-
Notifications
You must be signed in to change notification settings - Fork 0
/
bsd.cc
334 lines (294 loc) · 11.4 KB
/
bsd.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/* bsd.cc -- Functions for loading and manipulating legacy BSD disklabel
data. */
/* By Rod Smith, initial coding August, 2009 */
/* This program is copyright (c) 2009 by Roderick W. Smith. It is distributed
under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
#define __STDC_LIMIT_MACROS
#ifndef __STDC_CONSTANT_MACROS
#define __STDC_CONSTANT_MACROS
#endif
#include <stdio.h>
//#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <errno.h>
#include <iostream>
#include <string>
#include "support.h"
#include "bsd.h"
using namespace std;
BSDData::BSDData(void) {
state = unknown;
signature = UINT32_C(0);
signature2 = UINT32_C(0);
sectorSize = 512;
numParts = 0;
labelFirstLBA = 0;
labelLastLBA = 0;
labelStart = LABEL_OFFSET1; // assume raw disk format
partitions = NULL;
} // default constructor
BSDData::~BSDData(void) {
delete[] partitions;
} // destructor
// Read BSD disklabel data from the specified device filename. This function
// just opens the device file and then calls an overloaded function to do
// the bulk of the work. Returns 1 on success, 0 on failure.
int BSDData::ReadBSDData(const string & device, uint64_t startSector, uint64_t endSector) {
int allOK = 1;
DiskIO myDisk;
if (device != "") {
if (myDisk.OpenForRead(device)) {
allOK = ReadBSDData(&myDisk, startSector, endSector);
} else {
allOK = 0;
} // if/else
myDisk.Close();
} else {
allOK = 0;
} // if/else
return allOK;
} // BSDData::ReadBSDData() (device filename version)
// Load the BSD disklabel data from an already-opened disk
// file, starting with the specified sector number.
int BSDData::ReadBSDData(DiskIO *theDisk, uint64_t startSector, uint64_t endSector) {
int allOK = 1;
int i, foundSig = 0, bigEnd = 0;
int relative = 0; // assume absolute partition sector numbering
uint8_t buffer[4096]; // I/O buffer
uint32_t realSig;
uint32_t* temp32;
uint16_t* temp16;
BSDRecord* tempRecords;
int offset[NUM_OFFSETS] = { LABEL_OFFSET1, LABEL_OFFSET2 };
labelFirstLBA = startSector;
labelLastLBA = endSector;
offset[1] = theDisk->GetBlockSize();
// Read 4096 bytes (eight 512-byte sectors or equivalent)
// into memory; we'll extract data from this buffer.
// (Done to work around FreeBSD limitation on size of reads
// from block devices.)
allOK = theDisk->Seek(startSector);
if (allOK) allOK = theDisk->Read(buffer, 4096);
// Do some strangeness to support big-endian architectures...
bigEnd = (IsLittleEndian() == 0);
realSig = BSD_SIGNATURE;
if (bigEnd && allOK)
ReverseBytes(&realSig, 4);
// Look for the signature at any of two locations.
// Note that the signature is repeated at both the original
// offset and 132 bytes later, so we need two checks....
if (allOK) {
i = 0;
do {
temp32 = (uint32_t*) &buffer[offset[i]];
signature = *temp32;
if (signature == realSig) { // found first, look for second
temp32 = (uint32_t*) &buffer[offset[i] + 132];
signature2 = *temp32;
if (signature2 == realSig) {
foundSig = 1;
labelStart = offset[i];
} // if found signature
} // if/else
i++;
} while ((!foundSig) && (i < NUM_OFFSETS));
allOK = foundSig;
} // if
// Load partition metadata from the buffer....
if (allOK) {
temp32 = (uint32_t*) &buffer[labelStart + 40];
sectorSize = *temp32;
temp16 = (uint16_t*) &buffer[labelStart + 138];
numParts = *temp16;
} // if
// Make it big-endian-aware....
