-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdiva_main.py
430 lines (320 loc) · 19.3 KB
/
diva_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
"""==================================================================================================="""
################### LIBRARIES ###################
### Basic Libraries
import warnings
warnings.filterwarnings("ignore")
import os, sys, numpy as np, argparse, imp, datetime, pandas as pd, copy
import time, pickle as pkl, random, json, collections, itertools as it
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from tqdm import tqdm
### DML-specific Libraries
import parameters as par
import utilities.misc as misc
"""==================================================================================================="""
################### INPUT ARGUMENTS ###################
parser = argparse.ArgumentParser()
parser = par.basic_training_parameters(parser)
parser = par.batch_creation_parameters(parser)
parser = par.batchmining_specific_parameters(parser)
parser = par.loss_specific_parameters(parser)
parser = par.wandb_parameters(parser)
parser = par.diva_parameters(parser)
##### Read in parameters
opt = parser.parse_args()
"""==================================================================================================="""
if opt.dataset=='online_products':
opt.evaluation_metrics = ['e_recall@1', 'e_recall@10', 'e_recall@100', 'nmi', 'f1', 'mAP']
if 'shared' in opt.diva_features and 'selfsimilarity' in opt.diva_features and len(opt.diva_features)==3:
opt.diva_decorrelations = ['selfsimilarity-discriminative', 'shared-discriminative', 'shared-selfsimilarity']
if 'shared' in opt.diva_features and len(opt.diva_features)==4:
opt.diva_decorrelations = ['selfsimilarity-discriminative', 'shared-discriminative', 'intra-discriminative']
if 'dc' in opt.diva_features or 'imrot' in opt.diva_features:
opt.diva_decorrelations = []
if 'all' in opt.evaltypes:
"""==== EVALUATE DIFFERENT EMBEDDING SPACE REWEIGHTINGS ===="""
#Generally, there is a slight benefit in placing higher weights on non-discriminative features during testing.
opt.evaltypes = []
if len(opt.diva_features)==1:
opt.evaltypes = copy.deepcopy(opt.diva_features)
if len(opt.diva_features)==2:
for comb in list(it.product(opt.evaltypes, opt.evaltypes)):
comb_name = 'Combined_'+comb[0]+'_'+comb[1]+'-1-1'
comb_name_2 = 'Combined_'+comb[1]+'_'+comb[0]+'-1-1'
if comb_name not in opt.evaltypes and comb_name_2 not in opt.evaltypes and comb[0]!=comb[1]:
opt.evaltypes.append(comb_name)
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'-1-0.5')
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'-0.5-1')
if len(opt.diva_features)==3:
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'_'+opt.diva_features[2]+'-1.5-1-1')
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'_'+opt.diva_features[2]+'-1-1-1')
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'_'+opt.diva_features[2]+'-0.5-1-1')
if len(opt.diva_features)==4:
if opt.dataset!='online_products':
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'_'+opt.diva_features[2]+'_'+opt.diva_features[3]+'-0.75-1.25-1.25-1.25')
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'_'+opt.diva_features[2]+'_'+opt.diva_features[3]+'-0.5-1-1-1')
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'_'+opt.diva_features[2]+'_'+opt.diva_features[3]+'-0.5-1.5-1.5-1.5')
else:
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'_'+opt.diva_features[2]+'_'+opt.diva_features[3]+'-1-1-1-1')
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'_'+opt.diva_features[2]+'_'+opt.diva_features[3]+'-0.5-1-1-1')
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'_'+opt.diva_features[2]+'_'+opt.diva_features[3]+'-1-0.5-0.5-0.5')
opt.evaltypes.append('Combined_'+opt.diva_features[0]+'_'+opt.diva_features[1]+'_'+opt.diva_features[2]+'_'+opt.diva_features[3]+'-1.5-1-1-1')
"""==================================================================================================="""
### The following setting is useful when logging to wandb and running multiple seeds per setup:
### By setting the savename to <group_plus_seed>, the savename will instead comprise the group and the seed!
if opt.savename=='group_plus_seed':
if opt.log_online:
opt.savename = opt.group+'_s{}'.format(opt.seed)
else:
opt.savename = ''
### If wandb-logging is turned on, initialize the wandb-run here:
if opt.log_online:
import wandb
_ = os.system('wandb login {}'.format(opt.wandb_key))
os.environ['WANDB_API_KEY'] = opt.wandb_key
wandb.init(project=opt.project, group=opt.group, name=opt.savename, dir=opt.save_path)
wandb.config.update(opt)
"""==================================================================================================="""
### Load Remaining Libraries that neeed to be loaded after comet_ml
import torch, torch.nn as nn
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
import architectures as archs
import datasampler as dsamplers
import datasets as datasets
import criteria as criteria
import metrics as metrics
import batchminer as bmine
import evaluation as eval
from utilities import misc
from utilities import logger
"""==================================================================================================="""
full_training_start_time = time.time()
"""==================================================================================================="""
opt.source_path += '/'+opt.dataset
opt.save_path += '/'+opt.dataset
#Assert that the construction of the batch makes sense, i.e. the division into class-subclusters.
