Skip to content

Commit ae08979

Browse files
authored
'math clean up'
1 parent 3a8ef9f commit ae08979

File tree

2 files changed

+16
-22
lines changed

2 files changed

+16
-22
lines changed

math/note01.md

Lines changed: 10 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -9,14 +9,12 @@
99

1010
### Table of indefinite integrals
1111

12-
|Function $f(x)$|Antiderivative $F(x)$|Function $f(x)$|Antiderivative $F(x)$|
12+
| Function $f(x)$ | Antiderivative $F(x)$ | Function $f(x)$ | Antiderivative $F(x)$ |
1313
|-:|:-|-:|:---|
14-
|$x^n$|$\dfrac{x^{n+1}}{n+1}+C$|$\dfrac{1}{x}$|$\ln\lvert x \rvert + C$|
15-
|$e^x$|$e^x + C$|$b^x$|$\dfrac{b^x}{\ln b} + C$|
16-
|$\sin x$|$-\cos x + C$|$\cos x$|$\sin x + C$|
17-
|$\sec^2 x$|$\tan x + C$|$csc^2 x$|$-\cot x + C$|
18-
|$\sec x\tan x$|$\sec x + C$|$\csc x\cot x$|$-\csc x + C$|
19-
|$\dfrac{1}{x^2 + a^2}$|$\dfrac{1}{a}\arctan \left(\dfrac{x}{a}\right) + C$|$\dfrac{1}{\sqrt{a^2-x^2}}$|$\arcsin \left(\dfrac{x}{a}\right) + C$|
14+
| $x^n$ | $\dfrac{x^{n+1}}{n+1} + C$ | $\dfrac{1}{x}$ | $\ln\lvert x \rvert + C$ |
15+
| $e^x$ | $e^x + C$ | $b^x$ | $\dfrac{b^x}{\ln b} + C$ |
16+
| $\sin x$ | $-\cos x + C$ | $\cos x$ | $\sin x + C$ |
17+
| $\dfrac{1}{x^2 + a^2}$ | $\dfrac{1}{a}\arctan \left(\dfrac{x}{a}\right) + C$ | $\dfrac{1}{\sqrt{a^2-x^2}}$ | $\arcsin \left(\dfrac{x}{a}\right) + C$ |
2018

2119
### Definite integrals as Riemann sums
2220

@@ -39,11 +37,12 @@
3937

4038
### Fundamental theorem of calculus
4139

42-
|Description|Equations|
40+
| Description | Equations |
4341
|-:|:-|
44-
|**Fundamental theorem of calculus I** <br/> ($f$ is continuous on $[a,b]$)|$g(x) = \displaystyle\int_a^x f(t) \ dt \newline g'(x) = f(x)$|
45-
|**Fundamental theorem of calculus II** <br/> ($f$ is continuous on $[a,b]$)|$\displaystyle\int_a^b f(x) \ dx = F(b) - F(a)$ <br/> where $F$ is any antiderivative of $f$|
46-
|Net change theorem <br/> The integral of a rate of change is the net change|$\displaystyle\int_a^b F'(x) \ dx = F(b) - F(a)$|
42+
| **Fundamental Theorem of Calculus I** <br/> (If $f$ is continuous on $[a,b]$) | $g(x) = \displaystyle\int_a^x f(t) \, dt$ <br/> $g'(x) = f(x)$ |
43+
| **Fundamental Theorem of Calculus II** <br/> (If $f$ is continuous on $[a,b]$) | $\displaystyle\int_a^b f(x) \, dx = F(b) - F(a)$ <br/> where $F$ is any antiderivative of $f$ |
44+
| **Net Change Theorem** <br/> (The integral of a rate of change is the net change) | $\displaystyle\int_a^b F'(x) \, dx = F(b) - F(a)$ |
45+
4746

4847
### Substitution rule
4948

math/note02.md

Lines changed: 6 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -38,15 +38,10 @@
3838

3939
### Table of derivatives
4040

41-
|Function $f(x)$|Derivative $f'(x)$|Function $f(x)$|Derivative $f'(x)$|
41+
| Function $f(x)$ | Derivative $f'(x)$ | Function $f(x)$ | Derivative $f'(x)$ |
4242
|-:|:-|-:|:---|
43-
|$c$|$0$|$x^n$|$nx^{n-1}$|
44-
|$x$|$1$|$\lvert x \rvert$|$\dfrac{x}{\lvert x \rvert}$|
45-
|$e^x$|$e^x$|$\ln x$|$\dfrac{1}{x}$|
46-
|$a^x$|$a^x\ln(a)$|$\log_{a}x$|$\dfrac{1}{x\ln(a)}$|
47-
|$\sin x$|$\cos x$|$\sec x$|$\sec x \tan x$|
48-
|$\cos x$|$-\sin x$|$\csc x$|$-\csc x \cot x$|
49-
|$\tan x$|$\sec^2 x$|$\cot x$|$-\csc^2 x$|
50-
|$\arcsin x$|$\dfrac{1}{\sqrt{1-x^2}}$|$\arctan x$|$\dfrac{1}{1+x^2}$|
51-
|$\arccos x$|$\dfrac{-1}{\sqrt{1-x^2}}$
52-
43+
| $c$ | $0$ | $x^n$ | $nx^{n-1}$ |
44+
| $e^x$ | $e^x$ | $\ln x$ | $\dfrac{1}{x}$ |
45+
| $\sin x$ | $\cos x$ | $\cos x$ | $-\sin x$ |
46+
| $\tan x$ | $\sec^2 x$ | $\arcsin x$ | $\dfrac{1}{\sqrt{1-x^2}}$ |
47+
| $\arctan x$ | $\dfrac{1}{1+x^2}$ | | |

0 commit comments

Comments
 (0)