-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory.c
369 lines (314 loc) · 10 KB
/
memory.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/* mymemory.c
*
* provides interface to memory management
*
*/
#include "memory.h"
// our memory
// Changed variable name to kMAXMEM because I had a weird error
Byte mymemory [kMAXMEM] ;
Segment_t* segmenttable = NULL;
int InstanceCount = 0;
// pointer to last segment
// Since defrag will return a free segment at the end of the linked list,
// we can keep a pointer to the last el to check if its free
Segment_t* last_el = NULL;
void initialize ()
{
printf ( "initialize> start\n");
// set memory to 0
for (int i =0; i < kMAXMEM + 1; i++){
mymemory[i] = '\0';
}
// i need to allocate these segments in heap which are head and tail of the linked list
segmenttable = (struct segmentdescriptor *)malloc(sizeof(struct segmentdescriptor));
last_el = (struct segmentdescriptor *)malloc(sizeof(struct segmentdescriptor));
// create segment descriptor for keeping track of segments
// I use kMAXMEM to initiate it here because I need to keep track of how much memory we have left
// In shell i switch this with InstanceCount so it prints the number of Segments
Segment_t * SegmentDescriptor = createInstance(kMAXMEM);
// Segment Descriptor that descirbes the whole memory
SegmentDescriptor->allocated = FALSE;
// First segment is memory descriptor
segmenttable->next = SegmentDescriptor;
}
// INITIALIZE SEGMENTS ( ALLOCATE THEM IN HEAP)
// Since we are working with linked list , I have to use malloc to link segments
// Dinamycally create a segment and link it with the previous one
Segment_t * createInstance(size_t size){
// keep track of head of list
Segment_t * head = segmenttable;
// initialize segment
Segment_t * SegmentDescriptor = NULL;
SegmentDescriptor = (struct segmentdescriptor *)malloc(sizeof(struct segmentdescriptor));
// size is what is passed in parameter
SegmentDescriptor->size = size;
// increase number of instances created
InstanceCount += 1;
// link with the previous segment
for (int i = 0; i < InstanceCount - 1; i++){
// go to the last node
segmenttable = segmenttable->next;
}
// next node of our last is our new node
segmenttable->next = SegmentDescriptor;
//return to head
segmenttable = head;
last_el = SegmentDescriptor;
return SegmentDescriptor;
}
void * mymalloc ( size_t size )
{
Segment_t* SegmDescriptor = segmenttable->next;
Segment_t* AllocateSegm = findFree(segmenttable, size);
// Allocate a new segment at the end of list
if (AllocateSegm != NULL && AllocateSegm->start == NULL){
//Allocate the segment at the point where memory is free by getting offset of 1024 - sum of our allocated sizes
// Formula -> Index = MAXMEM - (MAXMEM - SUM(ALL SEGMENT SIZES) without the segment descriptor of course)
// Here our SegmDescriptor contains all our current memory allocated so we can just kmaxmem from it
int Offset = kMAXMEM - SegmDescriptor->size;
AllocateSegm->start = &mymemory[Offset];
// alocated memory slots
// I just put 1 instead of 0 on the allocated memory slots in the table so we know they are allocated
// of course they will be overiden by their actual value
for(int i = 0; i < size; i++){
mymemory[Offset + i] = '\1';
}
// alocate the segment
AllocateSegm->allocated = TRUE;
// update our available memory
SegmDescriptor->size = SegmDescriptor->size - size;
return AllocateSegm->start;
}
// Allocate to a free segment
else{
int Offset = getIndex(AllocateSegm->start);
for(int i = 0; i < size; i++){
mymemory[Offset + i] = '\1';
}
// alocate the segment
AllocateSegm->allocated = TRUE;
return AllocateSegm->start;
}
}
void myfree ( void * ptr )
{
Segment_t* SegmDescriptor = segmenttable->next;
Segment_t * Seg = findSegment(segmenttable, ptr);
if (Seg != NULL){
printf("Free'd the segment %p \n", Seg->start);
// Free the segment
Seg->allocated = FALSE;
int index = getIndex(Seg->start);
for (int i =0; i < Seg->size; i ++){
mymemory[index + i] = '\0';
}
}
else{
printf("Segment not found");
}
}
int getIndex(void * ptr){
for (int i = 0 ; i < kMAXMEM; i++){
if ( ptr == &mymemory[i]){
return i;
}
}
}
// F F = 2F
// F A = First iter -> A F; Second iter -> A F;
// F F A = First Iter -> 2F A ; Second Iter -> A 2F ; Third Iter -> A 2F
// F A F F A = First iter -> A F F F A -> Second Iter -> A 2F F A; Third Iter -> A 3F A; Fourth Iter -> A A 3F ; Fifth iter -> A A 3F
void mydefrag(void ** ptrlist, int count){
int checkStart = 1;
int loopcnt = 0;
Segment_t* head = segmenttable;
Segment_t* SegmDes = segmenttable->next;
Segment_t* segment = SegmDes->next;
for (int i =0; i < count ; i++){
if(segment->next != NULL){
Segment_t* nextSeg = segment->next;
// First case , combine both segments into a bigger one
// here we dont need to change any pointer value, since we are just creating a bigger segment from 2 smaller ones
