Skip to content

Latest commit

 

History

History
executable file
·
481 lines (375 loc) · 14.2 KB

ReadMe.md

File metadata and controls

executable file
·
481 lines (375 loc) · 14.2 KB

Deeplearning2C Version 2.0

What is this project?

This is Deeplearning2C. It's a project for generate an application for Android, Iphone, Linux, Windows and Mac OS X, that can generate a deep neural network in a .c file and .m file after being trained with Deeplearning4J.

I have been using mimimal dependencies and liberaries. These are the the following dependencies I have been using:

  • Deeplearning4J
  • GluonHQ JavaFX for Android & Iphone development
  • Lombok
  • Logback-classic

Why should I use this application?

Let's say that you want to implement an deep neural network that are trained for classification for animals or other visible things. You want to implement it into a microcontroller such as STM32, PIC, AVR. Then this application can be used to generate a deep neural network in C code.

How does it looks like?

Here is an example when I run the IRIS example with iris.csv data file. You can download it from here:

https://github.com/deeplearning4j/oreilly-book-dl4j-examples/blob/master/datavec-examples/src/main/resources/IrisData/iris.txt

First I create my model.

a

Then I go to menu.

a

I change my global configuration.

a

I change my layer configuration.

a

Then I insert the training data. Notice that 50% of that data is evaluation data.

a

Now I train my model. Notice that I have a progress bar too.

a

Now I evaluate my model.

a

And at last I generate C-code and M-code.

a

Examples

This is how a setup looks like in C-code

/*
 ============================================================================
 Name        : IrisModelC.c
 Author      : Daniel Mårtensson
 Version     :
 Copyright   : MIT
 Description : Classification example
 ============================================================================
 */

#include <stdio.h>
#include <stdlib.h>
#include "IrisModel.h"

/*
 * This example has been trained with irisData.csv
 */
int main() {
	// Input
	float input[3][4] = {{4.4,3.0,1.3,0.2}, // Expected output: [1 0 0]
			     {6.5,2.8,4.6,1.5}, // Expected output: [0 1 0]
			     {6.7,3.0,5.2,2.3}}; // Expected output: [0 0 1]

	// Compute output
	float output[3] = {0,0,0};
	for(int i = 0; i < 3; i++){
		IrisModel(input[i], output);

		// Print result
		for(int j = 0; j < 3; j++){
			printf("Output %i = %f\n", j, output[j]);
		}
		printf("\n");
	}

	/*
	 * Result:
	 *  Output 0 = 0.999826
		Output 1 = 0.000173
		Output 2 = 0.000001

		Output 0 = 0.000038
		Output 1 = 0.999506
		Output 2 = 0.000456

		Output 0 = 0.000012
		Output 1 = 0.000806
		Output 2 = 0.999182
	 */

	return EXIT_SUCCESS;
}

/*
 * In MATLAB/GNU Octave it will look like this from the M-files folder
 *
 * >> IrisModel([4.4,3.0,1.3,0.2])
	ans =

	   9.9983e-01
	   1.7323e-04
	   1.0835e-06

	>> IrisModel([6.5,2.8,4.6,1.5])
	ans =

	   3.8034e-05
	   9.9951e-01
	   4.5604e-04

	>> IrisModel([6.7,3.0,5.2,2.3])
	ans =

	   1.1771e-05
	   8.0585e-04
	   9.9918e-01

	>>
 *
 */

This is how a C-code generation example looks like for this model.

/*
 * Model: IrisModel
 * 
 * 
 *  Created on: 2019-11-09 14:58:58
 *  	Generated by: Deeplearning2C
 *     		Author: Daniel Mårtensson
 */

#include "IrisModel.h"
#include "BLAS/f2c.h"
#include "BLAS/functions.h"

void IrisModel(float* input, float* output){

	integer m = 0; // Real row dimension of non-transpose A
	integer n = 0; // Real column dimension of non-transpose A
	real alpha = 1; // Always 1
	real beta = 1; // Always 1
	integer incx = 1; // Always 1
	integer incy = 1; // Always 1
	char trans = 'N'; // We have transpose matrix A'

