-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalert.py
143 lines (112 loc) · 4.91 KB
/
alert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from benchalerts import AlertPipeline, Alerter
from benchalerts.integrations.github import CheckStatus
import benchalerts.pipeline_steps as steps
import benchmark_email
from datetime import datetime, timezone
import json
import numpy as np
import pandas as pd
from pathlib import Path
import re
from utilities import Environment, alerts_done_file
env = Environment()
repo = env.GITHUB_REPOSITORY
asv_processed_files = env.ASV_PROCESSED_FILES
alert_processed_files = env.ALERT_PROCESSED_FILES
threshold = 4
results_tail = Path.cwd().joinpath("output", "out.pkl")
output_all_rows = Path.cwd().joinpath("output", "out_all_rows.pkl") #used for testing
all_links = Path.cwd().joinpath("output", "all_links.pkl") #used for testing
links_tail = Path.cwd().joinpath("output", "links_out.pkl")
cleaned_regression_file = Path.cwd().joinpath("output", "cleaned_regression_file.json")
def alert_instance(commit_hash):
# Create a pipeline to update a GitHub Check
pipeline = AlertPipeline(
steps=[
steps.GetConbenchZComparisonStep(
commit_hash=commit_hash,
baseline_run_type=steps.BaselineRunCandidates.parent,
),
],
)
return pipeline
def analyze_pipeline(results_w_z_regressions, commit, date):
results = [(str(regression.display_name),
str(regression.link),
str(regression.run_link),
) for regression in results_w_z_regressions]
links = [[(re.sub(r'0\.0\.0\.0', '57.128.112.95',result[1])) for result in results]]
columns = [result[0] for result in results]
links_df = pd.DataFrame(data=links, index=[commit], columns=columns)
commit_df = pd.DataFrame(data=np.ones((1, len(columns))), index=[commit], columns=columns) # commit is a list
commit_df.insert(0, "datetime",[datetime.fromtimestamp(int(date)/1e3, tz=timezone.utc)])
return commit_df, links_df
def find_regressions(df, threshold=4):
df2 = df.copy()
df2 = df2.fillna(0)
df2 = df2.sort_values(by="datetime")
df2 = df2.drop(columns='datetime')
df2 = (df2.rolling(threshold).sum() == threshold) & (df2.rolling(threshold+1).sum() != threshold+1)
df2 = df2.shift(1 - threshold)
df2 = df2.where(df2)
df2 = df2.dropna(axis='columns', how='all')
df2 = df2.dropna(axis='index', how='all')
return df2
def clean_dict(df):
return { commit[0]: commit[1].dropna().to_dict() for commit in df.iterrows()}
def add_regression_links(regressions_df, links_df):
aligned_reg_df, aligned_links_df = regressions_df.align(links_df, join='left') # use update instead?
reg_links_df = aligned_links_df.where(aligned_reg_df)
return reg_links_df
def asv_commits_names():
with open(asv_processed_files, "r") as f:
processed_files = f.read().split('\n')
return processed_files
def save_commit_name(new_commit):
with open(alert_processed_files, "a") as f:
f.write(new_commit)
f.write("\n")
def alert(df, links_df) -> None:
processed_files = asv_commits_names()
for new_commit in (set(processed_files) - set(alerts_done_file(env))):
try:
with open(new_commit, "r") as f:
benchmarks_results = json.load(f)
except:
continue
pipeline = alert_instance(benchmarks_results['commit_hash'])
analysis = pipeline.run_pipeline()['GetConbenchZComparisonStep']
results_w_z_regressions = analysis.results_with_z_regressions
# report(pipeline) email report
commit_row, links_row = analyze_pipeline(results_w_z_regressions,
benchmarks_results['commit_hash'],
benchmarks_results['date'],
)
try:
df = pd.concat([df, commit_row])
links_df = pd.concat([links_df, links_row])
except:
print(benchmarks_results['commit_hash'])
save_commit_name(new_commit)
df.to_pickle(output_all_rows) #used for testing - remove
links_df.to_pickle(all_links)
df.tail(threshold + 1).to_pickle(results_tail)
links_df.tail(threshold + 1).to_pickle(links_tail)
if len(df):
regressions_df = find_regressions(df, threshold)
reg_links_df = add_regression_links(regressions_df, links_df)
if len(reg_links_df):
cleaned_reg_links_df = clean_dict(reg_links_df)
with open(cleaned_regression_file, 'w') as file:
json.dump(cleaned_reg_links_df, file, indent=4)
message = """Subject: Benchmarks Alert \n\n """ \
+ json.dumps(cleaned_reg_links_df, indent=4)
benchmark_email.email(message)
if __name__ == "__main__":
try:
df = pd.read_pickle(results_tail)
links_df = pd.read_pickle(links_tail)
except:
df = pd.DataFrame()
links_df = pd.DataFrame()
alert(df, links_df)