paN is a FreeBasic library for computing with p-adic numbers.
Unpack to the base directory of your FreeBasic installation.
The maximum precision is fixed at compile time,
it's set as emx in include file \modules\pan_lib.bi
This file doubles as library documentation.
Rational reconstruction is done with
signed 64-bit integers, thus has a limited range.
Makefiles are in the base directory
1_make_pan_dll.bat
2_make_pa_demos.bat
3_run_all_demos.bat
_make_one_demo.bat
_run_one_demo.bat
pan_arith.bas
fixed point p-adic number arithmetic for FreeBasic
libpan_arith.dll.a
pan_arith import library
pan_arith.dll
pan_arith dynamic link library
pan_lib.bi
Include file for p-adic number arithmetic
pa_first.bas
First steps: input conversion and basic arithmetic
pa_logistic.bas
Iterating the logistic map
pa_Hilbert.bas
Inverting an order m Hilbert matrix
pa_roots.bas
square roots and Teichmüller characters
pa_trans.bas
Transcendental functions: formal properties
(exp_p, log_p and binomial)
pa_twist.bas
p-adic interpolation: twisted binomial series
pa_omega.bas
p-adic omega constant: solve w * exp_p(w) = q
pa_gamma.bas
Morita's p-adic analogue of the gamma function
pa_agM.bas
p-adic arithmetic-geometric Mean
Plain text input files
(C) 2021 Djoser.j.Spacher, All rights reserved
GNU General Public License, GPL
______________________________________________
Hensel, K., 'Über eine neue Begründung der Theorie der algebraischen Zahlen,' 1897
Krishnamurthy et al., 'Finite segment p-adic number systems,' 1975
Weger, B. de, 'Approximation lattices of p-adic numbers,' 1986
Gouvêa, F., p-adic Numbers - An introduction, Springer-Verlag, 1997
Caruso, X., 'Computations with p-adic numbers,' (pp.1-31), 2017