This repository has been archived by the owner on Aug 15, 2024. It is now read-only.
forked from huggingface/datasets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew_metric_script.py
96 lines (82 loc) · 3.78 KB
/
new_metric_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:metric,
title = {A great new metric},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the metric here
_DESCRIPTION = """\
This new metric is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the metric here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
class NewMetric(datasets.Metric):
"""TODO: Short description of my metric."""
def _info(self):
# TODO: Specifies the datasets.MetricInfo object
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('string'),
'references': datasets.Value('string'),
}),
# Homepage of the metric for documentation
homepage="http://metric.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_metric"],
reference_urls=["http://path.to.reference.url/new_metric"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
bad_words_path = dl_manager.download_and_extract(BAD_WORDS_URL)
self.bad_words = set([w.strip() for w in open(bad_words_path, "r", encoding="utf-8")])
def _compute(self, predictions, references):
"""Returns the scores"""
# TODO: Compute the different scores of the metric
accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
if self.config_name == "max":
second_score = max(abs(len(i) - len(j)) for i, j in zip(predictions, references) if i not in self.bad_words)
elif self.config_name == "mean":
second_score = sum(abs(len(i) - len(j)) for i, j in zip(predictions, references) if i not in self.bad_words)
second_score /= sum(i not in self.bad_words for i in predictions)
else:
raise ValueError("Invalid config name for NewMetric: {}. Please use 'max' or 'mean'.".format(self.config_name))
return {
"accuracy": accuracy,
"second_score": second_score,
}