-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrefit_model.py
75 lines (56 loc) · 2.61 KB
/
refit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""
2024 Daniil Sinitsyn
Colmap camera models implemented in PyTorch
"""
import torch
import argparse
from colmap_cameras import model_selector, default_initialization
arg_parser = argparse.ArgumentParser("Refit one colmap model to another")
input_camera_str = arg_parser.add_argument("--input_camera", type=str, help="Input camera model in colmap foramt. Example: PINHOLE 100 100 100 100 50 50")
output_camera_name = arg_parser.add_argument("--output_camera", type=str, help="Output camera model in colmap format. Example: SIMPLE_RADIAL")
iterations = arg_parser.add_argument("--iterations", type=int, default=20, help="Number of iterations for optimization")
args = arg_parser.parse_args()
input_camera = args.input_camera
output_camera = args.output_camera
input_camera_name = input_camera.split()[0]
input_camera_data = list(map(float, input_camera.split()[1:]))
input_camera = model_selector(input_camera_name, input_camera_data)
output_camera = default_initialization(output_camera, input_camera.image_shape)
print("Input model : \n\t", input_camera.to_colmap())
print("Output model init : \n\t", output_camera.to_colmap())
full_data = []
for x in range(int(input_camera.image_shape[0])):
for y in range(int(input_camera.image_shape[1])):
full_data.append([x, y])
full_data = torch.tensor(full_data, dtype=torch.float32)
iterations = args.iterations
batch_size = 2000
print("#"*60)
for i in range(iterations):
H_acc = torch.zeros((output_camera._data.shape[0], output_camera._data.shape[0])).to(full_data)
b_acc = torch.zeros((output_camera._data.shape[0], 1)).to(full_data)
err_acc = 0
num_adds = 0
for j in range(0, full_data.shape[0], batch_size):
num_adds += 1
data = full_data[j:j+batch_size]
def res(output_camera_data):
output_camera._data = output_camera_data
pts3d = input_camera.unmap(data)
pts2d, valid = output_camera.map(pts3d)
return pts2d[valid] - data[valid]
J = torch.autograd.functional.jacobian(res, output_camera._data)
err = res(output_camera._data)
J = J.reshape(batch_size, 2, -1)
H_acc += (J.transpose(1, 2) @ J).mean(dim=0)
b_acc += (J.transpose(1, 2) @ err[...,None]).mean(dim=0)
err_acc += err.norm(dim=-1).mean()
H_acc /= num_adds
b_acc /= num_adds
err_acc /= num_adds
step = torch.linalg.lstsq(H_acc, b_acc)[0].squeeze()
output_camera._data = output_camera._data - step
print(f'Iteration {i} : Mean reprojection error {err_acc.item()}')
print("#"*60)
print("FINAL MODEL:")
print("\t", output_camera.to_colmap())