-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_edit.py
63 lines (50 loc) · 1.94 KB
/
run_edit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
import numpy as np
import torch
from munch import munchify
from PIL import Image
from torchvision.utils import save_image
from solver.latent_diffusion import get_solver
def set_seed(seed: int):
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
def load_img(img_path: str, size: int=512):
image = np.array(Image.open(img_path).convert('RGB').resize((size, size)))
return image
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--img_path', type=str, default='samples/horse_1.jpg')
parser.add_argument('--img_size', type=int, default=512)
parser.add_argument('--null_prompt', type=str, default="")
parser.add_argument('--prompt', type=str, default="zebra")
parser.add_argument('--cfg_guidance', type=float, default=0.2)
parser.add_argument('--cpu', action='store_true')
parser.add_argument('--NFE', type=int, default=200)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
# control randomness
set_seed(args.seed)
# set device
device = 'cpu' if args.cpu else 'cuda'
# prepare solver
solver = get_solver(name='dream_edit',
device=device,
solver_config=munchify({'num_sampling': args.NFE}))
# load image
img = load_img(args.img_path, args.img_size)
img = torch.from_numpy(img).permute(2, 0, 1) / 127.5 - 1
img = img.unsqueeze(0).to(device)
# solve inverse problem
recon = solver.sample(src_img = img,
prompt=[args.null_prompt,
args.null_prompt,
args.prompt],
cfg_guidance=args.cfg_guidance,
update_null=False,
display=False,
inversion=True)
# save result using torchvision.utils.save_image
save_image(recon, 'edited.png', normalize=True)
if __name__ == '__main__':
main()