Zehui Feng,
Chenqi Zhang,
Mingru Wang,
Minuo Wei,
Shiwei Cheng,
Cuntai Guan*,
Ting Han*,
Shanghai Jiao Tong University, Nanyang Technology University, Zhejiang University, Zhejiang University of Technology
* denotes the corresponding author
Overview of multimodal decoding paradigms.
Overall architecture of Bratrix.
Overall comparison performance of Bratrix.
- 2025/10/07 💻💻💻 we are ready to release EEG/MEG/fMRI model weight.
- 2025/09/30 💻💻💻 we release training and evaluation code.
- 2025/09/29 🖼️🖼️🖼️ We release all pre-processed dataset
- 2025/09/28 🖼️🖼️🖼️ we release all raw dataset.
quickly create a conda environment that contains the packages necessary to run our scripts.
conda create -n Bratrix python=3.10
conda activate Bratrix
pip install -r requirements.txt
| Dataset | Dataset | Dataset | Dataset |
|---|---|---|---|
| THINGS-EEG1 Download |
THINGS-EEG2 Download |
THINGS-MEG Download |
THINGS-fMRI Download |
| THINGS-Images Download |
Preprocessed-EEG Download |
Preprocessed-MEG Download |
Preprocessed-fMRI Download |
We provide the script to train the end-to-end Bratrix for subject-dependent training in THINGS-EEG2 dataset. Please modify your data set path and run:
python Bratrix-eeg.py --data_path your_preprocessed_EEG_data_path --gpu cuda:0 --insubject True --subjects ['sub-01', 'sub-02', 'sub-03', 'sub-04', 'sub-05', 'sub-06', 'sub-07', 'sub-08', 'sub-09', 'sub-10']
Or you can train the end-to-end Bratrix for subject-dependent training in single subject subject-01 in THINGS-EEG2 dataset.
python Bratrix-eeg.py --data_path your_preprocessed_EEG_data_path --gpu cuda:0 --insubject True --subjects ['sub-01']
Also, you can train the Bratrix for subject-independent training setting
python Bratrix-eeg.py --data_path your_preprocessed_EEG_data_path --gpu cuda:0 --insubject False --subjects ['sub-01', 'sub-02', 'sub-03', 'sub-04', 'sub-05', 'sub-06', 'sub-07', 'sub-08', 'sub-09', 'sub-10']
Similarily, we provide the training and evaluation code for MEG and fMRI modalities in THINGS-MEG dataset and THINGS-fMRI dataset
python Bratrix-meg.py --data_path your_preprocessed_MEG_data_path --gpu cuda:0 --insubject True --subjects ['sub-01', 'sub-02', 'sub-03', 'sub-04']
python Bratrix-fmri.py --data_path your_preprocessed_fmri_data_path --gpu cuda:0 --insubject True --subjects ['sub-01', 'sub-02', 'sub-03']
For example, you can per-train the 10-subject Bratrix-EEG model, and then you can fine-tune it in Bratrix-fMRI:
python Bratrix-eeg-10subject.py --data_path your_preprocessed_eeg_data_path --gpu cuda:0 --insubject True --subjects ['sub-01', 'sub-02', 'sub-03', 'sub-04', 'sub-05', 'sub-06', 'sub-07', 'sub-08', 'sub-09', 'sub-10']
python python Bratrix-fmri-multi.py --data_path your_preprocessed_fmri_data_path --gpu cuda:0 --insubject True --subjects ['sub-01', 'sub-02', 'sub-03', 'sub-04']
We provide the end-to-end training and inference scripts for visual reconstruction. Please modify your data set path and run zero-shot on test dataset. Note that the image features come from CLIP (ViT-L-14) rather than our Vision Encoder. But the EEG feature representation still comes from per-trained Bratrix Brain Encoder.
python Bratrix-eeg-image-generation.py --data_path your_preprocessed_EEG_data_path --gpu cuda:0 --insubject False --subjects ['sub-01', 'sub-02', 'sub-03', 'sub-04', 'sub-05', 'sub-06', 'sub-07', 'sub-08', 'sub-09', 'sub-10'] --checkpoint_path your_per-trained_aligned_checkpoint
We followed MindEye and BrainFLORA scripts for visual caption generation downstream task.
# get caption from prior latent
python Bratrix-caption_feature_generation_stage_1.py --data_path your_preprocessed_EEG_data_path --gpu cuda:0 --insubject False --subjects ['sub-01']
# fine-tuning and inference caption results
python Bratrix-caption_generation_stage_2.py
We sincerely thank the following outstanding works and contributors:
-
THINGS-EEG2 dataset — A large and rich EEG dataset for modeling human visual object recognition.
Authors: Alessandro T. Gifford, Kshitij Dwivedi, Gemma Roig, Radoslaw M. Cichy. -
THINGS-data — a multimodal dataset for investigating object representations in the human brain and behavior.
Authors: Hebart, Martin N., Oliver Contier, Lina Teichmann, Adam H. Rockter, Charles Y. Zheng, Alexis Kidder, Anna Corriveau, Maryam Vaziri-Pashkam, and Chris I. Baker. -
EEG decoding and neural embedding works — for inspiring dataset preprocessing and neural network design:
- Decoding Natural Images from EEG for Object Recognition, Yonghao Song, Bingchuan Liu, Xiang Li, Nanlin Shi, Yijun Wang, Xiaorong Gao.
- BrainFLORA: Uncovering Brain Concept Representation via Multimodal Neural Embeddings, Dongyang Li, Haoyang Qin, Mingyang Wu, Chen Wei, Quanying Liu.
- UMBRAE: Unified Multimodal Brain Decoding, Xia, Weihao and de Charette, Raoul and Oztireli, Cengiz and Xue, Jing-Hao.
This repository is released under the MIT license. See LICENSE for additional details.


