diff --git a/SavingsAI/DeepLearningDolfin.ipynb b/SavingsAI/DeepLearningDolfin.ipynb
new file mode 100644
index 0000000..06aa859
--- /dev/null
+++ b/SavingsAI/DeepLearningDolfin.ipynb
@@ -0,0 +1,1018 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "code",
+ "source": [
+ "#Libs\n",
+ "import pandas as pd"
+ ],
+ "metadata": {
+ "id": "x99rV5Hmm3Mt"
+ },
+ "execution_count": 1,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "def getSampleData():\n",
+ " return pd.read_csv(\"/content/drive/MyDrive/Sample getTransactions API data.csv\")"
+ ],
+ "metadata": {
+ "id": "7_WJ-eC2nBTq"
+ },
+ "execution_count": 4,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "nFJdQADyvLZ3",
+ "outputId": "baf9e4ac-3a84-4480-db08-909802228700"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " type id status \\\n",
+ "0 transaction 4957bcf6-f18f-43d7-94df-71f44a0bcf32 posted \n",
+ "1 transaction 0d6e11ab-e28e-4de0-a152-600cc44fb61c posted \n",
+ "2 transaction 323f6d42-a38e-4c46-83d2-6c8f3e999686 posted \n",
+ "3 transaction 1ab3a3c5-faeb-4de3-b5aa-612e5bc76fd5 posted \n",
+ "4 transaction d12df6a2-48b6-4f5f-a718-ccb377aa330c posted \n",
+ "5 transaction 08e6f7c9-f359-48f2-b086-a55f468f2f60 posted \n",
+ "6 transaction 53570fde-c731-4e33-8224-0583650eeaa7 posted \n",
+ "7 transaction 55dbdd71-9976-43ec-a724-7cf620d279d4 posted \n",
+ "8 transaction 17b710a5-da3d-42f8-ae31-f9d601f95c6d posted \n",
+ "9 transaction d93fb495-8a7a-4997-8a16-b3581b778471 posted \n",
+ "10 transaction 6ba3dd59-4268-419d-b5aa-49df88c11c71 posted \n",
+ "11 transaction 7d9413b0-694f-4b62-aac9-c178a6f069c6 posted \n",
+ "12 transaction 4f3bb9a5-9597-4d71-80db-fae35b70edcd posted \n",
+ "13 transaction 9cf8a7ac-0e8b-4699-81e6-98181bdf18cf posted \n",
+ "14 transaction d5a36da2-5b9f-4dbf-aa95-eb518d163f0f posted \n",
+ "15 transaction 70aa3766-93eb-4da6-ab69-299b16507794 posted \n",
+ "16 transaction 6b8f916b-3317-4a5a-818b-82b008f67d84 posted \n",
+ "17 transaction 7dbf9e0f-e172-4474-9427-69fbb2d46752 posted \n",
+ "18 transaction d4f55027-9c2f-4288-8580-0969738f4d78 posted \n",
+ "19 transaction e24adcd4-4a91-4a0e-bc57-48256635e051 posted \n",
+ "20 transaction a5fd3de7-1d3b-44e9-8821-d01dc852a0d7 posted \n",
+ "21 transaction 358ed9c0-46c0-486e-bedc-fe05cb2d7030 posted \n",
+ "22 transaction 7aa1234e-4132-4dcb-8cd2-c2adeeb43891 posted \n",
+ "23 transaction 793923f1-00e1-4181-b518-13feac5adca9 posted \n",
+ "24 transaction 305aba74-a09e-470d-9079-f386936b08b8 posted \n",
+ "25 transaction 32f52553-c38d-473f-994d-3e6dcf949268 posted \n",
+ "26 transaction 78a8f7f6-5978-4985-a3d8-66f01838978c posted \n",
+ "27 transaction 0b31ba00-2629-49d0-b5a3-ff18398efc7a posted \n",
+ "28 transaction d5944ba8-8211-4036-a412-aa25def5c61f posted \n",
+ "29 transaction 1fe000a0-ccc3-4752-9fbc-f939a9473300 posted \n",
+ "\n",
+ " description amount \\\n",
+ "0 Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU -200.0 \n",
+ "1 Non Hooli ATM Withdrawal Fee -2.5 \n",
+ "2 Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU -200.0 \n",
+ "3 Non Hooli ATM Withdrawal Fee -2.5 \n",
+ "4 Transfer Platnm Homeloan 346454 -3852.5 \n",
+ "5 TFR From Transaction to CC Acc 13 -9406.0 \n",
+ "6 Payroll WFRMS 15439393 17098.0 \n",
+ "7 Manly Maths Tutor Wages 201.0 \n",
+ "8 MANLY WEST SCHOOL -1422.2 \n",
+ "9 MANLY WEST SCHOOL -51.0 \n",
+ "10 Funds Transfer Transfer 3001.0 \n",
+ "11 Manly Maths Tutor Wages 201.0 \n",
+ "12 TFR Acc14000 TO 12389 -500.0 \n",
+ "13 AGL RETAIL ENERGY LTD (GAS) -78.0 \n",
+ "14 Wdl ATM CBA ATM SEAFORTH NSW 225101 AUS -750.0 \n",
+ "15 Transfer Platnm Homeloan 346454 -3860.0 \n",
+ "16 TFR From Transaction to CC Acc 13 -9398.5 \n",
+ "17 Payroll WFRMS 15439393 17098.0 \n",
+ "18 CTRLINK CARERS Ref: 998R6789201610974V 19.6 \n",
+ "19 Manly Maths Tutor Wages 201.0 \n",
+ "20 MANLY WEST SCHOOL -1422.2 \n",
+ "21 MANLY WEST SCHOOL -51.0 \n",
+ "22 Manly Maths Tutor Wages 201.0 \n",
+ "23 TFR Acc14000 TO 12389 -500.0 \n",
+ "24 AGL RETAIL ENERGY LTD (GAS) -78.0 \n",
+ "25 CTRLINK CARERS Ref: 998R6789201610974V 26.0 \n",
+ "26 Transfer Platnm Homeloan 346454 -3867.5 \n",
+ "27 TFR From Transaction to CC Acc 13 -9391.0 \n",
+ "28 Payroll WFRMS 15439393 17098.0 \n",
+ "29 MANLY WEST SCHOOL -20.0 \n",
+ "\n",
+ " account balance direction class \\\n",
+ "0 d3de1ca1 22109.56 debit cash-withdrawal \n",
+ "1 070c1d68-0ee0-477a-9679-294ea7059939 22309.56 debit bank-fee \n",
+ "2 070c1d68-0ee0-477a-9679-294ea7059939 22312.06 debit cash-withdrawal \n",
+ "3 070c1d68-0ee0-477a-9679-294ea7059939 22512.06 debit bank-fee \n",
+ "4 070c1d68-0ee0-477a-9679-294ea7059939 22514.56 debit payment \n",
+ "5 070c1d68-0ee0-477a-9679-294ea7059939 26367.06 debit payment \n",
+ "6 070c1d68-0ee0-477a-9679-294ea7059939 35773.06 credit transfer \n",
+ "7 070c1d68-0ee0-477a-9679-294ea7059939 18675.06 credit transfer \n",
+ "8 070c1d68-0ee0-477a-9679-294ea7059939 18474.06 debit payment \n",
+ "9 070c1d68-0ee0-477a-9679-294ea7059939 19896.26 debit payment \n",
+ "10 070c1d68-0ee0-477a-9679-294ea7059939 19947.26 credit transfer \n",
+ "11 070c1d68-0ee0-477a-9679-294ea7059939 16946.26 credit transfer \n",
+ "12 070c1d68-0ee0-477a-9679-294ea7059939 16745.26 debit payment \n",
+ "13 070c1d68-0ee0-477a-9679-294ea7059939 17245.26 debit payment \n",
+ "14 070c1d68-0ee0-477a-9679-294ea7059939 17323.26 debit cash-withdrawal \n",
+ "15 070c1d68-0ee0-477a-9679-294ea7059939 18073.26 debit payment \n",
+ "16 070c1d68-0ee0-477a-9679-294ea7059939 21933.26 debit payment \n",
+ "17 070c1d68-0ee0-477a-9679-294ea7059939 31331.76 credit transfer \n",
+ "18 070c1d68-0ee0-477a-9679-294ea7059939 14233.76 credit transfer \n",
+ "19 070c1d68-0ee0-477a-9679-294ea7059939 14214.16 credit transfer \n",
+ "20 070c1d68-0ee0-477a-9679-294ea7059939 14013.16 debit payment \n",
+ "21 070c1d68-0ee0-477a-9679-294ea7059939 15435.36 debit payment \n",
+ "22 070c1d68-0ee0-477a-9679-294ea7059939 15486.36 credit transfer \n",
+ "23 070c1d68-0ee0-477a-9679-294ea7059939 15285.36 debit payment \n",
+ "24 070c1d68-0ee0-477a-9679-294ea7059939 15785.36 debit payment \n",
+ "25 070c1d68-0ee0-477a-9679-294ea7059939 15863.36 credit transfer \n",
+ "26 070c1d68-0ee0-477a-9679-294ea7059939 15837.36 debit payment \n",
+ "27 070c1d68-0ee0-477a-9679-294ea7059939 19704.86 debit payment \n",
+ "28 070c1d68-0ee0-477a-9679-294ea7059939 29095.86 credit transfer \n",
+ "29 070c1d68-0ee0-477a-9679-294ea7059939 11997.86 debit payment \n",
+ "\n",
+ " institution connection enrich transactionDate \\\n",
+ "0 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 3/08/2023 \n",
+ "1 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 3/08/2023 \n",
+ "2 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 3/08/2023 \n",
+ "3 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 3/08/2023 \n",
+ "4 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 29/07/2023 \n",
+ "5 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 28/07/2023 \n",
+ "6 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 28/07/2023 \n",
+ "7 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 17/07/2023 \n",
+ "8 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 16/07/2023 \n",
+ "9 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 16/07/2023 \n",
+ "10 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 13/07/2023 \n",
+ "11 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 13/07/2023 \n",
+ "12 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 12/07/2023 \n",
+ "13 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 9/07/2023 \n",
+ "14 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 3/07/2023 \n",
+ "15 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 28/06/2023 \n",
+ "16 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 27/06/2023 \n",
+ "17 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 27/06/2023 \n",
+ "18 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 22/06/2023 \n",
+ "19 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 19/06/2023 \n",
+ "20 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 19/06/2023 \n",
+ "21 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 18/06/2023 \n",
+ "22 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 15/06/2023 \n",
+ "23 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 14/06/2023 \n",
+ "24 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 11/06/2023 \n",
+ "25 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 1/06/2023 \n",
+ "26 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 31/05/2023 \n",
+ "27 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 30/05/2023 \n",
+ "28 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 30/05/2023 \n",
+ "29 AU00000 1bd6c08e-8457-4a74-bdd9-514df489d27e NaN 28/05/2023 \n",
+ "\n",
+ " postDate subClass \\\n",
+ "0 2023-08-03T00:07:36 NaN \n",
+ "1 2023-08-03T00:00:00Z {\\title\\\":\\\"\\\" \n",
+ "2 2023-08-03T00:00:00Z NaN \n",
+ "3 2023-08-03T00:00:00Z {\\title\\\":\\\"\\\" \n",
+ "4 2023-07-29T00:00:00Z {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ "5 2023-07-28T00:00:00Z {\\title\\\":\\\"Civic \n",
+ "6 2023-07-28T00:00:00Z {\\title\\\":\\\"Unknown\\\" \n",
+ "7 2023-07-17T00:00:00Z {\\title\\\":\\\"Educational Support Services\\\" \n",
+ "8 2023-07-16T00:00:00Z {\\title\\\":\\\"School Education\\\" \n",
+ "9 2023-07-16T00:00:00Z {\\title\\\":\\\"School Education\\\" \n",
+ "10 2023-07-13T00:00:00Z {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ "11 2023-07-13T00:00:00Z {\\title\\\":\\\"Educational Support Services\\\" \n",
+ "12 2023-07-12T00:00:00Z {\\title\\\":\\\"Legal and Accounting Services\\\" \n",
+ "13 2023-07-09T00:00:00Z {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ "14 2023-07-03T00:00:00Z NaN \n",
+ "15 2023-06-28T00:00:00Z {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ "16 2023-06-27T00:00:00Z {\\title\\\":\\\"Civic \n",
+ "17 2023-06-27T00:00:00Z {\\title\\\":\\\"Unknown\\\" \n",
+ "18 2023-06-22T00:00:00Z {\\title\\\":\\\"Unknown\\\" \n",
+ "19 2023-06-19T00:00:00Z {\\title\\\":\\\"Educational Support Services\\\" \n",
+ "20 2023-06-18T00:00:00Z {\\title\\\":\\\"School Education\\\" \n",
+ "21 2023-06-18T00:00:00Z {\\title\\\":\\\"School Education\\\" \n",
+ "22 2023-06-15T00:00:00Z {\\title\\\":\\\"Educational Support Services\\\" \n",
+ "23 2023-06-14T00:00:00Z {\\title\\\":\\\"Legal and Accounting Services\\\" \n",
+ "24 2023-06-11T00:00:00Z {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ "25 2023-06-01T00:00:00Z {\\title\\\":\\\"Unknown\\\" \n",
+ "26 2023-05-31T00:00:00Z {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ "27 2023-05-30T00:00:00Z {\\title\\\":\\\"Civic \n",
+ "28 2023-05-30T00:00:00Z {\\title\\\":\\\"Unknown\\\" \n",
+ "29 2023-05-28T00:00:00Z {\\title\\\":\\\"School Education\\\" \n",
+ "\n",
+ " links \n",
+ "0 {\"account\":\"https://au-api.basiq.io/users/6a52... \n",
+ "1 \\\"code\\\":\\\"card\\\"}\" \n",
+ "2 {\\self\\\":\\\"https://au-api.basiq.io/users/bca4b... \n",
+ "3 \\\"code\\\":\\\"card\\\"}\" \n",
+ "4 \\\"code\\\":\\\"641\\\"}\" \n",
+ "5 Professional and Other Interest Group Services\\\" \n",
+ "6 \\\"code\\\":\\\"0\\\"}\" \n",
+ "7 \\\"code\\\":\\\"822\\\"}\" \n",
+ "8 \\\"code\\\":\\\"802\\\"}\" \n",
+ "9 \\\"code\\\":\\\"802\\\"}\" \n",
+ "10 \\\"code\\\":\\\"641\\\"}\" \n",
+ "11 \\\"code\\\":\\\"822\\\"}\" \n",
+ "12 \\\"code\\\":\\\"693\\\"}\" \n",
+ "13 \\\"code\\\":\\\"263\\\"}\" \n",
+ "14 {\\self\\\":\\\"https://au-api.basiq.io/users/bca4b... \n",
+ "15 \\\"code\\\":\\\"641\\\"}\" \n",
+ "16 Professional and Other Interest Group Services\\\" \n",
+ "17 \\\"code\\\":\\\"0\\\"}\" \n",
+ "18 \\\"code\\\":\\\"0\\\"}\" \n",
+ "19 \\\"code\\\":\\\"822\\\"}\" \n",
+ "20 \\\"code\\\":\\\"802\\\"}\" \n",
+ "21 \\\"code\\\":\\\"802\\\"}\" \n",
+ "22 \\\"code\\\":\\\"822\\\"}\" \n",
+ "23 \\\"code\\\":\\\"693\\\"}\" \n",
+ "24 \\\"code\\\":\\\"263\\\"}\" \n",
+ "25 \\\"code\\\":\\\"0\\\"}\" \n",
+ "26 \\\"code\\\":\\\"641\\\"}\" \n",
+ "27 Professional and Other Interest Group Services\\\" \n",
+ "28 \\\"code\\\":\\\"0\\\"}\" \n",
+ "29 \\\"code\\\":\\\"802\\\"}\" "
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " id \n",
+ " status \n",
+ " description \n",
+ " amount \n",
+ " account \n",
+ " balance \n",
+ " direction \n",
+ " class \n",
+ " institution \n",
+ " connection \n",
+ " enrich \n",
+ " transactionDate \n",
+ " postDate \n",
+ " subClass \n",
+ " links \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " transaction \n",
+ " 4957bcf6-f18f-43d7-94df-71f44a0bcf32 \n",
+ " posted \n",
+ " Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU \n",
+ " -200.0 \n",
+ " d3de1ca1 \n",
+ " 22109.56 \n",
+ " debit \n",
+ " cash-withdrawal \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 3/08/2023 \n",
+ " 2023-08-03T00:07:36 \n",
+ " NaN \n",
+ " {\"account\":\"https://au-api.basiq.io/users/6a52... \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " transaction \n",
+ " 0d6e11ab-e28e-4de0-a152-600cc44fb61c \n",
+ " posted \n",
+ " Non Hooli ATM Withdrawal Fee \n",
+ " -2.5 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22309.56 \n",
+ " debit \n",
+ " bank-fee \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 3/08/2023 \n",
+ " 2023-08-03T00:00:00Z \n",
+ " {\\title\\\":\\\"\\\" \n",
+ " \\\"code\\\":\\\"card\\\"}\" \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " transaction \n",
+ " 323f6d42-a38e-4c46-83d2-6c8f3e999686 \n",
+ " posted \n",
+ " Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU \n",
+ " -200.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22312.06 \n",
+ " debit \n",
+ " cash-withdrawal \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 3/08/2023 \n",
+ " 2023-08-03T00:00:00Z \n",
+ " NaN \n",
+ " {\\self\\\":\\\"https://au-api.basiq.io/users/bca4b... \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " transaction \n",
+ " 1ab3a3c5-faeb-4de3-b5aa-612e5bc76fd5 \n",
+ " posted \n",
+ " Non Hooli ATM Withdrawal Fee \n",
+ " -2.5 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22512.06 \n",
+ " debit \n",
+ " bank-fee \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 3/08/2023 \n",
+ " 2023-08-03T00:00:00Z \n",
+ " {\\title\\\":\\\"\\\" \n",
+ " \\\"code\\\":\\\"card\\\"}\" \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " transaction \n",
+ " d12df6a2-48b6-4f5f-a718-ccb377aa330c \n",
+ " posted \n",
+ " Transfer Platnm Homeloan 346454 \n",
+ " -3852.5 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22514.56 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 29/07/2023 \n",
+ " 2023-07-29T00:00:00Z \n",
+ " {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ " \\\"code\\\":\\\"641\\\"}\" \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " transaction \n",
+ " 08e6f7c9-f359-48f2-b086-a55f468f2f60 \n",
+ " posted \n",
+ " TFR From Transaction to CC Acc 13 \n",
+ " -9406.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 26367.06 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 28/07/2023 \n",
+ " 2023-07-28T00:00:00Z \n",
+ " {\\title\\\":\\\"Civic \n",
+ " Professional and Other Interest Group Services\\\" \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " transaction \n",
+ " 53570fde-c731-4e33-8224-0583650eeaa7 \n",
+ " posted \n",
+ " Payroll WFRMS 15439393 \n",
+ " 17098.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 35773.06 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 28/07/2023 \n",
+ " 2023-07-28T00:00:00Z \n",
+ " {\\title\\\":\\\"Unknown\\\" \n",
+ " \\\"code\\\":\\\"0\\\"}\" \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " transaction \n",
+ " 55dbdd71-9976-43ec-a724-7cf620d279d4 \n",
+ " posted \n",
+ " Manly Maths Tutor Wages \n",
+ " 201.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 18675.06 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 17/07/2023 \n",
+ " 2023-07-17T00:00:00Z \n",
+ " {\\title\\\":\\\"Educational Support Services\\\" \n",
+ " \\\"code\\\":\\\"822\\\"}\" \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " transaction \n",
+ " 17b710a5-da3d-42f8-ae31-f9d601f95c6d \n",
+ " posted \n",
+ " MANLY WEST SCHOOL \n",
+ " -1422.2 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 18474.06 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 16/07/2023 \n",
+ " 2023-07-16T00:00:00Z \n",
+ " {\\title\\\":\\\"School Education\\\" \n",
+ " \\\"code\\\":\\\"802\\\"}\" \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " transaction \n",
+ " d93fb495-8a7a-4997-8a16-b3581b778471 \n",
+ " posted \n",
+ " MANLY WEST SCHOOL \n",
+ " -51.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 19896.26 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 16/07/2023 \n",
+ " 2023-07-16T00:00:00Z \n",
+ " {\\title\\\":\\\"School Education\\\" \n",
+ " \\\"code\\\":\\\"802\\\"}\" \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " transaction \n",
+ " 6ba3dd59-4268-419d-b5aa-49df88c11c71 \n",
+ " posted \n",
+ " Funds Transfer Transfer \n",
+ " 3001.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 19947.26 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 13/07/2023 \n",
+ " 2023-07-13T00:00:00Z \n",
+ " {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ " \\\"code\\\":\\\"641\\\"}\" \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " transaction \n",
+ " 7d9413b0-694f-4b62-aac9-c178a6f069c6 \n",
+ " posted \n",
+ " Manly Maths Tutor Wages \n",
+ " 201.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 16946.26 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 13/07/2023 \n",
+ " 2023-07-13T00:00:00Z \n",
+ " {\\title\\\":\\\"Educational Support Services\\\" \n",
+ " \\\"code\\\":\\\"822\\\"}\" \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " transaction \n",
+ " 4f3bb9a5-9597-4d71-80db-fae35b70edcd \n",
+ " posted \n",
+ " TFR Acc14000 TO 12389 \n",
+ " -500.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 16745.26 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 12/07/2023 \n",
+ " 2023-07-12T00:00:00Z \n",
+ " {\\title\\\":\\\"Legal and Accounting Services\\\" \n",
+ " \\\"code\\\":\\\"693\\\"}\" \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " transaction \n",
+ " 9cf8a7ac-0e8b-4699-81e6-98181bdf18cf \n",
+ " posted \n",
+ " AGL RETAIL ENERGY LTD (GAS) \n",
+ " -78.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 17245.26 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 9/07/2023 \n",
+ " 2023-07-09T00:00:00Z \n",
+ " {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ " \\\"code\\\":\\\"263\\\"}\" \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " transaction \n",
+ " d5a36da2-5b9f-4dbf-aa95-eb518d163f0f \n",
+ " posted \n",
+ " Wdl ATM CBA ATM SEAFORTH NSW 225101 AUS \n",
+ " -750.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 17323.26 \n",
+ " debit \n",
+ " cash-withdrawal \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 3/07/2023 \n",
+ " 2023-07-03T00:00:00Z \n",
+ " NaN \n",
+ " {\\self\\\":\\\"https://au-api.basiq.io/users/bca4b... \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " transaction \n",
+ " 70aa3766-93eb-4da6-ab69-299b16507794 \n",
+ " posted \n",
+ " Transfer Platnm Homeloan 346454 \n",
+ " -3860.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 18073.26 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 28/06/2023 \n",
+ " 2023-06-28T00:00:00Z \n",
+ " {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ " \\\"code\\\":\\\"641\\\"}\" \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " transaction \n",
+ " 6b8f916b-3317-4a5a-818b-82b008f67d84 \n",
+ " posted \n",
+ " TFR From Transaction to CC Acc 13 \n",
+ " -9398.5 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 21933.26 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 27/06/2023 \n",
+ " 2023-06-27T00:00:00Z \n",
+ " {\\title\\\":\\\"Civic \n",
+ " Professional and Other Interest Group Services\\\" \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " transaction \n",
+ " 7dbf9e0f-e172-4474-9427-69fbb2d46752 \n",
+ " posted \n",
+ " Payroll WFRMS 15439393 \n",
+ " 17098.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 31331.76 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 27/06/2023 \n",
+ " 2023-06-27T00:00:00Z \n",
+ " {\\title\\\":\\\"Unknown\\\" \n",
+ " \\\"code\\\":\\\"0\\\"}\" \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " transaction \n",
+ " d4f55027-9c2f-4288-8580-0969738f4d78 \n",
+ " posted \n",
+ " CTRLINK CARERS Ref: 998R6789201610974V \n",
+ " 19.6 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 14233.76 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 22/06/2023 \n",
+ " 2023-06-22T00:00:00Z \n",
+ " {\\title\\\":\\\"Unknown\\\" \n",
+ " \\\"code\\\":\\\"0\\\"}\" \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " transaction \n",
+ " e24adcd4-4a91-4a0e-bc57-48256635e051 \n",
+ " posted \n",
+ " Manly Maths Tutor Wages \n",
+ " 201.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 14214.16 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 19/06/2023 \n",
+ " 2023-06-19T00:00:00Z \n",
+ " {\\title\\\":\\\"Educational Support Services\\\" \n",
+ " \\\"code\\\":\\\"822\\\"}\" \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " transaction \n",
+ " a5fd3de7-1d3b-44e9-8821-d01dc852a0d7 \n",
+ " posted \n",
+ " MANLY WEST SCHOOL \n",
+ " -1422.2 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 14013.16 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 19/06/2023 \n",
+ " 2023-06-18T00:00:00Z \n",
+ " {\\title\\\":\\\"School Education\\\" \n",
+ " \\\"code\\\":\\\"802\\\"}\" \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " transaction \n",
+ " 358ed9c0-46c0-486e-bedc-fe05cb2d7030 \n",
+ " posted \n",
+ " MANLY WEST SCHOOL \n",
+ " -51.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 15435.36 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 18/06/2023 \n",
+ " 2023-06-18T00:00:00Z \n",
+ " {\\title\\\":\\\"School Education\\\" \n",
+ " \\\"code\\\":\\\"802\\\"}\" \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " transaction \n",
+ " 7aa1234e-4132-4dcb-8cd2-c2adeeb43891 \n",
+ " posted \n",
+ " Manly Maths Tutor Wages \n",
+ " 201.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 15486.36 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 15/06/2023 \n",
+ " 2023-06-15T00:00:00Z \n",
+ " {\\title\\\":\\\"Educational Support Services\\\" \n",
+ " \\\"code\\\":\\\"822\\\"}\" \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " transaction \n",
+ " 793923f1-00e1-4181-b518-13feac5adca9 \n",
+ " posted \n",
+ " TFR Acc14000 TO 12389 \n",
+ " -500.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 15285.36 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 14/06/2023 \n",
+ " 2023-06-14T00:00:00Z \n",
+ " {\\title\\\":\\\"Legal and Accounting Services\\\" \n",
+ " \\\"code\\\":\\\"693\\\"}\" \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " transaction \n",
+ " 305aba74-a09e-470d-9079-f386936b08b8 \n",
+ " posted \n",
+ " AGL RETAIL ENERGY LTD (GAS) \n",
+ " -78.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 15785.36 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 11/06/2023 \n",
+ " 2023-06-11T00:00:00Z \n",
+ " {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ " \\\"code\\\":\\\"263\\\"}\" \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " transaction \n",
+ " 32f52553-c38d-473f-994d-3e6dcf949268 \n",
+ " posted \n",
+ " CTRLINK CARERS Ref: 998R6789201610974V \n",
+ " 26.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 15863.36 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 1/06/2023 \n",
+ " 2023-06-01T00:00:00Z \n",
+ " {\\title\\\":\\\"Unknown\\\" \n",
+ " \\\"code\\\":\\\"0\\\"}\" \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " transaction \n",
+ " 78a8f7f6-5978-4985-a3d8-66f01838978c \n",
+ " posted \n",
+ " Transfer Platnm Homeloan 346454 \n",
+ " -3867.5 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 15837.36 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 31/05/2023 \n",
+ " 2023-05-31T00:00:00Z \n",
+ " {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ " \\\"code\\\":\\\"641\\\"}\" \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " transaction \n",
+ " 0b31ba00-2629-49d0-b5a3-ff18398efc7a \n",
+ " posted \n",
+ " TFR From Transaction to CC Acc 13 \n",
+ " -9391.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 19704.86 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 30/05/2023 \n",
+ " 2023-05-30T00:00:00Z \n",
+ " {\\title\\\":\\\"Civic \n",
+ " Professional and Other Interest Group Services\\\" \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " transaction \n",
+ " d5944ba8-8211-4036-a412-aa25def5c61f \n",
+ " posted \n",
+ " Payroll WFRMS 15439393 \n",
+ " 17098.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 29095.86 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 30/05/2023 \n",
+ " 2023-05-30T00:00:00Z \n",
+ " {\\title\\\":\\\"Unknown\\\" \n",
+ " \\\"code\\\":\\\"0\\\"}\" \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " transaction \n",
+ " 1fe000a0-ccc3-4752-9fbc-f939a9473300 \n",
+ " posted \n",
+ " MANLY WEST SCHOOL \n",
+ " -20.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 11997.86 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " 1bd6c08e-8457-4a74-bdd9-514df489d27e \n",
+ " NaN \n",
+ " 28/05/2023 \n",
+ " 2023-05-28T00:00:00Z \n",
+ " {\\title\\\":\\\"School Education\\\" \n",
+ " \\\"code\\\":\\\"802\\\"}\" \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ "
\n",
+ "
\n"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 7
+ }
+ ],
+ "source": [
+ "raw = getSampleData()\n",
+ "raw.head(30)"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/SavingsAI/LSTM_savings_prediction.py b/SavingsAI/LSTM_savings_prediction.py
new file mode 100644
index 0000000..1486983
--- /dev/null
+++ b/SavingsAI/LSTM_savings_prediction.py
@@ -0,0 +1,95 @@
+import pandas as pd
+import numpy as np
+from datetime import datetime
+from sklearn.preprocessing import StandardScaler
+from sklearn.preprocessing import MinMaxScaler
+from statsmodels.tsa.holtwinters import ExponentialSmoothing
+from sklearn.model_selection import train_test_split
+from keras.models import Sequential
+from keras.layers import LSTM, Dense, Dropout
+from keras.optimizers import Adam
+from keras.regularizers import l2
+from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
+import pytz
+
+# load csv data for testing
+data = pd.read_csv('Sample data.csv')
+
+# Convert "postDate" column to datetime format
+data['postDate'] = pd.to_datetime(data['postDate'], utc=True)
+
+# Sort the DataFrame by "postDate"
+data = data.sort_values(by='postDate')
+
+# Function to extract and normalize time components
+def preprocess_timestamp(timestamp):
+ year = timestamp.year
+ month = timestamp.month
+ day = timestamp.day
+ hour = timestamp.hour
+ minute = timestamp.minute
+
+ # Normalize time components
+ normalized_year = (year - min_year) / (max_year - min_year)
+ normalized_month = (month - 1) / 11 # Month range: 1-12
+ normalized_day = (day - 1) / 30 # Assuming 30 days in a month
+ normalized_hour = hour / 23
+ normalized_minute = minute / 59
+
+ return [normalized_year, normalized_month, normalized_day, normalized_hour, normalized_minute]
+
+# Calculate min_year and max_year from your dataset
+min_year = data["postDate"].apply(lambda x: x.year).min()
+max_year = data["postDate"].apply(lambda x: x.year).max()
+
+# Apply preprocessing function to the "postDate" column and create new columns
+data[["year", "month", "day", "hour", "minute"]] = data["postDate"].apply(preprocess_timestamp).apply(pd.Series)
+
+# Print the updated DataFrame
+#print(data)
+
+# Feature Engineering
+# Currently using 'amount', 'balance' and date fields as features
+features = ['amount', 'balance', 'year', 'month', 'day']
+X = data[features].values
+scaler = StandardScaler()
+X = scaler.fit_transform(X)
+
+# Creating Sequences
+sequence_length = 10
+X_sequences = []
+y = []
+for i in range(len(X) - sequence_length):
+ X_sequences.append(X[i:i+sequence_length])
+ y.append(X[i+sequence_length, 1]) # 'balance' is the target variable
+
+X_sequences = np.array(X_sequences)
+y = np.array(y)
+
+# Train-Validation-Test Split
+X_train, X_temp, y_train, y_temp = train_test_split(X_sequences, y, test_size=0.3, shuffle=False)
+X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, shuffle=False)
+
+# Build LSTM Model
+model = Sequential()
+model.add(LSTM(50, activation='relu', input_shape=(sequence_length, len(features))))
+model.add(Dense(1))
+model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
+
+# Training
+model.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_val, y_val))
+
+# Evaluation
+y_pred = model.predict(X_test)
+mse = mean_squared_error(y_test, y_pred)
+print(f"Mean Squared Error: {mse}")
+
+# Mean Absolute Error
+mae = np.mean(np.abs(y_test - y_pred))
+print(f"Mean Absolute Error: {mae}")
+
+# Root Mean Squared Error
+rmse = np.sqrt(np.mean((y_test - y_pred)**2))
+print(f"Root Mean Squared Error: {rmse}")
+
+model.save('LSTM_savings_model.h5')
\ No newline at end of file
diff --git a/SavingsAI/Sample getTransactions API data.csv b/SavingsAI/Sample getTransactions API data.csv
new file mode 100644
index 0000000..703bd99
--- /dev/null
+++ b/SavingsAI/Sample getTransactions API data.csv
@@ -0,0 +1,290 @@
+type,id,status,description,amount,account,balance,direction,class,institution,connection,enrich,transactionDate,postDate,subClass,links
+transaction,4957bcf6-f18f-43d7-94df-71f44a0bcf32,posted,Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU,-200,d3de1ca1,22109.56,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/08/2023,2023-08-03T00:07:36,null,"{""account"":""https://au-api.basiq.io/users/6a52015e/accounts/31eb30a0"",""institution"":""https://au-api.basiq.io/institutions/AU00000"",""self"":""https://au-api.basiq.io/users/6a52015e/transactions/2082c765""}"
+transaction,0d6e11ab-e28e-4de0-a152-600cc44fb61c,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,22309.56,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/08/2023,2023-08-03T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,323f6d42-a38e-4c46-83d2-6c8f3e999686,posted,Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,22312.06,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/08/2023,2023-08-03T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/323f6d42-a38e-4c46-83d2-6c8f3e999686\"""
+transaction,1ab3a3c5-faeb-4de3-b5aa-612e5bc76fd5,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,22512.06,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/08/2023,2023-08-03T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,d12df6a2-48b6-4f5f-a718-ccb377aa330c,posted,Transfer Platnm Homeloan 346454,-3852.5,070c1d68-0ee0-477a-9679-294ea7059939,22514.56,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/07/2023,2023-07-29T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,08e6f7c9-f359-48f2-b086-a55f468f2f60,posted,TFR From Transaction to CC Acc 13,-9406,070c1d68-0ee0-477a-9679-294ea7059939,26367.06,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/07/2023,2023-07-28T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,53570fde-c731-4e33-8224-0583650eeaa7,posted,Payroll WFRMS 15439393,17098,070c1d68-0ee0-477a-9679-294ea7059939,35773.06,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/07/2023,2023-07-28T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,55dbdd71-9976-43ec-a724-7cf620d279d4,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,18675.06,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/07/2023,2023-07-17T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,17b710a5-da3d-42f8-ae31-f9d601f95c6d,posted,MANLY WEST SCHOOL,-1422.2,070c1d68-0ee0-477a-9679-294ea7059939,18474.06,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/07/2023,2023-07-16T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,d93fb495-8a7a-4997-8a16-b3581b778471,posted,MANLY WEST SCHOOL,-51,070c1d68-0ee0-477a-9679-294ea7059939,19896.26,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/07/2023,2023-07-16T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,6ba3dd59-4268-419d-b5aa-49df88c11c71,posted,Funds Transfer Transfer,3001,070c1d68-0ee0-477a-9679-294ea7059939,19947.26,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/07/2023,2023-07-13T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,7d9413b0-694f-4b62-aac9-c178a6f069c6,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,16946.26,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/07/2023,2023-07-13T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,4f3bb9a5-9597-4d71-80db-fae35b70edcd,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,16745.26,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/07/2023,2023-07-12T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,9cf8a7ac-0e8b-4699-81e6-98181bdf18cf,posted,AGL RETAIL ENERGY LTD (GAS),-78,070c1d68-0ee0-477a-9679-294ea7059939,17245.26,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,9/07/2023,2023-07-09T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,d5a36da2-5b9f-4dbf-aa95-eb518d163f0f,posted,Wdl ATM CBA ATM SEAFORTH NSW 225101 AUS,-750,070c1d68-0ee0-477a-9679-294ea7059939,17323.26,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/07/2023,2023-07-03T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/d5a36da2-5b9f-4dbf-aa95-eb518d163f0f\"""
+transaction,70aa3766-93eb-4da6-ab69-299b16507794,posted,Transfer Platnm Homeloan 346454,-3860,070c1d68-0ee0-477a-9679-294ea7059939,18073.26,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/06/2023,2023-06-28T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,6b8f916b-3317-4a5a-818b-82b008f67d84,posted,TFR From Transaction to CC Acc 13,-9398.5,070c1d68-0ee0-477a-9679-294ea7059939,21933.26,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/06/2023,2023-06-27T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,7dbf9e0f-e172-4474-9427-69fbb2d46752,posted,Payroll WFRMS 15439393,17098,070c1d68-0ee0-477a-9679-294ea7059939,31331.76,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/06/2023,2023-06-27T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,d4f55027-9c2f-4288-8580-0969738f4d78,posted,CTRLINK CARERS Ref: 998R6789201610974V,19.6,070c1d68-0ee0-477a-9679-294ea7059939,14233.76,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,22/06/2023,2023-06-22T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,e24adcd4-4a91-4a0e-bc57-48256635e051,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,14214.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,19/06/2023,2023-06-19T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,a5fd3de7-1d3b-44e9-8821-d01dc852a0d7,posted,MANLY WEST SCHOOL,-1422.2,070c1d68-0ee0-477a-9679-294ea7059939,14013.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,19/06/2023,2023-06-18T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,358ed9c0-46c0-486e-bedc-fe05cb2d7030,posted,MANLY WEST SCHOOL,-51,070c1d68-0ee0-477a-9679-294ea7059939,15435.36,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,18/06/2023,2023-06-18T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,7aa1234e-4132-4dcb-8cd2-c2adeeb43891,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,15486.36,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/06/2023,2023-06-15T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,793923f1-00e1-4181-b518-13feac5adca9,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,15285.36,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/06/2023,2023-06-14T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,305aba74-a09e-470d-9079-f386936b08b8,posted,AGL RETAIL ENERGY LTD (GAS),-78,070c1d68-0ee0-477a-9679-294ea7059939,15785.36,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/06/2023,2023-06-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,32f52553-c38d-473f-994d-3e6dcf949268,posted,CTRLINK CARERS Ref: 998R6789201610974V,26,070c1d68-0ee0-477a-9679-294ea7059939,15863.36,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,1/06/2023,2023-06-01T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,78a8f7f6-5978-4985-a3d8-66f01838978c,posted,Transfer Platnm Homeloan 346454,-3867.5,070c1d68-0ee0-477a-9679-294ea7059939,15837.36,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,31/05/2023,2023-05-31T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,0b31ba00-2629-49d0-b5a3-ff18398efc7a,posted,TFR From Transaction to CC Acc 13,-9391,070c1d68-0ee0-477a-9679-294ea7059939,19704.86,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,30/05/2023,2023-05-30T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,d5944ba8-8211-4036-a412-aa25def5c61f,posted,Payroll WFRMS 15439393,17098,070c1d68-0ee0-477a-9679-294ea7059939,29095.86,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,30/05/2023,2023-05-30T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,1fe000a0-ccc3-4752-9fbc-f939a9473300,posted,MANLY WEST SCHOOL,-20,070c1d68-0ee0-477a-9679-294ea7059939,11997.86,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/05/2023,2023-05-28T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,5564eeb5-2aad-49ac-93bc-93d0c78c4ebc,posted,AGL RETAIL ENERGY LTD (GAS),-384.5,070c1d68-0ee0-477a-9679-294ea7059939,12017.86,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,22/05/2023,2023-05-22T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,e50bf6c2-6ab1-4005-8c2e-590221581418,posted,AGL RETAIL ENERGY LTD,-186.79,070c1d68-0ee0-477a-9679-294ea7059939,12402.36,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,22/05/2023,2023-05-22T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,3447238a-2fdb-4ece-80d3-64a1eb9b9324,posted,Funds Transfer transfer,3001,070c1d68-0ee0-477a-9679-294ea7059939,12589.15,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,22/05/2023,2023-05-22T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,205e2a5b-dcd1-4fbe-8375-9d25a0366697,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,9588.15,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/05/2023,2023-05-14T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,b82187ad-dfcd-4d03-ada2-c0675dd270c4,posted,Funds Transfer topup,1301,070c1d68-0ee0-477a-9679-294ea7059939,10088.15,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/05/2023,2023-05-11T00:00:00Z,"{\title\"":\""Telecommunications Services\""","\""code\"":\""580\""}"""
+transaction,2f18608b-d9ec-4f7c-aab1-4d3ef53fe4d8,posted,AGL RETAIL ENERGY LTD (GAS),-78,070c1d68-0ee0-477a-9679-294ea7059939,8787.15,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,10/05/2023,2023-05-10T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,51ce8653-b79f-4047-a20f-5829d53e9a34,posted,Transfer Platnm Homeloan 346454,-3875,070c1d68-0ee0-477a-9679-294ea7059939,8865.15,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,30/04/2023,2023-04-30T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,650ee7e3-59fb-4c4e-aba8-f061b15c96d5,posted,TFR From Transaction to CC Acc 13,-9383.5,070c1d68-0ee0-477a-9679-294ea7059939,12740.15,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/04/2023,2023-04-29T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,c88e1126-3e99-40fc-b733-d2c71cc15b8b,posted,Payroll WFRMS 15439393,17098,070c1d68-0ee0-477a-9679-294ea7059939,22123.65,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/04/2023,2023-04-29T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,536e0439-f9e1-4ebc-a256-22565dd19afc,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,5025.65,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/04/2023,2023-04-14T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,6e7b9ddc-f5f0-4a33-ab7f-82198378e043,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,4824.65,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/04/2023,2023-04-13T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,5267154d-9096-4e8b-9b43-8f8072fb0882,posted,AGL RETAIL LTD 005473584884,-78,070c1d68-0ee0-477a-9679-294ea7059939,5324.65,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,9/04/2023,2023-04-09T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,ee7de86b-39f3-4cbf-b2e7-f20e1d46f841,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,5402.65,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2023,2023-04-07T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/ee7de86b-39f3-4cbf-b2e7-f20e1d46f841\"""
+transaction,5fa9e625-332c-476a-88d1-5f930f074177,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,5602.65,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2023,2023-04-07T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,ee7de86b-39f3-4cbf-b2e7-f20e1d46f841,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,5402.65,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2023,2023-04-07T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/ee7de86b-39f3-4cbf-b2e7-f20e1d46f841\"""
+transaction,5fa9e625-332c-476a-88d1-5f930f074177,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,5602.65,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2023,2023-04-07T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,ee7de86b-39f3-4cbf-b2e7-f20e1d46f841,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,5402.65,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2023,2023-04-07T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/ee7de86b-39f3-4cbf-b2e7-f20e1d46f841\"""
+transaction,5fa9e625-332c-476a-88d1-5f930f074177,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,5602.65,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2023,2023-04-07T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,f3470ce7-8fc9-42c6-8205-53cc78215d99,posted,AGL RETAIL ENERGY LTD (GAS),-18.22,070c1d68-0ee0-477a-9679-294ea7059939,6010.15,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,6/04/2023,2023-04-06T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,3c68c201-c670-417e-a55a-d9ac0b05bd20,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-450,070c1d68-0ee0-477a-9679-294ea7059939,6028.37,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,4/04/2023,2023-04-04T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/3c68c201-c670-417e-a55a-d9ac0b05bd20\"""
+transaction,986c390f-7251-45f1-b359-a1b6c3c6de60,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,6478.37,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,4/04/2023,2023-04-04T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,3b3deb96-19b0-4e87-b177-586cad15bff7,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-300,070c1d68-0ee0-477a-9679-294ea7059939,6480.87,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,4/04/2023,2023-04-04T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/3b3deb96-19b0-4e87-b177-586cad15bff7\"""
+transaction,3b3deb96-19b0-4e87-b177-586cad15bff7,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-300,070c1d68-0ee0-477a-9679-294ea7059939,6480.87,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,4/04/2033,2023-04-04T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/3b3deb96-19b0-4e87-b177-586cad15bff7\"""
+transaction,b8f96f64-c37b-41ae-8270-c9a48cf9109e,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,6780.87,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,4/04/2023,2023-04-04T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,cf105523-0ffc-41ba-b213-94c65d5b34d1,posted,Wdl ATM CBA ATM BALGOWLAH A NSW 210901 AUS,-200,070c1d68-0ee0-477a-9679-294ea7059939,6783.37,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,4/04/2023,2023-04-04T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/cf105523-0ffc-41ba-b213-94c65d5b34d1\"""
+transaction,188b6447-9cee-48e8-865d-1020d6e804c1,posted,Transfer Platnm Homeloan 346454,-3882.5,070c1d68-0ee0-477a-9679-294ea7059939,6983.37,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,30/03/2023,2023-03-30T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,ae019070-fd2f-4fa0-b34f-c1a6acb61bd7,posted,TFR From Transaction to CC Acc 13,-9376,070c1d68-0ee0-477a-9679-294ea7059939,10865.87,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/03/2023,2023-03-29T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,11f9508d-cf0e-48c7-b0d6-30248995ed64,posted,Payroll WFRMS 15439393,17098,070c1d68-0ee0-477a-9679-294ea7059939,20241.87,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/03/2023,2023-03-29T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,5fa7efe5-6c42-49fb-bc99-6fc0b1557826,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,3143.87,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,19/03/2023,2023-03-19T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,83536773-a3a6-4555-82f9-33f958233f0a,posted,MANLY WEST SCHOOL,-2530.81,070c1d68-0ee0-477a-9679-294ea7059939,2942.87,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/03/2023,2023-03-17T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,e78643d6-4029-4c7b-be92-7d2e0b864b0e,posted,MANLY WEST SCHOOL,-101,070c1d68-0ee0-477a-9679-294ea7059939,5473.68,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/03/2023,2023-03-17T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,4baf3412-5b84-4610-8748-2279e7ec9f3e,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,5574.68,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/03/2023,2023-03-15T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,f6d88111-52f6-4458-8cd0-86645a04fb6f,posted,Wdl ATM CBA ATM MANLY D NSW 219704 AUS,-420,070c1d68-0ee0-477a-9679-294ea7059939,5373.68,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/03/2023,2023-03-14T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/f6d88111-52f6-4458-8cd0-86645a04fb6f\"""
+transaction,f5848553-2d3a-4832-bcff-033ec1365669,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,5793.68,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/03/2023,2023-03-14T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,71db7860-ba64-4da1-99c0-2f0c6007266b,posted,AGL RETAIL ENERGY LTD (GAS),-95,070c1d68-0ee0-477a-9679-294ea7059939,6293.68,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/03/2023,2023-03-13T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,9da8b932-0fe7-44be-9325-fbab17790e48,posted,AGL RETAIL ENERGY LTD (GAS),-78,070c1d68-0ee0-477a-9679-294ea7059939,6388.68,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/03/2023,2023-03-13T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,ed597d14-0d6b-4be7-b6c7-54792ead565f,posted,AGL RETAIL ENERGY LTD (GAS),-95,070c1d68-0ee0-477a-9679-294ea7059939,6466.68,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/03/2023,2023-03-12T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,0d5bf67f-3b32-4063-b78f-9d7e3d1d47e2,posted,AGL RETAIL ENERGY LTD (GAS),-78,070c1d68-0ee0-477a-9679-294ea7059939,6561.68,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/03/2023,2023-03-12T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,fca582af-f723-48c9-9713-b1dbb0cae56f,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-350,070c1d68-0ee0-477a-9679-294ea7059939,6639.68,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,5/03/2023,2023-03-05T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/fca582af-f723-48c9-9713-b1dbb0cae56f\"""
+transaction,e9ca7a17-2125-4f9c-a614-552269097b06,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,6989.68,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,5/03/2023,2023-03-05T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,3f224d3d-544b-43d7-b7cf-7c0c342edb84,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-350,070c1d68-0ee0-477a-9679-294ea7059939,6992.18,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,5/03/2023,2023-03-05T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/3f224d3d-544b-43d7-b7cf-7c0c342edb84\"""
+transaction,81822baa-3400-47fc-8371-2a5b7bffc578,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,7342.18,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,5/03/2023,2023-03-05T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,74362203-4b97-49fd-b2d7-af8e2ee84cb2,posted,Transfer Platnm Homeloan 346454,-3890,070c1d68-0ee0-477a-9679-294ea7059939,7344.68,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/02/2023,2023-02-28T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,5204bdbd-024a-4220-a667-302df31ccc97,posted,TFR From Transaction to CC Acc 13,-9368.5,070c1d68-0ee0-477a-9679-294ea7059939,11234.68,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/02/2023,2023-02-27T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,2e6f6ed8-0069-401f-80b1-ad9ce86e59cb,posted,Payroll WFRMS 15439393,17098,070c1d68-0ee0-477a-9679-294ea7059939,20603.18,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/02/2023,2023-02-27T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,fe783962-54a6-4741-89bc-160d4c48601a,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,3505.18,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/02/2023,2023-02-14T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,40875b6b-1c5a-4df7-aec8-07a65a7d2fbf,posted,MANLY WEST SCHOOL,-2530.81,070c1d68-0ee0-477a-9679-294ea7059939,3304.18,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/02/2023,2023-02-14T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,4d633d46-7f31-401c-a5db-b6649deefa9b,posted,MANLY WEST SCHOOL,-101,070c1d68-0ee0-477a-9679-294ea7059939,5834.99,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/02/2023,2023-02-14T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,fe8c63f6-a1e4-4154-95f8-1dec02a99fd3,posted,CTRLINK CARERS Ref: 998R6789201610974V,171,070c1d68-0ee0-477a-9679-294ea7059939,5935.99,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/02/2023,2023-02-14T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,002dad4d-9c8c-4da0-921f-2bc1087f0b1f,posted,CTRLINK CARERS Ref: 998R6789201610974V,35,070c1d68-0ee0-477a-9679-294ea7059939,5764.99,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/02/2023,2023-02-13T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,59403070-bb5b-447b-9cdf-b82c4d136290,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,5729.99,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/02/2023,2023-02-11T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,100c5516-ccc1-4383-b660-0972ca7126f9,posted,Wdl ATM Redi ATM CEXP BERKSHIREBerkshire AU,-100,070c1d68-0ee0-477a-9679-294ea7059939,6229.99,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,10/02/2023,2023-02-10T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/100c5516-ccc1-4383-b660-0972ca7126f9\"""
+transaction,ca51ee81-f26e-4bb3-a287-7c5028f7754c,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,6329.99,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,10/02/2023,2023-02-10T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,79518563-7890-44d6-9c6f-2b0dcf62766a,posted,AGL RETAIL ENERGY LTD (GAS),-95,070c1d68-0ee0-477a-9679-294ea7059939,6332.49,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,8/02/2023,2023-02-08T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,e77bc235-2cf0-4ce0-b862-2550511552bc,posted,AGL RETAIL ENERGY LTD (GAS),-78,070c1d68-0ee0-477a-9679-294ea7059939,6427.49,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,8/02/2023,2023-02-08T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,9f0350cf-9d59-4c63-a11e-7b9f5c352ba1,posted,CTRLINK CARERS Ref: 998R6789201610974V,61,070c1d68-0ee0-477a-9679-294ea7059939,6505.49,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,30/01/2023,2023-01-30T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,19c34929-bb8d-4fd4-9648-82a0fbb31bb0,posted,Transfer Platnm Homeloan 346454,-3897.5,070c1d68-0ee0-477a-9679-294ea7059939,6444.49,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/01/2023,2023-01-28T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,74f74fef-4577-482d-a89d-8306ba11d69f,posted,TFR From Transaction to CC Acc 13,-9361,070c1d68-0ee0-477a-9679-294ea7059939,10341.99,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/01/2023,2023-01-27T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,8242021c-e160-4a7b-ba79-24902175ba57,posted,Payroll WFRMS 15439393,17098,070c1d68-0ee0-477a-9679-294ea7059939,19702.99,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/01/2023,2023-01-27T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,33d05927-387a-4377-bbae-2b05abbcdd30,posted,Wdl ATM CBA ATM MANLY D NSW 219704 AUS,-300,070c1d68-0ee0-477a-9679-294ea7059939,2604.99,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/01/2023,2023-01-17T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/33d05927-387a-4377-bbae-2b05abbcdd30\"""
+transaction,3070f91a-cde3-466e-a90e-20244be35bb8,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,2904.99,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/01/2023,2023-01-17T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,92f01adb-0ad3-4340-b9af-3043b44eb6ed,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,2703.99,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/01/2023,2023-01-16T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/92f01adb-0ad3-4340-b9af-3043b44eb6ed\"""
+transaction,f88a8a0b-5738-4914-8c2e-38c42fac99e9,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,2903.99,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/01/2023,2023-01-16T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,5a85f687-741e-4b44-8cb8-9b5a2039f04c,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-100,070c1d68-0ee0-477a-9679-294ea7059939,2906.49,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/01/2023,2023-01-16T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/5a85f687-741e-4b44-8cb8-9b5a2039f04c\"""
+transaction,6df8ae78-9429-4c88-a997-4119ea707572,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,3006.49,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/01/2023,2023-01-16T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,ead14f6c-0c6d-46b5-bcc3-96384756cfc7,posted,MANLY WEST SCHOOL,-2530.81,070c1d68-0ee0-477a-9679-294ea7059939,3008.99,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/01/2023,2023-01-16T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,4dcf54d8-f53c-48ea-8036-8fec24c8df58,posted,MANLY WEST SCHOOL,-101,070c1d68-0ee0-477a-9679-294ea7059939,5539.8,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/01/2023,2023-01-16T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,6214ed97-ac6d-4c1c-bc77-3bd37e435e42,posted,Wdl ATM CBA ATM MANLY E NSW 219705 AUS,-100,070c1d68-0ee0-477a-9679-294ea7059939,5640.8,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/01/2023,2023-01-15T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/6214ed97-ac6d-4c1c-bc77-3bd37e435e42\"""
+transaction,e5008e57-b692-4d6e-a1ba-7a2593997ca5,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,5740.8,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/01/2023,2023-01-13T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,e0cf7437-9d41-4f80-91c8-dc7809f0545a,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,5539.8,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/01/2023,2023-01-12T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,d55a0a51-92de-4a96-aef1-c6b58dec14f7,posted,AGL RETAIL ENERGY LTD,-95,070c1d68-0ee0-477a-9679-294ea7059939,6039.8,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,9/01/2023,2023-01-09T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,7aed3afd-5405-41ea-904e-5d625bfb96d4,posted,AGL RETAIL ENERGY LTD (GAS),-78,070c1d68-0ee0-477a-9679-294ea7059939,6134.8,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,9/01/2023,2023-01-09T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,c8356982-4ded-44b0-baca-c24d8411f314,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-100,070c1d68-0ee0-477a-9679-294ea7059939,6212.8,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,2/01/2023,2023-01-02T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/c8356982-4ded-44b0-baca-c24d8411f314\"""
+transaction,68f1e960-e566-4f23-b9f2-a69ba2a05e5f,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,6312.8,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,2/01/2023,2023-01-02T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,ea4f83f5-41f8-481d-bccc-7d83f73ebdd2,posted,Transfer Platnm Homeloan 346454,-3905,070c1d68-0ee0-477a-9679-294ea7059939,6315.3,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/12/2022,2022-12-29T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,fb847112-209c-4850-ad0a-2e16f138a3b1,posted,Wdl ATM CBA ATM BALGOWLAH A NSW 210901 AUS,-200,070c1d68-0ee0-477a-9679-294ea7059939,10220.3,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/12/2022,2022-12-28T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/fb847112-209c-4850-ad0a-2e16f138a3b1\"""
+transaction,289dffa5-44c5-42cc-895f-d349b396e2c5,posted,Wdl ATM CBA ATM BALGOWLAH A NSW 210901 AUS,-100,070c1d68-0ee0-477a-9679-294ea7059939,10420.3,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/12/2022,2022-12-28T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/289dffa5-44c5-42cc-895f-d349b396e2c5\"""
+transaction,abc39e1b-ef56-44bb-baa4-cab8a408c0a6,posted,TFR From Transaction to CC Acc 13,-9353.5,070c1d68-0ee0-477a-9679-294ea7059939,10520.3,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/12/2022,2022-12-28T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,9564a887-1a69-47aa-a889-6a4bdafa9f83,posted,Payroll WFRMS 15439393,17098,070c1d68-0ee0-477a-9679-294ea7059939,19873.8,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/12/2022,2022-12-28T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,b5609663-4a3b-462c-b02b-84fd5d057223,posted,Wdl ATM CBA ATM MANLY A NSW 219701 AUS,-400,070c1d68-0ee0-477a-9679-294ea7059939,2775.8,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,26/12/2022,2022-12-26T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/b5609663-4a3b-462c-b02b-84fd5d057223\"""
+transaction,315a3d59-28ac-456e-a8f4-f52d98bda0eb,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,3175.8,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,25/12/2022,2022-12-25T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/315a3d59-28ac-456e-a8f4-f52d98bda0eb\"""
+transaction,0a744a39-f174-46f8-a319-72a9ff49d247,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,3375.8,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,25/12/2022,2022-12-25T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,a3669631-200b-4515-9394-20d0dd3d3c1f,posted,Wdl ATM CBA ATM MANLY B NSW 219702 AUS,-200,070c1d68-0ee0-477a-9679-294ea7059939,3378.3,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,18/12/2022,2022-12-18T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/a3669631-200b-4515-9394-20d0dd3d3c1f\"""