if ((IsLittleEndian() == 0) && allOK)
ReverseMetaBytes();
// Check validity of the data and flag it appropriately....
if (foundSig && (numParts <= MAX_BSD_PARTS) && allOK) {
state = bsd;
} else {
state = bsd_invalid;
} // if/else
// If the state is good, go ahead and load the main partition data....
if (state == bsd) {
partitions = new struct BSDRecord[numParts * sizeof(struct BSDRecord)];
if (partitions == NULL) {
cerr << "Unable to allocate memory in BSDData::ReadBSDData()! Terminating!\n";
exit(1);
} // if
for (i = 0; i < numParts; i++) {
// Once again, we use the buffer, but index it using a BSDRecord
// pointer (dangerous, but effective)....
tempRecords = (BSDRecord*) &buffer[labelStart + 148];
partitions[i].lengthLBA = tempRecords[i].lengthLBA;
partitions[i].firstLBA = tempRecords[i].firstLBA;
partitions[i].fsType = tempRecords[i].fsType;
if (bigEnd) { // reverse data (fsType is a single byte)
ReverseBytes(&partitions[i].lengthLBA, 4);
ReverseBytes(&partitions[i].firstLBA, 4);
} // if big-endian
// Check for signs of relative sector numbering: A "0" first sector
// number on a partition with a non-zero length -- but ONLY if the
// length is less than the disk size, since NetBSD has a habit of
// creating a disk-sized partition within a carrier MBR partition
// that's too small to house it, and this throws off everything....
if ((partitions[i].firstLBA == 0) && (partitions[i].lengthLBA > 0)
&& (partitions[i].lengthLBA < labelLastLBA))
relative = 1;
} // for
// Some disklabels use sector numbers relative to the enclosing partition's
// start, others use absolute sector numbers. If relative numbering was
// detected above, apply a correction to all partition start sectors....
if (relative) {
for (i = 0; i < numParts; i++) {
partitions[i].firstLBA += (uint32_t) startSector;
} // for
} // if
} // if signatures OK
// DisplayBSDData();
return allOK;
} // BSDData::ReadBSDData(DiskIO* theDisk, uint64_t startSector)
// Reverse metadata's byte order; called only on big-endian systems
void BSDData::ReverseMetaBytes(void) {
ReverseBytes(&signature, 4);
ReverseBytes(§orSize, 4);
ReverseBytes(&signature2, 4);
ReverseBytes(&numParts, 2);
} // BSDData::ReverseMetaByteOrder()
// Display basic BSD partition data. Used for debugging.
void BSDData::DisplayBSDData(void) {
int i;
if (state == bsd) {
cout << "BSD partitions:\n";
for (i = 0; i < numParts; i++) {
cout.width(4);
cout << i + 1 << "\t";
cout.width(13);
cout << partitions[i].firstLBA << "\t";
cout.width(15);
cout << partitions[i].lengthLBA << " \t0x";
cout.width(2);
cout.fill('0');
cout.setf(ios::uppercase);
cout << hex << (int) partitions[i].fsType << "\n" << dec;
cout.fill(' ');
} // for
} // if
} // BSDData::DisplayBSDData()
// Displays the BSD disklabel state. Called during program launch to inform
// the user about the partition table(s) status
int BSDData::ShowState(void) {
int retval = 0;
switch (state) {
case bsd_invalid:
cout << " BSD: not present\n";
break;
case bsd:
cout << " BSD: present\n";
retval = 1;
break;
default:
cout << "\a BSD: unknown -- bug!\n";
break;
} // switch
return retval;
} // BSDData::ShowState()
// Weirdly, this function has stopped working when defined inline,
// but it's OK here....
