|
| 1 | +.. _model-lasers: |
| 2 | + |
| 3 | +Analytic Expressions for the 3D Laser Profiles |
| 4 | +============================================== |
| 5 | + |
| 6 | +.. sectionauthor:: Klaus Steiniger |
| 7 | + |
| 8 | + |
| 9 | +A very concise description of the equations used in the ``GaussianPulse`` and ``DispersivePulse`` profiles are provided in the following. |
| 10 | +Please also refer to the in-code documentation of these and the other profiles in order to obtain more profile-specific information. |
| 11 | + |
| 12 | + |
| 13 | +Definitions |
| 14 | +----------- |
| 15 | +Following [Steiniger2024]_, the electric field in frequency-space domain is assumed to be polarized along :math:`x` and defined as |
| 16 | + |
| 17 | +.. math:: |
| 18 | + \hat{\vec E}(\vec r, \Omega) = \hat E_\mathrm{A}(\vec r, \Omega) e^{-\imath \varphi(\vec r, \Omega)}\vec{\mathrm e}_x\,, |
| 19 | +
|
| 20 | +where :math:`\Omega=2\pi\nu` is the angular frequency and :math:`\vec r` the position considered, :math:`\hat E_\mathrm{A}` is the spectral amplitude and |
| 21 | +:math:`\varphi=\tfrac{\Omega}{c} \vec{\mathrm e}_\Omega \cdot \vec r` |
| 22 | +the spectral phase of the pulse, |
| 23 | +with :math:`\vec{\mathrm e}_\Omega` being the propagation direction of frequency :math:`\Omega`. |
| 24 | +Dispersions are assumed to occur only in the plane spanned by the direction of pulse propagation :math:`\vec{\mathrm e}_z`, being equal to the direction of propagation of the central frequency :math:`\Omega_0`, and polarization :math:`\vec{\mathrm e}_z`, i.e. :math:`\vec{\mathrm e}_\Omega \cdot \vec{\mathrm e}_y = 0`. |
| 25 | +This implies, that the spectral phase does not vary along the :math:`y`-direction in focus, i.e. |
| 26 | + |
| 27 | +.. math:: |
| 28 | + \varphi |_{z=0} = \varphi(x,\Omega) |_{z=0} = k_x(\Omega) \cdot x\,, |
| 29 | +
|
| 30 | +where :math:`k_x = \tfrac{\Omega}{c} \vec{\mathrm e}_\Omega \cdot \vec{\mathrm e}_x = -\tfrac{\Omega}{c}\sin\theta` with :math:`\theta=\theta(\Omega)` being the angle enclosed by the propagation directions of frequency :math:`\Omega` and the central laser frequency :math:`\Omega_0`. |
| 31 | + |
| 32 | + |
| 33 | + |
| 34 | +In the following, the spectral amplitude is assumed to be separable in a spectrum :math:`\epsilon_\Omega`, as well as transverse envelopes :math:`\epsilon_x` and :math:`\epsilon_y` |
| 35 | + |
| 36 | +.. math:: |
| 37 | + \hat E_{\mathrm A} = \epsilon_\Omega \epsilon_x \epsilon_y\,. |
| 38 | +
|
| 39 | +
|
| 40 | +.. math:: |
| 41 | + \epsilon_\Omega(\Omega)& = e^{-\frac{\tau_0^2}{4}(\Omega-\Omega_0)^2}\,, & |
| 42 | + \tau_0& = \tau_\mathrm{FWHM,I} / \sqrt{2 \ln 2} \\ |
| 43 | + \epsilon_x(x)& = e^{-\frac{\left[x-x_0(\Omega)\right]^2}{w_{0,x}^2}}\,, & |
| 44 | + w_{0,x}& = w_{\mathrm{FWHM,I},x} / \sqrt{2 \ln 2} \\ |
| 45 | + \epsilon_y(y)& = e^{-\frac{y^2}{w_{0,y}^2}}\,, & |
| 46 | + w_{0,y}& = w_{\mathrm{FWHM,I},y} / \sqrt{2 \ln 2} \\ |
| 47 | +
|
