-
Notifications
You must be signed in to change notification settings - Fork 2
/
openai_gpt_drg_strategized.py
308 lines (267 loc) · 13.9 KB
/
openai_gpt_drg_strategized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT model fine-tuning script.
Adapted from https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/train.py
It self adapted from https://github.com/openai/finetune-transformer-lm/blob/master/train.py
"""
import argparse
import os
import csv
import random
import logging
from tqdm import tqdm, trange
import time
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from pytorch_pretrained_bert import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, OpenAIAdam, cached_path
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def main():
# Parse the arguments
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='openai-gpt',
help='pretrained model name')
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument('--train_dataset', type=str, default='')
parser.add_argument('--eval_dataset', type=str, default='')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--num_train_epochs', type=int, default=1)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--eval_batch_size', type=int, default=16)
parser.add_argument('--max_grad_norm', type=int, default=1)
parser.add_argument('--learning_rate', type=float, default=6.25e-5)
parser.add_argument('--warmup_proportion', type=float, default=0.002)
parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--lm_coef', type=float, default=0.9)
parser.add_argument('--n_valid', type=int, default=374)
parser.add_argument('--max_seq_length', type=int, default=110)
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
print(args)
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Set the seed for random, numpy, PyTorch
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("device: {}, n_gpu {}".format(device, n_gpu))
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
###### NOTE: MODIFIED PARTS ######
# special_tokens = ['<ATTR_WORDS>','<CON_START>','<START>','<END>']
special_tokens = ['<STR>','<CONTEXT>','<START>','<END>', \
'<Actually>',
'<Adverb.Just>',
'<Affirmation>',
'<Apology>',
'<By.The.Way>',
'<Indicative>',
'<Conj.Start>',
'<Subjunctive>',
'<Filler>',
'<For.Me>',
'<For.You>',
'<Gratitude>',
'<Hedges>',
'<Greeting>',
'<Please>',
'<Please.Start>',
'<Reassurance>',
'<Swearing>']
###### END OF CHANGE ######
tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name, special_tokens=special_tokens)
start_token_id = tokenizer.convert_tokens_to_ids(['<START>'])[0]
model = OpenAIGPTLMHeadModel.from_pretrained(args.model_name, num_special_tokens=len(special_tokens))
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
# Load and encode dataset
def tokenize_and_encode(file_path):
'''
This method tokenizes the input data and encodes it using the OpenAIGPTTokenizer
:param file_path: Path of the input file, dtype: str
:return: encoded dataset dtype: list
'''
with open(file_path, 'r') as in_fp:
lines = in_fp.read().splitlines()
#lines = lines[:40000]
tokenized_dataset = lines
for i, line in enumerate(tqdm(lines)):
token = tokenizer.tokenize(line)[:512]
tokenized_dataset[i] = tokenizer.convert_tokens_to_ids(token)
return tokenized_dataset
logger.info("Encoding dataset...")