int BSDData::IsDisklabel(void) {
return (state == bsd);
} // BSDData::IsDiskLabel()
// Returns the BSD table's partition type code
uint8_t BSDData::GetType(int i) {
uint8_t retval = 0; // 0 = "unused"
if ((i < numParts) && (i >= 0) && (state == bsd) && (partitions != 0))
retval = partitions[i].fsType;
return(retval);
} // BSDData::GetType()
// Returns the number of the first sector of the specified partition
uint64_t BSDData::GetFirstSector(int i) {
uint64_t retval = UINT64_C(0);
if ((i < numParts) && (i >= 0) && (state == bsd) && (partitions != 0))
retval = (uint64_t) partitions[i].firstLBA;
return retval;
} // BSDData::GetFirstSector
// Returns the length (in sectors) of the specified partition
uint64_t BSDData::GetLength(int i) {
uint64_t retval = UINT64_C(0);
if ((i < numParts) && (i >= 0) && (state == bsd) && (partitions != 0))
retval = (uint64_t) partitions[i].lengthLBA;
return retval;
} // BSDData::GetLength()
// Returns the number of partitions defined in the current table
int BSDData::GetNumParts(void) {
return numParts;
} // BSDData::GetNumParts()
// Returns the specified partition as a GPT partition. Used in BSD-to-GPT
// conversion process
GPTPart BSDData::AsGPT(int i) {
GPTPart guid; // dump data in here, then return it
uint64_t sectorOne, sectorEnd; // first & last sectors of partition
int passItOn = 1; // Set to 0 if partition is empty or invalid
guid.BlankPartition();
sectorOne = (uint64_t) partitions[i].firstLBA;
sectorEnd = sectorOne + (uint64_t) partitions[i].lengthLBA;
if (sectorEnd > 0) sectorEnd--;
// Note on above: BSD partitions sometimes have a length of 0 and a start
// sector of 0. With unsigned ints, the usual way (start + length - 1) to
// find the end will result in a huge number, which will be confusing.
// Thus, apply the "-1" part only if it's reasonable to do so.
// Do a few sanity checks on the partition before we pass it on....
// First, check that it falls within the bounds of its container
// and that it starts before it ends....
if ((sectorOne < labelFirstLBA) || (sectorEnd > labelLastLBA) || (sectorOne > sectorEnd))
passItOn = 0;
// Some disklabels include a pseudo-partition that's the size of the entire
// disk or containing partition. Don't return it.
if ((sectorOne <= labelFirstLBA) && (sectorEnd >= labelLastLBA) &&
(GetType(i) == 0))
passItOn = 0;
// If the end point is 0, it's not a valid partition.
if ((sectorEnd == 0) || (sectorEnd == labelFirstLBA))
passItOn = 0;
if (passItOn) {
guid.SetFirstLBA(sectorOne);
guid.SetLastLBA(sectorEnd);
// Now set a random unique GUID for the partition....
guid.RandomizeUniqueGUID();
// ... zero out the attributes and name fields....
guid.SetAttributes(UINT64_C(0));
// Most BSD disklabel type codes seem to be archaic or rare.
// They're also ambiguous; a FreeBSD filesystem is impossible
// to distinguish from a NetBSD one. Thus, these code assignment
// are going to be rough to begin with. For a list of meanings,
// see http://fxr.watson.org/fxr/source/sys/dtype.h?v=DFBSD,
// or Google it.
switch (GetType(i)) {
case 1: // BSD swap
guid.SetType(0xa502); break;
case 7: // BSD FFS
guid.SetType(0xa503); break;
case 8: case 11: // MS-DOS or HPFS
guid.SetType(0x0700); break;
case 9: // log-structured fs
guid.SetType(0xa903); break;
case 13: // bootstrap
guid.SetType(0xa501); break;
case 14: // vinum
guid.SetType(0xa505); break;
case 15: // RAID
guid.SetType(0xa903); break;
case 27: // FreeBSD ZFS
guid.SetType(0xa504); break;
default:
guid.SetType(0xa503); break;
} // switch
// Set the partition name to the name of the type code....
guid.SetName(guid.GetTypeName());
} // if
return guid;
} // BSDData::AsGPT()