-
Notifications
You must be signed in to change notification settings - Fork 69
/
model.py
160 lines (122 loc) · 4.46 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model
from tensorflow.keras.applications import *
def squeeze_excite_block(inputs, ratio=8):
init = inputs
channel_axis = -1
filters = init.shape[channel_axis]
se_shape = (1, 1, filters)
se = GlobalAveragePooling2D()(init)
se = Reshape(se_shape)(se)
se = Dense(filters // ratio, activation='relu', kernel_initializer='he_normal', use_bias=False)(se)
se = Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(se)
x = Multiply()([init, se])
return x
def conv_block(inputs, filters):
x = inputs
x = Conv2D(filters, (3, 3), padding="same")(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filters, (3, 3), padding="same")(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = squeeze_excite_block(x)
return x
def encoder1(inputs):
skip_connections = []
model = VGG19(include_top=False, weights='imagenet', input_tensor=inputs)
names = ["block1_conv2", "block2_conv2", "block3_conv4", "block4_conv4"]
for name in names:
skip_connections.append(model.get_layer(name).output)
output = model.get_layer("block5_conv4").output
return output, skip_connections
def decoder1(inputs, skip_connections):
num_filters = [256, 128, 64, 32]
skip_connections.reverse()
x = inputs
for i, f in enumerate(num_filters):
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = Concatenate()([x, skip_connections[i]])
x = conv_block(x, f)
return x
# def encoder2(inputs):
# skip_connections = []
#
# output = DenseNet121(include_top=False, weights='imagenet')(inputs)
# model = tf.keras.models.Model(inputs, output)
#
# names = ["input_2", "conv1/relu", "pool2_conv", "pool3_conv"]
# for name in names:
# skip_connections.append(model.get_layer(name).output)
# output = model.get_layer("pool4_conv").output
#
# return output, skip_connections
def encoder2(inputs):
num_filters = [32, 64, 128, 256]
skip_connections = []
x = inputs
for i, f in enumerate(num_filters):
x = conv_block(x, f)
skip_connections.append(x)
x = MaxPool2D((2, 2))(x)
return x, skip_connections
def decoder2(inputs, skip_1, skip_2):
num_filters = [256, 128, 64, 32]
skip_2.reverse()
x = inputs
for i, f in enumerate(num_filters):
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = Concatenate()([x, skip_1[i], skip_2[i]])
x = conv_block(x, f)
return x
def output_block(inputs):
x = Conv2D(1, (1, 1), padding="same")(inputs)
x = Activation('sigmoid')(x)
return x
def Upsample(tensor, size):
"""Bilinear upsampling"""
def _upsample(x, size):
return tf.image.resize(images=x, size=size)
return Lambda(lambda x: _upsample(x, size), output_shape=size)(tensor)
def ASPP(x, filter):
shape = x.shape
y1 = AveragePooling2D(pool_size=(shape[1], shape[2]))(x)
y1 = Conv2D(filter, 1, padding="same")(y1)
y1 = BatchNormalization()(y1)
y1 = Activation("relu")(y1)
y1 = UpSampling2D((shape[1], shape[2]), interpolation='bilinear')(y1)
y2 = Conv2D(filter, 1, dilation_rate=1, padding="same", use_bias=False)(x)
y2 = BatchNormalization()(y2)
y2 = Activation("relu")(y2)
y3 = Conv2D(filter, 3, dilation_rate=6, padding="same", use_bias=False)(x)
y3 = BatchNormalization()(y3)
y3 = Activation("relu")(y3)
y4 = Conv2D(filter, 3, dilation_rate=12, padding="same", use_bias=False)(x)
y4 = BatchNormalization()(y4)
y4 = Activation("relu")(y4)
y5 = Conv2D(filter, 3, dilation_rate=18, padding="same", use_bias=False)(x)
y5 = BatchNormalization()(y5)
y5 = Activation("relu")(y5)
y = Concatenate()([y1, y2, y3, y4, y5])
y = Conv2D(filter, 1, dilation_rate=1, padding="same", use_bias=False)(y)
y = BatchNormalization()(y)
y = Activation("relu")(y)
return y
def build_model(shape):
inputs = Input(shape)
x, skip_1 = encoder1(inputs)
x = ASPP(x, 64)
x = decoder1(x, skip_1)
outputs1 = output_block(x)
x = inputs * outputs1
x, skip_2 = encoder2(x)
x = ASPP(x, 64)
x = decoder2(x, skip_1, skip_2)
outputs2 = output_block(x)
outputs = Concatenate()([outputs1, outputs2])
model = Model(inputs, outputs)
return model
if __name__ == "__main__":
model = build_model((192, 256, 3))
model.summary()