+transaction,bdf88236-e22b-4b03-928a-c78e475f7705,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,3578.3,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/12/2022,2022-12-15T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,a084ff4f-7d58-49c3-a9f3-704ee7d916aa,posted,MANLY WEST SCHOOL,-2530.81,070c1d68-0ee0-477a-9679-294ea7059939,3377.3,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/12/2022,2022-12-15T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,8d5cb9e3-39ed-4c03-942e-4bc1326d2829,posted,MANLY WEST SCHOOL,-101,070c1d68-0ee0-477a-9679-294ea7059939,5908.11,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/12/2022,2022-12-15T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,80d0cd8a-3170-4f77-b9ab-5818843af2e9,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,6009.11,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/12/2022,2022-12-13T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,62c8daa1-da9a-4227-a3eb-05c7cd66feea,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,5808.11,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/12/2022,2022-12-12T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,3bfd5ebe-8945-4bbe-aa36-819cfee1f121,posted,AGL RETAIL ENERGY LTD,-95,070c1d68-0ee0-477a-9679-294ea7059939,6308.11,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,9/12/2022,2022-12-09T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,679660a0-8ee5-460a-bf8f-edacee09b304,posted,AGL RETAIL ENERGY LTD,-78,070c1d68-0ee0-477a-9679-294ea7059939,6403.11,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,9/12/2022,2022-12-09T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,d37e589e-c0af-4522-b207-a519c64fb61c,posted,Transfer Platnm Homeloan 346454,-3912.5,070c1d68-0ee0-477a-9679-294ea7059939,6481.11,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/11/2022,2022-11-28T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,e3535b29-cfe5-4c8f-91fb-12949e83715b,posted,TFR From Transaction to CC Acc 13,-9346,070c1d68-0ee0-477a-9679-294ea7059939,10393.61,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/11/2022,2022-11-27T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,572916d7-eb3b-4656-b5d0-13fb4cdd1524,posted,Payroll WFRMS 15439393,17098,070c1d68-0ee0-477a-9679-294ea7059939,19739.61,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/11/2022,2022-11-27T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,9cf42451-de4a-494d-8133-78be85ef4a4b,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,2641.61,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/11/2022,2022-11-15T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,60c1ca71-1eb7-4ac7-9b53-c99d8b7a290b,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,2440.61,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/11/2022,2022-11-14T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/60c1ca71-1eb7-4ac7-9b53-c99d8b7a290b\"""
+transaction,a63a9d5b-f98d-46cc-b88f-43b20d07434a,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,2640.61,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/11/2022,2022-11-14T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,7c4bc206-9afc-4aca-a661-e01c34e40ba8,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-500,070c1d68-0ee0-477a-9679-294ea7059939,2643.11,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/11/2022,2022-11-14T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/7c4bc206-9afc-4aca-a661-e01c34e40ba8\"""
+transaction,429b55ce-d04e-4142-9dd7-add457afc847,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,3143.11,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/11/2022,2022-11-14T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,e8c9c275-8700-4aa1-9edb-93a33ed3589d,posted,MANLY WEST SCHOOL,-2530.81,070c1d68-0ee0-477a-9679-294ea7059939,3145.61,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/11/2022,2022-11-14T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,ebbf2bf9-6142-45a9-bad3-4acab91db622,posted,MANLY WEST SCHOOL,-101,070c1d68-0ee0-477a-9679-294ea7059939,5676.42,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/11/2022,2022-11-14T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,0fca9914-d026-4f49-b122-03bbe2aef60d,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,5777.42,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/11/2022,2022-11-12T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,d72c17f1-cb68-49d8-ac90-4e8cfa862dfc,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,5576.42,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/11/2022,2022-11-11T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,d176ac7d-c5a0-49d4-bd06-b8adc10b9028,posted,AGL RETAIL ENERGY LTD,-95,070c1d68-0ee0-477a-9679-294ea7059939,6076.42,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,8/11/2022,2022-11-08T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,17beb5c4-acf2-40b8-8a24-21f86b38940a,posted,AGL RETAIL ENERGY LTD,-78,070c1d68-0ee0-477a-9679-294ea7059939,6171.42,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,8/11/2022,2022-11-08T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,73e09d4a-eabe-4fb1-b95b-d95753322a42,posted,V9193 04/07 FOREIGN CURRENCY TRAN FEE Ref: 74973807186,-2.02,070c1d68-0ee0-477a-9679-294ea7059939,6249.42,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/11/2022,2022-11-03T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,8ad93bb2-f202-408b-b2db-99592a3ba93d,posted,V9193 04/07 FOREIGN CURRENCY TRAN FEE Ref: 74974007186,-1.31,070c1d68-0ee0-477a-9679-294ea7059939,6251.44,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/11/2022,2022-11-03T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,49788910-9c61-4b72-a103-85441ea6b680,posted,Transfer Platnm Homeloan 346454,-3920,070c1d68-0ee0-477a-9679-294ea7059939,6252.75,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/10/2022,2022-10-28T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,b4baec80-264c-4ea5-a2b3-28a0f601f4cf,posted,TFR From Transaction to CC Acc 13,-9338.5,070c1d68-0ee0-477a-9679-294ea7059939,10172.75,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/10/2022,2022-10-27T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,f0a3da07-f77d-4881-9386-cbe5d72e51b4,posted,Payroll WFRMS 15439393,15985,070c1d68-0ee0-477a-9679-294ea7059939,19511.25,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/10/2022,2022-10-27T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,cf24f795-323f-4df6-8705-25e157b54f4e,posted,Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,3526.25,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,18/10/2022,2022-10-18T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/cf24f795-323f-4df6-8705-25e157b54f4e\"""
+transaction,9257bf47-3744-40a9-8cc9-2c18d4930d1f,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,3726.25,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,18/10/2022,2022-10-18T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,5e8dc9dd-bb4e-4ed5-b4f1-367c22a6f7ab,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,3728.75,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/10/2022,2022-10-17T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,ccc7cf56-bc5c-4130-84da-edd888036813,posted,MANLY WEST SCHOOL,-2530.81,070c1d68-0ee0-477a-9679-294ea7059939,3527.75,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/10/2022,2022-10-17T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,55af5e4f-5ef1-4ffe-9650-07e7ed053da9,posted,MANLY WEST SCHOOL,-101,070c1d68-0ee0-477a-9679-294ea7059939,6058.56,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/10/2022,2022-10-17T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,ea19ebe1-87d7-43c1-80cf-1dacd83f15a4,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,6159.56,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/10/2022,2022-10-13T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,dbff00b8-6fde-4a83-9522-a948e3eb0035,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,5958.56,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/10/2022,2022-10-12T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,e032bda9-1c0a-47d3-9f0f-0588424a1f89,posted,AGL RETAIL ENERGY LTD (GAS),-95,070c1d68-0ee0-477a-9679-294ea7059939,6458.56,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/10/2022,2022-10-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,4618ef43-67d7-43a7-98ba-f93be3505677,posted,AGL RETAIL ENERGY LTD (GAS),-78,070c1d68-0ee0-477a-9679-294ea7059939,6553.56,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/10/2022,2022-10-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,acbec3d2-a932-43e0-bc12-3c26d45e3bd2,posted,Transfer Platnm Homeloan 346454,-3927.5,070c1d68-0ee0-477a-9679-294ea7059939,6631.56,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/09/2022,2022-09-28T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,3b3b98cc-bfd7-468e-840b-f4ce9c2a01d4,posted,TFR From Transaction to CC Acc 13,-9331,070c1d68-0ee0-477a-9679-294ea7059939,10559.06,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/09/2022,2022-09-27T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,1b9aad04-5271-4714-b1d7-2f8c1883e4c4,posted,Payroll WFRMS 15439393,15985,070c1d68-0ee0-477a-9679-294ea7059939,19890.06,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/09/2022,2022-09-27T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,56d93429-dee0-49a6-8350-2bf40671c8d8,posted,Wdl ATM BOQ BP Connect BalgowlaBalgowlahNS AU,-900,070c1d68-0ee0-477a-9679-294ea7059939,3905.06,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,25/09/2022,2022-09-25T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/56d93429-dee0-49a6-8350-2bf40671c8d8\"""
+transaction,6c23e85a-dbe4-4ae3-a0a0-aacdfa0a4224,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,4805.06,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,25/09/2022,2022-09-25T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,bef47dda-f657-48a3-9e75-a03ef2815253,posted,MANLY WEST SCHOOL,-31,070c1d68-0ee0-477a-9679-294ea7059939,4807.56,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,25/09/2022,2022-09-25T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,a24f8cbe-0eb1-4463-8de2-c76eccba54be,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,4838.56,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/09/2022,2022-09-14T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,b2d80403-be36-46ed-87ca-c35d6ffd9cd6,posted,MANLY WEST SCHOOL,-2530.81,070c1d68-0ee0-477a-9679-294ea7059939,4637.56,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/09/2022,2022-09-14T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,3900db8b-3871-483f-8301-d318d3a9bb86,posted,MANLY WEST SCHOOL,-101,070c1d68-0ee0-477a-9679-294ea7059939,7168.37,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/09/2022,2022-09-14T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,4ab3b32f-c109-4da4-95f6-15f82c4189ac,posted,MANLY WEST SCHOOL,-70.69,070c1d68-0ee0-477a-9679-294ea7059939,7269.37,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/09/2022,2022-09-12T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,1232cd68-fbe4-455c-9970-9b8fb433654a,posted,Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU,-500,070c1d68-0ee0-477a-9679-294ea7059939,7340.06,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/09/2022,2022-09-12T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/1232cd68-fbe4-455c-9970-9b8fb433654a\"""
+transaction,295b0279-0c49-44a4-a1c2-2a0a024e287b,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,7840.06,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/09/2022,2022-09-12T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,1c452615-16d6-4947-bfa4-2896d4de5707,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,7842.56,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/09/2022,2022-09-12T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,7b8ca779-9832-4246-82e5-cfcf2b018fb1,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,7641.56,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/09/2022,2022-09-11T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,4fb3ae73-e089-4301-9ddd-4e1d0aeb297b,posted,AGL RETAIL ENERGY LTD (GAS),-95,070c1d68-0ee0-477a-9679-294ea7059939,8141.56,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,8/09/2022,2022-09-08T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,917ca690-59e8-4c08-b97c-db881b318731,posted,AGL RETAIL ENERGY LTD (GAS),-69,070c1d68-0ee0-477a-9679-294ea7059939,8236.56,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,8/09/2022,2022-09-08T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,c6fb51c0-fcff-463b-8e53-aaf3a10bb90e,posted,Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,8305.56,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/09/2022,2022-09-07T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/c6fb51c0-fcff-463b-8e53-aaf3a10bb90e\"""
+transaction,e11785ce-e82c-44ec-89fd-d40d6f8bf141,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,8505.56,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/09/2022,2022-09-07T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,9e876d17-2d29-433c-b6a7-2807549120ea,posted,MEDIC ALERT,-36.35,070c1d68-0ee0-477a-9679-294ea7059939,8508.06,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,1/09/2022,2022-09-01T00:00:00Z,"{\title\"":\""Other Machinery and Equipment Wholesaling\""","\""code\"":\""349\""}"""
+transaction,57f45596-3277-4d8d-bb02-253f70a05d8c,posted,Wdl ATM CBA ATM BALGOWLAH A NSW 210901 AUS,-400,070c1d68-0ee0-477a-9679-294ea7059939,8544.41,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,31/08/2022,2022-08-31T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/57f45596-3277-4d8d-bb02-253f70a05d8c\"""
+transaction,a422deed-be40-451e-b48a-86b0a835a222,posted,Transfer Platnm Homeloan 346454,-3935,070c1d68-0ee0-477a-9679-294ea7059939,8944.41,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/08/2022,2022-08-28T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,0c0997ce-f1ea-436a-9323-7f3b74f7d923,posted,TFR From Transaction to CC Acc 13,-9323.5,070c1d68-0ee0-477a-9679-294ea7059939,12879.41,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/08/2022,2022-08-27T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,db612ca6-20fe-4478-af7b-0bb858ca122a,posted,Payroll WFRMS 15439393,15985,070c1d68-0ee0-477a-9679-294ea7059939,22202.91,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/08/2022,2022-08-27T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,097c304f-b09d-4266-ad4b-fbb0ac6ed68d,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,6217.91,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/08/2022,2022-08-17T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,836c4dfb-88c9-48d2-b8ce-fa7ff36499d7,posted,MANLY WEST SCHOOL,-2530.81,070c1d68-0ee0-477a-9679-294ea7059939,6016.91,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/08/2022,2022-08-16T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,35a0061c-1567-4763-beba-93974897abf9,posted,MANLY WEST SCHOOL,-101,070c1d68-0ee0-477a-9679-294ea7059939,8547.72,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/08/2022,2022-08-16T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,f2b7baa0-eca7-4a90-9876-022732097d98,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,8648.72,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/08/2022,2022-08-13T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,73189bf4-4c0c-4207-8a19-8b3b3dc28a08,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,8447.72,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/08/2022,2022-08-12T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,1dd272f5-6c58-465b-8ab6-015344cd19a9,posted,AGL RETAIL ENERGY LTD,-160,070c1d68-0ee0-477a-9679-294ea7059939,8947.72,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,9/08/2022,2022-08-09T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,67ab5af7-d851-4b01-a858-683a12bb2bf4,posted,AGL RETAIL ENERGY LTD (GAS),-69,070c1d68-0ee0-477a-9679-294ea7059939,9107.72,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,9/08/2022,2022-08-09T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,acf03d71-894a-494f-9bf3-a1160ce5a8ac,posted,Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,9176.72,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/08/2022,2022-08-03T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/acf03d71-894a-494f-9bf3-a1160ce5a8ac\"""
+transaction,93c5d592-1b45-47fc-891d-54e3eca900aa,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,9376.72,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/08/2022,2022-08-03T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,ea93880b-31cc-4be3-ae4e-5f6d20efa543,posted,Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,9379.22,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/08/2022,2022-08-03T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/ea93880b-31cc-4be3-ae4e-5f6d20efa543\"""
+transaction,43208918-2e36-4379-aa52-816aa609401e,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,9579.22,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/08/2022,2022-08-03T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,3dc2ec2a-9524-446d-a7ce-d102b0affda9,posted,Transfer Platnm Homeloan 346454,-3942.5,070c1d68-0ee0-477a-9679-294ea7059939,9581.72,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/07/2022,2022-07-29T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,b1350666-6edb-4b10-bc51-6da9143504b7,posted,TFR From Transaction to CC Acc 13,-9316,070c1d68-0ee0-477a-9679-294ea7059939,13524.22,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/07/2022,2022-07-28T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,8fbf5f95-1841-4cb5-aee4-c3480d918262,posted,Payroll WFRMS 15439393,15985,070c1d68-0ee0-477a-9679-294ea7059939,22840.22,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/07/2022,2022-07-28T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,de890a88-4cf4-4b0f-9f01-7ad22cbb867a,posted,CTRLINK CARERS Ref: 998R6789201610974V,61,070c1d68-0ee0-477a-9679-294ea7059939,6855.22,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/07/2022,2022-07-28T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,59c5fe04-af69-4e16-a287-c828453da377,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,6794.22,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/07/2022,2022-07-17T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,4606cb79-a73d-4eb0-a84a-cfeb0b84db0a,posted,MANLY WEST SCHOOL,-2530.81,070c1d68-0ee0-477a-9679-294ea7059939,6593.22,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/07/2022,2022-07-15T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,3566b1fa-e743-4319-b694-cf5c39c544bd,posted,MANLY WEST SCHOOL,-101,070c1d68-0ee0-477a-9679-294ea7059939,9124.03,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/07/2022,2022-07-15T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,8c9fcd11-ac87-4828-97b9-7678fb9b7c89,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,9225.03,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/07/2022,2022-07-13T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,fb915385-cfc3-4b51-816c-4bd3b52e596f,posted,MANLY WEST SCHOOL,-26,070c1d68-0ee0-477a-9679-294ea7059939,9024.03,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/07/2022,2022-07-12T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,f454e2db-dbd3-4336-a180-3a140519f038,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,9050.03,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/07/2022,2022-07-12T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,bc55cadd-f1ca-40d2-a1d1-5f89195bafb8,posted,AGL RETAIL ENERGY LTD,-160,070c1d68-0ee0-477a-9679-294ea7059939,9550.03,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/07/2022,2022-07-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,13e41e9c-c154-45f1-a85f-e3ed838cfc6b,posted,AGL RETAIL ENERGY LTD (GAS),-69,070c1d68-0ee0-477a-9679-294ea7059939,9710.03,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/07/2022,2022-07-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,961110b0-d016-431e-b76b-14d9c8a8e288,posted,CTRLINK CARERS Ref: 998R6789201610974V,14,070c1d68-0ee0-477a-9679-294ea7059939,9779.03,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,6/07/2022,2022-07-06T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,2ab79b95-8a27-4266-8012-c7106cd46d81,posted,Wdl ATM CBA ATM SEAFORTH NSW 225101 AUS,-750,070c1d68-0ee0-477a-9679-294ea7059939,9765.03,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/07/2022,2022-07-03T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/2ab79b95-8a27-4266-8012-c7106cd46d81\"""
+transaction,a6c203a1-4adf-4e8d-a054-4a26f50b19b8,posted,Transfer Platnm Homeloan 346454,-3950,070c1d68-0ee0-477a-9679-294ea7059939,10515.03,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/06/2022,2022-06-28T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,8d3bf474-d04e-48f7-9b22-947556e44f28,posted,TFR From Transaction to CC Acc 13,-9308.5,070c1d68-0ee0-477a-9679-294ea7059939,14465.03,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/06/2022,2022-06-27T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,6caa5971-4e99-4329-b82b-ba6b8edc5133,posted,Payroll WFRMS 15439393,15985,070c1d68-0ee0-477a-9679-294ea7059939,23773.53,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/06/2022,2022-06-27T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,49203edf-3758-4db5-a3f5-f3bd6a47c8ec,posted,MANLY WEST SCHOOL,-2533.56,070c1d68-0ee0-477a-9679-294ea7059939,7788.53,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/06/2022,2022-06-27T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,31ca2f55-c341-447b-9a81-c00eb925636b,posted,MANLY WEST SCHOOL,-103.75,070c1d68-0ee0-477a-9679-294ea7059939,10322.09,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/06/2022,2022-06-27T00:00:00Z,"{\title\"":\""School Education\""","\""code\"":\""802\""}"""
+transaction,56ed3c4b-88bc-425e-9105-0e5ce157aa54,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,10425.84,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,19/06/2022,2022-06-19T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,31958121-4752-4e3c-ac75-97dc541df3d7,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,10224.84,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/06/2022,2022-06-15T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,1e359899-06cd-48be-8b45-31f4cfbf0998,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,10023.84,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/05/2022,2022-06-14T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,9a3814e8-c12a-47c7-a467-8e8b62532ec6,posted,AGL RETAIL ENERGY LTD,-160,070c1d68-0ee0-477a-9679-294ea7059939,10523.84,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/06/2022,2022-06-13T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,a4ef6948-bc5e-495a-bc67-2b0123459b57,posted,AGL RETAIL ENERGY LTD (GAS),-69,070c1d68-0ee0-477a-9679-294ea7059939,10683.84,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/06/2022,2022-06-13T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,69a89726-9c99-4e37-9d67-36e679ba7851,posted,CTRLINK CARERS Ref: 998R6789201610974V,752.4,070c1d68-0ee0-477a-9679-294ea7059939,10752.84,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,9/06/2022,2022-06-09T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,6ea9a089-043a-4f0f-ad80-cee9c66e731b,posted,Transfer Platnm Homeloan 346454,-3957.5,070c1d68-0ee0-477a-9679-294ea7059939,10000.44,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,31/05/2022,2022-05-31T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,e8375d96-10be-46ab-8a82-2c61605aaffc,posted,CTRLINK CARERS Ref: 998R6789201610974V,261.78,070c1d68-0ee0-477a-9679-294ea7059939,13957.94,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,31/05/2022,2022-05-31T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,e8ab4144-c266-4bae-8878-08056292aef9,posted,TFR From Transaction to CC Acc 13,-9301,070c1d68-0ee0-477a-9679-294ea7059939,13696.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,30/05/2022,2022-05-30T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,f71aa57c-ddbe-4805-897d-81c133d72239,posted,Payroll WFRMS 15439393,15985,070c1d68-0ee0-477a-9679-294ea7059939,22997.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,30/05/2022,2022-05-30T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,a8842522-fc0a-4b79-a85d-4437511e01ae,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,7012.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/05/2022,2022-05-17T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,d3e5cd4d-cb33-4ab0-aaa2-4027762b6611,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,6811.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/05/2022,2022-05-15T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,cf21b11b-9be2-464e-b2e8-574840276adc,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,6610.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/05/2022,2022-05-14T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,78b3be1b-4fd7-4fc7-9561-62365570b319,posted,AGL RETAIL ENERGY LTD,-160,070c1d68-0ee0-477a-9679-294ea7059939,7110.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/05/2022,2022-05-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,63028cbd-42c2-4f45-bc7e-dae4c135831e,posted,AGL RETAIL ENERGY LTD (GAS),-69,070c1d68-0ee0-477a-9679-294ea7059939,7270.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/05/2022,2022-05-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,7d86d624-14d3-42ea-a00a-ad3cac8036ce,posted,Transfer Platnm Homeloan 346454,-3965,070c1d68-0ee0-477a-9679-294ea7059939,7339.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,30/04/2022,2022-04-30T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,c64a8892-b51e-4720-96d7-1a33dd140e3b,posted,TFR From Transaction to CC Acc 13,-9293.5,070c1d68-0ee0-477a-9679-294ea7059939,11304.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/04/2022,2022-04-29T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,f8370a2f-e894-4ee8-ab4d-474e5744e349,posted,Payroll WFRMS 15439393,15985,070c1d68-0ee0-477a-9679-294ea7059939,20597.66,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/04/2022,2022-04-29T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,2da800d4-d0a4-4c90-8ba4-018351ff7b0b,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,4612.66,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,18/04/2022,2022-04-18T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,4f45a037-33c1-4301-bfc9-490927257eab,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,4411.66,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/04/2022,2022-04-14T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,8eaedc76-de2f-4ea5-bfb4-5da5bdaccedf,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,4210.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/04/2022,2022-04-13T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,307a484f-94e2-4ef7-959f-aa05f3db8720,posted,AGL RETAIL ENERGY LTD,-160,070c1d68-0ee0-477a-9679-294ea7059939,4710.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/04/2022,2022-04-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,e973beb5-99dd-427d-b11c-c7b7c3e30503,posted,AGL RETAIL ENERGY LTD (GAS),-69,070c1d68-0ee0-477a-9679-294ea7059939,4870.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/04/2022,2022-04-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,2dbfa683-412d-42f3-9fad-c1cafdf63327,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,4939.66,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2022,2022-04-07T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/2dbfa683-412d-42f3-9fad-c1cafdf63327\"""
+transaction,8fb5f001-6228-4f93-8dea-35fc10351a21,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,5139.66,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2022,2022-04-07T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,42e4c47e-4f76-429a-981d-c65adec252dc,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,5142.16,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2022,2022-04-07T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/42e4c47e-4f76-429a-981d-c65adec252dc\"""
+transaction,05c0ced1-8883-4fd9-861c-0065defadb6a,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,5342.16,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2022,2022-04-07T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,90d85046-2813-4d01-9df2-4a51250cf667,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,5344.66,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2022,2022-04-07T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/90d85046-2813-4d01-9df2-4a51250cf667\"""
+transaction,848d1832-2d76-4353-8d2e-fac0003e2da3,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,5544.66,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,7/04/2022,2022-04-07T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,767006a0-98ae-4b57-8a30-99f60bde2e52,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-450,070c1d68-0ee0-477a-9679-294ea7059939,5547.16,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,4/04/2022,2022-04-04T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/767006a0-98ae-4b57-8a30-99f60bde2e52\"""
+transaction,55047046-dc28-4a1a-a37a-81cd0cc10bf1,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,5997.16,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,4/04/2022,2022-04-04T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,d754e878-de08-461e-a835-c82360e11ce7,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-300,070c1d68-0ee0-477a-9679-294ea7059939,5999.66,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,4/04/2022,2022-04-04T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/d754e878-de08-461e-a835-c82360e11ce7\"""
+transaction,0d2d0484-45ec-483d-800b-9f5b55484b7c,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,6299.66,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,4/04/2022,2022-04-04T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,9d46d1fe-384a-49ae-9b87-83e18d68c7db,posted,Wdl ATM CBA ATM BALGOWLAH A NSW 210901 AUS,-200,070c1d68-0ee0-477a-9679-294ea7059939,6302.16,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,4/04/2022,2022-04-04T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/9d46d1fe-384a-49ae-9b87-83e18d68c7db\"""
+transaction,d7a77217-eb85-404c-97af-051fb96f7468,posted,Transfer Platnm Homeloan 346454,-3972.5,070c1d68-0ee0-477a-9679-294ea7059939,6502.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,30/03/2022,2022-03-30T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,ccd6f0ee-6b5f-479b-84b5-cd6068a1237e,posted,TFR From Transaction to CC Acc 13,-9286,070c1d68-0ee0-477a-9679-294ea7059939,10474.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/03/2022,2022-03-29T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,c336eeb3-2a0f-4079-919c-ac45d7edcb57,posted,Payroll WFRMS 15439393,15985,070c1d68-0ee0-477a-9679-294ea7059939,19760.66,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/03/2022,2022-03-29T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,3c5dd1d3-093d-471e-8ba5-bd8be51802ef,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,3775.66,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/03/2022,2022-03-17T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,3eb97278-1680-4704-bb48-f31b9ffc557c,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,3574.66,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,15/03/2022,2022-03-15T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,9e29f6db-bf7a-445e-9d57-c64a4ab6c79d,posted,Wdl ATM CBA ATM MANLY D NSW 219704 AUS,-420,070c1d68-0ee0-477a-9679-294ea7059939,3373.66,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/03/2022,2022-03-14T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/9e29f6db-bf7a-445e-9d57-c64a4ab6c79d\"""
+transaction,1fb7d9d5-c2a3-4796-8da3-3154b0c806ac,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,3793.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/03/2022,2022-03-14T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,0b2ca127-5d19-4fa3-8ecb-d810023bb936,posted,AGL RETAIL ENERGY LTD,-160,070c1d68-0ee0-477a-9679-294ea7059939,4293.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/03/2022,2022-03-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,a1e66ab6-603f-47ed-9f81-8e2f98f2cfb4,posted,AGL RETAIL ENERGY LTD (GAS),-69,070c1d68-0ee0-477a-9679-294ea7059939,4453.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/03/2022,2022-03-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,2967be0f-6cf5-4310-b4e6-e393b79af974,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-350,070c1d68-0ee0-477a-9679-294ea7059939,4522.66,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,5/03/2022,2022-03-05T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/2967be0f-6cf5-4310-b4e6-e393b79af974\"""
+transaction,56099e15-5752-4a6c-9d7d-818a3e98c0b7,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,4872.66,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/05/2022,2022-03-05T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,af70bf04-0d26-4e80-9840-16069ec7faa6,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-350,070c1d68-0ee0-477a-9679-294ea7059939,4875.16,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,5/03/2022,2022-03-05T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/af70bf04-0d26-4e80-9840-16069ec7faa6\"""
+transaction,aad51618-53ee-4b00-a8c1-bb9916e25440,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,5225.16,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/05/2022,2022-03-05T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,2f0f6eea-2eb0-4c99-9190-376901ec10a6,posted,TFR From Transaction to CC Acc 13,-9278.5,070c1d68-0ee0-477a-9679-294ea7059939,9207.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/02/2022,2022-02-28T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,8dca4865-8bfa-4114-b814-f25450bdda6a,posted,Payroll WFRMS 15439393,15985,070c1d68-0ee0-477a-9679-294ea7059939,18486.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/02/2022,2022-02-28T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,cdbdded4-b7bb-4423-a5cc-686614749f65,posted,Transfer Platnm Homeloan 346454,-3980,070c1d68-0ee0-477a-9679-294ea7059939,5227.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/02/2022,2022-02-28T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,65cc1679-36bb-448e-9a55-5b45e808f863,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,2501.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/02/2022,2022-02-16T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,a75b0fee-c10b-4512-807e-a394972c4d3d,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,2300.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/02/2022,2022-02-13T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,81403105-4a32-4274-a167-c4250e6ebdf8,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,2099.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,12/02/2022,2022-02-12T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,6faec5c6-c154-4f29-8fb6-fa656c06521b,posted,Wdl ATM Redi ATM CEXP BERKSHIREBerkshire AU,-100,070c1d68-0ee0-477a-9679-294ea7059939,2599.16,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/02/2022,2022-02-11T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/6faec5c6-c154-4f29-8fb6-fa656c06521b\"""
+transaction,8421ff6c-03bb-4f7b-adfd-d220acb61982,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,2699.16,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/02/2022,2022-02-11T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,2a5a20b9-11fe-402f-943e-57f98b33838a,posted,CTRLINK CARERS Ref: 998R6789201610974V,63,070c1d68-0ee0-477a-9679-294ea7059939,2701.66,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,10/02/2022,2022-02-10T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,fd49d2d9-02ce-4d7d-8150-b9df7a0f52f2,posted,AGL RETAIL ENERGY LTD,-160,070c1d68-0ee0-477a-9679-294ea7059939,2638.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,9/02/2022,2022-02-09T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,09531ff9-5774-4cd3-9bb8-783cbb157a8d,posted,AGL RETAIL ENERGY LTD (GAS),-69,070c1d68-0ee0-477a-9679-294ea7059939,2798.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,9/02/2022,2022-02-09T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,d94d55fa-a3a5-4b7d-89b3-aa18d5d7864f,posted,Transfer Platnm Homeloan 346454,-3987.5,070c1d68-0ee0-477a-9679-294ea7059939,2867.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/01/2022,2022-01-29T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,cc930c2b-93e5-4dd6-9202-b5da9ae3e7c4,posted,TFR From Transaction to CC Acc 13,-9271,070c1d68-0ee0-477a-9679-294ea7059939,6855.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/01/2022,2022-01-28T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,354ceeea-a689-4996-beec-f65351e0e2df,posted,Payroll WFRMS 15439393,15985,070c1d68-0ee0-477a-9679-294ea7059939,16126.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,28/01/2022,2022-01-28T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,177dfc3e-3f3f-4b00-81ac-47802154e66e,posted,CTRLINK CARERS Ref: 998R6789201610974V,16,070c1d68-0ee0-477a-9679-294ea7059939,141.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,22/01/2022,2022-01-22T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,f0aed035-7188-4913-b795-030946404417,posted,CTRLINK CARERS Ref: 998R6789201610974V,16,070c1d68-0ee0-477a-9679-294ea7059939,125.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,22/01/2022,2022-01-22T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,8eeaef0a-bf77-456a-9908-8edb3b812ae5,posted,Wdl ATM CBA ATM MANLY D NSW 219704 AUS,-300,070c1d68-0ee0-477a-9679-294ea7059939,109.16,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,18/01/2022,2022-01-18T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/8eeaef0a-bf77-456a-9908-8edb3b812ae5\"""
+transaction,6c16c34d-5b3d-47f7-a65c-39773ff31fe0,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,409.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,18/01/2022,2022-01-18T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,ac393e5e-ba34-461f-8fd9-7e14a77e660e,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,208.16,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/01/2022,2022-01-17T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/ac393e5e-ba34-461f-8fd9-7e14a77e660e\"""
+transaction,64345762-2048-4a76-8e3e-25b8efcd9f0f,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,408.16,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/01/2022,2022-01-17T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,a19587bd-03a1-4a88-a011-0d121c6b71a2,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-100,070c1d68-0ee0-477a-9679-294ea7059939,410.66,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/01/2022,2022-01-17T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/a19587bd-03a1-4a88-a011-0d121c6b71a2\"""
+transaction,10cda4ed-235a-486c-99e9-ddad971949a7,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,510.66,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,17/01/2022,2022-01-17T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,b8316d38-dc7c-4aa6-b6ee-0974f3c75c0f,posted,Wdl ATM CBA ATM MANLY E NSW 219705 AUS,-100,070c1d68-0ee0-477a-9679-294ea7059939,513.16,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,16/01/2022,2022-01-16T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/b8316d38-dc7c-4aa6-b6ee-0974f3c75c0f\"""
+transaction,4a3ae78d-2d40-49bd-b071-4cca25ac6f38,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,613.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/01/2022,2022-01-14T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,1f7c3bb6-eb49-4354-b1a0-a3f2ea6f1a0d,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,412.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/01/2022,2022-01-13T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,16ef4d5f-2c50-4ad7-8787-5cd62782c98e,posted,AGL RETAIL ENERGY LTD,-160,070c1d68-0ee0-477a-9679-294ea7059939,912.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/01/2022,2022-01-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,674c5443-c7dc-4bbb-a083-b4701c1babf2,posted,AGL RETAIL ENERGY LTD (GAS),-92,070c1d68-0ee0-477a-9679-294ea7059939,1072.16,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,11/01/2022,2022-01-11T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,38818609-4b72-4595-bdff-474898d6fb5d,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-100,070c1d68-0ee0-477a-9679-294ea7059939,1164.16,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/01/2022,2022-01-03T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/38818609-4b72-4595-bdff-474898d6fb5d\"""
+transaction,47eb2d1f-b822-485e-acc4-9b1542769d73,posted,Non Hooli ATM Withdrawal Fee,-2.5,070c1d68-0ee0-477a-9679-294ea7059939,1264.16,debit,bank-fee,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,3/01/2022,2022-01-03T00:00:00Z,"{\title\"":\""\""","\""code\"":\""card\""}"""
+transaction,21963cee-7164-40a3-92f4-808f096ab7d1,posted,Transfer Platnm Homeloan 346454,-3995,070c1d68-0ee0-477a-9679-294ea7059939,1266.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,30/12/2021,2021-12-30T00:00:00Z,"{\title\"":\""Auxiliary Finance and Investment Services\""","\""code\"":\""641\""}"""
+transaction,b3fe049f-590e-403a-8429-aabeb7e64206,posted,Wdl ATM CBA ATM BALGOWLAH A NSW 210901 AUS,-200,070c1d68-0ee0-477a-9679-294ea7059939,5261.66,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/12/2021,2021-12-29T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/b3fe049f-590e-403a-8429-aabeb7e64206\"""
+transaction,137a1191-0b29-40ff-9a19-afc76bb65f74,posted,Wdl ATM CBA ATM BALGOWLAH A NSW 210901 AUS,-100,070c1d68-0ee0-477a-9679-294ea7059939,5461.66,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/12/2021,2021-12-29T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/137a1191-0b29-40ff-9a19-afc76bb65f74\"""
+transaction,3d4fa59e-278e-4141-9be3-4e3dbae736b1,posted,TFR From Transaction to CC Acc 13,-9263.5,070c1d68-0ee0-477a-9679-294ea7059939,5561.66,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/12/2021,2021-12-29T00:00:00Z,"{\title\"":\""Civic","Professional and Other Interest Group Services\"""
+transaction,fba539c2-a946-4def-9577-66a23a24a121,posted,Payroll WFRMS 15439393,15985,070c1d68-0ee0-477a-9679-294ea7059939,14825.16,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,29/12/2021,2021-12-29T00:00:00Z,"{\title\"":\""Unknown\""","\""code\"":\""0\""}"""
+transaction,6b5f468f-8c43-491b-9789-76a50718ec5a,posted,Wdl ATM CBA ATM MANLY A NSW 219701 AUS,-400,070c1d68-0ee0-477a-9679-294ea7059939,-1159.84,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,27/12/2027,2021-12-27T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/6b5f468f-8c43-491b-9789-76a50718ec5a\"""
+transaction,69e204dd-ad4e-45cb-997d-ccec09e75a3d,posted,Wdl ATM WESTPAC IGA BALGOWLAH BALGOWL AU,-200,070c1d68-0ee0-477a-9679-294ea7059939,-759.84,debit,cash-withdrawal,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,26/12/2021,2021-12-26T00:00:00Z,null,"{\self\"":\""https://au-api.basiq.io/users/bca4b9cc-b7e2-4458-83bc-4855c147bd70/transactions/69e204dd-ad4e-45cb-997d-ccec09e75a3d\"""
+transaction,5b20b38e-6c98-4bfc-97bc-7c9ea2ccc983,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,-357.34,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,26/12/2021,2021-12-16T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,1973ec3d-7680-45dd-ac2e-e1eb97c97ea3,posted,Manly Maths Tutor Wages,201,070c1d68-0ee0-477a-9679-294ea7059939,-558.34,credit,transfer,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,14/12/2021,2021-12-14T00:00:00Z,"{\title\"":\""Educational Support Services\""","\""code\"":\""822\""}"""
+transaction,8598b570-b80f-42a6-9a52-e73425b3ccd0,posted,TFR Acc14000 TO 12389,-500,070c1d68-0ee0-477a-9679-294ea7059939,-759.34,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,13/12/2021,2021-12-13T00:00:00Z,"{\title\"":\""Legal and Accounting Services\""","\""code\"":\""693\""}"""
+transaction,414279bc-9226-45c5-9722-b18269374373,posted,AGL RETAIL ENERGY LTD (GAS),-160,070c1d68-0ee0-477a-9679-294ea7059939,-259.34,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,10/12/2021,2021-12-10T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
+transaction,312885c2-6ff6-4d96-89c9-0bf1b2987f46,posted,AGL RETAIL ENERGY LTD (GAS),-92,070c1d68-0ee0-477a-9679-294ea7059939,-99.34,debit,payment,AU00000,1bd6c08e-8457-4a74-bdd9-514df489d27e,null,10/12/2021,2021-12-10T00:00:00Z,"{\title\"":\""Electricity Distribution\""","\""code\"":\""263\""}"""
diff --git a/SavingsAI/random forrest savings model.ipynb b/SavingsAI/random forrest savings model.ipynb
new file mode 100644
index 0000000..16815d4
--- /dev/null
+++ b/SavingsAI/random forrest savings model.ipynb
@@ -0,0 +1,1551 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from sklearn.model_selection import GridSearchCV, train_test_split, cross_val_score\n",
+ "from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, QuantileRegressor\n",
+ "from sklearn.tree import DecisionTreeRegressor\n",
+ "from sklearn.ensemble import RandomForestRegressor\n",
+ "from sklearn.pipeline import Pipeline\n",
+ "from sklearn.metrics import mean_squared_error, r2_score\n",
+ "import matplotlib.pyplot as plt\n",
+ "import warnings"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "warnings.filterwarnings(\"ignore\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv(\"Dummy Data/sample_data.csv\")\n",
+ "df = df.sort_values(by=\"postDate\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df[\"postDate\"] = pd.to_datetime(df[\"postDate\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df[\"Year\"] = df[\"postDate\"].apply(lambda time: time.year)\n",
+ "\n",
+ "df[\"Month\"] = df[\"postDate\"].apply(lambda time: time.month)\n",
+ "\n",
+ "df[\"Day\"] = df[\"postDate\"].apply(lambda time: time.day)\n",
+ "\n",
+ "df[\"Hour\"] = df[\"postDate\"].apply(lambda time: time.hour)\n",
+ "\n",
+ "df[\"Minute\"] = df[\"postDate\"].apply(lambda time: time.minute)\n",
+ "\n",
+ "df[\"Second\"] = df[\"postDate\"].apply(lambda time: time.second)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " id \n",
+ " status \n",
+ " description \n",
+ " amount \n",
+ " account \n",
+ " balance \n",
+ " direction \n",
+ " class \n",
+ " institution \n",
+ " ... \n",
+ " transactionDate \n",
+ " postDate \n",
+ " subClass \n",
+ " links \n",
+ " Year \n",
+ " Month \n",
+ " Day \n",
+ " Hour \n",
+ " Minute \n",
+ " Second \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 288 \n",
+ " transaction \n",
+ " 312885c2-6ff6-4d96-89c9-0bf1b2987f46 \n",
+ " posted \n",
+ " AGL RETAIL ENERGY LTD (GAS) \n",
+ " -92.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " -99.34 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " ... \n",
+ " 10/12/2021 \n",
+ " 2021-12-10 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ " \\\"code\\\":\\\"263\\\"}\" \n",
+ " 2021 \n",
+ " 12 \n",
+ " 10 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 287 \n",
+ " transaction \n",
+ " 414279bc-9226-45c5-9722-b18269374373 \n",
+ " posted \n",
+ " AGL RETAIL ENERGY LTD (GAS) \n",
+ " -160.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " -259.34 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " ... \n",
+ " 10/12/2021 \n",
+ " 2021-12-10 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ " \\\"code\\\":\\\"263\\\"}\" \n",
+ " 2021 \n",
+ " 12 \n",
+ " 10 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 286 \n",
+ " transaction \n",
+ " 8598b570-b80f-42a6-9a52-e73425b3ccd0 \n",
+ " posted \n",
+ " TFR Acc14000 TO 12389 \n",
+ " -500.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " -759.34 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " ... \n",
+ " 13/12/2021 \n",
+ " 2021-12-13 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Legal and Accounting Services\\\" \n",
+ " \\\"code\\\":\\\"693\\\"}\" \n",
+ " 2021 \n",
+ " 12 \n",
+ " 13 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 285 \n",
+ " transaction \n",
+ " 1973ec3d-7680-45dd-ac2e-e1eb97c97ea3 \n",
+ " posted \n",
+ " Manly Maths Tutor Wages \n",
+ " 201.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " -558.34 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " ... \n",
+ " 14/12/2021 \n",
+ " 2021-12-14 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Educational Support Services\\\" \n",
+ " \\\"code\\\":\\\"822\\\"}\" \n",
+ " 2021 \n",
+ " 12 \n",
+ " 14 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 284 \n",
+ " transaction \n",
+ " 5b20b38e-6c98-4bfc-97bc-7c9ea2ccc983 \n",
+ " posted \n",
+ " Manly Maths Tutor Wages \n",
+ " 201.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " -357.34 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " ... \n",
+ " 26/12/2021 \n",
+ " 2021-12-16 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Educational Support Services\\\" \n",
+ " \\\"code\\\":\\\"822\\\"}\" \n",
+ " 2021 \n",
+ " 12 \n",
+ " 16 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " transaction \n",
+ " d12df6a2-48b6-4f5f-a718-ccb377aa330c \n",
+ " posted \n",
+ " Transfer Platnm Homeloan 346454 \n",
+ " -3852.5 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22514.56 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " ... \n",
+ " 29/07/2023 \n",
+ " 2023-07-29 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ " \\\"code\\\":\\\"641\\\"}\" \n",
+ " 2023 \n",
+ " 7 \n",
+ " 29 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " transaction \n",
+ " 1ab3a3c5-faeb-4de3-b5aa-612e5bc76fd5 \n",
+ " posted \n",
+ " Non Hooli ATM Withdrawal Fee \n",
+ " -2.5 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22512.06 \n",
+ " debit \n",
+ " bank-fee \n",
+ " AU00000 \n",
+ " ... \n",
+ " 3/08/2023 \n",
+ " 2023-08-03 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"\\\" \n",
+ " \\\"code\\\":\\\"card\\\"}\" \n",
+ " 2023 \n",
+ " 8 \n",
+ " 3 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " transaction \n",
+ " 323f6d42-a38e-4c46-83d2-6c8f3e999686 \n",
+ " posted \n",
+ " Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU \n",
+ " -200.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22312.06 \n",
+ " debit \n",
+ " cash-withdrawal \n",
+ " AU00000 \n",
+ " ... \n",
+ " 3/08/2023 \n",
+ " 2023-08-03 00:00:00+00:00 \n",
+ " NaN \n",
+ " {\\self\\\":\\\"https://au-api.basiq.io/users/bca4b... \n",
+ " 2023 \n",
+ " 8 \n",
+ " 3 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " transaction \n",
+ " 0d6e11ab-e28e-4de0-a152-600cc44fb61c \n",
+ " posted \n",
+ " Non Hooli ATM Withdrawal Fee \n",
+ " -2.5 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22309.56 \n",
+ " debit \n",
+ " bank-fee \n",
+ " AU00000 \n",
+ " ... \n",
+ " 3/08/2023 \n",
+ " 2023-08-03 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"\\\" \n",
+ " \\\"code\\\":\\\"card\\\"}\" \n",
+ " 2023 \n",
+ " 8 \n",
+ " 3 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " transaction \n",
+ " 4957bcf6-f18f-43d7-94df-71f44a0bcf32 \n",
+ " posted \n",
+ " Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU \n",
+ " -200.0 \n",
+ " d3de1ca1 \n",
+ " 22109.56 \n",
+ " debit \n",
+ " cash-withdrawal \n",
+ " AU00000 \n",
+ " ... \n",
+ " 3/08/2023 \n",
+ " 2023-08-03 00:07:36 \n",
+ " NaN \n",
+ " {\"account\":\"https://au-api.basiq.io/users/6a52... \n",
+ " 2023 \n",
+ " 8 \n",
+ " 3 \n",
+ " 0 \n",
+ " 7 \n",
+ " 36 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
289 rows × 22 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " type id status \\\n",
+ "288 transaction 312885c2-6ff6-4d96-89c9-0bf1b2987f46 posted \n",
+ "287 transaction 414279bc-9226-45c5-9722-b18269374373 posted \n",
+ "286 transaction 8598b570-b80f-42a6-9a52-e73425b3ccd0 posted \n",
+ "285 transaction 1973ec3d-7680-45dd-ac2e-e1eb97c97ea3 posted \n",
+ "284 transaction 5b20b38e-6c98-4bfc-97bc-7c9ea2ccc983 posted \n",
+ ".. ... ... ... \n",
+ "4 transaction d12df6a2-48b6-4f5f-a718-ccb377aa330c posted \n",
+ "3 transaction 1ab3a3c5-faeb-4de3-b5aa-612e5bc76fd5 posted \n",
+ "2 transaction 323f6d42-a38e-4c46-83d2-6c8f3e999686 posted \n",
+ "1 transaction 0d6e11ab-e28e-4de0-a152-600cc44fb61c posted \n",
+ "0 transaction 4957bcf6-f18f-43d7-94df-71f44a0bcf32 posted \n",
+ "\n",
+ " description amount \\\n",
+ "288 AGL RETAIL ENERGY LTD (GAS) -92.0 \n",
+ "287 AGL RETAIL ENERGY LTD (GAS) -160.0 \n",
+ "286 TFR Acc14000 TO 12389 -500.0 \n",
+ "285 Manly Maths Tutor Wages 201.0 \n",
+ "284 Manly Maths Tutor Wages 201.0 \n",
+ ".. ... ... \n",
+ "4 Transfer Platnm Homeloan 346454 -3852.5 \n",
+ "3 Non Hooli ATM Withdrawal Fee -2.5 \n",
+ "2 Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU -200.0 \n",
+ "1 Non Hooli ATM Withdrawal Fee -2.5 \n",
+ "0 Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU -200.0 \n",
+ "\n",
+ " account balance direction \\\n",
+ "288 070c1d68-0ee0-477a-9679-294ea7059939 -99.34 debit \n",
+ "287 070c1d68-0ee0-477a-9679-294ea7059939 -259.34 debit \n",
+ "286 070c1d68-0ee0-477a-9679-294ea7059939 -759.34 debit \n",
+ "285 070c1d68-0ee0-477a-9679-294ea7059939 -558.34 credit \n",
+ "284 070c1d68-0ee0-477a-9679-294ea7059939 -357.34 credit \n",
+ ".. ... ... ... \n",
+ "4 070c1d68-0ee0-477a-9679-294ea7059939 22514.56 debit \n",
+ "3 070c1d68-0ee0-477a-9679-294ea7059939 22512.06 debit \n",
+ "2 070c1d68-0ee0-477a-9679-294ea7059939 22312.06 debit \n",
+ "1 070c1d68-0ee0-477a-9679-294ea7059939 22309.56 debit \n",
+ "0 d3de1ca1 22109.56 debit \n",
+ "\n",
+ " class institution ... transactionDate \\\n",
+ "288 payment AU00000 ... 10/12/2021 \n",
+ "287 payment AU00000 ... 10/12/2021 \n",
+ "286 payment AU00000 ... 13/12/2021 \n",
+ "285 transfer AU00000 ... 14/12/2021 \n",
+ "284 transfer AU00000 ... 26/12/2021 \n",
+ ".. ... ... ... ... \n",
+ "4 payment AU00000 ... 29/07/2023 \n",
+ "3 bank-fee AU00000 ... 3/08/2023 \n",
+ "2 cash-withdrawal AU00000 ... 3/08/2023 \n",
+ "1 bank-fee AU00000 ... 3/08/2023 \n",
+ "0 cash-withdrawal AU00000 ... 3/08/2023 \n",
+ "\n",
+ " postDate \\\n",
+ "288 2021-12-10 00:00:00+00:00 \n",
+ "287 2021-12-10 00:00:00+00:00 \n",
+ "286 2021-12-13 00:00:00+00:00 \n",
+ "285 2021-12-14 00:00:00+00:00 \n",
+ "284 2021-12-16 00:00:00+00:00 \n",
+ ".. ... \n",
+ "4 2023-07-29 00:00:00+00:00 \n",
+ "3 2023-08-03 00:00:00+00:00 \n",
+ "2 2023-08-03 00:00:00+00:00 \n",
+ "1 2023-08-03 00:00:00+00:00 \n",
+ "0 2023-08-03 00:07:36 \n",
+ "\n",
+ " subClass \\\n",
+ "288 {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ "287 {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ "286 {\\title\\\":\\\"Legal and Accounting Services\\\" \n",
+ "285 {\\title\\\":\\\"Educational Support Services\\\" \n",
+ "284 {\\title\\\":\\\"Educational Support Services\\\" \n",
+ ".. ... \n",
+ "4 {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ "3 {\\title\\\":\\\"\\\" \n",
+ "2 NaN \n",
+ "1 {\\title\\\":\\\"\\\" \n",
+ "0 NaN \n",
+ "\n",
+ " links Year Month Day Hour \\\n",
+ "288 \\\"code\\\":\\\"263\\\"}\" 2021 12 10 0 \n",
+ "287 \\\"code\\\":\\\"263\\\"}\" 2021 12 10 0 \n",
+ "286 \\\"code\\\":\\\"693\\\"}\" 2021 12 13 0 \n",
+ "285 \\\"code\\\":\\\"822\\\"}\" 2021 12 14 0 \n",
+ "284 \\\"code\\\":\\\"822\\\"}\" 2021 12 16 0 \n",
+ ".. ... ... ... ... ... \n",
+ "4 \\\"code\\\":\\\"641\\\"}\" 2023 7 29 0 \n",
+ "3 \\\"code\\\":\\\"card\\\"}\" 2023 8 3 0 \n",
+ "2 {\\self\\\":\\\"https://au-api.basiq.io/users/bca4b... 2023 8 3 0 \n",
+ "1 \\\"code\\\":\\\"card\\\"}\" 2023 8 3 0 \n",
+ "0 {\"account\":\"https://au-api.basiq.io/users/6a52... 2023 8 3 0 \n",
+ "\n",
+ " Minute Second \n",
+ "288 0 0 \n",
+ "287 0 0 \n",
+ "286 0 0 \n",
+ "285 0 0 \n",
+ "284 0 0 \n",
+ ".. ... ... \n",
+ "4 0 0 \n",
+ "3 0 0 \n",
+ "2 0 0 \n",
+ "1 0 0 \n",
+ "0 7 36 \n",
+ "\n",
+ "[289 rows x 22 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Drop unnecessary columns\n",
+ "df.drop([\"type\", \"id\", \"status\", \"description\", \"account\", \"direction\", \"class\", \"institution\", \"connection\", \"enrich\", \"transactionDate\", \"postDate\", \"subClass\", \"links\"], axis=1, inplace=True)\n",
+ "\n",
+ "# Handle missing values (if any)\n",
+ "df.dropna(inplace=True)\n",
+ "\n",
+ "# Split the data into features (X) and target (y)\n",
+ "X = df[[\"amount\", \"Year\", \"Month\", \"Day\", \"Hour\", \"Minute\", \"Second\"]]\n",
+ "y = df[[\"balance\"]]\n",
+ "\n",
+ "# Split the data into training and testing sets\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model = RandomForestRegressor()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Fitting 5 folds for each of 81 candidates, totalling 405 fits\n",
+ "[CV 1/5; 1/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 1/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-1493402.778 total time= 0.0s\n",
+ "[CV 2/5; 1/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 1/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2750005.758 total time= 0.0s\n",
+ "[CV 3/5; 1/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 1/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-5310391.691 total time= 0.0s\n",
+ "[CV 4/5; 1/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 1/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2747839.631 total time= 0.0s\n",
+ "[CV 5/5; 1/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 1/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2740293.576 total time= 0.0s\n",
+ "[CV 1/5; 2/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 2/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-1496368.775 total time= 0.1s\n",
+ "[CV 2/5; 2/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 2/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2596092.958 total time= 0.1s\n",
+ "[CV 3/5; 2/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 2/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-4928806.941 total time= 0.1s\n",
+ "[CV 4/5; 2/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 2/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2394061.243 total time= 0.1s\n",
+ "[CV 5/5; 2/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 2/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2312933.049 total time= 0.1s\n",
+ "[CV 1/5; 3/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 3/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-1419002.978 total time= 0.2s\n",
+ "[CV 2/5; 3/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 3/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2529619.247 total time= 0.2s\n",
