Skip to content

Latest commit

 

History

History
148 lines (117 loc) · 7.36 KB

README.md

File metadata and controls

148 lines (117 loc) · 7.36 KB

NLP-Dialogue

Blog Paper Support Stars Thanks PRs Welcome

架构

开放域生成问答模型 Leveraging Passage Retrieval with Generative Models for Open Domain Question Answerin

检索 Dense Passage Retrieval for Open-Domain Question Answering

工具

APScheduler

项目正在优化架构,可执行代码已经标记tag

一个能够部署执行的全流程对话系统

  • TensorFlow模型
    • Transformer
    • Seq2Seq
    • SMN检索式模型
    • Scheduled Sampling的Transformer
    • GPT2
    • Task Dialogue
  • Pytorch模型
    • Transformer
    • Seq2Seq

项目说明

本项目奔着构建一个能够在线部署对话系统,同时包含开放域和面向任务型两种对话系统,针对相关模型进行复现,论文阅读笔记放置另一个项目:nlp-paper,项目中使用TensorFlow和Pytorch进行实现。

语料

仓库中的data目录下放着各语料的玩具数据,可用于验证系统执行性,完整语料以及Paper可以在这里查看

  • LCCC
  • CrossWOZ
  • 小黄鸡
  • 豆瓣
  • Ubuntu
  • 微博
  • 青云
  • 贴吧

执行说明

  • Linux执行run.sh,项目工程目录检查执行check.sh(或check.py)
  • 根目录下的actuator.py为总执行入口,通过调用如下指令格式执行(执行前注意安装requirements.txt):
python actuator.py --version [Options] --model [Options] ...
  • 通过根目录下的actuator.py进行执行时,--version--model--act为必传参数,其中--version为代码版本tf/torch--model为执行对应的模型transformer/smn...,而act为执行模式(缺省状态下为pre_treat模式),更详细指令参数参见各模型下的actuator.py或config目录下的对应json配置文件。
  • --act执行模式说明如下:
    • pre_treat模式为文本预处理模式,如果在没有分词结果集以及字典的情况下,需要先运行pre_treat模式
    • train模式为训练模式
    • evaluate模式为指标评估模式
    • chat模式为对话模式,chat模式下运行时,输入ESC即退出对话。
  • 正常执行顺序为pre_treat->train->evaluate->chat
  • 各模型下单独有一个actuator.py,可以绕开外层耦合进行执行开发,不过执行时注意调整工程目录路径

目录结构说明

  • dialogue下为相关模型的核心代码放置位置,方便日后进行封装打包等
    • checkpoints为检查点保存位置
    • config为配置文件保存目录
    • data为原始数据储存位置,同时,在模型执行过程中产生的中间数据文件也保存在此目录下
    • models为模型保存目录
    • tensorflow及pytorch放置模型构建以及各模组执行的核心代码
    • preprocess_corpus.py为语料处理脚本,对各语料进行单轮和多轮对话的处理,并规范统一接口调用
    • read_data.py用于load_dataset.py的数据加载格式调用
    • metrics.py为各项指标脚本
    • tools.py为工具脚本,保存有分词器、日志操作、检查点保存/加载脚本等
  • docs下放置文档说明,包括模型论文阅读笔记
  • docker(mobile)用于服务端(移动终端)部署脚本
  • server为UI服务界面,使用flask进行构建使用,执行对应的server.py即可
  • tools为预留工具目录
  • actuator.py(run.sh)为总执行器入口
  • check.py(check.sh)为工程目录检查脚本

SMN模型运行说明

SMN检索式对话系统使用前需要准备solr环境,solr部署系统环境推荐Linux,工具推荐使用容器部署(推荐Docker),并准备:

  • Solr(8.6.3)
  • pysolr(3.9.0)

以下提供简要说明,更详细可参见文章:搞定检索式对话系统的候选response检索--使用pysolr调用Solr

Solr环境

需要保证solr在线上运行稳定,以及方便后续维护,请使用DockerFile进行部署,DockerFile获取地址:docker-solr

仅测试模型使用,可使用如下最简构建指令:

docker pull solr:8.6.3
# 然后启动solr
docker run -itd --name solr -p 8983:8983 solr:8.6.3
# 然后创建core核心选择器,这里取名smn(可选)
docker exec -it --user=solr solr bin/solr create_core -c smn

关于solr中分词工具有IK Analyzer、Smartcn、拼音分词器等等,需要下载对应jar,然后在Solr核心配置文件managed-schema中添加配置。

特别说明:如果使用TF-IDF,还需要在managed-schema中开启相似度配置。

Python中使用说明

线上部署好Solr之后,在Python中使用pysolr进行连接使用:

pip install pysolr

添加索引数据(一般需要先安全检查)方式如下。将回复数据添加索引,responses是一个json,形式如:[{},{},{},...],里面每个对象构建按照你回复的需求即可:

solr = pysolr.Solr(url=solr_server, always_commit=True, timeout=10)
# 安全检查
solr.ping()
solr.add(docs=responses)

查询方式如下,以TF-IDF查询所有语句query语句方式如下:

{!func}sum(product(idf(utterance,key1),tf(utterance,key1),product(idf(utterance,key2),tf(utterance,key2),...)

使用前需要先将数据添加至Solr,在本SMN模型中使用,先执行pre_treat模式即可。

Demo概览

参考代码和文献

  1. Attention Is All You Need | 阅读笔记:Transformer的开山之作,值得精读 | Ashish et al,2017
  2. Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-Based Chatbots | 阅读笔记:SMN检索式对话模型,多层多粒度提取信息 | Devlin et al,2018
  3. Massive Exploration of Neural Machine Translation Architectures | 阅读笔记:展示了以NMT架构超参数为例的首次大规模分析,实验为构建和扩展NMT体系结构带来了新颖的见解和实用建议。 | Denny et al,2017
  4. Scheduled Sampling for Transformers | 阅读笔记:在Transformer应用Scheduled Sampling | Mihaylova et al,2019

License

Licensed under the Apache License, Version 2.0. Copyright 2021 DengBoCong. Copy of the license.