-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfit_params_bspline.py
175 lines (156 loc) · 8.13 KB
/
fit_params_bspline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ[
'XLA_FLAGS'] = '--xla_gpu_cuda_data_dir=/usr/local/cuda'
from absl import app
from absl import flags
import matplotlib.pyplot as plt
import tensorflow as tf
import pickle
import jax
import jax.numpy as jnp
import jax_cosmo as jc
import haiku as hk
from tqdm import tqdm
from jax.experimental.ode import odeint
from jaxpm.painting import cic_paint, cic_read, compensate_cic
from jaxpm.pm import linear_field, lpt, make_ode_fn, pm_forces, make_neural_ode_fn
from jaxpm.kernels import fftk, gradient_kernel, laplace_kernel, longrange_kernel
from jaxpm.nn import NeuralSplineFourierFilter
from jaxpm.utils import power_spectrum
import jax_cosmo as jc
import numpyro
import readgadget
import optax
from functools import partial
flags.DEFINE_string("filename", "/local/home/dl264294/jaxpm-paper/notebooks/correction_params/camels_25_64_CV_8_lambda1_01.params", "Output filename")
flags.DEFINE_string("training_sims","/data/CAMELS/Sims/IllustrisTNG_DM/CV_8",
"Simulations used to train the NN")
flags.DEFINE_float("Omega_m", 0.3 - 0.049, "Fiducial CDM and baryonic fraction")
flags.DEFINE_float("Omega_b",0.049, "Fiducial baryonic matter fraction")
flags.DEFINE_float("sigma8", 0.8, "Fiducial sigma_8 value")
flags.DEFINE_float("n_s", 0.9624, "Fiducial n_s value")
flags.DEFINE_float("h", 0.6711, "Fiducial Hubble constant value")
flags.DEFINE_integer("mesh_shape", 64,
"Number of transverse voxels in the simulation volume")
flags.DEFINE_float("box_size", 25.,
"Transverse comoving size of the simulation volume")
flags.DEFINE_integer("niter", 500, "Number of iterations of loss fit")
flags.DEFINE_float("learning_rate", 0.01, "ADAM learning rate for the optim")
flags.DEFINE_boolean(
"custom_weight", True,
"Whether to apply a custom scale weighting to the loss function, or no weighting."
)
flags.DEFINE_float("lambda_2", 1., "Positive hyperparameters that allow us to tune the amount of regularisation given by the postion term")
flags.DEFINE_float("lambda_1", 0.1, "Positive hyperparameters that allow us to tune the amount of regularisation given by the power spectrum term")
FLAGS = flags.FLAGS
@partial(jax.jit, static_argnames=['model'])
def loss_fn(params, cosmo, target_pos, target_vel, target_pk, scales, model):
"""
Defines the loss function for the PGD parameters
"""
# Step I: Compute the state vector
res = odeint(make_neural_ode_fn(model,[FLAGS.mesh_shape,FLAGS.mesh_shape,FLAGS.mesh_shape]), [target_pos[0], target_vel[0]], jnp.array(scales), cosmo, params, rtol=1e-5, atol=1e-5)
# Step II: Define a customized weight
distance = jnp.sum((res[0] - target_pos)**2, axis=-1)
w = jnp.where(distance < 100, distance, 0.)
# Step III: Painting and compute power spectrum
k, pk = jax.vmap(lambda x: power_spectrum(
(cic_paint(jnp.zeros([FLAGS.mesh_shape,FLAGS.mesh_shape,FLAGS.mesh_shape]), x)),
boxsize=np.array([FLAGS.box_size] * 3),
kmin=np.pi / FLAGS.box_size,
dk=2 * np.pi / FLAGS.box_size))(res[0])
# Step IV: Compute loss
if FLAGS.custom_weight:
return FLAGS.lambda_2*jnp.mean(w)+FLAGS.lambda_1*jnp.mean(jnp.sum((pk/target_pk -1)**2,axis=-1))
else:
return FLAGS.lambda_1*jnp.mean(jnp.sum((pk/target_pk -1)**2,axis=-1))
@partial(jax.jit, static_argnames=['model'])
def update( params, cosmo, target_pos, target_vel, target_pk, scales, model, opt_state):
"""Single SGD update step."""
