-
Notifications
You must be signed in to change notification settings - Fork 1
/
gnn.py
118 lines (96 loc) · 3.87 KB
/
gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
""" https://docs.dgl.ai/en/0.6.x/guide/training-edge.html """
import dgl
import dgl.function as fn
import dgl.nn as dglnn
import networkx as nx
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class SAGE(nn.Module):
def __init__(self, in_feats, hid_feats, out_feats):
super().__init__()
self.conv1 = dglnn.SAGEConv(
in_feats=in_feats, out_feats=hid_feats, aggregator_type="mean"
)
self.conv2 = dglnn.SAGEConv(
in_feats=hid_feats, out_feats=out_feats, aggregator_type="mean"
)
def forward(self, graph, inputs):
# inputs are features of nodes
h = self.conv1(graph, inputs)
h = F.relu(h)
h = self.conv2(graph, h)
return h
class DotProductPredictor(nn.Module):
def forward(self, graph, h):
# h contains the node representations computed from the GNN defined
# in the node classification section (Section 5.1).
with graph.local_scope():
graph.ndata["h"] = h
graph.apply_edges(fn.u_dot_v("h", "h", "score"))
return graph.edata["score"]
class MLPPredictor(nn.Module):
def __init__(self, in_features, out_classes):
super().__init__()
self.W = nn.Linear(in_features * 2, out_classes)
def apply_edges(self, edges):
h_u = edges.src["h"]
h_v = edges.dst["h"]
score = self.W(torch.cat([h_u, h_v], 1))
return {"score": score}
def forward(self, graph, h):
# h contains the node representations computed from the GNN defined
# in the node classification section (Section 5.1).
with graph.local_scope():
graph.ndata["h"] = h
graph.apply_edges(self.apply_edges)
return graph.edata["score"]
class Model(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super().__init__()
self.sage = SAGE(in_features, hidden_features, out_features)
self.pred = DotProductPredictor()
def forward(self, g, x):
h = self.sage(g, x)
return self.pred(g, h)
def build_graph():
# All 78 edges are stored in two numpy arrays. One for source endpoints
# while the other for destination endpoints.
src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10,
10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21,
25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32,
32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33,
33, 33, 33, 33, 33, 33, 33, 33, 33, 33])
dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4,
5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23,
24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23,
29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30,
31, 32])
# Edges are directional in DGL; Make them bi-directional.
u = np.concatenate([src, dst])
v = np.concatenate([dst, src])
# Construct a DGLGraph
return dgl.DGLGraph((u, v))
G = build_graph()
nx_G = G.to_networkx().to_undirected()
# synthetic node and edge features, as well as edge labels
G.ndata["feature"] = torch.randn(34, 10)
G.edata["feature"] = torch.randn(156, 10)
G.edata["label"] = torch.randn(156)
# synthetic train-validation-test splits
G.edata["train_mask"] = torch.zeros(156, dtype=torch.bool).bernoulli(0.6)
node_features = G.ndata["feature"]
edge_label = G.edata["label"]
train_mask = G.edata["train_mask"]
model = Model(10, 20, 5)
opt = torch.optim.Adam(model.parameters())
all_logits = []
for epoch in range(50):
pred = model(G, node_features)
all_logits.append(pred.detach())
loss = ((pred[train_mask] - edge_label[train_mask]) ** 2).mean()
opt.zero_grad()
loss.backward()
opt.step()
print("Epoch %d | Loss: %.4f" % (epoch, loss.item()))