-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalgorithms.py
395 lines (319 loc) · 13.4 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import numpy as np
import cvxpy as cp
import math
# Set up the logger to print info messages for understandability.
import logging
import sys
logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='')
class opt_solver:
def __init__(self, C, R):
self.C = C
self.R = R
self.Di = np.load('data/Di.npy')
self.bi = np.load('data/bi.npy')
self.lb = np.load('data/lb.npy')
self.Ai = np.load('data/Ai.npy')
self.ub = np.load('data/ub.npy')
self.T = self.C.shape[1]
self.N = self.C.shape[0]
self.d = self.C.shape[2]
self.m = self.Di.shape[0]
def gi(self, xi):
return self.Di@xi - self.bi
def get_opt_val(self, t):
var_x = cp.Variable((self.N, self.d))
obj = 0.
for i in range(self.N):
obj = obj + self.C[i, t] @ var_x[i] + (self.R[i, t]/2) * cp.norm(var_x[i])**2
cons1 = [self.Ai @ var_x[i] >= self.lb for i in range(self.N)]
cons2 = [self.Ai @ var_x[i] <= self.ub for i in range(self.N)]
coupling_cons = np.zeros(self.m)
for i in range(self.N):
coupling_cons = coupling_cons + self.gi(var_x[i])
cons3 = [coupling_cons <= np.zeros(self.m)]
cons = cons1 + cons2 + cons3
prob = cp.Problem(cp.Minimize(obj), cons)
prob.solve(solver=cp.MOSEK)
return prob.value
def get_OptVal_list(self):
opt_val_list = []
sum_opt_val = 0.
logging.info('Solving the optimal values ...')
for t in range(self.T):
opt_val = self.get_opt_val(t)
sum_opt_val += opt_val
opt_val_list.append(sum_opt_val)
return opt_val_list
class DUST:
def __init__(self, network, C, R, opt_val_list):
self.W_subG = network
self.B = self.W_subG.shape[0]
self.C = C
self.R = R
self.opt_val_list = opt_val_list
self.Di = np.load('data/Di.npy')
self.bi = np.load('data/bi.npy')
self.lb = np.load('data/lb.npy')
self.Ai = np.load('data/Ai.npy')
self.ub = np.load('data/ub.npy')
self.T = self.C.shape[1]
self.N = self.W_subG.shape[1]
self.d = self.C.shape[2]
self.m = self.Di.shape[0]
# algorithm init: t=0
self.x = np.zeros((self.N, self.d))
for i in range(self.N):
self.x[i] = np.concatenate((3.87*np.ones(5), -4.11*np.ones(6), 3.87*np.ones(6), -4.11*np.ones(3), 3.87*np.ones(3), 3.8*np.ones(1)), axis=None)
self.y = np.zeros((self.N, self.m))
for i in range(self.N):
self.y[i] = self.gi(self.x[i])
self.c = np.ones(self.N)
self.mu = np.zeros((self.N, self.m))
# construct the opt prob
self.var_xi = cp.Variable(self.d)
var_diff = cp.Variable(self.d)
var_gi = cp.Variable(self.m)
self.param_Vt_grad = cp.Parameter(self.d)
self.param_lambda = cp.Parameter(self.m)
self.param_eta = cp.Parameter(nonneg=True)
self.param_xit = cp.Parameter(self.d)
obj = self.param_Vt_grad @ var_diff + self.param_lambda @ var_gi + self.param_eta * cp.quad_form(var_diff, np.identity(self.d))
cons = [
var_diff == self.var_xi - self.param_xit,
var_gi == self.Di@self.var_xi - self.bi,
self.Ai @ self.var_xi >= self.lb,
self.Ai @ self.var_xi <= self.ub
]
self.prob = cp.Problem(cp.Minimize(obj), cons)
assert self.prob.is_dcp(dpp=True)
def gi(self, xi):
return self.Di@xi - self.bi
def compute_metrics(self):
'''
This method returns two lists that store the metrics at each step: reg_log & cons_vio_log
'''
tot_value = 0.
reg_log = []
tot_vio = np.zeros(self.m)
cons_vio_log = []
x_tp1 = np.zeros((self.N, self.d))
y_tp1 = np.zeros((self.N, self.m))
c_tp1 = np.zeros(self.N)
mu_tp1 = np.zeros((self.N, self.m))
logging.info('DUST begins ...')
for t in range(self.T):
subG_idx = t % self.B
round_value = 0.