assert not opt.bs%opt.samples_per_class, 'Batchsize needs to fit number of samples per class for distance sampling and margin/triplet loss!'
opt.pretrained = not opt.not_pretrained
"""==================================================================================================="""
################### GPU SETTINGS ###########################
os.environ["CUDA_DEVICE_ORDER"] ="PCI_BUS_ID"
# if not opt.use_data_parallel:
os.environ["CUDA_VISIBLE_DEVICES"]= str(opt.gpu[0])
"""==================================================================================================="""
#################### SEEDS FOR REPROD. #####################
torch.backends.cudnn.deterministic=True; np.random.seed(opt.seed); random.seed(opt.seed)
torch.manual_seed(opt.seed); torch.cuda.manual_seed(opt.seed); torch.cuda.manual_seed_all(opt.seed)
"""==================================================================================================="""
##################### NETWORK SETUP ##################
#NOTE: Networks that can be used: 'bninception, resnet50, resnet101, alexnet...'
#>>>> see import pretrainedmodels; pretrainedmodels.model_names
opt.device = torch.device('cuda')
mfeat_net = 'multifeature_resnet50' if 'resnet' in opt.arch else 'multifeature_bninception'
model = archs.select(mfeat_net, opt)
opt.network_feature_dim = model.feature_dim
print('{} Setup for {} with {} batchmining on {} complete with #weights: {}'.format(opt.loss.upper(), opt.arch.upper(), opt.batch_mining.upper(), opt.dataset.upper(), misc.gimme_params(model)))
if opt.fc_lr<0:
to_optim = [{'params':model.parameters(),'lr':opt.lr,'weight_decay':opt.decay}]
else:
all_but_fc_params = [x[-1] for x in list(filter(lambda x: 'last_linear' not in x[0], model.named_parameters()))]
fc_params = model.model.last_linear.parameters()
to_optim = [{'params':all_but_fc_params,'lr':opt.lr,'weight_decay':opt.decay},
{'params':fc_params,'lr':opt.fc_lr,'weight_decay':opt.decay}]
#####
selfsim_model = archs.select(mfeat_net, opt)
selfsim_model.load_state_dict(model.state_dict())
#####
_ = model.to(opt.device)
_ = selfsim_model.to(opt.device)
"""============================================================================"""
#################### DATALOADER SETUPS ##################
dataloaders = {}
datasets = datasets.select(opt.dataset, opt, opt.source_path)
dataloaders['evaluation'] = torch.utils.data.DataLoader(datasets['evaluation'], num_workers=opt.kernels, batch_size=opt.bs, shuffle=False)
dataloaders['evaluation_train'] = torch.utils.data.DataLoader(datasets['evaluation_train'], num_workers=opt.kernels, batch_size=opt.bs, shuffle=False)
dataloaders['testing'] = torch.utils.data.DataLoader(datasets['testing'], num_workers=opt.kernels, batch_size=opt.bs, shuffle=False)
train_data_sampler = dsamplers.select(opt.data_sampler, opt, datasets['training'].image_dict, datasets['training'].image_list)
datasets['training'].include_aux_augmentations = True
dataloaders['training'] = torch.utils.data.DataLoader(datasets['training'], num_workers=opt.kernels, batch_sampler=train_data_sampler)
opt.n_classes = len(dataloaders['training'].dataset.avail_classes)
"""============================================================================"""
#################### CREATE LOGGING FILES ###############
sub_loggers = ['Train', 'Test', 'Model Grad']
LOG = logger.LOGGER(opt, sub_loggers=sub_loggers, start_new=True, log_online=opt.log_online)
"""============================================================================"""
#################### LOSS SETUP ####################
batchminer = bmine.select(opt.batch_mining, opt)
criterion_dict = {}
for key in opt.diva_features:
if 'discriminative' in key:
criterion_dict[key], to_optim = criteria.select(opt.loss, opt, to_optim, batchminer)
if len(opt.diva_decorrelations):
criterion_dict['separation'], to_optim = criteria.select('adversarial_separation', opt, to_optim, None)
if 'selfsimilarity' in opt.diva_features:
criterion_dict['selfsimilarity'], to_optim = criteria.select(opt.diva_ssl, opt, to_optim, None)
