-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSVDcmp.m
253 lines (242 loc) · 6.46 KB
/
SVDcmp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*******************************************************************************
Singular value decomposition program, svdcmp, from "Numerical Recipes in C"
(Cambridge Univ. Press) by W.H. Press, S.A. Teukolsky, W.T. Vetterling,
and B.P. Flannery
Modified to start array index by zero. 2010 Universitätsmedizin Mannheim.
*******************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#import "SVDcmp.h"
@implementation SVDcmp
#define NR_END 1
#define FREE_ARG char*
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
static double dmaxarg1,dmaxarg2;
#define DMAX(a,b) (dmaxarg1=(a),dmaxarg2=(b),(dmaxarg1) > (dmaxarg2) ?\
(dmaxarg1) : (dmaxarg2))
static int iminarg1,iminarg2;
#define IMIN(a,b) (iminarg1=(a),iminarg2=(b),(iminarg1) < (iminarg2) ?\
(iminarg1) : (iminarg2))
+ (double **)dmatrix:(int)nrl :(int)nrh :(int)ncl :(int)nch
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */
{
int i,nrow=nrh-nrl+1,ncol=nch-ncl+1;
double **m;
/* allocate pointers to rows */
m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
m += NR_END;
m -= nrl;
/* allocate rows and set pointers to them */
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
m[nrl] += NR_END;
m[nrl] -= ncl;
for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
/* return pointer to array of pointers to rows */
return m;
}
+ (double *)dvector:(int)nl :(int)nh
/* allocate a double vector with subscript range v[nl..nh] */
{
double *v;
v=(double *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(double)));
return v-nl+NR_END;
}
+ (void)free_dvector:(double *)v :(int)nl :(int)nh
/* free a double vector allocated with dvector() */
{
free((FREE_ARG) (v+nl-NR_END));
}
+ (double)pythag:(double)a :(double)b
/* compute (a2 + b2)^1/2 without destructive underflow or overflow */
{
double absa,absb;
absa=fabs(a);
absb=fabs(b);
if (absa > absb) return absa*sqrt(1.0+(absb/absa)*(absb/absa));
else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+(absa/absb)*(absa/absb)));
}
/******************************************************************************/
+ (void)svdcmp:(double **)a :(int)m :(int)n :(double*)w :(double **)v
/*******************************************************************************
Given a matrix a[1..m][1..n], this routine computes its singular value
decomposition, A = U.W.VT. The matrix U replaces a on output. The diagonal
matrix of singular values W is output as a vector w[1..n]. The matrix V (not
the transpose VT) is output as v[1..n][1..n].
*******************************************************************************/
{
int flag,i,its,j,jj,k,l,nm;
double anorm,c,f,g,h,s,scale,x,y,z,*rv1;
rv1=[self dvector:0 :n-1];
g=scale=anorm=0.0; /* Householder reduction to bidiagonal form */
for (i=0;i<n;i++) {
l=i+1;
rv1[i]=scale*g;
g=s=scale=0.0;
if (i < m) {
for (k=i;k<m;k++) scale += fabs(a[k][i]);
if (scale) {
for (k=i;k<m;k++) {
a[k][i] /= scale;