round_vio = np.zeros(self.m)
for i in range(self.N):
hat_mu_i = self.W_subG[subG_idx, i] @ self.mu
hat_y_i = self.W_subG[subG_idx, i] @ self.y
c_i_tp1 = self.W_subG[subG_idx, i] @ self.c
lambda_i_tp1 = (1/c_i_tp1) * hat_mu_i
self.param_Vt_grad.value = math.sqrt(t+1) * (self.C[i, t] + self.R[i, t]*self.x[i])
self.param_lambda.value = lambda_i_tp1
self.param_eta.value = t+1
self.param_xit.value = self.x[i]
try:
self.prob.solve(solver=cp.ECOS)
x_i_tp1 = self.var_xi.value
except cp.error.SolverError as e:
logging.info(e)
x_i_tp1 = self.x[i]
y_i_tp1 = hat_y_i + self.gi(x_i_tp1) - self.gi(self.x[i])
mu_i_tp1 = np.maximum(hat_mu_i + y_i_tp1, np.zeros(self.m))
# update x, y, c, mu
x_tp1[i] = x_i_tp1
y_tp1[i] = y_i_tp1
c_tp1[i] = c_i_tp1
mu_tp1[i] = mu_i_tp1
round_value += self.C[i, t] @ self.x[i] + (self.R[i, t]/2) * np.linalg.norm(self.x[i])**2
round_vio += self.gi(self.x[i])
self.x = x_tp1.copy()
self.y = y_tp1.copy()
self.c = c_tp1.copy()
self.mu = mu_tp1.copy()
tot_value += round_value
tot_vio += round_vio
opt_val = self.opt_val_list[t]
reg = tot_value - opt_val
reg_log.append(reg/(t+1))
cons_vio = np.linalg.norm(np.maximum(tot_vio, np.zeros(self.m)))
cons_vio_log.append(cons_vio/(t+1))
#logging.info('T = %s, Reg(T)/T = %s, cons_vio/T = %s', t+1, reg/(t+1), cons_vio/(t+1))
return reg_log, cons_vio_log
class DOPP:
def __init__(self, network, C, R, opt_val_list):
self.W_subG = network
self.B = self.W_subG.shape[0]
self.C = C
self.R = R
self.opt_val_list = opt_val_list
self.Di = np.load('data/Di.npy')
self.bi = np.load('data/bi.npy')
self.lb = np.load('data/lb.npy')
self.Ai = np.load('data/Ai.npy')
self.ub = np.load('data/ub.npy')
self.T = self.C.shape[1]
self.N = self.W_subG.shape[1]
self.d = self.C.shape[2]
self.m = self.Di.shape[0]
# algorithm init: t=0
self.c = np.ones(self.N)
self.x = np.zeros((self.N, self.d))
for i in range(self.N):
self.x[i] = np.concatenate((3.87*np.ones(5), -4.11*np.ones(6), 3.87*np.ones(6), -4.11*np.ones(3), 3.87*np.ones(3), 3.8*np.ones(1)), axis=None)
self.mu = np.zeros((self.N, self.m))
self.y = np.zeros((self.N, self.m))
for i in range(self.N):
self.y[i] = self.gi(self.x[i])
self.kappa=0.2
# construct the opt prob
self.var_xi = cp.Variable(self.d)
self.param_diff = cp.Parameter(self.d)
obj = cp.norm(self.param_diff - self.var_xi)
cons = [
self.Ai @ self.var_xi >= self.lb,
self.Ai @ self.var_xi <= self.ub
]
self.prob = cp.Problem(cp.Minimize(obj), cons)
assert self.prob.is_dcp(dpp=True)
def gi(self, xi):
return self.Di@xi - self.bi
def compute_metrics(self):
'''
This method returns two lists that store the metrics at each step: reg_log & cons_vio_log
'''
tot_value = 0.
reg_log = []
tot_vio = np.zeros(self.m)
cons_vio_log = []
c_tp1 = np.zeros(self.N)
x_tp1 = np.zeros((self.N, self.d))
mu_tp1 = np.zeros((self.N, self.m))
y_tp1 = np.zeros((self.N, self.m))
logging.info('DOPP begins ...')
for t in range(self.T):
subG_idx = t % self.B
round_value = 0.
round_vio = np.zeros(self.m)
if t == 0:
alpha = 1.
beta = 1.