loss, grads = jax.value_and_grad(loss_fn)(params, cosmo, target_pos, target_vel, target_pk, scales, model)
optimizer = optax.adam(FLAGS.learning_rate)
updates, new_opt_state = optimizer.update(grads, opt_state)
new_params = optax.apply_updates(params, updates)
return loss, new_params, new_opt_state
def main(_):
#Create a simple Planck15 cosmology
cosmo = jc.Planck15(Omega_c= FLAGS.Omega_m - FLAGS.Omega_b, Omega_b=FLAGS.Omega_b, n_s=FLAGS.n_s, h=FLAGS.h, sigma8=FLAGS.sigma8)
# Create some initial conditions
print('Create initial conditions')
init_cond=FLAGS.training_sims+'/ICs/ics'
header = readgadget.header(init_cond)
BoxSize = header.boxsize/1e3 #Mpc/h
Nall = header.nall #Total number of particles
Masses = header.massarr*1e10 #Masses of the particles in Msun/h
Omega_m = header.omega_m #value of Omega_m
Omega_l = header.omega_l #value of Omega_l
h = header.hubble #value of h
redshift = header.redshift #redshift of the snapshot
Hubble = 100.0*np.sqrt(Omega_m*(1.0+redshift)**3+Omega_l)#Value of H(z) in km/s/(Mpc/h)
ptype = [1] #dark matter is particle type 1
ids_i = np.argsort(readgadget.read_block(init_cond, "ID ", ptype)-1) #IDs starting from 0
pos_i = readgadget.read_block(init_cond, "POS ", ptype)[ids_i]/1e3 #positions in Mpc/h
vel_i = readgadget.read_block(init_cond, "VEL ", ptype)[ids_i] #peculiar velocities in km/s
#Reordering data for simple reshaping
re=256//FLAGS.mesh_shape #reshaping size
pos_i = pos_i.reshape(re,re,re,FLAGS.mesh_shape,FLAGS.mesh_shape,FLAGS.mesh_shape,3).transpose(0,3,1,4,2,5,6).reshape(-1,3)
vel_i = vel_i.reshape(re,re,re,FLAGS.mesh_shape,FLAGS.mesh_shape,FLAGS.mesh_shape,3).transpose(0,3,1,4,2,5,6).reshape(-1,3)
pos_i = (pos_i/BoxSize*FLAGS.mesh_shape).reshape([256,256,256,3])[::re,::re,::re,:].reshape([-1,3])
vel_i = (vel_i / 100 * (1./(1+redshift)) / BoxSize*FLAGS.mesh_shape).reshape([256,256,256,3])[::re,::re,::re,:].reshape([-1,3])
a_i = 1./(1+redshift)
# Loading all the intermediate snapshots
print('Loading the intermediate snapshots')
scales = []
poss = []
vels = []
for i in tqdm(range(34)):
snapshot=FLAGS.training_sims+'/snap_%03d.hdf5'%i
header = readgadget.header(snapshot)
redshift = header.redshift #redshift of the snapshot
h = header.hubble #value of h
ptype = [1] #dark matter is particle type 1
ids = np.argsort(readgadget.read_block(snapshot, "ID ", ptype)-1) #IDs starting from 0
pos = readgadget.read_block(snapshot, "POS ", ptype)[ids] / 1e3 #positions in Mpc/h
vel = readgadget.read_block(snapshot, "VEL ", ptype)[ids] #peculiar velocities in km/s
# Reordering data for simple reshaping
pos = pos.reshape(re,re,re,FLAGS.mesh_shape,FLAGS.mesh_shape,FLAGS.mesh_shape,3).transpose(0,3,1,4,2,5,6).reshape(-1,3)
vel = vel.reshape(re,re,re,FLAGS.mesh_shape,FLAGS.mesh_shape,FLAGS.mesh_shape,3).transpose(0,3,1,4,2,5,6).reshape(-1,3)
pos = (pos / BoxSize *FLAGS.mesh_shape).reshape([256,256,256,3])[::re,::re,::re,:].reshape([-1,3])
vel = (vel / 100 * (1./(1+redshift)) / BoxSize*FLAGS.mesh_shape).reshape([256,256,256,3])[::re,::re,::re,:].reshape([-1,3])
scales.append((1./(1+redshift)))
poss.append(pos)
vels.append(vel)
# Run the Nbody
resi = odeint(make_ode_fn([FLAGS.mesh_shape,FLAGS.mesh_shape,FLAGS.mesh_shape]), [poss[0], vels[0]], jnp.array(scales), cosmo, rtol=1e-5, atol=1e-5)
print('Simulation done')
# Let's compute the target power spectrum
ref_pos = jnp.stack(poss, axis=0)
ref_vel = jnp.stack(vels, axis=0)
ref_pk = jax.vmap(lambda x: power_spectrum(
(cic_paint(jnp.zeros([FLAGS.mesh_shape,FLAGS.mesh_shape,FLAGS.mesh_shape]), x)),
boxsize=np.array([FLAGS.box_size] * 3),
kmin=np.pi / FLAGS.box_size,
dk=2 * np.pi / FLAGS.box_size)[1])(ref_pos)
# Initialize NN params
model = hk.without_apply_rng(hk.transform(lambda x,a : NeuralSplineFourierFilter(n_knots=16, latent_size=32)(x,a)))
rng_seq = hk.PRNGSequence(1)
params = model.init(next(rng_seq), jnp.zeros([FLAGS.mesh_shape,FLAGS.mesh_shape,FLAGS.mesh_shape]), jnp.ones([1]))
losses = []
optimizer = optax.adam(FLAGS.learning_rate)
opt_state = optimizer.init(params)
print('Starting fitting')
for step in tqdm(range(FLAGS.niter)):
l, params, opt_state = update(params, cosmo, ref_pos, ref_vel, ref_pk, scales, model, opt_state)
losses.append(l)
plt.plot(jnp.arange(0,FLAGS.niter),losses[:])
plt.xlabel("niter")
plt.ylabel("Loss")
plt.savefig('Losses.png' )
plt.close()
pickle.dump(
params
, open(FLAGS.filename, "wb"))
if __name__ == "__main__":
app.run(main)