|
9 | 9 |
|
10 | 10 | ### Table of indefinite integrals
|
11 | 11 |
|
12 |
| -|Function $f(x)$|Antiderivative $F(x)$|Function $f(x)$|Antiderivative $F(x)$| |
| 12 | +| Function $f(x)$ | Antiderivative $F(x)$ | Function $f(x)$ | Antiderivative $F(x)$ | |
13 | 13 | |-:|:-|-:|:---|
|
14 |
| -|$x^n$|$\dfrac{x^{n+1}}{n+1}+C$|$\dfrac{1}{x}$|$\ln\lvert x \rvert + C$| |
15 |
| -|$e^x$|$e^x + C$|$b^x$|$\dfrac{b^x}{\ln b} + C$| |
16 |
| -|$\sin x$|$-\cos x + C$|$\cos x$|$\sin x + C$| |
17 |
| -|$\sec^2 x$|$\tan x + C$|$csc^2 x$|$-\cot x + C$| |
18 |
| -|$\sec x\tan x$|$\sec x + C$|$\csc x\cot x$|$-\csc x + C$| |
19 |
| -|$\dfrac{1}{x^2 + a^2}$|$\dfrac{1}{a}\arctan \left(\dfrac{x}{a}\right) + C$|$\dfrac{1}{\sqrt{a^2-x^2}}$|$\arcsin \left(\dfrac{x}{a}\right) + C$| |
| 14 | +| $x^n$ | $\dfrac{x^{n+1}}{n+1} + C$ | $\dfrac{1}{x}$ | $\ln\lvert x \rvert + C$ | |
| 15 | +| $e^x$ | $e^x + C$ | $b^x$ | $\dfrac{b^x}{\ln b} + C$ | |
| 16 | +| $\sin x$ | $-\cos x + C$ | $\cos x$ | $\sin x + C$ | |
| 17 | +| $\dfrac{1}{x^2 + a^2}$ | $\dfrac{1}{a}\arctan \left(\dfrac{x}{a}\right) + C$ | $\dfrac{1}{\sqrt{a^2-x^2}}$ | $\arcsin \left(\dfrac{x}{a}\right) + C$ | |
20 | 18 |
|
21 | 19 | ### Definite integrals as Riemann sums
|
22 | 20 |
|
|
39 | 37 |
|
40 | 38 | ### Fundamental theorem of calculus
|
41 | 39 |
|
42 |
| -|Description|Equations| |
| 40 | +| Description | Equations | |
43 | 41 | |-:|:-|
|
44 |
| -|**Fundamental theorem of calculus I** <br/> ($f$ is continuous on $[a,b]$)|$g(x) = \displaystyle\int_a^x f(t) \ dt \newline g'(x) = f(x)$| |
45 |
| -|**Fundamental theorem of calculus II** <br/> ($f$ is continuous on $[a,b]$)|$\displaystyle\int_a^b f(x) \ dx = F(b) - F(a)$ <br/> where $F$ is any antiderivative of $f$| |
46 |
| -|Net change theorem <br/> The integral of a rate of change is the net change|$\displaystyle\int_a^b F'(x) \ dx = F(b) - F(a)$| |
| 42 | +| **Fundamental Theorem of Calculus I** <br/> (If $f$ is continuous on $[a,b]$) | $g(x) = \displaystyle\int_a^x f(t) \, dt$ <br/> $g'(x) = f(x)$ | |
| 43 | +| **Fundamental Theorem of Calculus II** <br/> (If $f$ is continuous on $[a,b]$) | $\displaystyle\int_a^b f(x) \, dx = F(b) - F(a)$ <br/> where $F$ is any antiderivative of $f$ | |
| 44 | +| **Net Change Theorem** <br/> (The integral of a rate of change is the net change) | $\displaystyle\int_a^b F'(x) \, dx = F(b) - F(a)$ | |
| 45 | + |
47 | 46 |
|
48 | 47 | ### Substitution rule
|
49 | 48 |
|
|
0 commit comments