Skip to content

Latest commit

 

History

History
executable file
·
58 lines (44 loc) · 2.58 KB

README.md

File metadata and controls

executable file
·
58 lines (44 loc) · 2.58 KB

Background-Removal

Repository of the Rodan wrapper for Background Removal

Python dependencies:

  • scikit-image (0.19.2)
  • opencv-python (4.5.5.64)
  • numpy (1.21.6)
  • tensorflow (2.5.1)
  • keras (2.5.0rc0)

Rodan Job

This background removal task belongs inside gpu-celery container.

Local Usage

For local usage, Sauvola Algorithm method and SAE Binarization method are separate.

Sauvola Algorithm

Use BgRemovalLocalTask.py to run this job locally. Parameters:

  • -psr Path to folder with the original images (Default: datasets/images)
  • -out Path to folder for output processed images (Default: datasets/output)
  • -pfx Postfix for output files <image_name><output_postfix>.png (Default: _nBg)
  • -w Window size for saulova algorithm. Must be an odd number integer. (Default: 15)
  • -k Parameter for saulova algorithm. Must be positive (Default: 0.2)
  • -c Amount to adjust contrast by. Can be negative. (Default: 127.0)
  • -b Amount to adjust brightness by. Can be negative (Default: 0.0)

Example: python3 BgRemovalLocalTask.py -psr datasets/images/MS73 -out datasets/output/MS73 -pfx _Bgr -w 101 -k 0.15 -c 150.0 -b 5.0

SAE Binarization

The binarize.py script performs the binarization of an input image using a trained model. The parameters of this script are the following:

Parameter Default Description
-imgpath Path to the image to process
-modelpath (*) Path to the model to load
-w 256 Input window size
-s -1 Step size. -1 to use window size
-f 64 Number of filters
-k 5 Kernel size
-drop 0 Dropout percentage
-stride 2 Convolution stride size
-every 1 Residual connections every x layers
-th 0.5 Selectional threshold
-save Output image filename

(*) By default, the model trained with all datasets will be used.

The only mandatory parameter is -imgpath, the rest are optional. You also have to choose if you want to save (-save) the binarized image.

For example, to binarize the image img01.png you can run the following command:

$ python binarize.py -imgpath img01.png -save out.png