-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathf_Clamond
51 lines (37 loc) · 1.77 KB
/
f_Clamond
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Function f_Clamond(Re As Double, rRou As Double) As Double
' F = COLEBROOK(R ,K) fast , accurate and robust computation of the Darcy-Weisbach friction factor according to the Colebrook formula
' Ref: Clamond D. Efficient resolution of the colebrook equation. Industrial & Engineering Chemistry Research 2009; 48: p. 3665-3671.
' Link: https://arxiv.org/pdf/0810.5564.pdf
' This VBA code is modified by Hakan ibrahim Tol from the Matlab Code by Clamond D,
' its link: https://nl.mathworks.com/matlabcentral/fileexchange/21990-colebrook-m?focused=5105324&tab=function
' INPUTS:
' R | Re : Reynolds' number (should be >= 2300).
' K | rRou : Equivalent sand roughness height divided by the hydraulic diameter (default K=0).
' RE-ARRANGING INPUT (as to Clamond Argument Names)
R = Re
k = rRou
' INPUT VALUE CHECK
If R < 2300 Then
f_Clamond = CVErr(xlErrNA)
MsgBox "The Colebrook equation is valid for Reynolds numbers (Re | R) >= 2300"
End If
If k < 0 Then
f_Clamond = CVErr(xlErrNA)
MsgBox "The relative sand roughness (rRou | K) must be non-negative"
End If
' Fasten your seat belts - Iteration Starts
'Initialization
X1 = k * R * 0.123968186335418 ' X1 <- K * R * log(10) / 18.574.
X2 = Log(R) - 0.779397488455682 ' X2 <- log( R * log(10) / 5.02 );
'Initial Guess
f = X2 - 0.2
' First Iteration
E = (Log(X1 + f) + f - X2) / (1 + X1 + f)
f = f - (1 + X1 + f + 0.5 * E) * E * (X1 + f) / (1 + X1 + f + E * (1 + E / 3))
' Second Iteration (remove the next two lines for moderate accuracy).
E = (Log(X1 + f) + f - X2) / (1 + X1 + f)
f = f - (1 + X1 + f + 0.5 * E) * E * (X1 + f) / (1 + X1 + f + E * (1 + E / 3))
' Finalized Solution ' F <- 0.5 * log(10) / F;
f = 1.15129254649702 / f ' F <- Friction factor.
f_Clamond = f * f
End Function