if( segment->allocated == FALSE && nextSeg->allocated == FALSE){
Segment_t* nextNextSeg = nextSeg->next;
segment->next = nextNextSeg;
segment->size += nextSeg->size;
count -= 1;
InstanceCount -= 1;
}
// second case, swap the segments
if (segment->allocated == FALSE && nextSeg->allocated == TRUE){
// get index in memory entry
int seg1Entry = getIndex(segment->start);
int seg2Entry = getIndex(nextSeg->start);
// swap entries in memory
for (int k = 0; k < nextSeg->size; k++){
mymemory[seg1Entry + k] = mymemory[seg2Entry + k];
}
for(int j =0 ; j < segment->size; j++){
mymemory[nextSeg->size + j] = '\0';
}
segment->start = &mymemory[seg1Entry];
nextSeg->start = &mymemory[nextSeg->size];
// swap the segments (or just change their attributes, same thing)
swap(segment,nextSeg);
ptrlist[i - 1] = segment->start;
ptrlist[i] = nextSeg->start;
checkStart = 1;
}
} // first if
loopcnt+= 1;
} // for loop
}
void swap(Segment_t* segment, Segment_t* nextSeg){
segment->allocated = TRUE;
nextSeg->allocated = FALSE;
// sizes
size_t tempSize = segment->size;
segment->size = nextSeg->size;
nextSeg->size = tempSize;
}
// helper functions for management segmentation table
Segment_t * findFree ( Segment_t * list, size_t size )
{
Segment_t * MemoryDescriptor = list->next;
Segment_t * head = MemoryDescriptor;
// Initially, see whether we have enough memory to allocate
int MemoryCap = MemoryDescriptor->size - size;
if (MemoryCap >= 0){
if (MemoryCap == 0){
MemoryDescriptor->allocated = TRUE;
printf("Memory is full \n");
}
//then search for free segment
else{
for (int i = 0 ; i < InstanceCount - 1; i++){
MemoryDescriptor = MemoryDescriptor->next;
if (MemoryDescriptor->size >= size && MemoryDescriptor->allocated == FALSE){
// here we check if our free segment's size == to the size we are looking for
// then we just return the segment
if (MemoryDescriptor->size == size){
return MemoryDescriptor;
}
// if our free segment is bigger than the actual size,
// we create a slice of unallocated memory
//inserting it after the one we allocated
else{
size_t Offset = MemoryDescriptor->size - size;
MemoryDescriptor->size = size;
Segment_t* nextSeg = MemoryDescriptor->next;
Segment_t* SlicedSeg = (struct segmentdescriptor *)malloc(sizeof(struct segmentdescriptor));
MemoryDescriptor->next = SlicedSeg;
SlicedSeg->next = nextSeg;
SlicedSeg->allocated = FALSE;
SlicedSeg->start = MemoryDescriptor->start + MemoryDescriptor->size;
SlicedSeg->size = Offset;
return MemoryDescriptor;
}
}
}
// no free segment, just create a new one
Segment_t * segmentDescriptor = createInstance(size);
return segmentDescriptor;
}
}
else{
// All our memory is allocated, we need to deallocate
MemoryDescriptor->allocated = TRUE;
printf("No sufficient memory..> Call free memory");
return NULL;
}
}
Segment_t * findSegment ( Segment_t * list, void * ptr )
{
// Pointer so we dont modify the value in the iterations
Segment_t* head = list->next;
size_t size = 0;
for (int i = 0; i < InstanceCount - 1; i++){
head = head->next;
int index = 1024 - (1024 - size);
size += head->size;
if ( head->start == ptr){
// Found segment
return head;
}
}
// Segment not found
return NULL;
}
int isPrintable ( int c )
{
if ( c >= 0x20 && c <= 0x7e ) return c ;
return 0 ;
}
// print memory as a table
void printmemory (Byte mymemory []){
int next_row = 10;
for(int i = 0; i < kMAXMEM + 1; i++){
if (i == 0){
printf("[%i] ", i);
}
if ( i == next_row){
printf("\n");
printf("[%i]", i);
next_row += 10;
}
printf(" %02x ", mymemory[i]);
printf("|");
}
}
// recursive function to print the segments
int printsegmenttable(Segment_t * segmentTable, int Index )
{
if (segmentTable == NULL){
return -1 ;
}
else{
if (Index == 0){
printf("Segment Table \n");
printsegmentdescriptor(segmentTable);
}
else{
printf("Segment %i \n", Index);
printsegmentdescriptor(segmentTable);
}
return printsegmenttable(segmentTable->next, Index + 1);
}
}
//src : https://gist.github.com/ccbrown/9722406
void DumpHex(const void* data, size_t size) {
char ascii[17];
size_t i, j;
ascii[16] = '\0';
for (i = 0; i < size; ++i) {
printf("%02X ", ((unsigned char*)data)[i]);
if (((unsigned char*)data)[i] >= ' ' && ((unsigned char*)data)[i] <= '~') {
ascii[i % 16] = ((unsigned char*)data)[i];
} else {
ascii[i % 16] = '.';
}
if ((i+1) % 8 == 0 || i+1 == size) {
printf(" ");
if ((i+1) % 16 == 0) {
printf("| %s \n", ascii);
} else if (i+1 == size) {
ascii[(i+1) % 16] = '\0';
if ((i+1) % 16 <= 8) {
printf(" ");
}
for (j = (i+1) % 16; j < 16; ++j) {
printf(" ");
}
printf("| %s \n", ascii);
}
}
}
}
void printsegmentdescriptor (Segment_t * descriptor)
{
printf ( "\tallocated = %s\n" , (descriptor->allocated == FALSE ? "FALSE" : "TRUE" ) );
printf ( "\tstart = %p\n" , descriptor->start );
printf ( "\tsize = %lu\n", descriptor->size );
printf ( "\tnext = %p\n", descriptor->next );
}