+ "[CV 3/5; 3/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 3/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-4937640.309 total time= 0.2s\n",
+ "[CV 4/5; 3/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 3/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2525517.028 total time= 0.2s\n",
+ "[CV 5/5; 3/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 3/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2368631.156 total time= 0.2s\n",
+ "[CV 1/5; 4/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 4/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-1840145.549 total time= 0.0s\n",
+ "[CV 2/5; 4/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 4/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-3941048.311 total time= 0.0s\n",
+ "[CV 3/5; 4/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 4/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-6383640.844 total time= 0.0s\n",
+ "[CV 4/5; 4/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 4/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-2692294.121 total time= 0.0s\n",
+ "[CV 5/5; 4/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 4/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-4102034.444 total time= 0.0s\n",
+ "[CV 1/5; 5/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 5/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-1805122.762 total time= 0.1s\n",
+ "[CV 2/5; 5/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 5/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-3014625.017 total time= 0.1s\n",
+ "[CV 3/5; 5/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 5/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-6525079.574 total time= 0.1s\n",
+ "[CV 4/5; 5/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 5/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-2870465.188 total time= 0.1s\n",
+ "[CV 5/5; 5/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 5/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-3904485.170 total time= 0.1s\n",
+ "[CV 1/5; 6/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 6/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-1753689.156 total time= 0.1s\n",
+ "[CV 2/5; 6/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 6/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-2962084.387 total time= 0.1s\n",
+ "[CV 3/5; 6/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 6/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-6336992.704 total time= 0.2s\n",
+ "[CV 4/5; 6/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 6/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-2874510.367 total time= 0.1s\n",
+ "[CV 5/5; 6/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 6/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-3920707.873 total time= 0.1s\n",
+ "[CV 1/5; 7/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 7/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-2509165.350 total time= 0.0s\n",
+ "[CV 2/5; 7/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 7/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-4195604.261 total time= 0.0s\n",
+ "[CV 3/5; 7/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 7/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-9173050.988 total time= 0.0s\n",
+ "[CV 4/5; 7/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 7/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-3451923.985 total time= 0.0s\n",
+ "[CV 5/5; 7/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 7/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-6006056.970 total time= 0.0s\n",
+ "[CV 1/5; 8/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 8/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-2143375.610 total time= 0.1s\n",
+ "[CV 2/5; 8/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 8/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-4299446.307 total time= 0.0s\n",
+ "[CV 3/5; 8/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 8/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-8639693.060 total time= 0.1s\n",
+ "[CV 4/5; 8/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 8/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-3721174.793 total time= 0.0s\n",
+ "[CV 5/5; 8/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 8/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-5830153.882 total time= 0.1s\n",
+ "[CV 1/5; 9/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 9/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-2105206.307 total time= 0.1s\n",
+ "[CV 2/5; 9/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 9/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-4293538.685 total time= 0.1s\n",
+ "[CV 3/5; 9/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 9/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-8803493.693 total time= 0.1s\n",
+ "[CV 4/5; 9/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 9/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-3532328.266 total time= 0.1s\n",
+ "[CV 5/5; 9/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 9/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-5594827.430 total time= 0.1s\n",
+ "[CV 1/5; 10/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 10/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-1876215.858 total time= 0.0s\n",
+ "[CV 2/5; 10/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 10/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-2964099.561 total time= 0.0s\n",
+ "[CV 3/5; 10/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 10/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-6301099.747 total time= 0.0s\n",
+ "[CV 4/5; 10/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 10/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-2512242.085 total time= 0.0s\n",
+ "[CV 5/5; 10/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 10/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-3696921.509 total time= 0.0s\n",
+ "[CV 1/5; 11/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 11/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-2010601.430 total time= 0.1s\n",
+ "[CV 2/5; 11/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 11/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-2882896.760 total time= 0.1s\n",
+ "[CV 3/5; 11/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 11/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-6095140.275 total time= 0.1s\n",
+ "[CV 4/5; 11/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 11/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-2795932.970 total time= 0.1s\n",
+ "[CV 5/5; 11/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 11/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-3828886.532 total time= 0.1s\n",
+ "[CV 1/5; 12/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 12/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-1907845.364 total time= 0.1s\n",
+ "[CV 2/5; 12/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 12/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-2926750.187 total time= 0.2s\n",
+ "[CV 3/5; 12/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 12/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-6305383.776 total time= 0.2s\n",
+ "[CV 4/5; 12/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 12/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-2479278.986 total time= 0.2s\n",
+ "[CV 5/5; 12/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 12/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-3782521.262 total time= 0.2s\n",
+ "[CV 1/5; 13/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 13/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-2349198.835 total time= 0.0s\n",
+ "[CV 2/5; 13/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 13/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-3694356.150 total time= 0.0s\n",
+ "[CV 3/5; 13/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 13/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-7043366.687 total time= 0.0s\n",
+ "[CV 4/5; 13/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 13/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-2876993.079 total time= 0.0s\n",
+ "[CV 5/5; 13/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 13/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-4269065.312 total time= 0.0s\n",
+ "[CV 1/5; 14/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 14/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-2171661.195 total time= 0.1s\n",
+ "[CV 2/5; 14/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 14/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-3262489.781 total time= 0.1s\n",
+ "[CV 3/5; 14/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 14/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-6469971.389 total time= 0.1s\n",
+ "[CV 4/5; 14/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 14/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-2813928.399 total time= 0.1s\n",
+ "[CV 5/5; 14/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 14/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-4139265.396 total time= 0.1s\n",
+ "[CV 1/5; 15/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 15/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-2071552.766 total time= 0.1s\n",
+ "[CV 2/5; 15/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 15/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-3481549.212 total time= 0.1s\n",
+ "[CV 3/5; 15/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 15/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-6825376.927 total time= 0.1s\n",
+ "[CV 4/5; 15/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 15/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-2639414.647 total time= 0.1s\n",
+ "[CV 5/5; 15/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 15/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-4288743.718 total time= 0.1s\n",
+ "[CV 1/5; 16/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 16/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-2378780.030 total time= 0.0s\n",
+ "[CV 2/5; 16/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 16/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-4334288.139 total time= 0.0s\n",
+ "[CV 3/5; 16/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 16/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-8600489.220 total time= 0.0s\n",
+ "[CV 4/5; 16/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 16/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-3688305.170 total time= 0.0s\n",
+ "[CV 5/5; 16/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 16/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-5806074.784 total time= 0.0s\n",
+ "[CV 1/5; 17/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 17/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-2191149.033 total time= 0.1s\n",
+ "[CV 2/5; 17/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 17/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-4528502.633 total time= 0.1s\n",
+ "[CV 3/5; 17/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 17/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-8837158.372 total time= 0.1s\n",
+ "[CV 4/5; 17/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 17/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-3590169.157 total time= 0.0s\n",
+ "[CV 5/5; 17/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 17/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-5820377.497 total time= 0.0s\n",
+ "[CV 1/5; 18/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 18/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-2381478.487 total time= 0.1s\n",
+ "[CV 2/5; 18/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 18/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-4321764.943 total time= 0.1s\n",
+ "[CV 3/5; 18/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 18/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-8528247.692 total time= 0.1s\n",
+ "[CV 4/5; 18/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 18/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-3814581.630 total time= 0.1s\n",
+ "[CV 5/5; 18/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 18/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-5626121.690 total time= 0.1s\n",
+ "[CV 1/5; 19/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 19/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-2374117.976 total time= 0.0s\n",
+ "[CV 2/5; 19/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 19/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4520294.058 total time= 0.0s\n",
+ "[CV 3/5; 19/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 19/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-9082949.130 total time= 0.0s\n",
+ "[CV 4/5; 19/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 19/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4198571.423 total time= 0.0s\n",
+ "[CV 5/5; 19/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 19/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-5512735.448 total time= 0.0s\n",
+ "[CV 1/5; 20/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 20/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-2461452.697 total time= 0.0s\n",
+ "[CV 2/5; 20/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 20/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4581327.622 total time= 0.1s\n",
+ "[CV 3/5; 20/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 20/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-9383936.192 total time= 0.1s\n",
+ "[CV 4/5; 20/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 20/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4135248.094 total time= 0.1s\n",
+ "[CV 5/5; 20/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 20/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-5986956.112 total time= 0.1s\n",
+ "[CV 1/5; 21/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 21/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-2301804.550 total time= 0.1s\n",
+ "[CV 2/5; 21/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 21/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4595011.445 total time= 0.1s\n",
+ "[CV 3/5; 21/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 21/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-8798886.267 total time= 0.2s\n",
+ "[CV 4/5; 21/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 21/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4255982.974 total time= 0.1s\n",
+ "[CV 5/5; 21/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 21/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-5983131.281 total time= 0.1s\n",
+ "[CV 1/5; 22/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 22/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-2362429.026 total time= 0.0s\n",
+ "[CV 2/5; 22/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 22/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-4960556.908 total time= 0.0s\n",
+ "[CV 3/5; 22/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 22/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-9288360.107 total time= 0.0s\n",
+ "[CV 4/5; 22/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 22/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-4450417.496 total time= 0.0s\n",
+ "[CV 5/5; 22/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 22/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-5920687.167 total time= 0.0s\n",
+ "[CV 1/5; 23/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 23/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-2254473.069 total time= 0.1s\n",
+ "[CV 2/5; 23/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 23/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-4643777.236 total time= 0.1s\n",
+ "[CV 3/5; 23/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 23/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-8867270.852 total time= 0.1s\n",
+ "[CV 4/5; 23/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 23/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-4411057.171 total time= 0.0s\n",
+ "[CV 5/5; 23/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 23/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-5695005.125 total time= 0.1s\n",
+ "[CV 1/5; 24/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 24/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-2306370.602 total time= 0.1s\n",
+ "[CV 2/5; 24/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 24/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4557703.325 total time= 0.1s\n",
+ "[CV 3/5; 24/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 24/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-8771592.616 total time= 0.1s\n",
+ "[CV 4/5; 24/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 24/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4276237.999 total time= 0.1s\n",
+ "[CV 5/5; 24/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 24/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-5853814.567 total time= 0.1s\n",
+ "[CV 1/5; 25/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 25/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-2539661.839 total time= 0.0s\n",
+ "[CV 2/5; 25/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 25/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-4884760.136 total time= 0.0s\n",
+ "[CV 3/5; 25/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 25/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-9182908.353 total time= 0.0s\n",
+ "[CV 4/5; 25/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 25/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-4318155.042 total time= 0.0s\n",
+ "[CV 5/5; 25/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 25/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-6097153.511 total time= 0.0s\n",
+ "[CV 1/5; 26/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 26/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-2451114.732 total time= 0.0s\n",
+ "[CV 2/5; 26/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 26/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-4774984.041 total time= 0.1s\n",
+ "[CV 3/5; 26/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 26/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-9151134.499 total time= 0.1s\n",
+ "[CV 4/5; 26/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 26/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-4545120.851 total time= 0.0s\n",
+ "[CV 5/5; 26/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 26/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-5893008.813 total time= 0.1s\n",
+ "[CV 1/5; 27/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 27/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-2479328.669 total time= 0.1s\n",
+ "[CV 2/5; 27/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 27/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4840317.179 total time= 0.1s\n",
+ "[CV 3/5; 27/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 27/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-9719609.684 total time= 0.1s\n",
+ "[CV 4/5; 27/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 27/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4591330.267 total time= 0.1s\n",
+ "[CV 5/5; 27/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 27/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-6390299.625 total time= 0.1s\n",
+ "[CV 1/5; 28/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 28/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-1404857.934 total time= 0.0s\n",
+ "[CV 2/5; 28/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 28/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2394298.087 total time= 0.0s\n",
+ "[CV 3/5; 28/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 28/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-5129238.585 total time= 0.0s\n",
+ "[CV 4/5; 28/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 28/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2554567.718 total time= 0.0s\n",
+ "[CV 5/5; 28/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 28/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2505905.140 total time= 0.0s\n",
+ "[CV 1/5; 29/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 29/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-1422505.332 total time= 0.1s\n",
+ "[CV 2/5; 29/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 29/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2444795.675 total time= 0.1s\n",
+ "[CV 3/5; 29/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 29/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-5021190.193 total time= 0.1s\n",
+ "[CV 4/5; 29/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 29/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2584575.950 total time= 0.1s\n",
+ "[CV 5/5; 29/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 29/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2491680.906 total time= 0.1s\n",
+ "[CV 1/5; 30/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 30/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-1433487.097 total time= 0.2s\n",
+ "[CV 2/5; 30/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 30/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2542683.044 total time= 0.2s\n",
+ "[CV 3/5; 30/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 30/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-4969822.376 total time= 0.2s\n",
+ "[CV 4/5; 30/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 30/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2477421.725 total time= 0.2s\n",
+ "[CV 5/5; 30/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 30/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2496189.284 total time= 0.2s\n",
+ "[CV 1/5; 31/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 31/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-1853747.958 total time= 0.0s\n",
+ "[CV 2/5; 31/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 31/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-3189702.186 total time= 0.0s\n",
+ "[CV 3/5; 31/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 31/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-6544549.356 total time= 0.0s\n",
+ "[CV 4/5; 31/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 31/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-2577271.331 total time= 0.0s\n",
+ "[CV 5/5; 31/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 31/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-3903079.386 total time= 0.0s\n",
+ "[CV 1/5; 32/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 32/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-1816812.809 total time= 0.1s\n",
+ "[CV 2/5; 32/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 32/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-3152393.029 total time= 0.1s\n",
+ "[CV 3/5; 32/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 32/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-6452415.889 total time= 0.1s\n",
+ "[CV 4/5; 32/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 32/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-2898142.093 total time= 0.1s\n",
+ "[CV 5/5; 32/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 32/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-3744507.190 total time= 0.1s\n",
+ "[CV 1/5; 33/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 33/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-2011416.197 total time= 0.2s\n",
+ "[CV 2/5; 33/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 33/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-2990783.654 total time= 0.1s\n",
+ "[CV 3/5; 33/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 33/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-6416164.852 total time= 0.2s\n",
+ "[CV 4/5; 33/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 33/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-2673837.105 total time= 0.1s\n",
+ "[CV 5/5; 33/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 33/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-3842677.045 total time= 0.2s\n",
+ "[CV 1/5; 34/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 34/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-2225716.562 total time= 0.0s\n",
+ "[CV 2/5; 34/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 34/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-4044574.792 total time= 0.0s\n",
+ "[CV 3/5; 34/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 34/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-8699907.278 total time= 0.0s\n",
+ "[CV 4/5; 34/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 34/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-3674477.759 total time= 0.0s\n",
+ "[CV 5/5; 34/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 34/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-5691508.091 total time= 0.0s\n",
+ "[CV 1/5; 35/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 35/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-2284714.457 total time= 0.1s\n",
+ "[CV 2/5; 35/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 35/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-4144365.211 total time= 0.1s\n",
+ "[CV 3/5; 35/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 35/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-8780152.577 total time= 0.0s\n",
+ "[CV 4/5; 35/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 35/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-3605747.573 total time= 0.1s\n",
+ "[CV 5/5; 35/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 35/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-5603469.158 total time= 0.1s\n",
+ "[CV 1/5; 36/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 36/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-2295267.677 total time= 0.1s\n",
+ "[CV 2/5; 36/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 36/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-4203551.909 total time= 0.1s\n",
+ "[CV 3/5; 36/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 36/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-8466137.662 total time= 0.1s\n",
+ "[CV 4/5; 36/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 36/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-3453709.840 total time= 0.1s\n",
+ "[CV 5/5; 36/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 36/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-5662423.192 total time= 0.1s\n",
+ "[CV 1/5; 37/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 37/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-2088111.699 total time= 0.0s\n",
+ "[CV 2/5; 37/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 37/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-2826814.170 total time= 0.0s\n",
+ "[CV 3/5; 37/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 37/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-6425600.613 total time= 0.0s\n",
+ "[CV 4/5; 37/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 37/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-2930163.989 total time= 0.0s\n",
+ "[CV 5/5; 37/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 37/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-3625491.565 total time= 0.0s\n",
+ "[CV 1/5; 38/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 38/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-1877014.480 total time= 0.1s\n",
+ "[CV 2/5; 38/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 38/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-3250664.987 total time= 0.1s\n",
+ "[CV 3/5; 38/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 38/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-6223106.167 total time= 0.1s\n",
+ "[CV 4/5; 38/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 38/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-2794833.376 total time= 0.1s\n",
+ "[CV 5/5; 38/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 38/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-3594023.828 total time= 0.1s\n",
+ "[CV 1/5; 39/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 39/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-1888385.876 total time= 0.1s\n",
+ "[CV 2/5; 39/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 39/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-3056692.958 total time= 0.1s\n",
+ "[CV 3/5; 39/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 39/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-6390406.744 total time= 0.2s\n",
+ "[CV 4/5; 39/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 39/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-2540730.512 total time= 0.1s\n",
+ "[CV 5/5; 39/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 39/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-3582576.894 total time= 0.1s\n",
+ "[CV 1/5; 40/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 40/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-2231447.111 total time= 0.0s\n",
+ "[CV 2/5; 40/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 40/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-3425616.891 total time= 0.0s\n",
+ "[CV 3/5; 40/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 40/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-7370805.375 total time= 0.0s\n",
+ "[CV 4/5; 40/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 40/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-2995313.345 total time= 0.0s\n",
+ "[CV 5/5; 40/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 40/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-4233828.274 total time= 0.0s\n",
+ "[CV 1/5; 41/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 41/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-1927857.284 total time= 0.1s\n",
+ "[CV 2/5; 41/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 41/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-3348989.832 total time= 0.1s\n",
+ "[CV 3/5; 41/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 41/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-6611179.068 total time= 0.1s\n",
+ "[CV 4/5; 41/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 41/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-2724016.301 total time= 0.1s\n",
+ "[CV 5/5; 41/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 41/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-4124312.085 total time= 0.1s\n",
+ "[CV 1/5; 42/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 42/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-2136789.889 total time= 0.1s\n",
+ "[CV 2/5; 42/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 42/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-3280183.701 total time= 0.1s\n",
+ "[CV 3/5; 42/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 42/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-6979050.614 total time= 0.1s\n",
+ "[CV 4/5; 42/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 42/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-2714924.802 total time= 0.1s\n",
+ "[CV 5/5; 42/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 42/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-4404054.371 total time= 0.1s\n",
+ "[CV 1/5; 43/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 43/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-2469132.382 total time= 0.0s\n",
+ "[CV 2/5; 43/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 43/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-4322613.386 total time= 0.0s\n",
+ "[CV 3/5; 43/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 43/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-8521262.580 total time= 0.0s\n",
+ "[CV 4/5; 43/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 43/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-3841363.922 total time= 0.0s\n",
+ "[CV 5/5; 43/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 43/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-5785715.233 total time= 0.0s\n",
+ "[CV 1/5; 44/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 44/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-2330431.082 total time= 0.0s\n",
+ "[CV 2/5; 44/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 44/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-4300544.592 total time= 0.0s\n",
+ "[CV 3/5; 44/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 44/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-8682119.214 total time= 0.0s\n",
+ "[CV 4/5; 44/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 44/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-3625717.485 total time= 0.0s\n",
+ "[CV 5/5; 44/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 44/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-5874735.358 total time= 0.0s\n",
+ "[CV 1/5; 45/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 45/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-2389134.502 total time= 0.1s\n",
+ "[CV 2/5; 45/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 45/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-4512117.133 total time= 0.1s\n",
+ "[CV 3/5; 45/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 45/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-8430115.077 total time= 0.1s\n",
+ "[CV 4/5; 45/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 45/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-3664299.554 total time= 0.1s\n",
+ "[CV 5/5; 45/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 45/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-5825148.569 total time= 0.2s\n",
+ "[CV 1/5; 46/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 46/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-2457137.314 total time= 0.0s\n",
+ "[CV 2/5; 46/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 46/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4843628.559 total time= 0.0s\n",
+ "[CV 3/5; 46/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 46/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-9748007.016 total time= 0.0s\n",
+ "[CV 4/5; 46/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 46/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4616961.652 total time= 0.0s\n",
+ "[CV 5/5; 46/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 46/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-5900710.145 total time= 0.0s\n",
+ "[CV 1/5; 47/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 47/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-2336570.980 total time= 0.1s\n",
+ "[CV 2/5; 47/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 47/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4760874.488 total time= 0.0s\n",
+ "[CV 3/5; 47/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 47/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-8915376.194 total time= 0.1s\n",
+ "[CV 4/5; 47/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 47/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4526590.634 total time= 0.0s\n",
+ "[CV 5/5; 47/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 47/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-6004628.785 total time= 0.1s\n",
+ "[CV 1/5; 48/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 48/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-2375650.924 total time= 0.1s\n",
+ "[CV 2/5; 48/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 48/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4597000.020 total time= 0.1s\n",
+ "[CV 3/5; 48/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 48/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-9094563.025 total time= 0.1s\n",
+ "[CV 4/5; 48/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 48/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4395906.696 total time= 0.1s\n",
+ "[CV 5/5; 48/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 48/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-5817221.959 total time= 0.1s\n",
+ "[CV 1/5; 49/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 49/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-2433832.479 total time= 0.0s\n",
+ "[CV 2/5; 49/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 49/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-5035902.284 total time= 0.0s\n",
+ "[CV 3/5; 49/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 49/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-9469212.201 total time= 0.0s\n",
+ "[CV 4/5; 49/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 49/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-4345456.148 total time= 0.0s\n",
+ "[CV 5/5; 49/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 49/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-5851051.509 total time= 0.0s\n",
+ "[CV 1/5; 50/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 50/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-2380775.406 total time= 0.1s\n",
+ "[CV 2/5; 50/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 50/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-4738411.753 total time= 0.1s\n",
+ "[CV 3/5; 50/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 50/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-8937773.602 total time= 0.1s\n",
+ "[CV 4/5; 50/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 50/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-4401972.368 total time= 0.1s\n",
+ "[CV 5/5; 50/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 50/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-5544569.498 total time= 0.1s\n",
+ "[CV 1/5; 51/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 51/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-2332160.411 total time= 0.1s\n",
+ "[CV 2/5; 51/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 51/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4758147.684 total time= 0.1s\n",
+ "[CV 3/5; 51/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 51/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-8716376.385 total time= 0.1s\n",
+ "[CV 4/5; 51/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 51/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4389424.573 total time= 0.2s\n",
+ "[CV 5/5; 51/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 51/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-6186010.293 total time= 0.2s\n",
+ "[CV 1/5; 52/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 52/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-2602299.086 total time= 0.0s\n",
+ "[CV 2/5; 52/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 52/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-5040662.441 total time= 0.0s\n",
+ "[CV 3/5; 52/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 52/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-9623295.751 total time= 0.0s\n",
+ "[CV 4/5; 52/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 52/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-4672669.722 total time= 0.0s\n",
+ "[CV 5/5; 52/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 52/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-6397985.502 total time= 0.0s\n",
+ "[CV 1/5; 53/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 53/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-2436856.881 total time= 0.1s\n",
+ "[CV 2/5; 53/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 53/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-4819283.579 total time= 0.1s\n",
+ "[CV 3/5; 53/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 53/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-9398619.385 total time= 0.1s\n",
+ "[CV 4/5; 53/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 53/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-4319891.504 total time= 0.1s\n",
+ "[CV 5/5; 53/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 53/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-6139660.756 total time= 0.1s\n",
+ "[CV 1/5; 54/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 54/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-2437369.233 total time= 0.1s\n",
+ "[CV 2/5; 54/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 54/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4818437.840 total time= 0.1s\n",
+ "[CV 3/5; 54/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 54/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-9469143.240 total time= 0.1s\n",
+ "[CV 4/5; 54/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 54/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4445199.083 total time= 0.1s\n",
+ "[CV 5/5; 54/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 54/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-6054686.027 total time= 0.1s\n",
+ "[CV 1/5; 55/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 55/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-1522632.505 total time= 0.0s\n",
+ "[CV 2/5; 55/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 55/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2622997.222 total time= 0.0s\n",
+ "[CV 3/5; 55/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 55/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-5197832.561 total time= 0.0s\n",
+ "[CV 4/5; 55/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 55/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2363710.171 total time= 0.0s\n",
+ "[CV 5/5; 55/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 55/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2304188.350 total time= 0.0s\n",
+ "[CV 1/5; 56/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 56/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-1493320.837 total time= 0.1s\n",
+ "[CV 2/5; 56/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 56/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2595480.762 total time= 0.1s\n",
+ "[CV 3/5; 56/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 56/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-5017004.844 total time= 0.1s\n",
+ "[CV 4/5; 56/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 56/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2406621.570 total time= 0.1s\n",
+ "[CV 5/5; 56/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 56/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2312787.231 total time= 0.1s\n",
+ "[CV 1/5; 57/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 57/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-1392114.556 total time= 0.2s\n",
+ "[CV 2/5; 57/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 57/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2668332.860 total time= 0.2s\n",
+ "[CV 3/5; 57/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 57/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-5040127.420 total time= 0.2s\n",
+ "[CV 4/5; 57/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 57/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2436760.873 total time= 0.2s\n",
+ "[CV 5/5; 57/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 57/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2656136.826 total time= 0.2s\n",
+ "[CV 1/5; 58/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 58/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-1871264.975 total time= 0.0s\n",
+ "[CV 2/5; 58/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 58/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-2745168.424 total time= 0.0s\n",
+ "[CV 3/5; 58/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 58/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-6546987.620 total time= 0.0s\n",
+ "[CV 4/5; 58/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 58/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-2893055.736 total time= 0.0s\n",
+ "[CV 5/5; 58/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 58/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-3718122.365 total time= 0.0s\n",
+ "[CV 1/5; 59/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 59/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-1804995.542 total time= 0.1s\n",
+ "[CV 2/5; 59/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 59/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-3131835.005 total time= 0.1s\n",
+ "[CV 3/5; 59/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 59/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-6576874.979 total time= 0.1s\n",
+ "[CV 4/5; 59/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 59/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-2781179.286 total time= 0.1s\n",
+ "[CV 5/5; 59/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 59/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-3771878.879 total time= 0.1s\n",
+ "[CV 1/5; 60/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 60/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-1757698.024 total time= 0.2s\n",
+ "[CV 2/5; 60/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 60/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-2923551.305 total time= 0.2s\n",
+ "[CV 3/5; 60/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 60/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-6597271.838 total time= 0.2s\n",
+ "[CV 4/5; 60/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 60/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-2777036.559 total time= 0.2s\n",
+ "[CV 5/5; 60/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 60/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-3908512.000 total time= 0.2s\n",
+ "[CV 1/5; 61/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 61/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-2340652.343 total time= 0.0s\n",
+ "[CV 2/5; 61/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 61/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-4234904.923 total time= 0.0s\n",
+ "[CV 3/5; 61/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 61/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-9167303.308 total time= 0.0s\n",
+ "[CV 4/5; 61/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 61/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-3590950.218 total time= 0.0s\n",
+ "[CV 5/5; 61/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 61/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-6059543.427 total time= 0.0s\n",
+ "[CV 1/5; 62/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 62/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-2322492.941 total time= 0.1s\n",
+ "[CV 2/5; 62/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 62/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-4068594.363 total time= 0.1s\n",
+ "[CV 3/5; 62/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 62/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-8505464.766 total time= 0.1s\n",
+ "[CV 4/5; 62/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 62/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-3549009.335 total time= 0.1s\n",
+ "[CV 5/5; 62/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 62/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-5499965.723 total time= 0.1s\n",
+ "[CV 1/5; 63/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 63/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-2308982.970 total time= 0.1s\n",
+ "[CV 2/5; 63/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 63/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-4217323.407 total time= 0.1s\n",
+ "[CV 3/5; 63/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 63/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-8579596.754 total time= 0.1s\n",
+ "[CV 4/5; 63/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 63/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-3468000.555 total time= 0.1s\n",
+ "[CV 5/5; 63/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 63/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-5710202.437 total time= 0.1s\n",
+ "[CV 1/5; 64/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 64/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-1792152.700 total time= 0.0s\n",
+ "[CV 2/5; 64/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 64/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-2714379.451 total time= 0.0s\n",
+ "[CV 3/5; 64/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 64/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-6094780.005 total time= 0.0s\n",
+ "[CV 4/5; 64/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 64/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-2585323.912 total time= 0.0s\n",
+ "[CV 5/5; 64/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 64/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-3549744.436 total time= 0.0s\n",
+ "[CV 1/5; 65/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 65/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-2060479.578 total time= 0.1s\n",
+ "[CV 2/5; 65/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 65/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-3141610.263 total time= 0.1s\n",
+ "[CV 3/5; 65/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 65/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-6161299.416 total time= 0.1s\n",
+ "[CV 4/5; 65/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 65/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-2751210.485 total time= 0.1s\n",
+ "[CV 5/5; 65/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 65/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-3505681.680 total time= 0.1s\n",
+ "[CV 1/5; 66/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 66/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-1825925.821 total time= 0.1s\n",
+ "[CV 2/5; 66/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 66/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-2875418.295 total time= 0.1s\n",
+ "[CV 3/5; 66/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 66/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-6322623.775 total time= 0.2s\n",
+ "[CV 4/5; 66/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 66/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-2684852.637 total time= 0.2s\n",
+ "[CV 5/5; 66/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 66/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-3537577.789 total time= 0.2s\n",
+ "[CV 1/5; 67/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 67/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-1990128.515 total time= 0.0s\n",
+ "[CV 2/5; 67/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 67/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-3200841.343 total time= 0.0s\n",
+ "[CV 3/5; 67/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 67/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-6886191.116 total time= 0.0s\n",
+ "[CV 4/5; 67/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 67/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-2730828.062 total time= 0.0s\n",
+ "[CV 5/5; 67/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 67/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-4111211.345 total time= 0.0s\n",
+ "[CV 1/5; 68/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 68/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-2130734.025 total time= 0.1s\n",
+ "[CV 2/5; 68/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 68/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-3504664.583 total time= 0.1s\n",
+ "[CV 3/5; 68/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 68/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-6902168.005 total time= 0.1s\n",
+ "[CV 4/5; 68/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 68/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-2873493.372 total time= 0.1s\n",
+ "[CV 5/5; 68/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 68/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-4044493.806 total time= 0.1s\n",
+ "[CV 1/5; 69/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 69/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-2108440.562 total time= 0.1s\n",
+ "[CV 2/5; 69/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 69/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-3310901.316 total time= 0.1s\n",
+ "[CV 3/5; 69/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 69/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-6609343.229 total time= 0.1s\n",
+ "[CV 4/5; 69/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 69/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-2743035.393 total time= 0.2s\n",
+ "[CV 5/5; 69/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 69/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-4231282.186 total time= 0.2s\n",
+ "[CV 1/5; 70/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 70/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-2257077.740 total time= 0.0s\n",
+ "[CV 2/5; 70/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 70/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-4510419.410 total time= 0.0s\n",
+ "[CV 3/5; 70/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 70/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-8331260.043 total time= 0.0s\n",
+ "[CV 4/5; 70/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 70/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-3447285.839 total time= 0.0s\n",
+ "[CV 5/5; 70/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 70/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-6031546.717 total time= 0.0s\n",
+ "[CV 1/5; 71/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 71/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-2187350.901 total time= 0.1s\n",
+ "[CV 2/5; 71/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 71/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-4416361.876 total time= 0.1s\n",
+ "[CV 3/5; 71/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 71/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-8370732.370 total time= 0.1s\n",
+ "[CV 4/5; 71/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 71/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-3788809.529 total time= 0.1s\n",
+ "[CV 5/5; 71/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 71/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-5702316.729 total time= 0.1s\n",
+ "[CV 1/5; 72/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 72/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-2259412.629 total time= 0.1s\n",
+ "[CV 2/5; 72/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 72/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-4184100.724 total time= 0.1s\n",
+ "[CV 3/5; 72/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 72/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-8841639.658 total time= 0.1s\n",
+ "[CV 4/5; 72/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 72/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-3595737.008 total time= 0.1s\n",
+ "[CV 5/5; 72/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 72/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-5783939.973 total time= 0.2s\n",
+ "[CV 1/5; 73/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 73/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-2468380.898 total time= 0.0s\n",
+ "[CV 2/5; 73/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 73/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4830021.364 total time= 0.0s\n",
+ "[CV 3/5; 73/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 73/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-8302006.398 total time= 0.0s\n",
+ "[CV 4/5; 73/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 73/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4468858.924 total time= 0.0s\n",
+ "[CV 5/5; 73/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 73/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-5845330.969 total time= 0.0s\n",
+ "[CV 1/5; 74/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 74/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-2319276.920 total time= 0.1s\n",
+ "[CV 2/5; 74/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 74/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4688519.886 total time= 0.1s\n",
+ "[CV 3/5; 74/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 74/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-8548601.425 total time= 0.1s\n",
+ "[CV 4/5; 74/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 74/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4388957.149 total time= 0.1s\n",
+ "[CV 5/5; 74/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 74/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-5734983.790 total time= 0.1s\n",
+ "[CV 1/5; 75/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 75/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-2325365.802 total time= 0.1s\n",
+ "[CV 2/5; 75/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 75/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4754953.217 total time= 0.2s\n",
+ "[CV 3/5; 75/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 75/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-9193975.360 total time= 0.1s\n",
+ "[CV 4/5; 75/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 75/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4285933.238 total time= 0.1s\n",
+ "[CV 5/5; 75/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 75/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-5828800.816 total time= 0.2s\n",
+ "[CV 1/5; 76/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 76/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-2419932.194 total time= 0.0s\n",
+ "[CV 2/5; 76/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 76/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-4960857.593 total time= 0.0s\n",
+ "[CV 3/5; 76/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 76/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-8290513.458 total time= 0.0s\n",
+ "[CV 4/5; 76/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 76/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-4513477.179 total time= 0.0s\n",
+ "[CV 5/5; 76/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 76/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-5990879.062 total time= 0.0s\n",
+ "[CV 1/5; 77/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 77/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-2347744.404 total time= 0.1s\n",