if 'invariantspread' in opt.diva_features:
criterion_dict['invariantspread'], to_optim = criteria.select('invariantspread', opt, to_optim, batchminer)
#############
if 'shared' in opt.diva_features:
if opt.diva_sharing=='standard':
shared_batchminer = bmine.select('shared_neg_distance', opt)
criterion_dict['shared'], to_optim = criteria.select(opt.loss, opt, to_optim, shared_batchminer)
elif opt.diva_sharing=='random':
random_shared_batchminer = bmine.select('random_distance', opt)
criterion_dict['shared'], to_optim = criteria.select(opt.loss, opt, to_optim, random_shared_batchminer)
elif opt.diva_sharing=='full':
full_shared_batchminer = bmine.select('shared_full_distance', opt)
criterion_dict['shared'], to_optim = criteria.select(opt.loss, opt, to_optim, full_shared_batchminer)
else:
raise Exception('Sharing method {} not available!'.format(opt.diva_sharing))
#############
if 'intra' in opt.diva_features:
if opt.diva_intra=='random':
intra_batchminer = bmine.select('intra_random', opt)
else:
raise Exception('Intra-Feature method {} not available!'.format(opt.diva_intra))
criterion_dict['intra'], to_optim = criteria.select(opt.loss, opt, to_optim, intra_batchminer)
#############
if 'dc' in opt.diva_features:
criterion_dict['dc'], to_optim = criteria.select('dc', opt, to_optim, batchminer)
if 'imrot' in opt.diva_features:
criterion_dict['imrot'], to_optim = criteria.select('imrot', opt, to_optim, batchminer)
for key in criterion_dict.keys():
_ = criterion_dict[key].to(opt.device)
if 'selfsimilarity' in criterion_dict:
criterion_dict['selfsimilarity'].create_memory_queue(selfsim_model, dataloaders['training'], opt.device, opt_key='selfsimilarity')
if 'imrot' in criterion_dict:
dataloaders['training'].dataset.predict_rotations = True
"""============================================================================"""
#################### OPTIM SETUP ####################
optimizer = torch.optim.Adam(to_optim)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=opt.tau, gamma=opt.gamma)
"""============================================================================"""
#################### METRIC COMPUTER ####################
metric_computer = metrics.MetricComputer(opt.evaluation_metrics)
"""============================================================================"""
################### SCRIPT MAIN ##########################
print('\n-----\n')
iter_count = 0
for epoch in range(opt.n_epochs):
opt.epoch = epoch
### Scheduling Changes specifically for cosine scheduling
if opt.scheduler!='none': print('Running with learning rates {}...'.format(' | '.join('{}'.format(x) for x in scheduler.get_lr())))
"""======================================="""
if train_data_sampler.requires_storage:
train_data_sampler.precompute_indices()
"""======================================="""
if 'dc' in criterion_dict and epoch%opt.diva_dc_update_f==0:
criterion_dict['dc'].update_pseudo_labels(model, dataloaders['evaluation_train'], opt.device)
"""======================================="""
### Train one epoch
start = time.time()
_ = model.train()
loss_collect = {'train':[], 'separation':[]}
data_iterator = tqdm(dataloaders['training'], desc='Epoch {} Training...'.format(epoch))
for i,(class_labels, input, input_indices, aux_input, imrot_labels) in enumerate(data_iterator):
###################
if 'invariantspread' in criterion_dict:
input = torch.cat([input[:len(input)//2,:], aux_input[:len(input)//2]], dim=0)
features = model(input.to(opt.device))
features, direct_features = features
###################
if 'selfsimilarity' in criterion_dict:
with torch.no_grad():
### Use shuffleBN to avoid information bleeding making samples interdependent.
forward_shuffle, backward_reorder = criterion_dict['selfsimilarity'].shuffleBN(len(features['selfsimilarity']))
selfsim_key_features = selfsim_model(aux_input[forward_shuffle].to(opt.device))
if isinstance(selfsim_key_features, tuple): selfsim_key_features = selfsim_key_features[0]
selfsim_key_features = selfsim_key_features['selfsimilarity'][backward_reorder]
###################
loss = 0.
