-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDDoSAnalysis.py
114 lines (92 loc) · 5.01 KB
/
DDoSAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import argparse
import glob
import os
import shutil
import PerformanceAnalyser as perfAnalyser
import DatasetGenerator
import Evaluator
import pwd
HADOOP_PROJECT_MAIN = "/user/" + pwd.getpwuid(os.getuid())[0] + "/project"
HADOOP_PROJECT_PATH_OUTPUT_SUBFOLDER = "/ratio_vol_td"
HADOOP_PROJECT_PATH_INPUT = HADOOP_PROJECT_MAIN + "/input"
HADOOP_PROJECT_PATH_OUTPUT = HADOOP_PROJECT_MAIN + "/output"
PIG_SCRIPT_NAME = "udpfloodpcap.pig"
HEADER = "group;min_ts;max_ts;n_packets;total_volume;time_difference;ratio_vol_td"
AVG_LINE_SIZE = 70
def generation_routine(dataset_name, n_members, n_lines, n_attackers, atk_volume, atk_duration):
print("Generating dataset: " + dataset_name + "...")
DatasetGenerator.generate(dataset_name, int(n_members), int(n_lines), int(n_attackers), int(atk_volume),
int(atk_duration))
print("Copying dataset into hdfs:" + HADOOP_PROJECT_PATH_INPUT + "/" + dataset_name + "...")
os.system("hadoop fs -put " + dataset_name + " " + HADOOP_PROJECT_PATH_INPUT)
def analysis_routine(dataset_name, pig=True):
output_path = "outputs/" + dataset_name + "/"
folder2create = os.path.dirname(output_path)
if not os.path.exists(folder2create):
os.makedirs(folder2create)
print("Analyzing " + dataset_name + "...")
# if pig:
# os.system("pig -x mapreduce -param filename=" + dataset_name + " " + PIG_SCRIPT_NAME)
# os.system(
# "hadoop fs -copyToLocal " + HADOOP_PROJECT_PATH_OUTPUT + "/" + dataset_name + HADOOP_PROJECT_PATH_OUTPUT_SUBFOLDER + " " + output_path)
#
# print("Copying and merging output..")
# with open(output_path + dataset_name + "_rawoutput_concat", 'w') as outfile:
# outfile.write(HEADER + "\n")
# for file in sorted(glob.glob(output_path + HADOOP_PROJECT_PATH_OUTPUT_SUBFOLDER[1:] + "/part-r-*")):
# with open(file, 'r') as readfile:
# shutil.copyfileobj(readfile, outfile)
print("Evaluating...")
Evaluator.evaluate(dataset_name=dataset_name, dataset_path=output_path + dataset_name + "_rawoutput_concat",
output_path=output_path)
# print("Clean up...")
# os.remove(output_path + dataset_name + "_rawoutput_concat")
# shutil.rmtree(output_path + HADOOP_PROJECT_PATH_OUTPUT_SUBFOLDER[1:])
# print("Done!")
def sizeof_fmt(num, suffix='B'):
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
if abs(num) < 1024.0:
return "%3.1f%s%s" % (num, unit, suffix)
num /= 1024.0
return "%.1f%s%s" % (num, 'Yi', suffix)
def size_estimation_routine(records_length, n_attackers, atk_volume, atk_duration):
return sizeof_fmt(AVG_LINE_SIZE * (int(records_length) + (int(atk_volume) / 1000) * int(atk_duration)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group()
group.add_argument("-g", "--generate", help="Generate only dataset",
nargs=6,
metavar=('dataset_name', 'n_members', 'n_lines', 'n_attackers', 'atk_volume', 'atk_duration'))
group.add_argument("-a", "--analyze", help="Analyze dataset with Pig and plot",
nargs=1, metavar=('dataset_name'))
group.add_argument("-anp", "--analyzenopig", help="Analyze dataset already analyzed with Pig and plot",
nargs=1, metavar=('dataset_name'))
group.add_argument("-ga", "--genanalyze", help="Generate and analyze dataset with Pig and plot",
nargs=6,
metavar=('dataset_name', 'n_members', 'n_lines', 'n_attackers', 'atk_volume', 'atk_duration'))
group.add_argument("-sga", "--simgenanalyze", help="Simulate, generate and analyze dataset with Pig and plot",
nargs=6,
metavar=('dataset_name', 'n_members', 'n_lines', 'n_attackers', 'atk_volume', 'atk_duration'))
args = parser.parse_args()
if args.generate:
perfAnalyser.performance_eval(generation_routine, args.generate[0], args.generate[1], args.generate[2],
args.generate[3], args.generate[4], args.generate[5])
elif args.analyze:
perfAnalyser.performance_eval(analysis_routine, args.analyze[0], True)
elif args.analyzenopig:
perfAnalyser.performance_eval(analysis_routine, args.analyzenopig[0], False)
elif args.genanalyze:
perfAnalyser.performance_eval(generation_routine, args.genanalyze[0], args.genanalyze[1], args.genanalyze[2],
args.genanalyze[3], args.genanalyze[4], args.genanalyze[5])
perfAnalyser.performance_eval(analysis_routine, args.genanalyze[0], True)
elif args.simgenanalyze:
print(size_estimation_routine(args.simgenanalyze[2],
args.simgenanalyze[3], args.simgenanalyze[4], args.simgenanalyze[5]))
choice = input("Would you like to continue? (Y/N)")
if(choice == 'Y'):
perfAnalyser.performance_eval(generation_routine, args.simgenanalyze[0], args.simgenanalyze[1],
args.simgenanalyze[2],
args.simgenanalyze[3], args.simgenanalyze[4], args.simgenanalyze[5])
perfAnalyser.performance_eval(analysis_routine, args.simgenanalyze[0], True)
else:
parser.print_help()