-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
240 lines (215 loc) · 7.91 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import pickle
import random
from collections import defaultdict
from pathlib import Path
import hydra
import numpy as np
import torch as th
import torch.multiprocessing as mp
from omegaconf import DictConfig
from torch.utils.data import DataLoader
from torch_geometric.data import Batch
import graph_generation as gg
def get_expansion_items(cfg: DictConfig, train_hypergraphs):
# Spectral Features
spectrum_extractor = (
gg.spectral.SpectrumExtractor(
num_features=cfg.spectral.num_features,
normalized=cfg.spectral.normalized_laplacian,
)
if cfg.spectral.num_features > 0
else None
)
# Train Dataset
red_factory = gg.reduction.ReductionFactory(
contraction_family=cfg.reduction.contraction_family,
cost_type=cfg.reduction.cost_type,
preserved_eig_size=cfg.reduction.preserved_eig_size,
sqrt_partition_size=cfg.reduction.sqrt_partition_size,
weighted_reduction=cfg.reduction.weighted_reduction,
min_red_frac=cfg.reduction.min_red_frac,
max_red_frac=cfg.reduction.max_red_frac,
red_threshold=cfg.reduction.red_threshold,
rand_lambda=cfg.reduction.rand_lambda,
)
if cfg.reduction.num_red_seqs > 0:
train_dataset = gg.data.FiniteRandRedDataset(
hypergraphs=train_hypergraphs,
red_factory=red_factory,
spectrum_extractor=spectrum_extractor,
num_red_seqs=cfg.reduction.num_red_seqs,
)
else:
train_dataset = gg.data.InfiniteRandRedDataset(
hypergraphs=train_hypergraphs,
red_factory=red_factory,
spectrum_extractor=spectrum_extractor,
)
# Dataloader
is_mp = cfg.reduction.num_red_seqs < 0 # if infinite dataset
train_dataloader = DataLoader(
train_dataset,
batch_size=cfg.training.batch_size,
shuffle=False,
pin_memory=True,
collate_fn=Batch.from_data_list,
num_workers=min(mp.cpu_count(), cfg.training.max_num_workers) * is_mp,
multiprocessing_context="spawn" if is_mp else None,
)
# Model
if cfg.spectral.num_features > 0:
sign_net = gg.model.SignNet(
num_eigenvectors=cfg.spectral.num_features,
hidden_features=cfg.sign_net.hidden_features,
out_features=cfg.model.emb_features,
num_layers=cfg.sign_net.num_layers,
)
else:
sign_net = None
features = 2 if cfg.diffusion.name == "discrete" else 1
if cfg.model.name == "ppgn":
model = gg.model.SparsePPGN(
node_in_features=features * (1 + cfg.diffusion.self_conditioning),
edge_in_features=features * (1 + cfg.diffusion.self_conditioning),
node_out_features=features,
edge_out_features=features,
emb_features=cfg.model.emb_features,
hidden_features=cfg.model.hidden_features,
ppgn_features=cfg.model.ppgn_features,
num_layers=cfg.model.num_layers,
dropout=cfg.model.dropout,
)
elif cfg.model.name == "gine":
model = gg.model.GINE(
node_in_features=features * (1 + cfg.diffusion.self_conditioning),
edge_in_features=features * (1 + cfg.diffusion.self_conditioning),
node_out_features=features,
edge_out_features=features,
emb_features=cfg.model.emb_features,
hidden_features=cfg.model.hidden_features,
num_layers=cfg.model.num_layers,
dropout=cfg.model.dropout,
)
else:
raise ValueError(f"Unknown model name: {cfg.model.name}")
# Diffusion
if cfg.diffusion.name == "discrete":
diffusion = gg.diffusion.sparse.DiscreteGraphDiffusion(
self_conditioning=cfg.diffusion.self_conditioning,
num_steps=cfg.diffusion.num_steps,
)
