-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataloader.py
257 lines (210 loc) · 9.51 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import re
import pickle
import string
import codecs
import pandas as pd
import numpy as np
from torchtext import data
from torchtext.data import Dataset, Example
from sklearn.model_selection import train_test_split
from utils.utils import str2list
from pyvi import ViTokenizer
import torch
def preprocessing(text, embeddings_index):
text_ori = text
# remove duplicate characters such as đẹppppppp
text = re.sub(r'([A-Z])\1+', lambda m: m.group(1).upper(), text, flags=re.IGNORECASE)
# remove punctuation
translator = str.maketrans(string.punctuation, ' ' * len(string.punctuation))
text = text.translate(translator)
# remove '_'
text = text.replace('_', ' ')
# remove numbers
text = ''.join([i for i in text if not i.isdigit()])
# lower word
text = text.lower()
# replace special words
replace_list = {
'ô kêi': ' ok ', 'o kê': ' ok ',
'kh ':' không ', 'kô ':' không ', 'hok ':' không ',
'kp ': ' không phải ', 'kô ': ' không ', 'ko ': ' không ', 'khong ': ' không ', 'hok ': ' không ',
}
for k, v in replace_list.items():
text = text.replace(k, v)
# split texts
texts = text.split()
texts = [t for t in texts if embeddings_index.get(t) is not None]
text = u' '.join(texts)
if len(texts) < 5:
text = None
return text
def load_word_embedding(embedding_file):
#print('Loading word embeddings...')
embeddings_index = {}
f = codecs.open(embedding_file, encoding='utf-8')
for line in f:
values = line.rstrip().rsplit(' ')
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
return embeddings_index
def filter_glove_emb(word_dict, embedding_index):
# filter embeddings
dim = 300
scale = np.sqrt(3.0 / dim)
vectors = np.random.uniform(-scale, scale, [len(word_dict), dim])
for word in word_dict.keys():
embedding_vector = embedding_index.get(word)
if (embedding_vector is not None) and len(embedding_vector) > 0:
index = list(word_dict.keys()).index(word)
vectors[index] = embedding_vector
#else:
# print(word)
return vectors
class DataFrameDataset(Dataset):
"""Class for using pandas DataFrames as a datasource"""
def __init__(self, examples, fields, filter_pred=None):
"""
Create a dataset from a pandas dataframe of examples and Fields
Arguments:
examples pd.DataFrame: DataFrame of examples
fields {str: Field}: The Fields to use in this tuple. The
string is a field name, and the Field is the associated field.
filter_pred (callable or None): use only exanples for which
filter_pred(example) is true, or use all examples if None.
Default is None
"""
self.examples = examples.apply(SeriesExample.fromSeries, args=(fields,), axis=1).tolist()
if filter_pred is not None:
self.examples = filter(filter_pred, self.examples)
self.fields = dict(fields)
# Unpack field tuples
for n, f in list(self.fields.items()):
if isinstance(n, tuple):
self.fields.update(zip(n, f))
del self.fields[n]
class SeriesExample(Example):
"""Class to convert a pandas Series to an Example"""
@classmethod
def fromSeries(cls, data, fields):
return cls.fromdict(data.to_dict(), fields)
@classmethod
def fromdict(cls, data, fields):
ex = cls()
for key, field in fields.items():
if key not in data:
raise ValueError("Specified key {} was not found in "
"the input data".format(key))
if field is not None:
setattr(ex, key, field.preprocess(data[key]))
else:
setattr(ex, key, data[key])
return ex
'''
def tokenizer(text):
text = " ".join(re.findall("[a-zA-Z]+", text))
return text.split(' ')
'''
def load_data(type, session, **kwargs):
if type == 'csv':
return load_csv_data(session, kwargs)
def load_csv_data(session, kwargs):
print('session', session)
is_train = kwargs['is_train']
if is_train:
# get setting
train_file = session['train_file']
validate_file = session.get('validate_file', None)
test_file = session['test_file']
text_column = str(session['text_column'])
label_column = str(session['label_column'])
use_cols = [text_column, label_column]
