Skip to content

Latest commit

 

History

History
74 lines (69 loc) · 3.65 KB

README.md

File metadata and controls

74 lines (69 loc) · 3.65 KB

MLOps project - Car accident

This project is realized during the formation "MLOps" at Datascientest. It aims to develop and test a machine learning model and create an API to access the model and make real time predictions. The raw data is loaded in data/raw (added to gitignore because of the total size) before being processed.

Project Organization

├── LICENSE
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original data dump, taken from data.gouv.fr
│
├── logs               <- Logs from the API tests (added to gitignore)
│
├── models             <- Trained models and encoders used int eh API to make predictions
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│                         Used to explore data and test models before creating the API
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── api            <- Scripts create the API and the API Container
│   │   └── app.py
│   │   └── auth.py
│   │   └── log_module.py
│   │   └── Dockerfile_api
│   │   └── api-deployment.yaml
│   │   └── service-api.yaml
│   │
│   ├── dags            <- Airflow module
│   │   └── pipeline_dag.py.py
│   │
│   ├── data           <- Scripts to download or generate data and create the Data Container
│   │   ├── make_dataset.py
│   │   ├── build_features.py
│   │   ├── config.py
│   │   ├── etl.py
│   │   └── Dockerfile_data
│   │
│   ├── k8s            <- Kubernetes files
│   │   ├── api-deployment.yaml
│   │   ├── data-deployment.yaml
│   │   ├── models-deployment.yaml
│   │   ├── persistent-volume-claim.yaml
│   │   ├── persistent-volume.yaml
│   │   ├── service-api.yaml
│   │   ├── service-data.yaml
│   │   └── service-models.yaml
│   │
│   ├── models         <- Scripts to train models and create the Model Container
│   │   ├── predict_model.py
│   │   ├── train_model.py
│   │   ├── config.py
│   │   ├── model_pipeline.py
│   │   └── Dockerfile

Project based on the cookiecutter data science project template. #cookiecutterdatascience