	/*
	 * We are using BLAS subroutine sgemv for solving y = alpha*A*x + beta*y
	 * The BLAS subroutine is the same routine that is used in EmbeddedLapack
	 * Solve the equations like:
	 * b0 = act(W0*input + b0)
	 * b1 = act(W1*b0 + b1)
	 * b2 = act(W2*b1 + b2)
	 * b3 = act(W3*b2 + b3)
	 * b4 = act(W4*b3 + b4)
	 * ....
	 * ....
	 * output = act(Wi*b(i-1) + bi)
	 */

	real b0[1*3]={   -0.6087,    0.4616, 2.5645e-5};
	real W0[4*3]={   -0.8625,   -0.3397,   -0.4687, 
			  0.2872,    0.8155,   -0.9267, 
			  1.0887,    0.0980,   -0.4534, 
			  0.3455,   -1.0067,   -0.1949};
	m = 3;
	n = 4;
	sgemv_(&trans, &m, &n, &alpha, W0, &m, input, &incx, &beta, b0, &incy); // Layer - first - index 0
	activation(b0, m, "TANH");

	real b1[1*5]={    0.2643,    0.3509,   -0.2505,    0.8730,    0.0396};
	real W1[3*5]={   -1.1832,    0.4539,    1.0578,   -1.1785,   -0.9066, 
			  0.7488,   -1.0097,   -1.3093,    0.8479,    1.2361, 
			  0.2831,   -0.8899,    0.1930,   -0.8783,    0.1381};
	m = 5;
	n = 3;
	sgemv_(&trans, &m, &n, &alpha, W1, &m, b0, &incx, &beta, b1, &incy); // Layer - middle - index 1
	activation(b1, m, "RELU");

	real b2[1*7]={    0.0912,    0.0025,   -0.1656,    0.0260,    0.3964,    0.0171,    0.0286};
	real W2[5*7]={   -0.7311,   -0.6416,    0.2090,   -0.1302,   -0.1392,    0.9976,   -0.3457, 
			  0.5444,    0.6307,    0.6810,   -0.6130,    0.9825,   -0.9786,    0.5479, 
			  1.4267,    0.5012,    0.5435,   -0.3866,   -0.4932,   -0.4949,    0.2377, 
			 -0.7485,   -1.1880,   -0.9329,   -0.8541,    1.2560,    0.8988,   -1.0148, 
			 -0.1380,   -0.2079,    0.6905,    0.0116,   -1.1755,    1.1405,    0.2818};
	m = 7;
	n = 5;
	sgemv_(&trans, &m, &n, &alpha, W2, &m, b1, &incx, &beta, b2, &incy); // Layer - middle - index 2
	activation(b2, m, "RELU");

	real b3[1*3]={   -0.3134,    0.4090,   -0.3947};
	real W3[7*3]={   -0.1978,    0.0382,    1.3856, 
			  0.0070,   -0.7251,    0.7150, 
			  0.1413,   -0.2986,    0.8372, 
			  0.6356,   -0.2417,   -0.2545, 
			 -0.9164,    1.7475,   -0.4681, 
			  1.2910,   -0.9558,   -0.7706, 
			  0.1475,   -0.5468,    1.7383};
	m = 3;
	n = 7;
	sgemv_(&trans, &m, &n, &alpha, W3, &m, b2, &incx, &beta, b3, &incy); // Layer - last - index 3
	activation(b3, m, "SOFTMAX");
	memcpy(output, b3, m*sizeof(float));

}

I also tried system identification.

%Model
sys = ss(0, [0 1; -1 -5], [0; 2], [1 0]);

% Signals
u1 = linspace(5,5, 100);
u2 = linspace(3,3, 100);
u3 = linspace(10,10, 100);
u4 = linspace(-4, -1, 100);
u5 = linspace(8, 9, 100);
u6 = 5*sin(linspace(0, 10, 100));
u7 = linspace(1, 10, 100);
u8 = linspace(10, 1, 100);
u9 = linspace(20, -20, 100);
u10 = linspace(0, 1, 100);
u = [u1 u2 u3 u4 u5 u6 u7 u8 u9 u10];

% Time
t = linspace(0, 100, length(u));

% Simulation with limits -5 and 15 on position and Inf on speed
y = satlsim(sys, u, t, [0;0], [-5 15; -Inf Inf]);

