Skip to content

Commit cff45ec

Browse files
committed
Add laser model description to docs
1 parent 70a6709 commit cff45ec

File tree

2 files changed

+220
-0
lines changed

2 files changed

+220
-0
lines changed

docs/source/index.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -79,6 +79,7 @@ In case you are already fluent in compiling C++ projects and HPC, running PIC si
7979

8080
models/pic
8181
models/AOFDTD
82+
models/lasers
8283
models/total_field_scattered_field
8384
models/shapes
8485
models/LL_RR

docs/source/models/lasers.rst

Lines changed: 219 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,219 @@
1+
.. _model-lasers:
2+
3+
Analytic Expressions for the 3D Laser Profiles
4+
==============================================
5+
6+
.. sectionauthor:: Klaus Steiniger
7+
8+
9+
A very concise description of the equations used in the ``GaussianPulse`` and ``DispersivePulse`` profiles are provided in the following.
10+
Please also refer to the in-code documentation of these and the other profiles in order to obtain more profile-specific information.
11+
12+
13+
Definitions
14+
-----------
15+
Following [Steiniger2024]_, the electric field in frequency-space domain is assumed to be polarized along :math:`x` and defined as
16+
17+
.. math::
18+
\hat{\vec E}(\vec r, \Omega) = \hat E_\mathrm{A}(\vec r, \Omega) e^{-\imath \varphi(\vec r, \Omega)}\vec{\mathrm e}_x\,,
19+
20+
where :math:`\Omega=2\pi\nu` is the angular frequency and :math:`\vec r` the position considered, :math:`\hat E_\mathrm{A}` is the spectral amplitude and
21+
:math:`\varphi=\tfrac{\Omega}{c} \vec{\mathrm e}_\Omega \cdot \vec r`
22+
the spectral phase of the pulse,
23+
with :math:`\vec{\mathrm e}_\Omega` being the propagation direction of frequency :math:`\Omega`.
24+
Dispersions are assumed to occur only in the plane spanned by the direction of pulse propagation :math:`\vec{\mathrm e}_z`, being equal to the direction of propagation of the central frequency :math:`\Omega_0`, and polarization :math:`\vec{\mathrm e}_z`, i.e. :math:`\vec{\mathrm e}_\Omega \cdot \vec{\mathrm e}_y = 0`.
25+
This implies, that the spectral phase does not vary along the :math:`y`-direction in focus, i.e.
26+
27+
.. math::
28+
\varphi |_{z=0} = \varphi(x,\Omega) |_{z=0} = k_x(\Omega) \cdot x\,,
29+
30+
where :math:`k_x = \tfrac{\Omega}{c} \vec{\mathrm e}_\Omega \cdot \vec{\mathrm e}_x = -\tfrac{\Omega}{c}\sin\theta` with :math:`\theta=\theta(\Omega)` being the angle enclosed by the propagation directions of frequency :math:`\Omega` and the central laser frequency :math:`\Omega_0`.
31+
32+
33+
34+
In the following, the spectral amplitude is assumed to be separable in a spectrum :math:`\epsilon_\Omega`, as well as transverse envelopes :math:`\epsilon_x` and :math:`\epsilon_y`
35+