+ "[CV 2/5; 77/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 77/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-4488678.416 total time= 0.1s\n",
+ "[CV 3/5; 77/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 77/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-8824173.485 total time= 0.1s\n",
+ "[CV 4/5; 77/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 77/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-4308000.319 total time= 0.1s\n",
+ "[CV 5/5; 77/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 77/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-6030549.580 total time= 0.1s\n",
+ "[CV 1/5; 78/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 78/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-2320048.657 total time= 0.1s\n",
+ "[CV 2/5; 78/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 78/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4805967.487 total time= 0.2s\n",
+ "[CV 3/5; 78/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 78/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-9068806.161 total time= 0.2s\n",
+ "[CV 4/5; 78/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 78/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4354969.645 total time= 0.1s\n",
+ "[CV 5/5; 78/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 78/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-5893096.800 total time= 0.2s\n",
+ "[CV 1/5; 79/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 79/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-2488687.488 total time= 0.0s\n",
+ "[CV 2/5; 79/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 79/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-4940879.856 total time= 0.0s\n",
+ "[CV 3/5; 79/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 79/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-8915486.626 total time= 0.0s\n",
+ "[CV 4/5; 79/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 79/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-4307381.769 total time= 0.0s\n",
+ "[CV 5/5; 79/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 79/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-6334559.644 total time= 0.0s\n",
+ "[CV 1/5; 80/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 80/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-2407408.471 total time= 0.1s\n",
+ "[CV 2/5; 80/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 80/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-4931269.940 total time= 0.1s\n",
+ "[CV 3/5; 80/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 80/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-9639498.469 total time= 0.1s\n",
+ "[CV 4/5; 80/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 80/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-4821884.748 total time= 0.1s\n",
+ "[CV 5/5; 80/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 80/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-6391560.037 total time= 0.1s\n",
+ "[CV 1/5; 81/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 81/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-2501672.396 total time= 0.1s\n",
+ "[CV 2/5; 81/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 81/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4958982.743 total time= 0.2s\n",
+ "[CV 3/5; 81/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 81/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-9157851.809 total time= 0.1s\n",
+ "[CV 4/5; 81/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 81/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4496835.000 total time= 0.1s\n",
+ "[CV 5/5; 81/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 81/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-6133967.703 total time= 0.1s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "GridSearchCV(cv=5, estimator=RandomForestRegressor(), n_jobs=1,\n",
+ " param_grid={'max_depth': [None, 10, 20],\n",
+ " 'min_samples_leaf': [1, 2, 4],\n",
+ " 'min_samples_split': [2, 5, 10],\n",
+ " 'n_estimators': [100, 200, 300]},\n",
+ " scoring='neg_mean_squared_error', verbose=10) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. GridSearchCV GridSearchCV(cv=5, estimator=RandomForestRegressor(), n_jobs=1,\n",
+ " param_grid={'max_depth': [None, 10, 20],\n",
+ " 'min_samples_leaf': [1, 2, 4],\n",
+ " 'min_samples_split': [2, 5, 10],\n",
+ " 'n_estimators': [100, 200, 300]},\n",
+ " scoring='neg_mean_squared_error', verbose=10) "
+ ],
+ "text/plain": [
+ "GridSearchCV(cv=5, estimator=RandomForestRegressor(), n_jobs=1,\n",
+ " param_grid={'max_depth': [None, 10, 20],\n",
+ " 'min_samples_leaf': [1, 2, 4],\n",
+ " 'min_samples_split': [2, 5, 10],\n",
+ " 'n_estimators': [100, 200, 300]},\n",
+ " scoring='neg_mean_squared_error', verbose=10)"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "param_grid = {\n",
+ " 'n_estimators': [100, 200, 300],\n",
+ " 'max_depth': [None, 10, 20],\n",
+ " 'min_samples_split': [2, 5, 10],\n",
+ " 'min_samples_leaf': [1, 2, 4]\n",
+ "}\n",
+ "\n",
+ "grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, n_jobs=1, verbose=10, scoring='neg_mean_squared_error')\n",
+ "grid_search.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200}\n"
+ ]
+ }
+ ],
+ "source": [
+ "best_params = grid_search.best_params_\n",
+ "best_model = grid_search.best_estimator_\n",
+ "print(best_params)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean Squared Error: 1953048.7644503405\n",
+ "R-squared: 0.9117987566088667\n",
+ "Root Mean Squared Error: 1397.5152108117966\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred = best_model.predict(X_test)\n",
+ "mse = mean_squared_error(y_test, y_pred)\n",
+ "rmse = np.sqrt(mse)\n",
+ "r2 = r2_score(y_test, y_pred)\n",
+ "print(\"Mean Squared Error:\", mse)\n",
+ "print(\"R-squared:\", r2)\n",
+ "print(\"Root Mean Squared Error:\", rmse)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# model.fit(X_train, y_train)\n",
+ "\n",
+ "# # Predict on the test set\n",
+ "# y_pred = model.predict(X_test)\n",
+ "\n",
+ "# # Evaluate the model\n",
+ "# mse = mean_squared_error(y_test, y_pred)\n",
+ "# r2 = r2_score(y_test, y_pred)\n",
+ "\n",
+ "# print(\"Mean Squared Error:\", mse)\n",
+ "# print(\"R-squared:\", r2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# models = {\n",
+ "# \"Linear Regression\": LinearRegression(),\n",
+ "# \"Decision Tree Regression\": DecisionTreeRegressor(),\n",
+ "# \"Random Forest Regression\": RandomForestRegressor(),\n",
+ "# \"Stochastic Gradient Descent\": SGDRegressor(), \n",
+ "# \"Ridge Regression\": Ridge(), \n",
+ "# \"Quantile Regression\": QuantileRegressor()\n",
+ "# }"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# for model_name, model in models.items():\n",
+ "# model.fit(X_train, y_train)\n",
+ "# y_pred = model.predict(X_test)\n",
+ "\n",
+ "# # Evaluate the model\n",
+ "# mse = mean_squared_error(y_test, y_pred)\n",
+ "# r2 = r2_score(y_test, y_pred)\n",
+ "\n",
+ "# print(f\"Model: {model_name}\")\n",
+ "# print(\"Mean Squared Error:\", mse)\n",
+ "# print(\"R-squared:\", r2)\n",
+ "# print(\"------------------------\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAIhCAYAAAAhCnmjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6MklEQVR4nO3de1xUdf7H8fc4AqLCJCpyTexmulqZbl6KFatNTdOaKC/lapndttTK+m3bVtZWdtvCaruuabWpFU43M1srMVpvZdJallstKuKYpgheEYfv74/jTAw3BwQGhtfz8ZgHzTlfznyHAzbv8/2ez9dmjDECAAAAADS4FsHuAAAAAAA0VwQyAAAAAAgSAhkAAAAABAmBDAAAAACChEAGAAAAAEFCIAMAAACAICGQAQAAAECQEMgAAAAAIEgIZAAAAAAQJAQyAMBRPfXUU7LZbOrRo0etj7F161ZNnz5dOTk5ddexaqSlpSktLa1BXqs6KSkpstlsvkfbtm3Vt29fvfrqqw3y+nPmzJHNZtPGjRt922r7s3nooYf0zjvv1FnfvDZu3CibzaY5c+bU+bEBoLEjkAEAjurll1+WJH377bdatWpVrY6xdetW3XfffQ0WyBqTs88+WytWrNCKFSt8AWn8+PF67rnngtKfZ599Vs8++2yNv6++AhkANGcEMgBAtb788kt9/fXXGjZsmCRp1qxZQe5R03PcccepX79+6tevn9LT07V48WJFR0friSeeqPJ7PB6PiouL66U/3bt3V/fu3evl2ACAmiGQAQCq5Q1gDz/8sAYMGKD58+dr//79Fdrl5+fr2muvVXJyssLDw5WQkKD09HT9/PPPysrK0m9/+1tJ0lVXXeWbvjd9+nRJVU+hmzBhglJSUvy23Xffferbt69iYmIUHR2tM888U7NmzZIxpsbv7eKLL1bnzp1VWlpaYV/fvn115pln+p6/9dZb6tu3rxwOh1q3bq0TTjhBV199dY1fU7ICWteuXbVp0yZJv07Ze/TRR/XAAw+oS5cuioiI0NKlSyVZoXjEiBGKiYlRq1at1KtXL7355psVjrty5UqdffbZatWqlRISEnTnnXeqpKSkQrvKft7FxcW6//771a1bN7Vq1Urt27fXoEGDtHz5ckmSzWbTvn379Morr/jOX9ljbNu2Tdddd52SkpIUHh6uLl266L777tPhw4f9Xmfr1q26/PLLFRUVJYfDoVGjRmnbtm21+jkCQChoGewOAAAarwMHDmjevHn67W9/qx49eujqq6/WNddco7feekvjx4/3tcvPz9dvf/tblZSU6M9//rNOO+007dy5Ux999JEKCgp05plnavbs2brqqqv0l7/8xTfalpSUVOM+bdy4Udddd52OP/54SVYIufnmm5Wfn6977rmnRse6+uqrNXLkSH366ac6//zzfdu///57rV69Wk899ZQkacWKFRo1apRGjRql6dOnq1WrVtq0aZM+/fTTGvdfkkpKSrRp0yZ17NjRb/tTTz2lU045RY8//riio6N18skna+nSpRoyZIj69u2r559/Xg6HQ/Pnz9eoUaO0f/9+TZgwQZK0fv16nXfeeUpJSdGcOXPUunVrPfvss5o7d+5R+3P48GENHTpU2dnZmjp1qs4991wdPnxYK1eu1ObNmzVgwACtWLFC5557rgYNGqS7775bkhQdHS3JCmNnnXWWWrRooXvuuUcnnniiVqxYoQceeEAbN27U7NmzJVm/T+eff762bt2qGTNm6JRTTtEHH3ygUaNG1ernCAAhwQAAUIVXX33VSDLPP/+8McaYPXv2mLZt25rU1FS/dldffbUJCwsz69evr/JYX3zxhZFkZs+eXWHfwIEDzcCBAytsHz9+vOncuXOVx/R4PKakpMTcf//9pn379qa0tPSoxyyrpKTEdOrUyYwdO9Zv+x133GHCw8PNL7/8Yowx5vHHHzeSzO7du6s9XmU6d+5sLrzwQlNSUmJKSkpMbm6uGT9+vJFkbr/9dmOMMbm5uUaSOfHEE82hQ4f8vv/UU081vXr1MiUlJX7bhw8fbuLj443H4zHGGDNq1CgTGRlptm3b5mtz+PBhc+qppxpJJjc317e9/M/Ge55feumlat9LmzZtzPjx4ytsv+6660zbtm3Npk2b/LZ7f27ffvutMcaY5557zkgy7777rl+7SZMmVfm7AQChjimLAIAqzZo1S5GRkRo9erQkqW3btrrsssuUnZ2tH374wdfuww8/1KBBg9StW7d675N3NMvhcMhutyssLEz33HOPdu7cqe3bt9foWC1bttSVV14pl8ulwsJCSda9W6+99ppGjhyp9u3bS5JvuuXll1+uN998U/n5+TV6nUWLFiksLExhYWHq0qWL3nzzTd1888164IEH/NqNGDFCYWFhvuc//vijvv/+e11xxRWSrJEs7+PCCy+U2+3Whg0bJElLly7Veeedp06dOvm+3263BzT69OGHH6pVq1a1noK5cOFCDRo0SAkJCX59HDp0qCRp2bJlvj5GRUVpxIgRft8/duzYWr0uAIQCAhkAoFI//vijPvvsMw0bNkzGGO3evVu7d+9Wenq6pF8rL0rSjh07ajX9sKZWr16tCy64QJL00ksv6d///re++OIL3XXXXZKsKXE1dfXVV+vgwYOaP3++JOmjjz6S2+3WVVdd5Wvzu9/9Tu+8844OHz6sP/zhD0pKSlKPHj00b968gF7jnHPO0RdffKEvv/xS69ev1+7du/XUU08pPDzcr118fLzf859//lmSNG3aNF+g8z5uvPFGSdIvv/wiSdq5c6fi4uIqvHZl28rbsWOHEhIS1KJF7T4W/Pzzz3r//fcr9PE3v/lNhT6WDYw16SMAhCruIQMAVOrll1+WMUaZmZnKzMyssP+VV17RAw88ILvdro4dO2rLli21fq1WrVr5RqjK8n6Q95o/f77CwsK0cOFCtWrVyrf9WEqxd+/eXWeddZZmz56t6667TrNnz1ZCQoIv+HmNHDlSI0eOVHFxsVauXKkZM2Zo7NixSklJUf/+/at9DYfDoT59+hy1Lzabze95hw4dJEl33nmnnE5npd/TtWtXSVL79u0rLY4RSMGMjh076vPPP1dpaWmtQlmHDh102mmn6cEHH6x0f0JCgq+Pq1evrlUfASBUMUIGAKjA4/HolVde0YknnqilS5dWeNx2221yu9368MMPJUlDhw7V0qVLfdPnKhMRESGp8lGslJQU/fe///Ur875z505fhT8vm82mli1bym63+7YdOHBAr7322jG936uuukqrVq3S559/rvfff1/jx4/3e43y72PgwIF65JFHJElr1649pteuTteuXXXyySfr66+/Vp8+fSp9REVFSZIGDRqkTz75xDeqJlnn8Y033jjq6wwdOlQHDx486sLMERERlZ6/4cOH65tvvtGJJ55YaR+9gWzQoEHas2eP3nvvPb/vD6TwCACEKkbIAAAVfPjhh9q6daseeeSRSsvR9+jRQ88884xmzZql4cOH6/7779eHH36o3/3ud/rzn/+snj17avfu3Vq8eLFuvfVWnXrqqTrxxBMVGRmp119/Xd26dVPbtm2VkJCghIQEjRs3Ti+88IKuvPJKTZo0STt37tSjjz7qq+LnNWzYMD3xxBMaO3asrr32Wu3cuVOPP/64L+zV1pgxY3TrrbdqzJgxKi4u9lUu9Lrnnnu0ZcsWnXfeeUpKStLu3bs1c+ZMhYWFaeDAgcf02kfzwgsvaOjQoRo8eLAmTJigxMRE7dq1S999952++uorvfXWW5Kkv/zlL3rvvfd07rnn6p577lHr1q3197//Xfv27Tvqa4wZM0azZ8/W9ddfrw0bNmjQoEEqLS3VqlWr1K1bN989hD179lRWVpbef/99xcfHKyoqSl27dtX999+vJUuWaMCAAZo8ebK6du2qgwcPauPGjVq0aJGef/55JSUl6Q9/+IOefPJJ/eEPf9CDDz6ok08+WYsWLdJHH31Urz9DAGjUgl1VBADQ+Fx88cUmPDzcbN++vco2o0ePNi1btvRV9cvLyzNXX321iYuLM2FhYSYhIcFcfvnl5ueff/Z9z7x588ypp55qwsLCjCRz7733+va98sorplu3bqZVq1ame/fu5o033qi0yuLLL79sunbtaiIiIswJJ5xgZsyYYWbNmnXUSoJHM3bsWCPJnH322RX2LVy40AwdOtQkJiaa8PBwExsbay688EKTnZ191ON27tzZDBs2rNo23iqLjz32WKX7v/76a3P55Zeb2NhYExYWZuLi4sy5557rq37p9e9//9v069fPREREmLi4OHP77bebF198MaCfzYEDB8w999xjTj75ZBMeHm7at29vzj33XLN8+XJfm5ycHHP22Web1q1bG0l+x9ixY4eZPHmy6dKliwkLCzMxMTGmd+/e5q677jJ79+71tduyZYu59NJLTdu2bU1UVJS59NJLzfLly6myCKDZshlTi5U0AQAAAADHjHvIAAAAACBICGQAAAAAECQEMgAAAAAIEgIZAAAAAAQJgQwAAAAAgoRABgAAAABBwsLQdai0tFRbt25VVFSUbDZbsLsDAAAAIEiMMdqzZ48SEhLUokXV42AEsjq0detWJScnB7sbAAAAABqJvLw8JSUlVbmfQFaHoqKiJFk/9Ojo6CD3BgAAAECwFBUVKTk52ZcRqkIgq0PeaYrR0dEEMgAAAABHvZWJoh4AAAAAECQEMgAAAAAIEgIZAAAAAAQJ95ABAAAgaIwxOnz4sDweT7C7AtSI3W5Xy5Ytj3m5KwIZAAAAguLQoUNyu93av39/sLsC1Err1q0VHx+v8PDwWh+DQAYAAIAGV1paqtzcXNntdiUkJCg8PPyYRxqAhmKM0aFDh7Rjxw7l5ubq5JNPrnbx5+oQyAAAANDgDh06pNLSUiUnJ6t169bB7g5QY5GRkQoLC9OmTZt06NAhtWrVqlbHoagHAAAAgqa2owpAY1AXv7/8BQAAAABAkBDIAAAAACBICGQAAABAiLDZbHrnnXeqbbNz507FxsZq48aNDdKnurJw4UL16tVLpaWlwe5KnSKQAQAAADW0fPly2e12DRkypMbfm5KSooyMjLrvVIBmzJihiy66SCkpKXVyvEBCYE1V9jMaPny4bDab5s6dW6evFWwEMgAAADRZHo+UlSXNm2d9baj1pV9++WXdfPPN+vzzz7V58+aGedE6cODAAc2aNUvXXHNNsLtSK1dddZWefvrpYHejThHIAAAAUKVgBZ5AuFxSSoo0aJA0dqz1NSXF2l6f9u3bpzfffFM33HCDhg8frjlz5lRo895776lPnz5q1aqVOnToIKfTKUlKS0vTpk2bdMstt8hms/nWXps+fbrOOOMMv2NkZGT4jWJ98cUX+v3vf68OHTrI4XBo4MCB+uqrr2rU9w8//FAtW7ZU//79JVnraZ100kl6/PHH/dp98803atGihX766adqj+ft3yWXXCKbzebX3/fff1+9e/dWq1atdMIJJ+i+++7T4cOHffunT5+u448/XhEREUpISNDkyZMlVf0zkqQRI0Zo9erV+t///lej992YEcgAAABQqWAFnkC4XFJ6urRli//2/Hxre3328Y033lDXrl3VtWtXXXnllZo9e7aMMb79H3zwgZxOp4YNG6a1a9fqk08+UZ8+fY7026WkpCTdf//9crvdcrvdAb/unj17NH78eGVnZ2vlypU6+eSTdeGFF2rPnj0BH+Ozzz7z9UWyphteffXVmj17tl+7l19+WampqTrxxBOrPd4XX3whSZo9e7bcbrfv+UcffaQrr7xSkydP1vr16/XCCy9ozpw5evDBByVJmZmZevLJJ/XCCy/ohx9+0DvvvKOePXtKqv5n1LlzZ8XGxio7Ozvg99zYsTA0AAAAKvAGnjI5Q9KvgSczUzoy6NPgPB5pypSKfZOsbTabNHWqNHKkZLfX/evPmjVLV155pSRpyJAh2rt3rz755BOdf/75kqQHH3xQo0eP1n333ef7ntNPP12SFBMTI7vdrqioKMXFxdXodc8991y/5y+88ILatWunZcuWafjw4QEdY+PGjUpISPDbdtVVV+mee+7R6tWrddZZZ6mkpET//Oc/9dhjjx31eB07dpQkHXfccX7v58EHH9Sf/vQnjR8/XpJ0wgkn6K9//avuuOMO3Xvvvdq8ebPi4uJ0/vnnKywsTMcff7zOOussSUf/GSUmJja5giTVYYQMAAAAfo4WeCQr8ARr+mJ2dsWRsbKMkfLyrHZ1bcOGDVq9erVGjx4tSWrZsqVGjRqll19+2dcmJydH5513Xp2/9vbt23X99dfrlFNOkcPhkMPh0N69e2t0D9uBAwfUqlUrv23x8fEaNmyY7z0sXLhQBw8e1GWXXVbrvq5Zs0b333+/2rZt63tMmjRJbrdb+/fv12WXXaYDBw7ohBNO0KRJk/T222/7TWesTmRkpPbv31/rvjU2jJABAADAT00CT1pag3XLJ9BZfjWYDRiwWbNm6fDhw0pMTPRtM8YoLCxMBQUFateunSIjI2t83BYtWvhNe5SkkpISv+cTJkzQjh07lJGRoc6dOysiIkL9+/fXoUOHAn6dDh06qKCgoML2a665RuPGjdOTTz6p2bNna9SoUWrdunWN34dXaWmp7rvvPt+9c2W1atVKycnJ2rBhg5YsWaKPP/5YN954ox577DEtW7ZMYWFh1R57165dvpG5UMAIGQAAAPwEM/AEIj6+btsF6vDhw3r11Vf1t7/9TTk5Ob7H119/rc6dO+v111+XJJ122mn65JNPqjxOeHi4POWGFzt27Kht27b5hbKcnBy/NtnZ2Zo8ebIuvPBC/eY3v1FERIR++eWXGr2HXr16af369RW2X3jhhWrTpo2ee+45ffjhh7r66qsDPmZYWFiF93PmmWdqw4YNOumkkyo8WrSwIkhkZKRGjBihp556SllZWVqxYoXWrVsnqfKfkSQdPHhQP/30k3r16lWTt92oMUIWgjwe64qV2239Q5SaWj/zpwEAQGgKVuAJVGqqlJRk3c9W2bRKm83an5pat6+7cOFCFRQUaOLEiXI4HH770tPTNWvWLN1000269957dd555+nEE0/U6NGjdfjwYX344Ye64447JFmVCT/77DONHj1aERER6tChg9LS0rRjxw49+uijSk9P1+LFi/Xhhx8qOjra9xonnXSSXnvtNfXp00dFRUW6/fbbazwaN3jwYN15552+0Twvu92uCRMm6M4779RJJ53kq8IYiJSUFH3yySc6++yzFRERoXbt2umee+7R8OHDlZycrMsuu0wtWrTQf/7zH61bt04PPPCA5syZI4/Ho759+6p169Z67bXXFBkZqc6dO1f5M5KklStX+kYGQwUjZCGmMVdDAgAATYM38JSpNu7HZpOSk+s+8ATKbpdmzvy1L2V5n2dk1P0F6VmzZun888+vEMYk6dJLL1VOTo6++uorpaWl6a233tJ7772nM844Q+eee65WrVrla3v//fdr48aNOvHEE31T77p166Znn31Wf//733X66adr9erVmjZtmt9rvPzyyyooKFCvXr00btw4TZ48WbGxsTV6Dz179lSfPn305ptvVtg3ceJEHTp0qEajY5L0t7/9TUuWLFFycrJv5Grw4MFauHChlixZot/+9rfq16+fnnjiCV/gOu644/TSSy/p7LPP9o0ovv/++2rfvn2VPyNJmjdvnq644opjmk7Z2NhM+cmqqLWioiI5HA4VFhb6Xc1oKFVVQ/L+wxTMakgAAKBp8X6ukPw/W9TV54qDBw8qNzdXXbp0qVBkoiZ9nDLF/3635GQrjPGZp2qLFi3StGnTfGuNef373/9WWlqatmzZok6dOgWxh5XbsWOHTj31VH355Zfq0qVLsLsjqfrf40CzASNkIaKxV0MCAABNi9Npha4ytSskWSNnjeUir9MpbdwoLV0qzZ1rfc3NbRx9a8wuvPBCXXfddcrPz5ckFRcX68cff9Tdd9+tyy+/vFGGMUnKzc3Vs88+22jCWF1hhKwOBXOELCvLmp54NEuXBqcaEgAAaJo8hzxa92y29v/kVusT49XzxlTZw499LmBdjJChbsyZM0cTJ07UGWecoffee8+vguTrr7+u6667rtLv69y5s7799tuG6majVBcjZBT1CBGNvRoSAABoglwu2adM0Rll5wT+Lcm6gYthqJAxYcIETZgwodJ9I0aMUN++fSvdd7Ty9AgMgSxENPZqSAAAoImp6ub0/Hxre2OZt4h6FRUVpaioqGB3I6RxD1mIaOzVkAAAQBPCzelAgyGQhYhglX8FAAAhKDvbv3RhecZIeXlWOwDHhEAWQppCNSQAANAEcHM60GC4hyzEOJ3SyJHWBSu327pnLDWVkTEAAFAD3JwONBgCWQiy2yltDwAAjoH35vT8/MrvI7PZrP3cnA4cM6YsAgAAwB83pzcK06dP1xlnnOF7PmHCBF188cUN3o+NGzfKZrMpJyen2nYbNmxQXFyc9uzZ0zAdq0NZWVmy2WzavXu3JGnhwoXq1auXSktL6/21CWQAAACoiJvTKzVhwgTZbDbZbDaFhYXphBNO0LRp07Rv3756f+2ZM2dqzpw5AbUNNETVpbvuukt//OMfQ6JM/vDhw2Wz2TR37tx6fy2mLAIAAKByTeHmdI+nwfs3ZMgQzZ49WyUlJcrOztY111yjffv26bnnnqvQtqSkpM4WUHY4HHVynPqwZcsWvffee8rIyAhaH4wx8ng8atmybiLOVVddpaefflpXXnllnRyvKoyQAQAAoGrem9PHjLG+NqYw5nJJKSnSoEHS2LHW15QUa3s9ioiIUFxcnJKTkzV27FhdccUVeueddyT9Os3w5Zdf1gknnKCIiAgZY1RYWKhrr71WsbGxio6O1rnnnquvv/7a77gPP/ywOnXqpKioKE2cOFEHDx70219+ymJpaakeeeQRnXTSSYqIiNDxxx+vBx98UJLUpUsXSVKvXr1ks9mUVqbAwOzZs9WtWze1atVKp556qp599lm/11m9erV69eqlVq1aqU+fPlq7du1RfyZvvvmmTj/9dCUlJUmS9u3bp+joaGVmZvq1e//999WmTZujTmv0jvDNnz9fAwYMUKtWrfSb3/xGWVlZvjbeaYYfffSR+vTpo4iICGVnZ8sYo0cffVQnnHCCIiMjdfrpp1fox6JFi3TKKacoMjJSgwYN0saNGyv0YcSIEVq9erX+97//HfX9HwsCGQAAAJoel0tKT6+4Xlp+vrW9nkNZWZGRkSopKfE9//HHH/Xmm29qwYIFvimDw4YN07Zt27Ro0SKtWbNGZ555ps477zzt2rVLkhVo7r33Xj344IP68ssvFR8fXyEolXfnnXfqkUce0d13363169dr7ty56tSpkyQrVEnSxx9/LLfbLdeRn8dLL72ku+66Sw8++KC+++47PfTQQ7r77rv1yiuvSLKC1PDhw9W1a1etWbNG06dP17Rp0476M/jss8/Up08f3/M2bdpo9OjRmj17tl+72bNnKz09PeBpjbfffrtuu+02rV27VgMGDNCIESO0c+dOvzZ33HGHZsyYoe+++06nnXaa/vKXv2j27Nl67rnn9O233+qWW27RlVdeqWXLlkmS8vLy5HQ6deGFFyonJ0fXXHON/vSnP1V47c6dOys2NlbZ9b3enkGdKSwsNJJMYWFhsLsCAADQqB04cMCsX7/eHDhwoObffPiwMUlJxlg1ICs+bDZjkpOtdnVs/PjxZuTIkb7nq1atMu3btzeXX365McaYe++914SFhZnt27f72nzyyScmOjraHDx40O9YJ554onnhhReMMcb079/fXH/99X77+/bta04//fRKX7uoqMhERESYl156qdJ+5ubmGklm7dq1ftuTk5PN3Llz/bb99a9/Nf379zfGGPPCCy+YmJgYs2/fPt/+5557rtJjlXX66aeb+++/32/bqlWrjN1uN/n5+cYYY3bs2GHCwsJMVlZWlccp3/+HH37Yt62kpMQkJSWZRx55xBhjzNKlS40k88477/ja7N2717Rq1cosX77c73gTJ040Y8aMMcYYc+edd5pu3bqZ0tJS3/7/+7//M5JMQUGB3/f16tXLTJ8+vcp+Vvd7HGg24B4yAAAANC3Z2RVHxsoyRsrLs9rVw1pACxcuVNu2bXX48GGVlJRo5MiRevrpp337O3furI4dO/qer1mzRnv37lX79u39jnPgwAH99NNPkqTvvvtO119/vd/+/v37a+nSpZX24bvvvlNxcbHOO++8gPu9Y8cO5eXlaeLEiZo0aZJv++HDh333p3333Xc6/fTT1bp1a79+HM2BAwfUqlUrv21nnXWWfvOb3+jVV1/Vn/70J7322ms6/vjj9bvf/S7gPpd97ZYtW6pPnz767rvv/NqUHZlbv369Dh48qN///vd+bQ4dOqRevXr53mO/fv1kK1NBtKr3GBkZqf379wfc39ogkAEAAKBpcbvrtl0NDRo0SM8995zCwsKUkJBQoWhHmzZt/J6XlpYqPj7e7/4nr+OOO65WfYiMjKzx93hLuL/00kvq27ev3z77kXsDTWXrzgWgQ4cOKigoqLD9mmuu0TPPPKM//elPmj17tq666iq/IFQb5b+/7M/b+x4/+OADJZarEBoRESGpZu9x165dfuG6PnAPGQAAAJqW+Pi6bVdDbdq00UknnaTOnTsHVEHxzDPP1LZt29SyZUuddNJJfo8OHTpIkrp166aVK1f6fV/552WdfPLJioyM1CeffFLp/vDwcEmSx+PxbevUqZMSExP1v//9r0I/vEVAunfvrq+//loHDhwIqB9evXr10vr16ytsv/LKK7V582Y99dRT+vbbbzV+/PijHqussq99+PBhrVmzRqeeemqV7bt3766IiAht3ry5wntMTk72tQnkZ33w4EH99NNPvpG1+sIIGQAAAJqW1FRrPbT8fGt6Ynk2m7U/NbXh+1aJ888/X/3799fFF1+sRx55RF27dtXWrVu1aNEiXXzxxerTp4+mTJmi8ePHq0+fPjrnnHP0+uuv69tvv9UJJ5xQ6TFbtWql//u//9Mdd9yh8PBwnX322dqxY4e+/fZbTZw4UbGxsYqMjNTixYuVlJSkVq1ayeFwaPr06Zo8ebKio6M1dOhQFRcX68svv1RBQYFuvfVWjR07VnfddZcmTpyov/zlL9q4caMef/zxo77HwYMH65prrpHH4/GNtklSu3bt5HQ6dfvtt+uCCy7wVWEM1N///nedfPLJ6tatm5588kkVFBTo6quvrrJ9VFSUpk2bpltuuUWlpaU655xzVFRUpOXLl6tt27YaP368rr/+ev3tb3/Trbfequuuu05r1qypdH23lStXKiIiIqApm8eCETIAAAA0LXa7NHOm9d/lp795n2dkNJoS/TabTYsWLdLvfvc7XX311TrllFM0evRobdy40VcVcdSoUbrnnnv0f//3f+rdu7c2bdqkG264odrj3n333brtttt0zz33qFu3bho1apS2b98uybrf6qmnntILL7yghIQEjRw5UpI1hfAf//iH5syZo549e2rgwIGaM2eOb4Ssbdu2ev/997V+/Xr16tVLd911lx555JGjvscLL7xQYWFh+vjjjyvsmzhxog4dOlRtkKrKww8/rEceeUSnn366srOz9e677/pGFavy17/+Vffcc49mzJihbt26afDgwXr//fd97/H444/XggUL9P777+v000/X888/r4ceeqjCcebNm6crrrjC7366+mAztZ0oigqKiorkcDhUWFio6OjoYHcHAACg0Tp48KByc3PVpUuXCsUgAuZySVOm+Bf4SE62wpjTWSf9ROCeffZZvfvuu/roo4/8tr/++uuaMmWKtm7d6ptKeTQbN25Uly5dtHbtWp1xxhn10Nvq7dixQ6eeeqq+/PJLX5CrTHW/x4FmA6YsAgAAoGlyOqWRI61qim63dc9YamqjGRlrbq699loVFBRoz549ioqK0v79+5Wbm6sZM2bouuuuCziMNQa5ubl69tlnqw1jdYUpiwAAAGi67HartP2YMdZXwljQtGzZUnfddZdv0edHH31UZ5xxhjp16qQ777zTr+1DDz2ktm3bVvoYOnRoMLrv56yzztKoUaMa5LWYsliHmLIIAAAQmDqZsogma9euXdq1a1el+yIjIyuUrG+smLIIAAAAoMmJiYlRTExMsLvRKDBlEQAAAEHDZC00ZXXx+0sgAwAAQIPzLqi8f//+IPcEqD3v728gC4RXhSmLAAAAaHB2u13HHXecb92s1q1by1Z+TTGgkTLGaP/+/dq+fbuOO+44v8Wwa4pABgAAgKCIi4uTJF8oA5qa4447zvd7XFsEMgAAAASFzWZTfHy8YmNjVVJSEuzuADUSFhZ2TCNjXgQyAAAABJXdbq+TD7ZAU0QgAwAAaGgej5SdLbndUny8lJrKgsZAM0UgAwAAaEgulzRlirRly6/bkpKkmTMlpzN4/QIQFEEtez9jxgz99re/VVRUlGJjY3XxxRdrw4YNfm2MMZo+fboSEhIUGRmptLQ0ffvtt35tiouLdfPNN6tDhw5q06aNRowYoS1l/5GTVFBQoHHjxsnhcMjhcGjcuHHavXu3X5vNmzfroosuUps2bdShQwdNnjxZhw4dqpf3DgAAmiGXS0pP9w9jkpSfb213uYLTL6CJ83ikrCxp3jzrq8cT7B4FLqiBbNmyZfrjH/+olStXasmSJTp8+LAuuOAC7du3z9fm0Ucf1RNPPKFnnnlGX3zxheLi4vT73/9ee/bs8bWZOnWq3n77bc2fP1+ff/659u7dq+HDh8tT5kyMHTtWOTk5Wrx4sRYvXqycnByNGzfOt9/j8WjYsGHat2+fPv/8c82fP18LFizQbbfd1jA/DAAAENo8HmtkrLKFZL3bpk5tWp8kgUbA5ZJSUqRBg6SxY62vKSlN6PqGaUS2b99uJJlly5YZY4wpLS01cXFx5uGHH/a1OXjwoHE4HOb55583xhize/duExYWZubPn+9rk5+fb1q0aGEWL15sjDFm/fr1RpJZuXKlr82KFSuMJPP9998bY4xZtGiRadGihcnPz/e1mTdvnomIiDCFhYUB9b+wsNBICrg9AABoRpYuNcaKXtU/li4Ndk+BJmPBAmNstop/Rjab9ViwIHh9CzQbBHWErLzCwkJJUkxMjCQpNzdX27Zt0wUXXOBrExERoYEDB2r58uWSpDVr1qikpMSvTUJCgnr06OFrs2LFCjkcDvXt29fXpl+/fnI4HH5tevTooYSEBF+bwYMHq7i4WGvWrKm0v8XFxSoqKvJ7AAAAVMrtrtt2QDMXKoPOjSaQGWN066236pxzzlGPHj0kSdu2bZMkderUya9tp06dfPu2bdum8PBwtWvXrto2sbGxFV4zNjbWr03512nXrp3Cw8N9bcqbMWOG7540h8Oh5OTkmr5tAADQXMTH1207oJnLzq54O2ZZxkh5eVa7xqzRBLKbbrpJ//nPfzRv3rwK+2w2m99zY0yFbeWVb1NZ+9q0KevOO+9UYWGh75GXl1dtnwAAQDOWmmpVU6zqM4zNJiUnW+0AHFWoDDo3ikB2880367333tPSpUuVlJTk2x4XFydJFUaotm/f7hvNiouL06FDh1RQUFBtm59//rnC6+7YscOvTfnXKSgoUElJSYWRM6+IiAhFR0f7PQAAACplt1ul7aWKocz7PCOD9ciAAIXKoHNQA5kxRjfddJNcLpc+/fRTdenSxW9/ly5dFBcXpyVLlvi2HTp0SMuWLdOAAQMkSb1791ZYWJhfG7fbrW+++cbXpn///iosLNTq1at9bVatWqXCwkK/Nt98843cZSL0v/71L0VERKh37951/+YBAEDz43RKmZlSYqL/9qQkazvrkAEBC5VBZ5sxld0G1zBuvPFGzZ07V++++666du3q2+5wOBQZGSlJeuSRRzRjxgzNnj1bJ598sh566CFlZWVpw4YNioqKkiTdcMMNWrhwoebMmaOYmBhNmzZNO3fu1Jo1a2Q/cpVp6NCh2rp1q1544QVJ0rXXXqvOnTvr/fffl2SVvT/jjDPUqVMnPfbYY9q1a5cmTJigiy++WE8//XRA76eoqEgOh0OFhYWMlgEAgKp5PNaNLW63dfk+NZWRMaAWvEv7Sf7FPbwhLZjXOQLNBkENZFXdmzV79mxNmDBBkjWKdt999+mFF15QQUGB+vbtq7///e++wh+SdPDgQd1+++2aO3euDhw4oPPOO0/PPvusX5GNXbt2afLkyXrvvfckSSNGjNAzzzyj4447ztdm8+bNuvHGG/Xpp58qMjJSY8eO1eOPP66IiIiA3g+BDAAAAGhYLpdVbbFsgY/kZGsGcDAHnZtEIAs1BDIAAACg4TXGQedAs0HLBuwTAAAAANQ5u11KSwt2L2qHQBaKGuMlAgAAAAAVEMhCTWWTaJOSrDK7VG4CAAAAGpVGsQ4Z6oi3zEz5Jcvz863tLldw+gUAAACgUgSyUOHxWCNjldVo8W6bOtVqBwAAAKBRIJCFiuzsiiNjZRkj5eVZ7QAAAAA0CgSyUOF21207AAAAAPWOQBYq4uPrth0AAACAekcgCxWpqVY1RZut8v02m7VkeWpqw/YLAAAAQJUIZKHCbrdK20sVQ5n3eUYG65EBAAAAjQiBLJQ4nVJmppSY6L89KcnazjpkAAAAQKPCwtChxumURo60qim63dY9Y6mpjIwBAAAAjRCBLBTZ7VJaWrB7AQAAAOAomLIIAAAAAEFCIAMAAACAICGQAQAAAECQEMgAAAAAIEgIZAAAAAAQJAQyAAAAAAgSAhkAAAAABAmBDAAAAACChEAGAAAAAEFCIAMAAACAICGQAQAAAECQEMgAAAAAIEgIZAAAAAAQJAQyAAAAAAgSAhkAAAAABAmBDAAAAACChEAGAAAAAEFCIAMAAACAICGQAQAAAECQEMgAAAAAIEgIZAAAAAAQJAQyAAAAAAgSAhkAAAAABEnLYHcAAACgufF4pOxsye2W4uOl1FTJbg92rwAEA4EMAACgAblc0pQp0pYtv25LSpJmzpSczuD1C2jSmvBVDqYsAgAANBCXS0pP9w9jkpSfb213uYLTL6BJc7mklBRp0CBp7Fjra0pKk/mDIpABAAA0AI/HGhkzpuI+77apU612AAIUAlc5CGQAAAANIDu74mfGsoyR8vKsdgACECJXOQhkAAAADcDtrtt2QLMXIlc5CGQAAAANID6+btsBzV6IXOUgkAEAADSA1FSrmqLNVvl+m01KTrbaAQhAiFzlIJABAAA0ALvdKm0vVQxl3ucZGU2mUjcQfCFylYNABgAA0ECcTikzU0pM9N+elGRtZx0yoAZC5CqHzZjKypKgNoqKiuRwOFRYWKjo6OhgdwcAADRSTXgNW6DxqWy19eRkK4wF8SpHoNmAQFaHCGQAAABAEDTCqxyBZoOWDdgnAAAAAKh7druUlhbsXtQK95ABAAAAQJAQyAAAAAAgSAhkAAAAABAkBDIAAAAACBICGQAAAAAECYEMAAAAAIKEQAYAAAAAQUIgAwAAAIAgIZABAAAAQJAQyAAAAAAgSAhkAAAAABAkBDIAAAAACBICGQAAAAAECYEMAAAAAIKEQAYAAAAAQUIgAwAAAIAgIZABAAAAQJAQyAAAAAAgSAhkAAAAABAkBDIAAAAACBICGQAAAAAECYEMAAAAAIKEQAYAAAAAQUIgAwAAAIAgaRnsDgAAANQbj0fKzpbcbik+XkpNlez2YPcKAHwIZAAAIDS5XNKUKdKWLb9uS0qSZs6UnM7g9QsAymDKIgAACD0ul5Se7h/GJCk/39rucgWnXwBQDoEMAACEFo/HGhkzpuI+77apU612ABBkBDIAABBasrMrjoyVZYyUl2e1A4AgI5ABAIDQ4nbXbTsAqEdBDWSfffaZLrroIiUkJMhms+mdd97x2z9hwgTZbDa/R79+/fzaFBcX6+abb1aHDh3Upk0bjRgxQlvKXRUrKCjQuHHj5HA45HA4NG7cOO3evduvzebNm3XRRRepTZs26tChgyZPnqxDhw7Vx9sGAAD1KT6+btsBQD0KaiDbt2+fTj/9dD3zzDNVthkyZIjcbrfvsWjRIr/9U6dO1dtvv6358+fr888/1969ezV8+HB5yswLHzt2rHJycrR48WItXrxYOTk5GjdunG+/x+PRsGHDtG/fPn3++eeaP3++FixYoNtuu63u3zQAAKhfqalWNUWbrfL9NpuUnGy1A4AgC2rZ+6FDh2ro0KHVtomIiFBcXFyl+woLCzVr1iy99tprOv/88yVJ//znP5WcnKyPP/5YgwcP1nfffafFixdr5cqV6tu3ryTppZdeUv/+/bVhwwZ17dpV//rXv7R+/Xrl5eUpISFBkvS3v/1NEyZM0IMPPqjo6Og6fNcAAKBe2e1Wafv0dCt8lS3u4Q1pGRmsRwagUWj095BlZWUpNjZWp5xyiiZNmqTt27f79q1Zs0YlJSW64IILfNsSEhLUo0cPLV++XJK0YsUKORwOXxiTpH79+snhcPi16dGjhy+MSdLgwYNVXFysNWvWVNm34uJiFRUV+T0AAEAj4HRKmZlSYqL/9qQkazvrkAFoJBr1wtBDhw7VZZddps6dOys3N1d33323zj33XK1Zs0YRERHatm2bwsPD1a5dO7/v69Spk7Zt2yZJ2rZtm2JjYyscOzY21q9Np06d/Pa3a9dO4eHhvjaVmTFjhu67775jfZsAAKA+OJ3SyJFWNUW327pnLDWVkTEAjUqjDmSjRo3y/XePHj3Up08fde7cWR988IGc1VzZMsbIVmbeuK2SOeS1aVPenXfeqVtvvdX3vKioSMnJyVW/IQAA0LDsdiktLdi9AIAqNfopi2XFx8erc+fO+uGHHyRJcXFxOnTokAoKCvzabd++3TfiFRcXp59//rnCsXbs2OHXpvxIWEFBgUpKSiqMnJUVERGh6OhovwcAAAAABKpJBbKdO3cqLy9P8UfK1Pbu3VthYWFasmSJr43b7dY333yjAQMGSJL69++vwsJCrV692tdm1apVKiws9GvzzTffyF1mPZJ//etfioiIUO/evRvirQEAAABohoI6ZXHv3r368ccffc9zc3OVk5OjmJgYxcTEaPr06br00ksVHx+vjRs36s9//rM6dOigSy65RJLkcDg0ceJE3XbbbWrfvr1iYmI0bdo09ezZ01d1sVu3bhoyZIgmTZqkF154QZJ07bXXavjw4eratask6YILLlD37t01btw4PfbYY9q1a5emTZumSZMmMeoFAAAAoN4ENZB9+eWXGjRokO+5936s8ePH67nnntO6dev06quvavfu3YqPj9egQYP0xhtvKCoqyvc9Tz75pFq2bKnLL79cBw4c0Hnnnac5c+bIXuaG3ddff12TJ0/2VWMcMWKE39pndrtdH3zwgW688UadffbZioyM1NixY/X444/X948AAAAAQDNmM6bs4hw4FkVFRXI4HCosLGRkDQAAAGjGAs0GTeoeMgAAAAAIJQQyAAAAAAgSAhkAAAAABAmBDAAAAACChEAGAAAAAEES1LL3AAAA9cnjkbKzJbdbio+XUlOlMivjAEDQEcgAAEBIcrmkKVOkLVt+3ZaUJM2cKTmdwesXAJTFlEUAABByXC4pPd0/jElSfr613eUKTr8AoDwCGQAACCkejzUyZkzFfd5tU6da7QAg2AhkAAAgpGRnVxwZK8sYKS/PagcAwUYgAwAAIcXtrtt2AFCfCGQAACCkxMfXbTsAqE8EMgAAEFJSU61qijZb5fttNik52WoHAMFGIAMAACHFbrdK20sVQ5n3eUYG65EBaBwIZAAAIOQ4nVJmppSY6L89KcnazjpkABoLFoYGAAAhyemURo60qim63dY9Y6mpjIwBaFwIZAAAIGTZ7VJaWrB7AQBVY8oiAAAAAAQJgQwAAAAAgoRABgAAAABBQiADAAAAgCAhkAEAAABAkBDIAAAAACBICGQAAAAAECQEMgAAAAAIEgIZAAAAAAQJgQwAAAAAgoRABgAAAABBQiADAAAAgCAhkAEAAABAkBDIAAAAACBIWga7AwAAAABwLDweKTtbcrul+HgpNVWy24Pdq8AQyAAAAAA0WS6XNGWKtGXLr9uSkqSZMyWnM3j9ChRTFgEAAAA0SS6XlJ7uH8YkKT/f2u5yBadfNUEgAwAAANDkeDzWyJgxFfd5t02darVrzAhkAAAAAJqc7OyKI2NlGSPl5VntGjMCGQAAAIAmx+2u23bBQiADAAAA0OTEx9dtu2AhkAEAAABoclJTrWqKNlvl+202KTnZateYEcgAAAAANDl2u1XaXqoYyrzPMzIa/3pkBDIAAAAATZLTKWVmSomJ/tuTkqztTWEdMhaGBgAAANBkOZ3SyJFWNUW327pnLDW18Y+MeRHIAAAAADRpdruUlhbsXtQOgQwAAKCp8Hia7jAAgEoRyAAAAJoCl0uaMsV/JdykJKuqQVO4UQaoT034YgVFPQAAABo7l0tKT/cPY5KUn29td7mC0y+gMXC5pJQUadAgaexY62tKSpP5uyCQAQAANGYejzUyZkzFfd5tU6da7YDmJgQuVhDIAAAAGrPs7IofNssyRsrLs9oBzUmIXKyodSB77bXXdPbZZyshIUGbNm2SJGVkZOjdd9+ts84BAAA0e2533bYDQkWIXKyoVSB77rnndOutt+rCCy/U7t275TmSOo877jhlZGTUZf9QWx6PlJUlzZtnfW3kVwYAAEAV4uPrth0QKkLkYkWtAtnTTz+tl156SXfddZfsZaqX9OnTR+vWrauzzqGWmviNjQAAoIzUVKuaos1W+X6bTUpOttoBzUmIXKyoVSDLzc1Vr169KmyPiIjQvn37jrlTOAYhcGMjAAAow263SttLFUOZ93lGRpMp8Q3UmRC5WFGrQNalSxfl5ORU2P7hhx+qe/fux9on1FaI3NgIAADKcTqlzEwpMdF/e1KStZ11yNAchcjFilotDH377bfrj3/8ow4ePChjjFavXq158+ZpxowZ+sc//lHXfUSganJjY1pag3ULAADUAadTGjmyyS5+C9QL78WKyhZNz8hoEhcrahXIrrrqKh0+fFh33HGH9u/fr7FjxyoxMVEzZ87U6NGj67qPCFSI3NgIAACqYLdzURUor4lfrKhVIJOkSZMmadKkSfrll19UWlqq2NjYuuwXaiNEbmwEAAAAaqQJX6yodVGPH374QZLUoUMHXxj74YcftHHjxjrrHGroKDc2lsqm/e0b/42NAAAAQHNRq0A2YcIELV++vML2VatWacKECcfaJ9TWkRsbjbHCV1ne5+N2Zsj1btMYvgUAAABCXa0C2dq1a3X22WdX2N6vX79Kqy+i4XhGOnVt+0zly78K0xYlKV2ZetvmpNAiAAAA0EjU6h4ym82mPXv2VNheWFgoD5/0gyo7W/rHTqde1kilKlvxcsuteGUrVaWySxRaBAAAABqNWgWy1NRUzZgxQ/PmzZP9SPUSj8ejGTNm6JxzzqnTDqJmvAUUS2XXMqUdtR0AAACA4KlVIHv00Uf1u9/9Tl27dlXqkQIR2dnZKioq0qefflqnHUTNUGgRAAAAaDpqdQ9Z9+7d9Z///EeXX365tm/frj179ugPf/iDvv/+e/Xo0aOu+4ga8BZarIrNJiVTaBEAAABoFGq9DllCQoIeeuihuuwL6oDdLo0ZIz32WNVtMjKazDp5AAAAQEirdSDbvXu3Vq9ere3bt6u0tNRv3x/+8Idj7hhqx+WSHn+86v3TplmLmQMAAAAIPpsxxtT0m95//31dccUV2rdvn6KiomQrsxCxzWbTrl276rSTTUVRUZEcDocKCwsVHR3d4K/v8UgpKdKWLZXvt9ms6Yy5uYyQAQAAAPUp0GxQq3vIbrvtNl199dXas2ePdu/erYKCAt+juYaxxiA7u+owJkmmTMl7AAAAAMFXq0CWn5+vyZMnq3Xr1nXdHxyDQEvZU/IeAAAAaBxqFcgGDx6sL7/8sq77gmNEyXsAAFATHo+UlSXNm2d99XiC3SOg+alVUY9hw4bp9ttv1/r169WzZ0+FhYX57R8xYkSddA414y15n59vTU9sIY9Sla14ueVWvLKVqnbt7ZS8BwAAcrmkKVP8b3fo2FG64gpp5EjrcwX3nAP1r1ZFPVq0qHpgzWazydNML68Eu6iHZP3jeuml0iVyaaamKFm//iubpyRN0UxducBJpUUAAJoxl0tKT5dspuLF21JZKSwpSZo5k+rMQG0Fmg1qFchQucYQyDwe6erjXJq9N12S8ZuTWiqrGuZVbTP18m4nV70AAGiGvFWZf7ul6ou3b8tKYTablJlJKANqo16rLKLxys7y6IG9U1Q+jElSC1nZ+697p+qhvzbPUUwAAJq77GwrjGUqXYnyL8+cqHxlKl2XyOXbNnUq95YB9anWC0Pv27dPy5Yt0+bNm3Xo0CG/fZMnTz7mjqF2PFnZfle6ymsho+OVpy+fzJbn7jRGyQAAaGa25Xs0U1VfvC2VTRmaqnc1UqXG7lsyJy0tCJ0FmoFaBbK1a9fqwgsv1P79+7Vv3z7FxMTol19+UevWrRUbG0sgC6J4BVbTvnWRm39cAQBohk7dEdjF21Rla5nSJLFkDlCfajVl8ZZbbtFFF12kXbt2KTIyUitXrtSmTZvUu3dvPf7443XdR9RA17TAatq7Fc8/rgAANEOndQzsA0DZi7wsmQPUn1oFspycHN12222y2+2y2+0qLi5WcnKyHn30Uf35z3+u6z6iBuxpqSqMTvIV8CivVDZtVrKylco/rgAANEMtEgO/eGuzScnJYskcoB7VKpCFhYXJZrM+8Hfq1EmbN2+WJDkcDt9/I0jsdrWdNVOSKoQy7/NblKHEZNYjAwCgWTqycKk5ysXbz2V9UMjIYD0yoD7VKpD16tVLX375pSRp0KBBuueee/T6669r6tSp6tmzZ8DH+eyzz3TRRRcpISFBNptN77zzjt9+Y4ymT5+uhIQERUZGKi0tTd9++61fm+LiYt18883q0KGD2rRpoxEjRmjLFv950QUFBRo3bpwcDoccDofGjRun3bt3+7XZvHmzLrroIrVp00YdOnTQ5MmTKxQraSrs6U6tvj1T+Ur0275FSbpMmXrb5uQfVwAAmiu7XZo5UzabZGyVX7ydqgwlJNspeQ80gFoFsoceekjxR+a7/fWvf1X79u11ww03aPv27XrxxRcDPs6+fft0+umn65lnnql0/6OPPqonnnhCzzzzjL744gvFxcXp97//vfbs2eNrM3XqVL399tuaP3++Pv/8c+3du1fDhw/3W5x67NixysnJ0eLFi7V48WLl5ORo3Lhxvv0ej0fDhg3Tvn379Pnnn2v+/PlasGCBbrvttpr+aBqNfo869cWbG3VZh6Uao7lK01J1Ua6+SHbyjysAAM2d0yllZsqW6H/x9lDHJP17aqYmL3UqN5fPC0BDaDQLQ9tsNr399tu6+OKLJVmjYwkJCZo6dar+7//+T5I1GtapUyc98sgjuu6661RYWKiOHTvqtdde06hRoyRJW7duVXJyshYtWqTBgwfru+++U/fu3bVy5Ur17dtXkrRy5Ur1799f33//vbp27aoPP/xQw4cPV15enhISEiRJ8+fP14QJE7R9+/aAF3luDAtDl+fxWKVq3W7rhtzUVEbGAADAEXxQAOpNk18YOjc3V9u2bdMFF1zg2xYREaGBAwdq+fLlkqQ1a9aopKTEr01CQoJ69Ojha7NixQo5HA5fGJOkfv36yeFw+LXp0aOHL4xJ0uDBg1VcXKw1a9ZU2cfi4mIVFRX5PRobu90qbT9mjPWVf2MBAIAPHxSAoAt4HbJevXr5CnkczVdffVXrDnlt27ZNklU0pKxOnTpp06ZNvjbh4eFq165dhTbe79+2bZtiY2MrHD82NtavTfnXadeuncLDw31tKjNjxgzdd999NXxnAAAAAGAJOJB5pxI2tPIh0Bhz1GBYvk1l7WvTprw777xTt956q+95UVGRkpOTq+0bAAAAAHgFHMjuvffe+uxHBXFxcZKs0av4Mgtmbd++3TeaFRcXp0OHDqmgoMBvlGz79u0aMGCAr83PP/9c4fg7duzwO86qVav89hcUFKikpKTCyFlZERERioiIqOU7BAAAqBlu+QJCT6O9h6xLly6Ki4vTkiVLfNsOHTqkZcuW+cJW7969FRYW5tfG7Xbrm2++8bXp37+/CgsLtXr1al+bVatWqbCw0K/NN998I7f71xXp//WvfykiIkK9e/eu1/cJAAAQCJdLSkmRBg2Sxo61vqakWNsBNF0Bj5CV5fF49OSTT+rNN9/U5s2bK6zXtWvXroCOs3fvXv3444++57m5ucrJyVFMTIyOP/54TZ06VQ899JBOPvlknXzyyXrooYfUunVrjR07VpK1EPXEiRN12223qX379oqJidG0adPUs2dPnX/++ZKkbt26aciQIZo0aZJeeOEFSdK1116r4cOHq2vXrpKkCy64QN27d9e4ceP02GOPadeuXZo2bZomTZrUaKolAgCA5svlktLTpfK1sfPzre0saQM0YaYW7r77bhMfH28ee+wx06pVK/PXv/7VTJw40bRv397MnDkz4OMsXbrUSKrwGD9+vDHGmNLSUnPvvfeauLg4ExERYX73u9+ZdevW+R3jwIED5qabbjIxMTEmMjLSDB8+3GzevNmvzc6dO80VV1xhoqKiTFRUlLniiitMQUGBX5tNmzaZYcOGmcjISBMTE2Nuuukmc/DgwRr9XAoLC40kU1hYWKPvAwAAqMrhw8YkJRljxbGKD5vNmORkqx2AxiPQbFCrdchOPPFEPfXUUxo2bJiioqKUk5Pj27Zy5UrNnTu3TkNjU9EY1yEDAABNW1aWNT3xaJYutSrXA2gc6nUdsm3btqlnz56SpLZt26qwsFCSNHz4cH3wwQe1OSQAAAAqUeYW9zppB6BxqVUgS0pK8hXAOOmkk/Svf/1LkvTFF19QdRAAAKAOlSk2XSftADQutSrqcckll+iTTz5R3759NWXKFI0ZM0azZs3S5s2bdcstt9R1HwEAAJqt1FQpKckq4GEzHqUqW/Fyy614ZStVxmZXUpLVrk5QWx9oULW6h6y8VatW6d///rdOOukkjRgxoi761SRxDxkAAKgPLpf0+qUuZWiKkrXFtz1PSZqqmbpigbNuqiy6XNKUKdKWX19DSUnSzJmUcQRqqF7vIdu5c6fvv/Py8vTBBx/I7XbruOOOq83hAAAAUA2nXMpUuhLLhDFJSlS+MpUup459MTJPpkvm0nSZLf6vYby19VnwDKgXNRohW7dunS666CLl5eXp5JNP1vz58zVkyBDt27dPLVq00L59+5SZmamLL764HrvceDFCBgAA6pzHY60AXS4o+dhs1ihWbm6tpxa63vKo35gUxXm2VHq13sgmW/KxvQbQ3NTLCNkdd9yhnj17atmyZUpLS9Pw4cN14YUXqrCwUAUFBbruuuv08MMPH3PnAQAAcER2dtVhTLKWI8vLs9rVgsslPX15thKqCGOSZNOxvQaAqtWoqMcXX3yhTz/9VKeddprOOOMMvfjii7rxxhvVooX153vzzTerX79+9dJRAACAZqke6957PNYtY+cosO8tzXfX7n4XAFWq0d/Url27FBcXJ8laf6xNmzaKiYnx7W/Xrp327NlTtz0EAABoxjyxgdWzD7RdWd7BN7cC+97/7KC2PlDXanyRw2azVfscAAAAdSdbqfpF7VXVTf9G0g61V7ZqXvfeO6iWrVTlKUmlqvxzXals2qxkfd+xrmrrA/Cq8TpkEyZM8C3+fPDgQV1//fVq06aNJKm4uLhuewcAANDMbdsm9QiwXU15F5MulV1TNFOZSlepbGpRJv55Q9pUZWhyIgU9gLpWoxGy8ePHKzY2Vg6HQw6HQ1deeaUSEhJ8z2NjY/WHP/yhvvoKAADQ7Jy6I1sdtLOKsSvJJqmjdurUHTUvuOFddNpmk96WU+nKVL4S/dpsUZLSlakvk511t/g0AJ8ajZDNnj27vvoBAACASpzWMbCCG4G2K8tut9Z8Tk+3nr8tp97VSKUqW/Fyy614ZStVxmZXZgYV74H6UOMpi2hCPB4pK8t6SFJamvXgX1MAAJqMFomBFdIItF15TqeUmSndMtmjLvm/BrE3dblKZVdyspSRYbUDUPcIZKHK5ZKuvVbaufPXbQ88ILVvL734Iv+qAgDQVByZV2i25FvrgZXjW7T5GOYTOuXSJbYpsunX9c72xSQpd8pMdbvLybVcoB6xlEQocrmkSy/1D2NeO3da+1yuhu8XAACouSPzCm02yZSrbm1sNtlssoawapuaXC4pPV22cotPtynIV4/p6bK/y2cGoD4RyEKNxyNNnnz0dlOmWG0BAEDj551XmOhfcEOJSdb22s588a4MbSopqu/dNnUqnxmAekQgCzXZ2VJ+/tHbbdlitQUAAE2CS06lmI1K01KN0VylaalSTK5cOobbELwrQ1fFGCkvj88MQD3iHrJQ465BhaWatAUAAEFzZFahjLFrs9J8221bre21HiQL9LMAnxmAesMIWaiJr0GFpZq0BQAAQVGvswoD/SzAZwag3hDIQk1qasX55ZVJOrZqTAAAoGHU66zCsitDV8Zmk5KT+cwA1CMCWaix26Wnnjp6u5kzWY8MAIAmoF5nFXpXhpYqhjLv82Op4AjgqAhkocjplBYssNYcK699e2sf65ABANAk1PusQm8Fx4QE/+2JicdWwRFAQCjqEaqcTmnkSCkry3pIUlqa9eAqFwAATYZ3VmF+fuX3kdlsdXQnQlXTFgHUK5sxlf1pozaKiorkcDhUWFio6OjoYHcHAACECG+VRck/lHkz1DENZP1awtF/e50cHGi+As0GTFkEAABo5LyzCpMTPBqoLI3WPA1Ulo5P9BxbXmJhaCDomLIIAADQBDjl0iW2KbLp15KLRkmyaaZU28Whs7ICL+GYlla71wBQLUbIAAAAGrsj0wpt5cKTLT/fmm7octXumJdfHlhbFoYG6g2BDACAUOfxWCMh8+ZZX5l+1rTUx7RC731ju3YF1p6FoYF6QyADACCUuVxSSoo0aJA0dqz1NSWldiMqCI66Xhm6uoBXHgtDA/WOQAYAQKjyjoKU/zB/LNPc0PDqemXoowW88mqyMDSjsUCNEcgAAAhFVM8LHXW9MnSgwa19+5qVvGc0FqgVAhkAAKGorqe5IXi8K0NXtXBzTacVBhrc3nijZmGM0VigVghkAACEorqe5obgsdulmTOt/y4fyrzPazKtMNCAF2iZe0ZjgWNCIAMAIBTV9TQ3BJd3ZejERP/tSUk1m1Yo1X3AYzQWOCYEMgAAQlFdT3ND8Dmd0saN0tKl0ty51tfc3JqFsbLHqquAx2gscExaBrsDAACgHnhHQdLTrfBVdjpZbUZB0DjY7YFPJTwap1MaOdIauXK7rdHS1NSa/04wGgscE5sxgSxCgUAUFRXJ4XCosLBQ0dHRwe4OAABWMYUpU/ynlCUnW2GsNiMrQHkej9Spk7RzZ9Vt2reXfv6ZCwBoVgLNBoyQAQAQyupqFAQAUC8IZAAAhLq6nOaGkOXx1DK3Z2dXPzomWfuzs/k9BCpBIAMAAGimvCHs3Xel11+Xduz4dV9SknUb4lFntlLUAzgmBDIAAIBmqLLbC8vyrul81KKLFPUAjgll7wEAAJoZl8sKW0dbPkwKYE3nI0ssGFW+xIIRSywA1SGQAQAANCMejzUyFkid7YDWdLbbtXLMTBlJpeVCWalsMpJWjs6gkAxQBQIZAKDp8HikrCxp3jzra7WX7QFUJju7+pGxylR3+5fHI102z6l0ZSpf/gtNb1GSLlOmLp/v5M8VqAL3kAEAmobKbngJuOoAAK/a1Nao7vYvb8DbIqfe1UilKlvxcsuteGUrVaWyS3kUWQSqQiADADR+3hteys+xCrjqAACvmtTWsNmkxERrFGzevMrL4ZcNeKWya5nSKj0WRRaByjFlEQDQuFV3w0vAVQcAeO3YEdjtXDab9Sd24IB0/vnS2LHSoEFSSop1jcSLIovAsSGQAQAat6Pd8BJQ1QEAkhWkRo0K7PpFTIz1tfyaz96BaW8oO1JkUbbKiyzKRpFFoFoEMgBA48ais4DPsdS1CaS6YosWVpuPP5Zataq8TfmBabvdupVTqhjKvM8zMiiyCFSFQAYAaNQ++4H5UIBkjUilpFjTBquaPlidQKorlpZKF19shaf8fKmFPBqoLI3WPA1UllrISoDlB6adTutWzkT/IotKSuIWT+BoKOoBAGi0PB5p3Iup+lxJSlS+Wqjipf1S2WRLSpKN+VAIYXVR1ybQQeRPPpF275YukUszNUXJ+jXFbVdH3ahntUDpFY7pdEojR1ohze2uvAAIgIoYIQMANFrZ2dLmfLumyJoPVVpuv3cR2m8nZfCpDyGrruraBDqI/MADUv4zLmUqXUnyH1KL1Q69pcv0sO6o9Jh2u1XafswY6yt/lsDREcgAAI1W2avvuxRT4X9aOxWjdGVqVgHzoRC66qquTdniG1VNRZSsfTM1RTYZVVGnQ3foMV0b8xaFOoA6QCADADRa8fHWtKlMpStG/qXeSiW1P7Lt5Zepeo/QVVd1bbzFNy4xLm1UirI0SPM0VlkapI1K0SWybkZLVbaStaXKMGY78ph5+I+yiz884FgRyAAAjVbqAI+ebjFFkqnwPyzruU0Zmqq9RR5lZTV074CGUZfrfDmPXOBILDcVMVH5ylS6LpFL8QosAbYq2sFyE0AdIJABABot+/JsJZZuqfJ/Vi1kdLzylKpsAhlCVp2t83XkZjRbpRc4rJvRMjRFcdoaeOfKDcsdS1l+oLkikAEAGq8A52oFekUfaIrqbJ2vo9yMZl3g2KInNS3gvnlifx2Wc7mkzp39y/J37hx4WX6guSKQAQAarwDnarkVr7S0+u0KEEy1Xuer7JDVJ5/U+HWrWkO6VNJmJSvLYw3LuVzSpZdaZfjLys+3thPKgKrZjKluvXbURFFRkRwOhwoLCxUdHR3s7gBA0+fxyKSkyGypeg2yLUpSn5hcubfbKbFdBY+HtaFCRY3Opctl1cs/2mrQNWQtP2FTujL1m784NX261KmTtHNn1d/Tvr3088/83qF5CTQbMEIGAGi87HbZZs6UTb+uOeblfT5VGXr+JcJYVVwuKSXFfxpZSgojFk2Wx6PjcrLUefk8HZeTVfVNWkdWkjblwlhdXIUvlV2PaZreljUsl5VVfRiTrP3c5wlUjkAGAGjcnE7ZFmTqYHv/uVpblKTr2mfqygXOqqdrNXNHPpNXGCDJz7e2E8qalpV3uPRz6xSdccsgDXhmrM64ZZB+bp2ilXeUO5FHincYU3EdMZuOPZTZ5dEdekyXyKW0tMCDFoEMqFzLYHcAAICjcjrVeuRIebKytSHLLbfiZU9L1fNpjIxV5chnclV2Y4IxVjGIqVOlkSOZRtYUrLzDpbMeS1f5OBXnyVfcY+laqUz1e/TIlYkjxTuqW0fsWHhD3Uu2a3Vc6kh9+mlgv0Clpcf4wkCIIpABAJoGu13289LU/Type7D70gQcpaCejJHy8qx2FERp3DyHPDr+iarW4zMqlU3JT0yV54GRsofbVZrvDmgKVOmf/6IWPborf95nSnz/+Rr1ySapvdkpZWcpJua8gL4nJqZGLwE0G0xZBAA0HSxyFLAAVwwIuB2CZ92z2UrwVL8eX6InT+uetRZp/s+OwKqT/qfjedKYMYp7Y6Y8lZbNCUBWluLiAmsaaDuguSGQAQCaBqpT1EiAKwYE3A7Bs/+nwFKzt933HVOVp6QKhXC8SmXTZiXr+45WyXp7ZLh+HHmbpNrdX1a+FP+xtgOaGwIZAKDxozpFjaWmWmtUlV9I2Mtmk5KTrXZo3CKOj61Ru7hEu6bIWkm6uuqkcYm/3vvV9Z1H9d+Rt6tUNbyhMC1NqalWWfvqtG/P7xpQFQIZAKBxO1p1CsmqTsH0RT92uzTT+kxeIZR5n2dkUNCjKQi0GIa3XWqq9EWSU5cpU/mqWJ30MmXqy2RnhYDU9Z1Hpf379eMfn1T2aTdqr1pXOWJmJCtlcQMicMwIZACAxq0m1Sngx+mUMjMrThVLSrK2s1xA05C7cnuN2nnD+Ns2p7poo9K0VGM0V2laqhOUq7dtzirDuD0yXCc9M1WpX/9d39z+mowqTmM0OlKp8cUXJbtd2dmBrUPGnyhQOaosAgAaN6pTHBOn0yptn51t/Yji460RFEbGmo49bQO70a9sO28YnzLFrmVb0nzbk5OtkdHKwrjnkEfrns3W/p/can1ivH77wEiZsxbo0A2T1eqXfF87W1KSlfiOHIQ/UeDYEMgAAI0b1SmOmd3OzLKm7PjRA3T4n3bZ5am0TIeR5JFdx48e4Le9JmF85R0uHf/EFJ3h+XU0euu0JG2+dab6bdtU7UH4EwWODYEMANC4eatT5OdXfh+ZzWbtp2IAQlTM98vVUlXfI2mT1FIexXy/XBqW5revqjDu8fyasezvupT+RoCLTlei7J+ozXiUqmzFy1rAPVupMjY7f6JANbiHDADQuFGdAs1c8cbA5voF2q7sChJXjvWo/xtVLzotyVp0+lDVgdD7J3qJcWmjUpSlQZqnscrSIG1Uii4xLv5EgWoQyAAAjR/VKdCMtT4xsLl+gbQrv4JEqrKVrMAXna6KUy5l6lIlyb8AT5K2KFOXyimWpgCqYjOmsvkfqI2ioiI5HA4VFhYqOjo62N0BgNBTdp4V1SnQTHgOefRz6xTFefJ9o1Zllcomtz1JcftzZQ+v+u/B47FGxsoWLR2teZqnsUftw/Kb5mrA02OqPnCnTtWXWmzfXvr5Z/5e0awEmg0YIQMANB3eG2LGjLG+8uEOzYA93K7Nt1a/0HPerRnVhjGp8hUk3KqD0besrMDq3mdlBfRaQHNDIAMAAGjk+j3q1OrbM7Wthf+03W32RK2+vfqiG16VlZ3PVqrylFQh6HmVyqZ8e7J63lhNRY5AgxaBDKgUgQwAAKAJ6NdPio/3n7IYH2fUr19g31+27HwLeTRQWbpcb+pFTZJ0bKNvAGqPQAYAANDYHanGYcvP99ts27rVqtLhOnrRDG95eqf8qyH+Vfdql2K0SzF+7d32pMBG3wJd5I7F8IBKNepANn36dNlsNr9HXFycb78xRtOnT1dCQoIiIyOVlpamb7/91u8YxcXFuvnmm9WhQwe1adNGI0aM0JZyE6gLCgo0btw4ORwOORwOjRs3Trt3726ItwgAAFA9j0eaMqXydfi826ZOtdpVw26X3hrj0ltKV2K5aohWHNuppYPu0/Kb5irnyaWK258b0FRIpaVZRTuq0749gQyoQqMOZJL0m9/8Rm632/dYt26db9+jjz6qJ554Qs8884y++OILxcXF6fe//7327NnjazN16lS9/fbbmj9/vj7//HPt3btXw4cPl6fMP1pjx45VTk6OFi9erMWLFysnJ0fjxo1r0PcJAABQqcqqcZRljJSXZ7WTlcuysqR586yvvo88Ho/6zZsiWxVrjtlk06Af/6EBGZfrjKlpgU9TtNulF1+svs2LL1KEB6hCy2B34GhatmzpNyrmZYxRRkaG7rrrLjmPrD/zyiuvqFOnTpo7d66uu+46FRYWatasWXrttdd0/vnnS5L++c9/Kjk5WR9//LEGDx6s7777TosXL9bKlSvVt29fSdJLL72k/v37a8OGDeratWuVfSsuLlZxcbHveVFRUV2+dQAAgMqrcVTmk0+0+l23HvtnvFy/pKpUVgBKSrIWbnbGWMGu8vIdkk1Hgt306dJ557GsBNBAGv0I2Q8//KCEhAR16dJFo0eP1v/+9z9JUm5urrZt26YLLrjA1zYiIkIDBw7U8uXLJUlr1qxRSUmJX5uEhAT16NHD12bFihVyOBy+MCZJ/fr1k8Ph8LWpyowZM3zTHB0Oh5KTk+vsfQMAAEjyr8ZRnQce0FkZY/XWL4PkVrz+pls0UFlyb/EoPV1a/W6Awe6BB6RBg6xFywK4N803pbIqNltAUyqB5qpRB7K+ffvq1Vdf1UcffaSXXnpJ27Zt04ABA7Rz505t27ZNktSpUye/7+nUqZNv37Zt2xQeHq527dpV2yY2NrbCa8fGxvraVOXOO+9UYWGh75GXl1fr9woAAFApbzUOW1VjW6qwXHSsduhWZShLg5SrFF1iXHr89QCDnVd+fmAFQ2o4pRKAv0YdyIYOHapLL71UPXv21Pnnn68PPvhAkjU10ctW7h8nY0yFbeWVb1NZ+0COExERoejoaL8HAABAnbLbrTmHUpWhrLpPLInaoreUrtIdO3SwY/XBzk+gBUMCnVIZaDugmWnUgay8Nm3aqGfPnvrhhx9895WVH8Xavn27b9QsLi5Ohw4dUkFBQbVtfv755wqvtWPHjgqjbwAAAEHhdEqZmVJi4tHbluP9sPeEbtOXY5+0ntQklB1tdCvQKZWBtgOamSYVyIqLi/Xdd98pPj5eXbp0UVxcnJYsWeLbf+jQIS1btkwDBgyQJPXu3VthYWF+bdxut7755htfm/79+6uwsFCrV6/2tVm1apUKCwt9bQAAAILO6ZQ2bpSWLpXmzpX+8peAv7WFjI5XntqmdKhdsKtudOtoUyptNik52WoHoIJGHcimTZumZcuWKTc3V6tWrVJ6erqKioo0fvx42Ww2TZ06VQ899JDefvttffPNN5owYYJat26tsWPHSpIcDocmTpyo2267TZ988onWrl2rK6+80jcFUpK6deumIUOGaNKkSVq5cqVWrlypSZMmafjw4dVWWAQAAGhwdru1nteYMVYlxBo6raPbP9gFGuqqG92qbkql93lGBhUbgSo06rL3W7Zs0ZgxY/TLL7+oY8eO6tevn1auXKnOnTtLku644w4dOHBAN954owoKCtS3b1/961//UlRUlO8YTz75pFq2bKnLL79cBw4c0Hnnnac5c+bIXuYfhddff12TJ0/2VWMcMWKEnnnmmYZ9swAAADXhHZnKz6980ehKtEg8Eqy8wS41VZozp8pjlMomtz1Jq3akqtolor1TKqdM8S/wkZRkhTFnAAtMA82UzZgA/4JxVEVFRXI4HCosLKTABwAAqH8ul1UJUao2lBnZZEtOknJzK45UHTmGMUfWIjui9EipkMuUqbdtTmVmBpCrPB7rfjO32xpVYy0zNGOBZoNGPWURAAAA1Qig2Iex2ayZg5VMG/R4pKwYpz6bnKmtLfyPsUVJSlemXEfGxgJaSqzslMq0NMIYEABGyOoQI2QAACAovCNT774r/fOf0i+//LovObnSaYMul/8MwxbyKFXZipdbbsUrW6kqlX+gWrrUylkAji7QbNCo7yEDAABAALwjU2lp0uOPH3XaoHemY9nL8qWya5nSqn0ZlhID6h6BDAAAIJR4w1kVPB5rZKyqOVLVjZSxlBhQ9whkAAAAzUh2tn8hRK8W8ujPelBTNVPttcu3PU9JmqqZ+iLZefSlxCjqAdQYgQwAAKAZKTvt0DsaNkLvaqJelkNFFdonKl9vKV2rR2fKbq+mzGL5m9Ikq+z9zJmUvQeqQZVFAACAZsQ77fASubRRKcrSIN2qjErDmCS1kJFNUr/5U6sus+i9Ka380Ft+vrXd5aqz/gOhhkAGAADQjKSmSte0dylT6UpUJXMXK2GTkfLyrOmI5VV3U5p3W0A184HmiUAGAADQjNjl0UxNkWRq/kGwsjKLVd2U5mWqCXMAuIcMAACgWcnOVuudgY2MVVBZmcVAa+FTMx+oFCNkAAAAzUltg1FysiotsxhoLXxq5gOVIpABAAA0J7UNRhkZlZewT02VkpKOlP6oyMhWdZgDQCADACDkeTxSVpY0b571leIKzduRACVb5QGqgvbtpQULqi5db7dr5ZiZMpJKy4WyUqsciFaOzmA9MqAKBDIAAEKZyyWlpEiDBkljx1pfU1IoQx5qahK67XZrbTCp+lDWvr10333Szz9Xu46YxyNdNs+pdGUqX4l++7YoSZcpU5fPd3IdAKiCzZjKapSiNoqKiuRwOFRYWKjo6OhgdwcA0Nx514Yq/79674fwzEwW7A0FtV2QubLv69hRuuIKaeRIayQtgFGtrCwr50u/LjQdL7fcile2UlUq6xhLl0ppaTV/e0BTFWg2IJDVIQIZAKDR8HiskbCqypHbbNaH9txcppI1Zccauj0eqxy9223dWxZgCCtr3jxr8PVo5s6Vxoyp0aGBJi3QbEDZewAAQlFN1oZi2KJpOtqCzDabtSDzyJFVhyy7/ZjPf9kaIdWNkFFkEagc95ABABCKWBsq9DWSBZm9NUKccmmjUpSlQZqnscrSIG1UipxyUWQRqAaBDACAUMTaUKGvkYRuu116a4xLbyldifIPiInK11tK15ujXcyMBapAIAMAIBSlpmp/+6QKZci9SmXT/vYMWzRpdRG662JJBI9H/eZNkU2mwgfLFkdWJ+s3fyrLLQBVIJABABCCPLJriqzS5pWtDSVJU5Uhjxi2aLKOtp6Y7SgLMtfVkghHpk5WVUDfpoaZOgk0VQQyAABCUHa29I+dVa8Nla5MvbTTyWfkpqy69cS8zzMyKi/o4a3OWP4etPx8a3tNQlkjmToJNFUEMgAAQpD3s+/bcipFG5WmpRqjuUrTUnVRrt6W068dmiin0yptn+gfupWUVHXJ+6NVZ5Ss6oyBTjHkfkXgmFD2HgCAEFT2s2+p7FqmtKO2QxPldFql7QNdT6yul0TwTp3Mz6885HnXvON+RaBSBDIAAEIQn5GbmZqsJ1bXUwy9UyfT061frLK/cEebOgmAKYsAAISiY7m9CCHuhx8CauaJrcHwaW2mTgKQJNmMqey6GWqjqKhIDodDhYWFio6ODnZ3AACQy2XdLlR2hlpyshXG+IzcDLlc0qWXVtukVDZtUZJSE3P15FP2mv2eeDyBT50EQlyg2YBAVocIZACAxojPyKEvoHPs8Vhl7au5f8xIMrIpXZl6x2Ylscw3PHJ25BcIqKlAswH3kAEAEOJqcnsRmp7KRkGTkqwpq36jW0cr5iHJJukeTbeqcBrJKZf6jZkieY52cAC1xT1kAAAATVSNlhMLsEjHjzpZknSJXHpL6Yrz+B/c1GatMgBVIpABAAA0QTVeTizANQ7cilcLeTRTUySZCh8WbcZYx69krTKPR8rKkubNs74GupQZ0JwRyAAAAJqgmiwnJunXtRDKl908olQ2bVayspWqVGUrWVuq/KBoU/mDWwNmKSnSoEHS2LHW15QUBtKAoyGQAQAANEE1Xk6szFoIRv6hrPTI86nKUKnsildgBy/Nt9rVaOokAD8EMgAAgCYowBmI/u2cTnnezJTb7r9e2BYlKV2ZVjEPWdMWA/GfHfE1nzoJwA9VFgEAAJog7wzE/PzKw5DNZu1PTfXfnt3BqfM8I5WqbMXLLbfila1UlerXUvbZSlWekpSofLVQxYN71yr7vmOqdtdg6iTVPoGKGCEDAABogsrMQKxwW5j3eUZGxSXD3G6pVHYtU5rma4yWKc0vjEnW/imaeeS/q57eGJdor/nUSQB+CGQAAABNlNMpZWZKif4zEJWUZG2vbKmwQKc6Zndw6jJlKl8Vpzdepkx9mexUamotp04C8LEZU9kgN2oj0NW4AQAA6pLHY00JdLut4JOaWnFkrGzblJSjT3X829+kUaOkFsajc8pMb/xcqSq12X2BL9Dj5eZW3ScgFAWaDbiHDAAAoImz2wO/P8s71TE93QpLZUNU2amOTqfVdsoUu5Zt+fXgycm/7q/J8QhjQOWYsggAANDMBDrV0emUNm6Uli6V5s61vubmVpwKWZupkwAsTFmsQ0xZBAAATUlNpjoG43hAU8aURQAAAFSrJlMdg3E8oDlgyiIAAAAABAmBDAAAAACChEAGAAAAAEFCIAMAAACAICGQAQAAAECQEMgAAAAAIEgIZAAAAAAQJAQyAAAAAAgSAhkAAAAABAmBDAAAAACChEAGAAAAAEFCIAMAAACAICGQAQAAAECQEMgAAAAAIEgIZAAAAAAQJAQyAAAAAAgSAhkAAAAABAmBDAAAAACChEAGAAAAAEFCIAMAAACAICGQAQAAAECQEMgAAAAAIEgIZAAAAAAQJAQyAAAAAAgSAhkAAAAABAmBDAAAAACCpGWwOwAAAIBGwOORsrMlt1uKj5dSUyW7Pdi9AkIegQwAAKC5c7mkKVOkLVt+3ZaUJM2cKTmdwesX0AwwZREAAKA5c7mk9HSZsmFMksnPl9LTrf0A6g2BDAAAIFR5PFJWljRvnvXV46m4f8oUGWNkK/etNmNkjKSpUyt+H4A6QyADAAAIRS6XlJIiDRokjR1rfU1J8R/xys6WtmypEMa8bDJSXp7VDkC9IJABAACEmiPTEFVuGqLKTUMszXcHdLhA2wGoOQIZAABAKDkyDdGab1iOd9uRaYj/2REf0CEDbQeg5ghkAAAAoeTINMQqmV+nIX7fMVV5SlJpFZMWS2XTZiXr+46p9dRZAAQyAACAUOIOcHqh2624RLumaKYkVQhl3udTlaG4RNYjA+oLgQwAACCUxAc4vTA+Xqmp0hdJTl2mTOUr0W/3FiXpMmXqy2SnUhkgA+oNgaycZ599Vl26dFGrVq3Uu3dvZVNVCAAANCGeAanaaq9+GmK+PVmeAamy2621n9+2OdVFG5WmpRqjuUrTUp2gXL1tcyojQ7IzQAbUGwJZGW+88YamTp2qu+66S2vXrlVqaqqGDh2qzZs3B7trAAAAAclebtdNnuqnId7syVD2citlOZ1SZqYUn2TXMqVpvsZomdKUkGxXZqa1H0D9IZCV8cQTT2jixIm65ppr1K1bN2VkZCg5OVnPPfdcsLsGAAAQELdbeltOpVcxDTFdmXpbTr9bzZxOaeNGaelSae5c62tuLmEMaAgtg92BxuLQoUNas2aN/vSnP/ltv+CCC7R8+fJKv6e4uFjFxcW+50VFRfXaRwAAgKPx3kL2tpx6VyOVqmzFyy234pWtVJXK7tfOy26X0tIatq8ACGQ+v/zyizwejzp16uS3vVOnTtq2bVul3zNjxgzdd999DdE9AACAgKSmSklJ1hrQpcaahliWzWbtp1AH0DgwZbEcm81/rrUxpsI2rzvvvFOFhYW+R15eXkN0EQAAoEreQh2SFb7K8j6nUAfQeBDIjujQoYPsdnuF0bDt27dXGDXzioiIUHR0tN8DAAAg2LyFOhL9byFTUpIo1AE0MgSyI8LDw9W7d28tWbLEb/uSJUs0YMCAIPUKAACgdijUATQN3ENWxq233qpx48apT58+6t+/v1588UVt3rxZ119/fbC7BgAAUGMU6gAaPwJZGaNGjdLOnTt1//33y+12q0ePHlq0aJE6d+4c7K4BAAAACEE2Y4wJdidCRVFRkRwOhwoLC7mfDAAAAGjGAs0G3EMGAAAAAEFCIAMAAACAIOEeMgAAgGbG45GysyW3W4qPtxaJZl0yIDgIZAAAAM2IyyVNmSJt2fLrtqQkazFpSuIDDY8piwAAAM2EyyWlp/uHMUnKz7e2u1zB6RfQnBHIAAAAmgGPxxoZq6y+tnfb1KlWOwANh0AGAADQDGRnVxwZK8sYKS/Pageg4RDIAAAAmgG3u27bAagbBDIAAIBmID6+btsBqBtUWQQAAGjiAiljn5pqVVPMz6/8PjKbzdqfmtowfQZgYYQMAACgCXO5pJQUadAgaexY62tKSsWKiXa7VdpessJXWd7nGRmsRwY0NAIZAABAE1XTMvZOp5SZKSUm+m9PSrK2sw4Z0PBsxlQ2aI3aKCoqksPhUGFhoaKjo4PdHQAAEMI8HmskrKrKid4piLm5FUe9ApniCODYBJoNuIcMAACgCapJGfu0NP99dnvFbQCCgymLAAAATRBl7IHQQCADAABogihjD4QGAhkAAEAT5C1jX75iopfNJiUnU8YeaOwIZAAAAE0QZeyB0EAgAwAAaKIoYw80fVRZBAAAaMKcTmnkSMrYA00VgQwAAKCJo4w90HQxZREAAAAAgoRABgAAAABBQiADAAAAgCAhkAEAAABAkBDIAAAAACBICGQAAAAAECQEMgAAAAAIEgIZAAAAAAQJgQwAAAAAgoRABgAAAABBQiADAAAAgCAhkAEAAABAkBDIAAAAACBIWga7A6HEGCNJKioqCnJPAAAAAASTNxN4M0JVCGR1aM+ePZKk5OTkIPcEAAAAQGOwZ88eORyOKvfbzNEiGwJWWlqqDRs2qHv37srLy1N0dHSwu4RaKCoqUnJyMuewieM8hgbOY9PHOQwNnMfQwHlsWMYY7dmzRwkJCWrRouo7xRghq0MtWrRQYmKiJCk6Oppf9CaOcxgaOI+hgfPY9HEOQwPnMTRwHhtOdSNjXhT1AAAAAIAgIZABAAAAQJAQyOpYRESE7r33XkVERAS7K6glzmFo4DyGBs5j08c5DA2cx9DAeWycKOoBAAAAAEHCCBkAAAAABAmBDAAAAACChEAGAAAAAEFCIAMAAACAICGQVeLBBx/UgAED1Lp1ax133HGVttm8ebMuuugitWnTRh06dNDkyZN16NAhvzbr1q3TwIEDFRkZqcTERN1///0qX0Nl2bJl6t27t1q1aqUTTjhBzz//fIXXWrBggbp3766IiAh1795db7/9dp291+bkv//9r0aOHKkOHTooOjpaZ599tpYuXerXpiHPK2rvgw8+UN++fRUZGakOHTrI6XT67ec8Nh3FxcU644wzZLPZlJOT47eP89h4bdy4URMnTlSXLl0UGRmpE088Uffee2+F88M5DA3PPvusunTpolatWql3797Kzs4OdpearRkzZui3v/2toqKiFBsbq4svvlgbNmzwa2OM0fTp05WQkKDIyEilpaXp22+/9WtTXFysm2++WR06dFCbNm00YsQIbdmyxa9NQUGBxo0bJ4fDIYfDoXHjxmn37t31/RabJ4MK7rnnHvPEE0+YW2+91Tgcjgr7Dx8+bHr06GEGDRpkvvrqK7NkyRKTkJBgbrrpJl+bwsJC06lTJzN69Gizbt06s2DBAhMVFWUef/xxX5v//e9/pnXr1mbKlClm/fr15qWXXjJhYWEmMzPT12b58uXGbrebhx56yHz33XfmoYceMi1btjQrV66s159BKDrppJPMhRdeaL7++mvz3//+19x4442mdevWxu12G2Ma9ryi9jIzM027du3Mc889ZzZs2GC+//5789Zbb/n2cx6blsmTJ5uhQ4caSWbt2rW+7ZzHxu3DDz80EyZMMB999JH56aefzLvvvmtiY2PNbbfd5mvDOQwN8+fPN2FhYeall14y69evN1OmTDFt2rQxmzZtCnbXmqXBgweb2bNnm2+++cbk5OSYYcOGmeOPP97s3bvX1+bhhx82UVFRZsGCBWbdunVm1KhRJj4+3hQVFfnaXH/99SYxMdEsWbLEfPXVV2bQoEHm9NNPN4cPH/a1GTJkiOnRo4dZvny5Wb58uenRo4cZPnx4g77f5oJAVo3Zs2dXGsgWLVpkWrRoYfLz833b5s2bZyIiIkxhYaExxphnn33WOBwOc/DgQV+bGTNmmISEBFNaWmqMMeaOO+4wp556qt+xr7vuOtOvXz/f88svv9wMGTLEr83gwYPN6NGjj/n9NSc7duwwksxnn33m21ZUVGQkmY8//tgY07DnFbVTUlJiEhMTzT/+8Y8q23Aem45FixaZU0891Xz77bcVAhnnsel59NFHTZcuXXzPOYeh4ayzzjLXX3+937ZTTz3V/OlPfwpSj1DW9u3bjSSzbNkyY4wxpaWlJi4uzjz88MO+NgcPHjQOh8M8//zzxhhjdu/ebcLCwsz8+fN9bfLz802LFi3M4sWLjTHGrF+/3kjyGwBYsWKFkWS+//77hnhrzQpTFmthxYoV6tGjhxISEnzbBg8erOLiYq1Zs8bXZuDAgX4L7w0ePFhbt27Vxo0bfW0uuOACv2MPHjxYX375pUpKSqpts3z58vp4ayGrffv26tatm1599VXt27dPhw8f1gsvvKBOnTqpd+/ekhr2vKJ2vvrqK+Xn56tFixbq1auX4uPjNXToUL+pGJzHpuHnn3/WpEmT9Nprr6l169YV9nMem57CwkLFxMT4nnMOm75Dhw5pzZo1FX7+F1xwAZ9DGonCwkJJ8v3t5ebmatu2bX7nLCIiQgMHDvSdszVr1qikpMSvTUJCgnr06OFrs2LFCjkcDvXt29fXpl+/fnI4HJz7ekAgq4Vt27apU6dOftvatWun8PBwbdu2rco23udHa3P48GH98ssv1bbxHgOBsdlsWrJkidauXauoqCi1atVKTz75pBYvXuy7T7Ahzytq53//+58kafr06frLX/6ihQsXql27dho4cKB27dolifPYFBhjNGHCBF1//fXq06dPpW04j03LTz/9pKefflrXX3+9bxvnsOn75Zdf5PF4+BzSSBljdOutt+qcc85Rjx49JP36d1PdOdu2bZvCw8PVrl27atvExsZWeM3Y2FjOfT1oNoFs+vTpstls1T6+/PLLgI9ns9kqbDPG+G0v38YcuUm5LtpU9vrNUaDn1RijG2+8UbGxscrOztbq1as1cuRIDR8+XG6323e8hjyv+FWg57G0tFSSdNddd+nSSy9V7969NXv2bNlsNr311lu+43EegyPQ8/j000+rqKhId955Z7XH4zw2vNr8v3Lr1q0aMmSILrvsMl1zzTV++ziHoYHPIY3TTTfdpP/85z+aN29ehX21OWdH+9sM9DiouZbB7kBDuemmmzR69Ohq26SkpAR0rLi4OK1atcpvW0FBgUpKSnxXJOLi4ipcQdi+fbskHbVNy5Yt1b59+2rblL/y0VwFel4//fRTLVy4UAUFBYqOjpZkVY1asmSJXnnlFf3pT39q0PMKf4Gexz179kiSunfv7tseERGhE044QZs3b5bUsH+f8BfoeXzggQe0cuVKv2lqktSnTx9dccUVeuWVVziPQVLT/1du3bpVgwYNUv/+/fXiiy/6teMcNn0dOnSQ3W7nc0gjdPPNN+u9997TZ599pqSkJN/2uLg4SdYIV3x8vG972XMWFxenQ4cOqaCgwG+UbPv27RowYICvzc8//1zhdXfs2MG5rw8NeL9ak3O0oh5bt271bZs/f36FG5WPO+44U1xc7Gvz8MMPV7hRuVu3bn7Hvv766ysU9Rg6dKhfmyFDhlDUo4bee+8906JFC7Nnzx6/7aeccop58MEHjTENe15RO4WFhSYiIsKvqMehQ4dMbGyseeGFF4wxnMemYNOmTWbdunW+x0cffWQkmczMTJOXl2eM4Tw2BVu2bDEnn3yyGT16tF9lNi/OYWg466yzzA033OC3rVu3bhT1CJLS0lLzxz/+0SQkJJj//ve/le6Pi4szjzzyiG9bcXFxpUU93njjDV+brVu3VlrUY9WqVb42K1eupKhHPSGQVWLTpk1m7dq15r777jNt27Y1a9euNWvXrvV9mPeW8j3vvPPMV199ZT7++GOTlJTkV8p39+7dplOnTmbMmDFm3bp1xuVymejo6EpL+d5yyy1m/fr1ZtasWRVK+f773/82drvdPPzww+a7774zDz/8MGXva2HHjh2mffv2xul0mpycHLNhwwYzbdo0ExYWZnJycowxDXteUXtTpkwxiYmJ5qOPPjLff/+9mThxoomNjTW7du0yxnAem6Lc3Nwqy95zHhun/Px8c9JJJ5lzzz3XbNmyxbjdbt/Di3MYGrxl72fNmmXWr19vpk6datq0aWM2btwY7K41SzfccINxOBwmKyvL7+9u//79vjYPP/ywcTgcxuVymXXr1pkxY8ZUWvY+KSnJfPzxx+arr74y5557bqVl70877TSzYsUKs2LFCtOzZ0/K3tcTAlklxo8fbyRVeCxdutTXZtOmTWbYsGEmMjLSxMTEmJtuusmvbK8xxvznP/8xqampJiIiwsTFxZnp06f7rvh5ZWVlmV69epnw8HCTkpJinnvuuQr9eeutt0zXrl1NWFiYOfXUU82CBQvq5X2Hui+++MJccMEFJiYmxkRFRZl+/fqZRYsW+bVpyPOK2jl06JC57bbbTGxsrImKijLnn3+++eabb/zacB6blsoCmTGcx8Zs9uzZlf5/svzEG85haPj73/9uOnfubMLDw82ZZ57pK7GOhlfV393s2bN9bUpLS829995r4uLiTEREhPnd735n1q1b53ecAwcOmJtuusnExMSYyMhIM3z4cLN582a/Njt37jRXXHGFiYqKMlFRUeaKK64wBQUFDfAumx+bMUfujAUAAAAANKhmU2URAAAAABobAhkAAAAABAmBDAAAAACChEAGAAAAAEFCIAMAAACAICGQAQAAAECQEMgAAAAAIEgIZAAAAAAQJAQyAAAAAAgSAhkAoNlZvny57Ha7hgwZEuyu1EhaWpqmTp0a7G4AAOoQgQwA0Oy8/PLLuvnmm/X5559r8+bNwe4OAKAZI5ABAJqVffv26c0339QNN9yg4cOHa86cOb59WVlZstls+uijj9SrVy9FRkbq3HPP1fbt2/Xhhx+qW7duio6O1pgxY7R//37f9xUXF2vy5MmKjY1Vq1atdM455+iLL77w7Z8zZ46OO+44v3688847stlsvufTp0/XGWecoddee00pKSlyOBwaPXq09uzZI0maMGGCli1bppkzZ8pms8lms2njxo318jMCADQcAhkAoFl544031LVrV3Xt2lVXXnmlZs+eLWOMX5vp06frmWee0fLly5WXl6fLL79cGRkZmjt3rj744AMtWbJETz/9tK/9HXfcoQULFuiVV17RV199pZNOOkmDBw/Wrl27atS3n376Se+8844WLlyohQsXatmyZXr44YclSTNnzlT//v01adIkud1uud1uJScnH/sPBAAQVAQyAECzMmvWLF155ZWSpCFDhmjv3r365JNP/No88MADOvvss9WrVy9NnDhRy5Yt03PPPadevXopNTVV6enpWrp0qSRrxO25557TY489pqFDh6p79+566aWXFBkZqVmzZtWob6WlpZozZ4569Oih1NRUjRs3ztc3h8Oh8PBwtW7dWnFxcYqLi5Pdbq+DnwgAIJgIZACAZmPDhg1avXq1Ro8eLUlq2bKlRo0apZdfftmv3Wmnneb7706dOql169Y64YQT/LZt375dkjWqVVJSorPPPtu3PywsTGeddZa+++67GvUvJSVFUVFRvufx8fG+1wEAhKaWwe4AAAANZdasWTp8+LASExN924wxCgsLU0FBgW9bWFiY779tNpvfc++20tJS3/d7t5VljPFta9GiRYVpkSUlJRX6V93rAABCEyNkAIBm4fDhw3r11Vf1t7/9TTk5Ob7H119/rc6dO+v111+v1XFPOukkhYeH6/PPP/dtKykp0Zdffqlu3bpJkjp27Kg9e/Zo3759vjY5OTk1fq3w8HB5PJ5a9RMA0DgxQgYAaBYWLlyogoICTZw4UQ6Hw29fenq6Zs2apSeffLLGx23Tpo1uuOEG3X777YqJidHxxx+vRx99VPv379fEiRMlSX379lXr1q315z//WTfffLNWr17tV90xUCkpKVq1apU2btyotm3bKiYmRi1acG0VAJoy/hUHADQLs2bN0vnnn18hjEnSpZdeqpycHH311Ve1OvbDDz+sSy+9VOPGjdOZZ56pH3/8UR999JHatWsnSYqJidE///lPLVq0SD179tS8efM0ffr0Gr/OtGnTZLfb1b17d3Xs2JE11AAgBNhM+UntAAAAAIAGwQgZAAAAAAQJgQwAAAAAgoRABgAAAABBQiADAAAAgCAhkAEAAABAkBDIAAAAACBICGQAAAAAECQEMgAAAAAIEgIZAAAAAAQJgQwAAAAAgoRABgAAAABB8v+Yb+cr9wLmegAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10, 6))\n",
+ "\n",
+ "# Scatter plot for y_test in blue color\n",
+ "plt.scatter(X_test[\"amount\"], y_test, color='blue', label='Actual (y_test)')\n",
+ "\n",
+ "# Scatter plot for y_pred in red color\n",
+ "plt.scatter(X_test[\"amount\"], y_pred, color='red', label='Predicted (y_pred)')\n",
+ "\n",
+ "plt.xlabel(\"Amount\")\n",
+ "plt.ylabel(\"Balance\")\n",
+ "plt.title(\"Actual vs Predicted\")\n",
+ "plt.legend()\n",
+ "\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.3"
+ },
+ "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/SavingsAI/rf_CV_model.ipynb b/SavingsAI/rf_CV_model.ipynb
new file mode 100644
index 0000000..78a6c3e
--- /dev/null
+++ b/SavingsAI/rf_CV_model.ipynb
@@ -0,0 +1,1587 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from sklearn.model_selection import GridSearchCV, train_test_split, cross_val_score\n",
+ "from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, QuantileRegressor\n",
+ "from sklearn.tree import DecisionTreeRegressor\n",
+ "from sklearn.ensemble import RandomForestRegressor\n",
+ "from sklearn.pipeline import Pipeline\n",
+ "from sklearn.metrics import mean_squared_error, r2_score\n",
+ "import matplotlib.pyplot as plt\n",
+ "import warnings"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "warnings.filterwarnings(\"ignore\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv(\"Dummy Data/sample_data.csv\")\n",
+ "df = df.sort_values(by=\"postDate\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df[\"postDate\"] = pd.to_datetime(df[\"postDate\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df[\"Year\"] = df[\"postDate\"].apply(lambda time: time.year)\n",
+ "\n",
+ "df[\"Month\"] = df[\"postDate\"].apply(lambda time: time.month)\n",
+ "\n",
+ "df[\"Day\"] = df[\"postDate\"].apply(lambda time: time.day)\n",
+ "\n",
+ "df[\"Hour\"] = df[\"postDate\"].apply(lambda time: time.hour)\n",
+ "\n",
+ "df[\"Minute\"] = df[\"postDate\"].apply(lambda time: time.minute)\n",
+ "\n",
+ "df[\"Second\"] = df[\"postDate\"].apply(lambda time: time.second)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " type \n",
+ " id \n",
+ " status \n",
+ " description \n",
+ " amount \n",
+ " account \n",
+ " balance \n",
+ " direction \n",
+ " class \n",
+ " institution \n",
+ " ... \n",
+ " transactionDate \n",
+ " postDate \n",
+ " subClass \n",
+ " links \n",
+ " Year \n",
+ " Month \n",
+ " Day \n",
+ " Hour \n",
+ " Minute \n",
+ " Second \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 288 \n",
+ " transaction \n",
+ " 312885c2-6ff6-4d96-89c9-0bf1b2987f46 \n",
+ " posted \n",
+ " AGL RETAIL ENERGY LTD (GAS) \n",
+ " -92.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " -99.34 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " ... \n",
+ " 10/12/2021 \n",
+ " 2021-12-10 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ " \\\"code\\\":\\\"263\\\"}\" \n",
+ " 2021 \n",
+ " 12 \n",
+ " 10 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 287 \n",
+ " transaction \n",
+ " 414279bc-9226-45c5-9722-b18269374373 \n",
+ " posted \n",
+ " AGL RETAIL ENERGY LTD (GAS) \n",
+ " -160.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " -259.34 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " ... \n",
+ " 10/12/2021 \n",
+ " 2021-12-10 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ " \\\"code\\\":\\\"263\\\"}\" \n",
+ " 2021 \n",
+ " 12 \n",
+ " 10 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 286 \n",
+ " transaction \n",
+ " 8598b570-b80f-42a6-9a52-e73425b3ccd0 \n",
+ " posted \n",
+ " TFR Acc14000 TO 12389 \n",
+ " -500.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " -759.34 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " ... \n",
+ " 13/12/2021 \n",
+ " 2021-12-13 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Legal and Accounting Services\\\" \n",
+ " \\\"code\\\":\\\"693\\\"}\" \n",
+ " 2021 \n",
+ " 12 \n",
+ " 13 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 285 \n",
+ " transaction \n",
+ " 1973ec3d-7680-45dd-ac2e-e1eb97c97ea3 \n",
+ " posted \n",
+ " Manly Maths Tutor Wages \n",
+ " 201.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " -558.34 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " ... \n",
+ " 14/12/2021 \n",
+ " 2021-12-14 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Educational Support Services\\\" \n",
+ " \\\"code\\\":\\\"822\\\"}\" \n",
+ " 2021 \n",
+ " 12 \n",
+ " 14 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 284 \n",
+ " transaction \n",
+ " 5b20b38e-6c98-4bfc-97bc-7c9ea2ccc983 \n",
+ " posted \n",
+ " Manly Maths Tutor Wages \n",
+ " 201.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " -357.34 \n",
+ " credit \n",
+ " transfer \n",
+ " AU00000 \n",
+ " ... \n",
+ " 26/12/2021 \n",
+ " 2021-12-16 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Educational Support Services\\\" \n",
+ " \\\"code\\\":\\\"822\\\"}\" \n",
+ " 2021 \n",
+ " 12 \n",
+ " 16 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " transaction \n",
+ " d12df6a2-48b6-4f5f-a718-ccb377aa330c \n",
+ " posted \n",
+ " Transfer Platnm Homeloan 346454 \n",
+ " -3852.5 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22514.56 \n",
+ " debit \n",
+ " payment \n",
+ " AU00000 \n",
+ " ... \n",
+ " 29/07/2023 \n",
+ " 2023-07-29 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ " \\\"code\\\":\\\"641\\\"}\" \n",
+ " 2023 \n",
+ " 7 \n",
+ " 29 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " transaction \n",
+ " 1ab3a3c5-faeb-4de3-b5aa-612e5bc76fd5 \n",
+ " posted \n",
+ " Non Hooli ATM Withdrawal Fee \n",
+ " -2.5 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22512.06 \n",
+ " debit \n",
+ " bank-fee \n",
+ " AU00000 \n",
+ " ... \n",
+ " 3/08/2023 \n",
+ " 2023-08-03 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"\\\" \n",
+ " \\\"code\\\":\\\"card\\\"}\" \n",
+ " 2023 \n",
+ " 8 \n",
+ " 3 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " transaction \n",
+ " 323f6d42-a38e-4c46-83d2-6c8f3e999686 \n",
+ " posted \n",
+ " Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU \n",
+ " -200.0 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22312.06 \n",
+ " debit \n",
+ " cash-withdrawal \n",
+ " AU00000 \n",
+ " ... \n",
+ " 3/08/2023 \n",
+ " 2023-08-03 00:00:00+00:00 \n",
+ " NaN \n",
+ " {\\self\\\":\\\"https://au-api.basiq.io/users/bca4b... \n",
+ " 2023 \n",
+ " 8 \n",
+ " 3 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " transaction \n",
+ " 0d6e11ab-e28e-4de0-a152-600cc44fb61c \n",
+ " posted \n",
+ " Non Hooli ATM Withdrawal Fee \n",
+ " -2.5 \n",
+ " 070c1d68-0ee0-477a-9679-294ea7059939 \n",
+ " 22309.56 \n",
+ " debit \n",
+ " bank-fee \n",
+ " AU00000 \n",
+ " ... \n",
+ " 3/08/2023 \n",
+ " 2023-08-03 00:00:00+00:00 \n",
+ " {\\title\\\":\\\"\\\" \n",
+ " \\\"code\\\":\\\"card\\\"}\" \n",
+ " 2023 \n",
+ " 8 \n",
+ " 3 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " transaction \n",
+ " 4957bcf6-f18f-43d7-94df-71f44a0bcf32 \n",
+ " posted \n",
+ " Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU \n",
+ " -200.0 \n",
+ " d3de1ca1 \n",
+ " 22109.56 \n",
+ " debit \n",
+ " cash-withdrawal \n",
+ " AU00000 \n",
+ " ... \n",
+ " 3/08/2023 \n",
+ " 2023-08-03 00:07:36+00:00 \n",
+ " NaN \n",
+ " {\"account\":\"https://au-api.basiq.io/users/6a52... \n",
+ " 2023 \n",
+ " 8 \n",
+ " 3 \n",
+ " 0 \n",
+ " 7 \n",
+ " 36 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
289 rows × 22 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " type id status \\\n",
+ "288 transaction 312885c2-6ff6-4d96-89c9-0bf1b2987f46 posted \n",
+ "287 transaction 414279bc-9226-45c5-9722-b18269374373 posted \n",
+ "286 transaction 8598b570-b80f-42a6-9a52-e73425b3ccd0 posted \n",
+ "285 transaction 1973ec3d-7680-45dd-ac2e-e1eb97c97ea3 posted \n",
+ "284 transaction 5b20b38e-6c98-4bfc-97bc-7c9ea2ccc983 posted \n",
+ ".. ... ... ... \n",
+ "4 transaction d12df6a2-48b6-4f5f-a718-ccb377aa330c posted \n",
+ "3 transaction 1ab3a3c5-faeb-4de3-b5aa-612e5bc76fd5 posted \n",
+ "2 transaction 323f6d42-a38e-4c46-83d2-6c8f3e999686 posted \n",
+ "1 transaction 0d6e11ab-e28e-4de0-a152-600cc44fb61c posted \n",
+ "0 transaction 4957bcf6-f18f-43d7-94df-71f44a0bcf32 posted \n",
+ "\n",
+ " description amount \\\n",
+ "288 AGL RETAIL ENERGY LTD (GAS) -92.0 \n",
+ "287 AGL RETAIL ENERGY LTD (GAS) -160.0 \n",
+ "286 TFR Acc14000 TO 12389 -500.0 \n",
+ "285 Manly Maths Tutor Wages 201.0 \n",
+ "284 Manly Maths Tutor Wages 201.0 \n",
+ ".. ... ... \n",
+ "4 Transfer Platnm Homeloan 346454 -3852.5 \n",
+ "3 Non Hooli ATM Withdrawal Fee -2.5 \n",
+ "2 Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU -200.0 \n",
+ "1 Non Hooli ATM Withdrawal Fee -2.5 \n",
+ "0 Wdl ATM WES IGA BALGOWLAH HGT BALGOWL AU -200.0 \n",
+ "\n",
+ " account balance direction \\\n",
+ "288 070c1d68-0ee0-477a-9679-294ea7059939 -99.34 debit \n",
+ "287 070c1d68-0ee0-477a-9679-294ea7059939 -259.34 debit \n",
+ "286 070c1d68-0ee0-477a-9679-294ea7059939 -759.34 debit \n",
+ "285 070c1d68-0ee0-477a-9679-294ea7059939 -558.34 credit \n",
+ "284 070c1d68-0ee0-477a-9679-294ea7059939 -357.34 credit \n",
+ ".. ... ... ... \n",
+ "4 070c1d68-0ee0-477a-9679-294ea7059939 22514.56 debit \n",
+ "3 070c1d68-0ee0-477a-9679-294ea7059939 22512.06 debit \n",
+ "2 070c1d68-0ee0-477a-9679-294ea7059939 22312.06 debit \n",
+ "1 070c1d68-0ee0-477a-9679-294ea7059939 22309.56 debit \n",
+ "0 d3de1ca1 22109.56 debit \n",
+ "\n",
+ " class institution ... transactionDate \\\n",
+ "288 payment AU00000 ... 10/12/2021 \n",
