-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
184 lines (147 loc) · 4.52 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import numpy as np
import math
from functions import *
from rich import print
import pid
class Rocket():
def __init__(self, dry_mass, alt, fuel, thrust, fuel_consumption, vel, state,
target_alt, time_steps, gravity=9.8):
self.dry_mass = dry_mass
self.alt = alt
self.fuel = fuel
self.thrust = thrust
self.vel = vel
self.acc = 0
self.throttle = 0
self.fuel_consumption = 10
self.state = state
self.p_state = state
self.state_n = 0
self.target_alt = target_alt
self.pid = pid.PID(0.25, 0.0005, 1.8)
self.pid(self.target_alt-self.alt, time_steps)
self.time_steps = time_steps
self.g = gravity
self.time = 0
self.k = 0
self.estimated_touchdown = 0
self.data_keys = [
'alt', 'fuel', 'vel', 'acc', 'throttle', 'ed', 't/w', 'state_n', 'state', 'k',
'desired_throttle', 'pid_p', 'pid_i', 'pid_d', 'desired_acceleration', 'ΔV', 'estimated touchdown'
]
def update(self, time_steps=1):
self.time += 1/time_steps
self._physics(time_steps)
self._guidance(time_steps)
if self.state != self.p_state:
self.state_n += 1
self.p_state = self.state
return {
'alt': self.alt,
'vel': self.vel,
'acc': self.acc,
'throttle': self.throttle,
'fuel': self.fuel,
'ed': self.estimated_distance(),
'desired_throttle': self.desired_throttle,
'desired_acceleration': self.desired_acc,
'pid_p': self.pid.p,
'pid_i': self.pid.i,
'pid_d': self.pid.d,
't/w': self.thrust/(self.dry_mass + self.fuel)/self.g,
'state_n': self.state_n,
'state': self.state,
'ΔV': self.ΔV,
'k': self.k,
'estimated touchdown': self.estimated_touchdown
}
def _physics(self, time_steps):
if self.alt <= 0:
self.alt = 0
self.vel = 0
self.acc = 0
return True
self.throttle = self.throttle * min(self.fuel/self.fuel_consumption, 1)
self.acc = self.throttle * self.thrust / (self.dry_mass + self.fuel) - self.g
self.vel += self.acc / time_steps
self.alt += self.vel / time_steps
if self.fuel * time_steps >= self.throttle:
self.fuel -= self.throttle * self.fuel_consumption / time_steps
if self.fuel < 0:
self.fuel = 0
def _guidance(self, time_steps):
self.desired_acc = self.pid(self.target_alt-self.alt, time_steps)+self.g
should_fire = self.should_fire()
if self.state == 'landing-0':
if self.estimated_distance() >= self.alt:
self.desired_throttle = .95
self.state = 'landing-1'
else:
self.desired_throttle = 0
if self.state == 'landing-1':
if self.vel < 0:
if abs(self.estimated_distance() - self.alt) < 0.1:
self.desired_throttle = .95
# self.state = 'landing-1'
elif self.alt - self.estimated_distance() > 0.1:
self.desired_throttle = 0.9
elif self.alt - self.estimated_distance() < -0.1:
self.desired_throttle = 1
else:
self.desired_throttle = 0
self.state = 'landed'
elif self.state == 'hover':
self.desired_throttle = self.desired_acc / (self.thrust / (self.dry_mass + self.fuel))
self.throttle = min(max(0, self.desired_throttle), 1)
@property
def ΔV(self):
self.exhaust_velocity = self.thrust/self.fuel_consumption
return self.exhaust_velocity*math.log((self.dry_mass + self.fuel)/self.dry_mass)
def estimated_distance(self):
x0 = self.g - self.thrust*.95 / (self.dry_mass + self.fuel - self.fuel_consumption * 0.0)
x1 = self.g - self.thrust*.95 / (self.dry_mass + self.fuel - self.fuel_consumption * 1.0)
# Derivative at x=0 and x=1
u = x0
v = x1
# Initial height at x=0
y = abs(self.vel)
return get_positive_area(u, v, y)
def should_fire(self):
a = -self.g
b = self.vel
c = self.alt
t = self.thrust * 0.95 / (self.dry_mass + self.fuel)
k, x = ignition_time(a, b, c, t)
self.k = k
self.estimated_touchdown = x
# Logging:
if int(self.time*100)%100 == 0:
print(f'Time: {int(self.time)}\n a: {a} b: {b} c: {c} t: {t}\n k: {k} x: {x}')
return k <= 1
def run():
simulation_duration_s = 120
simulation_timesteps = 50
data_frequency_p = 10
data = {}
r = Rocket(dry_mass=100,
alt=1,
fuel=450,
thrust=6500,
fuel_consumption=10,
vel=0,
state='hover',
target_alt=500,
time_steps=simulation_timesteps)
for key in r.data_keys:
data[key] = []
for i in range(0, simulation_duration_s*simulation_timesteps):
for k, v in r.update(time_steps=simulation_timesteps).items():
if i % data_frequency_p == 0:
data[k].append(v)
if i == simulation_duration_s*simulation_timesteps/2:
r.state = 'landing-0'
r.target_alt = 0
if i > data_frequency_p*20:
if data['alt'][-10] <= 0:
break
return data