36+
.. math::
37+
\hat E_{\mathrm A} = \epsilon_\Omega \epsilon_x \epsilon_y\,.
38+
39+
40+
.. math::
41+
\epsilon_\Omega(\Omega)& = e^{-\frac{\tau_0^2}{4}(\Omega-\Omega_0)^2}\,, &
42+
\tau_0& = \tau_\mathrm{FWHM,I} / \sqrt{2 \ln 2} \\
43+
\epsilon_x(x)& = e^{-\frac{\left[x-x_0(\Omega)\right]^2}{w_{0,x}^2}}\,, &
44+
w_{0,x}& = w_{\mathrm{FWHM,I},x} / \sqrt{2 \ln 2} \\
45+
\epsilon_y(y)& = e^{-\frac{y^2}{w_{0,y}^2}}\,, &
46+
w_{0,y}& = w_{\mathrm{FWHM,I},y} / \sqrt{2 \ln 2} \\
47+
48+
:math:`x_0=x_0(\Omega)` is the center position of the spatial distribution of frequency :math:`\Omega` along the polarization direction in the focus.
49+
50+
51+
3D field in frequency-space domain
52+
----------------------------------
53+
54+
Prerequisite: Huygens' integral in the Fresnel approximation
55+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
56+
[Siegman1986]_ shows on p. 633 and p. 636 formulas for the propagation of paraxial beams in 3D and 2D, respectively.
57+
They have an equal kernel
58+
59+
.. math::
60+
\hat K_s(s^\prime, z, \Omega) = \sqrt{\frac{\Omega}{2\pi c}}
61+
\frac{e^{\imath\frac{\pi}{4}}}{\sqrt{z}}
62+
e^{-\imath \frac{\Omega}{2 c z} (s-s^\prime)^{2}}\,,
63+
64+
such that propagation can be computed as
65+
66+
.. math::
67+
& \text{(2D)}& \hat E_x(x, z, \Omega)& =
68+
e^{-\imath\frac{\Omega}{c}z}
69+
\int\limits_{-\infty}^{\infty}
70+
\hat K_x(x^\prime, z, \Omega) \hat{E}(x^\prime, z=0, \Omega) \, \mathrm dx^\prime
71+
\qquad \clubsuit \label{eq::Fresnel2D} \\
72+
& \text{(3D)}& \hat{E}(x, y, z, \Omega)& =
73+
e^{-\imath\frac{\Omega}{c}z}
74+
\int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty}
75+
\hat K_y(y^\prime, z, \Omega) \hat K_x(x^\prime, z, \Omega)
76+
\hat{E}(x^\prime, y^\prime, z=0, \Omega) \, \mathrm dx^\prime \mathrm dy^\prime \\
77+
& \text{(3D)}& \hat E(x, y, z, \Omega)& =
78+
\epsilon_\Omega e^{-\imath\frac{\Omega}{c}z}
79+
\int\limits_{-\infty}^{\infty}
80+
\hat K_x(x^\prime, z, \Omega) \epsilon_{x^\prime}
81+
\mathrm e^{-\imath \varphi(x^\prime, \Omega)}\, \mathrm dx^\prime
82+
\int\limits_{-\infty}^{\infty}
83+
\hat K_y(y^\prime, z, \Omega) \epsilon_{y^\prime} \,\mathrm dy^\prime \\
84+
& & & = \hat E_x(x, z, \Omega)
85+
\int\limits_{-\infty}^{\infty}
86+
\hat K_y(y^\prime, z, \Omega) \epsilon_{y^\prime} \,\mathrm dy^\prime\,. \qquad \bigstar \label{eq::Fresnel3Dsep} \\
87+
& & & \qquad \text{(provided $\hat E$ is separable and dispersion-free along $y$)}
88+
89+
90+
Derivation
91+
^^^^^^^^^^
92+
[Steiniger2024]_ computed the 2D :math:`\hat E_x(x,z,\Omega)` part of eq. :math:`\bigstar`, i.e. computed :math:`\clubsuit` and thereby omitted the last integral in :math:`\bigstar`.
93+
The result of this last integral can be read of the known solution for the 2D part, being provided in eq. (6) of [Steiniger2024]_.