elif cfg.diffusion.name == "edm":
diffusion = gg.diffusion.sparse.EDM(
self_conditioning=cfg.diffusion.self_conditioning,
num_steps=cfg.diffusion.num_steps,
)
else:
raise ValueError(f"Unknown diffusion name: {cfg.diffusion.name}")
# Method
method = gg.method.Expansion(
diffusion=diffusion,
spectrum_extractor=spectrum_extractor,
emb_features=cfg.model.emb_features,
augmented_radius=cfg.method.augmented_radius,
augmented_dropout=cfg.method.augmented_dropout,
deterministic_expansion=cfg.method.deterministic_expansion,
min_red_frac=cfg.reduction.min_red_frac,
max_red_frac=cfg.reduction.max_red_frac,
red_threshold=cfg.reduction.red_threshold,
)
return {
"train_dataloader": train_dataloader,
"method": method,
"model": model,
"sign_net": sign_net,
}
@hydra.main(config_path="config", config_name="config", version_base="1.3")
def main(cfg: DictConfig):
if cfg.debugging:
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# Fix random seeds
random.seed(0)
np.random.seed(0)
th.manual_seed(0)
# hypergraphs
if cfg.dataset.load:
with open(Path("./data") / f"{cfg.dataset.name}.pkl", "rb") as f:
dataset = pickle.load(f)
train_hypergraphs = dataset["train"]
validation_hypergraphs = dataset["val"]
test_hypergraphs = dataset["test"]
elif cfg.dataset.name == "hypergraphErdosRenyi":
train_hypergraphs = gg.data.generate_erdos_renyi_hypergraphs(
num_hypergraphs=cfg.dataset.train_size,
min_size=cfg.dataset.min_size,
max_size=cfg.dataset.max_size,
probs=cfg.dataset.probs,
k=cfg.dataset.k,
seed=0,
)
validation_hypergraphs = gg.data.generate_erdos_renyi_hypergraphs(
num_hypergraphs=cfg.dataset.val_size,
min_size=cfg.dataset.min_size,
max_size=cfg.dataset.max_size,
probs=cfg.dataset.probs,
k=cfg.dataset.k,
seed=1,
)
test_hypergraphs = gg.data.generate_erdos_renyi_hypergraphs(
num_hypergraphs=cfg.dataset.test_size,
min_size=cfg.dataset.min_size,
max_size=cfg.dataset.max_size,
probs=cfg.dataset.probs,
k=cfg.dataset.k,
seed=2,
)
else:
raise ValueError(f"Unknown dataset name: {cfg.dataset.name}")
# Metrics
validation_metrics = [
gg.metrics.NodeNumDiff(),
gg.metrics.NodeDegreeDistrWasserstein(),
gg.metrics.EdgeSizeDistrWasserstein(),
gg.metrics.Spectral(),
gg.metrics.CentralityCloseness(),
gg.metrics.CentralityBetweenness(),
gg.metrics.CentralityHarmonic(),
gg.metrics.Uniqueness(),
gg.metrics.Novelty(),
]
if "hypergraphEgo" in cfg.dataset.name:
validation_metrics += [gg.metrics.ValidEgo(),
]
if "hypergraphTree" in cfg.dataset.name:
validation_metrics += [gg.metrics.ValidHypertree(),
]
if "hypergraphSBM" in cfg.dataset.name:
validation_metrics += [gg.metrics.ValidSBM(),
]
# Method
if cfg.method.name == "expansion":
method_items = get_expansion_items(cfg, train_hypergraphs)
else:
raise ValueError(f"Unknown method name: {cfg.method.name}")
method_items = defaultdict(lambda: None, method_items)
# Trainer
th.set_float32_matmul_precision("high")
trainer = gg.training.Trainer(
sign_net=method_items["sign_net"],
model=method_items["model"],
method=method_items["method"],
train_dataloader=method_items["train_dataloader"],
train_hypergraphs=train_hypergraphs,
validation_hypergraphs=validation_hypergraphs,
test_hypergraphs=test_hypergraphs,
metrics=validation_metrics,
cfg=cfg,
)
if cfg.testing:
trainer.test()
else:
trainer.train()
if __name__ == "__main__":
mp.set_start_method("spawn")
main()