+ "287 payment AU00000 ... 10/12/2021 \n",
+ "286 payment AU00000 ... 13/12/2021 \n",
+ "285 transfer AU00000 ... 14/12/2021 \n",
+ "284 transfer AU00000 ... 26/12/2021 \n",
+ ".. ... ... ... ... \n",
+ "4 payment AU00000 ... 29/07/2023 \n",
+ "3 bank-fee AU00000 ... 3/08/2023 \n",
+ "2 cash-withdrawal AU00000 ... 3/08/2023 \n",
+ "1 bank-fee AU00000 ... 3/08/2023 \n",
+ "0 cash-withdrawal AU00000 ... 3/08/2023 \n",
+ "\n",
+ " postDate \\\n",
+ "288 2021-12-10 00:00:00+00:00 \n",
+ "287 2021-12-10 00:00:00+00:00 \n",
+ "286 2021-12-13 00:00:00+00:00 \n",
+ "285 2021-12-14 00:00:00+00:00 \n",
+ "284 2021-12-16 00:00:00+00:00 \n",
+ ".. ... \n",
+ "4 2023-07-29 00:00:00+00:00 \n",
+ "3 2023-08-03 00:00:00+00:00 \n",
+ "2 2023-08-03 00:00:00+00:00 \n",
+ "1 2023-08-03 00:00:00+00:00 \n",
+ "0 2023-08-03 00:07:36+00:00 \n",
+ "\n",
+ " subClass \\\n",
+ "288 {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ "287 {\\title\\\":\\\"Electricity Distribution\\\" \n",
+ "286 {\\title\\\":\\\"Legal and Accounting Services\\\" \n",
+ "285 {\\title\\\":\\\"Educational Support Services\\\" \n",
+ "284 {\\title\\\":\\\"Educational Support Services\\\" \n",
+ ".. ... \n",
+ "4 {\\title\\\":\\\"Auxiliary Finance and Investment S... \n",
+ "3 {\\title\\\":\\\"\\\" \n",
+ "2 NaN \n",
+ "1 {\\title\\\":\\\"\\\" \n",
+ "0 NaN \n",
+ "\n",
+ " links Year Month Day Hour \\\n",
+ "288 \\\"code\\\":\\\"263\\\"}\" 2021 12 10 0 \n",
+ "287 \\\"code\\\":\\\"263\\\"}\" 2021 12 10 0 \n",
+ "286 \\\"code\\\":\\\"693\\\"}\" 2021 12 13 0 \n",
+ "285 \\\"code\\\":\\\"822\\\"}\" 2021 12 14 0 \n",
+ "284 \\\"code\\\":\\\"822\\\"}\" 2021 12 16 0 \n",
+ ".. ... ... ... ... ... \n",
+ "4 \\\"code\\\":\\\"641\\\"}\" 2023 7 29 0 \n",
+ "3 \\\"code\\\":\\\"card\\\"}\" 2023 8 3 0 \n",
+ "2 {\\self\\\":\\\"https://au-api.basiq.io/users/bca4b... 2023 8 3 0 \n",
+ "1 \\\"code\\\":\\\"card\\\"}\" 2023 8 3 0 \n",
+ "0 {\"account\":\"https://au-api.basiq.io/users/6a52... 2023 8 3 0 \n",
+ "\n",
+ " Minute Second \n",
+ "288 0 0 \n",
+ "287 0 0 \n",
+ "286 0 0 \n",
+ "285 0 0 \n",
+ "284 0 0 \n",
+ ".. ... ... \n",
+ "4 0 0 \n",
+ "3 0 0 \n",
+ "2 0 0 \n",
+ "1 0 0 \n",
+ "0 7 36 \n",
+ "\n",
+ "[289 rows x 22 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Drop unnecessary columns\n",
+ "df.drop([\"type\", \"id\", \"status\", \"description\", \"account\", \"direction\", \"class\", \"institution\", \"connection\", \"enrich\", \"transactionDate\", \"postDate\", \"subClass\", \"links\"], axis=1, inplace=True)\n",
+ "\n",
+ "# Handle missing values (if any)\n",
+ "df.dropna(inplace=True)\n",
+ "\n",
+ "# Split the data into features (X) and target (y)\n",
+ "X = df[[\"amount\", \"Year\", \"Month\", \"Day\", \"Hour\", \"Minute\", \"Second\"]]\n",
+ "y = df[[\"balance\"]]\n",
+ "\n",
+ "# Split the data into training and testing sets\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model = RandomForestRegressor()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Fitting 5 folds for each of 81 candidates, totalling 405 fits\n",
+ "[CV 1/5; 1/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 1/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-1486274.140 total time= 0.0s\n",
+ "[CV 2/5; 1/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 1/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2378515.147 total time= 0.0s\n",
+ "[CV 3/5; 1/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 1/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-5172717.531 total time= 0.0s\n",
+ "[CV 4/5; 1/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 1/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2421784.002 total time= 0.0s\n",
+ "[CV 5/5; 1/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 1/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2452441.321 total time= 0.0s\n",
+ "[CV 1/5; 2/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 2/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-1443274.643 total time= 0.1s\n",
+ "[CV 2/5; 2/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 2/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2641389.239 total time= 0.1s\n",
+ "[CV 3/5; 2/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 2/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-4984241.449 total time= 0.1s\n",
+ "[CV 4/5; 2/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 2/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2432877.320 total time= 0.1s\n",
+ "[CV 5/5; 2/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 2/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2432380.885 total time= 0.1s\n",
+ "[CV 1/5; 3/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 3/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-1426695.729 total time= 0.2s\n",
+ "[CV 2/5; 3/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 3/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2361624.367 total time= 0.2s\n",
+ "[CV 3/5; 3/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 3/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-5003866.809 total time= 0.2s\n",
+ "[CV 4/5; 3/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 3/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2530638.939 total time= 0.2s\n",
+ "[CV 5/5; 3/81] START max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 3/81] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2469204.242 total time= 0.2s\n",
+ "[CV 1/5; 4/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 4/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-2084773.639 total time= 0.0s\n",
+ "[CV 2/5; 4/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 4/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-3008264.660 total time= 0.0s\n",
+ "[CV 3/5; 4/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 4/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-6387845.678 total time= 0.0s\n",
+ "[CV 4/5; 4/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 4/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-2699045.221 total time= 0.0s\n",
+ "[CV 5/5; 4/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 4/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-3867873.747 total time= 0.0s\n",
+ "[CV 1/5; 5/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 5/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-1665990.221 total time= 0.1s\n",
+ "[CV 2/5; 5/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 5/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-2775133.273 total time= 0.1s\n",
+ "[CV 3/5; 5/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 5/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-6472082.828 total time= 0.1s\n",
+ "[CV 4/5; 5/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 5/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-2507484.103 total time= 0.1s\n",
+ "[CV 5/5; 5/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 5/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-3880702.469 total time= 0.1s\n",
+ "[CV 1/5; 6/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 6/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-1802474.118 total time= 0.2s\n",
+ "[CV 2/5; 6/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 6/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-3116798.519 total time= 0.2s\n",
+ "[CV 3/5; 6/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 6/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-6596518.449 total time= 0.1s\n",
+ "[CV 4/5; 6/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 6/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-2639416.796 total time= 0.2s\n",
+ "[CV 5/5; 6/81] START max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 6/81] END max_depth=None, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-3926916.301 total time= 0.1s\n",
+ "[CV 1/5; 7/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 7/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-2515457.433 total time= 0.0s\n",
+ "[CV 2/5; 7/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 7/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-4235171.679 total time= 0.0s\n",
+ "[CV 3/5; 7/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 7/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-8318997.656 total time= 0.0s\n",
+ "[CV 4/5; 7/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 7/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-3694882.717 total time= 0.0s\n",
+ "[CV 5/5; 7/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 7/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-5680636.893 total time= 0.0s\n",
+ "[CV 1/5; 8/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 8/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-2204649.912 total time= 0.1s\n",
+ "[CV 2/5; 8/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 8/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-4323647.958 total time= 0.1s\n",
+ "[CV 3/5; 8/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 8/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-8249375.030 total time= 0.1s\n",
+ "[CV 4/5; 8/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 8/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-3553381.772 total time= 0.1s\n",
+ "[CV 5/5; 8/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 8/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-5711381.723 total time= 0.1s\n",
+ "[CV 1/5; 9/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 9/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-2210481.982 total time= 0.1s\n",
+ "[CV 2/5; 9/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 9/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-4386383.460 total time= 0.1s\n",
+ "[CV 3/5; 9/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 9/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-8631425.063 total time= 0.1s\n",
+ "[CV 4/5; 9/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 9/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-3524975.146 total time= 0.1s\n",
+ "[CV 5/5; 9/81] START max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 9/81] END max_depth=None, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-5685714.988 total time= 0.2s\n",
+ "[CV 1/5; 10/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 10/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-2008707.087 total time= 0.0s\n",
+ "[CV 2/5; 10/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 10/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-3068848.032 total time= 0.0s\n",
+ "[CV 3/5; 10/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 10/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-6645188.668 total time= 0.0s\n",
+ "[CV 4/5; 10/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 10/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-2600396.836 total time= 0.0s\n",
+ "[CV 5/5; 10/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 10/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-3371741.924 total time= 0.0s\n",
+ "[CV 1/5; 11/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 11/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-1894194.361 total time= 0.1s\n",
+ "[CV 2/5; 11/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 11/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-2768241.923 total time= 0.1s\n",
+ "[CV 3/5; 11/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 11/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-5933545.828 total time= 0.1s\n",
+ "[CV 4/5; 11/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 11/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-2533264.264 total time= 0.1s\n",
+ "[CV 5/5; 11/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 11/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-3855207.813 total time= 0.1s\n",
+ "[CV 1/5; 12/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 12/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-1886332.297 total time= 0.1s\n",
+ "[CV 2/5; 12/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 12/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-2959482.400 total time= 0.1s\n",
+ "[CV 3/5; 12/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 12/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-6185375.878 total time= 0.1s\n",
+ "[CV 4/5; 12/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 12/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-2611944.893 total time= 0.1s\n",
+ "[CV 5/5; 12/81] START max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 12/81] END max_depth=None, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-3702299.731 total time= 0.1s\n",
+ "[CV 1/5; 13/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 13/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-2342416.810 total time= 0.0s\n",
+ "[CV 2/5; 13/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 13/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-3600886.892 total time= 0.0s\n",
+ "[CV 3/5; 13/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 13/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-7060163.532 total time= 0.0s\n",
+ "[CV 4/5; 13/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 13/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-2740094.218 total time= 0.0s\n",
+ "[CV 5/5; 13/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 13/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-4467653.069 total time= 0.0s\n",
+ "[CV 1/5; 14/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 14/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-2131680.159 total time= 0.1s\n",
+ "[CV 2/5; 14/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 14/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-3214169.252 total time= 0.1s\n",
+ "[CV 3/5; 14/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 14/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-6540955.754 total time= 0.1s\n",
+ "[CV 4/5; 14/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 14/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-2866875.593 total time= 0.1s\n",
+ "[CV 5/5; 14/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 14/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-4007878.690 total time= 0.1s\n",
+ "[CV 1/5; 15/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 15/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-1949890.295 total time= 0.1s\n",
+ "[CV 2/5; 15/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 15/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-3309281.711 total time= 0.1s\n",
+ "[CV 3/5; 15/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 15/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-6868636.683 total time= 0.1s\n",
+ "[CV 4/5; 15/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 15/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-2953672.545 total time= 0.1s\n",
+ "[CV 5/5; 15/81] START max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 15/81] END max_depth=None, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-4178832.981 total time= 0.1s\n",
+ "[CV 1/5; 16/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 16/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-2587491.728 total time= 0.0s\n",
+ "[CV 2/5; 16/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 16/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-4658665.557 total time= 0.0s\n",
+ "[CV 3/5; 16/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 16/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-8533706.965 total time= 0.0s\n",
+ "[CV 4/5; 16/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 16/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-3651137.208 total time= 0.0s\n",
+ "[CV 5/5; 16/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 16/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-5774730.863 total time= 0.0s\n",
+ "[CV 1/5; 17/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 17/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-2227941.386 total time= 0.1s\n",
+ "[CV 2/5; 17/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 17/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-4132064.449 total time= 0.1s\n",
+ "[CV 3/5; 17/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 17/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-8425758.071 total time= 0.0s\n",
+ "[CV 4/5; 17/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 17/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-3412412.306 total time= 0.0s\n",
+ "[CV 5/5; 17/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 17/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-6057397.385 total time= 0.0s\n",
+ "[CV 1/5; 18/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 18/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-2348627.280 total time= 0.1s\n",
+ "[CV 2/5; 18/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 18/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-4519188.050 total time= 0.1s\n",
+ "[CV 3/5; 18/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 18/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-8843161.720 total time= 0.1s\n",
+ "[CV 4/5; 18/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 18/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-3594069.984 total time= 0.1s\n",
+ "[CV 5/5; 18/81] START max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 18/81] END max_depth=None, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-5731966.618 total time= 0.1s\n",
+ "[CV 1/5; 19/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 19/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-2316859.834 total time= 0.0s\n",
+ "[CV 2/5; 19/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 19/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4672389.969 total time= 0.0s\n",
+ "[CV 3/5; 19/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 19/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-8818988.159 total time= 0.0s\n",
+ "[CV 4/5; 19/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 19/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4535042.938 total time= 0.0s\n",
+ "[CV 5/5; 19/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 19/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-6005716.110 total time= 0.0s\n",
+ "[CV 1/5; 20/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 20/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-2337874.088 total time= 0.1s\n",
+ "[CV 2/5; 20/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 20/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4543844.767 total time= 0.1s\n",
+ "[CV 3/5; 20/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 20/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-8895599.364 total time= 0.1s\n",
+ "[CV 4/5; 20/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 20/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4471939.477 total time= 0.1s\n",
+ "[CV 5/5; 20/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 20/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-5844315.724 total time= 0.1s\n",
+ "[CV 1/5; 21/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 21/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-2302876.533 total time= 0.1s\n",
+ "[CV 2/5; 21/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 21/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4616896.810 total time= 0.1s\n",
+ "[CV 3/5; 21/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 21/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-8979530.381 total time= 0.1s\n",
+ "[CV 4/5; 21/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 21/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4224766.569 total time= 0.1s\n",
+ "[CV 5/5; 21/81] START max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 21/81] END max_depth=None, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-5863902.731 total time= 0.1s\n",
+ "[CV 1/5; 22/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 22/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-2519229.591 total time= 0.0s\n",
+ "[CV 2/5; 22/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 22/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-4875590.255 total time= 0.0s\n",
+ "[CV 3/5; 22/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 22/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-9296304.511 total time= 0.0s\n",
+ "[CV 4/5; 22/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 22/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-4275457.295 total time= 0.0s\n",
+ "[CV 5/5; 22/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 22/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-6062200.223 total time= 0.0s\n",
+ "[CV 1/5; 23/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 23/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-2380752.710 total time= 0.0s\n",
+ "[CV 2/5; 23/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 23/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-4559955.779 total time= 0.0s\n",
+ "[CV 3/5; 23/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 23/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-9010755.682 total time= 0.0s\n",
+ "[CV 4/5; 23/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 23/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-4396849.830 total time= 0.1s\n",
+ "[CV 5/5; 23/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 23/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-5788710.096 total time= 0.1s\n",
+ "[CV 1/5; 24/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 24/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-2273337.784 total time= 0.1s\n",
+ "[CV 2/5; 24/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 24/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4479724.918 total time= 0.1s\n",
+ "[CV 3/5; 24/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 24/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-8987806.321 total time= 0.1s\n",
+ "[CV 4/5; 24/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 24/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4306969.452 total time= 0.1s\n",
+ "[CV 5/5; 24/81] START max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 24/81] END max_depth=None, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-5753464.445 total time= 0.1s\n",
+ "[CV 1/5; 25/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 25/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-2415871.644 total time= 0.0s\n",
+ "[CV 2/5; 25/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 25/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-5231895.422 total time= 0.0s\n",
+ "[CV 3/5; 25/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 25/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-10360138.340 total time= 0.0s\n",
+ "[CV 4/5; 25/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 25/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-4408753.270 total time= 0.0s\n",
+ "[CV 5/5; 25/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 25/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-6067599.289 total time= 0.0s\n",
+ "[CV 1/5; 26/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 26/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-2387366.995 total time= 0.1s\n",
+ "[CV 2/5; 26/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 26/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-5050008.942 total time= 0.1s\n",
+ "[CV 3/5; 26/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 26/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-9252597.002 total time= 0.1s\n",
+ "[CV 4/5; 26/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 26/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-4467716.145 total time= 0.1s\n",
+ "[CV 5/5; 26/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 26/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-6176428.121 total time= 0.1s\n",
+ "[CV 1/5; 27/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 27/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-2403897.025 total time= 0.1s\n",
+ "[CV 2/5; 27/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 27/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4826633.962 total time= 0.1s\n",
+ "[CV 3/5; 27/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 27/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-9259581.899 total time= 0.1s\n",
+ "[CV 4/5; 27/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 27/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4405708.646 total time= 0.1s\n",
+ "[CV 5/5; 27/81] START max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 27/81] END max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-6258746.888 total time= 0.1s\n",
+ "[CV 1/5; 28/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 28/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-1534598.811 total time= 0.0s\n",
+ "[CV 2/5; 28/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 28/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2884736.038 total time= 0.0s\n",
+ "[CV 3/5; 28/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 28/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-4902837.865 total time= 0.0s\n",
+ "[CV 4/5; 28/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 28/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2260020.006 total time= 0.0s\n",
+ "[CV 5/5; 28/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 28/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2532227.900 total time= 0.0s\n",
+ "[CV 1/5; 29/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 29/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-1365064.600 total time= 0.1s\n",
+ "[CV 2/5; 29/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 29/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2647394.869 total time= 0.1s\n",
+ "[CV 3/5; 29/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 29/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-4985734.914 total time= 0.1s\n",
+ "[CV 4/5; 29/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 29/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2429814.401 total time= 0.1s\n",
+ "[CV 5/5; 29/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 29/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2500400.931 total time= 0.1s\n",
+ "[CV 1/5; 30/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 30/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-1411451.822 total time= 0.2s\n",
+ "[CV 2/5; 30/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 30/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2530552.672 total time= 0.2s\n",
+ "[CV 3/5; 30/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 30/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-5069418.937 total time= 0.2s\n",
+ "[CV 4/5; 30/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 30/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2477231.521 total time= 0.2s\n",
+ "[CV 5/5; 30/81] START max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 30/81] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2459990.235 total time= 0.2s\n",
+ "[CV 1/5; 31/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 31/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-2079976.640 total time= 0.0s\n",
+ "[CV 2/5; 31/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 31/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-3136012.162 total time= 0.0s\n",
+ "[CV 3/5; 31/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 31/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-6777515.085 total time= 0.0s\n",
+ "[CV 4/5; 31/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 31/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-2553017.006 total time= 0.0s\n",
+ "[CV 5/5; 31/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 31/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-3934275.732 total time= 0.0s\n",
+ "[CV 1/5; 32/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 32/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-2008979.625 total time= 0.1s\n",
+ "[CV 2/5; 32/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 32/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-2754696.798 total time= 0.1s\n",
+ "[CV 3/5; 32/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 32/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-6348958.686 total time= 0.1s\n",
+ "[CV 4/5; 32/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 32/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-2656654.596 total time= 0.1s\n",
+ "[CV 5/5; 32/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 32/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-3774808.682 total time= 0.1s\n",
+ "[CV 1/5; 33/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 33/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-1857913.213 total time= 0.1s\n",
+ "[CV 2/5; 33/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 33/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-3053646.312 total time= 0.1s\n",
+ "[CV 3/5; 33/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 33/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-6430073.379 total time= 0.1s\n",
+ "[CV 4/5; 33/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 33/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-2610328.259 total time= 0.1s\n",
+ "[CV 5/5; 33/81] START max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 33/81] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-3934656.857 total time= 0.2s\n",
+ "[CV 1/5; 34/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 34/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-2252145.216 total time= 0.0s\n",
+ "[CV 2/5; 34/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 34/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-4178175.515 total time= 0.0s\n",
+ "[CV 3/5; 34/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 34/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-8031994.302 total time= 0.0s\n",
+ "[CV 4/5; 34/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 34/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-3694909.302 total time= 0.0s\n",
+ "[CV 5/5; 34/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 34/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-5674673.247 total time= 0.0s\n",
+ "[CV 1/5; 35/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 35/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-2212642.099 total time= 0.1s\n",
+ "[CV 2/5; 35/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 35/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-4511958.250 total time= 0.1s\n",
+ "[CV 3/5; 35/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 35/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-9103290.296 total time= 0.1s\n",
+ "[CV 4/5; 35/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 35/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-3826780.569 total time= 0.1s\n",
+ "[CV 5/5; 35/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 35/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-5762082.395 total time= 0.1s\n",
+ "[CV 1/5; 36/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 36/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-2211922.462 total time= 0.1s\n",
+ "[CV 2/5; 36/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 36/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-4129984.887 total time= 0.1s\n",
+ "[CV 3/5; 36/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 36/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-8649770.300 total time= 0.1s\n",
+ "[CV 4/5; 36/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 36/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-3644823.690 total time= 0.1s\n",
+ "[CV 5/5; 36/81] START max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 36/81] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-5700457.029 total time= 0.1s\n",
+ "[CV 1/5; 37/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 37/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-1755708.503 total time= 0.0s\n",
+ "[CV 2/5; 37/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 37/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-3036761.029 total time= 0.0s\n",
+ "[CV 3/5; 37/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 37/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-6076885.109 total time= 0.0s\n",
+ "[CV 4/5; 37/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 37/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-2517492.286 total time= 0.0s\n",
+ "[CV 5/5; 37/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 37/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-3438626.670 total time= 0.0s\n",
+ "[CV 1/5; 38/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 38/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-1902258.868 total time= 0.1s\n",
+ "[CV 2/5; 38/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 38/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-2868842.701 total time= 0.1s\n",
+ "[CV 3/5; 38/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 38/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-6058267.150 total time= 0.1s\n",
+ "[CV 4/5; 38/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 38/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-2698765.110 total time= 0.1s\n",
+ "[CV 5/5; 38/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 38/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-3749829.407 total time= 0.1s\n",
+ "[CV 1/5; 39/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 39/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-1926151.227 total time= 0.1s\n",
+ "[CV 2/5; 39/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 39/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-2911922.617 total time= 0.2s\n",
+ "[CV 3/5; 39/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 39/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-6317871.825 total time= 0.2s\n",
+ "[CV 4/5; 39/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 39/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-2692841.207 total time= 0.2s\n",
+ "[CV 5/5; 39/81] START max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 39/81] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-3550182.626 total time= 0.1s\n",
+ "[CV 1/5; 40/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 40/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-2274433.388 total time= 0.0s\n",
+ "[CV 2/5; 40/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 40/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-3596746.289 total time= 0.0s\n",
+ "[CV 3/5; 40/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 40/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-7573948.914 total time= 0.0s\n",
+ "[CV 4/5; 40/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 40/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-2907322.813 total time= 0.0s\n",
+ "[CV 5/5; 40/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 40/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-4319284.837 total time= 0.0s\n",
+ "[CV 1/5; 41/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 41/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-2010692.263 total time= 0.1s\n",
+ "[CV 2/5; 41/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 41/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-3215234.441 total time= 0.1s\n",
+ "[CV 3/5; 41/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 41/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-6885378.482 total time= 0.1s\n",
+ "[CV 4/5; 41/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 41/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-2924659.617 total time= 0.1s\n",
+ "[CV 5/5; 41/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 41/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-4192195.167 total time= 0.1s\n",
+ "[CV 1/5; 42/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 42/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-2213698.247 total time= 0.1s\n",
+ "[CV 2/5; 42/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 42/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-3319891.345 total time= 0.2s\n",
+ "[CV 3/5; 42/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 42/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-6549052.870 total time= 0.1s\n",
+ "[CV 4/5; 42/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 42/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-2858591.894 total time= 0.1s\n",
+ "[CV 5/5; 42/81] START max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 42/81] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-4238862.304 total time= 0.1s\n",
+ "[CV 1/5; 43/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 43/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-2321305.695 total time= 0.0s\n",
+ "[CV 2/5; 43/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 43/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-4182624.678 total time= 0.0s\n",
+ "[CV 3/5; 43/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 43/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-8203130.318 total time= 0.0s\n",
+ "[CV 4/5; 43/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 43/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-3819685.556 total time= 0.0s\n",
+ "[CV 5/5; 43/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 43/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-5882084.151 total time= 0.0s\n",
+ "[CV 1/5; 44/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 44/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-2211199.414 total time= 0.1s\n",
+ "[CV 2/5; 44/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 44/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-4418408.190 total time= 0.1s\n",
+ "[CV 3/5; 44/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 44/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-8585957.554 total time= 0.0s\n",
+ "[CV 4/5; 44/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 44/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-3792829.722 total time= 0.0s\n",
+ "[CV 5/5; 44/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 44/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-5951815.180 total time= 0.1s\n",
+ "[CV 1/5; 45/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 45/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-2347640.820 total time= 0.1s\n",
+ "[CV 2/5; 45/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 45/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-4457781.040 total time= 0.1s\n",
+ "[CV 3/5; 45/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 45/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-8554979.147 total time= 0.1s\n",
+ "[CV 4/5; 45/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 45/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-3633805.362 total time= 0.1s\n",
+ "[CV 5/5; 45/81] START max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 45/81] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-5708662.720 total time= 0.1s\n",
+ "[CV 1/5; 46/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 46/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-2206021.377 total time= 0.0s\n",
+ "[CV 2/5; 46/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 46/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4723617.178 total time= 0.0s\n",
+ "[CV 3/5; 46/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 46/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-8850577.735 total time= 0.0s\n",
+ "[CV 4/5; 46/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 46/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4517705.342 total time= 0.0s\n",
+ "[CV 5/5; 46/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 46/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-5883334.004 total time= 0.0s\n",
+ "[CV 1/5; 47/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 47/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-2230204.988 total time= 0.0s\n",
+ "[CV 2/5; 47/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 47/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4830722.330 total time= 0.1s\n",
+ "[CV 3/5; 47/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 47/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-8973203.952 total time= 0.1s\n",
+ "[CV 4/5; 47/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 47/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4466476.972 total time= 0.1s\n",
+ "[CV 5/5; 47/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 47/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-5842186.389 total time= 0.1s\n",
+ "[CV 1/5; 48/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 48/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-2387670.460 total time= 0.1s\n",
+ "[CV 2/5; 48/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 48/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4801714.307 total time= 0.1s\n",
+ "[CV 3/5; 48/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 48/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-8687949.070 total time= 0.1s\n",
+ "[CV 4/5; 48/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 48/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4640804.905 total time= 0.2s\n",
+ "[CV 5/5; 48/81] START max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 48/81] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-5780485.777 total time= 0.1s\n",
+ "[CV 1/5; 49/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 49/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-2348460.689 total time= 0.0s\n",
+ "[CV 2/5; 49/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 49/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-4922417.374 total time= 0.0s\n",
+ "[CV 3/5; 49/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 49/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-8599394.685 total time= 0.0s\n",
+ "[CV 4/5; 49/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 49/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-4525605.525 total time= 0.0s\n",
+ "[CV 5/5; 49/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 49/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-5676671.096 total time= 0.0s\n",
+ "[CV 1/5; 50/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 50/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-2377329.486 total time= 0.1s\n",
+ "[CV 2/5; 50/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 50/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-4709170.948 total time= 0.1s\n",
+ "[CV 3/5; 50/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 50/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-8994952.640 total time= 0.1s\n",
+ "[CV 4/5; 50/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 50/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-4266322.557 total time= 0.1s\n",
+ "[CV 5/5; 50/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 50/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-5690055.809 total time= 0.1s\n",
+ "[CV 1/5; 51/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 51/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-2406926.209 total time= 0.2s\n",
+ "[CV 2/5; 51/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 51/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4641881.505 total time= 0.1s\n",
+ "[CV 3/5; 51/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 51/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-8809762.172 total time= 0.1s\n",
+ "[CV 4/5; 51/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 51/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4303096.166 total time= 0.1s\n",
+ "[CV 5/5; 51/81] START max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 51/81] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-5956786.754 total time= 0.2s\n",
+ "[CV 1/5; 52/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 52/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-2385220.040 total time= 0.0s\n",
+ "[CV 2/5; 52/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 52/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-4764222.839 total time= 0.0s\n",
+ "[CV 3/5; 52/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 52/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-9414839.655 total time= 0.0s\n",
+ "[CV 4/5; 52/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 52/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-4803351.464 total time= 0.0s\n",
+ "[CV 5/5; 52/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 52/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-5921679.925 total time= 0.0s\n",
+ "[CV 1/5; 53/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 53/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-2511508.469 total time= 0.1s\n",
+ "[CV 2/5; 53/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 53/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-4754586.350 total time= 0.1s\n",
+ "[CV 3/5; 53/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 53/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-9546746.025 total time= 0.1s\n",
+ "[CV 4/5; 53/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 53/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-4411456.106 total time= 0.1s\n",
+ "[CV 5/5; 53/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 53/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-6278186.504 total time= 0.1s\n",
+ "[CV 1/5; 54/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 54/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-2418635.822 total time= 0.1s\n",
+ "[CV 2/5; 54/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 54/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4850699.481 total time= 0.1s\n",
+ "[CV 3/5; 54/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 54/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-9846354.115 total time= 0.1s\n",
+ "[CV 4/5; 54/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 54/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4809160.441 total time= 0.1s\n",
+ "[CV 5/5; 54/81] START max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 54/81] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-6320778.274 total time= 0.1s\n",
+ "[CV 1/5; 55/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 55/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-1351806.635 total time= 0.0s\n",
+ "[CV 2/5; 55/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 55/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2551399.171 total time= 0.0s\n",
+ "[CV 3/5; 55/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 55/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-5054003.070 total time= 0.0s\n",
+ "[CV 4/5; 55/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 55/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2596466.435 total time= 0.0s\n",
+ "[CV 5/5; 55/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 55/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=100;, score=-2730956.423 total time= 0.0s\n",
+ "[CV 1/5; 56/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 56/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-1351198.762 total time= 0.1s\n",
+ "[CV 2/5; 56/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 56/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2405882.826 total time= 0.1s\n",
+ "[CV 3/5; 56/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 56/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-5106543.429 total time= 0.1s\n",
+ "[CV 4/5; 56/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 56/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2448569.843 total time= 0.1s\n",
+ "[CV 5/5; 56/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 56/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=200;, score=-2552569.919 total time= 0.1s\n",
+ "[CV 1/5; 57/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 57/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-1545122.161 total time= 0.2s\n",
+ "[CV 2/5; 57/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 57/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2627691.117 total time= 0.2s\n",
+ "[CV 3/5; 57/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 57/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-5274611.498 total time= 0.2s\n",
+ "[CV 4/5; 57/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 57/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2458029.711 total time= 0.2s\n",
+ "[CV 5/5; 57/81] START max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 57/81] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=300;, score=-2380402.882 total time= 0.2s\n",
+ "[CV 1/5; 58/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 58/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-2091677.947 total time= 0.0s\n",
+ "[CV 2/5; 58/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 58/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-2930001.694 total time= 0.0s\n",
+ "[CV 3/5; 58/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 58/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-6214967.054 total time= 0.0s\n",
+ "[CV 4/5; 58/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 58/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-2796873.371 total time= 0.0s\n",
+ "[CV 5/5; 58/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 58/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=100;, score=-3576157.826 total time= 0.0s\n",
+ "[CV 1/5; 59/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 59/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-2066102.799 total time= 0.1s\n",
+ "[CV 2/5; 59/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 59/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-3221384.582 total time= 0.1s\n",
+ "[CV 3/5; 59/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 59/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-6171919.269 total time= 0.1s\n",
+ "[CV 4/5; 59/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 59/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-2634327.309 total time= 0.1s\n",
+ "[CV 5/5; 59/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 59/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=200;, score=-3836116.603 total time= 0.1s\n",
+ "[CV 1/5; 60/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 60/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-1786696.136 total time= 0.2s\n",
+ "[CV 2/5; 60/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 60/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-3081084.058 total time= 0.2s\n",
+ "[CV 3/5; 60/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 60/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-6348601.836 total time= 0.2s\n",
+ "[CV 4/5; 60/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 60/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-2582581.951 total time= 0.2s\n",
+ "[CV 5/5; 60/81] START max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 60/81] END max_depth=20, min_samples_leaf=1, min_samples_split=5, n_estimators=300;, score=-3847933.942 total time= 0.2s\n",
+ "[CV 1/5; 61/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 61/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-2317998.536 total time= 0.0s\n",
+ "[CV 2/5; 61/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 61/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-4367814.349 total time= 0.0s\n",
+ "[CV 3/5; 61/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 61/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-8693404.904 total time= 0.0s\n",
+ "[CV 4/5; 61/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 61/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-3806143.357 total time= 0.0s\n",
+ "[CV 5/5; 61/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 61/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=100;, score=-5482144.781 total time= 0.0s\n",
+ "[CV 1/5; 62/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 62/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-2181597.458 total time= 0.1s\n",
+ "[CV 2/5; 62/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 62/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-4134532.826 total time= 0.1s\n",
+ "[CV 3/5; 62/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 62/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-8108594.963 total time= 0.1s\n",
+ "[CV 4/5; 62/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 62/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-3588028.094 total time= 0.1s\n",
+ "[CV 5/5; 62/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 62/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=200;, score=-5647398.606 total time= 0.1s\n",
+ "[CV 1/5; 63/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 63/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-2240212.129 total time= 0.2s\n",
+ "[CV 2/5; 63/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 63/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-4337669.224 total time= 0.2s\n",
+ "[CV 3/5; 63/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 63/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-8660876.157 total time= 0.1s\n",
+ "[CV 4/5; 63/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 63/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-3650599.160 total time= 0.2s\n",
+ "[CV 5/5; 63/81] START max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 63/81] END max_depth=20, min_samples_leaf=1, min_samples_split=10, n_estimators=300;, score=-5701321.685 total time= 0.1s\n",
+ "[CV 1/5; 64/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 64/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-1883285.956 total time= 0.0s\n",
+ "[CV 2/5; 64/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 64/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-3207018.035 total time= 0.0s\n",
+ "[CV 3/5; 64/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 64/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-6256647.026 total time= 0.0s\n",
+ "[CV 4/5; 64/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 64/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-2845995.798 total time= 0.0s\n",
+ "[CV 5/5; 64/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 64/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=100;, score=-3920085.781 total time= 0.0s\n",
+ "[CV 1/5; 65/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 65/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-1945119.454 total time= 0.1s\n",
+ "[CV 2/5; 65/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 65/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-3019047.948 total time= 0.1s\n",
+ "[CV 3/5; 65/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 65/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-5897230.109 total time= 0.1s\n",
+ "[CV 4/5; 65/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 65/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-2604923.649 total time= 0.1s\n",
+ "[CV 5/5; 65/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 65/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=200;, score=-3766618.486 total time= 0.1s\n",
+ "[CV 1/5; 66/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 66/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-1770000.558 total time= 0.1s\n",
+ "[CV 2/5; 66/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 66/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-3027178.318 total time= 0.1s\n",
+ "[CV 3/5; 66/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 66/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-6140926.510 total time= 0.1s\n",
+ "[CV 4/5; 66/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 66/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-2660261.910 total time= 0.1s\n",
+ "[CV 5/5; 66/81] START max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 66/81] END max_depth=20, min_samples_leaf=2, min_samples_split=2, n_estimators=300;, score=-3805596.536 total time= 0.2s\n",
+ "[CV 1/5; 67/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 67/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-2028326.992 total time= 0.0s\n",
+ "[CV 2/5; 67/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 67/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-3174149.134 total time= 0.0s\n",
+ "[CV 3/5; 67/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 67/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-7218787.951 total time= 0.0s\n",
+ "[CV 4/5; 67/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 67/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-2534268.205 total time= 0.0s\n",
+ "[CV 5/5; 67/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 67/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=100;, score=-4104507.684 total time= 0.0s\n",
+ "[CV 1/5; 68/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 68/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-2011787.494 total time= 0.1s\n",
+ "[CV 2/5; 68/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 68/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-3146421.470 total time= 0.1s\n",
+ "[CV 3/5; 68/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 68/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-7138734.981 total time= 0.1s\n",
+ "[CV 4/5; 68/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 68/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-2775527.707 total time= 0.1s\n",
+ "[CV 5/5; 68/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 68/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=200;, score=-4185397.413 total time= 0.1s\n",
+ "[CV 1/5; 69/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 69/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-1984245.902 total time= 0.1s\n",
+ "[CV 2/5; 69/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 69/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-3351158.757 total time= 0.1s\n",
+ "[CV 3/5; 69/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 69/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-6581878.496 total time= 0.1s\n",
+ "[CV 4/5; 69/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 69/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-2782117.904 total time= 0.1s\n",
+ "[CV 5/5; 69/81] START max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 69/81] END max_depth=20, min_samples_leaf=2, min_samples_split=5, n_estimators=300;, score=-4192436.029 total time= 0.1s\n",
