Skip to content

Latest commit

 

History

History
51 lines (32 loc) · 2.04 KB

Readme.md

File metadata and controls

51 lines (32 loc) · 2.04 KB

Wafer map pattern classification by Combining Convolutioal and Handcrafted Features

Wafer map defect pattern classification with Multi-Input Neural Network of Convolutioal and Handcrafted Features

Proposed by H.Kang and S.Kang

Hyungu Kang, Seokho Kang* (2021), "A stacking ensemble classifier with handcrafted and convolutional features for wafer map pattern classification", Computers in Industry 129: 103450 (https://www.sciencedirect.com/science/article/pii/S0166361521000579?via%3Dihub)

Methodology

Multi-input neural network (MultiNN)

  • Input: wafer map
    • resized to 64x64
  • Output: predicted score
  • Model: CNN (based on VGG16)
  • handcrafted features (59-dim) are concatenated to CNN features (512-dim)

Data

Dependencies

  • Python 3.8
  • Pytorch 1.9.1
  • Pandas 1.3.2
  • Scikit-learn 1.0.2
  • OpenCV-python 4.5.3
  • Scikit-image 0.18.3

References

  • WM-811K(LSWMD). National Taiwan University Department of Computer Science Multimedia Information Retrieval LAB http://mirlab.org/dataSet/public/
  • Nakazawa, T., & Kulkarni, D. V. (2018). Wafer map defect pattern classification and image retrieval using convolutional neural network. IEEE Transactions on Semiconductor Manufacturing, 31(2), 309-314.
  • Shim, J., Kang, S., & Cho, S. (2020). Active learning of convolutional neural network for cost-effective wafer map pattern classification. IEEE Transactions on Semiconductor Manufacturing, 33(2), 258-266.
  • Kang, S. (2020). Rotation-Invariant Wafer Map Pattern Classification With Convolutional Neural Networks. IEEE Access, 8, 170650-170658.