for key, feature in features.items():
if 'discriminative' in key:
loss_discr = criterion_dict[key](feature, class_labels)
loss = loss + loss_discr
if 'selfsimilarity' in criterion_dict:
loss_selfsim = criterion_dict['selfsimilarity'](features['selfsimilarity'], selfsim_key_features)
loss = loss + opt.diva_alpha_ssl*loss_selfsim
if 'shared' in features:
loss_shared = criterion_dict['shared'](features['shared'], class_labels)
loss = loss + opt.diva_alpha_shared*loss_shared
if 'intra' in features:
loss_intra = criterion_dict['intra'](features['intra'], class_labels)
loss = loss + opt.diva_alpha_intra*loss_intra
if 'invariantspread' in criterion_dict:
head_1 = features['invariantspread'][:len(input)//2]
head_2 = features['invariantspread'][len(input)//2:]
loss_invsp = criterion_dict['invariantspread'](head_1, head_2)
loss = loss + loss_invsp
if 'dc' in criterion_dict:
loss_dc = criterion_dict['dc'](direct_features, input_indices)
loss = loss + loss_dc
if 'imrot' in criterion_dict:
loss_imrot = criterion_dict['imrot'](direct_features, imrot_labels)
loss = loss + loss_imrot
if 'separation' in criterion_dict:
loss_adv = criterion_dict['separation'](features)
loss = loss + loss_adv
optimizer.zero_grad()
loss.backward()
### Compute Model Gradients and log them!
grads = np.concatenate([p.grad.detach().cpu().numpy().flatten() for p in model.parameters() if p.grad is not None])
grad_l2, grad_max = np.mean(np.sqrt(np.mean(np.square(grads)))), np.mean(np.max(np.abs(grads)))
LOG.progress_saver['Model Grad'].log('Grad L2', grad_l2, group='L2')
LOG.progress_saver['Model Grad'].log('Grad Max', grad_max, group='Max')
if opt.diva_moco_trainable_temp:
LOG.progress_saver['Train'].log('temp', criterion_dict['selfsimilarity'].temperature.cpu().detach().numpy(), group='Temp')
### Update network weights!
optimizer.step()
###
loss_collect['train'].append(loss.item())
if 'separation' in criterion_dict:
loss_collect['separation'].append(loss_adv.item())
if 'selfsimilarity' in criterion_dict:
### Update Key Network
for model_par, key_model_par in zip(model.parameters(), selfsim_model.parameters()):
momentum = criterion_dict['selfsimilarity'].momentum
key_model_par.data.copy_(key_model_par.data*momentum + model_par.data*(1-momentum))
###
criterion_dict['selfsimilarity'].update_memory_queue(selfsim_key_features)
###
iter_count += 1
if i==len(dataloaders['training'])-1: data_iterator.set_description('Epoch (Train) {0}: Mean Loss [{1:.4f}]'.format(epoch, np.mean(loss_collect['train'])))
"""======================================="""
if train_data_sampler.requires_storage and train_data_sampler.update_storage:
train_data_sampler.replace_storage_entries(features.detach().cpu(), input_indices)
result_metrics = {'loss': np.mean(loss_collect['train'])}
if 'separation' in criterion_dict:
result_metrics['sep. loss'] = np.mean(loss_collect['separation'])
####
LOG.progress_saver['Train'].log('epochs', epoch)
for metricname, metricval in result_metrics.items():
LOG.progress_saver['Train'].log(metricname, metricval)
LOG.progress_saver['Train'].log('time', np.round(time.time()-start, 4))
"""======================================="""
### Evaluate -
_ = model.eval()
if opt.dataset in ['cars196', 'cub200', 'online_products']:
test_dataloaders = [dataloaders['testing']]
elif opt.dataset=='in-shop':
test_dataloaders = [dataloaders['testing_query'], dataloaders['testing_gallery']]
eval.evaluate(opt.dataset, LOG, metric_computer, test_dataloaders, model, opt, opt.evaltypes, opt.device)
LOG.update(all=True)
"""======================================="""
### Learning Rate Scheduling Step
if opt.scheduler != 'none':
scheduler.step()
print('\n-----\n')
"""======================================================="""
### CREATE A SUMMARY TEXT FILE
summary_text = ''
full_training_time = time.time()-full_training_start_time
summary_text += 'Training Time: {} min.\n'.format(np.round(full_training_time/60,2))
summary_text += '---------------\n'
for sub_logger in LOG.sub_loggers:
metrics = LOG.graph_writer[sub_logger].ov_title
summary_text += '{} metrics: {}\n'.format(sub_logger.upper(), metrics)
with open(opt.save_path+'/training_summary.txt','w') as summary_file:
summary_file.write(summary_text)