train_dataset = tokenize_and_encode(args.train_dataset)
#train_dataset = tokenize_and_encode[:100]
eval_dataset = tokenize_and_encode(args.eval_dataset)
train_dataset = [x for x in train_dataset if len(x) <= args.max_seq_length and start_token_id in x]
eval_dataset = [x for x in eval_dataset if len(x) <= args.max_seq_length and start_token_id in x]
print("Training samples = {}".format(len(train_dataset)))
print("Validation samples = {}".format(len(eval_dataset)))
print("Example = {}".format(train_dataset[0]))
time.sleep(2)
# Compute the mex input length for the Transformer
input_length = max(max(len(t) for t in train_dataset), max(len(q) for q in eval_dataset))
if n_gpu > 1:
input_length = min(input_length, model.module.config.n_positions)
else:
input_length = min(input_length, model.config.n_positions) # Max size of input for the pre-trained model
print("Input Length = {}".format(input_length))
def pre_process_dataset(encoded_dataset, input_length, start_token_id):
"""
This method is to create torch tensor of input ids and lm labels
:param encoded_dataset: Input dataset, dtype: list
:param input_length: Maximum length of sentence from training and eval dataset, dtype: int
:param start_token_id: id of the '<START>' token, dtype: int
:return: torch.tensor of size [len(encoded_dataset), 2]
"""
n_batch = len(encoded_dataset)
input_ids = np.zeros(shape=(n_batch, input_length), dtype=np.int64)
lm_labels = np.full(shape=(n_batch, input_length), fill_value=-1, dtype=np.int64)
for i, tokens in enumerate(encoded_dataset):
try:
start_id_index = tokens.index(start_token_id)
input_ids[i, :len(tokens)] = tokens
start_id_index = tokens.index(start_token_id)
lm_labels[i, start_id_index : len(tokens)-1] = tokens[start_id_index + 1: len(tokens)]
# LM loss calculate only for tokens after <START> token in the sentence
#lm_labels[i, :len(tokens)-1] = tokens[1:]
except ValueError:
#print("Index {} doesn't have start token".format(i))
print("Example = {}".format(tokens))
raise ValueError("Example {} doesn't have start token".format(i))
input_ids = torch.tensor(input_ids)
lm_labels = torch.tensor(lm_labels)
tensor_dataset = (input_ids, lm_labels)
#tensor_dataset.append(torch.tensor(d) for d in all_inputs)
return tensor_dataset
# Prepare input tensors and dataloders
train_tensor_dataset = pre_process_dataset(train_dataset, input_length, start_token_id=start_token_id)
eval_tensor_dataset = pre_process_dataset(eval_dataset, input_length, start_token_id=start_token_id)
print("Training Example Input ids= {}".format(train_tensor_dataset[0][0]))
print("Training Example Language Modeling ids = {}".format(train_tensor_dataset[1][0]))
time.sleep(10)
train_data = TensorDataset(*train_tensor_dataset)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
eval_data = TensorDataset(*eval_tensor_dataset)
eval_sampler = RandomSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = len(train_data) * args.num_train_epochs // args.train_batch_size
optimizer = OpenAIAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
max_grad_norm=args.max_grad_norm,
weight_decay=args.weight_decay,
t_total=num_train_optimization_steps)
if args.do_train:
nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
model.train()
for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_steps = 0
tqdm_bar = tqdm(train_dataloader, desc="Training")
for step, batch in enumerate(tqdm_bar):
batch = tuple(t.to(device) for t in batch)
input_ids, lm_labels = batch
loss = model(input_ids, lm_labels=lm_labels)
if n_gpu > 1:
loss.mean().backward()
else:
loss.backward()
optimizer.step()
optimizer.zero_grad()
if n_gpu > 1:
tmp_loss = loss.mean().item()
else:
tmp_loss = loss.item()
exp_average_loss = tmp_loss if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * tmp_loss
nb_tr_steps += 1
tr_loss += tmp_loss
tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, optimizer.get_lr()[0])
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, "pytorch_model_zero_grad_{}.bin".format(epoch+1))
config = model.module.config if hasattr(model, 'module') else model.config
torch.save(model_to_save.state_dict(), output_model_file)
model_state_dict = torch.load(output_model_file)
model = OpenAIGPTLMHeadModel(config)
model.load_state_dict(model_state_dict)
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
# Save a trained model
# if args.do_train:
# model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
# output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
# config = model.config
# torch.save(model_to_save.state_dict(), output_model_file)
#
# # Load a trained model that you have fine-tuned
# model_state_dict = torch.load(output_model_file)
# model = OpenAIGPTLMHeadModel(config)
# model.load_state_dict(model_state_dict)
# model.to(device)
if args.do_eval:
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = tuple(t.to(device) for t in batch)
input_ids, lm_labels = batch
with torch.no_grad():
lm_loss = model(input_ids, lm_labels=lm_labels)
eval_loss += lm_loss.mean().item()
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
train_loss = tr_loss/nb_tr_steps if args.do_train else None
result = {'eval_loss': eval_loss,
'train_loss': train_loss}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == '__main__':
main()