+ "[CV 1/5; 70/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 70/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-2275688.956 total time= 0.0s\n",
+ "[CV 2/5; 70/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 70/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-4428392.041 total time= 0.0s\n",
+ "[CV 3/5; 70/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 70/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-8945955.105 total time= 0.0s\n",
+ "[CV 4/5; 70/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 70/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-3475157.884 total time= 0.0s\n",
+ "[CV 5/5; 70/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 70/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=100;, score=-5507432.034 total time= 0.0s\n",
+ "[CV 1/5; 71/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 71/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-2273675.103 total time= 0.1s\n",
+ "[CV 2/5; 71/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 71/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-4246140.639 total time= 0.1s\n",
+ "[CV 3/5; 71/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 71/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-8414974.479 total time= 0.1s\n",
+ "[CV 4/5; 71/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 71/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-3723417.716 total time= 0.1s\n",
+ "[CV 5/5; 71/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 71/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=200;, score=-5731027.168 total time= 0.0s\n",
+ "[CV 1/5; 72/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 72/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-2384202.169 total time= 0.1s\n",
+ "[CV 2/5; 72/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 72/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-4237881.831 total time= 0.1s\n",
+ "[CV 3/5; 72/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 72/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-8770038.981 total time= 0.1s\n",
+ "[CV 4/5; 72/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 72/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-3807171.725 total time= 0.1s\n",
+ "[CV 5/5; 72/81] START max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 72/81] END max_depth=20, min_samples_leaf=2, min_samples_split=10, n_estimators=300;, score=-5748272.563 total time= 0.1s\n",
+ "[CV 1/5; 73/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 1/5; 73/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-2361827.435 total time= 0.0s\n",
+ "[CV 2/5; 73/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 2/5; 73/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4561762.868 total time= 0.0s\n",
+ "[CV 3/5; 73/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 3/5; 73/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-9161871.160 total time= 0.0s\n",
+ "[CV 4/5; 73/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 4/5; 73/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-4080407.409 total time= 0.0s\n",
+ "[CV 5/5; 73/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100\n",
+ "[CV 5/5; 73/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=100;, score=-6126654.653 total time= 0.0s\n",
+ "[CV 1/5; 74/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 1/5; 74/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-2386149.091 total time= 0.0s\n",
+ "[CV 2/5; 74/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 2/5; 74/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4539614.622 total time= 0.0s\n",
+ "[CV 3/5; 74/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 3/5; 74/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-8595811.506 total time= 0.0s\n",
+ "[CV 4/5; 74/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 4/5; 74/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-4528860.909 total time= 0.0s\n",
+ "[CV 5/5; 74/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200\n",
+ "[CV 5/5; 74/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=200;, score=-5719698.170 total time= 0.0s\n",
+ "[CV 1/5; 75/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 1/5; 75/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-2333718.823 total time= 0.1s\n",
+ "[CV 2/5; 75/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 2/5; 75/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4645044.878 total time= 0.1s\n",
+ "[CV 3/5; 75/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 3/5; 75/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-9164314.430 total time= 0.1s\n",
+ "[CV 4/5; 75/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 4/5; 75/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-4411749.046 total time= 0.1s\n",
+ "[CV 5/5; 75/81] START max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300\n",
+ "[CV 5/5; 75/81] END max_depth=20, min_samples_leaf=4, min_samples_split=2, n_estimators=300;, score=-5704299.266 total time= 0.1s\n",
+ "[CV 1/5; 76/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 1/5; 76/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-2455772.697 total time= 0.0s\n",
+ "[CV 2/5; 76/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 2/5; 76/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-4739799.174 total time= 0.0s\n",
+ "[CV 3/5; 76/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 3/5; 76/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-8632797.812 total time= 0.0s\n",
+ "[CV 4/5; 76/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 4/5; 76/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-4465747.294 total time= 0.0s\n",
+ "[CV 5/5; 76/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100\n",
+ "[CV 5/5; 76/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=100;, score=-5815916.764 total time= 0.0s\n",
+ "[CV 1/5; 77/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 1/5; 77/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-2379045.360 total time= 0.0s\n",
+ "[CV 2/5; 77/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 2/5; 77/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-5010839.579 total time= 0.1s\n",
+ "[CV 3/5; 77/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 3/5; 77/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-8980610.806 total time= 0.1s\n",
+ "[CV 4/5; 77/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 4/5; 77/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-4554499.443 total time= 0.0s\n",
+ "[CV 5/5; 77/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200\n",
+ "[CV 5/5; 77/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=200;, score=-6210936.926 total time= 0.0s\n",
+ "[CV 1/5; 78/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 1/5; 78/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-2304289.322 total time= 0.1s\n",
+ "[CV 2/5; 78/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 2/5; 78/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4604533.317 total time= 0.1s\n",
+ "[CV 3/5; 78/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 3/5; 78/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-8914630.047 total time= 0.2s\n",
+ "[CV 4/5; 78/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 4/5; 78/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-4439496.164 total time= 0.1s\n",
+ "[CV 5/5; 78/81] START max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300\n",
+ "[CV 5/5; 78/81] END max_depth=20, min_samples_leaf=4, min_samples_split=5, n_estimators=300;, score=-6055701.915 total time= 0.1s\n",
+ "[CV 1/5; 79/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 1/5; 79/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-2436154.047 total time= 0.0s\n",
+ "[CV 2/5; 79/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 2/5; 79/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-5018603.438 total time= 0.0s\n",
+ "[CV 3/5; 79/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 3/5; 79/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-9532896.641 total time= 0.0s\n",
+ "[CV 4/5; 79/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 4/5; 79/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-5114693.865 total time= 0.0s\n",
+ "[CV 5/5; 79/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100\n",
+ "[CV 5/5; 79/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=100;, score=-5899070.027 total time= 0.0s\n",
+ "[CV 1/5; 80/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 1/5; 80/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-2552620.894 total time= 0.1s\n",
+ "[CV 2/5; 80/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 2/5; 80/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-4558388.255 total time= 0.0s\n",
+ "[CV 3/5; 80/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 3/5; 80/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-9416243.836 total time= 0.0s\n",
+ "[CV 4/5; 80/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 4/5; 80/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-4557965.501 total time= 0.0s\n",
+ "[CV 5/5; 80/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200\n",
+ "[CV 5/5; 80/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=200;, score=-6247100.862 total time= 0.0s\n",
+ "[CV 1/5; 81/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 1/5; 81/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-2346398.773 total time= 0.1s\n",
+ "[CV 2/5; 81/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 2/5; 81/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4902085.008 total time= 0.1s\n",
+ "[CV 3/5; 81/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 3/5; 81/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-9269438.831 total time= 0.1s\n",
+ "[CV 4/5; 81/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 4/5; 81/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-4328182.684 total time= 0.1s\n",
+ "[CV 5/5; 81/81] START max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300\n",
+ "[CV 5/5; 81/81] END max_depth=20, min_samples_leaf=4, min_samples_split=10, n_estimators=300;, score=-6296748.118 total time= 0.1s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "GridSearchCV(cv=5, estimator=RandomForestRegressor(), n_jobs=1,\n",
+ " param_grid={'max_depth': [None, 10, 20],\n",
+ " 'min_samples_leaf': [1, 2, 4],\n",
+ " 'min_samples_split': [2, 5, 10],\n",
+ " 'n_estimators': [100, 200, 300]},\n",
+ " scoring='neg_mean_squared_error', verbose=10) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. GridSearchCV GridSearchCV(cv=5, estimator=RandomForestRegressor(), n_jobs=1,\n",
+ " param_grid={'max_depth': [None, 10, 20],\n",
+ " 'min_samples_leaf': [1, 2, 4],\n",
+ " 'min_samples_split': [2, 5, 10],\n",
+ " 'n_estimators': [100, 200, 300]},\n",
+ " scoring='neg_mean_squared_error', verbose=10) "
+ ],
+ "text/plain": [
+ "GridSearchCV(cv=5, estimator=RandomForestRegressor(), n_jobs=1,\n",
+ " param_grid={'max_depth': [None, 10, 20],\n",
+ " 'min_samples_leaf': [1, 2, 4],\n",
+ " 'min_samples_split': [2, 5, 10],\n",
+ " 'n_estimators': [100, 200, 300]},\n",
+ " scoring='neg_mean_squared_error', verbose=10)"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "param_grid = {\n",
+ " 'n_estimators': [100, 200, 300],\n",
+ " 'max_depth': [None, 10, 20],\n",
+ " 'min_samples_split': [2, 5, 10],\n",
+ " 'min_samples_leaf': [1, 2, 4]\n",
+ "}\n",
+ "\n",
+ "grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, n_jobs=1, verbose=10, scoring='neg_mean_squared_error')\n",
+ "grid_search.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 300}\n"
+ ]
+ }
+ ],
+ "source": [
+ "best_params = grid_search.best_params_\n",
+ "best_model = grid_search.best_estimator_\n",
+ "print(best_params)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean Squared Error: 1844826.441998729\n",
+ "R-squared: 0.9166861631993493\n",
+ "Root Mean Squared Error: 1358.2438816349327\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred = best_model.predict(X_test)\n",
+ "mse = mean_squared_error(y_test, y_pred)\n",
+ "rmse = np.sqrt(mse)\n",
+ "r2 = r2_score(y_test, y_pred)\n",
+ "print(\"Mean Squared Error:\", mse)\n",
+ "print(\"R-squared:\", r2)\n",
+ "print(\"Root Mean Squared Error:\", rmse)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# model.fit(X_train, y_train)\n",
+ "\n",
+ "# # Predict on the test set\n",
+ "# y_pred = model.predict(X_test)\n",
+ "\n",
+ "# # Evaluate the model\n",
+ "# mse = mean_squared_error(y_test, y_pred)\n",
+ "# r2 = r2_score(y_test, y_pred)\n",
+ "\n",
+ "# print(\"Mean Squared Error:\", mse)\n",
+ "# print(\"R-squared:\", r2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# models = {\n",
+ "# \"Linear Regression\": LinearRegression(),\n",
+ "# \"Decision Tree Regression\": DecisionTreeRegressor(),\n",
+ "# \"Random Forest Regression\": RandomForestRegressor(),\n",
+ "# \"Stochastic Gradient Descent\": SGDRegressor(), \n",
+ "# \"Ridge Regression\": Ridge(), \n",
+ "# \"Quantile Regression\": QuantileRegressor()\n",
+ "# }"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# for model_name, model in models.items():\n",
+ "# model.fit(X_train, y_train)\n",
+ "# y_pred = model.predict(X_test)\n",
+ "\n",
+ "# # Evaluate the model\n",
+ "# mse = mean_squared_error(y_test, y_pred)\n",
+ "# r2 = r2_score(y_test, y_pred)\n",
+ "\n",
+ "# print(f\"Model: {model_name}\")\n",
+ "# print(\"Mean Squared Error:\", mse)\n",
+ "# print(\"R-squared:\", r2)\n",
+ "# print(\"------------------------\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAIhCAYAAAAhCnmjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6oElEQVR4nO3de1zUVf7H8fcwIqLC5A25JqZlulqZlpeWhGpT07SIUilXy7XbplJaW9tuWVtp1pZWa2utafVLrXC0m9lagdF6zaS1rHZrQRExTRG8og7n98fXmRiuAyLD5fV8POYxzfd7+M4ZvoPNe875fo7NGGMEAAAAAKhzAf7uAAAAAAA0VQQyAAAAAPATAhkAAAAA+AmBDAAAAAD8hEAGAAAAAH5CIAMAAAAAPyGQAQAAAICfEMgAAAAAwE8IZAAAAADgJwQyAECVnnvuOdlsNvXs2bPGx9i5c6emT5+uzMzM2utYJeLj4xUfH18nz1WZ2NhY2Ww2z61169bq16+fXnvttTp5/oULF8pmsyk7O9uzraa/myeeeELLly+vtb65ZWdny2azaeHChbV+bACo7whkAIAqvfLKK5Kkb775RuvXr6/RMXbu3KlHHnmkzgJZfXLJJZdo7dq1Wrt2rScgjRs3Ti+++KJf+jN37lzNnTu32j93ugIZADRlBDIAQKW++OILffXVVxo2bJgkaf78+X7uUcNzxhlnqH///urfv7+SkpK0cuVKhYaG6plnnqnwZ1wul4qKik5Lf3r06KEePXqclmMDAKqHQAYAqJQ7gM2cOVMDBw7UkiVLdPjw4TLtcnNzdeuttyomJkbNmzdXZGSkkpKS9NNPPyk9PV0XXXSRJOnmm2/2TN+bPn26pIqn0I0fP16xsbFe2x555BH169dPbdu2VWhoqC688ELNnz9fxphqv7ZrrrlGnTp1UnFxcZl9/fr104UXXuh5/Pbbb6tfv35yOBxq2bKlzjrrLN1yyy3Vfk7JCmjdunXTtm3bJP0yZW/WrFl67LHH1LlzZwUFBSktLU2SFYpHjBihtm3bqkWLFurdu7feeuutMsddt26dLrnkErVo0UKRkZF64IEHdPz48TLtyvt9FxUV6dFHH1X37t3VokULtWvXTgkJCVqzZo0kyWaz6dChQ3r11Vc956/kMXbt2qXbbrtN0dHRat68uTp37qxHHnlEJ06c8HqenTt36oYbblBISIgcDodGjRqlXbt21ej3CACNQTN/dwAAUH8dOXJEixcv1kUXXaSePXvqlltu0e9+9zu9/fbbGjdunKddbm6uLrroIh0/flx//OMfdd5552nv3r366KOPlJ+frwsvvFALFizQzTffrD/96U+e0bbo6Ohq9yk7O1u33XabzjzzTElWCJk0aZJyc3P10EMPVetYt9xyi0aOHKlPP/1UV1xxhWf7d999pw0bNui5556TJK1du1ajRo3SqFGjNH36dLVo0ULbtm3Tp59+Wu3+S9Lx48e1bds2dejQwWv7c889p3POOUdPP/20QkNDdfbZZystLU1DhgxRv3799Pe//10Oh0NLlizRqFGjdPjwYY0fP16StHXrVl1++eWKjY3VwoUL1bJlS82dO1eLFi2qsj8nTpzQ0KFDlZGRoZSUFF122WU6ceKE1q1bp+3bt2vgwIFau3atLrvsMiUkJOjPf/6zJCk0NFSSFcYuvvhiBQQE6KGHHlKXLl20du1aPfbYY8rOztaCBQskWe+nK664Qjt37tSMGTN0zjnn6IMPPtCoUaNq9HsEgEbBAABQgddee81IMn//+9+NMcYcOHDAtG7d2sTFxXm1u+WWW0xgYKDZunVrhcfauHGjkWQWLFhQZt+gQYPMoEGDymwfN26c6dSpU4XHdLlc5vjx4+bRRx817dq1M8XFxVUes6Tjx4+bjh07muTkZK/t9913n2nevLn5+eefjTHGPP3000aS2b9/f6XHK0+nTp3MVVddZY4fP26OHz9usrKyzLhx44wkc++99xpjjMnKyjKSTJcuXcyxY8e8fv7cc881vXv3NsePH/faPnz4cBMREWFcLpcxxphRo0aZ4OBgs2vXLk+bEydOmHPPPddIMllZWZ7tpX837vP88ssvV/paWrVqZcaNG1dm+2233WZat25ttm3b5rXd/Xv75ptvjDHGvPjii0aSeeedd7zaTZw4scL3BgA0dkxZBABUaP78+QoODtbo0aMlSa1bt9b111+vjIwM/fe///W0+/DDD5WQkKDu3buf9j65R7McDofsdrsCAwP10EMPae/evdq9e3e1jtWsWTPddNNNcjqdKigokGRdu/X6669r5MiRateunSR5plvecMMNeuutt5Sbm1ut51mxYoUCAwMVGBiozp0766233tKkSZP02GOPebUbMWKEAgMDPY9/+OEHfffdd7rxxhslWSNZ7ttVV12lvLw8ff/995KktLQ0XX755erYsaPn5+12u0+jTx9++KFatGhR4ymY77//vhISEhQZGenVx6FDh0qSVq9e7eljSEiIRowY4fXzycnJNXpeAGgMCGQAgHL98MMP+uyzzzRs2DAZY7R//37t379fSUlJkn6pvChJe/bsqdH0w+rasGGDrrzySknSyy+/rH/961/auHGjHnzwQUnWlLjquuWWW3T06FEtWbJEkvTRRx8pLy9PN998s6fNpZdequXLl+vEiRP67W9/q+joaPXs2VOLFy/26Tl+/etfa+PGjfriiy+0detW7d+/X88995yaN2/u1S4iIsLr8U8//SRJmjZtmifQuW933nmnJOnnn3+WJO3du1fh4eFlnru8baXt2bNHkZGRCgio2ceCn376Se+9916ZPv7qV78q08eSgbE6fQSAxopryAAA5XrllVdkjFFqaqpSU1PL7H/11Vf12GOPyW63q0OHDtqxY0eNn6tFixaeEaqS3B/k3ZYsWaLAwEC9//77atGihWf7qZRi79Gjhy6++GItWLBAt912mxYsWKDIyEhP8HMbOXKkRo4cqaKiIq1bt04zZsxQcnKyYmNjNWDAgEqfw+FwqG/fvlX2xWazeT1u3769JOmBBx5QYmJiuT/TrVs3SVK7du3KLY7hS8GMDh066PPPP1dxcXGNQln79u113nnn6fHHHy93f2RkpKePGzZsqFEfAaCxYoQMAFCGy+XSq6++qi5duigtLa3MberUqcrLy9OHH34oSRo6dKjS0tI80+fKExQUJKn8UazY2Fj95z//8SrzvnfvXk+FPzebzaZmzZrJbrd7th05ckSvv/76Kb3em2++WevXr9fnn3+u9957T+PGjfN6jtKvY9CgQXryySclSZs3bz6l565Mt27ddPbZZ+urr75S3759y72FhIRIkhISEvTJJ594RtUk6zy++eabVT7P0KFDdfTo0SoXZg4KCir3/A0fPlxff/21unTpUm4f3YEsISFBBw4c0Lvvvuv1874UHgGAxooRMgBAGR9++KF27typJ598stxy9D179tQLL7yg+fPna/jw4Xr00Uf14Ycf6tJLL9Uf//hH9erVS/v379fKlSt1zz336Nxzz1WXLl0UHBysN954Q927d1fr1q0VGRmpyMhIjR07VvPmzdNNN92kiRMnau/evZo1a5anip/bsGHD9Mwzzyg5OVm33nqr9u7dq6efftoT9mpqzJgxuueeezRmzBgVFRV5Khe6PfTQQ9qxY4cuv/xyRUdHa//+/ZozZ44CAwM1aNCgU3ruqsybN09Dhw7V4MGDNX78eEVFRWnfvn369ttv9eWXX+rtt9+WJP3pT3/Su+++q8suu0wPPfSQWrZsqb/97W86dOhQlc8xZswYLViwQLfffru+//57JSQkqLi4WOvXr1f37t091xD26tVL6enpeu+99xQREaGQkBB169ZNjz76qFatWqWBAwdq8uTJ6tatm44ePars7GytWLFCf//73xUdHa3f/va3evbZZ/Xb3/5Wjz/+uM4++2ytWLFCH3300Wn9HQJAvebvqiIAgPrnmmuuMc2bNze7d++usM3o0aNNs2bNPFX9cnJyzC233GLCw8NNYGCgiYyMNDfccIP56aefPD+zePFic+6555rAwEAjyTz88MOefa+++qrp3r27adGihenRo4d58803y62y+Morr5hu3bqZoKAgc9ZZZ5kZM2aY+fPnV1lJsCrJyclGkrnkkkvK7Hv//ffN0KFDTVRUlGnevLkJCwszV111lcnIyKjyuJ06dTLDhg2rtI27yuJTTz1V7v6vvvrK3HDDDSYsLMwEBgaa8PBwc9lll3mqX7r961//Mv379zdBQUEmPDzc3Hvvveall17y6Xdz5MgR89BDD5mzzz7bNG/e3LRr185cdtllZs2aNZ42mZmZ5pJLLjEtW7Y0kryOsWfPHjN58mTTuXNnExgYaNq2bWv69OljHnzwQXPw4EFPux07dpjrrrvOtG7d2oSEhJjrrrvOrFmzhiqLAJosmzE1WEkTAAAAAHDKuIYMAAAAAPyEQAYAAAAAfkIgAwAAAAA/IZABAAAAgJ8QyAAAAADATwhkAAAAAOAnLAxdi4qLi7Vz506FhITIZrP5uzsAAAAA/MQYowMHDigyMlIBARWPgxHIatHOnTsVExPj724AAAAAqCdycnIUHR1d4X4CWS0KCQmRZP3SQ0ND/dwbAAAAAP5SWFiomJgYT0aoCIGsFrmnKYaGhhLIAAAAAFR5KRNFPQAAAADATwhkAAAAAOAnBDIAAAAA8BOuIQMAAIDfGGN04sQJuVwuf3cFqBa73a5mzZqd8nJXBDIAAAD4xbFjx5SXl6fDhw/7uytAjbRs2VIRERFq3rx5jY9BIAMAAECdKy4uVlZWlux2uyIjI9W8efNTHmkA6ooxRseOHdOePXuUlZWls88+u9LFnytDIAMAAECdO3bsmIqLixUTE6OWLVv6uztAtQUHByswMFDbtm3TsWPH1KJFixodh6IeAAAA8JuajioA9UFtvH/5CwAAAAAAPyGQAQAAAICfEMgAAACARsJms2n58uWVttm7d6/CwsKUnZ1dJ32qLe+//7569+6t4uJif3elVhHIAAAAgGpas2aN7Ha7hgwZUu2fjY2N1ezZs2u/Uz6aMWOGrr76asXGxtbK8XwJgdVV3u9o+PDhstlsWrRoUa0+l78RyAAAANBguVxSerq0eLF1X1frS7/yyiuaNGmSPv/8c23fvr1unrQWHDlyRPPnz9fvfvc7f3elRm6++WY9//zz/u5GrSKQAQAAoEL+Cjy+cDql2FgpIUFKTrbuY2Ot7afToUOH9NZbb+mOO+7Q8OHDtXDhwjJt3n33XfXt21ctWrRQ+/btlZiYKEmKj4/Xtm3bdPfdd8tms3nWXps+fbouuOACr2PMnj3baxRr48aN+s1vfqP27dvL4XBo0KBB+vLLL6vV9w8//FDNmjXTgAEDJFnraXXt2lVPP/20V7uvv/5aAQEB+vHHHys9nrt/1157rWw2m1d/33vvPfXp00ctWrTQWWedpUceeUQnTpzw7J8+fbrOPPNMBQUFKTIyUpMnT5ZU8e9IkkaMGKENGzbof//7X7Ved31GIAMAAEC5/BV4fOF0SklJ0o4d3ttzc63tp7OPb775prp166Zu3brppptu0oIFC2SM8ez/4IMPlJiYqGHDhmnz5s365JNP1Ldv35P9dio6OlqPPvqo8vLylJeX5/PzHjhwQOPGjVNGRobWrVuns88+W1dddZUOHDjg8zE+++wzT18ka7rhLbfcogULFni1e+WVVxQXF6cuXbpUeryNGzdKkhYsWKC8vDzP448++kg33XSTJk+erK1bt2revHlauHChHn/8cUlSamqqnn32Wc2bN0///e9/tXz5cvXq1UtS5b+jTp06KSwsTBkZGT6/5vqOhaEBAABQhjvwlMgZkn4JPKmp0slBnzrncklTppTtm2Rts9mklBRp5EjJbq/9558/f75uuukmSdKQIUN08OBBffLJJ7riiiskSY8//rhGjx6tRx55xPMz559/viSpbdu2stvtCgkJUXh4eLWe97LLLvN6PG/ePLVp00arV6/W8OHDfTpGdna2IiMjvbbdfPPNeuihh7RhwwZdfPHFOn78uP7v//5PTz31VJXH69ChgyTpjDPO8Ho9jz/+uO6//36NGzdOknTWWWfpL3/5i+677z49/PDD2r59u8LDw3XFFVcoMDBQZ555pi6++GJJVf+OoqKiGlxBksowQgYAAAAvVQUeyQo8/pq+mJFRdmSsJGOknByrXW37/vvvtWHDBo0ePVqS1KxZM40aNUqvvPKKp01mZqYuv/zyWn/u3bt36/bbb9c555wjh8Mhh8OhgwcPVusatiNHjqhFixZe2yIiIjRs2DDPa3j//fd19OhRXX/99TXu66ZNm/Too4+qdevWntvEiROVl5enw4cP6/rrr9eRI0d01llnaeLEiVq2bJnXdMbKBAcH6/DhwzXuW33DCBkAAAC8VCfwxMfXWbc8fJ3lV43ZgD6bP3++Tpw4oaioKM82Y4wCAwOVn5+vNm3aKDg4uNrHDQgI8Jr2KEnHjx/3ejx+/Hjt2bNHs2fPVqdOnRQUFKQBAwbo2LFjPj9P+/btlZ+fX2b77373O40dO1bPPvusFixYoFGjRqlly5bVfh1uxcXFeuSRRzzXzpXUokULxcTE6Pvvv9eqVav08ccf684779RTTz2l1atXKzAwsNJj79u3zzMy1xgwQgYAAAAv/gw8voiIqN12vjpx4oRee+01/fWvf1VmZqbn9tVXX6lTp0564403JEnnnXeePvnkkwqP07x5c7lKDS926NBBu3bt8gplmZmZXm0yMjI0efJkXXXVVfrVr36loKAg/fzzz9V6Db1799bWrVvLbL/qqqvUqlUrvfjii/rwww91yy23+HzMwMDAMq/nwgsv1Pfff6+uXbuWuQUEWBEkODhYI0aM0HPPPaf09HStXbtWW7ZskVT+70iSjh49qh9//FG9e/euzsuu1xgha4RcLusbq7w86x+iuLjTM38aAAA0Tv4KPL6Ki5Oio63r2cqbVmmzWfvj4mr3ed9//33l5+drwoQJcjgcXvuSkpI0f/583XXXXXr44Yd1+eWXq0uXLho9erROnDihDz/8UPfdd58kqzLhZ599ptGjRysoKEjt27dXfHy89uzZo1mzZikpKUkrV67Uhx9+qNDQUM9zdO3aVa+//rr69u2rwsJC3XvvvdUejRs8eLAeeOABz2iem91u1/jx4/XAAw+oa9euniqMvoiNjdUnn3yiSy65REFBQWrTpo0eeughDR8+XDExMbr++usVEBCgf//739qyZYsee+wxLVy4UC6XS/369VPLli31+uuvKzg4WJ06darwdyRJ69at84wMNhaMkDUy9bkaEgAAaBjcgadEtXEvNpsUE1P7gcdXdrs0Z84vfSnJ/Xj27Nr/Qnr+/Pm64ooryoQxSbruuuuUmZmpL7/8UvHx8Xr77bf17rvv6oILLtBll12m9evXe9o++uijys7OVpcuXTxT77p37665c+fqb3/7m84//3xt2LBB06ZN83qOV155Rfn5+erdu7fGjh2ryZMnKywsrFqvoVevXurbt6/eeuutMvsmTJigY8eOVWt0TJL++te/atWqVYqJifGMXA0ePFjvv/++Vq1apYsuukj9+/fXM8884wlcZ5xxhl5++WVdcsklnhHF9957T+3atavwdyRJixcv1o033nhK0ynrG5spPVkVNVZYWCiHw6GCggKvbzPqSkXVkNz/MPmzGhIAAGhY3J8rJO/PFrX1ueLo0aPKyspS586dyxSZqE4fp0zxvt4tJsYKY3zmqdiKFSs0bdo0z1pjbv/6178UHx+vHTt2qGPHjn7sYfn27Nmjc889V1988YU6d+7s7+5Iqvx97Gs2YISskajv1ZAAAEDDkphoha4StSskWSNn9eVL3sREKTtbSkuTFi2y7rOy6kff6rOrrrpKt912m3JzcyVJRUVF+uGHH/TnP/9ZN9xwQ70MY5KUlZWluXPn1pswVlsYIatF/hwhS0+3pidWJS3NP9WQAABAw3S6rk2vjREy1I6FCxdqwoQJuuCCC/Tuu+96VZB84403dNttt5X7c506ddI333xTV92sl2pjhIyiHo1Efa+GBAAAGia7nS9zG7vx48dr/Pjx5e4bMWKE+vXrV+6+qsrTwzcEskaivldDAgAAQMMTEhKikJAQf3ejUeMaskaivldDAgAAAFAWgayR8Ff5VwAAAAA1RyBrRBpCNSQAAAAAv+AaskYmMVEaOfL0VEMCAAAAULsIZI0Q1ZAAAACAhoEpiwAAAKiYy2UteLp4sXXvcvm7R03G9OnTdcEFF3gejx8/Xtdcc02d9yM7O1s2m02ZmZmVtvv+++8VHh6uAwcO1E3HalF6erpsNpv2798vSXr//ffVu3dvFRcXn/bnJpABAACgfE6nFBsrJSRIycnWfWystb2JGj9+vGw2m2w2mwIDA3XWWWdp2rRpOnTo0Gl/7jlz5mjhwoU+tfU1RNWmBx98UL///e8bRZn84cOHy2azadGiRaf9uQhkAAAAKMvplJKSpB07vLfn5lrb60so88MI3pAhQ5SXl6f//e9/euyxxzR37lxNmzat3LbHjx+vted1OBw644wzau14tWnHjh169913dfPNN/utD8YYnThxotaOd/PNN+v555+vteNVhEAGAAAAby6XNGWKZEzZfe5tKSn+n77opxG8oKAghYeHKyYmRsnJybrxxhu1fPlySb9MM3zllVd01llnKSgoSMYYFRQU6NZbb1VYWJhCQ0N12WWX6auvvvI67syZM9WxY0eFhIRowoQJOnr0qNf+0lMWi4uL9eSTT6pr164KCgrSmWeeqccff1yS1LlzZ0lS7969ZbPZFF+iwMCCBQvUvXt3tWjRQueee67mzp3r9TwbNmxQ79691aJFC/Xt21ebN2+u8nfy1ltv6fzzz1d0dLQk6dChQwoNDVVqaqpXu/fee0+tWrWqclqje4RvyZIlGjhwoFq0aKFf/epXSk9P97RxTzP86KOP1LdvXwUFBSkjI0PGGM2aNUtnnXWWgoODdf7555fpx4oVK3TOOecoODhYCQkJys7OLtOHESNGaMOGDfrf//5X5es/FQQyAAAAeMvIKDsyVpIxUk6O1c5f6tEIXnBwsNdI2A8//KC33npLS5cu9UwZHDZsmHbt2qUVK1Zo06ZNuvDCC3X55Zdr3759kqxA8/DDD+vxxx/XF198oYiIiDJBqbQHHnhATz75pP785z9r69atWrRokTp27CjJClWS9PHHHysvL0/Ok7+Pl19+WQ8++KAef/xxffvtt3riiSf05z//Wa+++qokK0gNHz5c3bp106ZNmzR9+vQKR/9K+uyzz9S3b1/P41atWmn06NFasGCBV7sFCxYoKSnJ52mN9957r6ZOnarNmzdr4MCBGjFihPbu3evV5r777tOMGTP07bff6rzzztOf/vQnLViwQC+++KK++eYb3X333brpppu0evVqSVJOTo4SExN11VVXKTMzU7/73e90//33l3nuTp06KSwsTBmn+31uUGsKCgqMJFNQUODvrgAAANTcokXGWLGr8tuiRTV+iiNHjpitW7eaI0eOVP+HT5wwJjq64n7ZbMbExFjtatm4cePMyJEjPY/Xr19v2rVrZ2644QZjjDEPP/ywCQwMNLt37/a0+eSTT0xoaKg5evSo17G6dOli5s2bZ4wxZsCAAeb222/32t+vXz9z/vnnl/vchYWFJigoyLz88svl9jMrK8tIMps3b/baHhMTYxaVOm9/+ctfzIABA4wxxsybN8+0bdvWHDp0yLP/xRdfLPdYJZ1//vnm0Ucf9dq2fv16Y7fbTW5urjHGmD179pjAwECTnp5e4XFK93/mzJmebcePHzfR0dHmySefNMYYk5aWZiSZ5cuXe9ocPHjQtGjRwqxZs8breBMmTDBjxowxxhjzwAMPmO7du5vi4mLP/j/84Q9GksnPz/f6ud69e5vp06dX2M/K3se+ZgPK3gMAAMBbRETttqtt1RnBOw1rAb3//vtq3bq1Tpw4oePHj2vkyJFe1xp16tRJHTp08DzetGmTDh48qHbt2nkd58iRI/rxxx8lSd9++61uv/12r/0DBgxQWlpauX349ttvVVRUpMsvv9znfu/Zs0c5OTmaMGGCJk6c6Nl+4sQJORwOz3HPP/98tWzZ0qsfVTly5IhatGjhte3iiy/Wr371K7322mu6//779frrr+vMM8/UpZde6nOfSz53s2bN1LdvX3377bdebUqOzG3dulVHjx7Vb37zG682x44dU+/evT2vsX///rLZbFW+xuDgYB0+fNjn/tYEgQwAAADe4uKk6Ghr+l9515HZbNb+uLi675sk5eXVbrtqSkhI0IsvvqjAwEBFRkYqMDDQa3+rVq28HhcXFysiIsLr+ie3mhbpCA4OrvbPuEu4v/zyy+rXr5/XPrvdLskqjFET7du3V35+fpntv/vd7/TCCy/o/vvv14IFC3TzzTd7BaGaKP3zJX/f7tf4wQcfKCoqyqtdUFCQpOq9xn379nmF69OBa8gAAADgzW6X5syx/rv0h2f349mzrXb+4OcRvFatWqlr167q1KlTmTBWngsvvFC7du1Ss2bN1LVrV69b+/btJUndu3fXunXrvH6u9OOSzj77bAUHB+uTTz4pd3/z5s0lSa4ShVc6duyoqKgo/e9//yvTD3cRkB49euirr77SkSNHfOqHW+/evbV169Yy22+66SZt375dzz33nL755huNGzeuymOVVPK5T5w4oU2bNuncc8+tsH2PHj0UFBSk7du3l3mNMTExnja+/K6PHj2qH3/80TOydroQyAAAAFBWYqKUmiqVGmVQdLS1PTHRP/2SfhnBq2ikxWaTYmL8N4JXyhVXXKEBAwbommuu0UcffaTs7GytWbNGf/rTn/TFF19IkqZMmaJXXnlFr7zyiv7zn//o4Ycf1jfffFPhMVu0aKE//OEPuu+++/Taa6/pxx9/1Lp16zR//nxJUlhYmIKDg7Vy5Ur99NNPKigokGRVgZwxY4bmzJmj//znP9qyZYsWLFigZ555RpKUnJysgIAATZgwQVu3btWKFSv09NNPV/kaBw8erLVr13oFQElq06aNEhMTde+99+rKK6/0VGH01d/+9jctW7ZM3333nX7/+98rPz9ft9xyS4XtQ0JCNG3aNN1999169dVX9eOPP2rz5s3629/+5ilccvvtt+vHH3/UPffco++//16LFi0qd323devWKSgoyKcpm6eCQAYAAIDyJSZK2dlSWpq0aJF1n5Xl3zAm1f8RvFJsNptWrFihSy+9VLfccovOOeccjR49WtnZ2Z6qiKNGjdJDDz2kP/zhD+rTp4+2bdumO+64o9Lj/vnPf9bUqVP10EMPqXv37ho1apR2794tybre6rnnntO8efMUGRmpkSNHSrKmEP7jH//QwoUL1atXLw0aNEgLFy70jJC1bt1a7733nrZu3arevXvrwQcf1JNPPlnla7zqqqsUGBiojz/+uMy+CRMm6NixY5UGqYrMnDlTTz75pM4//3xlZGTonXfe8YwqVuQvf/mLHnroIc2YMUPdu3fX4MGD9d5773le45lnnqmlS5fqvffe0/nnn6+///3veuKJJ8ocZ/Hixbrxxhu9rqc7HWymphNFUUZhYaEcDocKCgoUGhrq7+4AAADUW0ePHlVWVpY6d+5cphiEz5xOa720kgU+YmKsMObv0NgEzZ07V++8844++ugjr+1vvPGGpkyZop07d3qmUlYlOztbnTt31ubNm3XBBRecht5Wbs+ePTr33HP1xRdfeIJceSp7H/uaDSjqAQAAgIYpMVEaOdKqppiXZ10zFhdXb0bGmppbb71V+fn5OnDggEJCQnT48GFlZWVpxowZuu2223wOY/VBVlaW5s6dW2kYqy1MWQQAAEDDZbdbpe3HjLHuCWN+06xZMz344IOeRZ9nzZqlCy64QB07dtQDDzzg1faJJ55Q69aty70NHTrUH933cvHFF2vUqFF18lxMWaxFTFkEAADwTa1MWUSDtW/fPu3bt6/cfcHBwWVK1tdXTFkEAAAA0OC0bdtWbdu29Xc36gWmLAIAAMBvmKyFhqw23r8EMgAAANQ594LKhw8f9nNPgJpzv399WSC8IkxZBAAAQJ2z2+0644wzPOtmtWzZUraKFnoG6hljjA4fPqzdu3frjDPOkP0UiskQyAAAAOAX4eHhkuQJZUBDc8YZZ3jexzVFIAMAAKhrLhdrZ0my2WyKiIhQWFiYjh8/7u/uANUSGBh4SiNjbgQyAACAuuR0SlOmSDt2/LItOlqaM8da6LgJstvttfLBFmiIKOoBAABQV5xOKSnJO4xJUm6utd3p9E+/APgNgQwAAKAuuFzWyFh5ZbLd21JSrHYAmgy/BrIZM2booosuUkhIiMLCwnTNNdfo+++/92pjjNH06dMVGRmp4OBgxcfH65tvvvFqU1RUpEmTJql9+/Zq1aqVRowYoR2lvnnKz8/X2LFj5XA45HA4NHbsWO3fv9+rzfbt23X11VerVatWat++vSZPnqxjx46dltcOAACamIyMsiNjJRkj5eRY7QBUi8slpadLixdb9w3pew2/BrLVq1fr97//vdatW6dVq1bpxIkTuvLKK3Xo0CFPm1mzZumZZ57RCy+8oI0bNyo8PFy/+c1vdODAAU+blJQULVu2TEuWLNHnn3+ugwcPavjw4XKVOBPJycnKzMzUypUrtXLlSmVmZmrs2LGe/S6XS8OGDdOhQ4f0+eefa8mSJVq6dKmmTp1aN78MAADQuOXl1W47AJKsmb6xsVJCgpScbN3HxjagGcCmHtm9e7eRZFavXm2MMaa4uNiEh4ebmTNnetocPXrUOBwO8/e//90YY8z+/ftNYGCgWbJkiadNbm6uCQgIMCtXrjTGGLN161Yjyaxbt87TZu3atUaS+e6774wxxqxYscIEBASY3NxcT5vFixeboKAgU1BQ4FP/CwoKjCSf2582J04Yk5ZmzKJF1v2JE/7tDwAAsP6fbI2DVX5LS/N3T4EGY+lSY2y2sn9GNpt1W7rUf33zNRvUq2vICgoKJElt27aVJGVlZWnXrl268sorPW2CgoI0aNAgrVmzRpK0adMmHT9+3KtNZGSkevbs6Wmzdu1aORwO9evXz9Omf//+cjgcXm169uypyMhIT5vBgwerqKhImzZtKre/RUVFKiws9Lr5XYP/igAAgEYqLs6qpljR4sc2mxQTY7UDUKXGcllmvQlkxhjdc889+vWvf62ePXtKknbt2iVJ6tixo1fbjh07evbt2rVLzZs3V5s2bSptExYWVuY5w8LCvNqUfp42bdqoefPmnjalzZgxw3NNmsPhUExMTHVfdu2ichMAAPWX3W6VtpfKhjL349mzm+R6ZEBNNJbLMutNILvrrrv073//W4sXLy6zz1bqHy1jTJltpZVuU177mrQp6YEHHlBBQYHnlpOTU2mfTqvG8hUBAACNWWKilJoqRUV5b4+OtrY30XXIgJpoLJdl1otANmnSJL377rtKS0tTdHS0Z3t4eLgklRmh2r17t2c0Kzw8XMeOHVN+fn6lbX766acyz7tnzx6vNqWfJz8/X8ePHy8zcuYWFBSk0NBQr5vfNJavCAAAaOwSE6XsbCktTVq0yLrPyiKMAdUUEVG77fzFr4HMGKO77rpLTqdTn376qTp37uy1v3PnzgoPD9eqVas8244dO6bVq1dr4MCBkqQ+ffooMDDQq01eXp6+/vprT5sBAwaooKBAGzZs8LRZv369CgoKvNp8/fXXyisRof/5z38qKChIffr0qf0XX9say1cEAAA0BXa7FB8vjRlj3TNNEai2xnJZZjN/Pvnvf/97LVq0SO+8845CQkI8I1QOh0PBwcGy2WxKSUnRE088obPPPltnn322nnjiCbVs2VLJycmethMmTNDUqVPVrl07tW3bVtOmTVOvXr10xRVXSJK6d++uIUOGaOLEiZo3b54k6dZbb9Xw4cPVrVs3SdKVV16pHj16aOzYsXrqqae0b98+TZs2TRMnTvTvyJevGstXBAAAAIAP3JdlJiVZ4avklTsN6bJMmzHlXXRUR09eQZxdsGCBxo8fL8kaRXvkkUc0b9485efnq1+/fvrb3/7mKfwhSUePHtW9996rRYsW6ciRI7r88ss1d+5cryIb+/bt0+TJk/Xuu+9KkkaMGKEXXnhBZ5xxhqfN9u3bdeedd+rTTz9VcHCwkpOT9fTTTysoKMin11NYWCiHw6GCgoK6D3Eul1VNMTe3/OvIbDbrK4SsrPr/rgQAAAB85HRapRRKXr0TE2OFMX/OBPY1G/g1kDU2fg1k0i9VFqXyvyLgYmEAAAA0Qi6XVSohL8+aEBYX5/8xCF+zgV+nLKKWuSs3lf6KIDra/18RAAAAAKeJ+7LMhohA1tgkJkojR9a/rwgAAAAAlEEga4wa8lcEAAAAQBNSL9YhAwAAAICmiEAGAAAAAH5CIAMAAAAAPyGQAQAAAICfEMgAAAAAwE8IZAAAAADgJwQyAAAAAPATAhkAAAAA+AmBDAAAAAD8hEAGAAAAAH5CIAMAAAAAPyGQAQAAAICfEMgAAAAAwE8IZAAAAADgJwQyAAAAAPATAhkAAAAA+AmBDAAAAAD8hEAGAAAAAH5CIAMAAAAAPyGQAQAAAICfEMgAAAAAwE8IZAAAAADgJwQyAAAAAPATAhkAAAAA+AmBDAAAAAD8hEAGAAAAAH5CIAMAAAAAPyGQAQAAAICfEMgAAAAAwE8IZAAAAADgJwQyAAAAAPATAhkAAAAA+AmBDAAAAAD8pJm/OwAAANDUuFxSRoaUlydFREhxcZLd7u9eAfAHAhkAAEAdcjqlKVOkHTt+2RYdLc2ZIyUm+q9fAPyDKYsAAAB1xOmUkpK8w5gk5eZa251O//QLgP8QyAAAAOqAy2WNjBlTdp97W0qK1Q5ANblcUnq6tHixdd+A/pAIZAAAAHUgI6PsyFhJxkg5OVY7ANXgdEqxsVJCgpScbN3HxjaYIWcCGQAAQB3Iy6vddgDUKOYBE8gAAADqQERE7bYDmrxGMg+YQAYAAFAH4uKsaoo2W/n7bTYpJsZqB8AHjWQeMIEMAACgDtjtVml7qWwocz+ePZv1yACfNZJ5wAQyAACAOpKYKKWmSlFR3tujo63trEMGVEMjmQdsM6a8SZeoicLCQjkcDhUUFCg0NNTf3QEAAPWUy2XNosrLsz4rxsUxMgZUm8tlVVPMzS3/OjKbzfq2IyvLL39gvmaDZnXYJwAAAMj6bBgf7+9eAA2cex5wUpIVvkqGsgY0D5gpiwAAAAAapkYwD5gRMgAAAAANV2KiNHJkg50HTCADAAAA0LA14HnATFkEAAAAAD8hkAEAAACAnxDIAAAAAMBPCGQAAAAA4CcEMgAAAADwEwIZAAAAAPgJgQwAAAAA/IRABgAAAAB+QiADAAAAAD8hkAEAAACAnxDIAAAAAMBPCGQAAAAA4CcEMgAAAADwEwIZAAAAAPgJgQwAAAAA/IRABgAAAAB+QiADAAAAAD8hkAEAAACAnxDIAAAAAMBPCGQAAAAA4CfN/N0BAACA08blkjIypLw8KSJCiouT7HZ/9woAPAhkAACgcXI6pSlTpB07ftkWHS3NmSMlJvqvXwBQAlMWAQBA4+N0SklJ3mFMknJzre1Op3/6BQClEMgAAEDj4nJZI2PGlN3n3paSYrUDAD8jkAEAgMYlI6PsyFhJxkg5OVY7APAzAhkAAGhc8vJqtx0AnEYEMgAA0LhERNRuOwA4jQhkAACgcYmLs6op2mzl77fZpJgYqx0A+JlfA9lnn32mq6++WpGRkbLZbFq+fLnX/vHjx8tms3nd+vfv79WmqKhIkyZNUvv27dWqVSuNGDFCO0rNG8/Pz9fYsWPlcDjkcDg0duxY7d+/36vN9u3bdfXVV6tVq1Zq3769Jk+erGPHjp2Olw0AAE4nu90qbS+VDWXux7Nnsx4ZgHrBr4Hs0KFDOv/88/XCCy9U2GbIkCHKy8vz3FasWOG1PyUlRcuWLdOSJUv0+eef6+DBgxo+fLhcJSonJScnKzMzUytXrtTKlSuVmZmpsWPHeva7XC4NGzZMhw4d0ueff64lS5Zo6dKlmjp1au2/aAAAcPolJkqpqVJUlPf26GhrO+uQAagnbMaUVxO27tlsNi1btkzXXHONZ9v48eO1f//+MiNnbgUFBerQoYNef/11jRo1SpK0c+dOxcTEaMWKFRo8eLC+/fZb9ejRQ+vWrVO/fv0kSevWrdOAAQP03XffqVu3bvrwww81fPhw5eTkKDIyUpK0ZMkSjR8/Xrt371ZoaKhPr6GwsFAOh0MFBQU+/wwAADiNXC6rmmJennXNWFwcI2MA6oSv2aDeX0OWnp6usLAwnXPOOZo4caJ2797t2bdp0yYdP35cV155pWdbZGSkevbsqTVr1kiS1q5dK4fD4QljktS/f385HA6vNj179vSEMUkaPHiwioqKtGnTpgr7VlRUpMLCQq8bAACoR+x2KT5eGjPGuieMAahn6nUgGzp0qN544w19+umn+utf/6qNGzfqsssuU1FRkSRp165dat68udq0aeP1cx07dtSuXbs8bcLCwsocOywszKtNx44dvfa3adNGzZs397Qpz4wZMzzXpTkcDsXExJzS6wUAAADQtDTzdwcq456GKEk9e/ZU37591alTJ33wwQdKrGTutzFGthIX8drKqbJUkzalPfDAA7rnnns8jwsLCwllAAAAAHxWr0fISouIiFCnTp303//+V5IUHh6uY8eOKT8/36vd7t27PSNe4eHh+umnn8oca8+ePV5tSo+E5efn6/jx42VGzkoKCgpSaGio1w0AAAAAfNWgAtnevXuVk5OjiJMLOfbp00eBgYFatWqVp01eXp6+/vprDRw4UJI0YMAAFRQUaMOGDZ4269evV0FBgVebr7/+Wnl5eZ42//znPxUUFKQ+ffrUxUsDAAAA0AT5dcriwYMH9cMPP3geZ2VlKTMzU23btlXbtm01ffp0XXfddYqIiFB2drb++Mc/qn379rr22mslSQ6HQxMmTNDUqVPVrl07tW3bVtOmTVOvXr10xRVXSJK6d++uIUOGaOLEiZo3b54k6dZbb9Xw4cPVrVs3SdKVV16pHj16aOzYsXrqqae0b98+TZs2TRMnTmTUCwAAAMBp49dA9sUXXyghIcHz2H091rhx4/Tiiy9qy5Yteu2117R//35FREQoISFBb775pkJCQjw/8+yzz6pZs2a64YYbdOTIEV1++eVauHCh7CWqKL3xxhuaPHmypxrjiBEjvNY+s9vt+uCDD3TnnXfqkksuUXBwsJKTk/X000+f7l8BAAAAgCas3qxD1hiwDhkAAAAAqRGtQwYAAAAAjRWBDAAAAAD8hEAGAAAAAH5CIAMAAAAAPyGQAQAAAICf+LXsPQAAwOnkckkZGVJenhQRIcXFSSVWxgEAvyOQAQCARsnplKZMkXbs+GVbdLQ0Z46UmOi/fgFASUxZBAAAjY7TKSUleYcxScrNtbY7nf7pFwCURiADAACNistljYwZU3afe1tKitUOAPyNQAYAABqVjIyyI2MlGSPl5FjtAMDfCGQAAKBRycur3XYAcDoRyAAAQKMSEVG77QDgdCKQAQCARiUuzqqmaLOVv99mk2JirHYA4G8EMgAA0KjY7VZpe6lsKHM/nj2b9cgA1A8EMgAA0OgkJkqpqVJUlPf26GhrO+uQAagvWBgaAAA0SomJ0siRVjXFvDzrmrG4OEbGANQvBDIAANBo2e1SfLy/ewEAFWPKIgAAAAD4CYEMAAAAAPyEQAYAAAAAfkIgAwAAAAA/IZABAAAAgJ8QyAAAAADATwhkAAAAAOAnBDIAAAAA8BMCGQAAAAD4CYEMAAAAAPyEQAYAAAAAfkIgAwAAAAA/IZABAAAAgJ8QyAAAAADAT5r5uwMAAAAAcCpcLikjQ8rLkyIipLg4yW73d698QyADAAAA0GA5ndKUKdKOHb9si46W5syREhP91y9fMWURAAAAQIPkdEpJSd5hTJJyc63tTqd/+lUdBDIAAAAADY7LZY2MGVN2n3tbSorVrj4jkAEAAABocDIyyo6MlWSMlJNjtavPCGQAAAAAGpy8vNpt5y8EMgAAAAANTkRE7bbzFwIZAAAAgAYnLs6qpmizlb/fZpNiYqx29RmBDAAAAECDY7dbpe2lsqHM/Xj27Pq/HhmBDAAAAECDlJgopaZKUVHe26Ojre0NYR0yFoYGAAAA0GAlJkojR1rVFPPyrGvG4uLq/8iYG4EMAAAAQINmt0vx8f7uRc0wZREAAAAA/IRABgAAAAB+QiADAAAAAD/hGjIAAAAADZvL1WCrehDIGqsG/KYEAAAAfOZ0SlOmSDt2/LItOtpapKwB1L2v8ZTF119/XZdccokiIyO1bds2SdLs2bP1zjvv1FrnUENOpxQbKyUkSMnJ1n1srLUdAAAAaCycTikpyTuMSVJurrW9AXz+rVEge/HFF3XPPffoqquu0v79++VyuSRJZ5xxhmbPnl2b/UN1NYI3JQAAqIDLJaWnS4sXW/cnP4MBTZLLZY2MGVN2n3tbSkq9/zupUSB7/vnn9fLLL+vBBx+UvcQ0uL59+2rLli211jlUUyN5UwIAgHIwAwbwlpFRdhCiJGOknByrXT1Wo0CWlZWl3r17l9keFBSkQ4cOnXKnUEON5E0JAABKYQYMUFZeXu2285MaBbLOnTsrMzOzzPYPP/xQPXr0ONU+oaYayZsSAACUwAwYoHwREbXbzk9qVGXx3nvv1e9//3sdPXpUxhht2LBBixcv1owZM/SPf/yjtvsIXzWSNyUAACihOjNg4uPrrFuA38XFWdUUc3PL/8LCZrP2x8XVfd+qoUaB7Oabb9aJEyd033336fDhw0pOTlZUVJTmzJmj0aNH13Yf4atG8qYEAAAlMAMGKJ/dbpW2T0qyPueW/Pxrs1n3s2fX+6Wfalz2fuLEidq2bZt2796tXbt2KScnRxMmTKjNvqG63G9K6Zc34UlGNhmpQbwpAQBACcyAASqWmCilpkpRUd7bo6Ot7Q1gHTKbMeUNpVQuKytLJ06c0Nlnn+21/b///a8CAwMVGxtbW/1rUAoLC+VwOFRQUKDQ0FD/dcTp1OFbp6jl3l+mN2xXjP7SbraGvpTYEN6XAADAzeWyqilWNQMmK4svXdF0uVzWtN28POvLibg4v/89+JoNajRCNn78eK1Zs6bM9vXr12v8+PE1OSRqkVOJCt2brXilaYwWKV5p6qwszd+XSCEmAAAamkpmwDSkaVnAaWW3W9dQjhlj3Tegv4cajZCFhobqyy+/VNeuXb22//DDD+rbt6/2799fW/1rUOrDCJn7S7SKrv3lSzQAABoop9Oqtljyf/IxMVYYY/oLUO/4mg1qVNTDZrPpwIEDZbYXFBTIRclVv6IQEwAAjVRiojRyZL2blgXg1NQokMXFxWnGjBlavHix7Cf/EXC5XJoxY4Z+/etf12oHUT0UYgIAoBFzT8sC0GjUKJDNmjVLl156qbp166a4kyXUMzIyVFhYqE8//bRWO4jqoRATAAAA0HDUqKhHjx499O9//1s33HCDdu/erQMHDui3v/2tvvvuO/Xs2bO2+4hqcC9FVhGbzZpuzlJkAAAAgP/VaIRMkiIjI/XEE0/UZl9QC+x2q7jMU09V3IZCTAAAAED9UONAtn//fm3YsEG7d+9WcXGx177f/va3p9wx1IzTKT39dMX7p02jEBMAAABQX9So7P17772nG2+8UYcOHVJISIhsJdbEsNls2rdvX612sqHwd9l7St4DAAAA9cNpXRh66tSpuuWWW3TgwAHt379f+fn5nltTDWP1QXVK3gMAAADwvxoFstzcXE2ePFktW7as7f7gFFDyHgAAAGhYahTIBg8erC+++KK2+4JTRMl7AABQHS6XlJ4uLV5s3btc/u4R0PTUqKjHsGHDdO+992rr1q3q1auXAgMDvfaPGDGiVjqH6nGXvM/NtaYnBsilOGUoQnnKU4QyFKc27eyUvAcAAHI6pSlTvC936NBBuvFGaeRI63MF15wDp1+NinoEBFQ8sGaz2eRqol+v+Luoh2T943rdddK1cmqOpihGv/wrm6NoTdEc3bQ0kUqLAAA0YU6nlJRkfYFbkehoac4cqjMDNeVrNqhRIEP56kMgc7mkW85wasHBJEnGa05qsaxqmDe3TtUr+xP51gsAgCaoZFXm8mbTFOuXDwg2m5SaSigDauK0VllE/ZWR7tJjB6eodBiTpABZ2fsvB1P0xF+a5igmAABNnbsq87VyKluxSleCFitZ6UpQtmJ1rZxe7VNSuLYMOJ1qvDD0oUOHtHr1am3fvl3Hjh3z2jd58uRT7hhqxpWe4TVNsbQAGZ2pHH3xbIZcf45nlAwAgCYmL88KY6myZtOUFKVcpSpJSUrVMiV6LZkTH++X7gKNXo0C2ebNm3XVVVfp8OHDOnTokNq2bauff/5ZLVu2VFhYGIHMjyLkW037loV5/OMKAEATFBHm0hxVPJumWDbNVore0UjP9EWWzAFOnxpNWbz77rt19dVXa9++fQoODta6deu0bds29enTR08//XRt9xHV0C3et5r2eYrgH1cAAJqgOFmzaSr6EOieTROnDM82lswBTp8aBbLMzExNnTpVdrtddrtdRUVFiomJ0axZs/THP/6xtvuIarDHx6kgNNpTwKO0Ytm0XTHKUBz/uAIA0ATZd/v2jWyE8mSzSTExYskc4DSqUSALDAyUzWZ94O/YsaO2b98uSXI4HJ7/hp/Y7Wo9f44klQll7sd3a7aiYliPDACAJsnHb2R3yWo3ezbrkQGnU40CWe/evfXFF19IkhISEvTQQw/pjTfeUEpKinr16uXzcT777DNdffXVioyMlM1m0/Lly732G2M0ffp0RUZGKjg4WPHx8frmm2+82hQVFWnSpElq3769WrVqpREjRmjHDu+iFvn5+Ro7dqwcDoccDofGjh2r/fv3e7XZvn27rr76arVq1Urt27fX5MmTyxQraSjsSYnacG+qchXltX2HonW9UrXMlsg/rgAANFVxcdYiY7bKZ9NkRcdR8h6oAzUKZE888YQiTn678pe//EXt2rXTHXfcod27d+ull17y+TiHDh3S+eefrxdeeKHc/bNmzdIzzzyjF154QRs3blR4eLh+85vf6MCBA542KSkpWrZsmZYsWaLPP/9cBw8e1PDhw70Wp05OTlZmZqZWrlyplStXKjMzU2PHjvXsd7lcGjZsmA4dOqTPP/9cS5Ys0dKlSzV16tTq/mrqjf6zErXxrWxd3z5NY7RI8UpTZ2VpY0wi/7gCANCU2e3Wis9SmVBmZJNNUuEjs/Vjtp3PC0AdqDcLQ9tsNi1btkzXXHONJGt0LDIyUikpKfrDH/4gyRoN69ixo5588knddtttKigoUIcOHfT6669r1KhRkqSdO3cqJiZGK1as0ODBg/Xtt9+qR48eWrdunfr16ydJWrdunQYMGKDvvvtO3bp104cffqjhw4crJydHkZGRkqQlS5Zo/Pjx2r17t8+LPNeHhaFLc7msUrV5edYMhbg4RsYAAIAkp1OaMsValMwtJsaao0gSA05Zg18YOisrS7t27dKVV17p2RYUFKRBgwZpzZo1kqRNmzbp+PHjXm0iIyPVs2dPT5u1a9fK4XB4wpgk9e/fXw6Hw6tNz549PWFMkgYPHqyioiJt2rSpwj4WFRWpsLDQ61bf2O1WafsxY6x7whgAAJBkha7sbCktTVq0yLrPyiKMAXXM53XIevfu7SnkUZUvv/yyxh1y27VrlySraEhJHTt21LZt2zxtmjdvrjZt2pRp4/75Xbt2KSwsrMzxw8LCvNqUfp42bdqoefPmnjblmTFjhh555JFqvjIAAIB6wv3NLQC/8TmQuacS1rXSIdAYU2UwLN2mvPY1aVPaAw88oHvuucfzuLCwUDExMZX2DQAAAADcfA5kDz/88OnsRxnh4eGSrNGriBLlWXfv3u0ZzQoPD9exY8eUn5/vNUq2e/duDRw40NPmp59+KnP8PXv2eB1n/fr1Xvvz8/N1/PjxMiNnJQUFBSkoKKiGrxAAAKB6uDYcaHzq7TVknTt3Vnh4uFatWuXZduzYMa1evdoTtvr06aPAwECvNnl5efr66689bQYMGKCCggJt2LDB02b9+vUqKCjwavP1118rL++XhRL/+c9/KigoSH369DmtrxMAAMAXTqcUGyslJEjJydZ9bKy1HUDD5fMIWUkul0vPPvus3nrrLW3fvr3Mel379u3z6TgHDx7UDz/84HmclZWlzMxMtW3bVmeeeaZSUlL0xBNP6Oyzz9bZZ5+tJ554Qi1btlRycrIkayHqCRMmaOrUqWrXrp3atm2radOmqVevXrriiiskSd27d9eQIUM0ceJEzZs3T5J06623avjw4erWrZsk6corr1SPHj00duxYPfXUU9q3b5+mTZumiRMn1ptqiQAAoOlyOqWkJKl0bezcXGs7S9oADZipgT//+c8mIiLCPPXUU6ZFixbmL3/5i5kwYYJp166dmTNnjs/HSUtLM5LK3MaNG2eMMaa4uNg8/PDDJjw83AQFBZlLL73UbNmyxesYR44cMXfddZdp27atCQ4ONsOHDzfbt2/3arN3715z4403mpCQEBMSEmJuvPFGk5+f79Vm27ZtZtiwYSY4ONi0bdvW3HXXXebo0aPV+r0UFBQYSaagoKBaPwcAAFCREyeMiY42xopjZW82mzExMVY7APWHr9mgRuuQdenSRc8995yGDRumkJAQZWZmeratW7dOixYtqtXQ2FDUx3XIAABAw5aebk1PrEpaGgUTgfrktK5DtmvXLvXq1UuS1Lp1axUUFEiShg8frg8++KAmhwQAAEA5SlziXivtANQvNQpk0dHRngIYXbt21T//+U9J0saNG6k6CAAAUItKFJtWgFwapHSN1mINUroC5Cq3HYCGo0ZFPa699lp98skn6tevn6ZMmaIxY8Zo/vz52r59u+6+++7a7iMAAECTFRcnRUdLF+9waramKEY7PPtyFK0UzdHGmETFxdXSE1JbH6hTNbqGrLT169frX//6l7p27aoRI0bURr8aJK4hAwAAp8O6+5y6+KkkScZrelOxbJKkDfemqv+sWiiz6HRKU6ZIO34JfYqOlubMoYwjUE2n9RqyvXv3ev47JydHH3zwgfLy8nTGGWfU5HAAAACoiMul/ounyFYqjElSgIxskvovSbFGtk7laVKdMtclyZQMY5KMu7Y+C54Bp0W1AtmWLVsUGxursLAwnXvuucrMzNRFF12kZ599Vi+99JIuu+wyLV++/DR1FQAAoAnKyJB27Dg5FlaWTUbKybHa1ZDzbZd+Gj1F5mTA8zq+Mdb6Zykppxz6AJRVrUB23333qVevXlq9erXi4+M1fPhwXXXVVSooKFB+fr5uu+02zZw583T1FQAAoOk5zWUWnU7p+RsyFOnaUeEHw9oIfQDKV62iHhs3btSnn36q8847TxdccIFeeukl3XnnnQoIsP58J02apP79+5+WjgIAADRJvpZPrEGZRZfLumTs1/ItzBXn5tXsehcAFarW39S+ffsUHh4uyVp/rFWrVmrbtq1nf5s2bXTgwIHa7SEAAEAT5hoYp532aBVXsL9YUq49Rq6B1S+zeHI2pPLkW5j79x5q6wO1rdpfcthstkofAwAAoPZkrLHrddcY2SSVLo1tJNkk/Z9rtDLWVL80vXuWY4bilKNoT9XG0opl03bF6LsOtVVbH4BbtdchGz9+vGfx56NHj+r2229Xq1atJElFRUW12zsAAIAmbleuS8laLKOy36TbZI2QjdESrcmdIal6ocw9y7FYdt2tZ/W2rldxqedxh7QUzdbkKNYjA2pbtQLZuHHjvB7fdNNNZdr89re/PbUeAQAAwOPcPRlei0GXFiDpTOVo354MSfHVOnbJRaef1d2ySWXGyHYoWimarS9qc/FpAB7VCmQLFiw4Xf0AAABAOc7r4FvBDV/blWS3S2+P+WXR6ZLc16zdo79quS1RqbOt9gBqF4VyAAAA6rGAKN8Kafjazkuli05Lkk1z7FOV+qZLiYnVPzyAqhHIGjuXS0pPlxYvtu5Z0BEAgIbl5LzCsks2W4xsUkyMajSfsIpFpwNkFOXKUWIH1h8DThcCWWOWmmpdrZuQICUnW/exsdYKkAAAoGGw26U5c2SzSaZUdWtjs8lmkzR7ds3mE57mRacBVI1A1ljdd590/fXSnj3e23fskJKSCGUAADQkiYnWF61RUd7bo6Kt7TWdT3gaF50G4BsCWWP09tvSU09VvN8YKSWF6YsAADQgTiUq1mQrXmkao0WKV5piTZacOoWLu9xlFitaV9Z2CtMhAfjEZowpvcYgaqiwsFAOh0MFBQUKDQ31TydcLik8XPr556rbpqVJ8fGnvUsAAODUOJ3WBJfSn9rcOepUBsk8B5e8n6BWDg40Xb5mA0bIGpuMDN/CmMR8cAAAGgCXS5oypWwYk37ZdkoTXyqaDhl9itMhAfikWuuQoQGoTshiPjgAAPXeyUKIFTJGysmx2tV44ktiojRypHWQvDzrM0JcHAuPAXWAQNbY+BqyOnRgPjgAAA1AnRVCtNu5lAHwAwJZY+O+OLeyr9Ikae5cvvUCAKABqLNCiC4XI2SAH3ANWWNzcq2SCqslSdK99/5y8S4AAKjXShZCDJBLg5Su0VqsQUpXgFynVgjR5ZLS06W772btUsBPCGSNkfvi3Oho7+0dOkhvvSXNmuWffgEAgGpzf9d6rXEqW7FKV4IWK1npSlC2YnWtcdZsXWin0wpdCQnWwtKl1y7NzWXtUqAOUPa+FtWLsvclMfUAAIDGwemUuS5JRsbr2/Ri2WSTZFtazWqIFdXRL81ms77gzcriMwRQTb5mAwJZLap3gQwAAIkv6Bo6l8sayaro+vDqhqaqjlce1i4Fqo11yAAAgPe0NK4NapiqU/e+No5XHtYuBU4bAhkAAI2Ve1pa6Q/fXBvUsNR23fuahCtfSzi6i4QsXmzd13i1aqDpIJABANAYuVzSlCnlXyPk3paSwgfmhqC2695Xpz5+dUo4MhoL1AiBDACAxqi2p7nBf0rWvS9PdeveV3W8kseV5FMJR0ZjgRojkAEA0BidzulrqFvuuvdS2RBVndDky/FKio62ltGpqnojo7HAKSGQAQDQGJ2O6WvwH/cao1FR3tt9DU2+Hq9DBys8paVZVRt9OS6jscApaebvDgAAgNPAPS0tN7f8kQt3qXRfp7nB/xITpZEja28Jg9o6HqOxwCkhkAEA0Bi5p6UlJVnhq2Qoq8k0N9QPdnvtrgdWG8djNBY4JUxZBACgsartaW5AeeLipHbtKm/Trh2jsUAFGCEDAKAxq+1pbgCAWkUgAwCgsavtaW5ASRkZ0t69lbfZu9dqx/sQKIMpiwAAAKg5inoAp4QRMgAAAMjlquHMVop6AKeEQAYAANBEuUPYO+9Ib7wh7dnzy77oaKtQZ5W1X1hiATglTFkEADQcLpeUni4tXmzdu1z+7hHQYDmdUmyslJBgrYBQMoxJVr5KSrLaVcq9xIIk415S4STDEgtAlQhkAICGoeSnx+Rk6z421odPiwBKczqtsLVjR8Vt3INdKSk+fPeRmKh101KVF+C9xMLOgGitm8YSC0BlbMaUN7aMmigsLJTD4VBBQYFCQ0P93R0AaDzcnx5L/y/L/e07a2oBPnO5rO8yKgtjpaWlVV4g0f0najMuxSlDEcpTniL0ueJUbLPzJ4omyddsQCCrRQQyADgNqvr06L4+JSuLKVGAD9LTrQHm6li0SBozpvx9/IkC5fM1GzBlEQBQv2VkVD2vKifHagegSjWpPl9ZgUT+RIFTQyADANRvrHEE1KrqVJ93j265XBXX0uFPFDg1lL0HANRvrHEE1Ko9e6ypg1UV6rDZrNGtI0ekK674ZXvpcvj8iQKnhhEyAED9FhcntWunCi94ttmkmBjWOAJ84HRKo0b5tmJE27ZSgFzquTddo7VYg5SuALnKlMN3L0NWquK9B3+iQOUIZACA+u2dd2T27i13l5Gsr/BZ4whNxKksxedySVOmlL92s1tAgNXm44+la41T2YpVuhK0WMlKV4KyFatrjJXE3OXwSyxDViaUsQwZUDUCGQCg/nK5dPjWKTKSKvjyXUWt20kjR9ZlrwC/ONWl+KoqviFJxcXSNddIHf/l1Lx9SYqS9w9EKVepStI1xulVqCMx0Vp9Isp7GTJFR7MqBVAVAhkAoN5ypWeo5d4dFf7PyiYp6OBeudIp34bGraKFnEtPH6yMr0U1Pl3lUtRTUySZMn97AScnD89WigLk8jpmYqKUnW2tWbZokXWflUUYA6pCIAMA1Fvfp/v2CdLXdkBDVNlUQ/c29/TBypQsqhEglwbJ+9owt8+eyFCbgxV/ERIgozOVYy0AXapQh91uLSA9Zox1zzRFoGoEMgBAvZUn38qyffot5dvQeNXWOl/u4huJKv/asGtlDbNFyLcvOG5s/Q6FOoBaQCADANRb9vg45ShaxRVcQVYsm7YrRn/+Z1y1ihsADUltrfNlt0tvj3HqbVV8bdi1cvr8RcjYgDdkF394wKkikAEA6q24eLv+1Noq31Y6lLkfp2i29h+wKz29rnsH1I1aW+fL5VL/xVNkq+LasH9poHarQ5XP16JwT9XDcgCqRCADANRbdrt0aHCikpSqXHmXb9uhaCUpVctkVQwgkKGxqrV1vk7OfayoYqn72rDfa66+UF/fOldqWO5UyvIDTVUzf3cAAIDKdO8uPaZEvaORVhEB5SlPEcpQnIpFxQA0fu51vpKSrPBVsrhHtdb58nHu42zd7XPfXGERnr9Cp1OaPNmq/OgWFSU99xyVFoHKMEIGAKjX4uOt+2LZtVrxWqIxWq34MmHM3Q5ojNzrfMVEeldHPDPK5fs6X77OfSyhojWkjaQ9aqd0lzUs53RK113nHcYk6/F11/m+VhrQFDFCBgCo1+LjpXbtpL17K27Trh2BrDIulzVbLS/P+kweF0c58oYoUU5da5siW4mCHEbRsmmOpAoSWcmTHxZmzX3MzS23hn55C7BXNL3RbfVqKf5y6dZbK293663W+u2874CyGCEDANRrdrv00kuVt3npJT7oVcTplGJjpYQEKTnZuo+NZcSiwanJytBOp0zJk3/FFTJHjlhhrJwL0qoKX6XbdtBeddqeofT0yr8wkaz9XOcJlI9ABgCo9xITpaVLrS/3S4qOtrZzfUr5avIZHvXQyZWhjTFlR7CMsQa7Sq8M7XTKXJckU+rkm737rGmIbdvWStf6Ref6HLQIZED5CGQAgAYhMVHK/tGlzc+m6193LdbmZ9OV/aOLMFaBk5/hy5uZ5tlW+jM86qkqqiPaVGplaJdLh2+dIlNBeXsjmw6bYOnjj6VFi7T7nEtq3LXu7feouNi3tr62A5oaAhkAoGFwOmXvEqsL7k7QwBeSdcHdCbJ3iWWYpwInP8NXyJT6DI/6qzjXt+qI7nau9Ay13Lujwg95ATJquW+HXLJLY8ao8LJra9w3e3gHnwfbamlQDmh0CGQAgPqPuXfV5mOFc5/bwX/+vSusWu2+T/ftpLrbdX5mklyepaGrKSpK4eG+NfW1HdDUEMgAAPUbc+9qxNcK5zWohI46tndf9drlybeT6m5nD26uH0ZOlVS2zH1FIa1Y0tEO1mrUUVEVNCrF13ZAU0MgAwDUb8y9q5G4OKvoSTnF9CRZ22Osz9Oo5zpqd7Xa2ePjlKNoFVdw1VmxbNquGNnjfzn53ZbP0n9G3lvuYuulL/2yjmtT4NzZkt2uuDhr6YnKtGvHew2oCIEMAFC/MfeuRux2ac4c679LhzL349mzWS6gIThyhm8jXu52cfF2PdrOOvmlQ5n78WPtZisu3vvkd1s+Szp8WD/8/ll9dt5dStGzGqUlypV3edMditaGe1NlT6KiDlAbCGQAgPqNuXc1lpgopaaWnSoWHW1tp0Jlw/Deft9GvN7bbw1B2e3S0JcSdb1SlSvvk79D0bpeqRryUmK5Ydwe3FxdX0jRpV89r0uXpmht9CjFKlvxStMYLdINHdL0xVtZ6j/rlzdPRsYv65A10zFN0Ww9p0maotlqpmOSrP0MYgPla+bvDgAAUCn33Lvc3PKvI7PZrP3MhypXYqI0cqT1YTgvz8qtcXGMjDUkJsCuKZqjVCWpWN7fprunE6Zotn4V8MtJTUyUtDRRv548Up1zMxShPOUpQtnRcXpmjr3cMO5yeb9PRo50v3fsysuLr/C94x6cnqn7NFXPqJl+uZ7zaU3TX3WP7tcsBrGBChDIAAD1m3vuXVKSFb5KhjLm3vnEbpfi4/3dC9TUpZdKjylRT2mapuoZBZQIPMWy66+6R8uUqDsu9f45K4zblZERX2UYdzqluye7vMJbVlScnn2u/PBWUkSEFcbu01Nl9tnl8myPiJhV7dcONAU2Y8r7uhE1UVhYKIfDoYKCAoWGhvq7OwDQuDidVrXFkgU+YmKsMMbcOzRin3wi/e0Kp1KVJJVa7Nk9jTFJqfr9x4m6/HLfjllyNOy//5UyH3ZqjqYoRr/8feUoWimaoxuXJlb6J+Y6ckxq2VIBcpU7qdJIcsku2+HDsgc3962DQCPgazbgGjIAQMOQmChlZ0tpadKiRdZ9VhZhDI3enl0uzdEUlQ5jkjyrh81Wivbs8m3pB6dTio2VEhKk5GQrjKUqSVHyrmYapVy9rSStvNVZ6aoS9nlzZa8gjEmSTVIzuWSfN9en/gFNDVMWAQANB3Pv0ASduyfDa+SqtAAZnakc7duTISm+0mO511h3z48KUOVhr1g2/WlvijLSRyr+8gqmBf/4o28vxNd2QBPDCBkAAEA9dl4H36phVNWuvDXW42SFvYo+ELrDniu9khKJXbr41D+f2wFNDIEMAACgHguI8m1Jh6ralbfGeoR8C3uVtrvzzqqL6tjtVjsAZRDIAAAA6rOTSz+YCq7SMrJZBW6qWPqhvLLzefIt7HWLr6Rd8+bSPfdUfoB77rHaASiDQAYAAFCfnVz6wWaTjM07lBmbzVr9wYelH0qunR4glwYpXZHK1W51qHTR6cPtYmSPr2Kdv1mzpHvvLdsHu93aPouS90BFKHtfiyh7DwAATpvyln6IjrbW6fOh2qjLZVVXvHiHU7NLlbg3J2+lS+rbJNmWpvpezfTYMWnuXKuAR5cu1jRFRsbQRDWKsvfTp0+XzWbzuoWHh3v2G2M0ffp0RUZGKjg4WPHx8frmm2+8jlFUVKRJkyapffv2atWqlUaMGKEdpSZQ5+fna+zYsXI4HHI4HBo7dqz2799fFy8RAADAd6W/R6/G9+p2u/T2GKfeLqfEvZHKjJHZoqOrF8bcT3LBBdLAgdY9C7YDVarXgUySfvWrXykvL89z27Jli2ffrFmz9Mwzz+iFF17Qxo0bFR4ert/85jc6cOCAp01KSoqWLVumJUuW6PPPP9fBgwc1fPhwuUosqJGcnKzMzEytXLlSK1euVGZmpsaOHVunrxMAAKBC7nr1ubne23futLY7nZ5NLpeUni4tXmzdez7yuFzqv3iKbOWWuD+pQwfp//5PSkuTLbua6/yVXuAsIcF6XKJvAMqq11MWp0+fruXLlyszM7PMPmOMIiMjlZKSoj/84Q+SrNGwjh076sknn9Rtt92mgoICdejQQa+//rpGjRolSdq5c6diYmK0YsUKDR48WN9++6169OihdevWqV+/fpKkdevWacCAAfruu+/UrVu3CvtXVFSkoqIiz+PCwkLFxMQwZREAANQe91zD0iUS3Ww2a+piVpac79grntXYNt0KSVVJS6v+en+lFzgr2TdJSq3mSBvQCDSKKYuS9N///leRkZHq3LmzRo8erf/973+SpKysLO3atUtXXnmlp21QUJAGDRqkNWvWSJI2bdqk48ePe7WJjIxUz549PW3Wrl0rh8PhCWOS1L9/fzkcDk+bisyYMcMzzdHhcCgmJqbWXjcAAICk8uvVl2SMlJOjzx7PUFJS2aa5uVZW2vCObyXuyy3HWJnyFjgr2TdJSkkpMVQHoKR6Hcj69eun1157TR999JFefvll7dq1SwMHDtTevXu1a9cuSVLHjh29fqZjx46efbt27VLz5s3Vpk2bStuEhYWVee6wsDBPm4o88MADKigo8NxycnJq/FoBAADK5WNAemtOnoz5pYLiaC3WIKXLZqwg9PQbvpW419atpeY6VsHHwKiMShaXBpqwZv7uQGWGDh3q+e9evXppwIAB6tKli1599VX1799fkmQrXf7VmDLbSivdprz2vhwnKChIQUFBVb4OAACAGovwLUh9vS9C18qpOaUqKOYoWlPMHC3dM1JHO0Srxc+5lRcDeewx6+ZrBUdfR9SqO/IGNBH1eoSstFatWqlXr17673//66m2WHoUa/fu3Z5Rs/DwcB07dkz5+fmVtvnpp5/KPNeePXvKjL4BAADUuZMLQ6uiL4ptNh1qF6P22qPUciooRilXqUrSSL2jjTfO8fxMldxzHasqyuFjYPS5HdDENKhAVlRUpG+//VYRERHq3LmzwsPDtWrVKs/+Y8eOafXq1Ro4cKAkqU+fPgoMDPRqk5eXp6+//trTZsCAASooKNCGDRs8bdavX6+CggJPGwAAAL85uTC0pLJB6uTjrLue0bO6Ryq3gqI1GjZbKXINH2kV2IiKqvp5fb3+y4fAqJgYqx2AMup1IJs2bZpWr16trKwsrV+/XklJSSosLNS4ceNks9mUkpKiJ554QsuWLdPXX3+t8ePHq2XLlkpOTpYkORwOTZgwQVOnTtUnn3yizZs366abblKvXr10xRVXSJK6d++uIUOGaOLEiVq3bp3WrVuniRMnavjw4ZVWWAQAAKgziYnlB6noaCk1Vd3j2itGOyr8YBcgozOVozhlWMfKzraqKf7pT5U/ry/Xf/kQGDV7NmuSARWo19eQ7dixQ2PGjNHPP/+sDh06qH///lq3bp06deokSbrvvvt05MgR3XnnncrPz1e/fv30z3/+UyEhIZ5jPPvss2rWrJluuOEGHTlyRJdffrkWLlwoe4l/FN544w1NnjzZU41xxIgReuGFF+r2xQIAAFQmMVEaOdIKR3l51hTAuDjJbpd98WKfDmHfffI6LrvdKm3v43VdG97J08XxVfQtNVXl1tyfPZuS90Al6vU6ZA2Nr2sNAAAA1Kr09JqtMebjzyUoTZOWxledq1yucgMj0BT5mg0IZLWIQAYAAPzCvXh0bgUVFEssHl0yILmOuXQ8OlZBe3JlU9mfK5ZNOxSts5SlyBh76R8HUIlGszA0AAAAfDBxYsVhTCpzHZfTKcV2sSt5zxwZWeGrpGJJNhndo2fkkp2lxIDThEAGAADQkDmd1ujYww+Xv/9k4Y+S8w2dTqui/c4dLu1TW83WFP2s9l4/FiDJJulZ3a1rZZW+ZykxoPbV66IeAAAAqIQ7WVV0Bcojj0gPPug9TdFl1d64xpRdRNqcvJX8xt69jlmSUhURUcVFZFxDBlQbI2QAAAANkTtZVRTGbDbpH/8oszkjQ7poh7PcRaSlsh8O3euYPW9PUdzAStYjc4/UJSRIycnWfWxs1QtLA00cgQwAAKAhysjwLjFfWgVriO3KdWmOpqi8RaQrWNpZATKKcuXIvqaCi8jcI3Wl+5Oba20nlAEVIpABAAA0RL5e0FWq3bl7MipdRLraz1nZSJ17W0qK1Q5AGQQyAACAhigiokbtzutwCpU5ynvOGo7UAbAQyAAAABqiuDirgqKtgomGNpsUE2O1KyEgyscg58OxJNV4pA6AhUAGAADQENnt0pw51n+XDmUVrD0myRPkTAVXjJWZeFjZsaQaj9QBsBDIAAAAGqrERGuNsago7+1RUWXWHvM4GeRsNsmUCnJG5RT2KGcdMy81HKkDYCGQAQAANHSlC2pUVArf7WSQs5UKcraYGOntt6W0NGnRIus+K6viMCZ5Ap4xUnGpOFcsm9WVikbXALAwNAAAQINV0cLQO3da2ysb2UpMlEaOrJWFnJ1K1BtK1exSC03vULTu1mzdqERVsaQ00GTZjKnqKxT4qrCwUA6HQwUFBQoNDfV3dwAAsLhctfKhG/WMy2UtvFxRhUObzZpKmJV1Ws93yW4EyKU4ZShCecpThDIUJ2Oz10U3gHrH12zACBkAAI2Z02mtEVXyQ3t0tFUMorJpaKj/qlNuPj6+6uPVMLiX7Eax7FqtUs9VzW4ATQ3XkAEA0Fi5p7OV/tCem2ttdzr90y/UjtosN+90WsNcCQlScrJ1Hxvr03uEqvfAqSGQAQDQGLlc1shYeVcmuLelpFjt0DDVVrn5UwzuVL0HTg3XkNUiriEDANQb6enWKEdV0tKYR9ZQuS/eys0tP3j7cg1ZLVyHVrIbNsM1ZICbr9mAETIAABoj5pE1fjVdGLqk6lyHVkU3rjVOZStW6UrQYiUrXQnKVqyuNU6q3gOVIJABANAYMY+saahoYeiqFnN2q6XgniinUpWkKHmHuyjlKlVJShTXKwIVYcpiLWLKIgCgvnAdc+mnlrEKd+UqQGX/V18sm/Ls0Qo/nCV7c4YuGryaLm1QG1Nb60n5faC+YcoiAABNWMYau+5yWdPZiuU9nc39eJJrtjLW8AG5UbDbrcA0Zox172vwiYuzwlLpKY9uNpsUE2O1q0gtTHsEmjICGQAAjVBenrRMiUpSqnLlPZ1th6KVpFQtUyKXkDV1tXEdGtcrAqeEQAYAQCPkvjRsmRIVq2zFK01jtEjxSlNnZWmZEr3aoYlyuaS2ba0lEtq1897n63VoXK8InBKuIatFXEMGAKgvaqMiOho5p9MKYiWnG3boIN14ozRypO/XofFmA8rFNWQAADRhtTETDY1YBYtBmz0/y8yeo68/2yeXfHxz8GYDTgmBDACARupUK6KjkXK5rJGxckazbDIykkIfTtFZnVxyOk+2T0+XFi+27l2ussfkzQbUGFMWaxFTFgEA9VFNK6Kj4ajWOfax1H2C0tRW+/R6uylqubfESFp0tDUiVl7I4s0GePiaDZrVYZ8AAIAfuCuio3Eq71KwyjKTr9UOr9Y7StEcaW+p7+5zc63pjuWNfPFmA6qNKYsAAAANVAWXgnkyk9NZzg/5WO3wJv2fJFP2w6J7clVKSvnTFwFUC4EMAACgAarkUrDKM9OePZVOIyyWTT+pg8L0c8UfFCtY7NmXy80AeCOQAQAANEAZGWVHxkoqNzM5ndKoURUmpeKT92/oRt86UWL6o9NpVb9PSJCSk6372NgKRukAeBDIAAAAGiAfLwX7pV1lQ2onFcuuG/SW3tVIn47tCrOmP9Zo6iQASQQyAACABsnHS8F+aVfVkJqkZnLpZ7VXhuKUo2gVy1Zuu2LZtF0xylBczadOApBEIAMAAGiQ4uKsaoql12J2s9mkmBirnSSfh9QilKdi2TVF1mLPpUOZ+3GKZitvt71mUycBeBDIAAAAGiC73SptL5UNZe7Hs2eXqN/h45Banqx2y5SoJKUqV96LPe9QtJKUqmVKVEREDaZOAvBCIAMAAGigEhOt5cCivDOToqPLWSbs5JCa8WEaoiS1by8ttyUqVtmKV5rGaJHilabOytJyW6Jn9K3aUycBeLEZU8mVnagWX1fjBgAAqE0ulzUlMC/PCj5xcRVUtnc6ZZKSZIwUoF8+ArqnISYpVcttiYqOlv76V6sgo+R9fZh79M0d+Fwuq5pibm7515HZbFZAzMqqtNo+0Oj4mg0YIQMAAGjg7HYpPl4aM8a6rzD4JCbKlpqqo+3Kn4a43GYNqc2eLV1/vW+jb9WeOgnACyNktYgRMgAA0CC4XPrs8Qy9NSdPX++LUIbiVCy7YmKs8FRyqqOvo29Op1VtsWSBj/KOBzQVvmYDAlktIpABAICGxOepjn46HtCQ+ZoNmtVhnwAAAFCPuKc61tfjAU0B15ABAAAAgJ8QyAAAAADATwhkAAAAAOAnBDIAAAAA8BMCGQAAAAD4CYEMAAAAAPyEQAYAAAAAfkIgAwAAAAA/IZABAAAAgJ8QyAAAAADATwhkAAAAAOAnBDIAAAAA8BMCGQAAAAD4CYEMAAAAAPyEQAYAAAAAfkIgAwAAAAA/IZABAAAAgJ8QyAAAAADATwhkAAAAAOAnBDIAAAAA8BMCGQAAAAD4CYEMAAAAAPyEQAYAAAAAfkIgAwAAAAA/IZABAAAAgJ8QyAAAAADAT5r5uwMAAACoB1wuKSNDysuTIiKkuDjJbvd3r4BGj0AGAADQ1Dmd0pQp0o4dv2yLjpbmzJESE/3XL6AJYMoiAABAU+Z0SklJMiXDmCSTmyslJVn7AZw2BDIAAIDGyuWS0tOlxYute5er7P4pU2SMka3Uj9qMkTGSUlLK/hyAWkMgAwAAaIycTik2VkpIkJKTrfvYWO8Rr4wMaceOMmHMzSYj5eRY7QCcFgQyAACAxubkNESVmoaoUtMQi3PzfDqcr+0AVB+BDAAAoDE5OQ3Rmm9YinvbyWmI/94T4dMhfW0HoPoIZAAAAI3JyWmIFTK/TEP8rkOcchSt4gomLRbLpu2K0Xcd4k5TZwEQyAAAABqTPB+nF+blKTzKrimaI0llQpn7cYpmKzyK9ciA04VABgAA0JhE+Di9MCJCcXHSxuhEXa9U5SrKa/cORet6peqLmETFMUAGnDYEslLmzp2rzp07q0WLFurTp48yqCoEAAAaENfAOO20Vz4NMdceI9fAONnt1trPy2yJ6qxsxStNY7RI8UrTWcrSMluiZs+W7AyQAacNgayEN998UykpKXrwwQe1efNmxcXFaejQodq+fbu/uwYAAOCTjDV23eWqfBriJNdsZayxUlZiopSaKkVE27Va8VqiMVqteEXG2JWaau0HcPoQyEp45plnNGHCBP3ud79T9+7dNXv2bMXExOjFF1/0d9cAAAB8kpcnLVOikiqYhpikVC1TotelZomJUna2lJYmLVpk3WdlEcaAutDM3x2oL44dO6ZNmzbp/vvv99p+5ZVXas2aNeX+TFFRkYqKijyPCwsLT2sfAQAAquK+hGyZEvWORipOGYpQnvIUoQzFqVh2r3ZudrsUH1+3fQVAIPP4+eef5XK51LFjR6/tHTt21K5du8r9mRkzZuiRRx6pi+4BAAD4JC5Oio621oAuNtY0xJJsNms/hTqA+oEpi6XYbN5zrY0xZba5PfDAAyooKPDccnJy6qKLAAAAFXIX6pCs8FWS+zGFOoD6g0B2Uvv27WW328uMhu3evbvMqJlbUFCQQkNDvW4AAAD+5i7UEeV9CZmio0WhDqCeIZCd1Lx5c/Xp00erVq3y2r5q1SoNHDjQT70CAACoGQp1AA0D15CVcM8992js2LHq27evBgwYoJdeeknbt2/X7bff7u+uAQAAVBuFOoD6j0BWwqhRo7R37149+uijysvLU8+ePbVixQp16tTJ310DAAAA0AjZjDHG351oLAoLC+VwOFRQUMD1ZAAAAEAT5ms24BoyAAAAAPATAhkAAAAA+AnXkAEAADQxLpeUkSHl5UkREdYi0axLBvgHgQwAAKAJcTqlKVOkHTt+2RYdbS0mTUl8oO4xZREAAKCJcDqlpCTvMCZJubnWdqfTP/0CmjICGQAAQBPgclkjY+XV13ZvS0mx2gGoOwQyAACAJiAjo+zIWEnGSDk5VjsAdYdABgAA0ATk5dVuOwC1g0AGAADQBERE1G47ALWDKosAAAANnC9l7OPirGqKubnlX0dms1n74+Lqps8ALIyQAQAANGBOpxQbKyUkSMnJ1n1sbNmKiXa7VdpessJXSe7Hs2ezHhlQ1whkAAAADVR1y9gnJkqpqVJUlPf26GhrO+uQAXXPZkx5g9aoicLCQjkcDhUUFCg0NNTf3QEAAI2Yy2WNhFVUOdE9BTErq+yoly9THAGcGl+zAdeQAQAANEDVKWMfH++9z24vuw2AfzBlEQAAoAGijD3QOBDIAAAAGiDK2AONA4EMAACgAXKXsS9dMdHNZpNiYihjD9R3BDIAAIAGiDL2QONAIAMAAGigKGMPNHxUWQQAAGjAEhOlkSMpYw80VAQyAACABo4y9kDDxZRFAAAAAPATAhkAAAAA+AmBDAAAAAD8hEAGAAAAAH5CIAMAAAAAPyGQAQAAAICfEMgAAAAAwE8IZAAAAADgJwQyAAAAAPATAhkAAAAA+AmBDAAAAAD8hEAGAAAAAH5CIAMAAAAAP2nm7w40JsYYSVJhYaGfewIAAADAn9yZwJ0RKkIgq0UHDhyQJMXExPi5JwAAAADqgwMHDsjhcFS432aqimzwWXFxsb7//nv16NFDOTk5Cg0N9XeXUAOFhYWKiYnhHDZwnMfGgfPY8HEOGwfOY+PAeaxbxhgdOHBAkZGRCgio+EoxRshqUUBAgKKioiRJoaGhvNEbOM5h48B5bBw4jw0f57Bx4Dw2DpzHulPZyJgbRT0AAAAAwE8IZAAAAADgJwSyWhYUFKSHH35YQUFB/u4Kaohz2DhwHhsHzmPDxzlsHDiPjQPnsX6iqAcAAAAA+AkjZAAAAADgJwQyAAAAAPATAhkAAAAA+AmBDAAAAAD8hEBWjscff1wDBw5Uy5YtdcYZZ5TbZvv27br66qvVqlUrtW/fXpMnT9axY8e82mzZskWDBg1ScHCwoqKi9Oijj6p0DZXVq1erT58+atGihc466yz9/e9/L/NcS5cuVY8ePRQUFKQePXpo2bJltfZam5L//Oc/GjlypNq3b6/Q0FBdcsklSktL82pTl+cVNffBBx+oX79+Cg4OVvv27ZWYmOi1n/PYcBQVFemCCy6QzWZTZmam1z7OY/2VnZ2tCRMmqHPnzgoODlaXLl308MMPlzk/nMPGYe7cuercubNatGihPn36KCMjw99darJmzJihiy66SCEhIQoLC9M111yj77//3quNMUbTp09XZGSkgoODFR8fr2+++carTVFRkSZNmqT27durVatWGjFihHbs2OHVJj8/X2PHjpXD4ZDD4dDYsWO1f//+0/0SmyaDMh566CHzzDPPmHvuucc4HI4y+0+cOGF69uxpEhISzJdffmlWrVplIiMjzV133eVpU1BQYDp27GhGjx5ttmzZYpYuXWpCQkLM008/7Wnzv//9z7Rs2dJMmTLFbN261bz88ssmMDDQpKametqsWbPG2O1288QTT5hvv/3WPPHEE6ZZs2Zm3bp1p/V30Bh17drVXHXVVearr74y//nPf8ydd95pWrZsafLy8owxdXteUXOpqammTZs25sUXXzTff/+9+e6778zbb7/t2c95bFgmT55shg4daiSZzZs3e7ZzHuu3Dz/80IwfP9589NFH5scffzTvvPOOCQsLM1OnTvW04Rw2DkuWLDGBgYHm5ZdfNlu3bjVTpkwxrVq1Mtu2bfN315qkwYMHmwULFpivv/7aZGZmmmHDhpkzzzzTHDx40NNm5syZJiQkxCxdutRs2bLFjBo1ykRERJjCwkJPm9tvv91ERUWZVatWmS+//NIkJCSY888/35w4ccLTZsiQIaZnz55mzZo1Zs2aNaZnz55m+PDhdfp6mwoCWSUWLFhQbiBbsWKFCQgIMLm5uZ5tixcvNkFBQaagoMAYY8zcuXONw+EwR48e9bSZMWOGiYyMNMXFxcYYY+677z5z7rnneh37tttuM/379/c8vuGGG8yQIUO82gwePNiMHj36lF9fU7Jnzx4jyXz22WeebYWFhUaS+fjjj40xdXteUTPHjx83UVFR5h//+EeFbTiPDceKFSvMueeea7755psygYzz2PDMmjXLdO7c2fOYc9g4XHzxxeb222/32nbuueea+++/3089Qkm7d+82kszq1auNMcYUFxeb8PBwM3PmTE+bo0ePGofDYf7+978bY4zZv3+/CQwMNEuWLPG0yc3NNQEBAWblypXGGGO2bt1qJHkNAKxdu9ZIMt99911dvLQmhSmLNbB27Vr17NlTkZGRnm2DBw9WUVGRNm3a5GkzaNAgr4X3Bg8erJ07dyo7O9vT5sorr/Q69uDBg/XFF1/o+PHjlbZZs2bN6XhpjVa7du3UvXt3vfbaazp06JBOnDihefPmqWPHjurTp4+kuj2vqJkvv/xSubm5CggIUO/evRUREaGhQ4d6TcXgPDYMP/30kyZOnKjXX39dLVu2LLOf89jwFBQUqG3btp7HnMOG79ixY9q0aVOZ3/+VV17J55B6oqCgQJI8f3tZWVnatWuX1zkLCgrSoEGDPOds06ZNOn78uFebyMhI9ezZ09Nm7dq1cjgc6tevn6dN//795XA4OPenAYGsBnbt2qWOHTt6bWvTpo2aN2+uXbt2VdjG/biqNidOnNDPP/9caRv3MeAbm82mVatWafPmzQoJCVGLFi307LPPauXKlZ7rBOvyvKJm/ve//0mSpk+frj/96U96//331aZNGw0aNEj79u2TxHlsCIwxGj9+vG6//Xb17du33Dacx4blxx9/1PPPP6/bb7/ds41z2PD9/PPPcrlcfA6pp4wxuueee/TrX/9aPXv2lPTL301l52zXrl1q3ry52rRpU2mbsLCwMs8ZFhbGuT8Nmkwgmz59umw2W6W3L774wufj2Wy2MtuMMV7bS7cxJy9Sro025T1/U+TreTXG6M4771RYWJgyMjK0YcMGjRw5UsOHD1deXp7neHV5XvELX89jcXGxJOnBBx/Uddddpz59+mjBggWy2Wx6++23PcfjPPqHr+fx+eefV2FhoR544IFKj8d5rHs1+X/lzp07NWTIEF1//fX63e9+57WPc9g48Dmkfrrrrrv073//W4sXLy6zrybnrKq/TV+Pg+pr5u8O1JW77rpLo0ePrrRNbGysT8cKDw/X+vXrvbbl5+fr+PHjnm8kwsPDy3yDsHv3bkmqsk2zZs3Url27StuU/uajqfL1vH766ad6//33lZ+fr9DQUElW1ahVq1bp1Vdf1f3331+n5xXefD2PBw4ckCT16NHDsz0oKEhnnXWWtm/fLqlu/z7hzdfz+Nhjj2ndunVe09QkqW/fvrrxxhv16quvch79pLr/r9y5c6cSEhI0YMAAvfTSS17tOIcNX/v27WW32/kcUg9NmjRJ7777rj777DNFR0d7toeHh0uyRrgiIiI820ues/DwcB07dkz5+fleo2S7d+/WwIEDPW1++umnMs+7Z88ezv3pUIfXqzU4VRX12Llzp2fbkiVLylyofMYZZ5iioiJPm5kzZ5a5ULl79+5ex7799tvLFPUYOnSoV5shQ4ZQ1KOa3n33XRMQEGAOHDjgtf2cc84xjz/+uDGmbs8raqagoMAEBQV5FfU4duyYCQsLM/PmzTPGcB4bgm3btpktW7Z4bh999JGRZFJTU01OTo4xhvPYEOzYscOcffbZZvTo0V6V2dw4h43DxRdfbO644w6vbd27d6eoh58UFxeb3//+9yYyMtL85z//KXd/eHi4efLJJz3bioqKyi3q8eabb3ra7Ny5s9yiHuvXr/e0WbduHUU9ThMCWTm2bdtmNm/ebB555BHTunVrs3nzZrN582bPh3l3Kd/LL7/cfPnll+bjjz820dHRXqV89+/fbzp27GjGjBljtmzZYpxOpwkNDS23lO/dd99ttm7daubPn1+mlO+//vUvY7fbzcyZM823335rZs6cSdn7GtizZ49p166dSUxMNJmZmeb7778306ZNM4GBgSYzM9MYU7fnFTU3ZcoUExUVZT766CPz3XffmQkTJpiwsDCzb98+YwznsSHKysqqsOw957F+ys3NNV27djWXXXaZ2bFjh8nLy/Pc3DiHjYO77P38+fPN1q1bTUpKimnVqpXJzs72d9eapDvuuMM4HA6Tnp7u9Xd3+PBhT5uZM2cah8NhnE6n2bJlixkzZky5Ze+jo6PNxx9/bL788ktz2WWXlVv2/rzzzjNr1641a9euNb169aLs/WlCICvHuHHjjKQyt7S0NE+bbdu2mWHDhpng4GDTtm1bc9ddd3mV7TXGmH//+98mLi7OBAUFmfDwcDN9+nTPN35u6enppnfv3qZ58+YmNjbWvPjii2X68/bbb5tu3bqZwMBAc+6555qlS5eeltfd2G3cuNFceeWVpm3btiYkJMT079/frFixwqtNXZ5X1MyxY8fM1KlTTVhYmAkJCTFXXHGF+frrr73acB4blvICmTGcx/pswYIF5f5/svTEG85h4/C3v/3NdOrUyTRv3txceOGFnhLrqHsV/d0tWLDA06a4uNg8/PDDJjw83AQFBZlLL73UbNmyxes4R44cMXfddZdp27atCQ4ONsOHDzfbt2/3arN3715z4403mpCQEBMSEmJuvPFGk5+fXwevsumxGXPyylgAAAAAQJ1qMlUWAQAAAKC+IZABAAAAgJ8QyAAAAADATwhkAAAAAOAnBDIAAAAA8BMCGQAAAAD4CYEMAAAAAPyEQAYAAAAAfkIgAwAAAAA/IZABAJqcNWvWyG63a8iQIf7uSrXEx8crJSXF390AANQiAhkAoMl55ZVXNGnSJH3++efavn27v7sDAGjCCGQAgCbl0KFDeuutt3THHXdo+PDhWrhwoWdfenq6bDabPvroI/Xu3VvBwcG67LLLtHv3bn344Yfq3r27QkNDNWbMGB0+fNjzc0VFRZo8ebLCwsLUokUL/frXv9bGjRs9+xcuXKgzzjjDqx/Lly+XzWbzPJ4+fbouuOACvf7664qNjZXD4dDo0aN14MABSdL48eO1evVqzZkzRzabTTabTdnZ2afldwQAqDsEMgBAk/Lmm2+qW7du6tatm2666SYtWLBAxhivNtOnT9cLL7ygNWvWKCcnRzfccINmz56tRYsW6YMPPtCqVav0/PPPe9rfd999Wrp0qV599VV9+eWX6tq1qwYPHqx9+/ZVq28//vijli9frvfff1/vv/++Vq9erZkzZ0qS5syZowEDBmjixInKy8tTXl6eYmJiTv0XAgDwKwIZAKBJmT9/vm666SZJ0pAhQ3Tw4EF98sknXm0ee+wxXXLJJerdu7cmTJig1atX68UXX1Tv3r0VFxenpKQkpaWlSbJG3F588UU99dRTGjp0qHr06KGXX35ZwcHBmj9/frX6VlxcrIULF6pnz56Ki4vT2LFjPX1zOBxq3ry5WrZsqfDwcIWHh8tut9fCbwQA4E8EMgBAk/H9999rw4YNGj16tCSpWbNmGjVqlF555RWvduedd57nvzt27KiWLVvqrLPO8tq2e/duSdao1vHjx3XJJZd49gcGBuriiy/Wt99+W63+xcbGKiQkxPM4IiLC8zwAgMapmb87AABAXZk/f75OnDihqKgozzZjjAIDA5Wfn+/ZFhgY6Plvm83m9di9rbi42PPz7m0lGWM82wICAspMizx+/HiZ/lX2PACAxokRMgBAk3DixAm99tpr+utf/6rMzEzP7auvvlKnTp30xhtv1Oi4Xbt2VfPmzfX55597th0/flxffPGFunfvLknq0KGDDhw4oEOHDnnaZGZmVvu5mjdvLpfLVaN+AgDqJ0bIAABNwvvvv6/8/HxNmDBBDofDa19SUpLmz5+vZ599ttrHbdWqle644w7de++9atu2rc4880zNmjVLhw8f1oQJEyRJ/fr1U8uWLfXHP/5RkyZN0oYNG7yqO/oqNjZW69evV3Z2tlq3bq22bdsqIIDvVgGgIeNfcQBAkzB//nxdccUVZcKYJF133XXKzMzUl19+WaNjz5w5U9ddd53Gjh2rCy+8UD/88IM++ugjtWnTRpLUtm1b/d///Z9WrFihXr16afHixZo+fXq1n2fatGmy2+3q0aOHOnTowBpqANAI2EzpSe0AAAAAgDrBCBkAAAAA+AmBDAAAAAD8hEAGAAAAAH5CIAMAAAAAPyGQAQAAAICfEMgAAAAAwE8IZAAAAADgJwQyAAAAAPATAhkAAAAA+AmBDAAAAAD8hEAGAAAAAH7y/1H6oShHAnsdAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10, 6))\n",
+ "\n",
+ "# Scatter plot for y_test in blue color\n",
+ "plt.scatter(X_test[\"amount\"], y_test, color='blue', label='Actual (y_test)')\n",
+ "\n",
+ "# Scatter plot for y_pred in red color\n",
+ "plt.scatter(X_test[\"amount\"], y_pred, color='red', label='Predicted (y_pred)')\n",
+ "\n",
+ "plt.xlabel(\"Amount\")\n",
+ "plt.ylabel(\"Balance\")\n",
+ "plt.title(\"Actual vs Predicted\")\n",