| 48 | +:math:`x_0=x_0(\Omega)` is the center position of the spatial distribution of frequency :math:`\Omega` along the polarization direction in the focus. |
| 49 | + |
| 50 | + |
| 51 | +3D field in frequency-space domain |
| 52 | +---------------------------------- |
| 53 | + |
| 54 | +Prerequisite: Huygens' integral in the Fresnel approximation |
| 55 | +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 56 | +[Siegman1986]_ shows on p. 633 and p. 636 formulas for the propagation of paraxial beams in 3D and 2D, respectively. |
| 57 | +They have an equal kernel |
| 58 | + |
| 59 | +.. math:: |
| 60 | + \hat K_s(s^\prime, z, \Omega) = \sqrt{\frac{\Omega}{2\pi c}} |
| 61 | + \frac{e^{\imath\frac{\pi}{4}}}{\sqrt{z}} |
| 62 | + e^{-\imath \frac{\Omega}{2 c z} (s-s^\prime)^{2}}\,, |
| 63 | +
|
| 64 | +such that propagation can be computed as |
| 65 | + |
| 66 | +.. math:: |
| 67 | + & \text{(2D)}& \hat E_x(x, z, \Omega)& = |
| 68 | + e^{-\imath\frac{\Omega}{c}z} |
| 69 | + \int\limits_{-\infty}^{\infty} |
| 70 | + \hat K_x(x^\prime, z, \Omega) \hat{E}(x^\prime, z=0, \Omega) \, \mathrm dx^\prime |
| 71 | + \qquad \clubsuit \label{eq::Fresnel2D} \\ |
| 72 | + & \text{(3D)}& \hat{E}(x, y, z, \Omega)& = |
| 73 | + e^{-\imath\frac{\Omega}{c}z} |
| 74 | + \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} |
| 75 | + \hat K_y(y^\prime, z, \Omega) \hat K_x(x^\prime, z, \Omega) |
| 76 | + \hat{E}(x^\prime, y^\prime, z=0, \Omega) \, \mathrm dx^\prime \mathrm dy^\prime \\ |
| 77 | + & \text{(3D)}& \hat E(x, y, z, \Omega)& = |
| 78 | + \epsilon_\Omega e^{-\imath\frac{\Omega}{c}z} |
| 79 | + \int\limits_{-\infty}^{\infty} |
| 80 | + \hat K_x(x^\prime, z, \Omega) \epsilon_{x^\prime} |
| 81 | + \mathrm e^{-\imath \varphi(x^\prime, \Omega)}\, \mathrm dx^\prime |
| 82 | + \int\limits_{-\infty}^{\infty} |
| 83 | + \hat K_y(y^\prime, z, \Omega) \epsilon_{y^\prime} \,\mathrm dy^\prime \\ |
| 84 | + & & & = \hat E_x(x, z, \Omega) |
| 85 | + \int\limits_{-\infty}^{\infty} |
| 86 | + \hat K_y(y^\prime, z, \Omega) \epsilon_{y^\prime} \,\mathrm dy^\prime\,. \qquad \bigstar \label{eq::Fresnel3Dsep} \\ |
| 87 | + & & & \qquad \text{(provided $\hat E$ is separable and dispersion-free along $y$)} |
| 88 | +
|
| 89 | +
|
| 90 | +Derivation |
| 91 | +^^^^^^^^^^ |
| 92 | +[Steiniger2024]_ computed the 2D :math:`\hat E_x(x,z,\Omega)` part of eq. :math:`\bigstar`, i.e. computed :math:`\clubsuit` and thereby omitted the last integral in :math:`\bigstar`. |
| 93 | +The result of this last integral can be read of the known solution for the 2D part, being provided in eq. (6) of [Steiniger2024]_. |
| 94 | + |
| 95 | +.. math:: |
| 96 | + \hat E_x(x, z, \Omega) = &\ |
| 97 | + \epsilon_\Omega |
| 98 | + \left[ 1 + \frac{z^2}{z_\mathrm{R,x}^2} \right]^{-1/4} |
| 99 | + e^{-\left[ |
| 100 | + x - \left( x_0 - \frac{c}{\Omega_0 w_{0,x}}\alpha z \right) |
| 101 | + \right]^2 |
| 102 | + \left[ \frac{1}{w_x(z)^2} + \imath \frac{\Omega}{2c} R_x^{-1}(z) \right] |
| 103 | + } |
| 104 | + \\ &\ \times |