s += a[k][i]*a[k][i];
}
f=a[i][i];
g = -SIGN(sqrt(s),f);
h=f*g-s;
a[i][i]=f-g;
for (j=l;j<n;j++) {
for (s=0.0,k=i;k<m;k++) s += a[k][i]*a[k][j];
f=s/h;
for (k=i;k<m;k++) a[k][j] += f*a[k][i];
}
for (k=i;k<m;k++) a[k][i] *= scale;
}
}
w[i]=scale *g;
g=s=scale=0.0;
if (i < m && i != n) {
for (k=l;k<n;k++) scale += fabs(a[i][k]);
if (scale) {
for (k=l;k<n;k++) {
a[i][k] /= scale;
s += a[i][k]*a[i][k];
}
f=a[i][l];
g = -SIGN(sqrt(s),f);
h=f*g-s;
a[i][l]=f-g;
for (k=l;k<n;k++) rv1[k]=a[i][k]/h;
for (j=l;j<m;j++) {
for (s=0.0,k=l;k<n;k++) s += a[j][k]*a[i][k];
for (k=l;k<n;k++) a[j][k] += s*rv1[k];
}
for (k=l;k<n;k++) a[i][k] *= scale;
}
}
anorm = DMAX(anorm,(fabs(w[i])+fabs(rv1[i])));
}
for (i=n-1;i>=0;i--) { /* Accumulation of right-hand transformations. */
if (i < n) {
if (g) {
for (j=l;j<n;j++) /* Double division to avoid possible underflow. */
v[j][i]=(a[i][j]/a[i][l])/g;
for (j=l;j<n;j++) {
for (s=0.0,k=l;k<n;k++) s += a[i][k]*v[k][j];
for (k=l;k<n;k++) v[k][j] += s*v[k][i];
}
}
for (j=l;j<n;j++) v[i][j]=v[j][i]=0.0;
}
v[i][i]=1.0;
g=rv1[i];
l=i;
}
for (i=IMIN(m,n)-1;i>=0;i--) { /* Accumulation of left-hand transformations. */
l=i+1;
g=w[i];
for (j=l;j<n;j++) a[i][j]=0.0;
if (g) {
g=1.0/g;
for (j=l;j<n;j++) {
for (s=0.0,k=l;k<m;k++) s += a[k][i]*a[k][j];
f=(s/a[i][i])*g;
for (k=i;k<m;k++) a[k][j] += f*a[k][i];
}
for (j=i;j<m;j++) a[j][i] *= g;
} else for (j=i;j<m;j++) a[j][i]=0.0;
++a[i][i];
}
for (k=n-1;k>=0;k--) { /* Diagonalization of the bidiagonal form. */
for (its=1;its<=30;its++) {
flag=1;
for (l=k;l>=0;l--) { /* Test for splitting. */
nm=l-1; /* Note that rv1[1] is always zero. */
if ((double)(fabs(rv1[l])+anorm) == anorm) {
flag=0;
break;
}
if ((double)(fabs(w[nm])+anorm) == anorm) break;
}
if (flag) {
c=0.0; /* Cancellation of rv1[l], if l > 1. */
s=1.0;
for (i=l;i<k;i++) {
f=s*rv1[i];
rv1[i]=c*rv1[i];
if ((double)(fabs(f)+anorm) == anorm) break;
g=w[i];
h=[self pythag:f:g];
w[i]=h;
h=1.0/h;
c=g*h;
s = -f*h;
for (j=0;j<m;j++) {
y=a[j][nm];
z=a[j][i];
a[j][nm]=y*c+z*s;
a[j][i]=z*c-y*s;
}
}
}
z=w[k];
if (l == k) { /* Convergence. */
if (z < 0.0) { /* Singular value is made nonnegative. */
w[k] = -z;
for (j=0;j<n;j++) v[j][k] = -v[j][k];
}
break;
}
if (its == 30) printf("no convergence in 30 svdcmp iterations");
x=w[l]; /* Shift from bottom 2-by-2 minor. */
nm=k-1;
y=w[nm];
g=rv1[nm];
h=rv1[k];
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);
g=[self pythag:f:1.0];
f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x;
c=s=1.0; /* Next QR transformation: */
for (j=l;j<=nm;j++) {
i=j+1;
g=rv1[i];
y=w[i];
h=s*g;
g=c*g;
z=[self pythag:f:h];
rv1[j]=z;
c=f/z;
s=h/z;
f=x*c+g*s;
g = g*c-x*s;
h=y*s;
y *= c;
for (jj=0;jj<n;jj++) {
x=v[jj][j];
z=v[jj][i];
v[jj][j]=x*c+z*s;
v[jj][i]=z*c-x*s;
}
z=[self pythag:f:h];
w[j]=z; /* Rotation can be arbitrary if z = 0. */
if (z) {
z=1.0/z;
c=f*z;
s=h*z;
}
f=c*g+s*y;
x=c*y-s*g;
for (jj=0;jj<m;jj++) {
y=a[jj][j];
z=a[jj][i];
a[jj][j]=y*c+z*s;
a[jj][i]=z*c-y*s;
}
}
rv1[l]=0.0;
rv1[k]=f;
w[k]=x;
}
}
[self free_dvector:rv1:0:n-1];
}
@end