-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFigure1.py
74 lines (67 loc) · 2.47 KB
/
Figure1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gpflow
import matplotlib.pyplot as plt
import numpy as np
import scipy
from dppy.finite_dpps import FiniteDPP
import matplotlib
np.random.seed(0)
jitter = 1e-10
low_jitter = gpflow.settings.get_settings()
low_jitter.numerics.jitter_level = jitter
num_trials = 7
N_sequence = np.array([int(100 * 1.3 ** pow) for pow in range(15)])
sn = .1
k = gpflow.kernels.RBF(1)
lengthscale = .5
M = 15
all_gaps = np.zeros((num_trials, len(N_sequence)))
all_ts = np.zeros_like(all_gaps)
for i in range(num_trials):
gaps = []
ts = []
X = 5 * np.random.rand(N_sequence[-1])[:, None]
Kff = k.compute_K_symm(X)
Y = np.random.multivariate_normal(mean=np.zeros(N_sequence[-1]), cov=Kff + np.square(sn) * np.eye(N_sequence[-1]))[:, None]
for N in N_sequence:
X_cur = X[:N, :]
kff = k.compute_K_symm(X_cur)
DPP = FiniteDPP('likelihood', **{'L': kff})
DPP.flush_samples()
DPP.sample_exact_k_dpp(size=M)
ind = DPP.list_of_samples[0]
Y_cur = Y[:N, :]
# Jittering much increases t significantly
with gpflow.settings.temp_settings(low_jitter):
Kuu = k.compute_K_symm(X_cur[ind])
Kuf = k.compute_K(X_cur[ind], X_cur)
L = np.linalg.cholesky(Kuu + jitter * np.eye(M))
# matrix square root of Qff
LinvKuf = scipy.linalg.solve_triangular(L, Kuf, lower=True)
# t= tr(Kff-Qff)
t = N * k.variance.value - np.sum(np.square(LinvKuf))
ts.append(t / 2 / np.square(sn))
# Fit full model and compute ML
full_m = gpflow.models.GPR(X_cur, Y_cur, k)
full_m.likelihood.variance = np.square(sn)
full_m.kern.lengthscales = lengthscale
ml = full_m.compute_log_likelihood()
# Fit sparse model and compute ELBO
m = gpflow.models.SGPR(X_cur, Y_cur, kern=k, Z=X_cur[ind])
m.likelihood.variance = np.square(sn)
m.kern.lengthscales = lengthscale
elbo = m.compute_log_likelihood()
gap = ml - elbo
gaps.append(gap)
all_gaps[i, :] = gaps
all_ts[i, :] = ts
# Make plot
matplotlib.rcParams.update({'font.size': 22})
plt.rc('text', usetex=True)
plt.figure(figsize=(12, 5))
plt.plot(N_sequence, np.mean(all_gaps, axis=0))
plt.plot(N_sequence, np.mean(all_ts, axis=0))
plt.xlabel("Number of Data Points")
plt.ylabel("KL divergence")
plt.legend(["Actual KL divergence", "$t/(2\sigma^2)$"])
plt.tight_layout()
plt.savefig("Figure1.pdf")