| 105 | + e^{-\imath \frac{\Omega}{c}z} |
| 106 | + e^{\imath \alpha \frac{x}{w_{0,x}} } |
| 107 | + e^{\imath \frac{\alpha^2}{4}\frac{z}{z_{\mathrm R,x}} } |
| 108 | + e^{\imath \frac{1}{2} \arctan\frac{z}{z_{\mathrm R,x}} } |
| 109 | + e^{-\imath \frac{1}{2}GDD_\mathrm{foc}(\Omega-\Omega_0)^2} |
| 110 | + e^{-\imath \frac{1}{6}TOD_\mathrm{foc}(\Omega-\Omega_0)^3}\\ |
| 111 | + z_{\mathrm R,s} = &\ \frac{\Omega_0 w_{0,s}^2}{2c} \\ |
| 112 | + w_s(z) = &\ w_{0,s} \sqrt{1 + \frac{z^2}{z_{\mathrm R,s}^2}} \\ |
| 113 | + R_s^{-1}(z) = &\ \frac{z}{z^2 + z_{\mathrm R,s}^2} \\ |
| 114 | + \alpha(\Omega) = &\ |
| 115 | + \frac{w_0}{c}\left[ |
| 116 | + \Omega_0 \theta^\prime (\Omega-\Omega_0) |
| 117 | + + \frac{1}{2}\left( 2 \theta^\prime + \Omega_0 \theta^{\prime\prime} \right) (\Omega-\Omega_0)^2 |
| 118 | + \right. \\ |
| 119 | + &\ \qquad \left. + \frac{1}{6}\left( |
| 120 | + 3\theta^{\prime\prime} + \Omega_0\theta^{\prime\prime\prime} - \Omega_0 {\theta^\prime}^3 |
| 121 | + \right) (\Omega-\Omega_0)^3 |
| 122 | + \right] |
| 123 | +
|
| 124 | +Note, :math:`k_x \approx - \alpha / w_{0,x}`. |
| 125 | + |
| 126 | +The sought result for :math:`\int \hat K_y \epsilon_{y^\prime}\,\mathrm dy^\prime` is obtained from the 2D solution :math:`\hat E_x(x,z,\Omega)` by dropping :math:`\epsilon_\Omega` and :math:`\mathrm e^{-\imath(\Omega/c)z}`, plus letting :math:`\alpha \rightarrow 0` and :math:`x_0 \rightarrow 0`. |
| 127 | +Hence, |
| 128 | + |
| 129 | +.. math:: |
| 130 | + \hat E_y(y,z,\Omega)& := \int\limits_{-\infty}^{\infty} |
| 131 | + \hat K_y(y^\prime, z, \Omega) \epsilon_{y^\prime} \,\mathrm dy^\prime \\ |
| 132 | + & = \sqrt{\frac{\Omega}{2\pi c}} \frac{e^{\imath\frac{\pi}{4}}}{\sqrt{z}} |
| 133 | + \int\limits_{-\infty}^{\infty} e^{-\frac{{y^\prime}^2}{w_{0,y^\prime}^2}} |
| 134 | + e^{-\imath \frac{\Omega}{2 c z} (y-y^\prime)^{2}} \,\mathrm dy^\prime \\ |
| 135 | + & = \left[ 1 + \frac{z^2}{z_{\mathrm R,y}^2} \right]^{-1/4} |
| 136 | + \mathrm e^{-y^2\left[\frac{1}{w_y(z)^2} + \imath \frac{\Omega}{2c}R_y^{-1}(z)\right]} |
| 137 | + \mathrm e^{\imath\frac{1}{2}\arctan\frac{z}{z_{\mathrm R,y}}}\,. |
| 138 | +
|
| 139 | +
|
| 140 | +Result |
| 141 | +^^^^^^ |
| 142 | +According to the definitions above |
| 143 | + |
| 144 | +.. math:: |
| 145 | + \hat E(x,y,z,\Omega) = \hat E_x \cdot \hat E_y\,. |
| 146 | +
|
| 147 | +
|
| 148 | +3D field in time-space domain |
| 149 | +----------------------------- |
| 150 | +Derivation |
| 151 | +^^^^^^^^^^ |
| 152 | +For the Fourier transform to time-space domain, again the results of [Steiniger2024]_ can be reused since the modifications due to the presence of :math:`\hat E_y` are easy to incorporate. |
| 153 | +In fact, when applying the transformation :math:`\Omega \rightarrow \tfrac{1}{\tau_0}\Omega^\prime + \Omega_0`, as is done in the reference, |
| 154 | + |
| 155 | +.. math:: |
| 156 | + \hat E_y(y,z,\frac{1}{\tau_0}\Omega^\prime + \Omega_0) = |
| 157 | + \left[ 1 + \frac{z^2}{z_{\mathrm R,y}^2} \right]^{-1/4} |
