-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathlayers.py
54 lines (41 loc) · 2.39 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import tensorflow as tf
from utils import add_layer_summary
def sparse_embedding(feature_size, embedding_size, field_size, feat_ids, feat_vals, add_summary):
with tf.variable_scope('Sparse_Embedding'):
v = tf.get_variable( shape=[feature_size, embedding_size],
initializer=tf.truncated_normal_initializer(),
name='embedding_weight' )
embedding_matrix = tf.nn.embedding_lookup( v, feat_ids ) # batch * field_size * embedding_size
embedding_matrix = tf.multiply( embedding_matrix, tf.reshape(feat_vals, [-1, field_size,1] ) )
if add_summary:
add_layer_summary( 'embedding_matrix', embedding_matrix )
return embedding_matrix
def sparse_linear(feature_size, feat_ids, feat_vals, add_summary):
with tf.variable_scope('Linear_output'):
weight = tf.get_variable( shape=[feature_size],
initializer=tf.truncated_normal_initializer(),
name='linear_weight' )
bias = tf.get_variable( shape=[1],
initializer=tf.glorot_uniform_initializer(),
name='linear_bias' )
linear_output = tf.nn.embedding_lookup( weight, feat_ids )
linear_output = tf.reduce_sum( tf.multiply( linear_output, feat_vals ), axis=1, keepdims=True )
linear_output = tf.add( linear_output, bias )
if add_summary:
add_layer_summary('linear_output', linear_output)
return linear_output
def stack_dense_layer(dense, hidden_units, dropout_rate, batch_norm, mode, add_summary):
with tf.variable_scope('Dense'):
for i, unit in enumerate(hidden_units):
dense = tf.layers.dense(dense, units = unit, activation = 'relu',
name = 'dense{}'.format(i))
if batch_norm:
dense = tf.layers.batch_normalization(dense, center = True, scale = True,
trainable = True,
training = (mode == tf.estimator.ModeKeys.TRAIN))
if dropout_rate > 0:
dense = tf.layers.dropout(dense, rate = dropout_rate,
training = (mode == tf.estimator.ModeKeys.TRAIN))
if add_summary:
add_layer_summary(dense.name, dense)
return dense