94+
95+
.. math::
96+
\hat E_x(x, z, \Omega) = &\
97+
\epsilon_\Omega
98+
\left[ 1 + \frac{z^2}{z_\mathrm{R,x}^2} \right]^{-1/4}
99+
e^{-\left[
100+
x - \left( x_0 - \frac{c}{\Omega_0 w_{0,x}}\alpha z \right)
101+
\right]^2
102+
\left[ \frac{1}{w_x(z)^2} + \imath \frac{\Omega}{2c} R_x^{-1}(z) \right]
103+
}
104+
\\ &\ \times
105+
e^{-\imath \frac{\Omega}{c}z}
106+
e^{\imath \alpha \frac{x}{w_{0,x}} }
107+
e^{\imath \frac{\alpha^2}{4}\frac{z}{z_{\mathrm R,x}} }
108+
e^{\imath \frac{1}{2} \arctan\frac{z}{z_{\mathrm R,x}} }
109+
e^{-\imath \frac{1}{2}GDD_\mathrm{foc}(\Omega-\Omega_0)^2}
110+
e^{-\imath \frac{1}{6}TOD_\mathrm{foc}(\Omega-\Omega_0)^3}\\
111+
z_{\mathrm R,s} = &\ \frac{\Omega_0 w_{0,s}^2}{2c} \\
112+
w_s(z) = &\ w_{0,s} \sqrt{1 + \frac{z^2}{z_{\mathrm R,s}^2}} \\
113+
R_s^{-1}(z) = &\ \frac{z}{z^2 + z_{\mathrm R,s}^2} \\
114+
\alpha(\Omega) = &\
115+
\frac{w_0}{c}\left[
116+
\Omega_0 \theta^\prime (\Omega-\Omega_0)
117+
+ \frac{1}{2}\left( 2 \theta^\prime + \Omega_0 \theta^{\prime\prime} \right) (\Omega-\Omega_0)^2
118+
\right. \\
119+
&\ \qquad \left. + \frac{1}{6}\left(
120+
3\theta^{\prime\prime} + \Omega_0\theta^{\prime\prime\prime} - \Omega_0 {\theta^\prime}^3
121+
\right) (\Omega-\Omega_0)^3
122+
\right]
123+
124+
Note, :math:`k_x \approx - \alpha / w_{0,x}`.
125+
126+
The sought result for :math:`\int \hat K_y \epsilon_{y^\prime}\,\mathrm dy^\prime` is obtained from the 2D solution :math:`\hat E_x(x,z,\Omega)` by dropping :math:`\epsilon_\Omega` and :math:`\mathrm e^{-\imath(\Omega/c)z}`, plus letting :math:`\alpha \rightarrow 0` and :math:`x_0 \rightarrow 0`.
127+
Hence,
128+
129+
.. math::
130+
\hat E_y(y,z,\Omega)& := \int\limits_{-\infty}^{\infty}
131+
\hat K_y(y^\prime, z, \Omega) \epsilon_{y^\prime} \,\mathrm dy^\prime \\
132+
& = \sqrt{\frac{\Omega}{2\pi c}} \frac{e^{\imath\frac{\pi}{4}}}{\sqrt{z}}
133+
\int\limits_{-\infty}^{\infty} e^{-\frac{{y^\prime}^2}{w_{0,y^\prime}^2}}
134+
e^{-\imath \frac{\Omega}{2 c z} (y-y^\prime)^{2}} \,\mathrm dy^\prime \\
135+
& = \left[ 1 + \frac{z^2}{z_{\mathrm R,y}^2} \right]^{-1/4}
136+
\mathrm e^{-y^2\left[\frac{1}{w_y(z)^2} + \imath \frac{\Omega}{2c}R_y^{-1}(z)\right]}
137+
\mathrm e^{\imath\frac{1}{2}\arctan\frac{z}{z_{\mathrm R,y}}}\,.
138+
139+
140+
Result
141+
^^^^^^
142+
According to the definitions above
143+
144+
.. math::
145+
\hat E(x,y,z,\Omega) = \hat E_x \cdot \hat E_y\,.
146+
147+
148+
3D field in time-space domain
149+
-----------------------------
150+
Derivation
151+
^^^^^^^^^^
152+
For the Fourier transform to time-space domain, again the results of [Steiniger2024]_ can be reused since the modifications due to the presence of :math:`\hat E_y` are easy to incorporate.
153+