+ "plt.legend()\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9kAAAJOCAYAAACjoMSlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZfbA8e+dySSTOumdEjoYOiJtKYoUAUF0UVlQBJF1bawou1bAFQuKZdV196eABRUbFiwIooJKR6IiRQRCSSdl0tvM/f1xZ4YMCZAyk0k5n+fJQ+beO/e+CUlmzn3Pe46iqqqKEEIIIYQQQgghGkzn6QEIIYQQQgghhBAthQTZQgghhBBCCCGEi0iQLYQQQgghhBBCuIgE2UIIIYQQQgghhItIkC2EEEIIIYQQQriIBNlCCCGEEEIIIYSLSJAthBBCCCGEEEK4iATZQgghhBBCCCGEi0iQLYQQQgghhBBCuIgE2UII0Uz8+9//RlEUEhMT632O1NRUFi9eTFJSkusGdh4jR45k5MiRjXKtupo1axaKojg+fHx86Nq1K4sWLaK0tNTt109OTkZRFF577TXHtsWLF6MoSp3P9fbbb/Pcc8+5bnBVtG/fnlmzZp1z/yeffIKiKPz3v/895zEbN25EURSeeeaZWl931qxZtG/fvg4jbXwnT57k9ttvp2PHjhiNRkJCQhg5ciRvvfUWqqp6engO9p+rC32MHDmyxp9LIYQQdePl6QEIIYSonZUrVwLw22+/sWPHDi655JI6nyM1NZUlS5bQvn17+vTp4+IRNj++vr588803AOTm5vLOO+/wyCOPcPDgQd59991GH8/NN9/MuHHj6vy8t99+m3379jF//nzXD+oCJkyYQHR0NCtXruSvf/1rjcesWrUKg8HAzJkzG3l07vPjjz8yceJEAgICuPfee+nVqxdms5n33nuPGTNmsG7dOt5++210Os/PZ5z9c5WWlsbUqVO54447mD59umN7UFAQMTExbNu2jY4dO3piqEII0SJIkC2EEM3A7t27+fnnn5kwYQKff/45K1asqFeQLZzpdDoGDRrkeDx+/HiSk5N57733eOaZZ4iLi6vxeSUlJfj6+rp8PPHx8cTHx7v8vO7k5eXFDTfcwLJly9i3b1+1TIu8vDw++ugjrrzySiIiIjw0StfKy8tj6tSpmEwmduzYQVRUlGPf5MmT6dWrF//85z/p06cP//znPxttXBaLhcrKSnx8fJy2n/1zlZycDEDbtm2dfv7tatomhBCi9jx/e1UIIcQFrVixAoAnnniCIUOGsGbNGoqLi6sdl5KSwi233EKbNm3w9vYmNjaWa665hoyMDL777jsuvvhiAG666SZHiujixYuBc6d215S2u2TJEi655BJCQ0MJCgqiX79+rFixol4pslOmTKFdu3ZYrdZq+y655BL69evnePz+++9zySWXYDKZ8PPzo0OHDsyePbvO1zwfe4Bx/PhxQEuXnjhxImvXrqVv374YjUaWLFkCQHp6OvPmzSM+Ph5vb28SEhJYsmQJlZWVTudMTU1l2rRpBAYGYjKZuPbaa0lPT6927XOli7/99tsMHjyYgIAAAgIC6NOnj+NnYuTIkXz++eccP37cKfXXrry8nEcffZRu3brh4+NDREQEN910E1lZWU7XqKioYOHChURHR+Pn58ewYcPYuXNnrb5nc+bMAbQZ67O98847lJaWOv6fXnrpJYYPH05kZCT+/v707NmTZcuWUVFRcd5rnC+NuerPsd3hw4eZPn06kZGR+Pj40L17d1566SWnY6xWK48++ihdu3bF19eX4OBgevXqxfPPP3/esbz66qtkZmbyxBNPOAXYdgsXLqRbt2489dRTVFRUkJWVhbe3Nw899FC1Yw8ePIiiKPz73/92bKvNz5X9+7Fs2TIeffRREhIS8PHx4dtvvz3v2C/kfMsYfvnlF/785z9jMpkIDQ3l7rvvprKykkOHDjFu3DgCAwNp3749y5Ytq3be/Px87rnnHhISEvD29iYuLo758+dTVFTUoPEKIURTJDPZQgjRxJWUlPDOO+9w8cUXk5iYyOzZs7n55pt5//33ufHGGx3HpaSkcPHFF1NRUcH9999Pr169yM7O5quvviI3N5d+/fqxatUqbrrpJh588EEmTJgAUK+Z0+TkZObNm0fbtm0B2L59O3fccQcpKSk8/PDDdTrX7NmzmTx5Mt988w2jR492bD948CA7d+50BB/btm3j2muv5dprr2Xx4sUYjUaOHz/uSPd2lT/++APAadb1p59+4sCBAzz44IMkJCTg7+9Peno6AwcORKfT8fDDD9OxY0e2bdvGo48+SnJysiPgLCkpYfTo0aSmpvL444/TpUsXPv/8c6699tpajefhhx/mX//6F1OnTmXBggWYTCb27dvnuAnwn//8h1tuuYUjR47w0UcfOT3XarUyefJkvv/+exYuXMiQIUM4fvw4ixYtYuTIkezevdsxIz937lzeeOMN7rnnHi6//HL27dvH1KlTKSgouOAYu3TpwrBhw1i9ejVPPPEEBoPBsW/VqlXExcUxduxYAI4cOcL06dMdwdbPP//M0qVLOXjwoGNJREPt37+fIUOG0LZtW5YvX050dDRfffUVd955J6dPn2bRokUALFu2jMWLF/Pggw8yfPhwKioqOHjwIHl5eec9/8aNG9Hr9UyaNKnG/YqicOWVV7Js2TL27NnDoEGDmDhxIq+//jpLlixxSiFftWoV3t7e/OUvfwGo9c+V3b///W+6dOnC008/TVBQEJ07d27Ad+78pk2bxowZM5g3bx4bN2503Bz5+uuv+dvf/sY999zD22+/zT/+8Q86derE1KlTASguLmbEiBGcOnXK8bfpt99+4+GHH+bXX3/l66+/rlctAiGEaLJUIYQQTdobb7yhAup///tfVVVVtaCgQA0ICFD/9Kc/OR03e/Zs1WAwqPv37z/nuXbt2qUC6qpVq6rtGzFihDpixIhq22+88Ua1Xbt25zynxWJRKyoq1EceeUQNCwtTrVbrBc9ZVUVFhRoVFaVOnz7dafvChQtVb29v9fTp06qqqurTTz+tAmpeXt55z1dbN954o+rv769WVFSoFRUValZWlvr888+riqKoF198seO4du3aqXq9Xj106JDT8+fNm6cGBASox48fd9puH+dvv/2mqqqqvvzyyyqgfvLJJ07HzZ07t9r/xaJFi9SqL81Hjx5V9Xq9+pe//OW8X8uECRNq/D965513VED98MMPnbbbfw7+85//qKqqqgcOHFAB9e9//7vTcW+99ZYKqDfeeON5r6+qqrpq1SoVUNeuXevYtm/fPhVQH3jggRqfY//ZeeONN1S9Xq/m5OQ49p39c3fs2LFz/uwC6qJFixyPx44dq8bHx6tms9npuNtvv101Go2O60ycOFHt06fPBb+2s3Xr1k2Njo4+7zH2//d3331XVVVV/fTTT1VA3bBhg+OYyspKNTY2Vr366qsd22r7c2X/fnTs2FEtLy+v0/jtz33qqafOua+mn8vly5c7HdunT59q/+cVFRVqRESEOnXqVMe2xx9/XNXpdOquXbucnv/BBx+ogPrFF1/UafxCCNHUSbq4EEI0cStWrMDX15frrrsOgICAAP785z/z/fffc/jwYcdxX375JaNGjaJ79+5uH5N91tlkMqHX6zEYDDz88MNkZ2eTmZlZp3N5eXkxY8YM1q5di9lsBrS1pW+++SaTJ08mLCwMwJHqPm3aNN577z1SUlIa/HUUFRVhMBgwGAxEREQwf/58xo8fX21GuFevXnTp0sVp22effcaoUaOIjY2lsrLS8TF+/HgANm/eDMC3335LYGAgV155pdPzqxacOpeNGzdisVi47bbb6vX1ffbZZwQHBzNp0iSnMfbp04fo6Gi+++47xxgBx2yq3bRp0/Dyql3Smz0dvups9MqVK1EUhZtuusmxbe/evVx55ZWEhYU5fnZuuOEGLBYLv//+e72+zqpKS0vZtGkTV111FX5+fk5f9xVXXEFpaSnbt28HYODAgfz888/87W9/46uvviI/P7/B17dTbUsn7DO048ePJzo62mkm+quvviI1NdVpyUNtf67srrzySqfMAXeaOHGi0+Pu3bujKIpjbKD9Pnfq1MmRaQHa15SYmEifPn2cvqaxY8eiKIrj51AIIVoKCbKFEKIJ++OPP9iyZQsTJkxAVVXy8vLIy8vjmmuuAXAKaLKyshqlaNbOnTsZM2YMAK+88go//vgju3bt4oEHHgC09Oi6mj17NqWlpaxZswbQgo+0tDSn4Gz48OF8/PHHVFZWcsMNNxAfH09iYiLvvPNOvb8WX19fdu3axa5du/jll1/Iy8vj888/r1bwLCYmptpzMzIyWLdunSNIt39cdNFFAJw+fRqA7OzsGtftRkdHX3B89nXT9f1/zcjIIC8vD29v72rjTE9PdxpjTWPy8vJy3OS4ED8/P6677jrWr19Peno6lZWVrF69mhEjRjgqVZ84cYI//elPpKSk8Pzzz/P999+za9cux1rp+vzsnC07O5vKykpeeOGFal/zFVdcAZz5v7nvvvt4+umn2b59O+PHjycsLIzLLruM3bt3n/cabdu2JSsr67zrie3Fxdq0aQNo38uZM2fy0UcfOdLRX3vtNWJiYhyp9FD7nyu7mn423SU0NNTpsbe3N35+fhiNxmrbq7bBy8jI4Jdffqn2NQUGBqKqarWvSQghmjtZky2EEE3YypUrUVWVDz74gA8++KDa/tdff51HH30UvV5PREQEp06dqve1jEajYya5qrPfAK9ZswaDwcBnn33m9Ob6448/rve1e/TowcCBA1m1ahXz5s1j1apVxMbGOoJ5u8mTJzN58mTKysrYvn07jz/+ONOnT6d9+/YMHjy4ztfV6XQMGDDggsfVtF40PDycXr16sXTp0hqfExsbC0BYWFiNBcRqKnx2Nvu68FOnTjmCtboIDw8nLCyM9evX17g/MDDQMUb7mKreYKisrHQE4LUxZ84cXnnlFd544w26dOlCZmYmy5cvd+z/+OOPKSoqYu3atbRr186xvTZ92+0/a2VlZU7bzx5fSEgIer2emTNnnjMDICEhAdAC37vvvpu7776bvLw8vv76a+6//37Gjh3LyZMn8fPzq/H5l19+ORs2bGDdunWODJOqVFXl008/JTQ0lP79+zu233TTTTz11FOsWbOGa6+9lk8//ZT58+ej1+sdx9T258quOaxlDg8Px9fX95xr7sPDwxt5REII4V4SZAshRBNlsVh4/fXX6dixI6+++mq1/Z999hnLly/nyy+/ZOLEiYwfP54333yTQ4cO0bVr1xrPaW/tU9OMYfv27Xn//fcpKytzHJednc3WrVsJCgpyHKcoCl5eXk6BQUlJCW+++WaDvt6bbrqJW2+9lR9++IF169Zx9913O13j7K9jxIgRBAcH89VXX7F37956BdkNMXHiRL744gs6duxISEjIOY8bNWoU7733Hp9++qlTyvjbb799wWuMGTMGvV7Pyy+/fN6vz8fHp8b/04kTJ7JmzRosFst5W77Zq8q/9dZbTkHhe++9V61S+vlccsklJCYmsmrVKrp06YLJZOLqq6927LcHhFVbTKmqyiuvvHLBc0dFRWE0Gvnll1+ctn/yySdOj/38/Bg1ahR79+6lV69eeHt712rswcHBXHPNNaSkpDB//nySk5Pp0aNHjcfefPPNPPXUU9x3331ceumlREZGOu1ftmwZBw8erFYErnv37lxyySWsWrUKi8VCWVmZU7YG1P7nqjmZOHEijz32GGFhYY4bHEII0ZJJkC2EEE3Ul19+SWpqKk8++WSNrbUSExN58cUXWbFiBRMnTuSRRx7hyy+/ZPjw4dx///307NmTvLw81q9fz9133023bt3o2LEjvr6+vPXWW3Tv3p2AgABiY2OJjY1l5syZ/O9//2PGjBnMnTuX7Oxsli1b5hRgA0yYMIFnnnmG6dOnc8stt5Cdnc3TTz9drTdvXV1//fXcfffdXH/99ZSVlTFr1iyn/Q8//DCnTp3isssuIz4+nry8PJ5//nkMBgMjRoxwHOfl5cWIESPYtGlTg8ZzIY888ggbN25kyJAh3HnnnXTt2pXS0lKSk5P54osv+O9//0t8fDw33HADzz77LDfccANLly6lc+fOfPHFF3z11VcXvEb79u25//77+de//kVJSQnXX389JpOJ/fv3c/r0aUcrsZ49e7J27Vpefvll+vfv75ihv+6663jrrbe44ooruOuuuxg4cCAGg4FTp07x7bffMnnyZK666iq6d+/OjBkzeO655zAYDIwePZp9+/Y5KlbXxezZs7n77rs5dOgQ8+bNc+onfvnll+Pt7c3111/PwoULKS0t5eWXXyY3N/eC51UUhRkzZrBy5Uo6duxI79692blzZ403K55//nmGDRvGn/70J2699Vbat29PQUEBf/zxB+vWrXNUpJ80aRKJiYkMGDCAiIgIjh8/znPPPUe7du3OW6U7ODiYtWvXMnHiRPr378+9995L7969yc/P59133+Wtt97i2muv5d57763x+zNv3jxSU1MZMmRItRtitf25ak7mz5/Phx9+yPDhw/n73/9Or169sFqtnDhxgg0bNrBgwYLz3gQSQohmx5NV14QQQpzblClTVG9vbzUzM/Ocx1x33XWql5eXmp6erqqqqp48eVKdPXu2Gh0drRoMBjU2NladNm2ampGR4XjOO++8o3br1k01GAzVqjK//vrravfu3VWj0aj26NFDfffdd2usLr5y5Uq1a9euqo+Pj9qhQwf18ccfV1esWKEC6rFjxxzH1aa6eFXTp09XAXXo0KHV9n322Wfq+PHj1bi4ONXb21uNjIxUr7jiCvX77793Og6o1TXt1cUvpF27duqECRNq3JeVlaXeeeedakJCgmowGNTQ0FC1f//+6gMPPKAWFhY6jjt16pR69dVXqwEBAWpgYKB69dVXq1u3br1gdXG7N954Q7344otVo9GoBgQEqH379nV6Xk5OjnrNNdeowcHBqqIoTueoqKhQn376abV3796O53fr1k2dN2+eevjwYcdxZWVl6oIFC9TIyEjVaDSqgwYNUrdt26a2a9euVtXFq35PvL29VUDduXNntf3r1q1zjCUuLk6999571S+//FIF1G+//dZxXE0/d2azWb355pvVqKgo1d/fX500aZKanJxc7edYVbUq2bNnz1bj4uJUg8GgRkREqEOGDFEfffRRxzHLly9XhwwZooaHh6ve3t5q27Zt1Tlz5qjJycm1+lpPnDih3nbbbWqHDh1Ub29v1WQyqcOHD1dXr17tVGX/7K/B19dXBdRXXnnlnN/DC/1cna9C+IXUt7p4VlaW07Hn+h0aMWKEetFFFzltKywsVB988EG1a9euju9Vz5491b///e+Ov19CCNFSKKpqK38phBBCCCGEEEKIBpHq4kIIIYQQQgghhItIkC2EEEIIIYQQQriIBNlCCCGEEEIIIYSLSJAthBBCCCGEEEK4iATZQgghhBBCCCGEi0iQLYQQQgghhBBCuIiXpwfQklitVlJTUwkMDERRFE8PRwghhBBCCCFaFVVVKSgoIDY2Fp3OM3PKEmS7UGpqKm3atPH0MIQQQgghhBCiVTt58iTx8fEeubYE2S4UGBgIaP+hQUFBHh6NEEIIIYQQQrQu+fn5tGnTxhGbeYIE2S5kTxEPCgqSIFsIIYQQQgghPMSTy3el8JkQQgghhBBCCOEiEmQLIYQQQgghhBAuIkG2EEIIIYQQQgjhIrImWwghhBBCCFErFouFiooKTw9DtHLe3t4ea89VGxJkCyGEEEIIIc5LVVXS09PJy8vz9FCEQKfTkZCQgLe3t6eHUiMJsoUQQgghhBDnZQ+wIyMj8fPz82jlZtG6Wa1WUlNTSUtLo23btk3yZ1GCbCGEEEIIIcQ5WSwWR4AdFhbm6eEIQUREBKmpqVRWVmIwGDw9nGqabiK7EEIIIYQQwuPsa7D9/Pw8PBIhNPY0cYvF4uGR1EyCbCGEEEIIIcQFNcW0XNE6NfWfRQmyhRBCCCGEEEIIF5EgWwghRItmsapsO5LNJ0kpbDuSjcWqenpIQgghBKDNyH788cduvcbIkSOZP3++W68hnEmQLYQQosVavy+NYU9+w/WvbOeuNUlc/8p2hj35Dev3pXl6aEII0Sp56sbn1q1b0ev1jBs3rs7Pbd++Pc8995zrB3UBkyZNYvTo0TXu27ZtG4qi8NNPPzXyqERtSHVxIYQQLdL6fWncuvonzn77lm4u5dbVP/HyjH6MS4zxyNiEEKI1Wr8vjSXr9pNmLnVsizEZWTSph9v/Hq9cuZI77riDV199lRMnTtC2bVu3Xs8V5syZw9SpUzl+/Djt2rVz2rdy5Ur69OlDv379PDQ6cT4yky2EEKLFsVhVlqzbXy3ABhzblqzbL6njQgjRSOw3PqsG2HDmxqc7M4yKiop47733uPXWW5k4cSKvvfZatWM+/fRTBgwYgNFoJDw8nKlTpwJaqvXx48f5+9//jqIojoJbixcvpk+fPk7neO6552jfvr3j8a5du7j88ssJDw/HZDIxYsSIOs08T5w4kcjIyGrjLS4u5t1332XOnDlkZ2dz/fXXEx8fj5+fHz179uSdd94573lrSlEPDg52uk5KSgrXXnstISEhhIWFMXnyZJKTkx37v/vuOwYOHIi/vz/BwcEMHTqU48eP1/pra+kkyBZCCNHi7DyWU+2NXFUqkGYuZeexnMYblBBCtCCqqlJcXlmrj4LSChZ9+tt5b3wu/nQ/BaUVFzyXqtb95ui7775L165d6dq1KzNmzGDVqlVO5/n888+ZOnUqEyZMYO/evWzatIkBAwYAsHbtWuLj43nkkUdIS0sjLa32NwMKCgq48cYb+f7779m+fTudO3fmiiuuoKCgoFbP9/Ly4oYbbuC1115zGu/7779PeXk5f/nLXygtLaV///589tln7Nu3j1tuuYWZM2eyY8eOWo/zbMXFxYwaNYqAgAC2bNnCDz/8QEBAAOPGjaO8vJzKykqmTJnCiBEj+OWXX9i2bRu33HJLk6/43ZgkXVwIIUSLk1lw7gC7PscJIYRwVlJhocfDX7nkXCqQnl9Kz8UbLnjs/kfG4uddtxBmxYoVzJgxA4Bx48ZRWFjIpk2bHOudly5dynXXXceSJUscz+nduzcAoaGh6PV6AgMDiY6OrtN1L730UqfH//vf/wgJCWHz5s1MnDixVueYPXs2Tz31FN999x2jRo0CtFTxqVOnEhISQkhICPfcc4/j+DvuuIP169fz/vvvc8kll9RpvHZr1qxBp9Px6quvOgLnVatWERwczHfffceAAQMwm81MnDiRjh07AtC9e/d6XaulkplsIYQQHuWOIjiRgUaXHieEEKJ5OnToEDt37uS6664DtNnha6+9lpUrVzqOSUpK4rLLLnP5tTMzM/nrX/9Kly5dMJlMmEwmCgsLOXHiRK3P0a1bN4YMGeIY75EjR/j++++ZPXs2ABaLhaVLl9KrVy/CwsIICAhgw4YNdbrG2fbs2cMff/xBYGAgAQEBBAQEEBoaSmlpKUeOHCE0NJRZs2YxduxYJk2axPPPP1+nGf7WQGayhRBCeIy7iuAMTAglxmQk3VxaY3qiAkSbjAxMCK33NYQQojXzNejZ/8jYWh2781gOs1btuuBxr9108QX/Lvsa9LW6pt2KFSuorKwkLi7OsU1VVQwGA7m5uYSEhODr61uncwLodLpqqesVFRVOj2fNmkVWVhbPPfcc7dq1w8fHh8GDB1NeXl6na82ZM4fbb7+dl156iVWrVtGuXTvHTYHly5fz7LPP8txzz9GzZ0/8/f2ZP3/+ea+hKMp5x261Wunfvz9vvfVWtedGREQA2sz2nXfeyfr163n33Xd58MEH2bhxI4MGDarT19ZSyUy2EEIIj3BnERy9TmHRpB6AFlBXZX+8aFIP9DpZPyaEEPWhKAp+3l61+vhT5whiTMZqf48d50K7wfqnzhEXPFdd1v1WVlbyxhtvsHz5cpKSkhwfP//8M+3atXMEkb169WLTpk3nPI+3tzcWi8VpW0REBOnp6U7BalJSktMx33//PXfeeSdXXHEFF110ET4+Ppw+fbrW47ebNm0aer2et99+m9dff52bbrrJ8X34/vvvmTx5MjNmzKB379506NCBw4cPn/d8ERERTjPPhw8fpri42PG4X79+HD58mMjISDp16uT0YTKZHMf17duX++67j61bt5KYmMjbb79d56+tpZIgWwghRKNrjOrf4xJjeHlGP8ICvJ22R5uM0r5LCCEakadufH722Wfk5uYyZ84cEhMTnT6uueYaVqxYoV170SLeeecdFi1axIEDB/j1119ZtmyZ4zzt27dny5YtpKSkOILkkSNHkpWVxbJlyzhy5AgvvfQSX375pdP1O3XqxJtvvsmBAwfYsWMHf/nLX+o1ax4QEMC1117L/fffT2pqKrNmzXK6xsaNG9m6dSsHDhxg3rx5pKenn/d8l156KS+++CI//fQTu3fv5q9//SsGg8Gx/y9/+Qvh4eFMnjyZ77//nmPHjrF582buuusuTp06xbFjx7jvvvvYtm0bx48fZ8OGDfz++++yLrsKCbKFEEI0usaq/j0uMYblf+7teGzyNfDDPy6VAFsIIRqZ/cZntMm5FoY7b3yuWLGC0aNHO82+2l199dUkJSXx008/MXLkSN5//30+/fRT+vTpw6WXXupUnfuRRx4hOTmZjh07OtKlu3fvzn/+8x9eeuklevfuzc6dO50KkIFWoCw3N5e+ffsyc+ZM7rzzTiIjI+v1tcyZM4fc3FxGjx7t1OP7oYceol+/fowdO5aRI0cSHR3NlClTznuu5cuX06ZNG4YPH8706dO555578PPzc+z38/Njy5YttG3blqlTp9K9e3dmz55NSUkJQUFB+Pn5cfDgQa6++mq6dOnCLbfcwu233868efPq9bW1RIpanzr4okb5+fmYTCbMZjNBQUGeHo4QQjRZnySlcNeapAse9/x1fZjcJ+6Cx53Pe7tPsvCDXwBQFDj86Hi89HKPWQghaqu0tJRjx46RkJCA0diwgpEWq8rOYzlkFpQSGajVxpClO6Kuzvcz2RRiMil8JoQQotE1ZvXvjCoz5qoKpwvLq82kCCGEaBx6ncLgjmGeHoYQbiW38oUQQjQ6e/XvCxXBcUX17/R857T0jHzpjS2EEEII95EgWwghRKOrWgTnbK4ugnN2UH120C2EEEII4UoSZAshhPCIcYkx/Ocv/arNZru6CI49qPbx0l7yMiXIFkIIIYQbyZpsIYQQHjO4Y5ijZVefNsH8Y1w3lxfBSTeXAZAYZ2LP8Vwy8stcdm4hhBBCiLNJkC2EEMJjUvJKHJ/HBfu6thjOt49jQUd2USIAveK1IDs9vxQ2LwOrBUbd57rrCSGEEEIg6eJCCCE8KCW35MIH1ZdOj37zY9yuW4tBr9A9RmvjMejkq/DtUtDp3XdtIYQQQrRaMpMthBDCY1Lz3Bhkj1hISl4JC/Y+Q5Deizj/i7hDv5Zr8j+AUQ/AiIXuu7YQQgghWi0JsoUQQnhMijuDbODnDrewZucJFrAG9d01DDXAS8q13CYBthBCCCHcRNLFhRBCeExqnnsrfaeZS3nBMhUVBQWoVHU8VTKZ0gqLW68rhBCi9Vm8eDF9+vRxPJ41axZTpkxp9HEkJyejKApJSUluvU779u157rnn3HqN5kqCbCGEEB5zys0z2Rn5pdyhX4tiq2HupVi5Q7+WTKkwLoQQrcKsWbNQFAVFUTAYDHTo0IF77rmHoqIit1/7+eef57XXXqvVsY0VGAP07NmTm2++ucZ977zzDgaDgYyMDLePoyWTIFsIIYTHuHVNNtD7yP+xwPCB4/FRpS0LDB+g+2GZW68rhBDiLN8+rnV2qMnmZdp+Nxk3bhxpaWkcPXqURx99lP/85z/cc889NR5bUVHhsuuaTCaCg4Nddj5XmTNnDu+99x7FxcXV9q1cuZKJEycSFRXlgZG1HBJkCyGE8IjSCgtZBW6cUd68jAnZK1lVOcaxqdwrgOUV1xC/99lzv9kTQgjhejq91tnh7L+9m5e5veODj48P0dHRtGnThunTp/OXv/yFjz/+GDiT4r1y5Uo6dOiAj48PqqpiNpu55ZZbiIyMJCgoiEsvvZSff/7Z6bxPPPEEUVFRBAYGMmfOHEpLnZdAnZ0ubrVaefLJJ+nUqRM+Pj60bduWpUuXApCQkABA3759URSFkSNHOp63atUqunfvjtFopFu3bvznP/9xus7OnTvp27cvRqORAQMGsHfv3vN+P2bOnElZWRnvv/++0/YTJ07wzTffMGfOHI4cOcLkyZOJiooiICCAiy++mK+//vqc56xpJj4vLw9FUfjuu+8c2/bv388VV1xBQEAAUVFRzJw5k9OnTzv2f/DBB/Ts2RNfX1/CwsIYPXp0o2QduJoE2UIIITwizeze9dhYLawwXM9max/Hpkg1mxcsU9nd4VatT7YQQoj6UVUoL6r9x+DbYPi9WkD9zaPatm8e1R4Pv1fbX5vzqGqDh+7r6+s0Y/3HH3/w3nvv8eGHHzqCxAkTJpCens4XX3zBnj176NevH5dddhk5OTkAvPfeeyxatIilS5eye/duYmJiqgW/Z7vvvvt48skneeihh9i/fz9vv/22Y8Z4586dAHz99dekpaWxdu1aAF555RUeeOABli5dyoEDB3jsscd46KGHeP311wEoKipi4sSJdO3alT179rB48eJzztLbhYWFMXnyZFatWuW0fdWqVURFRTF+/HgKCwu54oor+Prrr9m7dy9jx45l0qRJnDhxopbf5erS0tIYMWIEffr0Yffu3axfv56MjAymTZvm2H/99dcze/ZsDhw4wHfffcfUqVNRXfB/3tikurgQQgiPcHequDrynyzbtJ5rlA2ObSbLaXRY2RB+IwNGdXfr9YUQokWrKIbHYuv33C1PaR/nenw+96eCt3/9rosWzL799ttcdtlljm3l5eW8+eabREREAPDNN9/w66+/kpmZiY+PDwBPP/00H3/8MR988AG33HILzz33HLNnz3asbX700Uf5+uuvq81m2xUUFPD888/z4osvcuONNwLQsWNHhg0bBuC4dlhYGNHR0Y7n/etf/2L58uVMnToV0Ga89+/fz//+9z9uvPFG3nrrLSwWCytXrsTPz4+LLrqIU6dOceutt573+zB79myuuOIKjh49SocOHVBVlddee41Zs2ah1+vp3bs3vXv3dhz/6KOP8tFHH/Hpp59y++231/4bXsXLL79Mv379eOyxxxzbVq5cSZs2bfj9998pLCyksrKSqVOn0q5dO0BbP94cyUy2EEIIj0jJdW+QbS6poKzSSpxyJg1Nr1oIx0xGvptn0YUQQjQZn332GQEBARiNRgYPHszw4cN54YUXHPvbtWvnCHIB9uzZQ2FhIWFhYQQEBDg+jh07xpEjRwA4cOAAgwcPdrrO2Y+rOnDgAGVlZU7B/YVkZWVx8uRJ5syZ4zSORx991GkcvXv3xs/Pr1bjsBszZgzx8fGO2exvvvmG5ORkbrrpJkCbIV+4cCE9evQgODiYgIAADh482KCZ7D179vDtt986fS3dunUD4MiRI/Tu3ZvLLruMnj178uc//5lXXnmF3Nzcel/Pk2QmWwghhEe4u0d2ui2QTvDKdtoeo2ST7u5UdSGEaOkMftqscl398Kw2a633Bku5lio+7O91u24djRo1ipdffhmDwUBsbCwGg8Fpv7+/88y41WolJibGaS2xXX0Lmfn6+tb5OVarFdBSxi+55BKnfXq9toa9vqnUOp2OWbNm8dprr7FkyRJWrVrF8OHD6dy5MwD33nsvX331FU8//TSdOnXC19eXa665hvLy8nOe7+zxnF1Ezmq1MmnSJJ588slqz4+JiUGv17Nx40a2bt3Khg0beOGFF3jggQfYsWOHY816cyEz2UIIITzCHmRHBvq45fz2QLqtPsdpe7SSQ6Y7C64JIURroCha2nZdPra9pAXYox6Ah7K0f7c8pW2v7TkUpc5D9ff3p1OnTrRr165agF2Tfv36kZ6ejpeXF506dXL6CA8PB6B79+5s377d6XlnP66qc+fO+Pr6smnTphr3e3t7A2CxnKkXEhUVRVxcHEePHq02DnvQ2aNHD37++WdKSs7cuD7fOKq66aabOHXqFGvXrmXt2rXMmTPHse/7779n1qxZXHXVVfTs2ZPo6GiSk5PPeS57JkBaWppj29ntyPr168dvv/1G+/btq3099hsdiqIwdOhQlixZwt69e/H29uajjz6q1dfTlEiQLYQQwiPsa7LjQup+d7827CnhMWRpG0xttcdKDhn5pc2ykIoQQjRb9iriox6AEQu1bSMWao9rqjruQaNHj2bw4MFMmTKFr776iuTkZLZu3cqDDz7I7t27AbjrrrtYuXIlK1eu5Pfff2fRokX89ttv5zyn0WjkH//4BwsXLuSNN97gyJEjbN++nRUrVgAQGRmJr6+voxiY2WwGtOrnjz/+OM8//zy///47v/76K6tWreKZZ54BYPr06eh0OubMmcP+/fv54osvePrpp2v1dSYkJHDppZdyyy23YDAYuOaaaxz7OnXqxNq1a0lKSuLnn39m+vTpjpn1mvj6+jJo0CCeeOIJ9u/fz5YtW3jwwQedjrntttvIycnh+uuvZ+fOnRw9epQNGzYwe/ZsLBYLO3bs4LHHHmP37t2cOHGCtWvXkpWVRffuza+GigTZQgghPMI+kx0b7J4gO91choFKgi22dPG2WqpdtJJDcbmFwrJKt1xXCCFEDawW5wDbzh5oN6GOD4qi8MUXXzB8+HBmz55Nly5duO6660hOTnZUA7/22mt5+OGH+cc//kH//v05fvz4BYuNPfTQQyxYsICHH36Y7t27c+2115KZmQmAl5cX//73v/nf//5HbGwskydPBuDmm2/m1Vdf5bXXXqNnz56MGDGC1157zTGTHRAQwLp169i/fz99+/blgQceqDEd+1zmzJlDbm4u1113ndO67meffZaQkBCGDBnCpEmTGDt2LP369TvvuVauXElFRQUDBgzgrrvu4tFHH3XaHxsby48//ojFYmHs2LEkJiZy1113YTKZ0Ol0BAUFsWXLFq644gq6dOnCgw8+yPLlyxk/fnytv56mQlHlVr7L5OfnYzKZMJvNBAUFeXo4QgjRZFmtKt0eWk+5xcq84R3435ajTOgZw0t/Of8LeF3ct/YXfty1my0+fwcvI1z6IGx4kC8Zwq2lt/P13cPpFBnosusJIURLVVpayrFjx0hISMBoNHp6OEKc92eyKcRkMpMthBCi0Z0uLKPcYkWnQGSQe96wpZtLz1QWN8VDUBwA8fo8ADLyZV22EEIIIVxPguyW7NvHz72+ZfMybb8QQniAPVU8OsiIQV/3Ija1kZ5fRrxiX4/dxhFkR6Glj0sbLyGEEEK4gwTZLZlOX3MhCXvhCZ3eM+MSQrR67l6PDVoQ7ZjJDm4LJi3IDrVko2CVmWwhhBBCuIVHg+zHH3+ciy++mMDAQCIjI5kyZQqHDh1yOkZVVRYvXkxsbCy+vr6MHDmyWuW+srIy7rjjDsLDw/H39+fKK6/k1KlTTsfk5uYyc+ZMTCYTJpOJmTNnkpeX53TMiRMnmDRpEv7+/oSHh3PnnXeesxdcs1BTxcaaKjsKIUQjc3dl8bJKCzlF5cRhD7LbQEAUKDq8qCSMApnJFkIIIYRbeDTI3rx5M7fddhvbt29n48aNVFZWMmbMGIqKihzHLFu2jGeeeYYXX3yRXbt2ER0dzeWXX05BQYHjmPnz5/PRRx+xZs0afvjhBwoLC5k4caJTn7np06eTlJTE+vXrWb9+PUlJScycOdOx32KxMGHCBIqKivjhhx9Ys2YNH374IQsWLGicb4a7VA20F5skwBZCNAkpue6dyc60zVLH62yVxU1tQW/QAm0gRsmWIFsIIYSoB1VVKSytJK+4nMLSSmmJWQMvT158/fr1To9XrVpFZGQke/bsYfjw4aiqynPPPccDDzzA1KlTAXj99deJiori7bffZt68eZjNZlasWMGbb77J6NGjAVi9ejVt2rTh66+/ZuzYsRw4cID169ezfft2LrlEa+HyyiuvMHjwYA4dOkTXrl3ZsGED+/fv5+TJk8TGxgKwfPlyZs2axdKlS5t3tfARC7XgGrQUcQmwhRAeZk8Xjwv2xeqGF+d0WwDdVn8aVLSZbICgWChIkyBbCCHq4Xx9kkXrYC4pJzWvlArLmZ8Fg15HbLARk693o42jqQf2Hg2yz2Zvuh4aGgrAsWPHSE9PZ8yYMY5jfHx8GDFiBFu3bmXevHns2bOHiooKp2NiY2NJTExk69atjB07lm3btmEymRwBNsCgQYMwmUxs3bqVrl27sm3bNhITEx0BNsDYsWMpKytjz549jBo1yt1fvvtUXZNttWiPJdAWQnhQSl4p870+YEjKDn6InV39gM3LbD1V76vX+dPNpeiwEqXaq4tXCbJT9hCt5PCbrMkWQoha8fb2RqfTkZqaSkREBN7e3iiKe4pWiqaroFQLsM9WXgnJGaXEBhsJNLo/0FZVlaysLBRFwWAwuP169dFkgmxVVbn77rsZNmwYiYmJAKSnpwM4mr7bRUVFcfz4cccx3t7ehISEVDvG/vz09HQiIyOrXTMyMtLpmLOvExISgre3t+OYs5WVlVFWduZNWn5+fq2/3kZjX4Nt12n0mccSaAshPCQltxiLqqPDr89jLqkAhp3ZWbV2RD1l5JcSSS5eWEDRQ2CMtiMoHoAYJYfMglKsVhWdTt4oCiHE+eh0OhISEkhLSyM1NdXTwxEeoKraa2ulteYZZAXISVeICjLSGPdfFEUhPj4evb5pFnJuMkH27bffzi+//MIPP/xQbd/Zd8pUVb3g3bOzj6np+PocU9Xjjz/OkiVLzjsOj6r6RtUeWHe8DNpcIoG2EMJjCkoryC+t5AWmcvulnen7/ePcoc/kKLe5rDijU4/soDjQ217ugrRspWglh4pKldzicsICfBr6JQkhRIvn7e1N27ZtqaysdKp7JFqHvSdyeXDTzxc87uk/96Zv25ALHtdQBoOhyQbY0ESC7DvuuINPP/2ULVu2EB8f79geHR0NaLPMMTExju2ZmZmOWefo6GjKy8vJzc11ms3OzMxkyJAhjmMyMjKqXTcrK8vpPDt27HDan5ubS0VFRbUZbrv77ruPu+++2/E4Pz+fNm3a1Olrdyur5cwb1aqz2fY3rlb5AymEaHz2VDOTrwGfy/7JbydTWJD8BpWHP4LDFpcUZ0w7u32XnS3IbqvPhQrIyC+TIFsIIWrJnp7bVFN0hftkFltJKbhw7JBZbMVoNDbCiJo2j1YXV1WV22+/nbVr1/LNN9+QkJDgtD8hIYHo6Gg2btzo2FZeXs7mzZsdAXT//v0xGAxOx6SlpbFv3z7HMYMHD8ZsNrNz507HMTt27MBsNjsds2/fPtLS0hzHbNiwAR8fH/r371/j+H18fAgKCnL6aFJG3XfuN6ojFtZ7raMQQjREapWiZwBlhmAALbVb7+2SDJsMcynxSpX2XXZBWq/sWF2OdpwUPxNCCCEuKDKwdoFzbY9r6Tw6k33bbbfx9ttv88knnxAYGOhY+2wymfD19UVRFObPn89jjz1G586d6dy5M4899hh+fn5Mnz7dceycOXNYsGABYWFhhIaGcs8999CzZ09HtfHu3bszbtw45s6dy//+9z8AbrnlFiZOnEjXrl0BGDNmDD169GDmzJk89dRT5OTkcM899zB37tymFzwLIUQzdirPuX1Xu/QNAFhR0FnKXVKcMb3qTLapapCtzWSHW7MBVYJsIYQQohYGJoQSYzKSbi6lplXZChBtMjIwIbSxh9YkeXQm++WXX8ZsNjNy5EhiYmIcH++++67jmIULFzJ//nz+9re/MWDAAFJSUtiwYQOBgYGOY5599lmmTJnCtGnTGDp0KH5+fqxbt84pT/+tt96iZ8+ejBkzhjFjxtCrVy/efPNNx369Xs/nn3+O0Whk6NChTJs2jSlTpvD00083zjdDCCFaCftMdnyIL2xeRljBQQCSAoafqSFRtStCHamqSmZ+WZV08SpBdmAMoGCgglAKyJAK40IIIcQF6XUKiyb1qHGfvXrVokk90EsxUcDDM9m16W+mKAqLFy9m8eLF5zzGaDTywgsv8MILL5zzmNDQUFavXn3ea7Vt25bPPvvsgmMSQghRfym5WpA9IfdN+OllKvS+GCzaNscMdgOKM+YUlVNusRKvz9I2VJ3J9vKGgEgozNB6ZRfITLYQQghRG+MSY3h5Rj9uf3uvU5XxaJORRZN6MC4x5jzPbl2aROEzIYQQrYd9Jtvko4Nhd2P44RnnAxpYnDE9vxRQidfVUPgMtJTxwgxilBwyzBJkCyGEELU1LjGGYL99nC4sp3NkAI9MTmRgQqjMYJ/Fo+niQgghWp8UW5BdNORe6D6x5oMaUJwxI7+UUAowUq5tsBU7c7A9jlZyZCZbCCGEqAOLVSWnSHt9jQj0YXDHMAmwayBBthBCiEZTYbE6io3FhfhC9hGXXyPdXGU9dkA0GM6qdGoLsmOUbFmTLYQQQtRBTlE51guv+G31JMgWQgjRaNLNpVhV8PbSEe7vA9l/uP4aTj2y21Q/wFZhPFrJ4XRhGRUWq8vHIIQQQrREWQVyc7o2JMgWQgjRaOyp4rEmIzqd4pYgO8NcSpxSQ9EzO9tMdpySg6rC6UJ5wyCEEELURpa8ZtaKBNlCCCEajb3oWVyI1iPbHeniafmlxNdiJjtOnwsgKeNCCCFELclMdu1IkC2EEKLR2Nt3xZp8QVXdEmRnmKsE2TXOZGtBdqSaDaiONeJCCCGEOD8JsmtHgmwhhBCNJtVcZSa7MBPKC1x+Dec12W2rH2ALsn0oJ5hCCbKFEEKIWpIgu3YkyBZCCNFoTtlnsoN93bIeu7TCgrmk4vxrsr18wD8CQOuVLUG2EEIIUSuyJrt2JMgWQgjRaOxrsuPdFGSnm0sJoBiTUqxtqGlNNjhms6WNlxBCCFF7WQVyY7o2JMgWQgjRKFRVPVNdPNgXcrT12BbFy2XXcEoV9w0Bn8CaD3T0ypaZbCGEEKK2JF28diTIFkII0ShyiysordB6UscEGx1Fzwr8zjHbXA8ZVYPsmlLF7ar0ypYgWwghhKgdCbJrR4JsIYQQjcJeWTwi0AcfL70jXbzAr53LrpFuvkDRMzunmWx5wyCEEEJcSGmFhfzSSk8Po1mQIFsIIUSjSMnT1knHBfuC1QI5RwHI93dhkJ1fSvz5ip7Z2YLsaLIxl1RQWmFx2RiEEEKIlui0FD2rNQmyhRBCNIqUPC0tOy7EF8wnwVIOeh+KjFEuu4ZTuvi5ip6BI108TpfjeJ4QQgghzk1SxWtPgmwhhBCNwp4uHle1snhoAqqid9k10sylxNdxTTaokjIuhBBCXIAE2bUnQbYQQohGYW/fpQXZWqo4YZ1ceo2MWq/J1oJsX8oIokhmsoUQQogLkB7ZtSdBthBCiEbh1L7LPpMd1tFl57daVfIKCohQzNqG8wXZBl/wCwOkjZcQQghRG/aZ7EAf17XebKkkyBZCCNEonGey7UG262ayTxeVEaVqs9iqwV/rk30+ttnsGCVbgmwhhBDiAuxBdkSgj4dH0vRJkC2EEMLtSsotZBeVA+4LsjPMZY5UcSW4DSjK+Z8gbbyEEEKIWrMH2eESZF+QBNlCCCHcLtWszWIH+HgRZLBA3glthwuD7Fq377KrUvxMZrKFEEKI87OvyZaZ7AuTIFsIIYTb2SuLxwYbUXKTARW8A8E/wmXXSK9t+y47e7o4OWRKxVQhhBDivBzp4gESZF+IBNlCCCHczmk9ds4RbWNYxwundNeBU2XxWs1kxwPaTHa6uRRVVV02FiGEEKIlUVVV1mTXgQTZQggh3K7myuKubd/lPJN9nsridraZ7Fglm5IKCwVllS4djxBCCNFSFJRVUlZpBWQmuzYkyBZCCOF29nTxuBD3BdkZdQ6ytcJnsbpsQCVT1mULIYQQNaravsvorffwaJo+CbKFEEK4XYpT+y57uriLg+y8IqLJ0R7UofCZH2UEUkK6WdZlCyGEEDWRVPG6kSBbCCGE26XU2CO7o2svkp+Kl2JF1XlDQNSFj/f2c/TSlgrjQgghxLlJ+666kSBbCCGEW1msKulmLYCN96uEwgxthwuD7KKySkLK0wFQg+JAV8uXN0ev7GwyCiTIFkIIIWoiM9l1I0G2EEIIt8osKKXSquKlU4ioSNE2+keA0eSya2hFz7Qe2bqQWqSK29nbeCk5ZOZLurgQQghRE0ePbCl6VisSZAshhHAre/uuaJMRfY6b1mOb61j0zM4RZGc7ZtuFEEII4UxmsutGguxWwGI90/v1WHaR02MhhHC3U7lV23dV6ZHtQk7tu0x1CbK1dPFociRdXAghhDgHCbLrRoLsFm79vjSGPfmN4/Gb244z7MlvWL8vzYOjEkK0Jql5tvXYjdYjuy7p4vY12ZIuLoQQQpyLBNl1I0F2C7Z+Xxq3rv6JtLNSINPNpdy6+icJtIUQjSIlrxiwz2TbguxQ185kO6WL16Z9l50tXTxaySGzoBSrZPoIIYQQ1cia7LqRILuFslhVlqzbT01vF+3blqzbL6njQgi3s89kxwUbwW1rsouJU7K1B/Wayc6mwqKSU1zu0nEJIYQQzZ3FqpJTpL0+RspMdq1IkN1C7TyWU20GuyoVSDOXsvNYTuMNSgjRKqXY1mS38y2BUjOgQGiCS69RmpeBj1KBis4RONdKUIz2j1JCAMXSK1sIIYQ4S25xORarynyvDwjb83zNB21eBt8+3rgDa8IkyG6hMmtZwKe2xwkhRH3Zq4u3VW1LVExtwODr0mvo808CUOEfBXpD7Z/oEwg+WiuxKCVX1mULIYQQZ7Gvx/bxNqDf/BhdDv7H+YDNy+DbpaDTe2B0TZME2S1UZKDRpccJIUR9mEsqKCirBCCyXAuEXV1ZvNJixa8kVXtQl/ZddqYzxc/SZSZbCCGEcGIPsj8JmgGjHqDbgRdY5vU//K0FZwLsUQ/AiIUeHmnT4eXpAQj3GJgQSozJSLq5tMZ12Qpaz9qBCaGNPTQhRCtiTxUP9ffG23xU2+ji9dinC8uJRSt65hXaru4nCIqFzP3EKNmSLi6EEEKcxamy+IiFnDjyG9NOfMw1aVsgTZUAuwYyk91C6XUKiyb1ALSAuir740WTeqDXnb1XCCFcx54qHufUvst9PbJ1dSl6ZmerMB5DDhmSLi6EEEI4cVQWtxU9KwjqDIAOFfTeEmDXQILsFmxcYgwvz+hHtMk5JTzaZOTlGf0YlxjjoZEJIVqLFFuQHRtshGz3zGSn17d9l52tUFq0kk2mzGQLIYQQTs7ukR2T8hUAVhSwlGsp48KJpIu3cOMSY7i8RzQ8oj0e0C6EB26+VGawhRCNwjGTbTLCcXv7Lhf3yM4v5RJ7kN2QmWxZky2EEEJU4wiyA3xg8zJCc38BYL9PbxKHTNDWZIPMaFchQXYrUDWgDg3wlgBbCNFoTtmC7M6+ZqgsBZ0BTPUoTnYe6eYS4pUs7UF9zu2YyZZ0cSGEEOJs9iB7aMpKOPgCpT7hGMtsN7ftgbUE2k4kyBZCCOE29pnsTrp0bUNoAuhd+9JTkJtFgGKbgTbF1/0EtiA7Vskmu6iMCosVg15WUwkhhBBwZk12gLcCox5A98OLzgfYA2urpZFH1nRJkC2EEMJt7NXFYy0p2gYXr8cGsOSeAKDUOwyjt1/dT2BLFzcpxfiqpZwuLCPG5No+3kIIIURzZZ/JLh26EILB2z5rXZXMYDuRW/VCCCHcoqzSQqbthTm01NYjO7SDy6/jVXAKgIrAuPqdwBgE3oGAljKebpZ12UIIIQRor+XmkgrAVvgs76SHR9Q8SJAthBDCLezBqtGgw1iQrG108Uy2qqr4FqcCoNSn6JmdbTZb1mULIYQQZ5wuLAfAoFcw+RrAfMrDI2oeJMgWQgjhFmfad/miOHpkuzbILiirJNKaCYBPePv6n8ikzYLHkENmgcxkCyGEEOBcWVxRFDCf8PCImgcJsoUQQriFfT12W5MX5B7XNro4yM6o0iPbENqu/idytPHKJkPaeAkhhBBA9R7Zki5eOxJkCyGEcAv7THaiXx6oFjD4Q2C0S6+Rnl9apX1XQ9LFbTPZSg7pZkkXF0IIIaCGINssQXZtSJAthBDCLeztu7p6ZWgbwjqAorj0GulVZrJx0ZpsSRcXQgghNNWDbFmTXRsSZAshhHAL+0x2O9K0DW5o35Wdm0uoUqg9cNFMtqSLCyGEEJqsQu01MSJA0sXrQoJsIYQQbpGap70wR1Xa7nq7Icguy04GoFQfAL7B9T+RLciOVrKlhZcQQghh4zSTXVkOBWkeHlHzIEG2EEIIl7NaVcdMtqnYVonUDUG2mqvdUS/2i23YiWzp4qFKIeWlRZSUWxo6NCGEEKLZcwqyC1IB1bMDaiYkyBZCCOFy2UXllFdaURTwMR/TNrohyDYUpgBgCYxv2ImMJlSDPyDrsoUQQgi7rMIqQbakiteaBNlCCCFczj6L3T5ARSlI1TaGdnD5dfxLtHMrwW0bdiJFQXG08cohI18qjAshhGjdVFWt0ifbKJXF60CCbCGEEC5nryzeLzBX2+AbCn6hLr1GhcVKaEU6AMbwBvTItjPZ1mWTQ7oUPxNCCNHKFZZVUlphBSA80NtRWbxS7+vJYTULEmQLIYRwuZRcLcjuYbS113JDqnhmQZmjfZdfZELDT1ilwnimBNlCCCFaOfssdoCPF37eXpCn1VgpaWgdlFZAgmwhhBAuZ08X76TTZprdEWRX7ZGtC2lgujg4ip/FKNnSxksIIUSrV71HtouKjbYCEmQLIYRwOXuQHW/VCpMR1tHl18jMyyeSPO2ByXVBdrSsyRZCCCHOFD2z98i2pYuX+EqQfSESZAshhHA5e7p4eJmtSIobZrILM46jU1TKFR/wD2/4Cauki8uabCGEEK2d00y2qp4Jsv1iPDmsZkGCbCGEEC6XataC7IDCZG2DG4LsipzjAOR7R4GiNPyEtiA7WtZkCyGEEM5BdlEWVJYCCiW+UZ4dWDMgQbYQQrjat4/D5mU179u8TNvfghWVVZJXXEEwBejL8rSNbmjfZe/X6bICLLZ08XAln9z8AlRVdc15hRBCiGbIKci2t+8KjMGqM3hwVM2DBNlCCOFqOj18u7R6oL15mbZdp/fMuBqJvX1XojFL2xAUB95+Lr+Od6GWtmYJauOaE/qGoHppbUlMlafJL610zXmFEEKIZshpTbbtxjameA+OqPnw8vQAhBCixRmxUPv326VgKYdLHzwTYI964Mz+FuqULcju7ZcNxbil6BlAQGkq4KLK4gCKghIUCzlHiEFLGTf5yt16IYQQrZPTTHaOLcgOdtGN7RZOgmwhhHCHEQsh4zfY8hT88CxYK1tFgA1nZrK7GzK0DW5Yj62qKiEVGaCAb4QLemTb2YLsaCWbjPwyOkcFuu7cQgghRDPiFGQf07LHMLWBcg8OqpmQdHEhhHAXS4X2r7US9N6tIsCGM5XF2yvu65GdX1JJjKqlowfFuHC9ty0NLkbJkV7ZQgghWi2LVSW7SIumIwIlXbyuPBpkb9myhUmTJhEbG4uiKHz88cdO+2fNmoWiKE4fgwYNcjqmrKyMO+64g/DwcPz9/bnyyis5deqU0zG5ubnMnDkTk8mEyWRi5syZ5OXlOR1z4sQJJk2ahL+/P+Hh4dx5552Ul8ttGiFEPakqHP3uzGNL+bmLobUw9pns6Erb32I3BNlpeYXEKDkA+IS1c92JbcXPYpRsaeMlhBCi1cotLsdiVVEUCPX3BvMJbUewi5ZotXAeDbKLioro3bs3L7744jmPGTduHGlpaY6PL774wmn//Pnz+eijj1izZg0//PADhYWFTJw4EYvF4jhm+vTpJCUlsX79etavX09SUhIzZ8507LdYLEyYMIGioiJ++OEH1qxZw4cffsiCBQtc/0ULIVqHrx6AiqIzjzuNrrkYWguUklcCqASX2O56h7p+TXZuxgkMioVK9BDown6djiBb2ngJIYRoveyp4qF+3hj0OkePbEyyJrs2PLome/z48YwfP/68x/j4+BAdHV3jPrPZzIoVK3jzzTcZPXo0AKtXr6ZNmzZ8/fXXjB07lgMHDrB+/Xq2b9/OJZdcAsArr7zC4MGDOXToEF27dmXDhg3s37+fkydPEhurvcFavnw5s2bNYunSpQQFBbnwqxZCtHibl8H2l5y3lRdpa7K/Xao9bsGp46l5pUSRi5elBBQ9hLhwptmmODMZgFx9BBGurNZepVd2Rn6Z684rhBBCNCNO67HLCqEkV9sh6eK10uTXZH/33XdERkbSpUsX5s6dS2ZmpmPfnj17qKioYMyYMY5tsbGxJCYmsnXrVgC2bduGyWRyBNgAgwYNwmQyOR2TmJjoCLABxo4dS1lZGXv27HH3lyiEaGmsFoi/WPu820Tt3xPbod+NWqBttZz7uc1cpcVKen4pHXRp2oaQ9qB3fYXuiuzjAOT71HwTtt6qzGRnFMhMthBCiNapxh7ZRhMYZfKxNpp0dfHx48fz5z//mXbt2nHs2DEeeughLr30Uvbs2YOPjw/p6el4e3sTEhLi9LyoqCjS07WCO+np6URGRlY7d2RkpNMxUVFRTvtDQkLw9vZ2HFOTsrIyysrOzHTk5+fX+2sVQrQgo+6DPzZqn190FRSkQcoeOPR5i57BBsgoKMNiVenkxsriAEq+9oJf6h/n2hMHaXfoIxQz2XkFrj23EEII0UzU3CNb1mPXVpOeyb722muZMGECiYmJTJo0iS+//JLff/+dzz///LzPU1UVRVEcj6t+3pBjzvb44487iqmZTCbatJE1CkIIoKIU0n7RPo8fAN2v1D7f/6nnxtRI7JXFE31sWUduCrJ9ClMAsLp6bZhfKKreBwBdYTpWq+ra8wshhBDNQI0z2ZIqXmtNOsg+W0xMDO3atePw4cMAREdHU15eTm5urtNxmZmZjpnp6OhoMjIyqp0rKyvL6ZizZ6xzc3OpqKioNsNd1X333YfZbHZ8nDx5skFfnxCihUj/BawV4B8Bwe2g+yRte/L3UJzj2bG5WUpeMQCd9PaZbBe216oioFRLR/cKdfFddUVxpIxHqNnkFEuXCSGEEK1PjUF2sEwo1lazCrKzs7M5efIkMTFaJdn+/ftjMBjYuHGj45i0tDT27dvHkCFDABg8eDBms5mdO3c6jtmxYwdms9npmH379pGWluY4ZsOGDfj4+NC/f/9zjsfHx4egoCCnDyGE4NQu7d/4i7WgLawjRF6k9cv+/SvPjs3NUvO0dcxtVNvfUzfNZIdVakG8b0R7l59bsRU/i1FySDfLumwhhBCtj1OQ7UgXlyC7tjwaZBcWFpKUlERSUhIAx44dIykpiRMnTlBYWMg999zDtm3bSE5O5rvvvmPSpEmEh4dz1VVXAWAymZgzZw4LFixg06ZN7N27lxkzZtCzZ09HtfHu3bszbtw45s6dy/bt29m+fTtz585l4sSJdO3aFYAxY8bQo0cPZs6cyd69e9m0aRP33HMPc+fOlcBZCFF3J2039eIHnNlmn80+sK7xx9OITuWWoMdCWIWWzu2OILusopJoNQsAU7QbZsptM9nRSjaZUvxMCCFEK+S0JtvRvkvSxWvLo0H27t276du3L3379gXg7rvvpm/fvjz88MPo9Xp+/fVXJk+eTJcuXbjxxhvp0qUL27ZtIzAw0HGOZ599lilTpjBt2jSGDh2Kn58f69atQ68/09LlrbfeomfPnowZM4YxY8bQq1cv3nzzTcd+vV7P559/jtFoZOjQoUybNo0pU6bw9NNPN943QwjRcpzarf1rrzAOZ4LsI5u0VhgtVGpeCfFKFnrVAl6+EBh74SfV0emMVHwVLY07ODrB5efHdGYmW9p4CSGEaI1qTheXwme15dHq4iNHjkRVz11U5quvLpxWaTQaeeGFF3jhhRfOeUxoaCirV68+73natm3LZ599dsHrCSHEeeWnQv4pUHQQ2+/M9qiLILQD5BzVKo9fdJXnxuhGKXklJCj2VPGOoHP9vVxz+hHigNNKCOEGo8vPT5V08YP5MpMthBCidSmrtGAuqQAgwk+ndUkBSRevg2a1JlsIIZo8+yx25EXgE3Bmu6K0+JRxVVVJzSuhg2IrJBnW0S3XKc5MBiDH69yFKRukSrp4hgTZQgghWpnThVq2mEGvYKrMAtUKeh+toKuoFQmyhRDClRxFzwZU32dv5fX7V1qbrxYmr7iC4nLLmZnsUPcE2Zac4wDkG12fig44gmxJFxdCCNEaOVLFA3xQHOux49ySndZSyXdKCCFcqab12Hax/bQ1yuWFcGxz446rEaTkaT2yuxjc2yNbydde8Mv849xyfnu6eARmTptb7vp5IYQQoiZSWbzhJMgWQghXsVRA6l7t85qCbJ0Ouk/UPj/waeONq5HYg+wza7LdE2Qbi2yVy91V5dQvHKvOG52iYslPd881hBBCiCbKueiZbSZbemTXiQTZQgjhKhn7oLIEjCYI64TFqrLtSDafJKWw7Ug2Fqt6JmX84BdgqfTseF0sNa8EH8qJtGrttdwVZAeVaYGvV2g7t5wfnQ41MBoA35I0KixW91xHCCGEaIKcg+wT2kaZya4Tj1YXF0KIFqVKqvj6/RksWbefNPOZtdcxJiOLJ3RhrF8YFGfD8R+hwwgPDdb1UnJLaG8vemYMBr9Qt1wnrDIDAL9IN7TvstGZ4sB8gmhyyCooIzbY123XEkIIIZqSrELtvUtEgA+kS7p4fchMthBCuIqt6Nlh727cuvonpwAbIN1cyl/f/oWTkaO0DS2syrjWvsteWbyTVlHdxdSSPAIpAiAkxj2F1QAU27rsaCVHKowLIYRoVSRdvOEkyBZCCFexBdkvHQ5BrWG3fduzp7pqnxz8DKwtJxVZa99VpUe2G+SnHwMgVw0gItw9M+WAVkUVe4VxCbKFEEK0Hmeqi3ufCbLdVQelhZIgWwghXKHoNOQcBeCbgnPf7VWBzwq7UGkIgII0SNndSAN0v5S8KuniblqPbU7XvsfpSiQ+Xnq3XANwVBjXemVLGy8hhBCtR1ah9roXYyjUas2gQJAE2XUhQbYQQriCbT12QUAH8gk476HlGEiLsq3FbiFVxksrLJwuLCdB596Z7NKsZAByDFFuOb+DrVd2rMxkCyGEaEVUVXXMZEdZT2sbA6PBy9uDo2p+JMgWQghXsKWKl0T1q9XhxR2u0D45sA7UmpLLm5dUW/uuDm6eya7M1aqcFvnGuOX8DrYgW1uTLTPZQgghWofCskpKK7SlbCGVttd0SRWvMwmyhRDCFWxBdni3YcSYjOc8TEGrMt5pyBTwMkJustb6q5lLzSsliELClHxtQ6h7ZrL1+drasHJ/N7/g29LFI8kly1zk3msJIYQQTYR9FjvAxwufwlRto1QWrzMJsoUQoqGsFkj5CQBdm4tZNKnHeQ9fNKkHemMAdBqtbWgBVcZT8orPVBYPiAaf86fM15dvcYr2ibtf8P0jsSpe6BWVCnOae68lhBBCNBFSWdw1JMgWQoiGyjoE5QVg8IfI7oxLjOFPncOrHabXKbw0vR/jEm2pzt0naf/ub/7rslPySt1e9AzAVKYFvN7hbd12DQB0OiwB0QDo7XfyhRBCiBbOXvQsIsAHzNIju74kyBZCiIY6tVP7N64f6LSK16cLywH4++jOLLumF34GHRarik5XpXd0l3Gg84KsA3D6cGOP2qVSckvooLMH2W7qX11RgsmaB4BfZIJ7rlGFYmvjFVSeSUm5xe3XE0IIITzNaSY7T6uDIkF23UmQLYQQDWVbj038xQAUl1dyKF1bm3ztxW2ZNqANNw3TgsL/bj6Cai905hsMCfYq4807ZTw1r4QER49sN81k29LWClUj4RHR7rlGFXrplS2EEKKVcU4Xt81kS7p4nUmQLYQQDWVr30WbgQD8csqMVdUKnEXbiqDdOKQ93l46kk7msSs598xz7SnjzTzITmmEILs8O1m7lhpOtMnXLdeoSnGqMC5BthBCiJbPHmTH+lmgxPZ+RaqL15kE2UII0RAleZB1UPs8bgAAe0/kAdC3bbDjsMhAI1f3016k/rf5yJnnd5sAKJD6E+SddP943cBqVUkzVyl85qYguyD9GABpRGDyNbjlGk5sbypilBwyCqSNlxBCiJbPvia7rS5H2+BjAqPJgyNqniTIFkKIhkjVqooT0h4CIgBIOqnd+e3TJtjp0Ll/SkBRYNPBTH7PKNA2BkRC28Ha5wc/a4QBu15WYRnBllwClFJURad9L9yg9HQyAHneUSiKcv6DXcE2kx2jZJNhlplsIYQQLZ99JjuGLG2DpIrXiwTZQgjRECed12OrqspPjpnsEKdDO0QEMLaHtpb4/7YcPbOjx5Xav800ZfxUboljFlsJbgte3m65jjVXK8BS5BvrlvNXY+uVLeniQgghWgt7kB1uzdQ2SKp4vUiQLYQQDXFW0bNUcylZBWXodQqJsdXTq+aN6ADAJ0kppJlLtI3dJmr/Ht8KhZluH7KrpeaVkKBzf/surwItnb4iMM5t13Bim8mOIpfM/OLGuaYQQgjhIRarSnaR1h0luNz2ui6VxetFgmwhhKgvVa0SZGvrsZNss9jdYwLx9dZXe0rftiEMTAilwqKy6sdkbWNwG4jtC6hw6Av3j9vFGqPoGYBfsXYNncnNPbLtAqKwKnq8FCtleemNc00hhBDCQ3KLy7FYVRQFfItTtY2SLl4vEmQLIUR9ZR+B0jzwMkJUTwD2ntDWY/dtE3LOp906Qusj/faOE5hLKrSNzbjKeGpeCR3cHWRbKgis0NaHGcLbu+caZ9PpqfCL0j7PT2mcawohhBAeYk8VD/XzRmd/3ZN08XqRIFsIIerLPosd08exDnnvyTygetGzqkZ2jaBrVCCFZZW8vUNbZ0x327rso5u1iuXNSEqVNdmEdXTPRfJT0WGlTPXCFNFI6eIAgVrKuE9R2pn+5kIIIUQL5NQj297xpLGyx1oYCbKFEKK+zkoVL6+0si/FDDi37zqboijcMlxbm73yx2OUVVogvDNEdAdrBfz+lVuH7WppuYW0VTK0B6FuCrLN2ot9qhpGlMnPPdeogVeIFtCHWU+TX1rZaNcVQgghGps9yI4O0EOBpIs3hATZQghRX6d2av/aip4dTM+nrNKKyddAQrj/eZ86qXcsMSYjWQVlfPSTLSXLkTL+qbtG7BZW8yl8lEqseh+3pZXZK4unqOFEm4xuuUZN9LavJ1rJIVMqjAshhGjB7D2yOxoLQLWC3hv8Iz08quZJgmwhhKiP8iLI+E373BZk77UVPevTJviCfZy9vXTMGZYAaO28rFb1TJD9xybt/M1AfmkFkeW2lLKQBNBVL/bmCiVZyQCkEEFkoI9brlEjR6/sHNIlyBaiTixWlW1HsvkkKYVtR7KxWGXJhRBNmX0mO8ErR9sQFAc6CRfrw8vTAxBCiGYpda92lzcwFkxaSnGSbT32+VLFq7puYFue33SYo6eL2Hggg7E9ekJwO8g7rgXa9v7ZTVhq3pn12Lpw91UWLz+djD+Qa4jCoG/EF3zTmV7ZJ/LLGu+6QjRz6/elsWTdftLMZ25OxZiMLJrUg3GJMR4cmRDiXOxBdrzutLZBUsXrTW5NCCFEfdjXY7e52LHJUVm87bkri1cV4OPFzEHtAPjv5iOo0OxSxlMbqX2XNU9LFy/xjXXbNWoUpAXZsUo2GTKTLUStrN+Xxq2rf3IKsAHSzaXcuvon1u9L89DIhBDnYw+yo1Stm4cUPas/CbKFEKI+Tu3W/rWliucWlZOcXQxAn/jgWp9m1tD2eOt17D2Rx+7judBjsrbj96+gsunPnKbkVm3f5aaiZ4ChUFu3XhHYyHfVbeniUeSSaS5u3GsL0QxZrCpL1u2npsRw+7Yl6/ZL6rgQTZB9TXZIha2YqbTvqjcJsoUQoq5UFU46Fz2zp4p3iPDH5Geo9akiA41c3V+bLf3f5iMQNwACoqEsH45tcemw3eFUXgntHe273DSTbbXiV6IF8rqQRg6yA6KwosOgWCjOTW/cawvRDO08llNtBrsqFUgzl7LzWE7jDUoIUSv2mezAMtvrnaSL15sE2UIIUVd5J6AoE3ReENMbqJIq3qZ2qeJV3fynDigKfH0gk8NZRdB9orajGaSMZ+bkE6/Y1m65K8guysRLrcCiKviFNfILvt5AuTEcAKs5pXGvLUQzlFlQu2UVtT1OCNE4yiotmEsqADAW2dp3mSTIri8JsoUQoq7s67Gje4LBF4C9tpnsPrUselZVx4gAxvSIArRK44512Qc/B6uloaN1K0v2UXSKSoVXAPhHuOcieVr18nRCiQgOcM81zsMSqGUaGAplHakQFxIZWLsWe7U9TgjROE4XlgNg0IMu/5S2UdLF602CbCGEqKuz1mNbreqZyuJtgut1ynkjtPXMHyelkB7cH3xDoDgbjm9t6Gjdyph/DICK4A5wgbZl9Wb2TI9sO51JW5ftW5qutVoTQpzTwIRQYkxGzvXXQEGrMj4wIbQxhyWEuAB7qnhn/zKUyhJtowTZ9SZBthBC1JV9Jjt+IABHTxdSUFqJ0aCjW3RgvU7Zr20IA9uHUmFRWbX9FHSdoO04sM4VI3aL8koroaVaAOzO9l3kVQmygxo/yPYJ1dLlosghu6i80a8vRHOi1yksmtSjxn32wHvRpB7odW66KSeEqBd7kN3Nz6xtCIgGLx8Pjqh5kyBbCCHqorIM0n/RPo8fAMDeE3kA9IoLxqsBPZznjegAwFs7TlDcaby28cA6sFrrfU53ysgvpT1aCrVPVGe3Xaci5zigBdlRHpnJtvfKljZeQtTGuMQY7hvfrdr2aJORl2f0kz7ZQjRB9iC7k7dWY0ZmsRtGgmwhhKiLtJ/BUg5+4RDSHjizHrtvPdZjVzWqaySdIwMoLKvkrcwO4B0ABamQurdhY3aTU7klJOi0CqRKmBuD7GwtyM7URRHo4+W265yTLciOUXKkWJMQtWS/IdYlKgBfgx6AF67vKwG2EE2UPchuq8/WNkhl8Qapd5D95ptvMnToUGJjYzl+XHsD9Nxzz/HJJ5+4bHBCCNHkOFLFL3asQbbPZPep53psO51O4Zbh2mz2K9tSsXS6XNtxoGn+XU3NKyHB0b7LfT2y7YXPSv1iUdy17vt8gmxBNtmkm5t+73IhmoLDGYUA9G8XyrDOWoX+Xcm5nhySEOI8sgq1m8ix2DqGSGXxBqlXkP3yyy9z9913c8UVV5CXl4fFolW/DQ4O5rnnnnPl+IQQomlxBNlaqnhxeSWH0vMB6Nu27u27zja5TxzRQUYyC8rY4TNU23hgndabu4nJOp1FpJKnPXBXkK2qGAq11lmWIA+lrgVphc+ilFwyzMWeGYMQzcwfmVqQ3TkygEEdwgDYfjTbk0MSQpyHfSY73JKpbZAgu0HqFWS/8MILvPLKKzzwwAPo9XrH9gEDBvDrr7+6bHBCCNHknFVZ/JdTZqyqVi3XFZWvvb10zBmWAMDSw/Goeh/IOQqZ+xt8bleryPoDgCJDGBhN7rlISS4GixbYeoW0dc81LiQgGhUFH6WSorwMz4xBiGbmjywtyO4UGcBgW5C9OzmHCkvTrDEhRGtnD7JN5bYMNUkXb5B6BdnHjh2jb9++1bb7+PhQVFTU4EEJIUSTlJ8G5pOg6CCuH4CjdVdDU8Wrum5gGwKNXvx22kpW1DBtYxOsMq7LOQJAcWB7913ErKWKZ6lBhIa4KZC/EC9vSn20IKEy55RnxiBEM2L55jEm5LwJQOeoALpFB2LyNVBUbiHr83/Bt497eIRCiLNlFWpBtn+JVtBUZrIbpl5BdkJCAklJSdW2f/nll/ToUXPbBiGEaPbsqeKRPcBHa9W194S2xrChRc+qCjQamDGoHQDvFvbWNjbBINu/MBkAa0gH913Ew+277Cr8tZRxpSDNY2MQTcC3j8PmZTXv27xMgkebvFILf/d6nwU+HxMdZESnU7gkIZQ79GuJ/ekZ0OkvfBIhRKNRVZWsgjJ8KcWrTKqLu0K9gux7772X2267jXfffRdVVdm5cydLly7l/vvv595773X1GIUQomk4az22qqqOomeuWI9d1U1D2uOt1/FqZjdURQ8Z+yD7iEuv0RCqqhJaqs0ye0d1cd+FbEXPUtRwojwYZNvXZRtLUj03BuF5Oj18u7R6oL15mbZdgkcAdra5meUV13CH8h7K2rlQlM08PmSB4QM+NN0IIxZ6eojCVeTGU4tQVG6htMJKrGKrm+ATBL7BHh1Tc1evXig33XQTlZWVLFy4kOLiYqZPn05cXBzPP/881113navHKIQQTcNZ67HTzKVkFpSh1ykkxro2lTkyyMjUfnGs2WXlgE9vepT+pM1mD5vv0uvUV3ZROW3RAs6A2Or9cF3Gli5+So3gEg/0yLYzhMRDMgSWZ1FhsWJoQD900YzZg8Nvl8KhL+D6d+Gn17XHox6Q4NHmj8xCXrBM5dKwbPr++j7s+5D+qpXlFdewIvcKrpTfoZbDfuMJnH/+7TeeRj3gmXGJOnH0yDbkaBskVbzB6v0Xbu7cuRw/fpzMzEzS09M5efIkc+bMceXYhBCi6bBUnOlXbQuy7bPY3WMC8fV2/QzW3OEdUBR4q6CPtqEJpYyn5hbTwda+yxDpvh7ZahNJF/cJ1d5wRCs5ZBZIG69WbcRC8I/U/h4s7yIBdg3sRc+8AiO1DaoVVe/Nmz7XUlxu4dcUswdHJ1xqxELt579qhkfVAFt+L5oFe5Dd2ZinbZBU8Qard+Gzw4cPAxAeHk5kpPZH9PDhwyQnJ7tscEII0WRk/AaVJVoV7TAtqLSvx3Zl0bOqOkYEcHn3KDZY+mNFgZTdYE5xy7XqKis9hSClWBtXSILbrlOZowXZqYQTHuDttutciM5k75WdQ0Z+qcfGIZqI4iqtqPTeEkicxd4ju1PuFsc2xVLOEtPngLTyanGqBtqLgyXAbobsQXYH+0y2VBZvsHoF2bNmzWLr1q3Vtu/YsYNZs2Y1dExCiFbOYlXZdiSbT5JS2HYkG4u1CfSItq/HjhsAOu1Pp72yeN82rl2PXdW8ER3JIoSfrLZ1zwc/d9u16qI4/RAAuV6RYHDfDLNiSxcv8Y3Fy5PppbYgO1rJJlOCbKFWaUNlKT/3mtRWyGJVOZJVyJ36D/EtrlIoMG4Ak3Nf4w79WrYfzfHcAIV7XDLP9omqdeAYLjWampOsAu11LV5nuwEm6eINVq93LHv37mXo0KHVtg8aNKjGquNCCFFb6/elMezJb7j+le3ctSaJ61/ZzrAnv2H9Pg9XdXYUPdNSxcsrrY6UR1dWFj9b/3YhXNw+hC8tWrE1DnzqtmvVhfW01iM736+d+y5SVuiocmoN8vALvq3wWYySQ4ZZguxWbfMyoMqNv7NTZVu5lNwSblE/4G7Dh847irPJGrCABYYPGJD8ivTLbmk+uePM56oV3p3pubGIOrO374q0ZmkbJF28weoVZCuKQkFBQbXtZrMZi8XS4EEJIVqn9fvSuHX1T6SdFcSkm0u5dfVPng20zwqyD6bnU1ZpxeRrICHc362Xnje8I19ZBwKgHv8Rik679Xq14W0+BkCZyX2p4vaiZ/mqH0EhYe67Tm0ExgBgVCow52R4dizCc+xrTVHObKtpTWor9kdWAXrFyhaDbTImohvoDJB7jLBLpvOSci1WayW/nJJ12S3G5mVw4BPt85D22r8H18H6+z02JFE39nTx0Erb61twWw+OpmWoV5D9pz/9iccff9wpoLZYLDz++OMMGzbMZYMTQrQeFqvKknX7qSkx3L5tybr9nkkdL8qGnKPa53H9gDOp4n3aBKMoyjme6BqXdovEGJHAr9b2KKpVq2rsYUHFxwFQwt1X9MzevuuUGuHRomcAePlQbAgFoDz3pGfHIjzHatECauWst0/2QNsqEw2HMwp5rvIaygJs2SdtB0O7IQDojmzklw638FzlNbIuu6VwtK+zNSz682vQZpD2+faX4LsnPTY0UXtZBWXosRBQbp/JlnTxhqpXkL1s2TK++eYbunbtyk033cRNN91E165d2bJlC0899ZSrxyiEaAV2HsupNoNdlYrWMmvnMQ+s5Uuxte4K6wx+WqB1pj92sNsvr9Mp3DK8A+st2my2Zb/nU8Yjy08B4Bvtxh7Z5jOVxaM82L7LrswvWvvELL2yW61R9527mNOIhdr+Vu6PTK3oWRdVy3Yhpjd0HqN9fngjgztoWSkSZLcQVgtcdBVYK7VZ7Jg+cNXLYLBleJ3Y5snRiVrKKiwjilx0qkXLPAmI8vSQmr16Bdk9evTgl19+Ydq0aWRmZlJQUMANN9zAwYMHSUxMdPUYhRCtQGZB7da51vY4l7KnircZ6NhUdSa7MUzuE8tuP1v65dHvoNRzqZbFZeW0VbXU/ZB2Pdx3IcdMtmfbd9lZA7V12V5FHq4PIEQTprXvUoku/l3bENMLOl+ufZ78A4Pb+gGwOzlX1mW3BKPuw7F8ovuVoCgQ2gHGPaZtO/4jZOz32PBE7WQVlBGn2JaimeIcBV5F/XnV94mxsbE89thjrhyLEKIViwysXRBV2+NcyrEeWys+lltUzrHTRUDjBdk+XnouHfYn/tgUSydSsR76Cl3vaY1y7bNlnjpCe6WCClVPYIT712SnqOF0bQJBtj44Dk6BX2m6p4ciPEzlzKrsbUeyGZgQil7n3mUjzYGqqvyRUUg0OfiU54Kih8iLwMtHW+OZd4LORXsJ8TOQW1zBL6fM9G/nvu4MohFUlMDhDdrnPaac2d7vRjj0Jfy+HtbeAnO/AS/PtWEU52a1qpwuLGewI8iWVHFXqPdtiry8PDZs2MDq1at54403nD6EEKKuBiaEEmMycq63qQoQYzIyMCG0MYelpcKd2qN9bit6Zp/F7hDhT7Bf471puP6StnyjaGvdsnZ90GjXPZs5RWvflaaPAX2979VeWN6ZILsppIv7hmmFYMIspykur/TwaISnrN+XhkU9UxuiyXRAaAIyC8ooKKukp16r2UBEV63Fn6JAJ202W3dkI5ckSMp4i3HkGygvhKB4R80SQPs/n/Rv8A2FjF/hu8c9N0ZxXrnF5VisKrH2IFuKnrlEvYLsdevW0bZtW8aPH8/tt9/OXXfd5fiYP3++i4cohGgN9DqFRZNqTj22B96LJvVo/NmirENQXqCtL4voDsDeRk4VtwsyGvDqeSUAppTvoLy4Ua9vV56upYFm+7j3brc178ya7KaQLu4dqrU0iSaHzPwyD49GeIK9A8LZFRqbRAeEJuBwhrYee6h/irYhuteZnY512RsYlKDNXkuQ3QLYa4R0n6QF1lUFRsGk57XPf3wOTmxv1KGJ2rG37+rorbXMlPZdrlGvIHvBggXMnj2bgoIC8vLyyM3NdXzk5HigKJEQokUYlxjDXaOrV6uONhl5eUY/xiXGNP6g7Knicf0cs7Z7T2gvRH3bNn6a44TLx3FKDceolvHHds8UQNPlHAGgKKC9+y5SWYauUEvLNntH4+/jxhnzWlKC4gCIVnJIz5de2a1Nk+6A0ET8kam1d+3jZZvJjqkSZCf8CfTekHeC4WF5gLYuu7xS1mU3W5XlWko4QI8raz6mx5XQe7rWO/ujeVBWvQWw8Cx7+652ettNL0kXd4l6BdkpKSnceeed+Pn5uXo8QohWzlxS4fT42Wm9+eEfl3omwIZq67GtVtWRLt63kWeyAaJMvhwLvxSArJ2eSRn3LdCqBleGdHTfRcxa9fIS1RtDUKT7rlMXJi3IjlFyyDCXeHgworE16Q4ITYRW9AwSKm0tD2N6n9np7Q/ttTav7XN+JNTfm5IKC7+m5DXyKIXLHNsCZWbwj4Q2l5z7uPFPaIFbbjJ89UCjDU/Ujj3IjsGeLi5BtivUK8geO3Ysu3fvdvVYhBCtnKqqbNyf4bStT9sQzxYUOmX7WxevVRY/erqIgtJKjAYd3aIDPTKkhOHXA3BRwY98uOsonySlsO1IdqPNoIWWamnchig39siuUvQs2uTrvuvUha26uJ9Shjkny8ODEedisapsO5Lt8t+LJt0BoYk4nFFIMAWYym3FAaN7Oh/gWJf9NZfY6mtsP9p6b0o0ewc+0f7tPgl0+nMfZzTBlJcBBX56HQ6tb5ThidrRgmyVcEumtkFmsl2iXvl3EyZM4N5772X//v307NkTg8HgtP/KK8+RMiKEEOdxML2AU7kl+Hhp9//KPJ1GWGqGrIPa57aZbHuqeK+4YLz0nmlxEd9zJDkfhxBKLp98tIYtVm22KMZkZNGkHu6d9a8sJ8Ki3QgJjO3mvuvkVQ2yPb8eGwCDkWKvYPwq8yjNPgn09fSIxFnW70tjybr9TjPOrvq9aNIdEJqII1mF9NDZUsVD2mvBVVWdx8BX98HxrQwb4cuX+7R12beN6tToYxUNZKmEA59pn58rVbyqhD/B4Ntg24vw6R3wt23gH+7eMYpaySooI4QCfFTb303b0ijRMPUKsufOnQvAI488Um2foihYLJaGjUo0Oxarys5jOWQWlBIZaJR2JqJe8r98hDv0uRzo/Fd2HMtxDrI3L9MqfY+6r/EGlLIHUCG4HQRoKcuOomdtgxtvHGdZvz+D0xX9mOG1iXG6XY4g2158yZ3r1y05yeixUqT6EBnTzi3XAJxnsptA0TO7YmMUfoV5VOad8vRQxFnsRcnOnrd21e+FvQNC+jlSxhW0+hGN3gGhicgtKud0YTlX6ZO1DVWLntmFddSC79xkRngfAIyOddneXtKX113c8h7t+I9QkqNVD283rHbPufQh+GMTZB2AdXfBtaurF0sTjS6rsEqP7IAorSOAaLB6/UWzWq3n/JAAu/VZvy+NYU9+w/WvbOeuNUnSzkTU2+GsEhYYPuAuw0fOOzYvg2+Xnj8dzR0cqeIXOzYlncgDPLMeG84UX1pv1dLXL9fvRod2M6Ixii/lnToAQDIxRLoz+LXNZJ9qIu277CwBWpCmL5S/b01JYxQla7IdEJoI+3rsi320312nomd2iuKoMh6X9b1jXfYvp/IaaZStj9veox2wFd7sdkXtWzkajDD1f6AzwMHP4Od3GjYG4RJZBWXEKfaiZ1JZ3FXktqFoEPvMwdnFYKSdiairNHMJD+ZewTOV19Dz95eYh1bUK3jXs1qAPeoBGLGwcQflKHqmBdnF5ZUcTM8HPFNZHLTiS9cWraa/cgiz6keEkk9/5XfH/tv1a7m2aLXbii8Vp2rp8+le8ejcGUw00ZlsxfYGxFgif9uaksYqSjYuMYaXZ/Srtt2jHRCaiD8ytSA7UZesbYjuXfOBtiBb+eNraeXlZm57j2a1woF12ufdJ9ftuTG9z2SkfbEQbK0ahedoQbZtJlvWY7tMvXuiFBUVsXnzZk6cOEF5ebnTvjvvvLPBAxNN34VmDhS0mYPLe0S32jv7ova+thU8+zFuDnf36Mrt3y5lns8HGHZYPRNgq2q1IPvXU2asKkQHGT22TjizoBSLqmOB4QN+s7bDpBxnvH4nuyq7cYd+LQsMH7C84hq3FV+ynD4MQJ5vW7ec3yFPW9fZ1IJs7xAtyA4sy0RVVRRJdWwSGrMo2bjEGCrfP/P4nbmDZIkUWtEzX0qJqbQtpYg5R5Ddfhh4GcF8krGJeXyxTyt+dvuljTfW1sCt79FO7oDCDPAxQYcRdR/c0Pnw+1faeT7+G9zwKehk3s9TnNLFpbK4y9QryN67dy9XXHEFxcXFFBUVERoayunTp/Hz8yMyMlKC7FaiLjMHgzuGNd7ARLO0wRZkX94jCnpMRv12KQbFiqozoDR2gA2QcxRKckHv46iQa1+P3deD67EjA43cZZkKwAKDNts/Vr+LXDXAEWC/YJnKO24qvmTI01rzlAa1d8v5AbBaUPNTUYBTagRRJh/3XauO/CK0mwsRajb5JZWY/AwXeIZoDJ4sSiavb5o/sgrprpxAQdXWdQZG1XygwRfa/wn+2MgQy0/ARew+niPrsl3Mre/R7KniXceBVz3+Puv0cNV/4eVhkPw9bP8PDLm97ucRDVZWaSGvuIJYg8xku1q9/pr9/e9/Z9KkSeTk5ODr68v27ds5fvw4/fv35+mnn3b1GEUTJe1MhKvkl1Y40gUv7x4Bq692rHFUrBXamuzGdnKn9m9sH/DyBs5UFvdkkG0vvvSiZSrPV1wFQJyS7RRgx7ix+FJAkZbap4S5sRpwQRqKtZIKVU+OLpRw/6YTZNtnsmOUHDLkb1uTYf+9ONd8nAJu/b0Q8EdGwZnK4jUVPauqs9bKKzx9C6H+3pRWWGVdtou57T2aqlZJFW9AN6HQDjB2qfb5pkcg80D9zyXqLbtQy0aOl3Rxl6tXkJ2UlMSCBQvQ6/Xo9XrKyspo06YNy5Yt4/7773f1GEUTJe1MhKtsPpRFhUWlQ4Q/Hb++xbEeF8Dc62ZtTXZjB9pnpYqrqspeW9GzPm08sx4bnIsvPWf5M5XqmT/jIUohOqzcdVln96SulhViqtD6Qxujurj+/Ha2omdpaijhgb7uXftdVyZ7kJ1NhrnEw4MRducrSmbXmouSuVtRWSWp5lIuUpK1DTUVPauq02gAlBPbGNlOu4m27Yisy3Ylt71HS/1Je402+EOny+oxsir6z4LOY8FSBmvnQmX5BZ8iXEvrkQ3xOtvvn6SLu0y9gmyDweBYhxYVFcWJE9rMhslkcnxeG1u2bGHSpEnExsaiKAoff/yx035VVVm8eDGxsbH4+voycuRIfvvtN6djysrKuOOOOwgPD8ff358rr7ySU6ecW6vk5uYyc+ZMTCYTJpOJmTNnkpeX53TMiRMnmDRpEv7+/oSHh3PnnXdWW2sunMnMgXCVjbZU8aUB78HvXzrty+81S1uT3diBtiPI1vpjp5lLySwoQ69T6BlnOs8T3c9efOk+/0/xUqyOQHu213r+Y3ieT3cfocLihh7jOVqqeLYaSERUtOvPb+coehbRpCqLAxCoFbbyV8rIzs7y8GBEVfbfi/AAb6ftvgZ9qy9K5m5HbJXF+3jVciY7rCOEdgRrJZOCtDoP249JkO1KbnuPtt+WKt5ljJb63xCKAle+oLUBS/8Vvnu8YecTdZZVUIaRMkLQirpKdXHXqVeQ3bdvX3bv1lrbjBo1iocffpi33nqL+fPn07Nnz1qfp6ioiN69e/Piiy/WuH/ZsmU888wzvPjii+zatYvo6Gguv/xyCgoKHMfMnz+fjz76iDVr1vDDDz9QWFjIxIkTnVqJTZ8+naSkJNavX8/69etJSkpi5syZjv0Wi4UJEyZQVFTEDz/8wJo1a/jwww9ZsGBBXb81rYp95uB8DVFk5kBcSIXFyreHMgHoU2xL0Y7pQxFVgqsRC7VA29pILQLLiyDDdkPPNpNtn8XuHhOIr3cjtxKrwbjsN7nFsoYTvf/O51ft43S7K7Tt+l3ck34Pz3+yzeXXVLP/AOCYGkNscAPfXJ2PrdpsCk2r6BkA3n4U6YMAKMk+eYGDRWMblxjDihsvdtqmqipDOoV7aEStw+GMQryopBP29l3nKHpWla3KeL8y7YbmnuO5lFVKG1hXqZrdcfa7sHq3nFNV2P+J9nlDUsWrCoyCSc9rn//4HJzY4ZrzilpxKnrmHQjGYI+OpyWpV5D92GOPEROj3RH+17/+RVhYGLfeeiuZmZn83//9X63PM378eB599FGmTp1abZ+qqjz33HM88MADTJ06lcTERF5//XWKi4t5++23ATCbzaxYsYLly5czevRo+vbty+rVq/n111/5+uuvAThw4ADr16/n1VdfZfDgwQwePJhXXnmFzz77jEOHDgGwYcMG9u/fz+rVq+nbty+jR49m+fLlvPLKK+Tn59fnW9RqjEuM0QpVnSXQ6CUzB6JWdhzNoaC0kil+v+BrPgyKHq78N5az/zyNWHim7Ye7pSaBatFmLYPiAEg6qa3H7uOh/thO7H3DRz1A26sWM7lPHOE3vQN9tZuH/XR/cE3STXy7datLL1uWrrUKO2aNJs6dQXbV9l1NbSYbKPKJBKAi99QFjhSeYA8aooOMdI4MoLTSyidJqR4eVcv2R1YhnZUUDFRoFadD2l/4SZ21lPGgU5sJ8zPY1mWb3TvQVsae3XH239F6t5zL2Ae5x7Tq8LabJC7R40rofT2oVvjoFigrdN25xXk5te8KbqNlFwiXqFeQPWDAAEaNGgVAREQEX3zxBfn5+fz000/07l2Lu5e1cOzYMdLT0xkz5swvsY+PDyNGjGCr7Y3jnj17qKiocDomNjaWxMRExzHbtm3DZDJxySWXOI4ZNGgQJpPJ6ZjExERiY2Mdx4wdO5aysjL27NlzzjGWlZWRn5/v9NEaJZ8uAuDOSztx7QBtLUe7UD8JsEWtbNyfjh+lLNav1DYMvq12syDudMo2ox5/seMFxz6T3deD67EdrJaa25pNfhEGzqNUH0B7XQa9v5rGqV++c9llSzO0G5OZ3nEYDW6czbfNZJ9qYu277Mr9bH/b8lM8OxBxXooC1w/UqsG/veMEqnq+vCvREIczCrnI0R+7Z+3eqLcbBl6+KAWpTI3Xguvtsi7b5cYlxvDDP5z7o/3wj0vr9x7Nnire8TLwCXDB6KoY/6RWdCs3GTY84Npzi3PKKigjVrH93kmquEs12V4J6enpgLbmu6qoqCjHvvT0dLy9vQkJCTnvMZGRkdXOHxkZ6XTM2dcJCQnB29vbcUxNHn/8ccc6b5PJRJs2ra9YwMmcYg5nFqLXKcwZ1oF7x3VFp8C+1HxO5hR7eniiiVNVla8PZLLA632CKzIhuB2M/KenhwWntOUw9lTxCouVX1O0N4F9PFhZ3GHUfefuG37FMrzu3MMRQxdClQIi1v6Zkl8+cs11bWuyC/zbu+Z852IrfHZKjWiSM9lqkHZD1lB07tcH0TRM7ReHt5eOA2n5MkvqRkeyCmtf9MzOYISE4QCM9/kVkHXZ7nJ2Sni9l/HZW3f1cFGqeFVGE0z5j/b5nte0PtrC7ZxmsqWyuEvVOsju27cv/fr1q9WHKyln3Q1VVbXatrOdfUxNx9fnmLPdd999mM1mx8fJk61vfd53v2uFf/q3DcHkZyA8wIeL22tFNL76Td6AivPbn5ZPmHkfs/TrtQ0TnwFvf88OSlWrVRY/mFZAWaUVk6+BhDAPj68WvEzRBN36Fd8r/fGhHJ+1N6Fu+0+Dz2vMPwZAZXCHBp/rnFQVzFoadooaTlQTnMn2Ctbu9geUZnh4JOJCgv28mdBTm7F7Z2ftC7OK2iutsHA8u6jKTHYtg2xwtPLqVrgdgN3Jsi67yco6BFkHQWeALuPcc42E4TDoNu3zT26HIrnp4m5Oa7KlsrhLedX2wClTprhxGNVFR2uVa9PT0x3rvwEyMzMds87R0dGUl5eTm5vrNJudmZnJkCFDHMdkZFR/I5SVleV0nh07nAst5ObmUlFRUW2GuyofHx98fJpO/1ZP+O6gVrBqZLcIx7bxidHsOJbDl/vSuflPbnwzLpq9TftSeMLwKnpFhZ5/drR18SjzSSjMAJ2XI219b5X12E2qndR5RISGcuKGNby18lb+ov8avrpP+9rGPAq6eqR6F+dgrNBmAvXhbuyRXXQaKkuwqgppaliTTBf3C9dSkE2VWVitarP5mWitrh/Ylo/2pvDpz6k8MKE7gUaDp4fUoiRnF6GqVi6y98iu7Uw2OIJs3/TdtPevILnIwM8nzdKVpCmyp4p3GAm+wdV2W6wqO4/lkFlQSmSgVrW8XjPmlz0MRzZpAf1nd8G0N2WdsBvJTLb71DrIXrRokTvHUU1CQgLR0dFs3LiRvn37AlBeXs7mzZt58sknAejfvz8Gg4GNGzcybdo0ANLS0ti3bx/LlmmtfgYPHozZbGbnzp0MHDgQgB07dmA2mx2B+ODBg1m6dClpaWmOgH7Dhg34+PjQv3//Rv26m5PSCgs/HtF+MUd1PZOSPy4xhsXr9rPneC4Z+aVNciZKNA3+e/+PHrrjlBuC8B7bRFp32GexoxLB2w+AJEd/7GDPjKme+idE8svYp3j8y2XcZ3gHtv9HC7SnvlL31iu2yuIpahhRYW5cl27WZhszCaYCryaZLh4QoQXZ0WSTXVRORGDrvtna1F3cPoSOEf4cySri059T+csl7Tw9pBblj8xC2ikZ+FOqFcQK71r7J4e0h/AuKKd/Z0bkMR491oXtR7MlyG6KDtiqiteQKr5+XxpL1u0nzVzq2BZjMrJoUo+6r/02GGHq/8Erl8GBdfDzGuhzfUNGLs5BVVUtyNZJkO0OHl2TXVhYSFJSEklJSYBW7CwpKYkTJ06gKArz58/nscce46OPPmLfvn3MmjULPz8/pk+fDmh9uefMmcOCBQvYtGkTe/fuZcaMGfTs2ZPRo7UZse7duzNu3Djmzp3L9u3b2b59O3PnzmXixIl07aq9EIwZM4YePXowc+ZM9u7dy6ZNm7jnnnuYO3cuQUFBHvneNAfbj2ZTWmElxmSkW3SgY3u0yUhf27pVSRkX55J+/CDTi98CoPzSf0FAxAWe0UjOWo8NsPdkHoDj57o5mTU0gZSLbuGO8tspx0t70/L6lXVPw7O377JGu7l915nK4iZfg3sLrNWT3pYuHq3kkJFfeoGjhacpiuIogCYp4653OKOQixTbLHZkD9DXev5GY6tSPVKXBGjvLUQTk3NM62Ot6KHrBKdd6/elcevqn5wCbIB0cym3rv6J9fvS6n69mN5n6rN8udDxuiBcq6jcQnlFOdHkaBskXdyl6hVkWywWnn76aQYOHEh0dDShoaFOH7W1e/du+vbt65ipvvvuu+nbty8PP/wwAAsXLmT+/Pn87W9/Y8CAAaSkpLBhwwYCA88EdM8++yxTpkxh2rRpDB06FD8/P9atW4def+aN2VtvvUXPnj0ZM2YMY8aMoVevXrz55puO/Xq9ns8//xyj0cjQoUOZNm0aU6ZM4emnn67Pt6fV+O6Qth57ZNfIamvXxydq6f5f/FqPP66i5VNVLJ/+HV+lnH3evQgYdKOnR3TGSVtl8TZa5ktuUTnHbBX0m9tMNmgBxpNX9+JA+BhmlN1HoRKgVU9fMRqyj9T+RLYgO1mNJj6kkdp3NdUsGFvhsyClhNPZpz08GFEbV/eLx1uvY19KPr9KATSX+iOrSmXxuqSK29mWCbXP3Qqo0i+7KbIXPGs/FPzDHJstVpUl6/ZTU91++7Yl6/Zjsdajsv/Q+RA/EMry4eNbwWqt+znEeWUVlBFJHl6KVVtrHxDt6SG1KPUKspcsWcIzzzzDtGnTMJvN3H333UydOhWdTsfixYtrfZ6RI0eiqmq1j9deew3Q3hwuXryYtLQ0SktL2bx5M4mJiU7nMBqNvPDCC2RnZ1NcXMy6deuqVfkODQ1l9erVjjZbq1evJjg42OmYtm3b8tlnn1FcXEx2djYvvPBCq19vfT6qqvKNbT32qK7VZyDH29KDdh7LIbuwrFHHJpqBXz8gLnsrZaqB3/otaTrrrSrLIP0X7fP4AQAkncoDoEO4P8F+3h4aWMP4+3jx3xn9+c2QyOTSReT5xGiVwldcDid31eocltO2mWw1xs0z2dpMY4oaTlQTTBUHwCeAIp3WvqYwU2ZGm4MQf2/G99TeQL4ts9ku9UdGlcridSl6ZtduCBj88SrOZKh/CmWVVscSHdFE2Ndj95jstHnnsZxqM9hVqUCauZSdx3Lqfk29F1z1XzD4Q/L3sOPlup9DnJe2HlubMCMoFnRNtulUs1Sv7+Zbb73FK6+8wj333IOXlxfXX389r776Kg8//DDbt2939RhFE3T0dBEncorx1usY2im82v42oX4kxgVhVWHDfqnAK6oozsG6XksD+3flVQwccMkFntCI0n4BSzn4hUFIAnCmP3aTaN3VAJ0iA1h2TW+OqHFcbn4Ic8hFUJwNr0/UUsgvwJJ1GIAUXRwhfm4sHFW1fVdQ073RWeCt1aEoy5E0xubCnjL+aVIKhWWVHh5Ny1BpsXLsdNWZ7N51P4mXD3QYAcC1wYcA2H60HkGZcA/zKUjZDSjQbZLTrsyC2i2Xeeqrg3z1WzqlFXXMUAjrCGMf1T7/eglkHqjb88V5ORU9C27r2cG0QPUKstPT0+nZsycAAQEBmM1a6tXEiRP5/PPPXTc60WR9a5vFvqRDKP4+Na+/ss9mf7lP1mWLKjY8hK74NIes8WwKvZaE8CbUEqtq6y7b7PreE1pl8b5t3Vjsq5FM6BXDnGEJZBHM5Tn/oLjdaKgshXdnwvb/nvuJViv6XK19V3FQ+wu2UWyQquniJjfOmDdQqa82K6qaU9x/sW8fh83Lat63eZm2X1zQJQmhdAj3p6jcwrqfUz09nBbhZG4JIZZswpV8VEWnrcmuD1uV8UGWnwBZl92k2G/Cth0Egc4ddyIDa5dt9NOJPOa9uYf+/9rIXWv2sqEuAXf/myC0A1jKYO1cqCx33i9/A+stq6CUOMX2uyZFz1yuXkF2fHw8aWnaWttOnTqxYcMGAHbt2iUp1q1E1fXY5zLOti576x+nMRdXNMq4RBN3dDMkrcaKwn0VNzPqonhPj8iZI8jWUsWtVpWf7UXPmuF67Jr8c3w3Lm4fQmaZF1fn3k5F31mACuv/Aevvr3ndW0EaeksJFaoefWh79w7QMZPdhNdkA5YA7SaivrARgjWdHr5divW7J9l2JJtPklLYdiQb63dPwrdL69eSrQYWq+p0/nqto2zCpACa6x3OKHDMYivhXR0dGeqskxZkR5h/JohCfjqRW/dZT+Ee9lTx7tWrig9MCCXmPMt6FCAswJvZQ9sTazJSVG7hk6RUbnlzDwMe/Zr5a/aycX/G+f+vFQW6TdQ+T/8VNj9xZt/mZS79G9jaOPXINjWx92MtQL2C7KuuuopNmzYBcNddd/HQQw/RuXNnbrjhBmbPnu3SAYqmp7Cskh3HtDtfNa3HtusYEUCXqAAqrSpfH5CU8VavogQ+mw/Ae+rl/KR24fIe5+5D7xGOIFsrenb0dBH5pZUYDTq6Vqmg35wZ9DpenN6P8AAfDmQWs7BkFupli7Wd21+C92/U/q+qshU9O6lGEB3ivu+D0VoEZVpmlDaT3XRv2uqC4wAwljTC37YRCznc40503z3G1pULuWtNEltXLkT33WMc7nEnjFjY4Eus35fGsCe/4fpXtnPXmiSuf2U7w578pn6VgZuwq/trBdB+OWVmX4oUQGuoP7KqrMeuT9Ezu+A2ENEdRbUywe8gZZVWxw1O4UEFGXBim/Z590nVdut1Cosm1Zy9YM93WjolkYcnXcQP/7iUD28dwpxhCcSYjBSWVfJxUipz39jNgEe/5u/vJvH1/oyai96N+RdcNBUA9ftn2LLpM058tFgLsEc94JK/ga2Rc7q4zGS7Wr2C7CeeeIL7778fgGuuuYYffviBW2+9lffff58nnnjiAs8Wzd2Pf5ymwqLSPsyPDhEB5z12nKSMC7stT0POUcp8I1laNo2IQB/6xAd7elRn5KfZUpUViOsHnEkV7xUXjEHfcgqCRAUZeXF6X/Q6hY+SUlltmApXrwC9t1ZF9o3Jzi2+ss8UPYsLdt/scmiFFrDmEUgJRqKa8Ey2T4j2hiSo3P1B9vp9aYz5aRDPVkxlgeEDDvvMZIHhA56puIYxPw1qcCDslhY8TVSovzdjbVlWa3bJbHZD/ZFRyEU6W/uu+hQ9q6qzVmV8SsA+QNZlNwkH1wEqxPU/ZxDWJarmG6/RJiMvz+jneB+o0yn0bxfCQxN78KMt4J49NIHoIC3g/mhvCje/sZsB//qau99NYtMB54B7fffH+F1pj4LKn7b8hbY/P8v/6a9jfdhMl3/ZrYVTkC3p4i5Xr3eN2dln3nydPHmSzz//nLS0tGoVu0XL9N0hbT32+VLF7eytvLYczpJCM61Zxn748TkA1kbdRQF+jO4eiU7XRKqKg62wC9qaQh/tTUOSbSaluRc9q8mgDmH8Y1xXAB5Z9xtJwaNh5kdgNMHJHfBCf7AVqCPnKADH1GjiQnzdtgYutFL723LSqrWIacrp4gGR7QAIs2ZTXum+1jJVW+SkoX1fDIqFMtWLf1u0mZ16t8jBzS14mqjrB2pvJj/em0pxubwuNYTLZrLB0S+7V+luFKxsOyrt8TzuPKnidit+0Op1XNo1gnfmDuL56/rwztxB/PCPSx0B9tnsAffDk3qw9Z+X8uGtg7lpaHuig4wUlFWydm8Kc17XZrjvfi+Jp746yK2rf+KakgdQVS2DvELV83jRlS3uRmBjyiooJVaCbLepU5D966+/0r59eyIjI+nWrRtJSUlcfPHFPPvss/zf//0fl156KR9//LGbhiqaAlVV+fagth57VLcLB9ndogNpH+ZHeaXVUSxNtDJWK6y7C6yVqF2v4N+p3QCacKr4AMcme2XxlrIe+2xz/9SBcRdFU2FR+dvqPeREDIQ5G8HUFkpzYfvL2v9dlZnsAcdfddsaOG9Va/eXokbgrdcR6t90W6YFRmpre2OUbLLc2Kawaoucv+rPVIH3USq5Q7+2YS1ycHMLniZqcIcw2of5UVhWyWc/y5vz+lJVlazMdNrobC2Aons27IRtBoF3IL7lOSQqyfx0Ik/WZXtScQ4k/6B93qPmIDunqJwP9pwCYO7wjgzuGMbkPnEM7hiGvpY30bWAO5RFky5i6z8v5YO/DmbWkPZEBflQUFrJ2p9SeOnbI6jAjfqvHB0/DYqF2/VrgZZ3I7CxlBVk46/YXr9kTbbL1SnIXrhwIT179mTz5s2MHDmSiRMncsUVV2A2m8nNzWXevHmSLt7CHUgrID2/FF+DnksSQi94vKIojjuZ6yVlvHXasxJO7QTvAA72W0Rafhl+3nqGdKze+s2jTtlmsuMvBqC4vJJDGQVAy5zJBu33c9mfe5EQ7k+quZS71uzFEtYFbt54phXPntdQj34LQG/lD9okPev2NXCn1HAig3zcW8W8gZQgbU22SSkmK9t9lZDtLXIW6N+lg+7M39BD1ngWGD7gDtubzNq20jnX+V11XHNQtQCa9Myuv1RzKe0rtSwXNbgt+DawA4OXt6OV1wTffZRXWh3ZRMIDDn4OqgWiemrVvWuwevtxyiqtJMYFMajDhd8TXohOpzCgfSiLr7yIbf+8jPf/OpixF2k35O/Qr2WB4QNWVI7DqmqvDQsMH3C7fm2LuxHYGKxWFd9irXCnxS8CDE03c6y5qlOQvWvXLpYuXcqwYcN4+umnSU1N5W9/+xs6nQ6dTscdd9zBwYMH3TVW0QR8a0sVH9opDKNBX6vWMvaU8W8PZcpd6dYmP1XrbQlw2SK+PK69MA7vHKH9/DQVlkpI0VrH2IPsX0+ZsVhVooOMxDThVlINFWQ08N8Z/fE16Pn+8Gme//p3CIyGWV840jeVSu1O9zSvLVhG3O/2IjMpTbyyOADGIIoUrZJyfvpxt10mMtDIHfq13GH4BIA8VWt5115J56WKKx2Bdm1b6dR0flce11xc3T8eg14h6WQe+1PzPT2cZumPzDOp4kp9+mPXxPY3Z6z3L4C08vKoA7ZU8R6Ta9xdWmHhjW3JgJYV5eqbojqdwsXtQ7miZ4wjwF5ecQ3/qryB76zaz9seS2fH38CWdCOwMeQWlxOtalkoihQ9c4s6Bdk5OTlER2sBU0BAAP7+/oSGnrlzFRISQkFBgWtHKJqUauuxba1lqgXaVdoq9Io3ERfsS3G5hc2/ZzXyiIVHfbkQyvIhbgBcPIeNB7SfnyaXKp6xDypLwMcE4V0A2Gtv3dVCZ7Gr6hodyONTtVTPf3/zB98czACfALjuHeg/y3FcOV7oR/3D7eNJUcOJOk9bmKbCbNC6K5Rku282dGBCKCajjkNWLZXvLctl7LO2x0ep5DQmnqm4BpNRx8BaZBad6/wxJiPne3scYzLW+/xNVXiAD2MukgJoDVG1fRfRLgqyO2nFz9qXHiCE/P9n77zD46iuPvzOFvViVUtylbvl3huugLHpGIMNMb2FJE4AJxAghPIRSJyYJJgaIKFjwBiwKS6AbXDHvXe5yZLVrN62zPfH7K66LVlbR+d9Hj3anZmdc89KOzvn3nN+R4JsX1FeAEe0DKbGUsW/3J5BbkkVydEhXN6v4dprd5AYGYJRsTPPMp35Dh2Kd23aZEx3QwYvWq7FqNh1NxHoaWq27zJIkO0Rmi18Vnemyp/T+QT3UlBWxZbjmtqyqx57/MNa6mjNQNsZYDtSShVF4TLHzYykjLci9n0F+5aAwQRX/ZuTBZXsyyzCaFCY1IR6fq/iqsceAgbtsrjdUY89UKf12HW5dlA7bh2liXk9sGA7J/PLwGiCyBRAE5kJwtp45oobyVAT/H8lGygL1iaLrAUZHrNhNCh0vPpx2ivaBOVS23A+tk0A4EbjKubbrqP9dc80uf6xofM7W/A0doY/X5l2wef3Z252pIx/vjWD8irJsmouR9wpeuYkuh207aspSBt2SV22rzi4DOwWiO8JCT3r7bbbVd74SRM8u2NMZ4923xieGsvH4bN4yRFgA6y29yfd3pYopYwzaPv1NhHoaURZ3PM0+1Nx++23M23aNKZNm0ZFRQW//OUvXc+lR7a++fFQLnYVeraNpF2bGumz4x+GCY9pgfUzcQ32LZzaTwuyv9t3xqNKvIKfUFEE3/xBezx6NiT1dfVKH9ophhh/E7SqU4+tqipbHe27BnVsYZ1hAPH4Fb0Z2KENRRVWfvn+Fiw//BVWPcfPqffTvfI9vo6/s+HMFTdzSo0nOQBWsi3h2uqNUnzao3Ymh+wjXKkkQ41jl5rKl7bRVKpmehtO8sHlQY0q+DaVKX2TeXXWYJIaec/1Kic0qkscneLCKK608tVOz/4N9cjxrFy6Ko73raXtu2riWM2eEryLKqvdJUApeBFXqnjDq9irD+ZwOLuEiGATMx2TVZ6ioYlAFQPvOVazbzUu58kre+tyItCT5BRXkqI4MkUkyPYIzQqyb7vtNhITE4mOjiY6OppZs2aRkpLiep6YmMitt97qqbEKPmaVQx18Qq+E+js7DNd+261ar906NZtDOsaQEKkpRa49Im05dM8Pz0LxaYhJhfFaevGKvVqQ7Xep4lBjJVsLsjMLK8gursRoUOjXLtqHA/MuwSYjr/xiMLHhQUw68zbmH5/HPuEx3lSmA7As7lbszgk1DwXa5UoohYT7dY9sF1HaKn9wmWcVqq17tBve5bahPD+tH3+4ZgTL7Nr/as/TX7jFxpS+yax5ZBITe2rX9xuHtmf2pG4APPfNvsBYTWyCRkhNDAaFmcO0AOEjEUBrFqqqYszZi1FRsYbGazoO7sJRlz3OsAMDdkkZbwnN/EwAUFkCh7/THjfSuuuNnzTBuxnDOhAVYnbHSM9JQxOBC23jKFWD6Wk4xZSIwx4fg96otZIt6eIewdScg//3v/95ahyCn2Ozq6xy1FNPbKg/trOfLoCtSrt41wi0DQaFy/q05f0NJ1i6K6vhcwj64NRm2PQf7fGV/wRzKIVlFjY6lD/9Lsguy4f8I9rjdkOA6v7YvZIiCQ3yI4E2L5DSJpQXZw5i8zsfMs8ynXdXD6KwXJsgWbzjND8fG8q7ab+lu90zQVcmCYDS6KqqP2GO0W5MIio92J7QZsW+/1sAfg4dw8vDOqIoCi/vvR5OriPs4BdQ9Q8ICmuxKaNBcU1udIwN486LUvl08ylOnS3nrTXp/Hpitxbb8CgOjZCEogpgSPX2miVMdZg+pD3zlh9g64kC9mcV0SspynvjDWDySqvoVHUYzKAk9wd3lg52GA7BUURUFtJfOcqGo37WiSKQcOrmANCnevs5PhMcXgHWCm2SvIG2bHtOF7LuSB5Gg8IdYzp7ZNgNMaVvMpemJbEpPZ/s4gq+2pHJ54cuYpbpe+2eI3Wc18aiByRd3PN4rohC0BU7TxWQX1pFZIiJIZ3qpM+u+DPk1FCVTx7Q4ErXVEdK4/K9WVhtkjKuS2wWWPxbQIUBN0HXiYCmLG+zq/RoG0GnuHDfjrEuzlXsuG4QptV0bXOlirfx0aB8y0Xd4znaZzbzbdMoLLfU2pdVWMHkrSNZmnC7R2wft8UBBERNdliCtgraxupBQccT6wiqOku+GkFc73EuHZRRl1zHCXsCofZSird95hHTYUEm/jhV62v/8srDZBf5uXqvQyOk7ZZ5rtZmdTVC6pIQGcxkR4ugBZtOenO0Ac2hMyWkOeqxjSkD3Xtyo9n13THBuJ1tJ6Uu+4KpoZvzW+NnjDXs1D4b5/hMsFfrZEDa1Q1OnrzpqMW+vF8y7WNaPrnXHIwGxdWL+8mr0/hAvQwAdf/XUCCf3+ZQUFREvOLorCA9sj2CBNlCk1h5QLuJHNc9obbAxeq5sPbf2uMQR1pt0WmY8Gi9QHtEaiwxYWbO1ljVFHTGuvmQvQdCY2HyX1ybAyNVfLhrk7MGcFCH1lOPXRObXWVT+tkG9znrc59esheb3f3Vuift2qpVYlSw28/tbqLbakJxiWoeZVVWj9hQ9y0BYIVtKBPTUlzbB3WM5acI7QazaJ3nssyuHpDCwA5tKKuy8fdlBzxmx22Mf5gzgx9kjnkhayqnnzuYcOBMGV+09ZQIoDWRwzkl9DE4Wte5S/SsJo6U8UvNO6Uuu6U4Au2HzJ/xXtBfmWNe2PhnwlIOB5drj3vXb92VWVjOkh1aHf49Y1M9Oerz0j4mjP6DRrHOloai2mHzf306nkBDdUxKWIxhLe9xLzSIBNlCk6hu3VWnHtturf5wXvKU1gKpNAe6TNQu4jVSSk1GgyvI+na3Z2sYBR+QdwRW/017POV5CNdWJCutNtf/z6VpbqzbcxeuIHsoABabnV0ZhQAMbKUr2ZvS88k6x6qlila3vskDk2UZajyx4UEEm/w/TT8sXkuxi1FKyM5reFKiRagq1j1akL1SGcbortVps4qiEDvmduyqQrvCLVhyPFOTaDAo/NkhOrRw6yl2nSr0iB13UtxZC9CM2EExwJgHznn8Rd3iaR8TSlGFlW92yXdTUziadZZeimPl0J2iZ04c4me91SPEUSh12S2lbkDd2KTTkR/AUgpR7aHd4Hq73153DKtdZXhqLP3bt3H/OJvJ/RO68q5dm2y0bn4bLH6ebeNHmEu0rhhVEe3cW+4huJAgWzgv2cUV7HTcWI2vG2R3vgjKz0JQJPSfAd0v1bYf+Noxe/porcOnOnopLttzBrsHVsEEH6Gq8NWDWh1X6njtf8HB+iN5lFbZSIwMpr+/iYjZbXBqi/bYIXq2P7OYSqud6FAzqf6W2u4lsoubdqPS1OOaQ4YaHxiiZ4AS0oYytLEWnDnufgOnt2IuzaREDYEuEwkx1554mDRiMOsNWn/i4yted799B4M7xnDtwBRUFZ75ag+q6t/X7ph9H1Q/Ue3wygioKm30eINB4abhIoDWHMoz9xGsWLCYwrXaXXcTmQRJ/TGgMs6wk/USZLeMuuJnjYmh7XWoive+ql7gVVJp5cON2ufjnrFd3D3CC6JzfDhhfa8gQ43DVJEPexb5ekgBQ2i5Y0JRUsU9hgTZwnlZ7UgV79cumsTIOje/W97Wfve/AYLCodfl2vP93zR4rjFd44kMMZFTXMmWEx5Y+RF8w44FkL4aTCGa2FmNL2dnqvglaW0x+FuLjdyDUFUM5jBI1Fbrtp3U/i8Hdmjjf+P1EvU+5y08rjlkqPEkBUCqOACKwlmTNvFYmuOBINuRKr7KPpDxfeoL0wSbjOR31ya0Yg8vBJtnUtYBHpnaixCzgZ+PneVrf17tXT2XuH3vA1BJEBjMkH8UXhquTQg3wg1D2mM0KGw+fpaDZ4q9NdqAJTR3NwCVcX3A4KFbScek/QTjDrZLv+wLx6lLUJOGOkRYq+CAJrJIWv1U8U9+PklxhZUu8eFc3Mt/xGvvn9SL963a/0rF2le1SX/hnFRabcRYsgAwxXTy8Wj0iwTZwnlZ5QiyJ9a9qJbmum4CGXK79rvbpdpNTd4hyD1U71xBJgOX9HakjO/K8tSQBW9SmgfLHtMej38E4rq6dtntqqs/tt/UY9dsaeJMFU8ZDEYTrJ5L2y3/BLQgu7UyPDWW5OgQGptiUIDk6BCGp8a2zFAD7WVOqfGasnhj7WX8jJIg7bpYlX/KvSdWVVfrrmW2oUxq5KZ2+NRZ5KuRxNrzOb7xywuz1YQ2P8nRofxyvPbZfv6b/f4Z8DiCibzeswAoIBJu/xpMwVB0Cl4aBkUNTxAkRoVwSW/tPZbV7HNTVGGhQ6VWnmBuP9Bzhhx12ROMO7HarGyVifnm05iKuEMMrdbnPn01VBZCRFvoMKLW4Vabnf+u1QTP7rwo1a8moLu3jSSnxwwqVTMhOTu1DifCOckrqXIpi5vjJMj2FBJkC+fEYrPzo6t1V51U8R0fae26UgZpiuIAIVGQOlZ7fKDh1ewpfbW63GV7svw+7VBoAssfh/J8SOwDo2fX2rUro5AzRZWEBxkZ3TXORwOsg7Olyeq5cHKTtq39UNfNSEZRFdB6lcVBU3B90lGHW/dWyvn8yavSMLb0Rsvxt0jJWQNApWoil2iuKnhf+xsZ/L8uuzJMu56pRRnuPXHOAUxnj1CpmjjTdnyjKfRtY6LYHjsFgOL1FyiAVvMzURPnDbrj73DfuK4kR4eQUVDOm44+uX6F3QYTH+dsr5uqt3UcAfeshKAITS/kv5dp+hEN4EwZX7Q1wz8nEfyEw9kl9DEcAyC4wyDPGWo3FEKiiaaEgcphNhwVwdRm4/hMNFiTXUc3x6Uq3uvKetkJS/dkcepsOTFhZq4f7H/pxbdfMoTFtlEAlPz0io9H4/9o7bu0EgyD9Mj2GBJkC+dky/GzFFdaiQ0Pqi1yoaqw5R3t8eDbar+o57lTxsf3SCAsyEhGQbmr1lsIUI6s1CZbUODqF7XWKzVwpoqP75ngP0JWNVqauFLjCk/Byr9QPuaPPFN0JdC6V7JB60n66qzB9fpVJ0WH8OqswUxxtORrEY6/RYfcnwAtVfw3xi8YfeL18ypC+wu2SE3x21Ti5hTq/VqW0Fp7X0b36XzOQ9uOvxuAnkXrOJt9ASvqNT4Tk868TTBVDD3+Zj1l7tAgo6ul1yurjnDG31p6TXy04f+Ztn3g/rVa7XDBcfjvFMjaVe+wsd0TaNcmlMJyi4hznoPDWUX0VhzlEZ4QPXNiNEHXiwGtlZeIn10AjX0moLZujs0K+7/WHqddXeswVVV5w9G265ZRnQkN8pPv8hr0bRfN3g4zAQg5tBiKz/h4RP5NTnEl7XD0yJYg22NIkC2ck5VOVfEeCbVXrY6v01LCzeHQb3rtF/Wcqv0+uRFK6vePDTEbmdhTS8v7drekjAcMdVNKq8rgqwe0x+2GwKEV9V7it627xj8MY+dAmeNLZrfW0mRDx7sA6BIfTpuwIB8O0D+Y0jeZNY9M4qN7RvLvmQP56J6RrHlkknsCbCfjH+ZkvJb90lk5wxzzQtL7/S4gAmwAYxttVSeswr03dfa9WpC91D6Mi3ud+/OTNmAEB0w9MCs29i79z4UZdATak7PfYn/w7Yw8/lqDEx1XD0hhUEetpdfcpQHQ0stJTGe4cxm07Qel2fC/K+D4+lqHGA0KM4dpN5wfbZSeu42Re+ogUUo5ViUIEnp61pijLnuiYbvUZXuS42u1jLTQWOh0Ua1dm4+fZcfJAoJMBm4d5b+pxVdOuZwt9u6YVCuFa9/w9XD8mtziMpIUR2ZItATZnkKCbOGcrNqvBckT6tYDOgXP+k2H4Mja+6LbO9LHVTi4tMHzOlPGl+7OlJTxQKFuSumPc+HsMe3vn7G5XmrvibwyDpwpxmhQXJMqfkWPqdWPjUEw/mFXL9bW2rqrIYwGhVFd47hmYDtGdY1reYp4A+zsdj+qCgZFpVI1UTnm92634SlC4rQblKiqbPedtOAEhqwd2FSFHWGj6Nsu6pyHK4pCSZqWIt0ufSFW6wUGIuMfxo4BRXH0Q2/bp0FbT16lbf9s6yl2niq4MFu+ILIt3P4VdByl1Z6+dy0cXFbrkBuGdsBoUNh0LJ/D2T4QQGtCfbyvUTN3AlAY2a1e9pLbcbTy6mc4RrQtn63HpS7bI7hSxa/QMghq8MaPWmnItEHtiI/wX1HKIZ1i2BA/DQBly//AZvHxiPyXsrwMzIoNG0ZNyV/wCBJkC42SUVDOgTPFGBQY1726Pytl+dUX5CG3Nfzinldovxupy57YK5Egk4FjeWXszxIl14CgZpr113Ng7Yva9sriBle8lu/VshSGd471z1Xhre9UP7ZVweq5bD9ZAMCgVp4q7m1SctegKFpNdrBipdPul309pCYTlait7MTbc903YehI2/xZ7cXg3t1RmtDDtM/kOygnmM5qBj+vaXhy87ysnosBO+Covf/kNji9rd5hAzu0YdqgdgA8s2RvYE2UhraBWYug+2Vay8GPboIdH7t2J0WHuETmPtrkg9XsJtbH+5Kos3sAsCb287yxiERIHgjAeOMOSRn3BHY77P9Ke1xHVTw9t5QVDvHSu8d6oFWbmxky5Q5y1GiiLLkUbJV2Xo1hy9fEHUuCE/3imqJXJMgWGmXlfm1lZnDHmNpB0s6PwVYJSf00VeaGcLbyOrJSSyuuQ0SwiXHdNSE1SRkPIJyB9s9vgupYLWukdtZvU8VBu2Hd9p72OLara/Jg+AktxWxQxxgfDq6VsXougw6/wjzLdHpWvsu/bTcQuuavja/m+RltkjoDEKsUU1Rc4pZzqvuqVcXPlyruJCQihiMJ2qpf+ca3m2/UEcSdCukBgB0D2C3w9pWaZkEdHp7Si1Czkc3Hz7JkZ4DVLweFwcwPoP8M7Tr2+b2w4TXX7psdAmifbT3l/fTkmpOZzs9ATYVoH5dRlFfZ6FClKYuHd27k+9/dOFXGDTtE/MwTnNwIJWcgOBpSx9fa9d816aiqJnzbLTGykRP4DyO6J7EyQlvkKVodOJO13sZQpF3Ty8Pa+Xgk+kaCbKFRVjnqsWu17lLV6lTxIbfX6odci7Z9IbojWMvh6MoGD5laI2VcCCDGPwyK49KhGBu86TtbWsVmR1qf3wXZzhvWQbdUbxv/MHnDf89v+IQHgz6nZ5L/30zoAsffYlu3XzHfpqX5LYr6RcPtZfyUkMg4ytEmIfMyj7X8hCU5cGIDAKuU4YzpFn+eF1STPOFeAEaUrWb/sdNNt1kjiDsdqgXZ29rPgvAEqCqB/0yAiqJaL0mKDuH+CVpLr79+sy/wamWNZrj2NRhxv/Z86SPww19AVRnXI4GU6BAKyiws2+ODSeCagfbTMX4TYAMcySmhj3IMgIhOQ7xj1BFkjzXsZNfJPMqrAux/zd9xTOrRcwqYqhdUzpZW8ekWLZvjnrFdfDGyZqMoCu0v+RUW1UjHkh0UHJV2Xg0RXKZ1w7BGSpDtSSTIFhqkwmJj7WEtLatWPe3JjZCzH8xh0O+Gxk+gKNWr2Y2ojF/Suy0mg8LBMyUcyXHPCpDgBVbPBVVLKUW1NRgIrTyQjc2u0ispkg6xYV4e4HlwtjQZ+Itam1e2vYN5lukkRwZhNsql0Ss4/ha7ut7n2tQ2KqTh9jL+iqKQa9Cycoqzj7f8fAe+QVHt7LSnktqtd7OUfOPSxnPG3IFwpZLdy99uus0G2vxUmcIdra/CtdZXC+/QFIhrcM/YLqREh3C6sIL//OiHLb3Oh8EAU56HiX/Snv84F775PUZUZgzTVrM/3Oijntmdxmi/VbuWzukHATbAqZPpJCiFWqZDAzX7HqHdYNTQWKKVMvrYD7BN+mW7D1WFvY4gu06q+Acbj1NhsZOWHMUof2nB2QRGDezL+mDt83Ni6b99PBr/JKJCmzyU9l2eRe4khQbZmJ5PucVGUlQIvZNrrOo523b1mQYh0ec+ibOV18GlDd4sR4eZGe1YpVmq95TxABCzaRLOFa9Ex81Vt0saXHF0popP9rdVbGi0pcm2E2eZb5vG4T6zG3iR4BEa+FskOftB12wv4+cUmbUguyLPDQGZozZymW0YF/dupmCgomDpfzMAXTIWcba0qmmva6zNT5sOcNtXYAqFw9/Btw9rN+UOQoOM/PHy3gC8uuoIWYV+1tKrKSgKjP8DXDEPULRSmEV3c+PgRAyK9l3o9Ungs8fgg+urn9sbnsz0BaXHtgKQE9xRS7v3BgYjSjetlddEaeXlXjK2QtEprVNM10muzZVWG++s1yYN7xmX2iRdCH9BURSCx/wSgB5nvqUoz42ilDpAVVViLdo9d3C8/6rF6wEJsoUGcdZjT+yVUH1xLT8LexxCEkNuP/9JOo3WAvGyXDj1c4OHOFPGdd+TNADEbM5LzbpA5wpG10n1UnsrLDZWH9RU6S9NCxzVSqeyuIie+Za6fbkDgfIQbTLJXpjRshNVFKEeXQVorbsm1e3q0ATaTbgTGwYGK4dYump1y8YD0G4wXP8moMDmt2DDK7V2X9U/mSGdYii32Ji7dH/L7fmKYXfD9LfAYIbdn5H8zZ1M6aFNMC/Y5MXV7MpiePMSsJRr6frO0hw/KZ8wZWv9xYtjenvXcDdnK68drJcg233sc4jY9pgM5lDX5i+3nyanuJKkqBCu7J/io8FdOMMumsphQxdCFAs7v5rv6+H4FaVVNpJU7R4tLNH/xewCGQmyhQZx1mNPqJkqvvNTTY01sQ+0H3r+kxjNrloqp1puXSantcWgwO6MIk7m1xdI0w01a+wWz4aTP/uVmE2TaCClFKiX2rv+SB5lVVoWxPlaD/kLZVVWDpzRVO6lfZdvaRsVeEG2NULrG64UN6MOuiEOLUexVXHEnkxIcm+So0PP/5o6KJFJZLXVxIvUre9htdlbNiaA3lfC5Ge1x8seh31fVdtTFP58ZRoAi7ZluBT6A5K+18PNC7RyqMPf8VzJn4mmhIVbTlF5oW3RmoPdptW/l+ZAUATc9yN0majt6zzWLwLt2KJ9ABiSB3jXcLeLUVFIMxwn8+RRqct2BzVTxXtfXWOzyps/aeUfd4zpHJDlUwajgZIBdwKQmv4RJeWVPh6R/5BTVEGKok1UhcZ39u1gdE7gfXIEj3M0p4RjeWWYjUq16E4twbPbGhc8q4szZbyRVl5xEcEMT40FWsFq9viHYehdsPVdeOuSwAqwofGUUqiV2rvckSp+SVpiwKSY7TpViM2ukhQVckGBjeA+kgNwJVuJ1sRjQspaWPaybwmgrWJffAGr2E4Sxt0NwGTrSr7f46Y2VKN+rV2/UOGzu7U0UwcDOrRh2mBnS689gdXSqy7dLoFbv4SQNrTJ28ai0Gcxl2WzbM8Zz9v+7inIOwwGE9y2GKJSYMBMbV/hKZjwmE91Ciw2O50sRwCI6tKEiXZ3Eh6vZVUAo9nOVqnLbjlndsPZdDCFVC+IAKsP5nDwTAnhQUZmOpT2A5F+U+6ikEjakcOabz7w9XD8hvy8bCIUR2lPdHvfDkbnSJAt1GPlAS2NZHhqLBHBJm1jxhbI3qNdjPvf2PSTdbtES7/LOww5Bxs8ZGpfbRVI96287LY6PWeVwAmwm4jdrvLdPmfrrsBJFXeuvg2UVHGfE4gr2eYYTTwmoqoFtX+WCtTD3wHOeuwL1zMI6jWFEnMc8UoRu1d+euFjqomiwNS52jXdWg4fzYSC6gD+EUdLr60nCli8o4Ur+r6mw3C441uISKKreoLPgp7ih7XrPWtz2wew7kXt8XWvQzuHcnevK7R62bPp0GWCT3UKTp4+TUdF+x+P6+olZfEaKLVaeWkrcTa7yvojeXy5PYP1R/Kw2QN4gsfbOFexu10CwRGuzW/+lA7AjGEdiQ41+2JkbsEYHEZW1+kAtNn9v8DrgOAhyrK1v2+BoU2tEgHB/UiQLdTD1bqrZqr4lv9pv/tcB6HN6CEcEgWp47THBxpOGZ/iqMvedqKAzMLyZo83YNj8Xzi9tcYGFT6712fD8QQ7ThWQU1xJRLCJkV1ifT2cJuOqx5ZUcZ9gr7HyebqgPOBulMMTtNWeWGvOhZ/k6CqUqhJOq7FkhvemX7vzCEueC6PJtQI6MPcr9mUWnecFzTjv9P9pJUMlZ+DDG12tvdpGhfArZ0uvb/cHfjpv2zS4axnWNql0MOTw+JkHObV3g2dsndgAXz2gPR73B+g3vXpfUDikOVJ5d3zkGftNJOeQ1g7pjCERJcwH13dHXfZFhl38fOQMS3dnctHffuCmNzbwuwXbuemNDVz0tx+kLWhT2euox66RKr73dBFrDudiULRU8UCny+UPYEdhpLqTb1e6QaNCB1TlaYJ2hWY/FKbVGRJkC7UorbSy8Wg+UKM/dkUR7HYIng2+rfknPU8rr7ZRIQzppAXuy/S6ml2UqdUyAvntJnKom1YrxK6PA0dZvAk4VcXH90wg2BQAYm4Otp3UUg8HdWzGBJLgFpbuzuSF5dVZLrM/2hZwN8ptkjoDEEshtqoLVNh2pIovsw1jUq+2GAwtK7WIGHkHABMM2/nix4aFJy+IkCj4xScQkQTZe+HT212tve4Z14V2bULJDNSWXnWJ6Yzp7uWcMHclQSkk/rNpcHyde22cPQ4LfgG2Ki3YmfBY/WOcKeN7Pger72pLq05tByA7vIdvBpAyCFtoHFFKOcqpTdz//lYy6yjaZxVWcP/7WwPq+uETcg5A7gEt07DHZa7Nb67RPrdT+yX7X/vNC8Ac15mMRE2jwrrhP97RVvB3CrUMpJLQZB8PRP9IkC3UYu3hXKpsdjrGhtElPlzbuOtTsJRBfE/oOLL5J3XWZZ/6GUoaTqesVhnXaZD93nVgqySbWIYeuYvrdo8mR3WIgq3+q8/FbNyFX7fuagSrXeVMUSVGg9Ky1UOh2Szdncn972+lqKJ2/+VAu1GOi0+iUtXSKs9eSK9smxXVoVux3D60+a27GiK+O8WJQzEqKiF7PqagrIntvJpCdPtqgbAj38M3vwdVJcRs5I9TewHw2uoj+shMikjkyBWfsNHeixBbKerbV8Jn9zR8bHPbMVaWwEc3aR04kvrDda9pvbvr0nksRKZARQEcXHZBbriD4Nw9AJTH9fXNAAwGDN21Vl7jle00lO/i3Pb0kr0BlxHjVZyp4l0mQGgbAM4UVbDEUepxz9guvhmXB2h7yW8BmGpbyeKNB3w8Gt9jLj4FQFV4Ox+PRP9IkC3UwlmPPbGno3WXqlanig+5vemCZzWJSoGUQYCq9cxugMv6aEH2z8fyyS3RmQrkoRWQsw+7CndU/h47BkoI4+/WGQBUqGaOZgRGMHEujuWWcii7BJNBqa1K7+c4Z7Z7JUUSGhQ4q++Bjs2u8vSSvbq4UTaZjGQrcQAUZV1AkH1iHUp5PvlqBNsNaVzUPd4t44oYpa1mX8cqPt50AeM6FymDqlt7bfkfrH8JgCv7JzPU1dJLHze0Y/t14Q/Bf2aFbTCKaoNdn2BS6qi2N7cdo90Oi+7VtE7CE+Gmj7TU8IYwGKH/DdrjnR9fuCMtJLFEa9Fmbj/QZ2NQumurruMN2xs9RgUyCyvYlJ7vnUEFIs7WXWnVqeJvrzuGxaYyrHOMrvRJgrpPoiAslQilglOr/uuejgsBTGi5dr+piuiZx5EgW3Chqmp1PbYzVfz0NsjaBcbg6pS1C6HnuVPGO8SG0a9dNHYVlntDxdVbVJWhfv0QAG/ZLmeP2tm1a6FtPLvtnQlRLOw4fCoggolz4VzFHtElNqDEUios2heu1GN7l03p+fVSPWsSaDfKZ00JAJTmXEBPZUdLrO9sQxjRNZGwIJNbxqT0uQ6LKZzOhjPsWvut+68xva6Ay57THi9/AvYt0Vp6XaW19Pp8W4YuVKBNRgPXDuvG/ZYH+Cns4voHXEg7xh+e0XRKjMFagH2+G97+ju/fg8ugzPufCVtlGe1t2gpYXLdhXrfvousk7BjobThJMuful51dfIGlG62BrF2gGKHnFYBWKvjBBm0i7m4drWIDoCiEXXQ/AFdXfsXi7ad8PCDfEl2pZYyaYgNXOT5QkCBbcLE/q5jMwgpCzAZGdtFWZVxtu9KuhpYInTiD7KMroaq0wUOmuFLGA39V18WPc1EKTpChxvFP6/Rau+wYeNpyKwBX21awe8taX4zQbTiD7EtboIrsTWwOsa0yh0BT//ZtfDia1kdTb4AD5Ua5NFj7v7cWNLNllqrCfi3IbmnrrnoEhaP0vR6ASRXLXMr/bmXk/TDsbjQhx3sgYwv927dh+hAtaHxmyV6vt/SyOyYTVHCb4vSNwzpgU0zcmn8HhQPqpIs3N8DesQDW/FN7fM1L0L4J7bDapkFSP7BbYM+i5g3eDeQc3oZJsZOnRpHSPtXr9l2ExVIQ0x+ACcbt5zw0MTLwOhV4lc4XQbh2r/fp5pMUVVhJjQ/nkgD5Dm8OQUNupsoYTldDJuu/WxTwixotId6mLaaFxvvwc9xKkCBbcLHSsYo9ums8IWYjVBbD7s+0nUNub9nJ2/aBNh3BWgFHVjZ4iLMue/2RPArLLC2z5w+c2Qvr5gPwlOU2yqj/hf+z2ouvbCMxKiopG5/WbrgDkPzSKjYf11ZXLgmAeuyluzP51Qea0rvFkTr296X7A6YGWA809QY4UG6Uq8IdLeuKmvk/dHorFGVQooaw1t6XSW6+wTUN1cQqLzds5NM1u916bkArIZryN0352VoOH86EghM8fFlPwoKMbD9ZwJfbvdfSa+nuTJ7+ai+gqda7S3G6fUwY43skoGLg1eC7XDX4ABiDmh5gn9wEi2drjy96qHktMZ2r2TsWNP01bqIgXVMWP2buisnHopbRA7TV1wmGHQ3uV4Dk6BCGpwZOhwuf4EgVt9lV3lqrtXW686JUjC0UXfRLgiNh4M0ATC75Ul+LOc3AXllGLIUARCVJkO1pJMgWXKza76jHdq6k7P4Mqkogrht0GtOykyuKKy2JAw2njHdJiKBn20isdpUVnlhx8SZ2u9aSxW7lROJEVtgbX6l43nITFaqZhNxNLoXhQOP7fWewq5CWHEX7GP9WJHWKbeXVqf3PKakKKLGtQGd4aizJ0SE0djsXMDfKK5+H1XOxRWhKrZazJ6tXT5sihOX4zK+yD6RLcjzt2ri5b2m7IVjiehKiWEg68RUHsorde37QWnvd8D9o2xdKs+HDGSQGVfLrid0AraVXWZX1PCdpOc7PdkGdSVp3CendNFxLr1y49RSb7d0BsKmKpgzeFPHKgpOw4Gbt+F5XwqQnmjeAfjeAYtBERPOONHf4