else:
alpha = 1/math.sqrt(t)
beta = 1/t**self.kappa
for i in range(self.N):
c_i_tp1 = self.W_subG[subG_idx, i] @ self.c
hat_mu_i = self.W_subG[subG_idx, i] @ self.mu
hat_y_i = self.W_subG[subG_idx, i] @ self.y
s_i_tp1 = self.C[i, t] + self.R[i, t]*self.x[i] + self.Di.T @ ((1/c_i_tp1) * hat_mu_i)
self.param_diff.value = self.x[i] - alpha*s_i_tp1
try:
self.prob.solve(solver=cp.ECOS)
x_i_tp1 = self.var_xi.value
except cp.error.SolverError as e:
logging.info(e)
x_i_tp1 = self.x[i]
mu_i_tp1 = np.maximum(hat_mu_i+alpha*(hat_y_i/c_i_tp1 - beta*hat_mu_i), np.zeros(self.m))
y_i_tp1 = hat_y_i + self.gi(x_i_tp1) - self.gi(self.x[i])
# update x, y, c, mu
c_tp1[i] = c_i_tp1
x_tp1[i] = x_i_tp1
mu_tp1[i] = mu_i_tp1
y_tp1[i] = y_i_tp1
round_value += self.C[i, t] @ self.x[i] + (self.R[i, t]/2) * np.linalg.norm(self.x[i])**2
round_vio += self.gi(self.x[i])
self.x = x_tp1.copy()
self.y = y_tp1.copy()
self.c = c_tp1.copy()
self.mu = mu_tp1.copy()
tot_value += round_value
tot_vio += round_vio
opt_val = self.opt_val_list[t]
reg = tot_value - opt_val
reg_log.append(reg/(t+1))
cons_vio = np.linalg.norm(np.maximum(tot_vio, np.zeros(self.m)))
cons_vio_log.append(cons_vio/(t+1))
#logging.info('T = %s, Reg(T)/T = %s, cons_vio/T = %s', t+1, reg/(t+1), cons_vio/(t+1))
return reg_log, cons_vio_log
class dual_subgradient:
def __init__(self, network, C, R, opt_val_list):
self.W_subG = network
self.B = self.W_subG.shape[0]
self.C = C
self.R = R
self.opt_val_list = opt_val_list
self.Di = np.load('data/Di.npy')
self.bi = np.load('data/bi.npy')
self.lb = np.load('data/lb.npy')
self.Ai = np.load('data/Ai.npy')
self.ub = np.load('data/ub.npy')
self.T = self.C.shape[1]
self.N = self.W_subG.shape[1]
self.d = self.C.shape[2]
self.m = self.Di.shape[0]
# algorithm init: t=1
self.x = np.zeros((self.N, self.d))
for i in range(self.N):
self.x[i] = np.concatenate((3.87*np.ones(5), -4.11*np.ones(6), 3.87*np.ones(6), -4.11*np.ones(3), 3.87*np.ones(3), 3.8*np.ones(1)), axis=None)
self.mu = np.zeros(self.m)
def gi(self, xi):
return self.Di@xi - self.bi
def sum_gi(self, x):
sum_gi = np.zeros(self.m)
for i in range(self.N):
sum_gi = sum_gi + self.gi(x[i])
return sum_gi
def sum_fi(self, x, t):
sum_fi = 0.
for i in range(self.N):
sum_fi = sum_fi + self.C[i, t] @ x[i] + (self.R[i, t]/2) * np.linalg.norm(x[i])**2
return sum_fi
def _solve_argmin_prob(self, t, mu_t):
var_x = cp.Variable((self.N, self.d))
f_t = 0.
g = np.zeros(self.m)
for i in range(self.N):
f_t = f_t + self.C[i, t] @ var_x[i] + (self.R[i, t]/2) * cp.norm(var_x[i])**2
g = g + self.gi(var_x[i])
obj = f_t + mu_t @ g
cons1 = [self.Ai @ var_x[i] >= self.lb for i in range(self.N)]
cons2 = [self.Ai @ var_x[i] <= self.ub for i in range(self.N)]
cons = cons1 + cons2
prob = cp.Problem(cp.Minimize(obj), cons)
prob.solve(solver=cp.MOSEK)
return var_x.value
def compute_metrics(self):
'''
This method returns two lists that store the metrics at each step: reg_log & cons_vio_log
'''
step_size = 0.108
tot_value = 0.
reg_log = []
tot_vio = np.zeros(self.m)
cons_vio_log = []
logging.info('Dual subgradient begins ...')
for t in range(self.T-1):
x_tp1 = self._solve_argmin_prob(t+1, self.mu)
mu_tp1 = np.maximum(self.mu + step_size * self.sum_gi(x_tp1), np.zeros(self.m))
round_value = self.sum_fi(self.x, t)
round_vio = self.sum_gi(self.x)
self.x = x_tp1.copy()
self.mu = mu_tp1.copy()
tot_value += round_value
tot_vio += round_vio
opt_val = self.opt_val_list[t]
reg = tot_value - opt_val
reg_log.append(reg/(t+1))
cons_vio = np.linalg.norm(np.maximum(tot_vio, np.zeros(self.m)))
cons_vio_log.append(cons_vio/(t+1))
round_value = self.sum_fi(self.x, self.T-1)
round_vio = self.sum_gi(self.x)
tot_value += round_value
tot_vio += round_vio
reg = tot_value - self.opt_val_list[self.T-1]
reg_log.append(reg/self.T)
cons_vio = np.linalg.norm(np.maximum(tot_vio, np.zeros(self.m)))
cons_vio_log.append(cons_vio/self.T)
return reg_log, cons_vio_log