forked from carefree0910/MachineLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
requirements.txt
166 lines (155 loc) · 4.61 KB
/
requirements.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Supplement
scikit-learn
# Requirements automatically generated by pigar.
# https://github.com/Damnever/pigar
# Util\CythonUtil.py: 11,32
Cython == 0.27.1
# Util\Bases.py: 10
Pillow == 4.1.1
# Util\Util.py: 5
imageio == 2.2.0
# NN\Basic\Networks.py: 5
# NN\PyTorch\Basic\Networks.py: 6,7
# NN\PyTorch\__Dev\Networks.py: 6
# NN\TF\Networks.py: 6,8
# Notebooks\NN\zh-cn\Util.py: 2
# Notebooks\SVM\zh-cn\Util.py: 2
# Opt\Test.py: 1
# RNN\Test\UnitTest.py: 4
# RNN\Wrapper.py: 2
# Util\Bases.py: 9,12
# Util\DataToolkit.py: 3
# Util\Util.py: 8,14
# Zhihu\NN\_extra\one\Networks.py: 1
# Zhihu\NN\_extra\two\Networks.py: 1
# Zhihu\NN\two\Network.py: 1
# _Dist\NeuralNetworks\Base.py: 16,18
# _Dist\NeuralNetworks\_Tests\Madelon\MadelonUtil.py: 8
# _Dist\NeuralNetworks\_Tests\Pruner\Base.py: 17,19
# _Dist\NeuralNetworks\_Tests\Pruner\Test.py: 8
# _Dist\NeuralNetworks\_Tests\TestUtil.py: 8
# _Dist\TextClassification\SkRun.py: 5
# _Dist\TextClassification\_NB.py: 6
# a_FirstExample\Regression.py: 2
# b_NaiveBayes\Original\GaussianNB.py: 7
# b_NaiveBayes\Original\MultinomialNB.py: 7
# b_NaiveBayes\Vectorized\GaussianNB.py: 7
# b_NaiveBayes\Vectorized\MultinomialNB.py: 7
# e_SVM\KP.py: 8
# e_SVM\TestSVM.py: 7
# f_NN\Networks.py: 7
# g_CNN\Networks.py: 7
# h_RNN\RNN.py: 10
matplotlib == 2.0.2
# NN\Basic\Layers.py: 1
numba == 0.35.0+0.g24edca2e0.dirty
# NN\Basic\Optimizers.py: 1
# NN\PyTorch\Auto\Networks.py: 5
# NN\PyTorch\Basic\Networks.py: 5
# NN\PyTorch\__Dev\Networks.py: 5
# NN\TF\Layers.py: 1
# Notebooks\NN\zh-cn\Util.py: 1
# Notebooks\SVM\zh-cn\Util.py: 1
# Opt\Functions.py: 1
# Opt\Methods.py: 3
# RNN\Generator.py: 1
# RNN\Test\UnitTest.py: 2
# RNN\Wrapper.py: 1
# Util\Bases.py: 7
# Util\CythonUtil.py: 3,4,5
# Util\DataToolkit.py: 1
# Util\Util.py: 6
# Zhihu\CvDTree\one\CvDTree.py: 3
# Zhihu\CvDTree\three\CvDTree.py: 4
# Zhihu\CvDTree\two\CvDTree.py: 3
# Zhihu\NN\Layers.py: 1
# Zhihu\NN\_extra\Optimizers.py: 1
# Zhihu\Python\metaclass_example2.py: 1
# Zhihu\RNN\Mnist.py: 3
# Zhihu\RNN\RNN.py: 1
# _Dist\ImageRecognition\Main.py: 7
# _Dist\ImageRecognition\ToolBox.py: 7
# _Dist\NeuralNetworks\Base.py: 14
# _Dist\NeuralNetworks\NNUtil.py: 5
# _Dist\NeuralNetworks\_Tests\Madelon\MadelonUtil.py: 7
# _Dist\NeuralNetworks\_Tests\Pruner\Advanced.py: 