-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauthor_disambiguation2.py
238 lines (195 loc) · 9 KB
/
author_disambiguation2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python
# coding: utf-8
import re
import textdistance
import jellyfish
import itertools
import editdistance
import fuzzy
import pickle
import argparse
import pandas as pd
from collections import Counter
from cdifflib import CSequenceMatcher
from fuzzywuzzy import fuzz
from tqdm import tqdm
import traceback
from glob import glob
chars=[',',";","\."]
def rm_splChar(name):
name = str(name)
name1 = re.sub(" +","",name)
regex = "|".join(chars)
name1 = re.sub(regex,"", name1)
name2 = re.sub(regex,"", name)
#val = re.sub('[^A-Za-z]+', '', val)
return name1, name2
def char_dist(name1, name2):
name1=rm_splChar(name1)
name2=rm_splChar(name2)
return int(Counter(name1)==Counter(name2))
def diff_lib(name1, name2):
name1=name1.lower()
name2=name2.lower()
ratio=CSequenceMatcher(lambda x: x == ' ', name1, name2).ratio()
return ratio
def jaro_winkler_score(name1, name2):
jw_score=textdistance.jaro_winkler.normalized_similarity(name1,name2)
return jw_score
def levenshtein_score(name1, name2):
leven_score = textdistance.levenshtein.normalized_similarity(name1,name2)
return leven_score
def fuzzy_nysiis(name1, name2):
ny1=fuzzy.nysiis(name1)
ny2=fuzzy.nysiis(name2)
if (ny1 or ny2):
nysiis_score = editdistance.eval(ny1, ny2)/max(len(ny1),len(ny2))
else:
nysiis_score = 0
return nysiis_score
def fuzzy_DMetaphone(name1, name2):
d1=jellyfish.metaphone(name1)
d2=jellyfish.metaphone(name2)
if (d1 or d2):
meta_score = editdistance.eval(d1, d2)/max(len(d1),len(d2))
else:
meta_score = 0
return meta_score
#Soundex is a phonetic algorithm
def jellyfish_soundex(name1, name2):
s1=jellyfish.soundex(name1)
s2=jellyfish.soundex(name2)
sound_score = editdistance.eval(s1,s2)/max(len(s1),len(s2))
return sound_score
def fuzzy_wuzzy(name1, name2):
fuzz_score=fuzz.token_set_ratio(name1, name2)/100
return fuzz_score
def hamming_similarity(name1, name2):
h_score=textdistance.hamming.normalized_similarity(name1,name2)
return h_score
def jaccard_similarity(name1, name2):
j_score=textdistance.jaccard.normalized_similarity(name1,name2)
return j_score
def cosine_similarity(name1, name2):
c_score=textdistance.jaccard.normalized_similarity(name1,name2)
return c_score
def damerau_levenshtein_similarity(name1, name2):
dl_score=textdistance.damerau_levenshtein.normalized_similarity(name1,name2)
return dl_score
def sorensen_dice_similarity(name1, name2):
sd_score=textdistance.sorensen_dice.normalized_similarity(name1,name2)
return sd_score
def calculate_feats(name1, name2):
sim_score=[]
#sim_score.append(char_dist(name1, name2))
sim_score.append(diff_lib(name1,name2))
sim_score.append(jaro_winkler_score(name1, name2))
sim_score.append(levenshtein_score(name1, name2))
sim_score.append(1-fuzzy_nysiis(name1, name2))#distance
sim_score.append(1-fuzzy_DMetaphone(name1, name2))#distance
sim_score.append(1-jellyfish_soundex(name1,name2))#distance
sim_score.append(fuzzy_wuzzy(name1, name2))
sim_score.append(hamming_similarity(name1, name2))
sim_score.append(jaccard_similarity(name1, name2))
sim_score.append(cosine_similarity(name1, name2))
sim_score.append(damerau_levenshtein_similarity(name1, name2))
sim_score.append(sorensen_dice_similarity(name1, name2))
return sim_score
#problem 1 : different names reffering to same person--Name Linking (Problem 2 : Name Resolution Problem)
def lcs(name1, name2):
match = CSequenceMatcher(None, name1, name2).find_longest_match(0, len(name1), 0, len(name2))
common_subs=name1[match.a: match.a + match.size]
name1=re.sub(re.escape(common_subs),"",name1)
name2=re.sub(re.escape(common_subs),"",name2)
return name1,name2
def find_similar_names(org_df, names_df, index=0, size=50000) :
similar_names = {}
keep_cnt = org_df.shape[0]*index
success = 0
count = 0
try:
list_of_pairs=((x, y) for i, x in enumerate(names_df[['r_names','rid']].values) for j, y in enumerate(names_df[['r_names','rid']][index:index+size].values) if (i > j+index))
for name1, name2 in tqdm(list_of_pairs, total = (names_df['r_names'].shape[0]-index)*size):
