forked from hectornieto/pyTSEB
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathConfig_LocalImage.txt
130 lines (105 loc) · 5.56 KB
/
Config_LocalImage.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# TSEB model to run: [TSEB_PT: Kustas and Norman 1999 Priestley-Taylor TSEB, DTD: Norman et al. 2003 Dual Time Differenced TSEB, TSEB_2T: Component temperatures TSEB (To be implemented the patched/parallel very high resolution TSEB]
model=TSEB_PT
#==============================================================================
# Input Files with full path (any valid gdal raster file is accepcted (not HDF or NetCDF!!!)
# Use forward slash '/' for path separators, even using Windows
#==============================================================================
# Input land surface temperature in Kelvin # mandatory file
# If running DTD both T_R0 (sunrise) and T_R1 inputs are required
# If running TSEB_2T the input T_R1 should contain at least 2 bands: [band 1: Canopy temperature, band 2: soil temperature]
T_R1=./Input/ExampleImage_Trad_pm.tif
T_R0=./Input/ExampleImage_Trad_am.tif
# View Zenith Angle (degrees) # Optional, type either a full-path file or a single value for a constant value acroos the area
VZA=0.0
# Processing Mask (boolean) # Optional, type a full-path file for processing only on non-masked pixels (all pixels with values > 0 in the mask image will be processed)
input_mask=0
# Effective Leaf Area Index (m2/m2) # Optional, type either a full-path file or a single value for a constant value acroos the area
LAI=./Input/ExampleImage_LAI.tif
# Vegetation Fractional Cover # Optional, type either a full-path file or a single value for a constant value acroos the area
f_c=./Input/ExampleImage_Fc.tif
# Canopy height (m)# Optional, type either a full-path file or a single value for a constant value along the area
h_C=2.4
# Canopy height/with ratio (wc/hc) # Optional, type either a full-path file or a single value for a constant value along the area
w_C=1
# Green Fraction # Optional, type either a full-path file or a single value for a constant value along the area
f_g=1
#==============================================================================
# Output File
#==============================================================================
# full path to output directory, The output GeoTIFF files will be stored in that folder with a standard name : Output_<TSEB_MODEL>.tif and Output_<TSEB_MODEL>_ancillary.tif
output_file=./Output/test_image.vrt
#==============================================================================
# Site Description
#==============================================================================
lat=38.289355
lon=-121.117794
alt=97
stdlon=-105.0
z_T=5
z_u=5
#==============================================================================
# Meteorology
#==============================================================================
DOY=221
time=10.9992
T_A0=291.11
T_A1=./Input/ExampleImage_Ta.tif
u=2.15
p=1011
ea=13.4
S_dn=861.74
S_dn_24=304.97
L_dn=
#==============================================================================
# Canopy and Soil spectra
#==============================================================================
emis_C=0.98 # leaf emissivity
emis_S=0.95 # soil emissivity
# Leaf spectral properties:{rho_vis_C: visible reflectance, tau_vis_C: visible transmittance, rho_nir_C: NIR reflectance, tau_nir_C: NIR transmittance}
rho_vis_C=0.07
tau_vis_C=0.08
rho_nir_C=0.32
tau_nir_C=0.33
# Soil spectral properties:{rho_vis_S: visible reflectance, rho_nir_S: NIR reflectance}
rho_vis_S=0.15
rho_nir_S=0.25
#==============================================================================
# Canopy and soil parameters
#==============================================================================
# Initial value for Priestley Taylor canopy transpiration
alpha_PT=1.26
# Cambpbell 1990 leaf inclination distribution parameter:[x_LAD=1 for spherical LIDF, x_LAD=0 for vertical LIDF, x_LAD=float(inf) for horzontal LIDF]
x_LAD=1
# Bare soil roughness lenght (m)
z0_soil=0.01
# Primary land cover IGBP Land Cover Type Classification: CROP=12, GRASS=10, SHRUB=6, CONIFER=1, BROADLEAVED=4
landcover=4
# leaf effective width (m)
leaf_width=0.1
#==============================================================================
# Resistances
#==============================================================================
resistance_form=0 # Resistance formulations: 0 - Kustas & Norman 1999; 1 - Choudhury & Monteih 1998; 2 - McNaughton & Van der Hurk 1995
KN_b=0.012 # Kustas & Norman formulation parameter
KN_c=0.0038 # Kustas & Norman formulation parameter
KN_C_dash=90 # Kustas & Norman formulation parameter
R_ss=500 # Shuttleworth and Wallace (1995) resistance to water vapour transport in the soil surface (s m-1)
Rst_min=100 # Shuttleworth and Wallace (1995) minimum (unstressed) single-leaf stomatal resistance (s m -1)
#==============================================================================
# Additional options
#==============================================================================
# Soil Heat Flux calculation
#1: default, estimate G as a ratio of Rn_soil, default G_ratio=0.35
#0: Use a constant G, usually use G_Constant=0 to ignore the computation of G
#2: estimate G from Santanello and Friedl with GAmp the maximum ration amplitude, Gphase, the time shift between G and Rn (hours) and Gshape the typical diurnal shape (hours)
G_form=1
G_ratio=0.35
G_constant=0
G_amp=0.35
G_phase=3
G_shape=24
# Whether to compute crop water strex indices
water_stress=1
# If landscape is composed of row crops set this flag to one and set the row azimuth
calc_row=1
row_az=90