-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathindex.d
102 lines (85 loc) · 2.86 KB
/
index.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
Ddoc
$(LINK2 https://github.com/Dav1dde/gl3n, gl3n) provides all the math you need to work with OpenGL.
Currently gl3n supports:
$(UL
$(LI linear algebra)
$(UL
$(LI vectors)
$(LI matrices)
$(LI quaternions)
)
$(LI geometry)
$(UL
$(LI axis aligned bounding boxes)
$(LI planes)
$(LI frustum)
)
$(LI interpolation)
$(UL
$(LI linear interpolation (lerp))
$(LI spherical linear interpolation (slerp))
$(LI hermite interpolation)
$(LI catmull rom interpolation)
)
$(LI nearly all GLSL defined functions (according to spec 4.1))
$(LI the power of D, e.g. dynamic swizzling, templated types (vectors, matrices, quaternions), impressive constructors and more!)
)
$(BR)
Furthermore $(LINK2 https://github.com/Dav1dde/gl3n, gl3n) is MIT licensed,
which allows you to use it everywhere you want it.
$(BR)$(BR)
A little example of gl3n's power:
---
vec4 v4 = vec4(1.0f, vec3(2.0f, 3.0f, 4.0f));
vec4 v4_2 = vec4(1.0f, vec4(1.0f, 2.0f, 3.0f, 4.0f).xyz); // "dynamic" swizzling with opDispatch
vec4 v4_3 = v4_2.xxyz; // opDispatch returns a vector!
vec3 v3 = my_3dvec.rgb;
vec3 foo = v4.xyzzzwzyyxw.xyz // not useful but possible!
mat4 m4fv = mat4.translation(-0.5f, -0.54f, 0.42f).rotatex(PI).rotatez(PI/2);
glUniformMatrix4fv(location, 1, GL_TRUE, m4fv.value_ptr); // yes they are row major!
alias Matrix!(double, 4, 4) mat4d;
mat4d projection;
glGetDoublev(GL_PROJECTION_MATRIX, projection.value_ptr);
mat4 m4fv = mat4.translation(-0.5f, -0.54f, 0.42f).rotatex(PI).rotatez(PI/2);
glUniformMatrix4fv(location, 1, GL_TRUE, m4fv.value_ptr); // yes they are row major!
mat3 inv_view = view.rotation;
mat3 inv_view = mat3(view);
mat4 m4 = mat4(vec4(1.0f, 2.0f, 3.0f, 4.0f), 5.0f, 6.0f, 7.0f, 8.0f, vec4(...) ...);
---
---
alias Vector!(real, 3) vec3r;
struct Camera {
vec3 position = vec3(0.0f, 0.0f, 0.0f);
vec3r rot = vec3r(0.0f, 0.0f, 0.0f);
Camera rotatex(real alpha) {
rot.x = rot.x + alpha;
return this;
}
Camera rotatey(real alpha) {
// do degrees radians conversion at compiletime!
rot.y = clamp(rot.y + alpha, cradians!(-70.0f), cradians!(70.0f));
return this;
}
Camera rotatez(real alpha) {
rot.z = rot.z + alpha;
return this;
}
Camera move(float x, float y, float z) {
position += vec3(x, y, z);
return this;
}
Camera move(vec3 s) {
position += s;
return this;
}
@property camera() {
// gl3n allows chaining of matrix (also quaternion) operations
return mat4.identity.translate(-position.x, -position.y, -position.z)
.rotatex(rot.x)
.rotatey(rot.y);
}
}
// somwhere later in the code
glUniformMatrix4fv(programs.main.view, 1, GL_TRUE, cam.camera.value_ptr);
// or use a quaternion camera!
---