% Generate CSV file. Here we take adventage of transfer function estimation idea!
np = 5; % Number of poles
nz = 2; % Number of zeros

% check which one is largest
kn = length(u); % or length(y)
  
% Create b vector - all the y[k]
b = y(1:kn)';
  
% Create A1 matrix
A1 = zeros(kn, np);
  
% Fill A1 matrix - The y values
for i = 1:kn
  for j = 1:np 
      
    if i-j <= 0
      A1(i,j) = 0;
    else
      A1(i,j) = -y(i-j);
    end
      
  end
end
  
% Create A2 matrix
A2 = zeros(kn, nz);
  
% Fill A2 matrix - The u values
for i = 1:kn
  for j = 1:nz
      
    if i-j <= 0
      A2(i,j) = 0;
    else
      A2(i,j) = u(i-j);
    end
    
  end
end
  
% Merge A1 and A2 into A
A = [A1 A2 b]; % This is ODE -y(t-1), -y(t-2), -y(t-3), -y(t-4), -y(t-5), u(t), u(t-1), y(t)
csvwrite('sysIDData.csv', A);

% Now we have trained our model and now we are doing a simulation
Y = zeros(1, np);
U = zeros(1, nz);
alpha = 2; % Reference scalar

for i = 1:length(u)
  % Insert signal u
  U = [u(i)*alpha U];
  U(end) = [];
  
  % Run model
  output = SystemID([Y U]);
  
  % Saturation
  if(output > 15)
    output = 15;
  elseif(output < -5)
    output = -5;
  end
  y(i) = output;  
  
  % Insert output to Y
  Y = [-output Y]; % Important with negative output due to the ODE above
  Y(end) = [];
  
end

% Plot now the identified model
figure(2);
plot(t, y);

And here is the result. Remember that even if I have used a linear model, I still implemented limits = nonlinearities.

a

The M-file looks like this:

 %
 % Model: SystemID
 % 
 % 
 %  Created on: 2019-11-09 16:40:27
 %  	Generated by: Deeplearning2C
 %     		Author: Daniel Mårtensson
 %

function [output] = SystemID(input)

	 %
	 % We are solving y = A*x + y
	 % Solve the equations like:
	 % b0 = act(W0*input + b0)
	 % b1 = act(W1*b0 + b1)
	 % b2 = act(W2*b1 + b2)
	 % b3 = act(W3*b2 + b3)
	 % b4 = act(W4*b3 + b4)
	 % ....
	 % ....
	 % output = act(Wi*b(i-1) + bi)
	 %

	 b0=[   -0.1120,   -0.0402,    0.0032];
	 W0=[   -0.4450,    0.8477,   -0.2015, 
		-0.1879,   -0.0192,   -0.8595, 
		 0.3868,   -0.4800,   -0.3430, 
		 0.1157,    0.3368,    0.2539, 
		 0.1334,    0.0973,    0.4526, 
		-0.1038,   -0.0941,    0.1836, 
		-0.2202,   -0.0552,    0.7346];
	 b0 = act(W0'*input' + b0','IDENTITY'); % Layer - first - index 0
	 b1=[    0.0102,    0.0316,    0.0915,   -0.0355,   -0.0222];
	 W1=[    1.2714,    0.6818,   -0.3331,   -0.1709,   -0.4642, 
		-0.2216,   -1.0645,    0.3952,    0.3615,    0.0884, 
		-0.7550,    0.4536,   -0.0688,   -0.5332,   -0.5289];
	 b1 = act(W1'*b0 + b1','IDENTITY'); % Layer - middle - index 1
	 b2=[   -0.0227,   -0.0226,    0.0232,   -0.0238,   -0.0266,   -0.0021,    0.0443];
	 W2=[    0.0281,   -0.0413,    0.5902,   -0.0024,    0.0744,   -0.5026,   -0.4177, 
		-0.0679,   -0.2938,   -0.1893,   -0.3184,   -0.3986,   -0.1307,    0.3192, 
		 0.2063,    0.1591,   -0.0780,   -0.5964,   -0.1422,    0.0107,    0.2338, 
		 0.1595,    0.2026,   -0.1367,   -0.3870,   -0.4170,    0.1332,    0.1796, 
		 0.3216,    0.1110,   -0.5306,   -0.1794,   -0.6428,    0.3067,    0.3833];
	 b2 = act(W2'*b1 + b2','IDENTITY'); % Layer - middle - index 2
	 b3=[      0.0222];
	 W3=[     -0.6130, 
		  -0.7850, 
		   0.2164, 
		  -0.1898, 
		  -0.0856, 
		  -0.5568, 
		   0.0538];
	output = act(W3'*b2 + b3','IDENTITY'); % Layer - last - index 3
end

How can I run this application?

