@@ -1200,6 +1200,11 @@ def sparse_wiener_filtering(
1200
1200
)
1201
1201
1202
1202
RMS_ShearMap = np .sqrt (InshearData .Ncov / 2.0 ) # shape = (nx, ny)
1203
+ # shape = ([nimgs], [Nrea], nx, ny)
1204
+ # TODO: complex or complex128? Same question for real-valued arrays
1205
+ xg = np .zeros_like (gamma1 , dtype = complex ) # Gaussian + sparse components
1206
+ xs = np .zeros_like (gamma1 , dtype = complex ) # sparse component
1207
+ xw = np .zeros_like (gamma1 , dtype = complex ) # Gaussian component
1203
1208
SigmaNoise = np .min (RMS_ShearMap ) # float
1204
1209
Esn_Sparse = SigmaNoise / RMS_ShearMap # shape = (nx, ny)
1205
1210
Esn_Sparse [Esn_Sparse == np .inf ] = 0
@@ -1250,11 +1255,7 @@ def sparse_wiener_filtering(
1250
1255
InshearData , mask , Nrea = Nrea , inpshape = inpshape
1251
1256
) # shape = ([nimgs], [Nrea], nx, ny)
1252
1257
1253
- # shape = ([nimgs], [Nrea], nx, ny)
1254
- # TODO: complex or complex128? Same question for real-valued arrays
1255
- xg = np .zeros_like (gamma1 , dtype = complex ) # Gaussian + sparse components
1256
- xs = np .zeros_like (gamma1 , dtype = complex ) # sparse component
1257
- xw = np .zeros_like (gamma1 , dtype = complex ) # Gaussian component
1258
+
1258
1259
1259
1260
for n in range (niter ):
1260
1261
resi1 , resi2 = self .get_resi (
0 commit comments