8
# _Dist\NeuralNetworks\_Tests\Pruner\Base.py: 15
# _Dist\NeuralNetworks\_Tests\Pruner\Test.py: 7
# _Dist\NeuralNetworks\_Tests\TestUtil.py: 7
# _Dist\NeuralNetworks\b_TraditionalML\MultinomialNB.py: 1,7
# _Dist\NeuralNetworks\b_TraditionalML\SVM.py: 7
# _Dist\NeuralNetworks\d_Traditional2NN\Toolbox.py: 7
# _Dist\NeuralNetworks\e_AdvancedNN\NN.py: 8
# _Dist\NeuralNetworks\g_DistNN\NN.py: 7
# _Dist\NeuralNetworks\h_RNN\RNN.py: 7
# _Dist\NeuralNetworks\i_CNN\CNN.py: 7
# _Dist\TextClassification\GenDataset.py: 3
# _Dist\TextClassification\SkRun.py: 4
# _Dist\TextClassification\_NB.py: 4
# a_FirstExample\Regression.py: 1
# b_NaiveBayes\Original\Basic.py: 7
# b_NaiveBayes\Vectorized\Basic.py: 7
# c_CvDTree\Cluster.py: 8
# c_CvDTree\Node.py: 7
# e_SVM\KP.py: 7
# e_SVM\LinearSVM.py: 7
# e_SVM\Perceptron.py: 7
# e_SVM\SVM.py: 7
# f_NN\Layers.py: 7
# f_NN\Optimizers.py: 7
# g_CNN\Layers.py: 7
# h_RNN\EmbedRNN.py: 7
# h_RNN\Mnist.py: 8
# h_RNN\Playground.py: 1
# h_RNN\RNN.py: 8
# h_RNN\SpRNN.py: 8
# i_Clustering\KMeans.py: 7
numpy == 1.13.3
# Opt\Methods.py: 6
# Util\DataToolkit.py: 2
# _Dist\NeuralNetworks\NNUtil.py: 7,9
scipy == 0.19.1
# NN\TF\Networks.py: 9,10
# NN\TF\Optimizers.py: 1
# RNN\Cell.py: 1,2,3
# RNN\Test\Mnist.py: 3
# RNN\Test\Operations.py: 2
# RNN\Test\UnitTest.py: 3,5,6
# Util\Bases.py: 8
# Util\Util.py: 7,10,11,12
# Zhihu\NN\Layers.py: 2
# Zhihu\NN\Optimizers.py: 1
# Zhihu\RNN\Mnist.py: 4
# Zhihu\RNN\RNN.py: 4
# _Dist\ImageRecognition\Main.py: 8
# _Dist\ImageRecognition\ToolBox.py: 8,9
# _Dist\NeuralNetworks\Base.py: 15
# _Dist\NeuralNetworks\NNUtil.py: 6
# _Dist\NeuralNetworks\_Tests\Pruner\Advanced.py: 9
# _Dist\NeuralNetworks\_Tests\Pruner\Base.py: 16
# _Dist\NeuralNetworks\b_TraditionalML\SVM.py: 8
# _Dist\NeuralNetworks\e_AdvancedNN\NN.py: 9
# _Dist\NeuralNetworks\g_DistNN\NN.py: 8
# _Dist\NeuralNetworks\h_RNN\Cell.py: 7,8
# _Dist\NeuralNetworks\h_RNN\RNN.py: 8
# _Dist\NeuralNetworks\i_CNN\CNN.py: 8
# e_SVM\LinearSVM.py: 8
# e_SVM\SVM.py: 8
# g_CNN\Layers.py: 8
# g_CNN\Optimizers.py: 7
# h_RNN\EmbedRNN.py: 8
# h_RNN\Mnist.py: 9
# h_RNN\RNN.py: 9,11
# h_RNN\SpRNN.py: 9
tensorflow_gpu == 1.4.0
# NN\PyTorch\Auto\Layers.py: 1,2
# NN\PyTorch\Optimizers.py: 1
# NN\PyTorch\__Dev\Layers.py: 1
# NN\PyTorch\__Dev\Networks.py: 8
# NN\PyTorch\__Dev\Optimizers.py: 1
# Util\Bases.py: 21,22
# e_SVM\LinearSVM.py: 18,19
# e_SVM\SVM.py: 16,17
torch == 0.2.1+a4fc05a
# Util\Timing.py: 2
wrapt == 1.10.10