This repository has been archived by the owner on Jan 8, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn_forecast.R
193 lines (163 loc) · 6.62 KB
/
knn_forecast.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#' Predicts next value of the time series using k-nearest neighbors algorithm.
#'
#' @param y A time series or a trained kNN model generated by the
#' knn_param_search_function. In case that a model is provided the rest of
#' parameters will be ignored and all of them will be taken from the model.
#' @param k Number of neighbors.
#' @param d Length of each of the 'elements'.
#' @param distance Type of metric to evaluate the distance between points. Many
#' metrics are supported: euclidean, manhattan, dynamic time warping, camberra
#' and others. For more information about the supported metrics check the
#' values that 'method' argument of function parDist (from parallelDist
#' package) can take as this is the function used to calculate the distances.
#' Link to package info: https://cran.r-project.org/web/packages/parallelDist
#' Some of the values that this argument can take are "euclidean", "manhattan",
#' "dtw", "camberra", "chord".
#' @param weight Type of weight to be used at the time of calculating the
#' predicted value with a weighted mean. Three supported: proportional,
#' average, linear.
#' \describe{
#' \item{proportional}{the weight assigned to each neighbor is inversely
#' proportional to its distance}
#' \item{average}{all neighbors are assigned with the same weight}
#' \item{linear}{nearest neighbor is assigned with weight k, second closest
#' neighbor with weight k-1, and so on until the least nearest neighbor which
#' is assigned with a weight of 1.}
#' }
#' @param v Variable to be predicted if given multivariate time series.
#' @param threads Number of threads to be used when parallelizing, default is 1
#' @param h Temporal horizon of the prediction (only value 1 is implemented).
#' This parameter is present only for compatibility with the forecast package.
#' @return The predicted value.
#' @examples
#' knn_forecast(AirPassengers, 5, 2)
#' knn_forecast(LakeHuron, 3, 6)
#' @export
knn_forecast <- function(y, k, d, distance = "euclidean", weight =
"proportional", v = 1, threads = 1, h = 1) {
require(parallelDist)
require(parallel)
# Default number of threads to be used
if (is.null(threads)) {
cores <- parallel::detectCores(logical = FALSE)
threads <- ifelse(cores == 1, cores, cores - 1)
}
forec <- list()
class(forec) <- "forecast"
forec$method <- "k-Nearest Neighbors for unknown observations"
if (any(class(y) == "kNN")) {
forec$model <- y
k <- y$opt_k
d <- y$opt_d
distance <- y$distance
weight <- y$weight
threads <- threads
y <- y$x
}
else {
model <- list()
class(model) <- "kNN"
model$method <- "k-Nearest Neighbors"
model$k <- k
model$d <- d
model$distance <- distance
model$weight <- weight
forec$model <- model
}
if (any(is.na(y))) {
stop("There are NAs values in the time series")
}
if (any(is.nan(y))) {
stop("There are NaNs values in the time series")
}
if (all(weight != c("proportional", "average", "linear"))) {
stop(paste0("Weight metric '", weight, "' unrecognized."))
}
# Initialization of variables to be used
n <- NROW(y)
forec$x <- y
if (any(class(y) == "ts")) {
if (!requireNamespace("tseries", quietly = TRUE)) {
stop("Package 'tseries' needed for this function to work with ts objects.
Please install it.", call. = FALSE)
}
require(tseries)
if (NCOL(y) < v) {
stop(paste0("Index of variable off limits: v = ", v,
" but given time series has ", NCOL(y), " variables."))
}
sta <- time(y)[n]
freq <- frequency(y)
res_type <- "ts"
y <- matrix(sapply(y, as.double), ncol = NCOL(y))
}
else if (any(class(y) == "tbl_ts")) {
if (!requireNamespace("tsibble", quietly = TRUE)) {
stop(paste0("Package 'tsibble' needed for this function to work with ",
"tsibble objects. Please install it."), call. = FALSE)
}
require(tsibble)
if (length(tsibble::measured_vars(y)) < v) {
stop(paste0("Index of variable off limits: v = ", v,
" but given time series has ",
length(tsibble::measured_vars(y)), " variables."))
}
resul <- tail(tsibble::append_row(y), 1)
res_type <- "tsibble"
y <- matrix(sapply(y[tsibble::measured_vars(y)], as.double), ncol =
length(tsibble::measures(y)))
}
else {
res_type <- "undef"
if (NCOL(y) < v) {
stop(paste0("Index of variable off limits: v = ", v,
" but given time series has ", NCOL(y), " variables."))
}
y <- matrix(sapply(y, as.double), ncol = NCOL(y))
}
# Get 'elements' matrices (one per variable)
distances <- plyr::alply(y, 2, function(y_col)
knn_elements(matrix(y_col, ncol = 1), d))
# For each of the elements matrices, obtain the distances between
# the most recent 'element' and the rest of the 'elements'.
# This results in a list of distances vectors
distances <- plyr::llply(distances, function(elements_matrix)
parallelDist::parDist(elements_matrix, distance,
threads = threads)[1:(n - d)])
# Combine all distances vectors by aggregating them
distances <- Reduce("+", distances)
# Get the indexes of the k nearest 'elements', these are called neighbors
k_nn <- which(distances <= sort.int(distances, partial = k)[k],
arr.ind = TRUE)
# We sort them so the closer neighbor is at the first position
k_nn <- head(k_nn[sort.int(distances[k_nn], index.return = TRUE,
decreasing = FALSE)$ix], k)
# Calculate the weights for the future computation of the weighted mean
weights <- switch(weight,
proportional = 1 / (distances[k_nn] +
.Machine$double.xmin * 1e150),
average = rep.int(1, k),
linear = k:1
)
# Calculate the predicted value
forec$neighbors <- n - k_nn
prediction <- weighted.mean(y[n - k_nn + 1, v], weights)
if (res_type == "ts") {
forec$mean <- tail(ts(c(1, prediction), start = sta, frequency = freq), 1)
forec$fitted <- ts(start = sta, frequency = freq)
}
else if (res_type == "tsibble") {
forec$fitted <- resul
resul[tsibble::measured_vars(resul)[v]] <- prediction
forec$mean <- resul
}
else {
forec$mean <- prediction
forec$fitted <- NA
}
forec$lower <- NA
forec$upper <- NA
forec$residuals <- tail(y[, v], 1) - prediction
forec$distances <- rev(distances)
forec
}