batch_size = int(session['batch_size'])
val_ratio = float(session.get('val_ratio', 0.2))
fix_length = session.get('fix_length', None)
if fix_length:
fix_length = int(fix_length)
pretrained_embedding = session.get('pretrained_embedding', '/data/cuong/data/nlp/embedding/cc.vi.300.vec')
sep = session.get('sep', ',')
nrows = None if str(session['nrows']) == 'None' else int(session['nrows'])
# load pretrained embedding
embeddings_index = load_word_embedding(pretrained_embedding)
# load data
train_df = pd.read_csv(train_file, usecols=use_cols, sep=sep, nrows=nrows)
test_df = pd.read_csv(test_file, usecols=use_cols, sep=sep, nrows=nrows)
print('train_df={}; counts={}'.format(train_df.shape, train_df[label_column].value_counts()))
print('test_df={}; counts={}'.format(test_df.shape, test_df[label_column].value_counts()))
train_df.dropna(subset=[text_column], inplace=True)
test_df.dropna(subset=[text_column], inplace=True)
if validate_file:
valid_df = pd.read_csv(validate_file, usecols=use_cols, sep=sep)
else:
train_df, valid_df = train_test_split(train_df, test_size=val_ratio, random_state=42, shuffle=True, stratify=train_df[label_column])
train_df[text_column] = train_df[text_column].apply(lambda x:preprocessing(x, embeddings_index))
valid_df[text_column] = valid_df[text_column].apply(lambda x:preprocessing(x, embeddings_index))
test_df[text_column] = test_df[text_column].apply(lambda x:preprocessing(x, embeddings_index))
train_df.drop_duplicates(subset=text_column, keep = 'first', inplace = True)
train_df.dropna(subset=[text_column], inplace=True)
train_df = train_df.reset_index()
valid_df.drop_duplicates(subset=text_column, keep = 'first', inplace = True)
valid_df.dropna(subset=[text_column], inplace=True)
valid_df = valid_df.reset_index()
test_df.drop_duplicates(subset=text_column, keep = 'first', inplace = True)
test_df.dropna(subset=[text_column], inplace=True)
test_df = test_df.reset_index()
# build vocab
TEXT = data.Field(sequential=True, lower=True, include_lengths=True, fix_length=fix_length)
LABEL = data.LabelField(sequential=False, use_vocab=False)
fields = {}
fields[text_column] = TEXT
fields[label_column] = LABEL
train_dataset = DataFrameDataset(train_df, fields=fields)
valid_dataset = DataFrameDataset(valid_df, fields=fields)
test_dataset = DataFrameDataset(test_df, fields=fields)
TEXT.build_vocab(train_dataset, valid_dataset)
print('TEXT.vocab', len(TEXT.vocab))
print(TEXT.vocab.freqs.most_common(20))
# set vocab vectors
vectors = filter_glove_emb(TEXT.vocab.stoi, embeddings_index)
TEXT.vocab.set_vectors(TEXT.vocab.stoi, torch.from_numpy(vectors), 300)
print('TEXT.vocab.Vectors', len(TEXT.vocab.vectors))
print(TEXT.vocab.vectors)
train_iter = data.BucketIterator(train_dataset,
shuffle=True,
batch_size=batch_size,
repeat=False)
valid_iter = data.BucketIterator(valid_dataset,
shuffle=False,
batch_size=batch_size,
repeat=False)
test_iter = data.BucketIterator(test_dataset,
shuffle=False,
batch_size=batch_size,
repeat=False)
del embeddings_index
del train_df, test_df
return train_iter, valid_iter, test_iter, TEXT
else:
decode_file = session['decode_file']
vocab_file = session['vocab_file']
text_column = str2list(session['text_column'])
if len(text_column) != 1:
raise Exception('only 1 text column needed, found %d: %s'% (len(text_column), ','.join(text_column)))
batch_size = int(session['batch_size'])
fix_length = session.get('fix_length', None)
if fix_length:
fix_length = int(fix_length)
vocab = pickle.load(open(vocab_file, 'rb'))
TEXT = data.Field(sequential=True, tokenize=tokenizer, lower=True, include_lengths=True, fix_length=fix_length)
TEXT.vocab = vocab
fields = {}
for column in text_column:
fields[column] = TEXT
decode_df = pd.read_csv(decode_file, usecols=text_column)
decode_dataset = DataFrameDataset(decode_df, fields=fields)
decode_iter = data.BucketIterator(decode_dataset,
shuffle=False,
batch_size=batch_size,
repeat=False)
return decode_iter, TEXT