You need to have OpenJDK 8 and OpenJFX 8 installed. If you are a linux user, you can follow step 1 and 2.

  1. Install OpenJDK 8
sudo apt-get install openjdk-8-jdk
  1. Install OpenJFX 8
Open sources.list file 

cd /etc/apt
sudo nano sources.list

Paste this into the file and save and close

deb http://de.archive.ubuntu.com/ubuntu/ bionic universe

Run these code inside the terminal

sudo apt-get update
sudo apt install openjfx=8u161-b12-1ubuntu2 libopenjfx-java=8u161-b12-1ubuntu2 libopenjfx-jni=8u161-b12-1ubuntu2 openjfx-source=8u161-b12-1ubuntu2
sudo apt-mark hold libopenjfx-java libopenjfx-jni openjfx openjfx-source
  1. Download the project and go to the project folder and run the command
./gradlew run

For Linux/Mac or

gradlew run

For Windows

What IDE have you been using to develop on this application?

I have been using Eclipse IDE.

  1. Install Eclipse 2018-09 (4.9.0) R (Because Eclipse 2018-09 will only work with Gluon Plugin 2.6.0)
  https://www.eclipse.org/downloads/packages/release/2018-09/r
  1. Install Gluon Plugin 2.6.0 inside Eclipse
  Help -> Eclipse Marketplace -> Gluon 2.6.0

How do I create the .apk file for Android?

First of all. The installation file is over 372 megabytes for Android. That's huge, but anyway it's still possible to install. Right now, I have excluded the most large dependencies which I don't use. Look in the build.gradle file.

  1. See the getting started guide for using GluonHQ JavaFX for mobile development. It's a very easy and excellent done graphical manual. It describes how to set up the Android SDK etc. https://docs.gluonhq.com/getting-started/#introduction

  2. Troubleshooting for Android can be done this way, if you got some issues with the application on the phone, but not on desktop. See selected answer https://stackoverflow.com/questions/42253794/androidinstall-task-causes-a-no-connected-devices-error

What need to be working on?

  • Upgrade the C-code and M-code generator for LSTM networks.

How is the project organized?

I have always like clean god written code and pedagogy explanations. So I'm going to give you an introduction what every file do. I like to keep files as short as possible. Around 250-300 lines per each java file is a suitable java file.

  • DrawerManager.java -> Handles the menu slide to the left
  • Main.java -> Handles the import of new JavaFX pages
  • DL4JData.java -> Handles everything that has to do with CSV handling for DL4J
  • DL4JModel.java -> Handles everything that has to do with the model (save, load, generate etc.)
  • DL4JSerializableConfiguration.java -> Handles saving and loading layers and global config to .ser files
  • DL4JThread.java -> Handles training and using the text area and progress bar inside the TrainEvalGeneratePresenter.java file
  • Dialogs.java -> Handles everything that has to do with pop-up dialogs
  • FileHandler.java -> Handles file system, write files, read files and create files
  • SimpleDependencyInjection.java -> Create a static object of DL4JModel.java so we can have access to DL4JModel everywhere
  • ConfigurationsPresenter.java -> Handles GUI view for configuration
  • DataPresenter.java -> Handles the GUI view for CSV import
  • ModelsPresenter.java -> Handles the GUI view for model creation and delete/save
  • TrainEvalGeneratePresenter.java -> Handles the GUI view for train, eval and generate C-code

Every file inside se.danielmartensson.views package that contains the word "View" inside its name is only for importing the GUI inside Main.java file. These files never changes.

Tutorials - If you want to change inside the code

  • Tutorials -> Add seed, regularization coefficient, learning rate, momentum
  • Tutorials -> Add new updater
  • Tutorials -> Add new layer
  • Tutorials -> Add inputs and outputs
  • Tutorials -> Add new functionality to layers