LcJ+Wgto8yJ7edVuQxh7aK28xhh2Y6bh/6snr0rTZ7DoNhTodRUAy/ZkcTK/nJgwM9MH67dON2jUfQBcbNjGpyvWuDJeWhOFZ44BUKoGExvv/wsigY4E2QIAhWUWtjhq5yb00GoLXanig2+7MMGzujhbeR1cCvaG2yg4U8YDPtDZ9i6c3EilIZQZJ6ad89DTJPCh6VrtyfLHwRIY6bE1caWK+/kq9rnEtkBLLw0Usa1Ax2hQeNJRu1v36uJ8HhA3ygYjrPwL5UfXAxBUlsVNb2zgrb/88vxCWKpao3XXUPemijtRFMyO1ewbjKt5Z/0x99sAbaXo5hqtvT65jbtGtaddm1Cyiip4fbVnW3p5Q0hvUq9EEiODual8AWOM2mr5R7ZJWqr4yr+cO9B2KomX5kDbfnDd6w0riZ+LyLbQdZL22MsCaBFnNX+tiT5SFq9J0gDKg+OIUCoYaaovrvfMNX2Z0lfaEwGuScB6dBwFW9+Blc/zxk/aZ3PWyE76Fv+M746l8wQMisros1/w/f6Gu93omeIz2t86S0nAHEBtVgMVCbIFAH48lIPNrtI9MULrjZi5QxM9M5hdKTYtpuNoCGkDZXlwcmODh0ztl+QYTy4llZ5f+fAEavEZqpZqKxRzK68nkzhGOFbjGgsXOlz1qNaipeAEbHjZSyN1DxUWGz8dygX8P8g+n9gWBJbYVqAzpW8yr84aTFJ07ZTwpOgQXp01OCBulJfG3cILlulcwRoAUpR8ZhsXca9tAS9YprM07pbGX5xzAPIOU6WaWGkf6J7WXQ3RfwZ2g5kBhqPs2brOc+U40e3g5o+11l5HVxKy4hEec7T0ev3HI5wu8FxLr41H8zwupGc2GnghaTlzzAtZa0tzbV/f/i7sEx5rPNC22+Hz++DMLghP0ITOgiMubBDOlPGdH3uvvMhmpW25tnIe2nGQd2yeC4MBexdHKy+2069dVK3dbm1XF+g4JgHr/V8GhcPKv5BRVMm2EwUEGQ3cMqqTb8boRcyjfgnADOMq/vP9Lq/rRfiailxN3C7fFDgdYAIZCbIFoLoe25UqvuUd7XfvqyDcPe1kMJqgh9Z+g/1fN3hIz7aRpMaHU2W180MAzjKezC9j/Wv3E2QpYo+9E6vbTOPDu0fw8X2jeK2BYMJsVHh11mAuHdgVLn1a2/jjvObXddbAZldZfySPL7dnuE3051ysPZxLucVGuzah9EmJOv8LfEhWE/v2NvU4oeVM6ZvMmkcm8dE9I/n3zIF8dM9I1jwyKSACbOfq6Yu2abxq0VIvEyhgjnkh8yzTmW+bdu7V0/3aKvYae19CItowwFPie+HxKD2nAnCt+j2fbG6mOFtzSBkI0/+L1trrbS4vWcjwzrFUWOz8bel+t5qy21U2H8vnmSV7+dUHW3nAtJDZxoZFwWYbF/GAaWGLhfT6JUcwzzKdjfbqIPumNzYwet0QDqX9tuEsrZV/0cTtjEEw80No0+HCB9DrCgiKgLPHGp2sdjdq7gGCqaJEDSGlix+sZANhfbT/53GG7RzLLQNwtZ36YntGqwueGmX8w9WZFjU5vAImPs7/FWnXrWsHpQSM/kWL6D4ZW3RH2iildMla6logaC3YzmrdL4qCk3w8ktaBBNkCdrvKald/7ERN/XvnJ9rOIbe515hTZfzANw3OwiuKEpAp4xabnVdXHeHP/3yJ0aXfY1cVdgx8mq8emMDobtokRc1g4tlr+2I0gMWm0jHW0Ru13w3QfjhYSuH7Zy5oHEt3Z3LR337gpjc28LsF290m+nMunKnil/RO1HqruwGbXXXleO47XeS2iYL80qom3Yjnl8pKiDcxGhRGdY3jmoHtGNU1zv9TxB3UzIz4h00TsFIUqFJNzLdNO//qqaN11zL7MCb2TMTgQb+VwVong2uNa/lw3SHPTr71nApTtFp0ZcWf+Uff4ygKfLn9NFuOt6yll92usik9n6cW72H0X39g+mvr+e/adArKLdhUA3PMC5lp/KHWa2YbFzHHvBCbamhxILG+4z3Mt9UvAcoqquTSrSNZmnB77R07P4Wf/qE9vno+dBjeIvsEhUFvR2/jHR+17FxNpChdE4ncp3aic8IFrsC7GaXrROwY6GHIIKpS+36b0jeJYJOBIzml7Dld5OMR+hHOQLsmEx/neN9fs2yv1s5Jd227GsNgxDhc6w5wm3E5L31/yMcD8i6GIq19WXlYOx+PpHUgQbbAzoxC8kqriAg2MbRzDOxeBFXFEJMKnce511i3i7XZ/PyjkHuwwUOcKuMr9+dQXtVw7bY/seV4Ple+uIZ/Ld3JE8pbABT3v52bp12nqbTXwBlMzBrZicv6aH66VpUUBab+VXu840M4taVZ43CK/tRNmXSX6E9D2FWV7/ZpGQeXprlnZtQ5UeDkuW/3uW2iIDYi2HUjPt34Y619NW/EYyOCW2xL0D81V0V/bfzC9ThIsdaayGlw9bTgBGRux4aB72yDPZcq7qTrJOyRKcQoJfQp+snzmUIjfgnD7wVUOq56gId6a0HP00v2sO5wbrMybWx2lQ1H8/jzl7sZ+fz33Pj6et5ed4ysogoig01cN6gdr/1iMJ+G38QLluncYvre9Vrn5/oFy3QWRtzcIiE9m13lj4t2nfOYPy7aVe3Tqc3w5a+1x2MegAEzL9h2LZzn2fO5VzQ8So5pQfbJ4G4E+0sdZ2gMebEDAZhg1ETZIoJNrvZTX2zL8NXI/JPxD7vWNVRVe/7fNemoKozvkUCPtpE+HZ5XGTQL1RRKmuE46on1bDx67n7reiK4VOv0YI2UINsbSJAtsNJxszW2ezxmo0ETwwBtFbu5wiznIzgSUh2BeyMp4/3aRdOuTSjlFhurD+a4174bKSyz8Njnu7j+1fUcOFPMQyFf0cWQhRqRRPQVT5/39TOGaUq1i7aeosLimExoNwQGOGrglz7S5Jo7b4j+NERGQTm5JZVEhpgY0aXlKtCenihIigphvm0a8yzTmWla5druvBF3pvgmRbWCtDmhxThXRWcbF/GQ+TPX9pctVzPHXJ0x0eDqqeP6t9neg2JjDGO7J3h2sAYjhkG/AOBG4yreWXfMs/YUBS57HrpPBms5v876E11Muew8VcjNb250ZdqM+ev3DX6urTY76w7n8qcvdjHiue+Z+Z8NvLv+ONnF2vVm2uB2vHXbUDY/cQn/nDGQKf2SefrK7qy3p7HVpqmaJ5PvCrDn26a1WEhvw5G8esrldSkos7DhSB4UnnIoiVdCj6lw8Z+bZeucZT+dx0JUO6gohEPLLsSVZmE4sxOAwjZp5znSu5h7TgZggmG7a9s1A1MAWLzjtAhY1mT1XJd+raJA+XfP88lmbVXzntayiu0kLBal/w0A3GZazksrD/t4QN4jokK71iotKVkRmowE2QKrnPXYPRMha7fWHsRggoG/8IzBminjDVAzZdwfexmqqsqX2zO4+IVVfLhRq2/5VV8b9xq+BECZ+lcIiT7veS7qprXrKaqwsnR3VvWOi/8M5nDt77Dr0yaN6XyCXu4Q/WmIg1klAEzomahN0LQAb0wUONtGzbdNY4F1AgCpSlatADsg2kYJfsHw1FgeC1/sCOSud23/j+1K5lmmM8e8kMfCFzf8/+RQFV9qG8bIrnGEB5s8P2DHNf0iw27SD+/j0BkPtPOqidGk1We37YehLJfXDH8jkrJah2QVVfJLxwSa1WZnzaFcHvtcC6xvfnMj7284QW5JJVEhJqYPac//bh/G5j9dwgs3DuTiHnEEZ22HNf+E967jsiUj+TT4GQYbtZtmRYFK1cSnETe7RUhv/dGm1W9+vukgVe/PgJIzkNgHrn/j3CrzdThv2Y/BoJUXAezwsMq4qtKmUKulV5L6e9ZWM2nTX2sLOsawh2CqOJpTwtjuCUSHmskurmxVK5TnZPVcWPkX1+TTBlsvQtf8lbvtn9I7OYox3eJ8PEAfMPxeAKYYNnHw0EG2nWhZGUtAYLfRxqLd7wfH61/kzh+QILuVk1NcyY5TWmP6CT0Tqlexe14OER5KX3QG2ac2Q3HD/bCdKeM/7Mum0uo/KePH80q59b+b+N2C7eSWVNE1IZwF94zgYcvrKHaLtmqTdm2TzmU0KNw4VJtNXPDzieodUckw9iHt8YontRr585BdXOEV0Z+6HDijpYC6Q1V8U3o+M0rfb9SH3xgXMaP0/RZNFDjbRinAQpuWUeG8EX/JNg2FAGkbJfgFRoPCpB5xvGCZzsu262rte8k2jRcs05nUo4Ea85IcOKG1/FruqdZdDRGbCqnjMCgqN5g82M6rJsGR2G5aQCkh9DBk8LL535jq9DaebVzEoU8eZ+izK5j11kY+3HiCvNIq2oSZmTG0A2/fMYzNf7qUf1zfj4ltzhD882vw4QyYmwpvToLvnoIjP4ClDMLisSf0BsCumAlWrKwdtdlNQnrnvy4o2Jm0/0mCcnaTp0Yxs+R33P7hPp5avIf/rU1n5f5sjuaUUGW1N/j6JmfzOFPGDy2HMg92Qzh7jFB7CVWqkehO/iF65mRpbjzZagxhSiXDDAf479pjTJq3in7ttEnuL7ZLyrgzwP6PcSY71K4A/Kz24gWrNgk4L3Gp27RUAoqkftBxNCbFzs2m73m5NaxmF2dhwoZVNRARJyvZ3sALU+eCP+NMx+7bLorEEHv1rPiQ2z1nNCoZUgbD6a1w8NsGbQ3uGENiZDDZxZWsPZzLpF6+bQ1VZbXzxk9HefH7Q1Ra7QSZDMye2I17x3chePfHcHwNmELh8n80q6f4DUPb86/vD7LhaD7puaWkxjtE0Eb9RpvwKDgBa/4Fkx4/53kSI0M47Kg1BmoJ89RMhXa3emheSRVmo6JN0LSQ7OIKV710XWr60NKJAmfbqPLP3gRVy8gPVqw8Gr6Yjtc9FRCq1oL/0G3Gc6T1yaTtl7ugRiZxUnQIaVc9S7eG/p8OfAOqnV32zmSQwCRvBdkAg26F9B+ZbvyRy7bcwB8u60V0qNmjJjfkhHDUehG3mL5jnHEX/6f+j0etdwNKrc92QZWV2PAgLuvTlsv7JTMyNRbz2cOQ/iV89iMcWwPldQLKkGgtfbrzWK0Uad8SDKueg4mPYxj/MKyei2HlX7Tr8viHW+THqK5x500tfcD0GZcbN1GlGrmv6gE2V0ZAfg5Qu/TJoEC7mFA6x4XTKS6MznHhdIgJ409f7G40m0dBy+a5NC0JY2JvSOoPWTth92fgEHNyO1laqvgBtQNdk/wnw+fwx4+xd+cZCpUBzDCtYqJhO2vs/cgqrGB6yYcMNdl5a9dMnrmmbz1tlNbE4awCFlum82LF1Txpese1/UXrNFQVrlRacUr9iHvhxDp+Yfye0fuuZc/pHvRJOX8WYsBSqJUHZBFLQnS4jwfTOpAgu5Wzsmaq+N4vobIQ2nSELhM9a7jX5VqQvf+bBoNsg0FLGX93/XG+3ZXllSDb5lCtzS6uIDFSSxk2GhQ2pefz+Oe7OJStpUaP6RbHs9f20wLi0jxY5giAJzwCMc1LwUlpE8r4HgmsOpDDxz+f5I+OnrKYQ2Dys/DJrbDuRRh8i/Z3aYThqbE8FHEzSgnMMS+km5LB09bb+IXxu1qiPw+4IQ3aZlfJL6nEGVaPSI0lKqTlN+mJkSGkK3bW2tKYY15Ihaqd8xbjCu4yLWWtLQ2jYnfLRMGUvPdA1cTVTijJKANmcu+Of0JeV6BlN+JC62NK32Qm9YiH57Tn/5oxgHEDejaeEbFfUxVfahtOz7aRdIgN89JIgd5XooZE074il0G2nXy6uZfHlYXXH83FRBR7bR1JM57gJtNKjqlJBGFx9Zw2KnauHZDMPy6JxnRiDez4N3z5k5ZyXZOgCOg4SguoU8dpK1LOVOzVc8ERYLsCaudvZwujFgTaI7vE8ceQzym1NByYvGT6N1eatLZapmte5MUu13Msr5TjeWXa79wy1/Nyi42T+eWczC/npyYKHNcs+xnVNU5bzc7aCTsWeCzILj+xjVBgj70zV/mJsrjNrvLDwTweMi9ksXUUoNVl/x+38Bun0J11OsWVVlbuz2Zqv9Y5cWqzq9xy9GIybQ1PTM+3TWNheghr7GrrzN7qdSVEphBffJqpho28srIjL/9isK9H5TEs+ccxAxlqPN0jRdzVG0iQ3Yqx2Oz86FjJntgrEVa8re0YfKv7Bc/q0vMK+OFZOLoKKksguP6XtzPIXrHvDBabvcU1v+di6e5Mnl6yt1aKXtuoYLolRLD2iFbXFRcexBNXpnHNwJTq9KoVf9ZWVhLTtNXnC2DmsI6sOpDDwi2nmDO5R7Wfva/WVmeO/aTZueHtRs/hTIO+//1pdFCyucH0I1cZ12NQYJ5lOi/ZpvGqG9Kgne/Tw2W5XOe4r915qpCluzNbvAI8PDWWXcFBjLHtZa0tjTHGvQCuAHuMcS97jP1bXi/tSJ/L6X4jCYc+waAodLjuKYgNc8uNuNA6qfnZGtwxpvHPWkWRdt0DltmHMtnTquJ1MYei9LsRfn6DGcaV/H39CO4Yk+rhm2wFm2ogzXSCo/Ykuhiy+KPpIxQFfrb1YIxxL9G2Ujqm34Tp5azaLzWFQIcRkDoWUsdDyiAwNjKpZ7fVDrCdOJ831MO6GRgNChenJdN974ustdUWAfuL6U1XgM3o2RgGzyIFbSJ1dNfa51FVlZziSo45g++8Uo7llbHjZAGnzpafdxyubJ6+02H5E5CxGXIPQ3y3FvnXEJWnthMKZIR0945uQBPYlJ7Pc6VXU2y0OjpCKHQ1ZPIn03vcbfrWpa8BWsp4aw2yz6fVAnUmbVobRjMMvRNWPsvtpuVM230Rh7OL6ZaoT6X18pxjmIHTagLDPJy9JGhITbaeWfm8FlA0xOq5nPnySYorrMSEmRkQlAknN4BihIGzPD+2xN4Q01lTXj26ssFDhneOJTY8iIIyCxuPeq7mrLEauDNFla4A+6bhHfh+zniuHdSuOsA+tha2v689vvJfjd/4nYeLeycSHxFEbkkl3++r0VZHUbRes4pBa9VyfN05z+NMg95s0mZiDQpYVCMv26fx4k2DWhwEN/Y+FVVY3aL8bTQo5A35HfMs010BNoBdVRhj3Ms8y3Tyhvyu5cGA40Y8t9v02tudvURbeCMuCOfk0HKwVZFOCofVdlzc2welMINvAeAy42aK8s+4xC89xaiucS5V/y6GLFRVu7ypKgwzaq0c+xqPE1WVBQaztlI9/hG47St45DjcthjG/UHrMX2u6+zERxufIBv/sLa/hRxJ+1W9a9Sjxg/4hUnLjMlOGg+XnLu7hKIoJEZp2VI3Du3AHy7rxcs3D+bv0wc0aQyubJ7IttB1kvZ4p2cE0IJydgNQFtfHI+e/EJyTDM7/KaMj5blugA1aK9DC8yjC65Wmlla5W6sloBhyGxiDGGQ4TD+O8MrKI74ekceoyj8OQIG5LYbWmLngAyTI1jMGo7YyVzfQdqzkHc3XLqzjeyRg3Pautq/nVK1m2tMoSrUA2v6GVcZNRgOTHYJanlIZP5eitZO48CCevbYfbcKCqjdaq+CrB7XHQ26HjiMueAxmo4Hrh7QH4OOaAmigpUIOvk17/O0j5w0Ap/RNZnbKvupzKzZ+bViEvYmtwBqjKe9TS5W/bXaVxTsymW+bVmuVyKCorLWlMd82jcU7MlvelsVxI253nMeuqtUtctx0Iy4IjeJIFf/WOpTY8GAGdmjj/TEkD4Ck/gRh5VrjWt72cDuvkV3iaBNmdn22a7YSsquw3d6V/3ENtl8sgj8ehzuXwsTHtNVrs/+007PZVU59rrXicl6jbjL+wH1mrR1brj2Kb7NjsV3grZWz+0Fjt78K1O9+4BRA2/lxk1s+NpniM4RV5mBXFcwp/dx77hZQs2Rovm0adlV7x6yqoVaA3SEmlCqb3S+7lHiD+PCmpQQ39ThdEpEIfTTRyttMy/lyx2mO551fbDYgKTgJQElo68zs8AUSZOsZ58qcMwUWaJe3Xns+8XGeK7kKgIu7R8OOj7QDPCl4VhdnkH1wKdisDR7ibOW1bM8Zj/S8bEo6VV5pVX1F63X/htwDEJ4AlzzV4nHMcKiMrz6Yw+mCOumCk/4EwdFa7d32D859otVzaX+6dt/UOeaFlK54rkXj80aLMKeN2cZFtVaJbI6V7NnGRW5rQ7Z0dyYvrNBW0Gx2tX6LHEHwBJYKOLQC0Fp3TeyZ6LtayEHaavYM4yp+OpTDYYfmhCcwGhT+Oq2f67NtcwRFNlXBoMD3tkEkT/8bxu4XQ5D/CvJsSs+nsMJeS5zRuYpapgYRbygit9J4wdcoZ9kPNK5jXq/7Qc/LISgSCo7DiQ0XZLdRHKJnR9VkOiV7uazhHNScjJhtXITB8TcwKXZmGxe5JiNmDNe+V1utynhTLy2tfVHT0c7rauMGou2FvLLqcOM96gMYU7H2OaiKaOfjkbQeJMjWO85A20GHvLUw8XEyBsxmf1YxBgUm2TdARQFEd6hOPfMGHUdBaIxW03xyY4OHjO4aT2SIidySSrYcd38fwwtKp8o7Aqv/rj2+7HnNhxbSJSGCEamx2FX4dPOp2jvD4zVRNYDvn9FqOhvCkaGQ0e6yWpvT7UncXPo+WUvOncJ4LryRdpZdXOFSGq65km10rGTPMWstylqa2uZMey8sr51CWK9FjiC4m6OroKqEbCWOnWoXLvZ2PXZN+t8AxmB6G07QT0nnXQ+385qS9x5zzAv5WemLUVGpVE0YFZWflb7MMS/UxAj9nOziCleKcs2JQIAwpcqVqtySa5Sz7Ccpuv4K/pzJPeqX/QSFQdrV2mPnZLm7yNwBwB61M90T/UP0DKonI5zfF4fsWtDwnW2w63viyavSuHagtn1jej6ZheevddcbuSWVbj1Ot7QbAimDMGNhpvEHPv75VOM96gMVVSWs/LT2MKq9jwfTepAguxVgG/uH6scYsI39g6sGb1DHGMJ3O+qKB91SrdLqDYwm6O4ICA80nDIeZDJwaW/PpYw3VanadZyqwtdztFryLhOg3/Rzvq45zHTMun+y+WT9mdNh90BcNyjNgR//3vAJHLXGmSmXAnDGmAyKgVRDFu9ZL2HH8QtfAW72+3SBNowOdfExxr0udfG3rFMYY9zrFnXxc6W9O7e1NO1dEBpl3xIAvrEMwWw0MLZ7vO/GEhoDvbVsphnGlSzccoqiCg/WrtptkDqOYepuTgx4kKXX7eTEgAcZpu7WVMIDQAvBG9dB0ALtNY9M4qN7RvLvmQOZ6GiRuCujsOEXOFPG93yhZUu4CetpR5Bt70Q3PwqyQZu0eci8kP8YZ3JETQFgpX0g/zHO5CHHpE37mDCGd45FVWHx9tM+HrH3iY9oYrp4E4/TLYoCw+8DYJbpO4zUvhbpYgK+ooAgWxkAppjGO9UI7kWCbJ2zdHcmb/3ll67nRuy89Zdf8vEmrTbjug6lcHytJq41yAuCZ3Xp5azL/rrRejJXyvjuLFQ315ylpURhNjaeK1WvBm73Z5pQmzEYrnihWT2xz8fUvslEhZjIKChn7eHc2jtNQdqqOcCGV7XV9LrUEf3JMbWFvtcDEKMUMztzygXPWF9QreAF2AgLDnKJnFWhBdnv2S51rRyFBQe1yIY30t4FoUFsVtdk4jL7MEakxhHphtZ3LcIhgHadaT32qjIW1s2icScGI6T/CBMfp+N1T3HNwHZ0vO4pLdMq/UfvTvBeIMNTY3ksfDFzzAv53DrG9ZVVqZqYZ5nOHPNCHgtf3PIOCGirtaO6xnHNwHY8fkVvAJbvPcOx3AbqRTtdBFHttRacB5e22LYTmyPIPhXcvbYmiT/gmFS+6/HXGNZZyya766JU7nr8tVoCltcM0gLwL1phkH1OEZULOU7H2NKu5SxRpCj5XGrYUmufLibgHfXYuWoUMW103Avcz5AgW8cs3Z3J3o/+xL22Ba5tK20DuNe2gPFZ/wNgStVybUf3yRDtgzqNrhdrAevZdMjZ3+Ah43okEBZk5HRhBe9vPOG2OpkKi4373tuMxdbweZwBpasGrvwsLHWIYo37PcR1bfB1F0qI2ch1g7S/wYK6AmgAPSZDt0vAboHlf2raSS/SxNkuN26ivf0UH21s4LxN4Fy1gvXepwvEaFCY1COOFxwtx2rykm0aL1imM6lHXItsiNqq4DNOrIPyfIqUKDbZe/k2VdxJ53HQphPhlDHVsIl31x/z3P32udprBYiqf81rVLqajKJoAXawYkUBt1yjGqJbYiQTeyagqvDWmvT6BxgMWvo/uE9lvKKQ4CJNjbgqsa97zulOHJPKRoNCXLg2AdAlPlx772sIWF7RLxmzUWFfZhEHzxT7csReJ7e0kgVBz/CB+dkG939gfpYFQc+QW9rK08WBTSfL+MA6EYDbjMvr7Q/4CfhCbQL1tBpHgvTI9hoSZOsUm13lxOdP8ZB5IfMs1SnNP9n7u2bcHzQtJO6QQ8DFm4JnNQmOgC7jtceNpIyHmI30Stb6Fj7xxW631MlYbHZ+8+FWNhzNJyLYxB+n9iK5Tg1cUnQIr84aXF0D993TUJoN8T1gzO8uyO75mDFMS+NZsfdMw6vOlz0HBpP2Xh354fwnbNsHel6OAZVfGpfw/sbjWGz2CxpbY7WC9d6nFtBtxnOk3fRsgzbSbnqWbjNaJuDmrXRPQajHPk1VfJl1EDaMXNzLB6276mKozmC6KehHjuWVceY8QpAXjBfaa3mDbjOe46oBKa7v1p6V7zLPMp2HzAu5akBKi69RjXHP2C4AfLrlJGdLq+of0N+RMn5oOZTmtdxg1i4AMtQ4kpJSWn4+d3OeFqWs1DK/2oQFMb6HNqH1xbbWJYCWGBmCTTUwxri3XqD9gflZhwihQb7v0CbWQ6jCpiqMMu6lp1J7QWK2cREPmBYG7gR8obaSnaHGS5DtRSTI1imb0vMpq6yq1zMSqntLdldOopTnQ2QKdLvURyPlvK28lu7OZOvxgnrbL7ROxm5X+f2nO/huXzbBJgNv3jaUX47vWqsG7qN7RrLmkUnVgePJTbBFW/3nyn+CyTMXqbSUKPq3j8ZiU/l8awM3BAk9tfps0FbVG1Flr8VFDwEwzbQGY1EGS3dnXfD4nLWCCY4ariGdYmq/T27AacPJY1N7u82GN9LeBaEequpq3bXUNpTuiRF0jAvz8aAcDLwZUBjOHjoqZyit0laUC8ssgZsa6UlWz6X73hexT3iM0XfO5d8zBzL6zrnYJzxG970vNh74tZBRXeNIS46iwmLng43H6x+Q2EtrzWa3wp5FLTeYqSmL77F3pntiZMvP527O06K0ZvnBtY6U8S+3n3a1bmwNDE+N5fdhz7p0TqYaNIHZ6ww/uXROfh/2rHzfoU1IFKrhrm4BtxpXuPY5BfYCekKiQJs0yFDjXfdvgueRIFunZBdX8C9r/QDbyXzbNKLRRBAYfIsmQuYrek7VfmdshuLaAaBTqKohLqRORlVV/rx4N19uP43JoPDqrMGM7BIH1K6BG9W1RsqfzQJLHtAeD/wFdL6oOd41m5mO1ewFP59ouAZ9wiMQGqul12/+7/lP2GEYpI7DhI17TF/zTgt74hoNCiFm7dIRGx7kkRZERoPiykPvnRLlNhvOtPeG/lvclfYuCPU4vRWKMqhUQlhj78fFvf1gFdtJdHvodjEANxpXuTbvyijSh6quu3GkvRsmPFLr+8Iw4RGPpr0risK947TV7HfWH6fS2oAd52q2O1TGs6qDbH8TPQNqtyjN1doxcmi5q0VpzayJS3q3JSJY0zvZcsL9XUr8Fef33SzLn1hrSyPJUABAe0Mea23advm+0xieGsvCiJv5xKplVt5gXEUUJa4A+wXLdBZG3BywExLWs9pK9mlZyfYqEmTrlPPNtnVWMhlj3IOK4hvBs5pEJmktFAAOfFtrl7uFqv6+7ADvbziBosALMwYyqSkpmxtegew9WmB76f81yU5LuGpAMqFmI0dyStncUNuy0BiY5GjLtvIvUNYE38fOAeAm4w+kHz/G7sZUalsBU/omM2tEfXVNd6a9C0ItHKriq9RBVBLkH/XYNdgWfyUA040/YqqhrKsLVV1348O09yv6J5McHUJOcSVfNiTk1W86KEbI2AK5h1pky+6n7btq4Qy0nUH2waUN1v2HmI1c1kcTUG1tKePOMq9bbdU6LqoKvw97Vr7vauCckHjEei859iiCFBtbg3/JHEdZyIu2aQE9IWE7q61k5xgTCQ/24aJaK0OCbJ1yvrTYmcZV2oNul0AbP5Dzd6aM16nLdqdQ1aurjvDKKk2V+y/X9uPqAU2oMzt73FXbxeRnITyuSeNpCZEhZq7sr33xLXCowNdj8O2Q2Efrb77q+fOfNHU8tBtCiGLhTtO3vN3C1exAx5kSC5AYGVy/PEAQ3ImjHvvrqiG0CTMzuGOMjwdUjc2u8tutyeSpkSQpZ7nIuNu1TxequjrCbDRw++jOALz1U3r9TKeIRFdWQosE0CwVKDkHADgW1NW/V77GP6x1RwHt97g/NHiYM2X8612ZVFkvTJckUOnbLpqFxidczxUF1ib/S77v6qBNSAzhtaBbATApdiyqkfm2aUSGmBie6vn7P09hcNRkl4f5ob6CjpEgW6ecSw3ajJXpxtXaPl8JntWl1xXa76OrobLEtdldQlUfbDzO35Zq6uWPTu3FzQ2sZNZDVeGbP4C1XGuRMvDmJo3FHcwcro3v612nG+5dazTBFEdw/fNbkL3v3CdUFNdq9i3GFazccYi8C2znFeioqsrGo9XCQBHBptrlAYLgTnIOQN4hrIqZH+wDmdgz0a/+1zal53OyyMYXNq0MJlmpnRkT8Kq6OmPm8I6EBxk5cKaYHw/l1j+g/wzt986PwX6BwWT2XhTVRr4aQWRCJxQ3tqp0O6vngurwU7XDJ7c1eNjorlqabEGZhZ8O5XhxgL7H+N41DDI62n72mAKp4zAc+xHeucq3A/NDpvRN5vExUa7nZsXGvyPfp7jCyp++2OX2NrJewVKBuUK7VtgifdBFqBUjQbaOaUwN+hLDFuKVIohoCz0u89Ho6pDQC2JSwVYJR753bXaHUNWX2zP40xfa6sxvJnbjvvFNbL21bzEcWgYGsyZ25sUbjcEd29A9MYIKi73htEDQVNl7XQmqTRNBO9/Fv8dU1MQ0opRyZqrLWPBzI6vkOufU2XJOF1b4VaAj6Jh9iwHYYuhPCWF+lyqeXVzBA6aFmGhYRDHgVXV1RnSo2dWF4o0fj9Y/oNcVEBSpCR2d3HBhRpyp4vbOdG/rh6JnTpwiZxMfh4mOdOh9X8LyJ+odajQoXNW/FfbMfucqkvM3UWx33Af2vBxuWwKp47T+9BJo12b1XAyrn4Pxf4TOYwG4xvINj5k+5JtdWSzeEYD/O0VaiUSZGkxIVIKPB9O68Osg+6mnnkJRlFo/SUlJrv2qqvLUU0+RkpJCaGgoEyZMYM+ePbXOUVlZyezZs4mPjyc8PJyrr76aU6dO1Trm7Nmz3HLLLURHRxMdHc0tt9xCQUGBN1z0OHWVmgHuCFmlPRg0C4xm7w+qIRSlejW7hsp4zRX5ei9x/D5Xncz3+84w55MdqCrcOqoTcyb3aNp4Korg20e0xxc9CAlNfJ2bUBSFGcM6APBxQz2znUx+FoxBcHRlvXr2ehgMKA6l8TtN37Jw/QGsF9jOK5DZ6FiR65rgp3WGgr5wpIovqhiMyaAwrod/3eQ42/zcZlpBpr12GrsuVHV1yB1jOmNQYM3hXPaeLqq90xwKaddojy9UAM0peqam+qfoGdQOsMc/DBc9AMkDtX3rXoRVf6v3EmfK+Iq9WZRUNqEzhw6w22xssfck0lChafA4hWadgXYA9Kf3GrUmbR6FGe9BXHcA7jV9xUPGT3jii91kearNoaeoqSweJddxb+LXQTZAnz59yMzMdP3s2rXLtW/u3Lm88MILvPTSS/z8888kJSVx6aWXUlxc7DrmgQce4PPPP2fBggWsWbOGkpISrrzySmy26gvLzTffzPbt21m6dClLly5l+/bt3HLLLV7101t0ULIZbtdmqRl8q28HUxdnXfahZbVaUzlX5CNDaos1nE+oav2RPO7/YCtWu8p1g9rx1FV9Gk57a6jf5g/PQnGmJjKm+iYQnTa4PUFGA7szihoXKotNhVG/1h4vfxys50kB73MdapvOxCnFTCj9luV7z7h30AFA1Ia/M9u4iLSUqPo7a/RXFYQWU3ACMrdjx8B3tsEMT40lKsRPJjYdOFV1X7BMJ9lQLbQ4yrBHF6q6eqRDbBiX99O+995c08Bq9gCHyvieL8FyAQGBq31XJ/9s3wUulXeXyJnRDNe+qk06g2s1vib92kXTJT6cCoud5XsuvJVlILFh/Lt8bhutPWk/TKvbd3LbErij4daprZK6/1OhMfCLTyEsHoBpwT9TUlHFw5/tDKy08UJtYfG0Giftu7yM3wfZJpOJpKQk109CgrYKoKoq//rXv3j88ceZNm0affv25Z133qGsrIwPP/wQgMLCQt566y3mzZvHJZdcwqBBg3j//ffZtWsX3333HQD79u1j6dKlvPnmm4waNYpRo0bxxhtv8NVXX3HgwAGf+e0ulu7O5KK//eB6PsO4CoDcxNEQ09knY2qUDiM0Be/ys/XS3Kb0TeZXE7Q072GdY84rVLXjZAF3v/MzVVY7l6a15e/T+2NoLD24br/NjK2w6T/a4/KzHuuJfT5iw4OY3EdTP19wrtXssXO01P/8o7DxtXOf1GhCuegBAO41fc17a1umQBuInCioZI55IZMqvqu9o4H+qoLQIvZ/DcCBoD7kEe1frbscOLOF5tum8ZLlGtf2i4x7eMGitYEMZFVdvXLPWK2d15IdpzlTVCeQ7jQGojtAZSEcPE+GU13sNtQzWkbgHtVP23dBwyrvbdNggkPd/dgaKKqd2qsoCtcM1GpSW0vK+OoDOVxq2AKA0utyH4/Gz2nofyo2FW76CIzBtLdn8OegD/jxYA4fbDzHPZm/4RA9y5D2XV7H74PsQ4cOkZKSQmpqKjNnzuToUW3WNj09naysLCZPnuw6Njg4mPHjx7Nu3ToAtmzZgsViqXVMSkoKffv2dR2zfv16oqOjGTFihOuYkSNHEh0d7TqmMSorKykqKqr1408s3Z3J/e9vrdUCK0zRVjr/fGqY/7VlMZo0UQ6olTLuxOBYhe4QG3ZOoaqDZ4q57X+bKK2yMbprHPNvGoTJeI5/9Zr9Nlf+Fb56AJeubgPtQLyJs2f2l9tOU17VSFpXcCRc/KT2ePXfCa7Ia/g4JwNvxhbelmQlnw4nF9dPN9QxmYXlPFt8FS9Yp5Ny9NPqHXVTDwXBHThad31WNhCAi3v5Vz22E2e20AcRt2FTteuqVTXwacTN0ubHTxnQoQ3DO8disan1u0UYDNDvBu3xjmaqjOceQrGWU6oGk2lKoV2bULeM12uM/q3WErSyEBb/tp5WyTUDtZTxNYdyyCnWv/jnpv3HGWVwlFH2vMK3gwlUOgyH67QFjNsN33KrcRnPfbOP43mlPh5YEynQguxTEmR7Hb8OskeMGMG7777LsmXLeOONN8jKymL06NHk5eWRlaWl+rRtW3tloG3btq59WVlZBAUFERMTc85jEhPr3/gkJia6jmmM559/3lXHHR0dTYcOHS7YV3djs6s8vWQvDSW05KhRfGcf4p9tWZz1Qge+Pr+QVwOcyCtj1psbKSizMLBDG/5z61BCzE1YmRz/MFz0EKx+vjrNbMzvfB5wje4aR4fYUIorrXyz6xyTIgNugogkqCqm+8E36u+vmQZtCsY45rcA3G9czLtrj3hg5P7JxqNaPfbKtndAV0erm/yjEmAL7qckB06sB2CpbShdE8LpHB/u40E1zpS+yawdtRmjomJXTJgUO2tHbZYA24+5e2wqAB9sOE5p3RpjZ8r44RVQ2oAKeWM46rH3qZ3okhDVeAaYv2I0wTWvgDFY8337B7V2d44PZ0CHNthV+GqnvlezMwvLScldS5BiwxbT1evaMrqi7zTXYsZT5vcYYd3MnE92+N89dEM4VrJPS5Dtdfw6yJ46dSrXX389/fr145JLLuHrr7XUu3feecd1TN0aW1VVz9tuou4xDR3flPM8+uijFBYWun5OnvQfteZN6fnMKH2f2cZF9fYttI3nPuNiZpS+739tWbpO0r4czx47f1uqOpwpquAXb20gu7iSnm0jefuOYUQEm87/woKTsPQx2Ph69TaDES59pnlj9wAGg8KModrkzTlTxg0G6KFlbIRU1rmhaigNesjtWIPbkGo4Q8XORZwtrXL30P0Sp+jZFUmFWjohAKpWxycBtuBODnwDqp2TIT04pSb4Zap4LVbPxbDqOZj4OIYn87Tfq56rr1ch+A2X9G5Lanw4RRVWPtlc5/4joacmBGa3wu7Pmn5Sl7J4J/9NFT8fib1g0uPa46WPumpSnVw7sHWojK8+kMOlxs0AGHvLKnaLuehBGHQLBuy8bH6RshPbePOnBjQR/AxV0sV9hl8H2XUJDw+nX79+HDp0yKUyXne1OTs727W6nZSURFVVFWfPnj3nMWfO1Bd/ysnJqbdKXpfg4GCioqJq/fgL2cUV2FQDc8wL6wXaQVhcirF+15YlOAK6TNAeH/i6yS87W1rFrDc3cjK/nE5xYbx313DahAWd+0Vn9sCi++DFgbDhZbA4Un8MJk0Aw09uLqcP6YBBgZ+PneVwdknjB149HxLrKLE3lgYdHIFx1P0A3Kd8wYJNAVRf1AI2pudhxsrNGc9q7eJAC7BtVX7z9xZ0wn5NVfzLysGA/6aKAw1fJ2qW0chnwy8xGBTuvEhbzf7v2vT6q2oDbtJ+71jQ9JM6guzdairdAzXIBhj1G03oq7IIFs+ulRl3Zf8UjAaFHScLSM8NkJTfC+DH/ZlMNGzXnvSSILvFKIrWzjV1PGFKJf8N+jvvL1/Pgazi87/WV9jtUKi18MpQ44kLlyDbmwRUkF1ZWcm+fftITk4mNTWVpKQkVqxY4dpfVVXF6tWrGT1aU1IcMmQIZrO51jGZmZns3r3bdcyoUaMoLCxk06ZNrmM2btxIYWGh65hAJDEyhPm2acyzTGeOeaFre5Vq5C7TUuY5BG38si2LU5yjgbrshiiusHDb/zZxKLuEpKgQ3r9rBImNtSlQVa035PvT4dXRsHOBNtPfppO2f8Jj8Oc8v7q5TIoOYZLjBr3eakVdfvEpNkVbvU+r3HHONGhl+L1YjGH0NpzgyLpFum/nlV1cwdGcUh4wfUZUwV5t4+jfwhM5fvX3FgIfpaoYjq4C4IuKwUSHmhnSKebcL/IldVV1nTgDbWnz47dMH9yemDAzJ/PLWVZXMbvv9aAY4fRWyG2CyKWqutLF99r9WPSsKRiMmtq4KQSO/ABbqzMgEyKDGdNNU4z+cnuGr0boUSw2O1VHfiJaKcMSEqdNOAgtx2iGG99FTehFknKW14xzefzjdVRZ/fT+qSQLxW7BqhqoCk0kyBRQYV/A49fv9u9//3tWr15Neno6GzduZPr06RQVFXHbbbehKAoPPPAAzz33HJ9//jm7d+/m9ttvJywsjJtvvhmA6Oho7rrrLubMmcP333/Ptm3bmDVrliv9HKB3795MmTKFe+65hw0bNrBhwwbuuecerrzySnr27OlL91vE8NRYkqNDeMkRaDsJUmzMs0znJds0kqND/LMtS4+pgKLdGBSdW5ytwmLj7nc2s/NUIbHhQbx/93A6xIbVP9Bugz2fwxsT4Z2rtFotxQB9roMhd0DBce1mcoKjN7afreLMcAigfbbl1Lkv5tHtOdTzlwAYzpcGHRaLMuwuAG6q/ITvdN7Oa1N6PkOUA9xvWqxt6DMNJv+f9tjP/t5CYGM6+h3YqsgL6chhtR0TeiacW3zR1zSkqutk/MPafsEvCQ0ycstIbZL4jbqpqxEJ0E2712nSanbBCagoxKIaOai2D+wgGyC+O0x6Qnu87E+ufsFQnTL+5fbTgdWOqYlsPX6WMTZt8cjUa6p0zXAnoW1Qbv4Ee1g8fQzH+VXuc7z8ffPKG72Go1Qii1hioxq4NxY8ih9/68OpU6e46aab6NmzJ9OmTSMoKIgNGzbQqZP2hfLwww/zwAMP8Ktf/YqhQ4eSkZHB8uXLiYys7uv4z3/+k2uvvZYbb7yRMWPGEBYWxpIlSzAaqy84H3zwAf369WPy5MlMnjyZ/v37895773ndX3fibMuiAvNt01zbLaqR+bZpqOC/bVki20L7odrjc7Qfsdjs/PqDrWxMzycy2MS7dw6nW92enlVlsOkNmD8YPr0dTm/TZraH3Q2zt8ANb2vtr/x8FWdizwQSI4PJK63iu33nC4a1GwYrpvOmQZvG/AarEsQQwyE2rlrsxhH7H9sOneQF86va5ENSP7jhf7UP8KO/txDYmA9qWTjL7cMAxf/rsYWA5pZRnQkyGdh2ooAtx+vorAyYof3e+YmWOnouHKvYB9X2qAYzneL8V6ivyYy8HzqMhKpi+PI3rrTxyX2SCDEbSM8tZeepQh8P0v2sOpDNpUZn6y5JFXc7MZ0w3PwJNkMwk4zbiVvzFNtPnD3/67yNY2JJ6rF9g18H2QsWLOD06dNUVVWRkZHBZ599Rlpadc2poig89dRTZGZmUlFRwerVq+nbt2+tc4SEhDB//nzy8vIoKytjyZIl9VTAY2Njef/9911tuN5//33atGnjDRe9Qs2abLNia1AMze/oWT9l3O74cjyZX8baw7k8+PF2vt+fTbDJwFu3D6Nvu+jq15flw6q/wb/6wje/14TUQmNg/B/hwT1wxTyI1fqMBsIqjslo4Iah7QFY8PM5UsZXz6XX/peZZ5nOre2+Pv/qbGQSlf20zI+J2e+xP0u/7byG7P8HnQzZlIelwO2N1Pv7yd9bCGxMJzRRvQXFAzAaFMZ3T/DxiAQ9kxAZzHWO/s9v/Jhee2fPyyE4CgpPuNTuGyVTC7L32DvTOT4csz9nXzQVgxGufQVMoZC+Gjb/F4CIYBOXpmnaPl/oMGX85N5NtFdysRpDqnVuBPfSfgjG6W9gR+FW43LWfPAsFRY/m6SvKXoWIUG2t9HBFVRoCGcLr9nGRcwxL6TArs1If2idyBzzQn5rXOSfLbycOGde01dDZTFLd2fyyiqt1dTPx87yizc38tXOTAwKvHbLkOq097PH4ZuH4Z99YNVzUJYHbTrC1L9rwfXERyE83kdOtYwbHSrjPx3K4WR+Wf0DHOJF+3vPrs5eaEIadPjEh7BhYJxxF99/t9RTw/cpxTsWc7llOXZVoeqqVyAk+vwvEoQLRFFtlAYnslPtwrDOMUSHmX09JEHnONt5LdubxbGaYl7mUEi7Wnu846Nzn8SpLK52DmzRs7rEdYVLtPZLLH9Cm3SnOmV8yY5MXWmSZBdV0DV/NQD21AkQJGnCHiPtGionaP9bv6p4iy8W/MfHA6qDI138tBrnvpXslc83vnBTs12sIEG2XtmUns+8sseZY17IPMt0CtGC7E9tE5hnmc5D5oXMK3vc/1p4OYnvoa0026rYtnIh97+/leIKa73D7CpUWmxwejssvBNeHASbXgdLGST1h+vfgtnbYMS9EBTYqW+d4sIZ3TUOVYVPt5yqf4BDvOhgr1/V3n6+NOiYTuR3uRaA7of+Q0GZztp5leQQ9M3vAFgYfC3RvSf6eEBCa2CtaRQqBi7uJanigufp3jaSCT0TUFVNabwWTpXxvV+CpbzxkzjSxXcHuuhZQwy/DzqO1rqIfPkbsNsZ1yOBmDAzuSWVrDuS5+sRuo1VB3NcqeJBfa7y8Wj0T+j4B8joNhODonL14SfZsWmlr4dUTYEH2ncZjLDyLySfXlF7e0PtYls5EmTrlKa25vK7Fl5OFMWVMh6x4Z/8psEUd5V/mF6l38Jx8J/xWi9Q1ab12r71S7jvR+g3HYxN6JUdIMwcrgmgfbr5ZP0shBakvcdPeQQ7CpOVn1m+erW7hut7VBWW/Jbgynz22Tuwp9dsX49I0BuNzOq/V9iX2cZFTC8ObH0PIXC4d6xWAvXp5lO1J0s7joboDlo7qwON6JyU5EBxJnYU9qkB3CO7MQwGuPZlMIfBsZ9g81uYjQau6J8M6CtlfOee3fQ1HMOOAXpM8fVw9I+i0O6mlzkYMZwwpZJ239xByZn087/OG3iiR7Zj4aZdxrLqbY21i23lSJCtUxIjQ7jZ8oSrhVc0WvrYDcZVrtXtmy1P+GcLLyeOlPH26ula/b6N2LjasI5NQb9iuukn2pGNqhih3w1w309wy+daDZLih6JuLWRyWlvahJnJLKzgx4M5bjuvktiLjLYXAxC1+SX/LSNoLtvegwPfYMHEg5ZfM7Rrsq9HJOgNx6y+8tM/XJsqzdEMVvczx7yQmIhQHw5OaE2M6hpHWnIU5RYbH2ysVtLGYID+N2qPd37c8IuztFTxEyRRRoj+gmzQsuMueVp7vOLPkH+Uax217Mt2Z/lfPe0FYLXZCUtfDkBp2yEBWx4XcBhNpNz7MUeUTsRzluL/ToMKP9C4caSLazXZbrzfH/8wGe0uA87fLrY1I0G2TqnbwquNQQuybzat9P8WXk46jKAyKIZQxcIn1nHMMS/kLfNcVgc/yItBL5FoKKRKNfJf6xRWXLoUrn8Tkvv7etQeJcRs5LpB2k3Bgp9PnOfo5pFwubbSfYn1R9Zt3uzWc/uE/KPw7R8B+If1BvarHRnRxY//34XAxDGrb1hdXYeWpSTwoPkzVqXcIzcdgtdQFIV7xmm12W+vO0altUbQ2H+m9vvwd9qqdV0come7bJ1QFOiaoMMgG7TOIp3HaiVlX/6GIR2jaR8TSmmVrQmdO/yf7ScLGOto3RXe72ofj6Z1EREVS/G0D8hW25BceZTct28GW/0yR69RXqBlr+DmmmwHmSmXAk1oF9uKkSBbpzhbeAG8ZJuGTdVWdatUIy85RLH8toWXE4ORwg6TACghjGW2IVxs3E57JReANbY+DK98hWestxLZtqsvR+pVZjp6Zn+/L9ut6f4hnYZyNHoEJsVOxep/ue28PsFug89/CZZSziYM4w3rFXSJD/fvzA0hcBn/MPbx1eUYnaoOM88yneCLRale8C5X9k8hKSqEnOJKFm8/Xb0joQekDAK7VSutqktWtbJ4h5gwQsw6ras0GOCal8AcDsfXomx6g2scAmhfbDt9nhf7P+v3HGWkQevZbOgtrbu8zcB+/VjS55+UqcHEZ/1ExeKHXG3jvI4jVTxPjaScELcH2XG52mKMDeN528W2ViTI1jFT+ibz6qzBPBq+GKOiUqmaCFJsPBq+mFdnDWZKX/9PnY0bch0Alxi2sNXew7W9SjUxy/I4hUT6/4q8m+mZFMmgjm2w2lUWbXVvHVnEJdpM5LiSZRw9etit5/Yqa/8FJzdCUCQfJD+KHUOr+h8RvI867mGcVRZVqom3zTcytHOMbwcltDrMRgO3j+kMwJs/paPWvMF3CqDtXFD/hTWUxXWZKl6TmM4w+f+0x989xQ2dKwFYfTA74IU/K/YtxazYKIrooqmqC17nF9ddw1/D5mBXFUJ2vIO6br5vBlJDWdxkUGgT6sYuF6vnkpq+gHmW6dzS7pvzt4ttpUiQrXOm5L3HvbYFnBjwIEuv28mJAQ9yr20BU/ICQ4zH2G0SNkMwHQ05XGNcC4BNVQhSrPzWUaPt9yvyHmDmMK2d18c/n6x9E9VCEvtezOGQPgQrFjKWznPbeb1K5g5Y+Zz2+PK5LD+tzd5KqrjgSZSf/o5BwTGZaeX5uKX66DMsBBw3De9IeJCRA2eK+fFQbvWOvteDwQSnt0HOwertFUVaeQ3aSrbug2yAoXdC6niwltN5zcP0TQrHYlP5elemr0d2weQUV9Kr8CcAjGmyiu0rQsxGbvjFL3neNkvbsOLPsHex9wfiUhZPID4iGIO77pMvsF1sa0TuAPRMDbW/jtc9xTUD29HxuqcC64MQFI6xm5YynmbQapC/sF/kakO2fPCGgFiRdzdX9k8hPMhIem4pG93Zhk1RsIx6EIDBZxZRlJ/tvnN7A0s5LLpXS4nsfRUlvW5gd0YhACNS43w8OEG3rJ6LYdVzzLNMp2flu8yzTOfKvP8GxjVW0B3RoWZmOMqK3vzpaPWO8Hjodon2uOZq9pndAOQZ48knqnUE2YqipY0HRcDJDTwWr3XV+DKAU8Z/2p/BeIOWkRDe7xofj6Z10699NOHjZ/Ou9VIUVNRF98KpLd4dRKF2z+xWZXG48HaxrRAJsvWM44NQT4wg0D4IdVTCh3WOZfSdc7FPeIzue19slTey4cEmrnbUkX3880m3nrvX2Os5YkglXKng0JIAW83+7mnI2Q8RbeHKf7P5+FnsKnSIDSWljag8Cx7AMZn5unGma1Z/vm0arxtnBs5kpqA77hjTGYMCPx3KZV9mDZXj/jO03zs/Abtde5xZXY8NtI4gG6BNR7jsLwCMSn+FrobTbDqWz6mzZT4e2IWRteM7opRySsxx0G6Ir4fT6vn1pO58ljiblbYBKNZy1I9mwNnjnjVas6VkjXTxhMhgx3fV8+d4cRNpQbvY1oYE2XpGLx+E2Np1RR1jwxjVNQ7DhEcCa7LAzThXKr7ZlUlhmcVt51UMBjL7azOU3dI/wFZR7LZze5QjK2Hjq9rja16G8DjXKr+sYgue4nBWAS9YpvN8aW0l37+WXs0LlukczirwzcCEVk2H2DCm9tOyvN78qUbP3p5TIThKE0U6sU7b5hA922bRvlNaTZANMPg26DoJxVbBq+FvYcDO4h2Bt5pts6vEnvoOgLLUSzWBN8GnmI0G/jFjMA+pD7DP3hGlNAc+vFFT/fYUjpaSrJ7rShc/pcYzs+wjbbtBp4KGfop8CgX/57Jnof3whvcF0mSBmxnQPppeSZFUWu18sd29AmiDp9zGMZKJppgjS19y67k9QvlZ+MKRujT0LuiutZbYeDQPgBEieiZ4AJtd5ZajF/Oisy6tBiraivYtRy/WT995IaC4Z2wXABbvyOBMkaMThTkU0hypxDs+0n67VrI70TYqmKgQNwok+TuKAlfPh+Aoelj2cZfxm4BMGd9x8ixjVU3tOW7wtb4djOCie9tIfn3ZQO6o+gMlaoiWaffpbWCrszDirlXm8Q/D+D9qAXW2pjI/1rCLydlvSR9rHyBBtuD/rHwegsIb3ueuC1MAoiiKSwDto00n3CqAFhYSzO7OdwCQsPM/YHFfqzCP8PXvofi0lvXgUI0tq7Ky85TUYwueY1N6PpmFjX82VCCzsIJN7tRNEIQmMrBDG4Z1jsFiU3ln3bHqHU6V8b2LtVW1HO1mfLc9tXWtYjuJbg+XaWKZvzd9ijV7f+0U+wBg39Y1tFPyqFBCMHad6OvhCDW4c0wqHVO787ltjLbh6Cr46sHq1l5O/aTGVpltVig+A2f2aK/dtRA2vg4/PAtLHoAFv4D/ToH5Q+CvnWD1X7XXWUoBmGX6nm1dfyUBtg8w+XoAgnBeDEY4urL+9hrCbq2Vawe147lv97M/q5idpwoZ0KGN287d//L7OP3ya6TY88le8z8SJ97vtnO7lV0LYfdCUIww7T+uCZmtxwuw2lWSo0PoECv12IL7aWqfenf2sxeE5nDP2C78fGwL7284zq8ndiM82AQdR0F0R00Yac0LYLdSZoziNHFMToz09ZB9w6BZsPdLgg+vYJ75Nb7cNoreyf18PaomYzz0LQC5bS+ivTnEx6MRamIwKMy7YQBT/nUvEdYKrjOthW3vsb8sglhrDolHFkL3ydrq9lcPQmmu9lOWC6U5WqZec1EMoGqaC5WqicyBv2WQm/0Szo8E2YL/45x9W/mX6m01A+xWPDvXJiyIy/sm8cX20yz4+aRbg+yOiW34KO4mbsp/GdP6F2HcPWD0s0tGYQZ8/ZD2eNwfoP1Q166N6dWp4orSulq8Cd4hMbJpN7NNPU4Q3M0lvduSGh9Oem4pn24+ye1jUmH136BNBy3I3vAaAMfMXQGFa4s+gJWRra8MS1Hg6hexzB/OQMsR1m15DfuUl9zX9siD5JVU0r9kLRggYoCoivsjHWLDeOLKNB5c9GuilVImGbfT68Cr1QccWq79NIoCYbEQngBh8VqngPB4x/M47Xd4vGNfAvz8Bqx6nipMBCtW+h99Hfo95Wk3hTr42R2zIDTC+Ifh8PdwcgPs/FiboWvlAbaTGcM68sX20yzensGfrujt1nN3uvR+8ha8S1zVacq3f0LokJvdev4WYbfDF/dDRSGkDIZxv6+12yV61kVSxQXPMDw1luToELIKK2ioWEMBkqJDGC6aAIKPMBgU7rwolSe+2M1/1x7jllGdMRqMcHytdoCtEoAd1o7MNi5i4OGF0KGVZodFpaBO+Sss+TV3WRewa/ssBgwe5etRnZctO3Yw2XAcGwbaDLjS18MRGiE6VNM6uNPyMEcMszAqdlQVNqm9yFej6NO9Kx07dGw4cA6Lbbpo2eq5sOp5mPg4A7/vz122T5mz7Z/QJkzumb2M1GQLgcPMD6tTYIxBcrFwMLJLLJ3jwiitsvH1zky3nntUr/Z8EaLNjFf88I/qli/+wKb/QPpqMIVqaeLGarGeCouN7ScLABE9EzyH0aDw5FVpgBZQ18T5/Mmr0jAGwGqYoF+mD25PTJiZE/llLN+TVd3GswZRlZnMMS+kdMwjrfq7NWjwL9gbOZpgxUrcit/VF6jyQ0p2LgYgI3KgFowJfofNrvLMV3sBmG1chFGxU6maUBRYY+vLrywPMCPjBmzjH4Xh90DfaZA6FhJ7Q0RC8wJsR5Zn6ciHKKuyMd82jaqxj0pLSR8gQbYQOGx+qzrAtlXJxcKBoiiudl4Lfj7h9nOHX/RLitRQYkqPYD/wjVvPf8Fk74fvntQeT/4/iO9ea/f2kwVUWe0kRAaTGt+IaJ4guIEpfZN5ddZgkqJrp4QnRYfw6qzBTOmb7KORCYJGaJCRWSM7AfDGT0e1jeMf1upAHVxh3MQrygzCLmllaeJ1URRKL/0HBWo47csPYP3pn74e0Tmx21Xan9E0a+w9pvp4NEJjOEUyZxsXMce8kHmW6fSsfJd5lunMMS/kN8ZF7hHJtNtcWZ45xVqWSliQkaCL/9iqW976CgmyhcCgZg32Eznab5mVc3H9kHYYDQpbTxRw6Ix7+1pfNbw3HyuXAVDy3d+qFTF9hbUKPr8XrBXQ9WIYdne9QzYedfbHlnpswfNM6ZvMmkcm8dE9I/n3zIF8dM9I1jwySQJswW+4ZVQngowGtp4oYMtxx438ta+59leqJla2vV2ul8Dgvmn803QXAIbVczVVZz9lX/oJBqvaCmm7UdN9PBqhMbKLawfY8x1tH+fbprkC7dnGRezNLGyZoYmPujJRckq0IDshMljb14pb3voKCbIF/6chkTNnupsE2oAmrHRxr0QAPt18yq3nDg82Udj/HipUM1F5O7UUbV+y+m+QuQNCY+CalzXBmjrUFD0TBG9gNCiM6hrHNQPbMaprnKSIC35FYmQI1w1qB8AbP6ZrGze/BYBNMROsWLlXXeir4fkVRoNC0KCZHLEnY1At8PkvPdfXuIWc2vQlJsVORlAq5vguvh6O0AiJkSEYFXutANuJM9A2Knb+76t93PDaOj7++QTFFS0rVXCuZCdEBLfoPMKFI0G24P/USH+phTPQlvQXAG4arqWMZxVp7YJyiitZfyQPm73lK8/Txw1igW0SAOXf+3BS48RGreUMwJX/gqj6K4VVVjtbT2gtL0T0TBAEQePusakALNubRcG3z7omr3/dZRnzLNO59MxbMmnt4JpB7VlhG6I9ydoJP71QvfN8fY29SMSxZQCc7XCJj0cinIvhqbF8HD6Ll+oE2E7m26bxKjeiAD8fO8sjn+1i2F++48GPt7PmUC72C7iPcwXZkRJk+wpRFxf8n3Olt7RigZa6jOuRQJtQMwXl2uznoewSbnpjA8nRITx5VVqLUlc7x4ezq/NtWE5+R2jGWjqa27tr2E2nskRLE1ft0H8m9Lm2wcN2niqgwmInNjyI7okR3h2jIAiCn9K9bSQTeibQ7/DrtNm40DV5ffiF1Sy1TWPa4PakOltltvLv1j4pUTwQdy/t83O40rQRVv8Vek6Fg0v9pn1oQVExAyo2gwJthzUcvAn+gVMk8/73t6JArW4Uzpynf88cyMAOMXy+LYOFW05yJKeUz7dl8Pm2DFKiQ5g2uD3XD2nfZJ0ZCbJ9j6xkC4JOWLE3yxVg1ySrsIL739/K0t0tUx6f3WY9++0dAEi01ElJ90bq3LLH4OwxiO4Alze+2uJs3TW8s9RjC4Ig1OSesV0wKnZetN9IwbAHsNjsHMstBSBYxJFcKIrCtQNT+I31t5wyddQmd18fQR07hAAAXDRJREFU5zcBNsD+Dd8QoVSQq8SS0GOkr4cjnIemiGQmRYdw/4SufPfQeD7/1WhmjexIVIiJ04UVvLTyMBP/sYrrX13HR5tOUHSOdHKbXWVPhlbfXVFlc0tGo9B8ZCVbEHSAza7y9JK9De5T0WZKn16yl0vTki64VrRjfCQG4zHsKjhPkV9ahX3V3zCseq5eSxi3cuBb2PoOoMC1r0JIdKOHVvfHlnpsQRCEmozuGsezCXeyL7MI48YTXNanLVa7SniQkeToEL8IHv2Fqwe04x/LD3Jd6aNsCr4fBVVrFekn75F939cAHI8fT7xB1swCgSl9k7k0LYlN6flkF1eQGBnC8NTYevdliqIwqGMMgzrG8Kcr0vhu3xkWbjnFjwdz2HL8LFuOn+WpxXuY0jeJ6we3Z0y3eNc5lu7O5Okle8ks1EoHP9lyip8O57Y4o1FoPhJkC4IOcLaHaAwVXO0hRnW9sDplw4RHWL73DJOz33JtCzu5GsPpnRxK+y3dPXTjYSzPhaWztSejfq31jmwEq83OlmNOZXGpxxYEQaiJoijcOy6VBz/ewdtr0ymvsgLQNioEuwpGSf5x0TEujMEd2zAmY5ErpRebRZtYnvCIL4eG3Waj29mfAAjpd5VPxyI0D6dIZlMJMRu5sn8KV/ZP4UxRBV9sy2DhllMcyi7hy+2n+XL7aZKiQpg2uB2JUcE8vXgvddetnRmN0lbSu8jUlyDogOzixgPsCzmuIZbuzuS+ExfznrVaYGWCcScvWKYzeevIFqejA1rKeR3hnbjVj0FpDoQngCmkkRdq7D5dRGmVjagQEz2TIls+HkEQBJ1xZf8U2oSaySmp4qWVRwA4mlvKRX/7wT3XcR3xSz5jjnkhVlW7XX7dcgWGVc9x6JMnfDqu9F1rSSSfEjWUbsOlP3ZroW1UCPeN78ryB8fx5a/HcOuoTkSHmskqquCVVUd4qoEAG6prwJ9esldSx72IBNmCoAMSI88dfDb3uLo409FV4AnrndhVbV7fqhp40aGW6ZaLt8FYry1bcO5eUAxaoG06t4DHxqNa666G0q8EQRAE+H7fGY/qd+iFQ588weTst5hnmY7Ncbv8P9sUXrBMp/veF30aaJ/d+gUA+yKGERwS5rNxCL5BURQGdGjDM9f0ZdPjF/PKLwYzqEObc76mZkaj4B0kyBYEHTA8NZbk6BAaCysVIDlaq/25EGqmo882LsKgqFhUIybFzmzjIvddvGv0Pw+ixk2gam+S2IyrHltSxQVBEOpxPv0OkNUu0N6n1QeyGuxr/KJtGi9YprP6QJbP3qfE098DUNlVVrFbO8EmI5f3S+b2MZ2bdHxLMhqF5iFBtiDoAGd7CKBeoO18/uRVaRe8uuu8KM82LmKOeSHzLNPpXvke8yzTmWNeyGzjolrHtQhHoB1SM8ie8Oh5A2ybXeVnET0TBEFolObod7RmNqXn82zptfUCbCcv2qbxbOm1PnmfijIP0dF6DKtqIHXkNV63L/gnns5oFJqPBNmCoBOa0h7iQkmMDKkVYDtvPObbptUKtN128R7/MHbH9IBqMMOEP573JfsyiyiutBIRbCItOco94xAEQdAR3tDv0AP+/D6dWr8QgF2mPrRLaed1+4J/4umMRqH5iLq4IOiIpraHaC7DU2PZE2LghYr6qXPzbdNQgOgQg/su3qvnYkClSjURZLdoNdpNTBUf2jkGk1HmDwVBEOoiq11Nw5/fp+DDSwE4k3yx120L/oszo/H+97eiQC0BNHdkNArNR+5EBUFnONtDXDOwHaO6xrnlgmo0KLS/7hlXQF0TBS3Qbn/dM+65eK+eCyv/wkvcSI/Kdzk74g/1xNAawil6JvXYgiAIDSOrXU3DX98ntTSPzmU7AYgZfK1XbQv+jyczGoXmIyvZgiA0CefF++kle2vV9CVFh/DkVWnuuXg7AmwmPs7rKwcAVgqGPUhMWJC2HRpc0bbbVTY5+mO39ptDQRCExpDVrqZR932qiS/fp8zNX5KCnf1qRwb06+9V20Jg4KmMRqH5SJAtCEKT8fjF226rVhFfuax6uzOwttsafNnB7GIKyiyEmo30bx/tnrEIgiDoEK9MmOqAmu8TNUqvffk+VexeAsCBNmPpZTZ63b4QGDgzGgXfIkG2IAjNwqMX74mPNr7vHDXZG49qq9hDOsVglnpsQRCEcyKrXU3D+T7Zntae/+XavkwYPsg375OlgpTcdQAYel/pffuCIDQLCbIFQQh4NqY767ElVVwQBKEpyGpX0zAaFJw5VH3bR/tsIqLswPeEqRWcVmPpN2ScT8YgCELTkSUfQRACGlVVXb1KR3SRG0ZBEARBf+Rt+QKAjeYRdE6I8O1gBEE4LxJkC4IQ0BzJKSW3pIogk4EBHaQeWxAEQdAZdjvRJ78HoKTzZB8PRhCEpiBBtiAIAY0zVXxQhzYEm0QIRhAEQdAXasZmoqx5FKmhdBgkQbYgBAISZAuCENA4Rc8kVVwQBEHQI2e3fgHAT+pARnQX9XdBCAQkyBYEIWBRVdW1kj1SRM8EQRAEHaIc+AaA4wkTCA2SjC1BCAQkyBYEIWA5nlfGmaJKzEaFQR1jfD0cQRAEQXAveUeIKUvHohqJ7DvV16MRBKGJSJAtCELA4lzFHtC+jczuC4IgCLqjcs8SADbYezO6b1cfj0YQhKYiQbYgCAHLRlfrLkkVFwRBEPRH2c7FAGwOGUWX+HAfj0YQhKYiQbYgCAGLS/QsVUTPBEEQBJ1Rmkt07jYArN0vQ1EUHw9IEISmIkG2IAgByamzZWQUlGM0KAzuJPXYgiAIgr5QD3yLATu77Z0Z1Le/r4cjCEIzkCBbEISAxLmK3bddNBHBJh+PRhAEQRDcS9kurR77B3Uoo7pKxpYgBBISZAuCEJBI6y5BEARBt1SVEXx8NQBZyZMIl8lkQQgoJMgWBCEgEdEzQRAEQbccXYXJXsEpNZ7UPiN9PRpBEJqJBNmCIAQcWYUVHM8rw6DA0M4SZAuCIAj6wrrvKwBW2IYwoVeij0cjCEJzkSBbEISAw5kqnpYSRVSI2cejEQRBEAQ3Yrdh3/8tAFtDR9EtMcLHAxIEoblIkC0IQsDhShWX1l2CIAiC3jj1M0GV+RSqYUT1miCtuwQhAJEgWxCEgGPjUW0le7iIngmCIAh6Y//XAKy0D2Rcr2QfD0YQhAtBgmxBEAKKnOJKjuSUAjBc6rEFQRAEnWHZq9Vj/6AOZbS07hKEgESCbEEQAopNjlTxXkmRxIQH+Xg0giAIguBGcg5iLjhKlWqkuP14IkV3RBACEgmyBUEIKJyiZyMkVVwQBEHQGwe0VPH19j6M6J3q48EIgnChSJAtCEJAsfGosz+2pNAJgiAI+sK+TwuyV9iHML5Hgo9HIwjChSJBtiAIAcPZ0ioOnCkGRPRMEARB0Bkl2SgZmwHYETaaXkmRPh6QIAgXigTZgiAEDJuOaavYXRPCiY8I9vFoBEEQBN2y8nlYPbfhfavnavvdzYFvUVDZYe9CWs9e0rpLEAIYk68HIAiC0FQkVVwQBEHwCgYjrPwLdlV1bdp9qpCEw3/DsOo5mPi4+20e+AaAFbYhjO8pqeKCEMhIkC0IQsAgomeCIAiCVxj/MIfOFNN91XMYHImfh5f8g4vNX3Mo7bd0H/+we+1VlWI/sgoD8D1DuadbvHvPLwiCV5F0cUEQAoLCcgt7M4sAGCkr2YIgCIIHWbo7k8lbRzLPMh2TYgfgPvPXbLZ159Mduez45j+Q/hPkHobKkgszUjMl/cgPGGwVnLAnENm+P9Gb/umZlHRBELyCrGQLghAQbD6Wj6pC57gw2kaF+Ho4giAIgk6x2VWeXrIXFZhvm8ZDpoU4y6OHGg8x1HgINn0Im2q8KDgKIpMcP8l1fqdU7zPV0BNxpKQDkJ8OwAr7UOaEfgkrX/NMSrogCF5BgmxBEAKCTemOeuxUWcUWBEEQPMem9HwyCysAmG1chKKARTVgVuxssvUggwTacpZuYSXE2vIwWUuhskj7yT147pOHxtYOwjuNgZV/wWYMwQhEUsaIY44A290p6YIgeA0JsgVBCAg2OIPsLlKPLQiCIHiO7OLqAHuOeSHzLNOZb5tW43l/HrT9Ggq148Mpp3dEKUPjKukbWUaXkGLaGc4SZc1DKc6C4kwozgJbJZTnaz/Ze2rZNNoqUFW40bSa140z6RR3C1O87bggCG5Dguw6vPLKK/z9738nMzOTPn368K9//YuxY8f6eliC0KopqbSyO0O7m5H+2IIgCIInSYwMqRdgA67fc8wLAfi5091kF1eSngubS0LZXKc0OyzISK+kSNI6R5GWFEW/eJXuIcWEVJyB4iwOHj7Exh17SFTOcqlhCwZFpVI18dfSq+H9rbw6azBT+iZ71XdBENyDBNk1+Pjjj3nggQd45ZVXGDNmDK+//jpTp05l7969dOzY0dfDE4RWy5bjZ7HZVdq1CaV9TJivhyMIgiDomOGpsewJMfBCRXWA7WS+bRoKEB1i4IO7R2I0KJRVWdmfVcze00XszSxi7+ki9mcVUVZlY+uJAraeKHC93qBAanw4vZPTWH0ggWLrcGYbF3GZcTOVqolgxcpvjIt4yTaNp5fs5dK0JIwG6ZctCIGGBNk1eOGFF7jrrru4++67AfjXv/7FsmXLePXVV3n+eVF4FARfsfGoo3WXpIoLgiAIHsZoUGh/3TPc//5WFECtsU9BC7RfvW6wK/gNCzIxuGMMgzvGuI6z2VXSc0tdQbf2u5DckiqO5JRyJKcUaDwlHWB+4TQ2peczqqtokQhCoCFBtoOqqiq2bNnCH//4x1rbJ0+ezLp163w0KkEQADY66rFHiuiZIAiC4AWm9E3m1VmDeXrJXpcIGkBSdAhPXpV23jRuo0GhW2IE3RIjuHpAimt7dnEFe08XsXDLKVL3vHzelPTs4oFu9kwQBG8gQbaD3NxcbDYbbdu2rbW9bdu2ZGVlNfiayspKKisrXc+Lioo8OkZBaI2UV9nYeaoAkJVsQRAEwXtM6ZvMpWlJbErPJ7u4gsTIEIanxrYofTsxMoTEniEEm4xs3GuvFWA7cT43KnYSI6VlpSAEIhJk10FRal84VVWtt83J888/z9NPP+2NYQlCq2XbybNYbCpJUSF0jJV6bEEQBMF7GA2KR9K1h6fG8lD4LLJqrJLX5CXbNJKiQ5gtYp+CEJAYfD0AfyE+Ph6j0Vhv1To7O7ve6raTRx99lMLCQtfPyZMnvTFUQWhVbDyqpYoPT41tdMJLEARBEAIJo0HhyavSAK3OuybO509elSaiZ4IQoEiQ7SAoKIghQ4awYsWKWttXrFjB6NGjG3xNcHAwUVFRtX4EQXAvG9NF9EwQBEHQH86676To2inhSdEh0r5LEAIcSRevwUMPPcQtt9zC0KFDGTVqFP/5z384ceIEv/zlL309NEFotZwp0nQPRojomSAIgqAzPFH3LQiC75EguwYzZswgLy+PZ555hszMTPr27cs333xDp06dfD00QWjVxEcE0zUh3NfDEARBEAS346m6b0EQfIcE2XX41a9+xa9+9StfD0MQhBqMkHpsQRAEQRAEIUCQmmxBEPweqccWBEEQBEEQAgUJsgVB8DtsdhWrze56PrSTBNmCIAiCIAhCYCBBtiAIfsXS3Zlc9LcfKLdUB9l3vv0zS3dn+nBUgiAIgiAIgtA0JMgWBMFvWLo7k/vf30pmYUWt7WeKKrj//a0SaAuCIAiCIAh+jwTZgiD4BTa7ytNL9qI2sM+57ekle7HZGzpCEARBEARBEPwDCbIFQfALNqXn11vBrokKZBZWsCk933uDEgRBEARBEIRmIkG2IAh+QXZx4wH2hRwnCIIgCIIgCL5AgmxBEPyCxMgQtx4nCIIgCIIguB+7o3Qvp7iS9UfypJSvASTIFgTBLxieGktydAhKI/sVIDk6hOGp0s5LEARBEATBFyzdnclTi/cAcCi7hJve2MBFf/tBxGnrIEG2IAh+gdGg8ORVaQD1Am3n8yevSsNoaCwMFwRBEARBEDyFswtMQbml1vasQukCUxcJsgVB8Bum9E3m1VmDSYqunRKeFB3Cq7MGM6Vvso9GJgiCIAiC0HqRLjDNw+TrAQiCINRkSt9kLk1LYlN6PtnFFSRGainisoItCIIgCILgG5rTBWZU1zjvDcxPkSBbEAS/w2hQ5AItCIIgCILgJ0gXmOYh6eKCIAiCIAiCIAhCo0gXmOYhQbYgCIIgCIIgCILQKNIFpnlIkC0IgiAIgiAIgiA0inSBaR4SZAuCIAiCIAiCIAjnRLrANB0RPhMEQRAEQRAEQRDOi3SBaRoSZAuCIAiCIAiCIAhNQrrAnB9JFxcEQRAEQRAEQRAENyFBtiAIgiAIgiAIgiC4CQmyBUEQBEEQBEEQBMFNSJAtCIIgCIIgCIIgCG5CgmxBEARBEARBEARBcBMSZAuCIAiCIAiCIAiCm5AgWxAEQRAEQRAEQRDchATZgiAIgiAIgiAIguAmJMgWBEEQBEEQBEEQBDchQbYgCIIgCIIgCIIguAmTrwegJ1RVBaCoqMjHIxEEQRAEQRAEQWh9OGMxZ2zmCyTIdiPFxcUAdOjQwccjEQRBEARBEARBaL0UFxcTHR3tE9uK6ssQX2fY7XZOnz5NZGQkiqL4eji1KCoqokOHDpw8eZKoqCix4aPz68WGHnzQiw09+OANG3rwwRs29OCDXmzowQdv2NCDD96woQcf9GJDDz54y8aFoqoqxcXFpKSkYDD4pjpaVrLdiMFgoH379r4exjmJiory+AdBDzb04IM3bOjBB73Y0IMP3rChBx+8YUMPPujFhh588IYNPfjgDRt68EEvNvTgg7dsXAi+WsF2IsJngiAIgiAIgiAIguAmJMgWBEEQBEEQBEEQBDchQXYrITg4mCeffJLg4GCx4cPz68WGHnzQiw09+OANG3rwwRs29OCDXmzowQdv2NCDD96woQcf9GJDDz54y0YgI8JngiAIgiAIgiAIguAmZCVbEARBEARBEARBENyEBNmCIAiCIAiCIAiC4CYkyBYEQRAEQRAEQRAENyFBtiAIgiAIgiAIgiC4CQmyhYAkPT2dN998M6Bt6MEHb9jQgw96saEHH7xhQw8+6MWGHnzwhg09+OANG3rwQS829OCDN2zowQdv2PDI+VVBCDB2796txsbGqiNHjgxYG3rwwRs29OCDXmzowQdv2NCDD3qxoQcfvGFDDz54w4YefNCLDT344A0bevDBGzY8dX5ZyRYCiu3btzNixAg6duxIYWEheXl5AWdDDz54w4YefNCLDT344A0bevBBLzb04IM3bOjBB2/Y0IMPerGhBx+8YUMPPnjDhkfP79aQXRA8yPbt29XQ0FD1ySefVNesWaOGhYWpJ0+eDCgbevDBGzb04INebOjBB2/Y0IMPerGhBx+8YUMPPnjDhh580IsNPfjgDRt68MEbNjx9fgmyhYBg27Ztanh4uProo4+qqqqq6enpatu2bdXdu3cHjA09+OANG3rwQS829OCDN2zowQe92NCDD96woQcfvGFDDz7oxYYefPCGDT344A0b3vBBgmzB7zl8+LCqKIrrg6CqqlpQUKDGxMSoX3/9dUDY0IMP3rChBx/0YkMPPnjDhh580IsNPfjgDRt68MEbNvTgg15s6MEHb9jQgw/esOENH1RVarKFAODYsWO88cYbPPfccwBYLBYMBgOhoaGUl5fXO/6HH37wOxt68MEbNvTgg15s6MEHb9jQgw96saEHH7xhQw8+eMOGHnzQiw09+OANG3rwwRs2vOEDIDXZgv9jtVpVVVVVu92uqqqq2mw2VVVVddiwYeq8efNq7XviiSfUlJQUNSMjw69s6MEHb9jQgw96saEHH7xhQw8+6MWGHnzwhg09+OANG3rwQS829OCDN2zowQdv2PCGD6qqqqYLC80FwbNkZ2dz5swZKioq6NOnD2FhYSiKgt1ux2DQEjDCw8PZv38/AIqi8OSTTzJ37lzWrl1LSkqKz23owQd5n1qXDT34IO9T67KhBx/kffIfG3rwQS829OCDvE/+Y8MbPtSj2WG5IHiYHTt2qJ06dVL79eunKoqiTpkyRZ0/f75rf0VFhaqqqnrnnXeqs2bNUlVVVf/0pz+pISEh6ubNm/3Chh588IYNPfigFxt68MEbNvTgg15s6MEHb9jQgw/esKEHH/RiQw8+eMOGHnzwhg1v+NAQEmQLfsWZM2fUzp07q3PmzFHT09PVDRs2qHfccYealpam/uEPf6h17Ny5c9Urr7xSffjhh9WgoKAmfxA8bUMPPnjDhh580IsNPfjgDRt68EEvNvTggzds6MEHb9jQgw96saEHH7xhQw8+eMOGN3xoDAmyBb9i3bp1aq9evWr1qTt16pT617/+Ve3atav65z//2bX95ZdfVhVFUSMiItQtW7b4jQ09+OANG3rwQS829OCDN2zowQe92NCDD96woQcfvGFDDz7oxYYefPCGDT344A0b3vChMSTIFvyKrVu3qnFxcery5ctrbc/OzlafeuopdciQIerSpUtVVVXVjRs3qmPHjm12TztP29CDD96woQcf9GJDDz54w4YefNCLDT344A0bevDBGzb04INebOjBB2/Y0IMP3rDhDR8aQ4Jswa84ceKEOmjQIPW3v/2tWlxcXGvf8ePH1X79+qlPPvmkqqpaDUVubq7f2dCDD96woQcf9GJDDz54w4YefNCLDT344A0bevDBGzb04INebOjBB2/Y0IMP3rDhDR8aQ4JswaeUlZWp+fn5qs1mc8nlv/fee6qiKOq8efNUi8VS6/h7771Xveyyy9Sqqiq/saEHH7xhQw8+6MWGHnzwhg09+KAXG3rwwRs29OCDN2zowQe92NCDD96woQcfvGHDGz40FWnhJfiM3bt387vf/Y4zZ84QHx/P6NGjefTRR5k1axYZGRn84Q9/oLy8nDvuuMMlnV9QUEDnzp0xmZr2r+tpG3rwQd6n1mVDDz7I+9S6bOjBB3mf/MeGHnzQiw09+CDvk//Y8IYPzUFRVVV1+1kF4TwcPXqUYcOGMWPGDMaMGcO6devYsGEDqqqyatUqoqKimD9/Po888ggTJkwgOjqakJAQPvvsM9atW0ffvn19bkMPPsj71Lps6MEHeZ9alw09+CDvk//Y0IMPerGhBx/kffIfG97wodm4fW1cEJrA66+/rl5yySWq1Wp1bfvhhx/UwYMHq7169VILCwtVVVXVFStWqI899ph62WWXqffdd5+6a9cuv7GhBx+8YUMPPujFhh588IYNPfigFxt68MEbNvTggzds6MEHvdjQgw/esKEHH7xhwxs+NBcJsgWf8NRTT6nt27evtc1ut6vr1q1Thw0bpk6dOlUtLy+vtb9uHYWvbejBB2/Y0IMPerGhBx+8YUMPPujFhh588IYNPfjgDRt68EEvNvTggzds6MEHb9jwhg/NxeD+tXFBOD9jx44lJiaGL774ArvdDoCiKAwbNozf/va3nD59mu3btwO49je3XsLTNvTggzds6MEHvdjQgw/esKEHH/RiQw8+eMOGHnzwhg09+KAXG3rwwRs29OCDN2x4w4dm49EQXhAaIT8/X73ooovUiy++WN2xY0etfWVlZWpcXJz6wgsv+LUNPfjgDRt68EEvNvTggzds6MEHvdjQgw/esKEHH7xhQw8+6MWGHnzwhg09+OANG97woblIkC14DWedhM1mU1VVVdPT09W2bduqF198sbphwwbXcRaLRZ00aZL63nvv+Z0NPfjgDRt68EEvNvTggzds6MEHvdjQgw/esKEHH7xhQw8+6MWGHnzwhg09+OANG97woSVIkC14Fbvdrr733nvqyZMnVVXVPhBdu3ZVx4wZoz7++OPqt99+q/7ud79TY2Ji1MOHD/ulDT344A0bevBBLzb04IM3bOjBB73Y0IMP3rChBx+8YUMPPujFhh588IYNPfjgDRve8OFCkSBb8ArOWaZ//vOfqsFgUD/88ENX4/fTp0+rv/nNb9QBAwao3bt3V4cPH65u27bN72zowQdv2NCDD3qxoQcfvGFDDz7oxYYefPCGDT344A0bevBBLzb04IM3bOjBB2/Y8IYPLUX6ZAse4cSJE6xbt46ysjKGDh1K//79XfteeuklbrrpJuLi4rDb7RgMBqxWK1VVVRQVFREeHk5kZKTPbejBB3mfWpcNPfgg71PrsqEHH+R98h8bevBBLzb04IO8T/5jwxs+uB2vh/WC7tmxY4fatm1btX///mq3bt1Uk8mkPvHEE+rOnTsbPL6oqMjvbOjBB2/Y0IMPerGhBx+8YUMPPujFhh588IYNPfjgDRt68EEvNvTggzds6MEHb9jwhg+eQIJswa2cPXtWHTp0qPrwww+rpaWlamlpqfrmm2+qSUlJ6u23365u37691vFPP/20+qc//UnNzc31Gxt68MEbNvTgg15s6MEHb9jQgw96saEHH7xhQw8+eMOGHnzQiw09+OANG3rw4f/bO/PoKMp0D/86GyRhSVgETBBDZBFkF1DQDDAgiyyOCihI2GRAUBBZZJDBcWS5OqAjCi6ogPvMKLiigAjqOKMgW8IWFQiQEPY9kJDu/t0/uF03AcTuputL5c37nMM5pNP5njzVVV91dVeqTThMNNiFHmQrIeXIkSOsX78+lyxZUuT2Dz/8kLVr1+bw4cN56NAh6/YhQ4awYcOGAW0MdjskNJhwSGiQ4pDQYMIhoUGKQ0KDCYeEBhMOCQ1SHBIaTDgkNJhwmGiwCz3IVkKG1+u1Lp//zjvvkCTz8vKs73/wwQeMioriW2+9VeTn9u/f7xiHhAYTDgkNUhwSGkw4JDRIcUhoMOGQ0GDCIaFBikNCgwmHhAYTDhMNdqIH2UrIGTlyJKtVq8bdu3eTJM+dO0ev10uSfOSRR9i0aVOePn3augqgEx0SGkw4JDRIcUhoMOGQ0CDFIaHBhENCgwmHhAYpDgkNJhwSGkw4TDTYQZj5S60pkjhy5Aiys7Oxbds267Zx48ahXr16uOeee7B7925ERkbC4/EAAGrWrImyZcsiJiYGkZGRjnBIaDDhkNAgxSGhwYRDQoMUh4QGEw4JDSYcEhqkOCQ0mHBIaDDhMNFgCj3IVoImLS0NKSkp6NixI5o3b44+ffpg1apVqF27NqZOnYqIiAj07NkT27dvR0REBAAgMzMTsbGxOHv2LOjHp8fZ7ZDQoMupdDkkNOhyKl0OCQ26nJzjkNAgxSGhQZeTcxwmGoxi+3vlikiysrKYkJDARx99lN999x2//vprNmvWjG3btuVrr71Gkvzuu+/YtWtXlilThikpKezQoQMrVKhw0ZUAi8shoUGXU+lySGjQ5VS6HBIadDk5xyGhQYpDQoMuJ+c4TDSYRg+ylaD49NNPWb9+fR45csS6LSsri/fccw9vuukm6wIFHo+HCxYs4J/+9CdOmzaNGRkZjnFIaDDhkNAgxSGhwYRDQoMUh4QGEw4JDSYcEhqkOCQ0mHBIaDDhMNFgGj3IVoLik08+YWJiInfu3EmS1sUG9u3bx549e7J9+/bcs2ePox0SGkw4JDRIcUhoMOGQ0CDFIaHBhENCgwmHhAYpDgkNJhwSGkw4TDSYRg+ylaD45ZdfGBsbyxkzZli3FRQUkCR3797NChUqcNasWY52SGgw4ZDQIMUhocGEQ0KDFIeEBhMOCQ0mHBIapDgkNJhwSGgw4TDRYBo9yFYCxuPxkCTnzp3L8PBwvvnmm9btbrebJHn33Xfz/vvvd6xDQoMJh4QGKQ4JDSYcEhqkOCQ0mHBIaDDhkNAgxSGhwYRDQoMJh4mG4iCiuC+8ppQcPB4PwsPDERZ2/qL0ffr0wc6dOzFkyBDk5+dj6NCh1n1zc3ORlJTkOIeEBhMOCQ1SHBIaTDgkNEhxSGgw4ZDQYMIhoUGKQ0KDCYeEBhMOEw3FSnEf5SslC6/Xy9GjR/P48eMkyezsbE6ZMoUul4v9+/fnhAkTOHLkSJYrV45bt251pENCgwmHhAYpDgkNJhwSGqQ4JDSYcEhoMOGQ0CDFIaHBhENCgwmHiYbiQg+yFb9xu91MS0tjWFgYx40bZ93u9Xq5fPlydunShe3ateMf/vAHbtq0yZEOCQ0mHBIapDgkNJhwSGiQ4pDQYMIhocGEQ0KDFIeEBhMOCQ0mHCYaihMX6bRP7lacwC+//IL3338fBw8eRLNmzdC1a1dUqVIFbrcbGRkZqFatGqpUqQIAIAmXy4WzZ88iOjoaeXl5KFu2bLE7JDTocipdDgkNupxKl0NCgy4n5zgkNEhxSGjQ5eQch4kGx2HzQbxSAtm8eTPj4uLYq1cvNm7cmM2bN2dSUhLT09NJnn+FqTBnz54l+f8XLrjw+8XhkNBgwiGhQYpDQoMJh4QGKQ4JDSYcEhpMOCQ0SHFIaDDhkNBgwmGiwYnoQbZShPz8fHbv3p2DBw8meX7FXrduHXv27Mm4uDh+//33JGld7e+JJ55gixYtePLkScc4JDSYcEhokOKQ0GDCIaFBikNCgwmHhAYTDgkNUhwSGkw4JDSYcJhocCphxf1OuuIsPB4PDhw4gGbNmgEAXC4XmjVrhtdeew233XYbunXrhj179iA8PBxerxcpKSnIy8vD0aNHHeOQ0KDLqXQ5JDTocipdDgkNupyc45DQIMUhoUGXk3McJhocS3Ef5SvO4/bbb2f37t0vun3v3r1s3749e/bsaZ3KQZJnzpxxnENCgwmHhAYpDgkNJhwSGqQ4JDSYcEhoMOGQ0CDFIaHBhENCgwmHiQYnou9kKxdx++23Izs7GwsXLoTb7bZuT0xMRN++ffHTTz/h5MmT1u3R0dGOc0hoMOGQ0CDFIaHBhENCgxSHhAYTDgkNJhwSGqQ4JDSYcEhoMOEw0eBE9CC7lLNv3z588cUXWLVqFTIyMgAAqampqFWrFubOnYvFixcjPz/fun+TJk2Qn5+PU6dOOcYhocGEQ0KDFIeEBhMOCQ1SHBIaTDgkNJhwSGiQ4pDQYMIhocGEw0RDiaG430pXio9NmzYxMTGRDRo0YPXq1VmtWjU+99xzJMlTp06xU6dObN26NZ988knm5ubyxIkTnDhxIhs3bsyjR486wiGhQZdT6XJIaNDlVLocEhp0OTnHIaFBikNCgy4n5zhMNJQk9CC7lHL48GHWq1eP48eP59GjR7lhwwbOnDmTYWFhHDt2LMnzG8SIESPYuHFjli1blq1bt2aVKlW4fv16RzgkNOhyKl0OCQ26nEqXQ0KDLifnOCQ0SHFIaNDl5ByHiYaShh5kl1J27drF66+/nuvWrSty+3vvvceIiAg+9thjJMm8vDzu2rWLCxcu5Keffspdu3Y5xiGhwYRDQoMUh4QGEw4JDVIcEhpMOCQ0mHBIaJDikNBgwiGhwYTDRENJQw+ySxmHDh3iwYMH+fPPP9PlcnH58uUkz3/gu+/D3hcsWMCwsDAuWbLEkQ4JDSYcEhqkOCQ0mHBIaJDikNBgwiGhwYRDQoMUh4QGEw4JDSYcJhpKKnqQXYpYt24dExMT+c0335Ak+/bty/bt2zMjI4Pk+Q+I93g8PHfuHAcMGMD+/fszPz+fHo/HMQ4JDSYcEhqkOCQ0mHBIaJDikNBgwiGhwYRDQoMUh4QGEw4JDSYcJhpKMnp18VLCxo0bkZKSgt69e+PWW28FAPTu3Rt5eXn4+9//jszMTLhcLoSFhSEyMhKVKlXC3r17ERUVhbAw/1YTux0SGnQ5lS6HhAZdTqXLIaFBl5NzHBIapDgkNOhyco7DREOJp7iP8hX72bZtGytUqMCpU6eSJAsKCqzvzZ49m82bN+eQIUO4detW6/aRI0eyT58+zMvLc4RDQoMJh4QGKQ4JDSYcEhqkOCQ0mHBIaDDhkNAgxSGhwYRDQoMJh4kGCehBtnA2bdrEuLg4xsTEcN68edbt+fn51v/nzZvH9u3bs0qVKuzduzdvv/12li9fnps2bXKEQ0KDCYeEBikOCQ0mHBIapDgkNJhwSGgw4ZDQIMUhocGEQ0KDCYeJBim4SLK4301X7GHDhg1ISUlBamoqypQpg//85z/o3bs3xo0bBwA4d+4coqKiAABpaWlYvXo1vv/+eyQmJmLQoEFo0KBBsTskNOhyKl0OCQ26nEqXQ0KDLifnOCQ0SHFIaNDl5ByHiQZRFPdRvmIPWVlZdLlcnDBhAkly7969HDFiBFu3bs3Zs2db9zt37lzQjuzsbFsddo9Pkjk5OXS5XBw/frxtDrsfCwmPNWmmw26HieUkwSGhQYpD5w//MLGvkLCcJGwTUhxSnkNJWE4S5lkTy0kaepAtlEOHDvGjjz4iSesS+nv37uUDDzxw0QbhdruDcuzbt48ffvghSVpXCgylw+7xDx06xI0bN/KLL74gad9yOnnyJD/++GPbHKYe608//dRWh93LiSQPHz7Mzz77jGTo1ym32839+/db49vVkJOTYz3edmwX5PmdqZ0OE+uT3fOHFIed24QPu9cnuztM7CtMzR927y9MzE8m5g9THfoc6vLYvV1I2e5I+9dZE/s7aehBtjD27NnDf//739bXXq/XuoQ++esbRCCX0z9z5kyRv73w/bxvo7pSx9mzZy+6byjHJ8nNmzezadOm1oTkdrtDvpzS0tI4ceLEIreF0mHisb4UJW05keTBgwf5448/csuWLTxx4oT186FybNmyhWPGjOGePXuK3B7KhtOnT/P48eNFtr1QL6dLvQJt9zpV0uYn0swcZbfD7m2CNLM+2d1hYl9hYv6we39hYn66FKF2mOjQ51D+Yfd2IWG7I+1fZ03sU6WiB9mCyMnJYeXKldmuXTuuWLHCut33qtmFr561bduWTz75ZECO9PR0tmvXjjfeeCMbNmzIefPmcceOHdb4F27UgTrS09PZuXNnpqSksFmzZnz55Ze5e/fukI1Pkhs3bmS5cuXocrnYrl27i74fiuW0ceNGli1b1rry4oVjX2mHicd6x44d/Oqrr371+yVhOZHnD+IbNmzIevXqsWrVqpwyZQrPnDkTso60tDRWqVKFQ4cOtbaFwoSiYcuWLezUqRObNWvG5ORkfvnll0V+91A8Ftu3b+fAgQPZsWNHdu3a1drufDvSK3WYWJ/snp98DrvnKLsddm8TpP3rk4kOE/sKE/OH3fsLE/OTifnDRIc+h/IPu7cLCdsdaf86a2KfKhk9yBbEpk2bGB8fz+uuu44dO3bkypUrrSc0vlcZfV9nZWXxvvvuY8eOHXnkyBG/xt+xYwfj4+M5fPhwvvHGGxw2bBgbNWrEP/zhD1y/fj3JohtdoI6ffvqJlStX5qhRo/jBBx9wxIgRrFixIu+44w5u3rz5iscnz+8coqOjOXnyZC5fvpx169blsmXLrLF9+P4frCM2Ntb6G6Vf40o67H6sMzIyGBUVRZfLxaVLl/7q/Zy+nH7++WdWrVqVEyZM4I4dO/jXv/6V1apV44EDB4o0BLusDh8+zKZNm3L06NHWbcePH+eRI0esV36vdJ1NT09npUqVOGrUKC5ZsoR33HEHr7nmGutdwgtfkAjW4XvCMXHiRN58882sXbv2Ra9eB/t4m1if7J6fSDNzlN0Ou7cJ0v71yUSHiX2FifmDtHd/YWJ+MjF/mOjQ51DO2C4kbHek/eusiX2qdPQgWxB5eXkcOnQo169fz5YtW7J9+/b89ttvSbLIK3W+DS87O5s5OTl+jz9r1ix27NixyG1vv/02O3bsyNtuu41paWlBOzweD0eNGsXU1NQit995552MiIhgly5duGXLlitqWLt2LWNiYvjYY4+RPP83MrVr1+Yf//jHS94/GEdmZiYrVqzIgQMHkjz/2YHTp0/nkCFD2KtXLy5btqzI5BPsY2HnY33s2DHecccd7NevH1NTUxkbG2v9/dulcPJyevTRR3nXXXdZX3s8Hnbu3Jnffvst161bZ50mVnhHEYhj9+7dvPXWW3no0CGeO3eOffr0YZs2bVijRg0OGzaMa9euvaLxs7Ky2KRJkyIvRKSlpbFXr17ct28fT506ZX3mZLCOnJwctmzZkuPGjbNuO3ToEJOTk/nGG29cdP9AHwsT6xNp7/xEmpmjTDjs3ibsXp9MdJjYV5D2zx8+7NpfmJifTMwfJjpIfQ7lL3ZvFyV9uyPNrLN271NLA2HFfXVzJXSUKVMG69atQ25uLv7xj3/g+PHjmDFjBjp06IDevXvj3LlzIAmXywWSuPrqq1G9enW/xz937hyysrJw4sQJ67Z+/frhgQceQEFBAV588UUcP34cAAJ2hIWF4cCBA4iLiwMAnD59GgDQokUL/P73v8epU6fwzjvvwO12B93wwgsvYMiQIZg2bRq8Xi+qVKmCv/zlL1i8eDH++9//XnT/YBxr1qxBjRo1EBUVhYyMDHTr1g3Lli3DyZMnceLECQwZMgSvvPKK1RfsY2HnY33w4EHUqVMH99xzDxYtWoT77rsPffv2xWeffXbJ+7tcLni9Xkcup7Nnz+LUqVM4evQoAGDatGlYvnw5RowYgXvuuQf33HMP1q9fD5fLhbCwsIAdWVlZ2Lx5M3JzczFgwAAcP34ckyZNwkMPPYTs7GyMHTsWW7duDXr8bdu2oV27dnj44Yet295991189dVX6NChA5o1a4bHH38cOTk5QTs2btwIt9uNYcOGWbdVrlwZlSpVwqFDhy66f6CPhYn1CbB3fgLMzFEmHHZvE3avTyY6TOwrAPvnDx927S9MzE8m5g8THYA+h/IXu7eLkr7dAWbWWbv3qaUCO4/gFXMUFBSQJIcNG8YXXniBJHnixAlWrlyZ0dHRfPHFF637Fj6lxx9891+0aBETEhK4bt26Ik6SfO6553jVVVfxp59+Crph4MCBbNiwoXW6zv79+1m9enV+8MEH1qmAx48fD3r8S5GWlsY6derwmWeeIRmaKyIuXLiQKSkpjI+PZ9euXXngwAFrGU6aNImVK1fmzz//HPT4vt/Rjsfax7Zt24p8PXz4cMbGxvKTTz6xbvN4PNaFhoJhwYIFti4nknz66adZv3593nHHHRw8eDAjIiL4/vvv89ixY1y9ejVvu+02TpgwgQUFBUEtq5ycHN5yyy2cM2cOe/ToYZ2SR5IrVqxgmzZtuHDhwitq2L59u/X/efPm0eVycf78+dy8eTOfeuopXnPNNfz888+DHt/tdvOVV16xvvadatazZ0/OmDGjyH2dvD698cYbts5PpJk5ym6H3duEifXJRMeF2LGvMDF/2L2/sHt+Is3MH3Z26HOowLB7u5Cw3ZH2b3sm9qnS0YNsYTzzzDMcPnw4SXLIkCG86qqrWL9+fXbt2jXgja3wKSY+br31VjZu3JjHjh0jWXSjS0hI4KxZs4L+3XNyctiwYUNWq1aNXbt2ZWxsLO+//36SZG5uLqtWrcpvvvkmqLEvN/GPGzeO1atX56FDh4Ia20fhZfH666+zX79+1mlHhZdjuXLlrEn3SgjlY+3jUlck9fHHP/7ROlXP7XZz8uTJfPLJJ4t0B8r8+fNtX05/+9vfOHPmTN51110cO3Zske/16dOHnTt3vqLxU1NTGRYWxooVK3Lr1q1FvteuXbuLTt/zlwvX2fz8fH744YfW6WY+ateuXeTU3CtxFF7+d9xxR5FT0V544QV+/fXXAY1vYn0q/AQlJSXFtvmJJA8cOMDrr7/eljnKh53zoA+7twkfoV6fLhxz1qxZIe8wsa8ojF3zx4WEen9hYn4yvT8iQ9sh6TkU+esHg3ZsFwMGDLB1uyip2x1p/7Zncp8qnYjifiddCZyMjAwsXLgQmZmZ6NChA5o0aYJWrVoBAGrUqIFVq1Zh2LBhWLp0KdasWYPIyEi0bdsWL7/8MlJSUhATE/Objp9++gmvvfYatm3bhk6dOqF79+5ISkrCokWL0L17d3Tq1Akff/wxatSoAQDIzc1FQkICrr76ar8aMjMzsXTpUuzcuROdO3fG7373O1SvXh3fffcdZs2ahaioKPTt2xcDBw4EAKSnp6NixYqWzx8OHz6MvLw8JCYmIjw8/KLve71ehIWFYeDAgfj888/x7rvv4qGHHrJO3wnUERERAY/Hg/DwcAwePBjNmzdH/fr1AcA6VWfHjh1ISkpCgwYNAh7fh+/3S0xMDMljXdgRFlb0L0gKf/3yyy/D5XLhvvvuQ6tWrbBixQps2rQJERG/PY1cuM7ecMMNuPnmm3H//fejefPmaNiw4RUtJ+Didapt27aIiYnB+PHjAQAPP/zwRb9ruXLlUKVKFbjd7t/suPCx8D3WixYtwunTp7FkyRJ8+OGHSEhIQIUKFQAAiYmJ1jrgD5dbZ6OiotCjRw/rMfF4PDh+/DiSk5PRokWLkDjCwsKs7cLr9SIqKgoAMHXqVEybNg2bN28OaHy71qfCDpfLhYKCAkRGRmLRokW4/fbbr3h+Aoqus+3bt0fTpk3RqlUrrF27FtOnT0d0dPQVz1F2z4N2bxO/1uBbb0KxPgEXr1O+323cuHEh6TC9rwDsnz98hHJ/YXp+MrU/KvwcKlQdEp5DXW7bBkKzXVzouOWWWxAdHY033ngDubm5V7xdSNjuLnTYse2Z2KeWSorv+F4Jhi1btjAuLo49evRgjx49mJyczNatW3Pu3Lkkz58eVLVqVdaqVcu6+h95/rP6du7c6ZcjLS2NV111FXv37s2+ffuyQoUKnDNnTpHvN27cmLVr1+a8efO4ZMkSPvroo6xcuTJ/+eUXv8a/5ppr2K5dOzZv3pxhYWF86aWXLvszkyZN4o033sjDhw/71bBlyxZWqlSJQ4YM4b59+y57X4/Hw169erFFixZ+jf1bjsu9EzJlyhQ2adKE2dnZQY9f+AIT1atXv6LHOpDlRJ5/xTQpKYmVK1fmxo0b/XZcap19/vnnf/VnAllO5KXXqZdffpnk/z8ekyZNYmJiIr/99lv+8MMPnDp1KuPj44tcDOZyDZdaTr5XdY8fP86uXbuyYsWKHD58OOfNm8cxY8YwPj7+olMdA3UU5sJ3EqZOncp69eoxMzMzZA7f6b29evXis88+y2eeeYbR0dHWKWNXOn5hgl2fLudIS0tjkyZNgp6ffI4L19lWrVpd9syKQOcou+dBu7eJ33L43sG7kvWJ/PXHu/A7hHZs25ci1PsKE/NHqPYXTpmfChPK/dG8efOs+1z4bnigHRKeQ/mzbfsIdru4nIO88u1CwnZ3OUdhrmTbM7FPLa3oQXYJ4ty5cxwwYACHDh1q3bZx40Y+/PDDrFWrFp999lmS5Pvvv1/kyUUgfyOzY8cOXnPNNXzsscesiXT06NEcOXJkkY9fOXv2LPv3788mTZowKSmJrVu3LjKB/BqZmZlMTk7mpEmTrPH+9re/sWrVqkU+esXHmjVr+OCDD7JcuXLcsGGDXw05OTm86aab2LZtW5YtW5b333//r05MvsbVq1fzmmuuKfJ3waFykOQnn3zCsWPHskKFCn51+DP+2bNn+c9//rPIziCQxzrQhoKCAo4cOZJhYWFMT0/3y+HvOusj0OVEBrZOdejQgeXLl+d1113Hpk2bhuSxKPyE489//jO7du3KBg0asFu3bn4/8Qv0sVi6dCnHjRvHuLg4W7YLkuzfvz/DwsIYGxtrnc4fyvGDWZ/8deTm5jI1NTXg+Yn87XV29uzZRe4fzBxl9zxo9zYRTEOg6xMZ2LZnx7ZdGLv2FabmjyvZXzhxfjKxPwqmQ8JzqEAcwW4XgTiC2S4kbHf+OgoT6DprYp9amtGD7BKEx+Nh27ZtOWrUqCK379q1ixMnTmTdunW5ZMmSoMcvKCjg7Nmz+eCDD1p/f0Ge/9unjh07smXLlhw7diw//PBD63s5OTncv39/kfv/Gm63mzNmzOBdd93Fo0ePkjz/6tu2bdtYu3btS76qt2LFCj700EN+70S9Xi+XL1/Ou+++mzt27ODKlSsZERHxmxPT0aNHefDgQVscHo+HU6ZMYYsWLYp85EEoxg/2ghnBLKesrCyOHDnS73egyN9eZ+vXr8/33nvPuu/UqVP9Xk6k/+tU4Z3a8uXLuW7dOu7fv/83x/d3OfnerSPPf2zHiRMneObMGb8aglmfpk2bxltvvdXW7WLAgAF0uVx+vRtoYn3y11H4ydO+ffv8np8K/7y/6yxJfvnllwHNUXbPg3ZvE8E2pKam+r0++cbz5/Eu/K7jsmXLQr5tX4gd+wpT80cw+wunzk8m9kfTp08PqEPCc6hgHGRg20Uwc1Qg24WE7S5QBxn4tmdqn1qa0YPsEoLX66XX6+UDDzzA3r17WxOTj+3bt/Puu+9mnz59mJ+ff0VXK/zxxx+trx9//HGWLVuWU6dO5RNPPMFOnTqxU6dORT7jLxAWL17MRx99tMhtZ86c4dVXX81vv/32otOQyPOvBAZCTk4Ov/nmG2sZrFixwpo4Cp9+fClXqB2FdxL+nqbltIbCjkAei0DWWd/nOZIs8vnY/uDvOhXsNuHvcrqSC+4Esz5duDxD3XH06FG/T48MZPxg16dAHIWfPAVCsOtsoB12z4N2bxOBOHwcOXIkoPWJ9P/xLvwOoR3jm5hnTcwfwXY4aX4yvT8KtEPCc6hgHIFit0PCdheII9htz+59amlHD7JLGO+99x6jo6P56quvXvQE6aOPPmJERETILql/8uRJDh06lJ9++ql126pVqxgZGcnVq1eHxEGePw3l2muv5XfffWfd9tVXXwX8hOxS+CaGL7/8ssgrdG63m88//zxXrlxpu2PFihWlusHkOuvj19ap3bt3X9G4Jf2x8Nfx5ZdflviGK3ksnLTOhmIevNz4V7pN/JZj5cqVIXHYve05YdsuCQ4nbNslZX8k4TnUbzn27NnjeIeE7c4fR0l4rlna0IPsEsif/vQnlilThu+8806RV1y3bt3Khg0bhvTJn+8dAt8rcVu2bGGLFi38PvXo1/Dt3AoKCnjy5EnWr1/fOkX40UcfZVxcnF8XPvEH3yt8hU+F6d+/P8uVKxeyZWW3o6Q3/NY6m5GRcUXjk+bWqZL+WJhylPQGE/Os3eusiW1C0lxe0tdZU46S3mBif+SjJD+HkuIgS/46a8phoqE0oQfZJYjCp8RNnDiR4eHhnD59OteuXcvjx49z/PjxTE5O9vvvYi6FbwPzTXwXnuYyadIktm7dOujPQ7zUaTOnTp2yrrw4depUxsbGcs2aNUGNT158UYnCn1W5bNkyulwuxsXFBfS3XKYdEhpIM+us3euUlMdC11n/kLDOmphnJczlUtZZXU7+oc+hSo9DyjorYdsuzehBtoMpfCqTb0PIysqyLm729NNP8/rrr2dcXBybNGnC6tWrB3W1P5/H58jOzubixYuL7JB27drFyZMns2LFity0aVNIx8/NzWWjRo2YkpLCqKioIn/PFMqGs2fPcuzYsaxYsSK3bt3qOIeEhks57Fhnfdi5Tl1ufPLKl5Mkh4SGwg6J62yoxi9uB6nrrEmHhIbCjuLYtskrew71W+NL2bZ1v23WYaKhtKMH2Q5j586dF71y53tVKTMzk3Fxcfzzn/9sfW/79u1cuXIlv/jiC2ZlZfnlOHXqFI8cOVLk4gi+iz9kZmYyPj6ef/nLX6zvbdmyhT179mTjxo39+kiAQMb3er3cv38/y5Qpw9jYWL93PoE2kOTatWtZs2ZN/vDDD45wSGjwxxGKddbtdl90caNQrlOBjO8j0OUkwSGhwR9HKNZZH4XfsSk8l4diHjQxvpMcPgJ9vE2ML8UhoeFyDtP7IzLw51B27++kOJywrygJDhMNyqXRg2wHceDAAYaHh7N69eoXXcDg8OHDrFixIocPH06PxxP0VWE3b97MLl26sH79+uzQoQNfeeWVSzouHP/777/n3r17bRv/lVde8fuzCYN1nD171u+PHbDbIaEhEMeVrLPbtm3j0KFD2bZtW44YMYLLly/3q8PfdSrY8QNZThIcEhoCcVzJOrtr1y4uWrTIeqeg8BP+UKyzdo/vdIe/j7fd40txSGgIxFEc+yN/n0PZvb+T4nDSvsLJDhMNyq+jB9kO4sCBA7zuuut47733slGjRkU2hszMTC5atOiKPgogPT2d8fHxHDNmDN944w3ee++97NixI0+ePEmS3Lt370VX3AxkRxTM+IH2BOMIFLsdEhpMOTZv3syqVaty4MCBnDhxIps3b85u3brxwIEDJMndu3dzwYIFQa9TwYxvosFpDgkNphwZGRmMj49ncnIyX3rppYue8F/pOmv3+E52OGl8KQ4JDaYcwcwfgfjs3t9JcUjZV0jYbyuXRw+yHUReXh5vvPFGzp07l/3792fDhg359ddfkyR/+eWXKzrAzs7OZoMGDYp8LuE333zDzp07c9euXdZGR158IQQnjC/FIaHBlGP//v1s2bIlH3nkEeu2nTt3sly5cvzXv/4V1Jgmx5fikNBgynH06FF27dqVd955J++++262adOGL774YtDbgOnxpTgkNJhwSGgw5dB51hkOCQ0mHCYalN8mAoojcLvdiIyMREJCAlq1aoV27dph5syZGDNmDMqWLYsaNWrgrbfeQkxMTFDjZ2VloWfPnhg2bJh12/Lly7FhwwbccsstqFGjBurXr48333wT4eHhjhtfikNCgynHpk2bkJiYiEGDBgEACgoKkJSUhJSUFBw7dgwAQBIul+ui/zthfCkOCQ2mHG63G8nJybj99ttx0003YdSoUXjzzTcBAMOGDUN4eHiRcb1eL8LCwhwzvhSHhAYTDgkNphw6zzrDIaHBhMNEg+IH9h2/K/5w4Wkao0eP5syZM0mev1hG7dq1GRUVxTlz5lyRJzc3l5mZmdbX//M//8Po6GguWrSIX3/9Nd98803WqlWLL730kiPHl+KQ0GDK8csvv3Du3LkX3d6tWzc+/vjjQY9ranwpDgkNJhy+ufzAgQPW/48cOcJ+/fqxTZs2nDdvnnU20rlz5xw3vhSHhAYTDgkNphwkuWPHDlvnD7vHl+KQ0GDCYaJB+W0CeylPCRler7fI1wUFBQCA8uXL46effgIAzJo1CydPnkSHDh2wYMECLF26NCgHScTExCAxMdH6XlJSEj766COkpqYiJSUFPXr0QExMDHJychwzvhSHhAbTDq/Xi+TkZIwYMaLI7QAQHh6Oc+fOWV+/+OKLeOuttxwxvhSHhAbTDh+VK1eGy+VCQUEBKlWqhBdeeAG1atXCW2+9hVdeeQVnz57FhAkTMGHCBEeML8UhocGEQ0KDKYfPQxK1a9fGyJEjAZzfB/oIxfxh5/hSHBIaTDhMNCj+o6eLFwMZGRl49dVXcezYMVxzzTUYPnw4qlWrBgDo1asXXn/9ddx7771YvXo1vv76a+Tl5eHxxx/H9OnT8bvf/Q4xMTG/eVrH5RwA0KdPH+v/JBEREYGkpCQkJSVZt13OYff4UhwSGorDUbNmTYwYMcJyhIWFWaf4VapUCXFxcQCAyZMnY/bs2di4ceNlxzYxvhSHhIbicFy4XURGRsLj8SA+Ph7z5s3DqFGj8Pbbb2PhwoVIS0vDv//972IfX4pDQoMuJ2c5cnJy4PF4kJiYCK/XW2T/5XK5rH1asPOH3eNLcUhoMOEw0aAEgS3vjyu/ypYtW1ixYkX27duXv//979mqVStWqVKFn3/+OUly48aNdLlcrF69OtetW2f93Nq1a/3+DMfLOXynU114mvqUKVNYu3btIqcAF9f4UhwSGpzk8NGnTx8+/fTTfPLJJxkdHc0ff/yx2MeX4pDQ4DSH71TV/fv38+qrr2Z8fLxfnwFr9/hSHBIaTDgkNJhybNu2jTVr1mS3bt24Y8cOkr9+lfBg5g+7x5fikNBgwmGiQQkOPcg2iNvt5j333MN7772X5PmNYP/+/RwyZAijo6P5z3/+kyT55ZdfcsOGDdZ9QuWIiYnh+++/X+T+a9eu5ZgxYxgfH285i3N8KQ4JDU519O3blxEREYyJifFrB2H3+FIcEhqc5vDN33l5eRw2bBjLlSvH9PT0Yh9fikNCgy4nZzmysrLYtm1bNm3alO3atWPfvn0ve+AS6Pxh9/hSHBIaTDhMNCjBo3+TbRCXy4VDhw6hbt261m3VqlXDa6+9hsGDB2Pw4MFYv349fv/736NJkybWz4TKMWjQIAwaNAgbNmwAABw4cABLly7Fzp078fXXX6Np06bFPr4Uh4QGJzrcbjcqVaqEypUrY82aNWjRokWxjy/FIaHBaQ6XywWv14syZcogOzsbK1aswA033FDs40txSGjQ5eQsx6ZNmxAREYGXXnoJAwYMQE5ODiZPnoydO3da4/ogGfD8Yff4UhwSGqQsJ+UKKL7j+9JJv3792KJFC+sVJt/nOHo8Ht5xxx1s1qwZz5w5Y6ujefPmzM3NJUkePnyYx44dc9T4UhwSGpzo2Lx5s/VKrVPGl+KQ0OAkx5XM5XaPL8UhocGEQ0KDKceqVaus/8+fP58pKSns27cvf/nlF5Ln3yH0+Tds2BDw/GH3+FIcEhpMOEw0KMGhB9mG8K3gn332GZs1a8a//vWv1sdJFBQUWN+79tpruX37dtsd27Ztc9z4UhwSGqQ4JDSYcEhocKIjmLncafsKpzokNJhwSGgw5fg1Xn31Vd56661FTsWdOnUq9+/fXyLGl+KQ0GDCYaJB8Q+9urghfKd9d+jQAbfccgs++eQTxMTEYNSoUShbtiwAoFatWgCA/Px82x2FL+HvlPGlOCQ0SHFIaDDhkNDgREcwc7nT9hVOdUhoMOGQ0GDKcSHe//sEgqFDh8LlcmHRokV47LHHEBkZibfeegt9+vQp8ikbThtfikNCgwmHiQYlQIr7KL80kZ+fT5I8ffo0R4wYwVatWnHYsGE8fvw4s7OzOXnyZNatW5cHDx50rENCgwmHhAYpDgkNJhwSGqQ4JDSYcEhoMOGQ0GDK4Tv93IfvXXKSfOWVVxgbG8u4uDi/L+xpenwpDgkNJhwmGpTg0YNsm7jwqn6+DSEzM5P/+te/mJ+fz5kzZ7Jp06YMDw9no0aNWKNGjSIf21XcDgkNJhwSGqQ4JDSYcEhokOKQ0GDCIaHBhENCgynHhfgcWVlZnD9/vnW77+PARo8ezQoVKnDz5s2OHF+KQ0KDCYeJBuXK0IPsEOP7GyHfhTc8Hk+RnUNCQgLHjx9P8vwGcurUKS5ZsoTffvst9+zZ4wiHhAYTDgkNUhwSGkw4JDRIcUhoMOGQ0GDCIaHBlMNH4QN534GJzzFp0qQi9125ciXLly8f9AsFdowvxSGhwYTDRIMSWvQgO4Rs27aNQ4cOZceOHdm7d2/+8MMP1vdycnJYrVo1jhgx4pKfXecUh4QGEw4JDVIcEhpMOCQ0SHFIaDDhkNBgwiGhwZQjIyODH3/8sfV14bH2799/WYc/p6HbPb4Uh4QGEw4TDYp96Odkh4jNmzejbdu2iIyMRL169eDxeDBw4EDs2rULABAWFobx48dj3rx5AX/2tSmHhAYTDgkNUhwSGkw4JDRIcUhoMOGQ0GDCIaHBlOPnn39Gy5Yt0atXL7z55psAzl9QjaT1/0s5vP/3WcNVqlQp1vGlOCQ0mHCYaFBspviO7+WQk5PDli1bcsKECdZt69atY6NGjfjpp5+WCIeEBhMOCQ1SHBIaTDgkNEhxSGgw4ZDQYMIhocGU48iRI7zzzjvZs2dPPvTQQyxfvjwXLFhgfd93mrpTx5fikNBgwmGiQbEffSc7BGzfvh3lypVDv379rFeYmjdvjooVK2Ljxo0AYN3uVIeEBhMOCQ1SHBIaTDgkNEhxSGgw4ZDQYMIhocGU48SJE4iLi8OIESPw6KOPYuTIkRg9ejQWLlwIAIiMjLwih93jS3FIaDDhMNGg2I9+TnYIqFWrFh544AE0bdoUAOB2uxEREYGYmBgUFBQAwEWncoSFBfb6ht0OCQ0mHBIapDgkNJhwSGiQ4pDQYMIhocGEQ0KDKUdSUhKmTJmCpKQkAMCoUaNAEqNHjwYADBo0CC6XC263G2632/rsbaeML8UhocGEw0SDYj96kB0CkpKScO211wI4P/lHRJxfrHFxcdYOAgCeeOIJdOnSBa1bt3acQ0KDCYeEBikOCQ0mHBIapDgkNJhwSGgw4ZDQYMoBnD+Y91GzZk3rgKXwgcsjjzyCOnXqYNSoUUG9WGDn+FIcEhpMOEw0KPaiB9lBkJmZiY8++gjHjh1DcnIyBgwYAJfLdclXVz0eDwDgz3/+M6ZPn44ePXo4wiGhwYRDQoMUh4QGEw4JDVIcEhpMOCQ0mHBIaCgOx3XXXYf77rsPYWFhIGm9K56QkGAdsDzyyCNYsGABvv32W6xbt+43D1jsHl+KQ0KDlOWkFAPB/jF3aSUtLY0JCQns2LEjW7ZsyTJlyvDJJ58sch/f59d169aN06dP55w5c1imTBm/P6/OboeEBhMOCQ1SHBIaTDgkNEhxSGgw4ZDQYMIhoaE4HX/9619/9f47d+5k/fr1WalSJW7atKnYx5fikNBgwmGiQSke9CA7ADIzM5mcnMyJEyfS6/Xy5MmTfPnll9mgQQPu3Lnzovv369eP4eHhLF++PNesWeMIh4QGEw4JDVIcEhpMOCQ0SHFIaDDhkNBgwiGhwakOj8fD8ePHMyIigmlpacU+vhSHhAYTDhMNSvGhp4v7idfrxT/+8Q/UqVMHjz32GFwuF8qXL48WLVrg0KFDyMvLu+hnqlatipiYGPznP//BDTfcUOwOCQ0mHBIapDgkNJhwSGiQ4pDQYMIhocGEQ0KDkx379u1DdnY21q5di0aNGhXr+FIcEhpMOEw0KMWLHmT7SVhYGG688UZ4vV5UqFABwPmPlGjcuDHKly+PY8eOXfQzgwYNwvjx45GYmOgIh4QGEw4JDVIcEhpMOCQ0SHFIaDDhkNBgwiGhwcmOxMREvP76635dndnu8aU4JDSYcJhoUIoZ298rF0ThD3/3er3W/5OTk/nll19aXy9fvtyxDgkNJhwSGqQ4JDSYcEhokOKQ0GDCIaHBhENCg9McK1asYEFBgePGl+KQ0GDCYaJBKT70cnSXYc+ePfjss88wf/585OTk4Ny5cwDOX+3S9/l0ubm5cLvdiI6OBgBMmTIFnTt3RnZ2tiMcEhp0OZUuh4QGXU6lyyGhQZeTcxwSGpzuuO2223Dw4MFiH1+KQ0KDlOWkOIjiPsp3Kps2bWK1atXYrFkzxsXFsWbNmhw/frx1IQKv18uCggLm5uayVq1a3LBhA2fMmMFy5cpx7dq1jnBIaNDlVLocEhp0OZUuh4QGXU7OcUhokOKQ0KDLyTkOEw2Ks9CD7Etw7NgxtmjRghMmTODRo0dJkk888QRvvfVW9uzZkz///HOR+zdv3pwtW7ZkVFSU3xuC3Q4JDSYcEhqkOCQ0mHBIaJDikNBgwiGhwYRDQoMUh4QGEw4JDSYcJhoU56EH2Zdg9+7drFWrFpctW1bk9kWLFjElJYX9+vVjTk4OSfLo0aOsWLFiwJfTt9shocGEQ0KDFIeEBhMOCQ1SHBIaTDgkNJhwSGiQ4pDQYMIhocGEw0SD4jz0b7IvQXh4OKKjo7Fv3z4AgNvtBgCkpqaif//+2Lx5M5YvXw4AiI+Px9y5c5Genh7Q5fTtdkhoMOGQ0CDFIaHBhENCgxSHhAYTDgkNJhwSGqQ4JDSYcEhoMOEw0aA4kOI+yncqPXr0YNOmTXns2DGSLHJVv7vvvps333yz9bXH43GkQ0KDCYeEBikOCQ0mHBIapDgkNJhwSGgw4ZDQIMUhocGEQ0KDCYeJBsVZ6DvZAHJzc3Hq1CmcPHnSuu3111/HiRMn0KdPH5w7dw4REf//keKdO3cGSeTn5wM4/1l3xe2Q0GDCIaFBikNCgwmHhAYpDgkNJhwSGkw4JDRIcUhoMOGQ0GDCYaJBcT6l/lHcunUr7rzzTvzud7/D9ddfj7fffhterxdVqlTBO++8g+3bt+O2225DRkYG8vLyAABr1qxB+fLlHeOQ0KDLqXQ5JDTocipdDgkNupyc45DQIMUhoUGXk3McJhqUEoLt75U7mC1btrBy5cocO3Ys33nnHT7yyCOMjIzk+vXrrfukp6ezUaNGTE5O5o033sgePXqwfPny3LhxoyMcEhp0OZUuh4QGXU6lyyGhQZeTcxwSGqQ4JDTocnKOw0SDUnJwkWRxH+gXB0ePHsW9996L+vXr47nnnrNu79ChAxo1aoTnnnsOJOFyuQAAc+fORVZWFqKjo9G3b1/Uq1ev2B0SGnQ5lS6HhAZdTqXLIaFBl5NzHBIapDgkNOhyco7DRINSsoj47bvIpKCgAMePH8fdd98NAPB6vQgLC0Pt2rVx5MgRAIDL5YLH40F4eDhGjRrlOIeEBhMOCQ1SHBIaTDgkNEhxSGgw4ZDQYMIhoUGKQ0KDCYeEBhMOEw1KyaLU/k12tWrV8NZbb+HWW28FAHg8HgBAQkJCkQsOhIeH49SpU9bXgbzxb7dDQoMJh4QGKQ4JDSYcEhqkOCQ0mHBIaDDhkNAgxSGhwYRDQoMJh4kGpWRRag+yAaBOnToAzr/aFBkZCeD8RnHgwAHrPjNnzsT8+fOtz7TznebhFIeEBhMOCQ1SHBIaTDgkNEhxSGgw4ZDQYMIhoUGKQ0KDCYeEBhMOEw1KyaHUni5emLCwMOvvJFwuF8LDwwEAU6dOxbRp07Bhw4Yil9p3okNCgwmHhAYpDgkNJhwSGqQ4JDSYcEhoMOGQ0CDFIaHBhENCgwmHiQbF+ZTqd7IL4ztdIzw8HDVr1sSsWbPw9NNP48cff0STJk1KhENCgwmHhAYpDgkNJhwSGqQ4JDSYcEhoMOGQ0CDFIaHBhENCgwmHiQbF4VApwrRp0+hyuVixYkWuXbu2RDokNJhwSGiQ4pDQYMIhoUGKQ0KDCYeEBhMOCQ1SHBIaTDgkNJhwmGhQnIkeZF/A2rVr6XK5uGXLlhLrkNBgwiGhQYpDQoMJh4QGKQ4JDSYcEhpMOCQ0SHFIaDDhkNBgwmGiQXEmpfZzsi9Hbm4uYmNjS7RDQoMJh4QGKQ4JDSYcEhqkOCQ0mHBIaDDhkNAgxSGhwYRDQoMJh4kGxXnoQbaiKIqiKIqiKIqihAi98JmiKIqiKIqiKIqihAg9yFYURVEURVEURVGUEKEH2YqiKIqiKIqiKIoSIvQgW1EURVEURVEURVFChB5kK4qiKIqiKIqiKEqI0INsRVEURVEURVEURQkRepCtKIqiKIqiKIqiKCFCD7IVRVEUpZSxevVquFwuHD9+vMjtgwYNgsvlgsvlQmRkJKpVq4ZOnTrh9ddfh9frDcixcOFCxMXFhe6XVhRFUZQSgh5kK4qiKIpi0aVLF+Tk5CAzMxOff/452rdvjzFjxqB79+5wu93F/espiqIoiuPRg2xFURRFcSDt2rXDgw8+iAcffBBxcXGoXLkypkyZApIAgGPHjiE1NRXx8fGIiYlB165d8fPPP1s/v3v3bvTo0QPx8fGIjY1Fw4YNsXTpUmRmZqJ9+/YAgPj4eLhcLgwaNMj6uTJlyqB69epISEhA8+bNMXnyZHz00Uf4/PPPsXDhQut+zzzzDBo1aoTY2FjUrFkTI0eOxOnTpwGcf6d88ODBOHHihPXO+F/+8hcAwLlz5zBx4kQkJCQgNjYWrVu3xurVq21dloqiKIpiEj3IVhRFURSHsmjRIkREROCHH37AnDlz8Oyzz+LVV18FcP7U7h9//BEff/wx/vvf/4IkunXrhoKCAgDAqFGjkJ+fj2+++Qbp6el46qmnUK5cOdSsWRMffPABACAjIwM5OTl47rnnLvt7dOjQAU2aNMHixYut28LCwjBnzhxs3rwZixYtwldffYWJEycCANq0aYO///3vqFChAnJycpCTk4Px48cDAAYPHozvvvsO7733HtLS0tC7d2906dKlyAsEiqIoilKSiSjuX0BRFEVRlEtTs2ZNPPvss3C5XKhXrx7S09Px7LPPol27dvj444/x3XffoU2bNgCAt99+GzVr1sSHH36I3r17Y8+ePbjrrrvQqFEjAEDt2rWtcStVqgQAuOqqq/z+u+n69esjLS3N+vrhhx+2/p+UlIQnn3wSDzzwAObNm4eoqChUrFgRLpcL1atXt+63Y8cOvPvuu8jKysLVV18NABg/fjy++OILLFiwADNmzAhqOSmKoiiKk9CDbEVRFEVxKDfddBNcLpf19c0334zZs2dj69atiIiIQOvWra3vVa5cGfXq1cO2bdsAAKNHj8YDDzyA5cuXo2PHjrjrrrvQuHHjoH8XkkV+l1WrVmHGjBnYunUrTp48Cbfbjby8POTm5iI2NvaSY6xfvx4kUbdu3SK35+fno3LlykH/boqiKIriJPR0cUVRFEURQuED4fvvvx87d+7EgAEDkJ6ejhtvvBHPP/980GNv27YNSUlJAM7/vXe3bt1www034IMPPsC6deswd+5cALBOV78UXq8X4eHhWLduHTZu3Gj927Zt22+esq4oiqIoJQU9yFYURVEUh/L9999f9HWdOnXQoEEDuN1u/PDDD9b3jhw5gp9++gnXX3+9dVvNmjUxYsQILF68GOPGjcP8+fMBAFFRUQAAj8fj1+/x1VdfIT09HXfddRcA4Mcff4Tb7cbs2bNx0003oW7duti3b1+Rn4mKirpo/GbNmsHj8eDgwYO47rrrivwrfFq5oiiKopRk9CBbURRFURzK3r178cgjjyAjIwPvvvsunn/+eYwZMwZ16tRBr169MGzYMPz73//Gpk2bcN999yEhIQG9evUCcP5vppctW4Zdu3Zh/fr1+Oqrr6wD8Fq1asHlcuHTTz/FoUOHrKuCA+dP3d6/fz+ys7Oxfv16zJgxA7169UL37t2RmpoKAEhOTobb7cbzzz+PnTt34s0338RLL71U5He/9tprcfr0aaxcuRKHDx/GmTNnULduXfTv3x+pqalYvHgxdu3ahbVr1+Kpp57C0qVLDS1VRVEURbEXPchWFEVRFIeSmpqKs2fPolWrVhg1ahQeeugh/PGPfwQALFiwAC1atED37t1x8803gySWLl2KyMhIAOffpR41ahSuv/56dOnSBfXq1cO8efMAAAkJCXjiiScwadIkVKtWDQ8++KDl/OKLL1CjRg1ce+216NKlC1atWoU5c+bgo48+Qnh4OACgadOmeOaZZ/DUU0/hhhtuwNtvv42ZM2cW+d3btGmDESNGoG/fvqhatSqefvpp6/dOTU3FuHHjUK9ePfTs2RM//PADatasafvyVBRFURQTuOj7wE1FURRFURxDu3bt0LRpU/z9738v7l9FURRFUZQA0HeyFUVRFEVRFEVRFCVE6EG2oiiKoiiKoiiKooQIPV1cURRFURRFURRFUUKEvpOtKIqiKIqiKIqiKCFCD7IVRVEURVEURVEUJUToQbaiKIqiKIqiKIqihAg9yFYURVEURVEURVGUEKEH2YqiKIqiKIqiKIoSIvQgW1EURVEURVEURVFChB5kK4qiKIqiKIqiKEqI0INsRVEURVEURVEURQkRepCtKIqiKIqiKIqiKCHifwGo0ennEISipAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv(\"Dummy Data/sample_data.csv\")\n",
+ "# Find the starting index of the test set\n",
+ "test_start_index = len(X_train)\n",
+ "\n",
+ "# Extract corresponding dates for the test set\n",
+ "dates_test = df.iloc[test_start_index : test_start_index + len(X_test)]['postDate']\n",
+ "# plot\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "plt.plot(dates_test, y_test, label='Actual Values', marker='o')\n",
+ "plt.plot(dates_test, y_pred, label='Predicted Values', marker='x')\n",
+ "plt.xlabel('postDate')\n",
+ "plt.ylabel('Balance')\n",
+ "plt.title('Actual vs. Predicted Values Over Time')\n",
+ "plt.legend()\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.3"
+ },
+ "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}