-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtest_iq.py
162 lines (126 loc) · 4.81 KB
/
test_iq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from itertools import count
import hydra
import torch
import numpy as np
import os
from omegaconf import DictConfig, OmegaConf
from scipy.stats import spearmanr, pearsonr
import matplotlib.pyplot as plt
import seaborn as sns
import wandb
from make_envs import make_env
from agent import make_agent
from utils.utils import evaluate
def get_args(cfg: DictConfig):
cfg.device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(OmegaConf.to_yaml(cfg))
return cfg
@hydra.main(config_path="conf", config_name="config")
def main(cfg: DictConfig):
args = get_args(cfg)
env = make_env(args)
agent = make_agent(env, args)
if args.method.type == "sqil":
name = f'sqil'
else:
name = f'iq'
policy_file = f'results/{args.method.type}.para'
if args.eval.policy:
policy_file = f'{args.eval.policy}'
print(f'Loading policy from: {policy_file}')
if args.eval.transfer:
agent.load(hydra.utils.to_absolute_path(policy_file),
f'_{name}_{args.eval.expert_env}')
else:
agent.load(hydra.utils.to_absolute_path(policy_file), f'_{name}_{args.env.name}')
eval_returns, eval_timesteps = evaluate(agent, env, num_episodes=args.eval.eps)
print(f'Avg. eval returns: {np.mean(eval_returns)}, timesteps: {np.mean(eval_timesteps)}')
if args.eval_only:
exit()
measure_correlations(agent, env, args, log=True)
def measure_correlations(agent, env, args, log=False, use_wandb=False):
GAMMA = args.gamma
env_rewards = []
learnt_rewards = []
for epoch in range(100):
part_env_rewards = []
part_learnt_rewards = []
state = env.reset()
episode_reward = 0
episode_irl_reward = 0
for time_steps in count():
# env.render()
action = agent.choose_action(state, sample=False)
next_state, reward, done, _ = env.step(action)
# Get sqil reward
with torch.no_grad():
q = agent.infer_q(state, action)
next_v = agent.infer_v(next_state)
y = (1 - done) * GAMMA * next_v
irl_reward = (q - y)
episode_irl_reward += irl_reward.item()
episode_reward += reward
part_learnt_rewards.append(irl_reward.item())
part_env_rewards.append(reward)
if done:
break
state = next_state
if log:
print('Ep {}\tEpisode env rewards: {:.2f}\t'.format(epoch, episode_reward))
print('Ep {}\tEpisode learnt rewards {:.2f}\t'.format(epoch, episode_irl_reward))
learnt_rewards.append(part_learnt_rewards)
env_rewards.append(part_env_rewards)
# mask = [sum(x) < -5 for x in env_rewards] # skip outliers
# env_rewards = [env_rewards[i] for i in range(len(env_rewards)) if mask[i]]
# learnt_rewards = [learnt_rewards[i] for i in range(len(learnt_rewards)) if mask[i]]
print(f'Spearman correlation {spearmanr(eps(learnt_rewards), eps(env_rewards))}')
print(f'Pearson correlation: {pearsonr(eps(learnt_rewards), eps(env_rewards))}')
# plt.show()
savedir = hydra.utils.to_absolute_path(f'vis/{args.env.name}/correlation')
if not os.path.exists(savedir):
os.makedirs(savedir)
sns.set()
plt.figure(dpi=150)
plt.scatter(eps(env_rewards), eps(learnt_rewards), s=10, alpha=0.8)
plt.xlabel('Env rewards')
plt.ylabel('Recovered rewards')
if use_wandb:
wandb.log({f"Episode rewards": wandb.Image(plt)})
plt.savefig(savedir + '/%s.png' % 'Episode rewards')
plt.close()
sns.set()
plt.figure(dpi=150)
for i in range(20):
plt.scatter(part_eps(env_rewards)[i], part_eps(learnt_rewards)[i], s=5, alpha=0.6)
plt.xlabel('Env rewards')
plt.ylabel('Recovered rewards')
if use_wandb:
wandb.log({f"Partial rewards": wandb.Image(plt)})
plt.savefig(savedir + '/%s.png' % 'Partial rewards')
plt.close()
sns.set()
plt.figure(dpi=150)
for i in range(20):
plt.plot(part_eps(env_rewards)[i], part_eps(learnt_rewards)[i], markersize=1, alpha=0.8)
plt.xlabel('Env rewards')
plt.ylabel('Recovered rewards')
if use_wandb:
wandb.log({f"Partial rewards - Interplolate": wandb.Image(plt)})
plt.savefig(savedir + '/%s.png' % 'Partial rewards - Interplolate')
plt.close()
sns.set()
plt.figure(dpi=150)
for i in range(5):
plt.scatter(env_rewards[i], learnt_rewards[i], s=5, alpha=0.5)
plt.xlabel('Env rewards')
plt.ylabel('Recovered rewards')
if use_wandb:
wandb.log({f"Step rewards": wandb.Image(plt)})
plt.savefig(savedir + '/%s.png' % 'Step rewards')
plt.close()
def eps(rewards):
return [sum(x) for x in rewards]
def part_eps(rewards):
return [np.cumsum(x) for x in rewards]
if __name__ == '__main__':
main()