlypS8//3vH3fNp271f8p1113X1nen2QUAAAAAAKwZB9fbaHh4OD/+8Y9zyy235Iwzzsjw8HBL69577735xCc+0bK6lJtcUBXtencCAECZvfvd787GG2+cT3/603n1q1+dD37wg91uCcbk0UcfzbRp09Lf39/tVuiyp95r559/fl796ldn9uzZT8+2xjoP+OxnP5tbbrkl5513XjbddNN87GMfa8u70+wCAAAAAADGpqdWq9W63cREMDQ0lL6+vgwODqa3t7eltefPn58tt9yypTU7UZvykguqQI4BAKDIPpmqkGUalXGGKscAAAAAAIxGT09Pfve73+WFL3xht1vpOjeud8C5555bytqUl1xQBXIMAABF9slUhSzTqIwzVDkGAAAAAIA148b1VcZ743pPT8+4fn80/zWsyW/4r3XtIRdUzeoyLb8AAKzN7JMpM7MLmmllLjoxmx3N78kvAAAAAADPdMYZZ2TWrFk59thj81d/9Vd5xzvekS996Uvdbqur3LjeIrVabbV/XXTRRc+6Ptr/h8aa1GbtIRdUzepyDAAAazP7ZMrM7IJm1mSGuqa11nQ+O9bevZMBAAAAAHg2n/zkJ3PMMcfkoosuyplnnrnWH1pPHFxvmSeeeCIXX3xx3ve+9yVJHnnkkZx22mn58Y9/nBNOOCHLly/P4OBgzjrrrMycOTNHHXXUmP6fGWeccUYuvfTSfO1rX8vg4GBWrFiRBx98MPvuu2+r/y1REo3ZS5Kf/exnI3ICZfLUu3LOnDljflcCAEDV2CdTZmYXrM4zZ51DQ0NJMqZZ57PNZvfdd98sXbq0JbPZpzxV/+qrr86+++6b5cuXj7kWAAAAAADVt2LFim63MGE4uN4iG264YXbeeecsW7YsSXL11VdnwYIF+dSnPpUNNtggV155Za655pqsWLEi73rXu7Jo0aIsXLhwjX5j1qxZWbhwYT74wQ/msMMOS19fX17wghfk/PPPz2OPPdaOf1uUQGP2Zs2alQ022GBETqBMnnpX7rrrrmN6VwIAQBXZJ1NmZhc00zjrfOUrX5larTamWeezzWaXLVuWgYGBcc9mn+mp+n/7t3+bZcuW5corrxxzLQAAAAAAqu+FL3xht1uYMBxcb5O//uu/zj777JMkufPOO7P99tvn3e9+d374wx/mIx/5SLbbbrv09vauUc1zzz03jz/+eK677rocdNBBqdVqOeGEE/Ke97ynHf8WKKlzzz03t9xyy4icQJk89a787Gc/O6Z3JQAAVJF9MlVidkFSnHXOmjUrV1xxRUtmnc+czQ4MDGT+/Pnjns02q3/NNddkYGAg22+//bh7BgAAAACguq655pputzBhOLjeZhdffHG+/OUv54UvfGHuvPPOfOUrX8nf/M3f5Igjjsi8efPWqNbSpUvzile8Im9961uzaNGiHH/88fnEJz6R9ddfv03dU0ZLly7NJz7xiadzctVVV3W7JVgjT70r99133zG9KwEAoIrsk6kSswuS4qxz6dKl2XrrrVs667z44ovz8Y9/PPvss8+4Z7PNbL755vn4xz/uphwAAAAAAJ7VJz/5yW63MGE4uN5Gs2fPztZbb53f//73mTt3bs4999x86EMfykc+8pEcfvjhufHGG9eo3g477DDizwMDAzn22GNz+eWX5/7778+tt97ayvYpqR122CGXXHLJ03+eOnVqF7uBNffUu/L+++8f07sSAACqyD6ZKjG7ICnOOi+66KL87ne/a9ms86nZ7Mc//vHst99+457NNqv/85//PB//+Mczd+7ccdUCAAAAAKDajj766G63MGFM6XYDVTE8PJxzzjkn9957b84444xss802+fKXv5ytttoqS5cuzUc+8pF85jOfyQknnJBtt902Q0ND2W233dboNz772c/mwAMPzIoVK7Lpppvma1/7WpYvX56jjz46w8PD/rHKa6nG7H3mM5/JQw89lPPOOy+bbrpp3va2t3W7RVgjT70r3/jGN+Z3v/vdGr8rAQCgiuyTKTOzC5ppnHVeddVVY551Ptds9phjjsmkSZPGNZt9puuvvz577bVXttpqq7zjHe/IMcccM+ZaAAAAAABU3ze+8Y1utzBh9NScdk6SDA0Npa+vL4ODg+nt7W1p7f7+/raFrp21KS+5oArkGAAAiuyTqQpZplEZZ6hyDAAAAADAaJgn1zm4vko7D64PDQ21vGYnalNeckEVyDEAABTZJ1MVskyjMs5Q5RgAAAAAgNEwT66b1O0G1gannHJKKWtTXnJBFcgxAAAU2SdTFbJMozLOUOUYAAAAAIDRME+uc3C9A9773veWsjblJRdUgRwDAECRfTJVIcs0KuMMVY4BAAAAABgN8+Q6B9c74M477yxlbcpLLqgCOQYAgCL7ZKpClmlUxhmqHAMAAAAAMBrmyXUOrnfAhhtuWMralJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAABgNMyT6xxc74DNNtuslLUpL7mgCuQYAACK7JOpClmmURlnqHIMAAAAAMBomCfXObjeAbfeemspa1NeckEVyDEAABTZJ1MVskyjMs5Q5RgAAAAAgNEwT67rqdVqtW43MREMDQ2lr68vg4OD6e3tbWnthx56KNtss01La3aiNuUlF1SBHAMAQJF9MlUhyzQq4wxVjgEAAAAAGA3z5Do3rnfASSedVMralJdcUAVyDAAARfbJVIUs06iMM1Q5BgAAAABgNMyT69y4vko7b1wHAAAAAAAAAAAAAFibuXG9A/r7+0tZm/KSC6pAjgEAoMg+maqQZRqVcYYqxwAAAAAAjIZ5cp0b11dp543rw8PDmTp1aktrdqI25SUXVIEcAwBAkX0yVSHLNCrjDFWOAQAAAAAYDfPkOjeud8Dhhx9eytqUl1xQBXIMAABF9slUhSzTqIwzVDkGAAAAAGA0zJPr3Li+SjtvXL/nnnvykpe8pKU1O1Gb8pILqkCOAQCgyD6ZqpBlGpVxhirHAAAAAACMhnlynYPrq7Tz4DoAAAAAAAAAAAAAwNrMwfVVarVaFi5cmI033jg9PT3dbgcAAAAAAAAAAAAAoDIcXAcAAAAAAAAAAAAAoK0mdbsBAAAAAAAAAAAAAACqzcF1AAAAAAAAAAAAAADaysF1AAAAAAAAAAAAAADaysF1AAAAAAAAAAAAAADaysF1AAAAAAAAAAAAAADaysF1AAAAAAAAAAAAAADaysF1AAAAAAAAAAAAAADa6v8HekvKu5lCUOUAAAAASUVORK5CYII=\n", + "text/plain": [ + "Graphics object consisting of 10 graphics primitives" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plot_with_colored_slopes(h, thickness=4).show(figsize=30)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "Use tab completion to see more example functions in the module\n", + "Use tab completion to see more example functions in the module\n", "`extreme_functions` :" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (574365148.py, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m Cell \u001b[0;32mIn [43], line 1\u001b[0;36m\u001b[0m\n\u001b[0;31m h = igp.extreme_functions.