In fact, when applying the transformation :math:`\Omega \rightarrow \tfrac{1}{\tau_0}\Omega^\prime + \Omega_0`, as is done in the reference,
154+
155+
.. math::
156+
\hat E_y(y,z,\frac{1}{\tau_0}\Omega^\prime + \Omega_0) =
157+
\left[ 1 + \frac{z^2}{z_{\mathrm R,y}^2} \right]^{-1/4}
158+
\mathrm e^{-\frac{y^2}{w_y(z)^2}} \mathrm e^{-\imath \Omega_0 \frac{y^2 R^{-1}_y(z)}{2c}}
159+
\mathrm e^{\imath\frac{1}{2}\arctan\frac{z}{z_{\mathrm R,y}}}
160+
\mathrm e^{-\imath \frac{y^2 R_y^{-1}(z)}{2c}\frac{1}{\tau_0}\Omega^\prime}
161+
162+
only the last exponential depends on frequency :math:`\Omega^\prime` and needs to be taken into account in the Fourier transform.
163+
This last exponential simply contributes a term to :math:`\gamma_4`, which is located between eqs. (13) and (14) in [Steiniger2024]_, in the form of
164+
165+
.. math::
166+
\gamma_4\; +\negthickspace= -\frac{y^2 R_y^{-1}(z)}{2c}\frac{1}{\tau_0}\,.
167+
168+
169+
Result
170+
^^^^^^
171+
In total, the 3D time-space domain field :math:`E(x,y,z,t)` of the ``DispersivePulse`` is obtained by taking the existing 2D solution :math:`E(x,z,t)`, cf. eq. (14) in [Steiniger2024]_, and applying
172+
173+
.. math::
174+
\gamma_4^\prime& = \gamma_4 - \frac{y^2 R_y^{-1}(z)}{2c}\frac{1}{\tau_0} \\
175+
E(x,y,z,t)& = E(x,z,t,) |_{\gamma_4 \rightarrow \gamma_4^\prime} \cdot
176+
\left[ 1 + \frac{z^2}{z_{\mathrm R,y}^2} \right]^{-1/4}
177+
\mathrm e^{-\frac{y^2}{w_y(z)^2}} \mathrm e^{-\imath \Omega_0 \frac{y^2 R^{-1}_y(z)}{2c}}
178+
\mathrm e^{\imath\frac{1}{2}\arctan\frac{z}{z_{\mathrm R,y}}}\,.
179+
180+
181+
Special case without dispersion: The ``GaussianPulse``
182+
-----------------------------------------------------------
183+
184+
In that case
185+
186+
.. math::
187+
\gamma_1& = 1 \\
188+
\gamma_2& = 0 \\
189+
\gamma_3& = 0 \\
190+
\gamma_4^\prime& = \left[
191+
t - \frac{z}{c} - \frac{1}{2c}\left(x^2 R_x^{-1}(z)+y^2 R_y^{-1}(z)\right)
192+
\right]\frac{1}{\tau_0}
193+
194+
195+
.. math::
196+
E(x,y,z,t) = &\
197+
\frac{1}{\tau_0\sqrt{\pi}}
198+
\left( 1 + \frac{z^2}{z_{\mathrm R,x}^2} \right)^{-1/4}
199+
\left( 1 + \frac{z^2}{z_{\mathrm R,y}^2} \right)^{-1/4} \\
200+
&\ \times
201+
e^{\imath \Omega_0 \gamma_4^\prime \tau_0}
202+
e^{\imath \frac{1}{2} \left(\arctan\frac{z}{z_{\mathrm R,x}} + \arctan\frac{z}{z_{\mathrm R,y}}\right)}
203+
e^{-\left(\frac{x^2}{w_x^2} + \frac{y^2}{w_y^2}\right)}
204+
e^{-{\gamma_4^\prime}^2}\,.
205+
206+
207+
References
208+
----------
209+
.. [Steiniger2024]
210+
K. Steiniger et al.
211+
*Distortions in focusing laser pulses due to spatio-temporal couplings: an analytic description*,
212+
High Power Laser Science and Engineering 12 (2024).
213+
https://doi.org/10.1017/hpl.2023.96
214+
215+
.. [Siegman1986]
216+
Siegman, Anthony E.
217+
*Lasers*,
218+
University science books (1986).
219+

0 commit comments

Comments
 (0)