-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhands_vector_output.py
166 lines (124 loc) · 6.24 KB
/
hands_vector_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import mediapipe as mp
from tqdm import tqdm
import numpy as np
import cv2
import time
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(static_image_mode=False, # 是静态图片还是连续视频帧
max_num_hands=2, # 最多检测几只手
min_detection_confidence=0.8, # 置信度阈值
min_tracking_confidence=0.5) # 追踪阈值
mpDraw = mp.solutions.drawing_utils
def process_one_hand(mp_hand_result,hand_idx):
# 给定结果簇与索引,进行单只手的处理,输出单手骨架向量
hand_21 = mp_hand_result.multi_hand_world_landmarks[hand_idx] # 获取该手的21个关键点坐标
# 以食指指根[5]为Z轴
vec_z = np.array([(hand_21.landmark[0].z - hand_21.landmark[5].z), # 深度估计化为x向
((hand_21.landmark[5].x - hand_21.landmark[0].x)), # 图像x向化为y向
((hand_21.landmark[0].y - hand_21.landmark[5].y))]) # 图像y向化为z向
norm_vec_z = np.linalg.norm(vec_z)
hand_size_scaler = 10.0 / norm_vec_z
normal_vec_z = vec_z * hand_size_scaler
new_e_z = normal_vec_z / 10.0 # 新的基底ez
vec_y_z = np.array([(hand_21.landmark[0].z - hand_21.landmark[17].z), # 深度估计化为x向
((hand_21.landmark[17].x - hand_21.landmark[0].x) ), # 图像x向化为y向
((hand_21.landmark[0].y - hand_21.landmark[17].y) )]) # 图像y向化为z向
normal_vec_y_z = vec_y_z * hand_size_scaler
horizontal_on_z = np.dot(normal_vec_y_z,new_e_z) * new_e_z
vec_y = horizontal_on_z - normal_vec_y_z
new_e_y = vec_y / np.linalg.norm(vec_y) # 新的基底ey
new_e_x = np.cross(new_e_y, new_e_z) # 新的基底ex
new_e_mat = np.array([new_e_x,new_e_y,new_e_z]) # 旋转矩阵
for hand_point_idx in range(len(hand_21.landmark)):
if hand_point_idx == 0:
hand_point_vec = np.array([-hand_21.landmark[hand_point_idx].z,hand_21.landmark[hand_point_idx].x,-hand_21.landmark[hand_point_idx].y])
elif hand_point_idx == 5:
continue
else:
hand_point_vec = np.row_stack((hand_point_vec,[[-hand_21.landmark[hand_point_idx].z,hand_21.landmark[hand_point_idx].x,-hand_21.landmark[hand_point_idx].y]]))
hand_point_vec += [hand_21.landmark[0].z, -hand_21.landmark[0].x, hand_21.landmark[0].y]
normal_hand_point_vec = hand_point_vec * hand_size_scaler
normal_hand_point_vec = np.matmul(new_e_mat,normal_hand_point_vec.T).T
normal_hand_point_vec[0] = [hand_21.landmark[0].z,hand_21.landmark[0].x,hand_21.landmark[0].y] # 第一项用绝对坐标
normal_hand_point_vec = np.row_stack((normal_hand_point_vec,new_e_mat))
return normal_hand_point_vec
def process_frame_vec(img):
img = cv2.flip(img, 1)
img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img.flags.writeable = False
results = hands.process(img_RGB)
img.flags.writeable = True
one_hand_vec_len = 23
end_idx = one_hand_vec_len * 2 - 1
vec_out = np.zeros((one_hand_vec_len * 2, 3)) # 总输出
if results.multi_hand_world_landmarks:
if len(results.multi_hand_world_landmarks) == 1:
#一只手的时候处理
one_hand_vec = process_one_hand(results,0)
for circle_idx in range(one_hand_vec_len):
vec_out[circle_idx] = one_hand_vec[circle_idx]
vec_out[end_idx-circle_idx] = one_hand_vec[circle_idx]
elif len(results.multi_hand_world_landmarks) == 2:
#两只手的时候处理
first_hand_vec = process_one_hand(results,0)
second_hand_vec = process_one_hand(results,1)
for circle_idx in range(one_hand_vec_len):
vec_out[circle_idx] = first_hand_vec[circle_idx]
vec_out[end_idx-circle_idx] = second_hand_vec[circle_idx]
return vec_out, results
# else:
# return False
def draw_hands(frame, hand_result):
# 如果有识别到,就去绘制
frame = cv2.flip(frame, 1)
if hand_result.multi_hand_world_landmarks:
for hand_idx in range(len(hand_result.multi_hand_landmarks)):
hand_21 = hand_result.multi_hand_landmarks[hand_idx]
mpDraw.draw_landmarks(frame, hand_21, mp_hands.HAND_CONNECTIONS)
return frame
# cap = cv2.VideoCapture(0)
# cap.open(0)
# # cap.set(cv2.CAP_PROP_FPS,10)
# np.set_printoptions(suppress=True) # 不以科学计数法显示
# while cap.isOpened():
# start_time = time.time()
# success, frame = cap.read()
# if not success:
# break
# ori_frame = frame.copy() # 原始图像保留一份
# hands_vector, hand_result = process_frame_vec(frame)
# frame = draw_hands(frame, hand_result)
# end_time = time.time()
# FPS = 1/(end_time - start_time)
# FPS_str = "{}".format(FPS)
# cv2.putText(frame, FPS_str, (0,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255, 0), 1, cv2.LINE_AA)
# cv2.imshow('my_window', frame)
# if cv2.waitKey(1) in [ord('q'),27]: # 按键盘上的q或esc退出(在英文输入法下)
# break
# cap.release()
# cv2.destroyAllWindows()
import os
DATA_PATH = os.path.join('手势数据集')
record_class = '好'
record_class_en = 'good'
record_start_idx = 0
cap = cv2.VideoCapture(0)
cap.open(0)
np.set_printoptions(suppress=True) # 不以科学计数法显示
while cap.isOpened():
success, frame = cap.read()
if not success:
break
ori_frame = frame.copy() # 原始图像保留一份
hands_vector, hand_result = process_frame_vec(frame)
frame = draw_hands(frame, hand_result)
tips_str = 'Now you can record the idx {} data in \'{}\' class'.format(record_start_idx,record_class_en)
key = cv2.waitKey(1)
cv2.putText(frame, tips_str, (10,20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,255, 0), 1, cv2.LINE_AA)
cv2.imshow('my_window', frame)
if key in [ord('q'),27]: # 按键盘上的q或esc退出(在英文输入法下)
break
elif key in [ord(' ')]:
record_start_idx += 1
cap.release()
cv2.destroyAllWindows()