\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ], "source": [ "h = igp.extreme_functions." - ], - "outputs": [], - "metadata": {} - }, - { - "source": [ - "Also see the live manual at\n", - "\n", - "\n", - "## Procedures\n", - "\n", - "There are also \"procedures\", operations that can be applied to extreme\n", - "functions.\n", - "\n", + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Also see the live manual at\n", + "\n", + "\n", + "## Procedures\n", + "\n", + "There are also \"procedures\", operations that can be applied to extreme\n", + "functions.\n", + "\n", "First, the multiplicative homomorphism:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "multiplicative_homomorphism?" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "h = multiplicative_homomorphism(gmic(f=4/5), 3)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "Note, this function has several points where it takes value 1, and hence\n", - "several candidates for \"f\". If we don't provide the f value that we\n", - "mean, it will warn and pick the first one from the left. So let's\n", + "Note, this function has several points where it takes value 1, and hence\n", + "several candidates for \"f\". If we don't provide the f value that we\n", + "mean, it will warn and pick the first one from the left. So let's\n", "provide the f value:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "extremality_test(h, True, f=4/15)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "A special case of the above:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "automorphism?" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "h = automorphism(gmic(f=4/5))" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "extremality_test(h, True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "We can restrict to a finite group problem:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "restrict_to_finite_group?" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "hr = restrict_to_finite_group(gmic(f=4/5))" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "extremality_test(hr, True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "For the finite group problems, automorphisms are more interesting!" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ha = automorphism(hr, 2)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "extremality_test(ha, True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "We can interpolate to get a function for the infinite group problem:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "hi = interpolate_to_infinite_group(ha)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "extremality_test(hi, True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "The docstring has more interesting examples:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "interpolate_to_infinite_group?" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "There's also this: :" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "projected_sequential_merge?" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "The module `procedures` has a catalog of all procedures. Use tab\n", + "The module `procedures` has a catalog of all procedures. Use tab\n", "completion to explore them:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "igp.procedures." - ], - "outputs": [], - "metadata": {} - }, - { - "source": [ - "Also see the live manual at\n", - "\n", - "\n", - "## Customizing the graphics\n", - "\n", - "Sometimes, for complicated functions, the graphics do not show enough\n", + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Also see the live manual at\n", + "\n", + "\n", + "## Customizing the graphics\n", + "\n", + "Sometimes, for complicated functions, the graphics do not show enough\n", "detail. :" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "h = bhk_irrational(delta=[1/200, 3/200])" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "extremality_test(h, True)" - ], - "outputs": [], - "metadata": {} - }, - { - "source": [ - ":-(\n", - "\n", - "There are two ways to see more.\n", - "\n", - "Approach 1: Use specific plotting functions to zoom in to some areas of\n", - "interest.\n", - "\n", + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ":-(\n", + "\n", + "There are two ways to see more.\n", + "\n", + "Approach 1: Use specific plotting functions to zoom in to some areas of\n", + "interest.\n", + "\n", "The 2d diagram, showing non-subadditive vertices and additive faces:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "plot_2d_diagram(h).show(xmin=0.15, xmax=0.35, ymin=0.15, ymax=0.35)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "The diagram of covered intervals:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "plot_covered_intervals(h).show(xmin=0.15, xmax=0.35, ymin=0.22, ymax=0.55)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "The completion diagram (to be explained in a forthcoming paper):" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "plot_completion_diagram(h).show(xmin=0.28, xmax=0.52, ymin=0.25, ymax=0.35)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "The perturbation diagram. 1 is the index of the perturbation shown:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "plot_perturbation_diagram(h, 1).show(xmin=0.28, xmax=0.35, ymin=0.33, ymax=0.4)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Approach 2: Increase the plotting figure size (the default is 10):" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "igp.show_plots_figsize = 40" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "h = bhk_irrational(delta=[1/200, 3/200])" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "extremality_test(h, True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ - "## Defining new functions\n", - "\n", + "## Defining new functions\n", + "\n", "Of course, we can define functions from scratch:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "h = piecewise_function_from_breakpoints_and_values([0, 1/5, 2/5, 4/5, 1], [0, 1/5, 3/5, 1, 0]);" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "extremality_test(h, True)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Here's another way:" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "slopes = [10/3,0,10/3,0,10/3,-10/3,0,-10/3,0,-10/3]" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "interval_lengths = [1/10,1/10,1/10,1/10,1/10,1/10,1/10,1/10,1/10,1/10]" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "h = piecewise_function_from_interval_lengths_and_slopes(interval_lengths, slopes)" - ], - "outputs": [], - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "extremality_test(h, True, show_all_perturbations=True)" - ], - "outputs": [], - "metadata": {} + ] } - ], + ], "metadata": { "kernelspec": { - "display_name": "sagemath", + "display_name": "SageMath 10.1.beta4", + "language": "sage", "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" } - } + }, + "nbformat": 4, + "nbformat_minor": 4 }