#for name1, name2 in tqdm(itertools.combinations(names_df['r_names'], 2), total=(names_df.shape[0]*(names_df.shape[0]-1))/2):
keep_cnt += 1
n1, n10 = rm_splChar(name1[0])
n2, n20 = rm_splChar(name2[0])
check=len(set(n1).intersection(n2))/max(len(n1),len(n2))
if check > 0.70:
n11, n21 = lcs(n1, n2)
n101, n201 = lcs(n10,n20)
if (n11 or n21):
vec1 = calculate_feats(n11, n21)
vec2 = calculate_feats(n11.lower(), n21.lower())
else:
vec1 = calculate_feats(n1, n2)
vec2 = calculate_feats(n1.lower(), n2.lower())
if (n101 or n201):
vec3=calculate_feats(n101, n201)
vec4=calculate_feats(n101.lower(), n201.lower())
else:
vec3=calculate_feats(n10, n20)
vec4=calculate_feats(n10.lower(), n20.lower())
#if (sum(vec1) > 10 and sum(vec1) <= 10) and (sum(vec2) > 8 and sum(vec2) <= 10) and (sum(vec3) > 8 and sum(vec3) <= 10) and (sum(vec4) > 8 and sum(vec4) <= 10) :
if (sum(vec1) > 10) or (sum(vec2) > 10) or (sum(vec3) > 10) or (sum(vec4) > 10) :
inst1 = org_df[(org_df['advisorId'] == name1[1]) | (org_df['researcherId'] == name1[1])]["publisher_institution"]
inst2 = org_df[(org_df['advisorId'] == name2[1]) | (org_df['researcherId'] == name2[1])]["publisher_institution"]
dept1 = org_df[(org_df['advisorId'] == name1[1]) | (org_df['researcherId'] == name1[1])]["publisher_dept"]
dept2 = org_df[(org_df['advisorId'] == name2[1]) | (org_df['researcherId'] == name2[1])]["publisher_dept"]
common_inst=set(inst1).intersection(inst2)
common_dept=set(dept1).intersection(dept2)
if common_inst and common_dept:
similar_names[keep_cnt]=(name1[0],name1[1],name2[0],name2[1], sum(vec1), sum(vec2), sum(vec3), sum(vec4))
success += 1
count += 1
except KeyboardInterrupt:
print("keyboard Interrupt")
except ZeroDivisionError:
print('divided by zero error')
except Exception as e:
print(traceback.print_exc())
finally:
save_obj(similar_names, "./index_files4/"+str(index)+"_"+str(index+size))
print("Total Qualified Pairs: "+str(count))
print("Successful pairs: "+str(success))
#return similar_names
#print("Total Pairs: "+str(count))
#save_obj(similar_names, "result1/"+str(index)+"_"+str(size))
#print(similar_names)
print("*"*30+'Similar name completed'+"*"*30)
return #similar_names
def save_obj(obj, name ):
with open(name + '.pkl', 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_obj(name):
with open(name, 'rb') as f:
return pickle.load(f)
#sim_names=find_similar_names(dataset, name_index, 0, 10, 0)
def gen_newIndex(org_dataset, names, index, size) :
similar_n = find_similar_names(org_dataset, names, index, size)
for key in similar_n:
index1 = names[names['r_names'].isin(similar_n[key])]['rid'].values
names.loc[names['r_names'].isin(similar_n[key]),'rid'] = min(index1)
#org_dataset["advId"] = org_dataset['dc.contributor.advisor[]'].map(names.set_index('r_names')['rid'])
#org_dataset["studId"] = org_dataset['dc.creator.researcher[]'].map(names.set_index('r_names')['rid'])
names.to_csv('result1/mod_researcher_index'+str(index)+'.csv', sep=",", index=False)
#org_dataset.to_csv('mod_sodhganaga_dataset.csv', sep = ",", index = False)
print('Done')
if __name__ == "__main__":
files=glob("./index_files4/final*.csv")
print("\n".join(files))
dataset=pd.read_csv(files[0],sep=",")
name_index=pd.read_csv(files[1],sep=",")
#rid = pd.unique(dataset[['advisorId', 'researcherId']].values.ravel('K'))
# Intial indexing names considering exact match
#name_index = pd.DataFrame({'rid':rid})
#name_index['rid'] = name_index.index
#dataset["advisorId"] = dataset['dc.contributor.advisor[]'].map(name_index.set_index('r_names')['rid'])
#dataset["researcherId"] = dataset['dc.creator.researcher[]'].map(name_index.set_index('r_names')['rid'])
#Creating new index
#gen_newIndex(dataset, name_index, args.index, args.size)
parser = argparse.ArgumentParser(description='Author name disambiguation')
parser.add_argument('--index', default = 0, type=int, help="Enter the value to start from")
parser.add_argument('--size', default = name_index.shape[0], type=int, help="Batch size")
args = parser.parse_args()
find_similar_names(dataset, name_index, args.index, args.size)