| 158 | + \mathrm e^{-\frac{y^2}{w_y(z)^2}} \mathrm e^{-\imath \Omega_0 \frac{y^2 R^{-1}_y(z)}{2c}} |
| 159 | + \mathrm e^{\imath\frac{1}{2}\arctan\frac{z}{z_{\mathrm R,y}}} |
| 160 | + \mathrm e^{-\imath \frac{y^2 R_y^{-1}(z)}{2c}\frac{1}{\tau_0}\Omega^\prime} |
| 161 | +
|
| 162 | +only the last exponential depends on frequency :math:`\Omega^\prime` and needs to be taken into account in the Fourier transform. |
| 163 | +This last exponential simply contributes a term to :math:`\gamma_4`, which is located between eqs. (13) and (14) in [Steiniger2024]_, in the form of |
| 164 | + |
| 165 | +.. math:: |
| 166 | + \gamma_4\; +\negthickspace= -\frac{y^2 R_y^{-1}(z)}{2c}\frac{1}{\tau_0}\,. |
| 167 | +
|
| 168 | +
|
| 169 | +Result |
| 170 | +^^^^^^ |
| 171 | +In total, the 3D time-space domain field :math:`E(x,y,z,t)` of the ``DispersivePulse`` is obtained by taking the existing 2D solution :math:`E(x,z,t)`, cf. eq. (14) in [Steiniger2024]_, and applying |
| 172 | + |
| 173 | +.. math:: |
| 174 | + \gamma_4^\prime& = \gamma_4 - \frac{y^2 R_y^{-1}(z)}{2c}\frac{1}{\tau_0} \\ |
| 175 | + E(x,y,z,t)& = E(x,z,t,) |_{\gamma_4 \rightarrow \gamma_4^\prime} \cdot |
| 176 | + \left[ 1 + \frac{z^2}{z_{\mathrm R,y}^2} \right]^{-1/4} |
| 177 | + \mathrm e^{-\frac{y^2}{w_y(z)^2}} \mathrm e^{-\imath \Omega_0 \frac{y^2 R^{-1}_y(z)}{2c}} |
| 178 | + \mathrm e^{\imath\frac{1}{2}\arctan\frac{z}{z_{\mathrm R,y}}}\,. |
| 179 | +
|
| 180 | +
|
| 181 | +Special case without dispersion: The ``GaussianPulse`` |
| 182 | +----------------------------------------------------------- |
| 183 | + |
| 184 | +In that case |
| 185 | + |
| 186 | +.. math:: |
| 187 | + \gamma_1& = 1 \\ |
| 188 | + \gamma_2& = 0 \\ |
| 189 | + \gamma_3& = 0 \\ |
| 190 | + \gamma_4^\prime& = \left[ |
| 191 | + t - \frac{z}{c} - \frac{1}{2c}\left(x^2 R_x^{-1}(z)+y^2 R_y^{-1}(z)\right) |
| 192 | + \right]\frac{1}{\tau_0} |
| 193 | +
|
| 194 | +
|
| 195 | +.. math:: |
| 196 | + E(x,y,z,t) = &\ |
| 197 | + \frac{1}{\tau_0\sqrt{\pi}} |
| 198 | + \left( 1 + \frac{z^2}{z_{\mathrm R,x}^2} \right)^{-1/4} |
| 199 | + \left( 1 + \frac{z^2}{z_{\mathrm R,y}^2} \right)^{-1/4} \\ |
| 200 | + &\ \times |
| 201 | + e^{\imath \Omega_0 \gamma_4^\prime \tau_0} |
| 202 | + e^{\imath \frac{1}{2} \left(\arctan\frac{z}{z_{\mathrm R,x}} + \arctan\frac{z}{z_{\mathrm R,y}}\right)} |
| 203 | + e^{-\left(\frac{x^2}{w_x^2} + \frac{y^2}{w_y^2}\right)} |
| 204 | + e^{-{\gamma_4^\prime}^2}\,. |
| 205 | +
|
| 206 | +
|
| 207 | +References |
| 208 | +---------- |
| 209 | +.. [Steiniger2024] |
| 210 | + K. Steiniger et al. |
| 211 | + *Distortions in focusing laser pulses due to spatio-temporal couplings: an analytic description*, |
| 212 | + High Power Laser Science and Engineering 12 (2024). |
| 213 | + https://doi.org/10.1017/hpl.2023.96 |
| 214 | +
|
| 215 | +.. [Siegman1986] |
| 216 | + Siegman, Anthony E. |
| 217 | + *Lasers*, |
| 218 | + University science books (1986). |
| 219 | +
|
0 commit comments